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Metal halide perovskites are attracting tremendous interest for a variety of high-

performance optoelectronic applications1. The ability to continuously tune the perovskite 

bandgap by tweaking the chemical compositions opens up new applications for 

perovskites as coloured emitters, in building-integrated photovoltaics, and as components 

of tandem photovoltaics to further increase the power conversion efficiency2–4. 

Nevertheless, parasitic non-radiative losses are still limiting performance, with 

luminescence yields in state-of-the-art perovskite solar cells still far from 100% under 

standard solar illumination conditions5–7. Furthermore, in mixed halide perovskite 

systems designed for continuous bandgap tunability (bandgaps ~1.7-1.9 eV)2, photo-

induced ion segregation leads to bandgap instabilities8,9. Here, we substantially mitigate 

both non-radiative losses and photo-induced ion migration in perovskite films and 

interfaces by decorating the surfaces and grain boundaries with passivating potassium-

halide layers. We demonstrate external photo-luminescence quantum yields of 66%, 

translating to internal yields exceeding 95%. The high luminescence yields are achieved 

while maintaining high mobilities over 40 cm2V-1s-1, giving the elusive combination of 

both high luminescence and excellent charge transport10. We find that the external 

luminescence yield when interfaced with electrodes in a solar cell device stack, a quantity 

that must be maximised to approach the efficiency limits, remains as high as 15%, 

indicating very clean interfaces. We also demonstrate the inhibition of transient photo-

induced ion migration processes across a wide range of mixed halide perovskite bandgaps 

that otherwise show bandgap instabilities. We validate these results in full operating solar 

cells, highlighting the importance of maximising and stabilising luminescence in device 

structures. Our work represents a critical breakthrough in the construction of tunable 

metal halide perovskite films and interfaces that can approach the efficiency limits in 

both tandem solar cells, coloured LEDs and other optoelectronic applications. 
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We fabricated a series of passivated triple-cation perovskite thin films on glass11 

(Cs0.06FA0.79MA0.15Pb(I0.85Br0.15)3, where MA = methylammonium, CH3NH3; FA = 

formamidinium, CH3(NH2)2, by diluting the precursor solution with potassium iodide (KI) 

solution. We herein denote the perovskite as (Cs,FA,MA)Pb(I0.85Br0.15)3 and the passivated 

samples with x = [K]/([A]+[K]) and A = (Cs,FA,MA), where x represents the fraction of K out 

of the A-site cations in the precursor solution. We note that the standard triple-cation precursor 

solution recipe (x = 0) has a slight halide deficiency but introducing KI leads to samples with 

a small excess of halide, along with very slight changes to the I/Br ratio (Extended Data Figure 

1). The films have uniformly packed grains each of size ~200-400 nm (Extended Data Figure 

1). Absorption and photoluminescence measurements reveal a reduction in the optical bandgap 

of the perovskite film with increasing KI addition, consistent with the additives selectively 

interacting with the bromide (Extended Data Figure 2). 

For a solar cell or light-emitting diode to approach its efficiency limit, all recombination should 

be radiative and luminescence maximised12. In state-of-the-art perovskite films, there are still 

substantial non-radiative losses originating from charge-carrier trap states present in the 

perovskite layer13. The origin of the trap states is still unclear, but they may be associated with 

ionic defects such as halide vacancies14,15. In Figure 1a, we show the external 

photoluminescence quantum efficiency (PLQE) of the (Cs,FA,MA)Pb(I0.85Br0.15)3 perovskite 

films with increasing K content measured at excitation densities equivalent to solar 

illumination. The PLQE shows a significant jump from the 8% (x = 0) to 41% (x = 0.05) 

reaching a remarkably high PLQE of 66% for x = 0.40. By accounting for photon recycling 

and light-out-coupling effects16, these values translate to an internal PLQE exceeding 95% for 

the passivated compositions (Figure 1a). Furthermore, the PLQE does not change significantly 

with excitation power for the passivated samples, unlike the x = 0 sample in which the PLQE 

increases with intensity due to a filling of the high density of trap states17 (Extended Data Figure 
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2). These results are also reflected in micro-PL measurements (Extended Data Figure 3). Time-

resolved PL (TRPL) measurements (Figure 1b) show the removal of the fast non-radiative 

decay component with passivation, leading to radiative bimolecular recombination (Extended 

Data Figure 4).  

We use time-resolved microwave conductivity (TRMC) to assess the impact of the passivation 

on charge transport in the (Cs,FA,MA)Pb(I0.85Br0.15)3 perovskite thin films (Extended Data 

Figure 5)10,18. In Figure 1c, we show the maximum photo-conductance (charge mobility) for 

each of the K contents. We find that the carrier mobility remains mostly constant at a large 

value of ~42 cm2V-1s-1 for perovskite with x = 0 and x = 0.1, before dropping for higher K 

content to ~30 cm2V-1s-1 (x = 0.4), which could be an effect of decreasing grain sizes for x > 

0.219 (see Methods). These results are consistent with lower trap densities13 for the passivated 

samples, with the elimination of almost all non-radiative channels and retention of excellent 

charge transport up to x = 0.1. 

In Figure 2a, we show the PLQE from (Cs,FA,MA)Pb(I0.85Br0.15)3 thin films as a function of 

time under continuous illumination with intensity equivalent to 1-sun. We find a substantial 

but slow transient rise for the reference film (x = 0) associated with photo-induced halide 

migration20. In contrast, the high values of PLQE for the passivated films are stable under 

continuous illumination, suggesting that the photo-induced migration processes are 

substantially inhibited. To further investigate the latter claim, we add KI to precursor solutions 

with higher fractions of Br, which typically show substantial PL shifts due to photo-induced 

halide segregation and subsequent emission from low-bandgap iodide-rich components8. We 

show that the PL spectral output of passivated films (Cs,FA,MA)Pb(I0.4Br0.6)3 is remarkably 

stable at the optimal bandgap for perovskite/silicon tandems (1.75 eV)2 under 1-sun 

illumination (Figure 2c). In contrast, the sample without passivation shows substantial red-

shifts and bandgap changes over time (Figure 2b). In Figure 2d, we show that this photo-
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stability is also seen across bromide fractions covering the range of idealised wide bandgaps 

for perovskite-perovskite tandems (1.7-1.9 eV)2, albeit with slightly reduced stability at the 

highest bromide fractions (Extended Data Figure 4). We also find that the critical bandgaps for 

tandems can even be stabilised at low passivation levels (x = 0.1, Figure 2d). This is the first 

report showing such exceptional stability in mixed halide compositions across a wide range of 

bandgaps under solar illumination in ambient conditions3. 

We now investigate the chemical composition of the (Cs,FA,MA)Pb(I0.85Br0.15)3 perovskite 

thin films, performing scanning transmission electron microscopy-energy dispersive X-ray 

spectroscopy (STEM-EDX). In Figure 3a, we show a cross sectional view of a lamella of the 

x = 0.2 composition. From the STEM-EDX elemental analysis, we observe a potassium-rich 

phase at the grain boundaries of the perovskite as well as the interface with the substrate 

(Extended Data Figure 6). Analysis of the dataset using a Non-negative Matrix Factorisation 

(NMF) algorithm21 highlights the presence of two compositional phases present in the 

specimen, reported as Factor 1 and Factor 2 in Figure 3b-c. Factor 1 shows characteristic 

EDX features, including Br Lα, Pb Mα, I Lα lines (Figure 3d), which can be associated with 

the perovskite phase, while Factor 2 is rich in bromine and potassium (Figure 3e) and 

interestingly, particularly prominent at the grain boundaries and top and bottom surfaces of 

the perovskite film. This is likely related to a new crystalline phase observed in Grazing-

Incidence Wide-Angle X-Ray Scattering (GIWAXS) experiments (Extended Data Figure 7). 

These results are also consistent with Hard X-ray Photoelectron Spectroscopy (HAXPES) 

measurements, which reveal a decrease in K moving from the film surface into the bulk 

(Extended Data Figure 8). These results collectively indicate the formation of potassium 

halide (particularly Br-rich) passivation layers decorating the surfaces, with the potassium not 

incorporating into the perovskite lattice. We note that this is in contrast to other works 

reporting the addition of small monovalent cation to the perovskite including Na, Rb or K, 
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which propose incorporation of these components into the lattice5,22–25, though a recent report 

shows that Rb does not incorporate and suggests the same for K26.  

In Figure 3f, we summarise our interpretation of the results. Here, we are introducing excess 

iodide through the KI source into the perovskite precursor solutions, which compensates for 

any halide vacancies. The excess halides fill these vacancies, thereby passivating the non-

radiative recombination pathways, leading to exceptionally high luminescence efficiencies. 

The excess halides are immobilised in the form of benign potassium-rich halide-sequestering 

species at the grain boundaries and surfaces, thereby inhibiting halide migration and 

suppressing any additional non-radiative decay arising from interstitial halides. At K content 

beyond x = 0.1, these non-perovskite species are too large and perturb charge transport. This 

suggests there is an optimal K content at x ~0.1, which is a compromise between high radiative 

efficiency and retention of high charge carrier mobility. Finally, we propose that potassium 

selectively depletes Br from the perovskite crystal structure, which is consistent with an 

increased lattice parameter, red-shifting band-edge, and decreasing Br/I ratio in the bulk with 

K addition (Extended Data Figures 2 and 8). We note that these observations and enhanced 

properties are not achieved in the absence of Br (Extended Data Figure 2). The addition of 

small fractions of bromide to the perovskite precursor solutions has been shown to improve 

perovskite film formation27. However, bromide-rich perovskites typically have increased trap 

states and inferior charge carrier mobility compared to their iodide-based counterparts28. Here 

we exploit the beneficial properties of bromide in the grain formation process while 

suppressing the formation of Br-induced defect states in the bulk of the crystal.  

At open-circuit in a solar cell, external luminescence should be maximised12, and we must 

minimise any additional non-radiative losses upon introduction of device electrodes. In Figure 

4a and d, we show the time-resolved PL decays and PLQE, respectively, for the 

(Cs,FA,MA)Pb(I0.85Br0.15)3 perovskite with and without potassium passivation when deposited 
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on a standard n-type mesoporous TiO2 electron-accepting contact (see Extended Data Figure 9 

for other excitation intensities). We find that charge-carrier recombination in the presence of 

the electrode is slower and more radiative (higher integrated TRPL intensity) in the presence 

of potassium, with the PLQE dropping by a factor of only 1.7 (to 27.1%) compared to a drop 

of factor 6.7 (to 3.0%) without passivation. In Figure 4b, we show the time-resolved PL decays 

for the perovskite containing a top layer of a standard p-type Spiro-OMeTAD hole-accepting 

contact. We again find that the passivation leads to slower charge carrier recombination and a 

less significant drop in PLQE upon introduction of the electrode (Fig. 4d), with a drop of factor 

4.5 to 10.4% compared to a drop by factor 38 to 0.5% without passivation. Finally, we show 

the time-resolved PL decays for the full device stack (i.e. both electrodes) in Figure 4c, clearly 

showing the slower recombination and vastly reduced PLQE drop with the potassium sample. 

The external PLQE of the full stack is retained at 14.5% with the passivating interlayers (a 

reduction of factor 3.2 upon addition of the electrodes), an order of magnitude higher than the 

1.2% of the control stack (reduction of factor 17). These results show that the potassium 

interlayers not only improve the optoelectronic properties of the neat material, but also lead to 

vastly improved interfaces with device electrodes.  

To validate our findings, we construct full solar cells using the device architecture fluorinated-

tin oxide (FTO) / compact-TiO2 (~30 nm) / thin-mesoporous TiO2 (~200 nm) / perovskite 

(~500 nm) / Spiro-OMeTAD (~150 nm) / Au (80 nm). In Figure 5a, we show the forward and 

reverse current-voltage (J-V) curves of champion devices containing the 

(Cs,FA,MA)Pb(I0.85Br0.15)3 absorbers with x = 0 and x = 0.1 under full simulated sunlight, with 

the extracted parameters given in Table 1 (see Extended Data Figure 10 and 11 and Table 1 for 

other K compositions, dark J-V curves, and device statistics). We find that the device efficiency 

increases from 17.3% (x = 0) to 21.5% (x = 0.1) with passivation, with the elimination of 

hysteresis in the latter case consistent with an inhibition of ion migration1,20. This is also 
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consistent with a rapid rise to a stabilised power efficiency of 21.3%, compared to a slower rise 

to just 17.2% for the control (Fig. 5a inset). We see an increase in open-circuit voltage (Voc) 

with passivation from 1.05 V (x = 0) to 1.17 V (x = 0.1) (Figure 5c), with the calculated Voc 

difference from the increase in PLQE of the device stacks from 1.2 to 14.5% (Figure 4d) 

matching within error the difference in the Voc distributions from the device statistics. The Voc 

loss from the radiative limit is only 0.11 V and is one of the lowest losses reported in a 

perovskite solar cell to date5. We also see an increase in the short-circuit current (JSC) with K 

addition up to x = 0.1 (Figure 5c), consistent with the increased carrier mobility and lifetime29. 

The optimal device performance at x = 0.1 therefore validates the compromise between 

radiative efficiency and carrier mobility. We conducted preliminary stability tests and found a 

negligible drop in shelf-life performanceover a month, and that the devices retain over 80% of 

their initial performance after 300 hours of continued operation at maximum power (Extended 

Data Figure 10). We show device results for larger bandgap (Cs,FA,MA)Pb(I0.4Br0.6)3 

absorbers (Fig. 5d and 5f), attaining a PCE of 17.9% with minimal hysteresis for the x = 0.1 

composition and stabilised power output of 17.1% (see Table 1 and Extended Data Figure 11 

for device statistics). This is one of the highest efficiencies to date for a large bandgap (1.78 

eV) perovskite ideally suited for tandem applications3. 

These results are particularly remarkable for two key reasons. First, the perovskite films and 

interfaces are surprisingly tolerant to passivating additives. Here, we have introduced additives 

at high enough loading to passivate surfaces and stabilise luminescence across a range of 

bandgaps without compromising charge transport or extraction. This tolerance is in contrast to 

conventional semiconductors such as GaAs, which require more complicated passivation 

approaches such as controlled growth on lattice-matched substrates30. Second, these results 

directly show the importance of obtaining high, stable external luminescence yields in full 

device stacks containing luminescent absorbers capable of recycling photons12,31. The internal 
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luminescence yields approaching 100%, along with small loss in external luminescence yield 

in the full device stack, shows that perovskites can sustain the necessary photon gas to achieve 

voltage losses low enough to rival GaAs. We note that the perovskite compositions and 

passivating interlayers shown in this work lead to far greater luminescence and broader stability 

enhancements than reported previously for Rb or K5,23–26. Further work will be required to 

explore the limits of the K-based passivation including its efficacy on different perovskite 

compositions, deposition methods and contacts, and how it could be ultimately exploited (or 

even mimicked with other halide-sequestering species) to eliminate interfacial non-radiative 

losses and ionic migration. The combination of high radiative efficiency, excellent charge 

transport and truly photo-stable bandgaps makes these passivation approaches an extremely 

promising route to take perovskite devices to their efficiency limits across a range of bandgaps.  
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Main Figure Legends and Tables 

 

 

Figure 1. Increased radiative efficiency and charge carrier mobility through passivation. 

(a) PLQE of passivated perovskite thin films with increasing fraction of potassium measured 

under illumination with a 532-nm laser at an excitation intensity equivalent to ~1 sun (~60 

mW.cm-2) after 300 seconds of illumination. (b) Time-resolved PL decays of the films with 

excitation at 407 nm and pulse fluence of 0.5 µJ.cm-2 (excitation density ~1016 cm-3). (c) 

Maximum photo-conductance for each of the K contents extracted from TRMC measurements 

with an excitation density of ~1014 cm-3 (Extended Data Figure 7).  

 

Figure 2. Stabilised PLQE and inhibition of photo-induced ion migration. (a) PLQE for 

(Cs,FA,MA)Pb(I0.85Br0.15)3 films illuminated over time with a 532-nm laser at an excitation 

intensity equivalent to ~1 sun (~60 mW.cm-2) in ambient atmosphere. PL from 

(Cs,FA,MA)Pb(I1-yBry)3 with y = 0.6 (b) without passivation (x = 0) compared to the (c) 

passivated sample (x = 0.4), illuminated continuously in ambient conditions with the same 

conditions as (a). (d) The PL from the passivated (x = 0.4) compositions with y = 0.4, x = 0.4 

(peak at 1.70 eV), y = 0.6, x = 0.1 (1.78 eV) and y = 1, x = 0.4 (1.89 eV), measured over time 

under the same conditions. 

 

Figure 3. Cross-section chemical characterisation. (a) HAADF STEM cross sectional image 

of a (Cs,FA,MA)Pb(I0.85Br0.15)3 passivated perovskite thin film (x = 0.20). NMF decomposition 

results in (b) factor 1 associated to the perovskite layer and in (c) factor 2 indicating the 

presence of a K and Br rich phase. The profiles for (d) factor 1 and (e) factor 2. (f) Schematic 

of a film cross-section showing halide vacancy management with excess halide, where the 
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surplus halide is immobilised through complexing with potassium into benign compounds at 

the grain boundaries and surfaces. 

 

Figure 4. Luminescence properties of the perovskite when interfaced with solar cell device 

contacts. Time-resolved PL decays of encapsulated (Cs,FA,MA)Pb(I0.85Br0.15)3 films (x = 0 

and x = 0.1) with excitation at 407 nm and pulse fluence of 0.05 µJ.cm-2 (1.5×1015 cm-3 , 

equivalent to ~5 sun) when the perovskite is interfaced with (a) an n-type electron-collecting 

electrode (compact-TiO2/thin-mesoporous TiO2), (b) a p-type hole-collecting electrode (Spiro-

OMeTAD), and (c) both electrodes in a full device stack. (d) External PLQE measurements of 

the perovskite in each configuration measured under illumination with a 532-nm laser at an 

excitation intensity equivalent to ~1 sun (~60 mW.cm-2). See Extended Data Figure 12 for other 

intensities. 

 

Figure 5. Enhanced solar cell power conversion efficiency. (a) Forward (open symbols) and 

reverse (closed symbols) J-V curves of champion solar cells with (Cs,MA,FA)Pb(I0.85Br0.15)3 

absorbers without (x = 0) and with (x = 0.1) passivation, measured under full simulated solar 

illumination conditions (AM1.5, 100 mW.cm-2). Inset: Stabilised power output under the same 

conditions. (b) Open-circuit voltage (Voc) and (c) short-circuit current (JSC) as functions of 

potassium fraction x, with error bars representing the standard deviation across 10 devices for 

each composition. (d) J-V curves of champion solar cells with (Cs,MA,FA)Pb(I0.4Br0.6)3 

absorbers without (x = 0) and with (x = 0.1) potassium passivation. External quantum 

efficiencies (EQE) and integrated short-circuit current for the (e)  (Cs,MA,FA)Pb(I0.85Br0.15)3 

and (f) (Cs,MA,FA)Pb(I0.4Br0.6)3 devices. 



Page 15 of 30 

Table 1. Champion photovoltaic device parameters. The bandgaps are extracted from the EQE 

onsets, and the Voc loss is the difference between the bandgap radiative limit Voc and measured 

Voc.   

Potassium 

fraction, x 

Bandgap 

[eV] 
Jsc [mA.cm−2] Voc  [V] Fill factor PCE [%] Voc loss [V] 

(Cs,MA,FA)Pb(I0.85Br0.15)3  

0.0 1.59 22.6 1.05 0.73 17.3 0.26 

0.1 1.56 23.2 1.17 0.79 21.5 0.11 

(Cs,MA,FA)Pb(I0.4Br0.6)3  

0.0 1.83 15.3 1.12 0.72 12.3 0.42 

0.1 1.78 17.9 1.23 0.79 17.5 0.27 
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Methods 

Film and device fabrication. All the organic cation salts were purchased form Dyesol; the Pb 

compounds from TCI and CsI and KI from Alfa Aesar. Spiro-OMeTAD was purchased from 

Borun Chemicals and used as received. Unless otherwise stated, all other materials were 

purchased from Sigma-Aldrich.  

The triple-cation-based perovskite Cs0.06FA0.79MA0.15Pb(I0.85Br0.15)3 was prepared by 

dissolving PbI2 (1.2 M), FAI (1.11 M), MABr (0.21 M) and PbBr2 (0.21 M) in a mixture of 

anhydrous DMF:DMSO (4:1, volume ratios) followed by addition of 5 volume percent from 

CsI stock solution (1.5 M in DMSO). The potassium iodide was first dissolved in a mixed 

solution of DMF/DMSO 4:1 (v:v) to make a stock solution of 1.5 M. We then added the KI 

solution into the triple cation perovskite solution in different volume ratios. We then spin-

coated the perovskite solutions using a two-step program at 2000 and 6000 rpm for 10 and 40 

seconds, respectively, and dripping 150 µL of chlorobenzene after 30 seconds. We then 

annealed the films at 100oC for 1 hour. All the film preparations were performed in a nitrogen-

filled glove box. The devices were fabricated following the same procedures for substrate 

preparation as well as deposition of both electron and hole transport layers (i.e. TiO2, Spiro-

OMeTAD) as in our previous work32. 

Scanning Electron Microscopy. The surface morphology of the films was examined using an 

FESEM (Merlin). An electron beam accelerated to 3 kV was used with an in-lens detector. 

Steady-state absorption and photoluminescence characterisation. Absorption spectra were 

recorded with a Perkin-Elmer Lambda 1050 spectrophotometer equipped with an integrating 

sphere to account for reflected and transmitted light. Photo-thermal deflection spectroscopy 

(PDS) measurements were acquired on a custom-built setup by monitoring the deflection of a 

fixed wavelength (670 nm) laser probe beam following absorption of each monochromatic 

pump wavelength by a thin film immersed in an inert liquid FC-72 Fluorinert (3M Company). 
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Photoluminescence quantum yield measurements were taken by mounting perovskite films or 

encapsulated device stacks in an integrating sphere and photoexciting with a 532-nm 

continuous-wave laser. The laser and the emission signals were measured and quantified using 

a calibrated Andor iDus DU490A InGaAs detector for the determination of PL quantum 

efficiency. The external PLQE was calculated as per de Mello et al33 and the internal PLQE 

subsequently determined using the methods by Richter et al16. 

The absorption and photoluminescence (PL) (Extended Data Figure 2a and b) spectra reveal a 

reduction in the optical bandgap of the perovskite film with increasing KI. The PL peaks at 770 

nm for x = 0 and red-shifts to 807 nm for x = 0.4. From Hard X-ray Photoelectron Spectroscopy 

(HAXPES) measurements, we find that increasing amounts of KI have no effect in the valence 

band (VB) edge, suggesting that the conduction band (CB) must decrease (Extended Data 

Figure 2b, inset). We note that this is in contrast to the case of the bandgap tunability achieved 

through directly changing mixed halide fractions, where the VB was shown to change but the 

CB remained almost fixed34. Measurements on similar perovskite systems without Br did not 

show such a strong red-shift upon adding K (Extended Data Figure 2fg,h) suggesting that the 

additives are selectively interacting with the bromide. These results highlight the combination 

of K-additives and mixed halides as levers for selectively tuning the bandgap and conduction 

band. We also note that the samples show a small fraction (<1% of material) with a low 

bandgap component (Extended Data Figure 2c) but the emission is predominantly from the 

slightly higher energy component. It is currently unclear why the luminescence is not 

dominated by the low gap component but it is possible that these low-concentration, low-

bandgap components are electronically isolated from the remaining material, for example being 

surrounded by potassium-rich passivating material. We also note that the decrease in PLQE for 

x = 0.6 could be due to the much smaller grain size at these high passivation levels (Extended 

Data Figure 1). Finally, we note that the absorptance changes due to thickness changes with KI 
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addition over the ranges for our devices (x = 0 - 0.2) are negligible and thus are not a significant 

cause of the observed enhancements in device performance.  

Confocal PL maps. PL maps were collected using a WITec alpha 300 s setup. The excitation 

source was 405 nm cw laser (Coherent CUBE), chopped using a Stanford Research SR 540 

chopping unit at frequency of 840 Hz. The light was coupled though an optical fiber to the 

microscope and focused using 100x Nikon lens (NA = 0.7). The sample was positioned on a 

X-Y piezo stage of the microscope. The PL signal was collected in reflection mode with the 

same 100x objective and detected using a spectrometer fitted with a CCD detector. A low-pass 

filter with a cut-off wavelength of 435 nm was fitted before the CCD detector to block the 

excitation component of transmitted light (405nm). 

The confocal PL intensity maps are shown in Extended Data Figure 3a-d from perovskite films 

with x = 0 – 0.4, with the intensity distributions shown in Extended Data Figure 3i. For example, 

we observe a broad distribution of emission intensity peaking at 2×104 counts for x = 0.20 

compared to a narrower distribution but with a maximum at only 5×103 counts for the reference 

film (x = 0). Although the intensity distribution is broader for the x = 0.2 sample, the lowest 

counts for this sample are as high in number as the highest counts for the reference. We find 

that the absolute emission intensity increases continuously with increasing content of 

potassium (Extended Data Figure 3i), peaking at an order of magnitude enhancement at x = 

0.40, consistent with the PLQE data in Fig. 1a. We also show the centre-of-mass PL wavelength 

maps for the same perovskite films in Extended Data Figure 3e-h, along with the corresponding 

histograms in Extended Data Figure 3j. This further confirms the red-shifting of the microscale 

PL upon addition of K, consistent with the absorption and bulk PL data. Interestingly, we find 

a statistically-significant correlation between the PL wavelength and the intensity for each local 

site (i.e. the most emissive sites are the most red-shifted, see Extended Data Figure 3k). This 
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is consistent with the bulk absorption and PL data, where the PL intensity increases and red-

shifts with increasing K content. 

Time-resolved photoluminescence. Time-resolved photoluminescence measurements were 

acquired with a gated intensified CCD camera system (Andor iStar DH740 CCI-010) 

connected to a grating spectrometer (Andor SR303i). Excitation was performed with 

femtosecond laser pulses which were generated in a homebuilt setup by second harmonic 

generation (SHG) in a BBO crystal from the fundamental output (pulse energy 1.55 eV, pulse 

length 80 fs) of a Ti:Sapphire laser system (Spectra Physics Solstice). Temporal resolution of 

the PL emission was obtained by measuring the PL from the sample by stepping the iCCD gate 

delay relative to the pump pulse. The gate width was 20 ns. 

For the unpassivated control film (x = 0), there is a significant initial non-radiative component 

(Figure 1b). With increasing passivation, this component is gradually removed with a peak 

‘lifetime’ occurring at x = 0.1. In this regime, the recombination is still somewhat trap-limited 

for this excitation density (i.e. the carrier density does not exceed the trap density to fill all 

traps). As the passivation increases further, the trap density is further reduced and now the 

density of excited carriers is above the trap density and recombination is radiative and 

bimolecular. In this regime, the recombination follows a power law and the lifetime is ‘faster’ 

with decreasing trap density (increasing passivation, i.e. x = 0.2 to 0.4). We note that the total 

area under the non-normalized curves in each case matches the increasing PLQE trend. 

Time-resolved microwave conductivity (TRMC) measurements. The TRMC technique 

monitors the change in reflected microwave power by the loaded microwave cavity upon 

pulsed laser excitation. The photo-conductance (ΔG) of the perovskite films was deduced from 

the collected laser-induced change in normalized microwave power (ΔP/P) by 

−𝐾Δ(𝑡)=Δ𝑃(𝑡)/𝑃, where K is the sensitivity factor. The yield of generated free charges 𝜑 and 

mobility Σ𝜇=(𝜇𝑒+𝜇ℎ) were obtained by: 𝜑Σ𝜇=Δ𝐺/(𝐼0𝛽𝑒𝐹𝐴), where, 𝐼0 is the number of photons 
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per pulse per unit area, 𝛽 is a geometry constant of the microwave cell, 𝑒 is the elementary 

charge, and 𝐹𝐴 is the fraction of light absorbed by the sample at the excitation wavelength of 

600 nm. 

In Extended Data Figure 5, we show the ΔG as a function of time after pulsed excitation at 600 

nm for different fractions of K acquired at different fluences. The TRMC signal depicts a fast 

rise, originating from the formation of mobile charges, followed by decays attributed to charge 

recombination or immobilization of charge carriers through the traps. In Fig. 1c, we show that 

at least up to x = 0.1, the charge transport remains unperturbed with addition of K. That is, in 

view of the low electric field strength of the microwaves (100 V/cm), the charges are not 

effectively displaced by this field but instead the charges are perturbed in their diffusional 

motion. As a result, the distance R crossed by the charges is limited by the charge carrier 

diffusion coefficient and half the oscillation period  (8.5 GHz), which amounts to: 

𝑅 = √𝜇(𝑘𝐵𝑇/𝑒)1

2
𝜐−1 = √42 × 0.0259 × 0.5 × (8.5 × 109)−1 = 8.0 × 10−6 cm = 80 nm  

As shown in Extended Data Figure 1, the grain sizes are ~ 200-400 nm and independent of the 

K concentration up to x = 0.1.  Thus, for x < 0.1, the grains are larger than the probing length 

(80 nm) of the measurement and the TRMC mobility as probed will not be affected by their 

size. However, smaller grain sizes are observed for x > 0.2, which is most likely the reason for 

the lower mobilities at higher x values19. 

Furthermore, we show the resulting half lifetimes τ1/2 (time taken to decay half of the initial 

value) for the different samples in Extended Data Figure 5f across a range of excitation 

fluences. At low fluence, one of the carriers is trapped, leading to a long-lived signal from the 

untrapped carrier, which recombines following monomolecular kinetics13,35. At higher fluence 

in which the traps are filled, the recombination is bimolecular. We find that charge-carrier 

recombination is substantially slower for the x = 0.1 composition compared to the x = 0 
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reference, with the low-fluence monomolecular lifetime increasing from 1 s (x = 0) to 1.5 s 

(x = 0.1). 

Scanning Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy 

(STEM-EDX). A FEI Helios Nanolab dual beam Focus Ion Beam/ Field Emission Gun - 

Scanning Electron Microscope (FIB/FEGSEM) was employed to prepare a lamella for STEM 

imaging and analysis. To preserve the perovskite film during specimen preparation, capping 

layers of Spiro-OMeTAD and platinum were deposited. All imaging was carried out in STEM-

HAADF (High Angle Annular Dark Field) mode. STEM/EDX data were acquired in FEI 

Tecnai Osiris TEM equipped with a high brightness Schottky X-FEG gun and a Super-X EDX 

system composed by four silicon drift detectors, each approximately 30 mm2 in area and placed 

symmetrically around the optic axis to achieve a collection solid angle of 0.9 sr. Spectrum 

images were acquired with a probe current of 0.7 nA, an acceleration voltage of 200 kV, a 

spatial sampling of 10 nm/pixel and 100 ms/pixel dwell time. Data were acquired with Tecnai 

Imaging and Analysis (TIA) and analysed with Hyperspy.  

In Extended Data Figure 6b-e, we report a cross-section STEM/EDX measurement for a control 

perovskite thin film (i.e. x = 0). We treated the EDX dataset with the NMF algorithm, which 

led to the identification of two main components in the thin film. Factor 1 is representative of 

the perovskite layer, while factor 2 can be associated to a Br- and Pb- rich phase. This second 

component shows higher intensity in correspondence of the thin film interfaces with the Spiro-

OMeTAD protective capping layer and with the silicon substrate. In contrast to the passivated 

perovskite film (x = 0.20, Fig. 3), we do not observe the presence of surface decoration at the 

grain boundaries.  

X-ray diffraction. XRD was performed using a Bruker X-ray D8 Advance diffractometer with 

Cu Kα1,2 radiation (λ = 1.541 Å). Spectra were collected with an angular range of 5 < 2θ < 60 o 

and Δθ = 0.01227 o over 10 minutes. Measurements were made on as prepared films. A Le Bail 
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analysis was carried out on film measurements using the Bruker Topas software. Chebyshev 

polynomials were used to fit the background and the peak shape modelled with a pseudo-Voigt 

function. 

Grazing Incidence Wide Angle X-Ray Scattering (GIWAXS). GIWAXS measurements 

were performed on the XMaS Facility at the ESRF synchrotron. A fixed-exit, water-cooled, 

double crystal Si(111) monochromator, placed at 25 m from the source was used to 

monochromatize the X-ray beam coming from a bending magnet (Ec = 9.8 keV). The X-ray 

energy was tuned to 10 keV (1.2398 Å) and a Rh-coated toroidal mirror was used to focus the 

monochromatic beam horizontally and vertically. The beam flux was ~5×1010 photons s-1 at 

the sample position. The original beam spot size was 500 (horizontal) × 400 (vertical) µm2 at 

the sample position. We employed a set of motorized slits (Huber, Germany) immediately 

before the sample to have a better-defined footprint in the vertical direction. The final beam 

spot size with slits was 300 (horizontal) × 115 (vertical) µm2. The beam footprint extended 300 

µm horizontally and throughout the perovskite films. The samples were scanned at an out-of-

plane incident angle of ~0.3°. 

As shown in Extended Data Figure 7a (x = 0) and d (x = 0.2), the GIWAXS diffraction patterns 

collected at an incident angle of 0.3° show the main perovskite diffraction ring at q=1 Å-1. A 

PbI2 peak can be detected at q=0.9 Å-1 for the reference film, which originates from a small 

fraction of excess lead iodide in the reference precursor solution. In Extended Data Figure 7f 

and g, we plot the line profiles azimuthally-integrated over the entire image for perovskite films 

with x = 0 – 0.4. The PbI2 peak diminishes with higher potassium content and disappears at x 

= 0.2. Furthermore, we observe a new diffraction peak at q = 0.7 Å-1 that appears for x ≥ 0.10 

and can be assigned to a non-perovskite K-rich crystalline phase which grows with increasing 

K. We also observe the growth of new peaks with increasing K content in laboratory XRD 

results (highlighted by * in Extended Data Figure 2d). We cannot currently unambiguously 
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assign these peaks, for example to KBr or KI, which points to this phase (or phases) having 

more complicated chemical compositions (such as KBrxI1-x, K2PbI4 or K2PbBr4 
24) and 

crystallinities. However, given the observations in the STEM-EDX experiments (Figure 3), we 

expect that at least one of the phases present is rich in K and Br and is likely to be the halide-

sequestering species proposed in our model. Identifying the precise composition of these 

sequestering species should be the subject of exciting future work in the community. 

Hard X-ray Photoelectron Spectroscopy. Photoelectron spectroscopy measurements were 

performed at the Diamond light Source using the beamline I09 (Oxfordshire, UK). Both soft 

(758 eV) and hard X-rays (2200 and 6600 eV) were used to illuminate our sample providing 

information from different probing depth. The soft X-ray energy was selected through a plane 

grating monochromator while a double-crystal monochromator (DCM) was used in the hard 

X-ray section. 2200 and 6600 eV correspond to the 1st and 3rd order light when the DCM is set 

at 2200 eV using a Si(111) crystal. A EW4000 photoelectron analyzer (VG Scienta, Uppsala, 

Sweden) was used to record the spectra with an analyzer slit open to 0.2 mm. No charge 

neutralization was used and the binding energy scale was calibrated by setting the Au 4f core 

level of a gold reference sample to 84.0 eV. The quantification tables and intensity ratios were 

calculated from the experimental results after correction by the photoionization cross-section 

for each element at their specific photon energy, using database values. 

The overview spectra of the perovskite thin films shows all the core levels peaks corresponding 

to the elements forming the perovskite material, including Cs. The high-resolution spectra of 

the core level peaks further confirms the quality of the perovskite films as there is only a single 

Pb 4f component at 138.6 eV without any metallic lead feature36 (Extended Data Figure 8). In 

Extended Data Figure 8, we summarise a quantitative analysis of the potassium content in 

perovskite films with x = 0 – 0.2 at different photon energies of 758, 2200 and 6600 eV, which 

corresponds to moving from probing the surface (~2-4 nm) to probing further into the bulk 
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(~20 nm). We observe that the concentration of K decreases when moving from the surface 

into the bulk for each of the K compositions. Interestingly, we note that the Cs content rises 

moving into the bulk concomitant with the decrease in K, suggesting that the K pushes the Cs 

further into the bulk (Extended Data Figure 8d).  Furthermore, the I/Pb ratio increases at higher 

K content (Extended Data Figure 8e), particularly at the surface, consistent with the addition 

of excess I from the KI source and in agreement with a previous report showing a higher 

concentration of iodide at the surface36. Finally, the Br/I ratio decreases at higher K content 

particularly deeper in the film (probed with the higher photon energies), consistent with the K 

more selectively drawing out the Br from the lattice (Extended Data Figure 8f). These results 

suggest that K is predominantly at the surfaces and the addition of KI also leads to excess 

halides on the surfaces with a more selective interaction with bromides. 

Solar cell characterisation. Current–voltage characteristics were recorded by applying an 

external potential bias to the cell while recording the generated photocurrent with a digital 

source meter (Keithley Model 2400). The light source was a 450 - W xenon lamp (Oriel) 

equipped with a Schott-K113 Tempax sunlight filter (Praezisions Glas & OptikGmbH) to  

match the emission spectrum of the lamp to the AM1.5G standard. Before each measurement, 

the exact light intensity was determined using a calibrated Si reference diode equipped with an 

infrared cut-off filter (KG-3, Schott). EQE spectra were recorded as a function of wavelength 

under a constant white light bias of approximately 5mW.cm-2 supplied by an array of white 

light emitting diodes. The excitation beam coming from a 300 W xenon lamp (ILCTechnology) 

was focused through a Gemini-180 double monochromator (Jobin Yvon Ltd) and chopped at 

approximately 2 Hz. The signal was recorded using a Model SR830 DSP Lock-In Amplifier 

(Stanford Research Systems). All measurements were conducted using a non-reflective metal 

aperture of 0.105 cm2 to define the active area of the device and avoid light scattering through 

the sides.  
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For stability measurements, the solar cells were transferred to a sealable device holder under 

nitrogen-glovebox conditions. During testing the device holder was continuously purged with 

dry nitrogen, pre-filtered (SGT Super Clean) to minimize residual oxygen, moisture and 

hydrocarbon content. A Newport solar simulator with equivalent AM 1.5 G 1-sun output was 

used to illuminate the entire device substrate; short wavelengths were filtered using a 435 nm 

long pass filter (Thor Labs FGL435). Ageing under these conditions resulted in a chamber 

ambient temperature of approximately 40˚C, as measured by a thermistor next to the solar cell 

device, which was reached within 30 minutes of the experiment commencing. Photocurrent 

characteristics were recorded by holding close to the maximum power point voltage (as 

ascertained from an initial J-V curve) using a Keithley 2636 SMU and a custom-written 

LabView VI code. Devices were stored in a nitrogen-filled glove box in the dark between shelf-

life measurements. 

Data availability. The data supporting the findings of this study are available in the paper, 

within the Extended Data items, and at https://www.repository.cam.ac.uk/handle/XXXXX. 
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Extended Data Legends 

 

 

Extended Data Figure 1. Stoichiometries of the precursor solutions, and thickness 

measurements and scanning electron microscope images of the 

(Cs,FA,MA)Pb(I0.85Br0.15)3 films.  The calculated values for (a) [K]/([K]+[A]) as a function 

of KI volume ratio added to the (Cs,FA,MA)Pb(I0.85Br0.15)3 perovskite precursor solution, (b) 

halide (X) to lead ratio ([X]/[Pb]) for different fraction of potassium in perovskite films based 

on stoichiometric calculations, (c) Thickness of the films deposited on c-TiO2/m-TiO2. (d) The 

calculated ratios between different elements. Note that X represents halides (i.e. sum of iodide 

and bromide). (e-j) Scanning electron micrograph of (Cs,FA,MA)Pb(I0.85Br0.15)3 perovskite 

thin films with potassium fraction ranging from x = 0.0 to x = 0.6. The coloured insets show 

higher magnification images. 

 

Extended Data Figure 2. Absorption, photoluminescence and X-Ray diffraction 

characteristics of the (Cs,FA,MA)Pb(I0.85Br0.15)3 (Br-containing) and (Cs,FA,MA)PbI3 

(pure-iodide) films. Results for (a-e) Br-containing (Cs,FA,MA)(I0.85Br0.15)3, and (f-j) 

(Cs,FA,MA)PbI3 perovskite films. (a) Normalised UV-vis absorption and (b) 

photoluminescence (PL, 532-nm CW excitation) of the (Cs,FA,MA)(I0.85Br0.15)3 perovskite 

films with different K content (x). Inset: schematic of the change in conduction band with 

increasing x. (c) The absorption spectra of (Cs,FA,MA)Pb(I0.85Br0.15)3 perovskite thin films 

with different potassium fractions measured by photo-thermal deflection spectroscopy (PDS), 

showing a decreased sub-gap density of states with potassium passivation. (d) X-Ray 

Diffraction (XRD) data of the (Cs,FA,MA)Pb(I0.85Br0.15)3 thin films, with new peaks arising 

from increasing K labelled with a *. (e) Calculated lattice parameters using a Le Bail analysis 

as a function of K fraction on the XRD data. (f)  PLQE as a function of excitation power 
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measured by a 532-nm CW laser for (Cs,FA,MA)Pb(I0.85Br0.15)3 perovskite thin films in 

ambient atmosphere. (g) Normalized UV-vis absorption, (h) photoluminescence (PL, 532-nm 

CW excitation) and (i) Photo-thermal deflection spectroscopy (PDS) absorption spectra of the 

(Cs,FA,MA)PbI3 perovskite films with different K content. (j) Calculated lattice parameters as 

a function of K, determined using a Le Bail analysis on X-Ray Diffraction data, for the 

(Cs,FA,MA)PbI3 perovskite thin films (black square) compared to (Cs,FA,MA)(I0.85Br0.15)3 

(red circles). (k) PLQE of different passivated perovskite thin films with and without bromide 

measured under illumination with a 532-nm laser at an excitation intensity equivalent to ~1 sun 

(~60 mW.cm-2) in ambient air. 

 

Extended Data Figure 3. Confocal photoluminescence maps of passivated 

(Cs,FA,MA)Pb(I0.85Br0.15)3 films. Confocal PL intensity map with 405-nm excitation 

measured in ambient atmosphere for (Cs,FA,MA)Pb(I0.85Br0.15)3 perovskite thin films with (a) 

x = 0.0, (b) x = 0.10, (c) x = 0.20 and (d) x = 0.40. Centre-of-mass PL wavelength of the films 

for (e) x = 0.0, (f) x = 0.10, (g) x = 0.20 and (h) x = 0.40. Histograms of the (i) absolute PL 

intensities and (j) PL wavelength extracted from the respective maps for x = 0 – 0.40. (k) 

Correlation between the local PL intensity and mean wavelength for x = 0.20. 

 

Extended Data Figure 4. Time-resolved PL measurements and photo-stability of 

passivated (Cs0.05FA0.78MA0.17)Pb(I1-yBry)3 films. (a-d) Intensity dependent time-resolved PL 

decays of the (Cs,MA,FA)Pb(I0.85Br0.15)3 perovskite films with different fraction of potassium. 

The pulse fluences of the 407-nm excitation are quoted on the panels. PL from 

(Cs0.05FA0.78MA0.17)Pb(I1-yBry)3 films with (e,f) y = 0.4 passivated (x = 0.4, e) and unpassivated 

(x = 0, f), (g,h) y = 0.8 passivated (x = 0.4, g) and unpassivated (x = 0, h), (i,j) y = 1 passivated 

(x = 0.4, i) and unpassivated (x = 0, j). The samples were illuminated and the PL acquired 
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continuously with a 532-nm laser at an excitation intensity equivalent to ~1 sun (~60 mW.cm-

2) in ambient atmosphere. (k) Center of mass for the PL wavelength of the passivated perovskite 

films (x = 0.4). 

 

Extended Data Figure 5. Time-resolved microwave conductivity measurements on 

passivated (Cs,FA,MA)Pb(I0.85Br0.15)3 films. (a-e) Time-resolved microwave conductivity 

measurements for (Cs,FA,MA)Pb(I0.85Br0.15)3 perovskite films with different fractions of K (x 

= 0 – 0.4) showing the change in photoconductance after pulsed excitation at 600 nm, with 

excitation densities (photons.cm-2) as quoted on the panels. (f) Half lifetime extracted from the 

decays, with the excitation density quoted after accounting for the absorbed fraction and film 

thickness of each sample. 

 

Extended Data Figure 6. STEM-EDX chemical maps of the passivated and unpassivated 

(Cs,FA,MA)Pb(I0.85Br0.15)3 samples. The HAADF image and corresponding STEM/EDX 

quantitative maps for iodine, lead, potassium and bromine in a (Cs,FA,MA)Pb(I0.85Br0.15)3 

perovskite specimen with x = 0.20 fraction of potassium. (b) HAADF STEM cross sectional 

image of an unpassivated (Cs,FA,MA)Pb(I0.85Br0.15)3 perovskite thin film (x = 0). NMF 

decomposition results in (c) factor 1 associated to the perovskite layer and in (d) factor 2 

indicating the presence of a Pb and Br rich phase. The profiles for (e) factor 1 and (f) factor 2.  

 

Extended Data Figure 7. GIWAXS measurements of passivated 

(Cs,FA,MA)Pb(I0.85Br0.15)3 films. The diffraction patterns of thin (Cs,FA,MA)Pb(I0.85Br0.15)3 

films collected at low angle using GIWAXS for (a) x = 0.00, (b) x = 0.05, (c) x = 0.10, (d) x = 

0.20 and (e) x = 0.40. The high-resolution line profiles azimuthally integrated over the entire 

GIWAX profile for different fraction of potassium at (f) 0.5 ≤ q ≤ 0.8 and (g) 0.8 ≤ q ≤ 1.1. 
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Extended Data 8. HAXPES spectra for passivated (Cs,FA,MA)Pb(I0.85Br0.15)3 perovskite 

thin films. HAXPES spectra for (Cs,FA,MA)Pb(I0.85Br0.15)3 perovskite thin films (0 ≤ x ≤ 20) 

between 85-0 eV binding energy range recorded with a photon energy of (a) 758 eV, (b) 2200 

eV and (c) 6600 eV. (d) Intensity ratio between core levels ([Cs]/[Pb] and [K]/[Pb]) calculated 

from the experimental results as a function of photon energy (measurements at 758, 2200 and 

6600 eV). Intensity ratios between different core levels calculated from experimental results: 

(e) I/Pb and (f) Br/I of the perovskite thin films with different fraction of potassium (0.0 ≤ x ≤ 

0.20). It is notable that we used Pb 5d, K 2p, Cs 4d, I 4d and Br 3d core levels for all different 

energies with the exception of K 1s, which is used for 6600 eV. 

 

Extended Data Figure 9. Excitation-dependent PL quantum efficiency and time-resolved 

PL measurements of (Cs,FA,MA)Pb(I0.85Br0.15)3 device stacks. PLQE of reference (x=0) 

and passivated (x=0.1) (Cs,FA,MA)Pb(I0.85Br0.15)3 perovskite thin films with (a) n-type 

contact, (b) p-type contract and (c) both contacts, each measured under illumination with a 532-

nm laser at different excitation intensity. Time-resolved PL decays of encapsulated 

(Cs,FA,MA)Pb(I0.85Br0.15)3 films (x = 0 and x = 0.1) with excitation at 407 nm and pulse fluence 

of 0.17 µJ.cm-2 (5×1015 cm-3, equivalent to ~15 sun) when the perovskite is interfaced with (d) 

an n-type electron-collecting electrode (compact-TiO2/thin-mesoporous TiO2), (e) a p-type 

hole-collecting electrode (Spiro-OMeTAD), and (f) both electrodes in a full device stack. 

 

Extended Data Figure 10. Current-voltage curves of passivated 

(Cs,FA,MA)Pb(I0.85Br0.15)3 devices and tabulated results for the 

(Cs,FA,MA)Pb(I0.85Br0.15)3 and (Cs,FA,MA)Pb(I0.4Br0.6)3 champion devices. Forward 

(open symbols) and reverse (closed symbols) J-V curves of champion solar cells with 
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(Cs,FA,MA)Pb(I0.85Br0.15)3 absorbers with (a) x = 0.00, (b) x = 0.05, (c) x = 0.10 and (d) x = 

0.20 measured under full simulated solar illumination conditions (AM1.5, 100 mW.cm-2) with 

a scan rate of 15 mVs-1. The corresponding dark J-V curves are also shown. Preliminary 

stability tests of (Cs,FA,MA)Pb(I0.85Br0.15)3 perovskite devices: (e) Shelf-life of devices for x 

= 0.00 and x = 0.10 stored in a nitrogen glovebox over a month and tested regularly under full 

AM1.5 simulated sunlight. (f) Stability of a device with x = 0.10 aged at 0.8 V under continuous 

UV-filtered simulated sunlight in nitrogen atmosphere >350 hours. (g) Device parameters for 

the passivated (Cs,FA,MA)Pb(I0.85Br0.15)3 (upper) and (Cs,FA,MA)Pb(I0.4Br0.6)3 (lower) 

perovskite solar cells measured under full simulated solar illumination conditions (AM1.5, 100 

mW.cm-2). 

 

Extended Data Figure 11. Device statistics. Box and whisker plots to summarise the statistics 

of photovoltaic parameters of (a-d) 10 devices with passivated (Cs,FA,MA)Pb(I0.85Br0.15)3 solar 

cells and (e-h) 8 devices of passivated (Cs,FA,MA)Pb(I0.4Br0.6)3 solar cells, each measured 

under full simulated solar illumination conditions (AM1.5, 100 mW.cm-2) and scanned at a rate 

of 15 mV/s. The boxes represent the interquartile range, with the median represented by the 

line dividing the boxes, and the whiskers are determined by the 5th and 95th percentiles. The 

mean is given by the open square symbols, and the starred symbols represent the maximum 

and minimum values. 


