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A method is developed for rough surface reconstruction using fields scattered at grazing angles in a

medium with a linearly varying refractive index and Neumann boundary condition. This regime

represents a ducting medium, bounded by a perfectly conducting surface with a TM incident field

or an acoustically hard surface. This significantly extends the iterated marching method, based

upon the parabolic integral equation for forward-scattered field components [Chen and Spivack, J.

Opt. Soc. Am. A 35, 504–513 (2018)]. The approach, which uses a fixed frequency, is able to accu-

rately recover multiscale surfaces and is found to be robust with respect to measurement noise and

localized perturbations. Published by AIP Publishing. https://doi.org/10.1063/1.5044605

I. INTRODUCTION

Wave scattering by rough surfaces plays a key role in a

wide range of applications1–5 and has been studied exten-

sively. The recovery of surface topography and environmen-

tal parameters from scattered data remains an important and

challenging area.6,7 A variety of mathematical and physically

based approaches have been employed, notably small-

parameter approximations,8,9 iterative methods,10–12 integral

equations,13–16 time domain point source,17 and multiview.18

In sea state and surface profile retrieval, Doppler and back-

scattered multiple frequency radar measurements have also

been used.19–22

Often, however, the medium possesses a refractive

index profile which greatly complicates the wave scattering,

as is the case in the above-ocean evaporation duct23,24 for

radar applications and the SOFAR channel or other under-

ice profiles affecting sound propagation in the ocean.25,26

This variation may produce channelling which exacerbates

multiple scattering, and very little progress has been made

on the surface inverse problem in such situations.

For general incident angles, the scattered field obeys the

Helmholtz boundary integral equation.1,3,27 However, when

most energy is forward-scattered as it is at near-grazing

angles, wave propagation is well described by the parabolic

equation.28 Applying this to the governing Green’s function

allows the Helmholtz integral equations to be replaced by

the parabolic integral equation method,29,30 which is the key

to the method developed here.

In this paper, an algorithm is developed for reconstruc-

tion of a rough surface h(x) in a two-dimensional medium

with a linearly depth-dependent refractive index, exploiting

the properties of grazing angle scatter. A Neumann boundary

condition is assumed. This approach extends recent work on

the Dirichlet case for a constant medium.31 Here, we make

use of the Neumann form of the parabolic equation Green’s

function for a varying medium derived by Uscinski,32,33

which has received little attention in the literature.

To derive the inversion algorithm the problem is formu-

lated as an integral equation in the unknown surface field U
considered as a function of the surface. This is coupled to an

expression relating h to U, and the system is solved directly

by numerical inversion. The Volterra form of the integral

equation allows us to find the surface progressively along the

propagation direction and to substitute the values back into

the kernel. The incident wave field and the linear profile are

assumed known, together with scattered data along a line

parallel to the mean surface level. With this information, the

scattering integral may be treated as an integral equation and

can be solved accordingly.

Scattered data are obtained by two independent meth-

ods: The first is simply via the above parabolic integral equa-

tions including the Green’s function of the varying medium.

The second is by exploiting the powerful image medium

method, first proposed by Tappert34 for the parabolic equa-

tion regime. This is a differential equation formulation, in

which the rough surface adjacent to the half-space is

replaced by a combined real and image medium, separated

by a “virtual” boundary in which the image medium has an

artificial varying refractive index which depends on the sur-

face, and, crucially, can take into account arbitrary refractive

index variations in the real medium.

In Sec. II, the parabolic integral equation method for scat-

tering by a surface with Neumann boundary condition and lin-

ear profile is reviewed. The two methods for generating the

scattered field are summarised in Sec. III. The equations for

the inverse problem are formulated in Sec. IV, and the algo-

rithm for solution of these equations is derived. Results of

numerical experiments are given in Sec. V, where we study a

range of multiscale rough surfaces and initial conditions and

examine the influence of measurement noise on the results.
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II. MATHEMATICAL FORMULATION AND GREEN’S
FUNCTION

In this section, we give the parabolic equation Green’s

function for the medium with a linear depth-dependent

refractive index profile32,33 and review the boundary integral

equations upon which the inversion algorithm is based. The

generation of scattered field measurements, both by direct

treatment of these equations and by the image method, will

be described in Sec. III.

Consider a two-dimensional time-harmonic scalar wave

p, resulting from scattering by a rough surface of a field inci-

dent at low grazing angle. We assume the Neumann bound-

ary condition, i.e., vanishing of the normal derivative,

corresponding to an acoustically hard surface, or TM polar-

ized electromagnetic field and perfect conductivity. The

coordinate axes are x and z, where x is the horizontal x � 0

and z is the vertical, directed into the medium (see Fig. 1).

The mean surface level is taken to be at z¼ 0. The

source is centred about r ¼ (0, z0), with wave number k. The

rough surface itself is denoted h(x), so that h has mean zero.

In the numerical examples, h is drawn from an ensemble of

normally distributed and statistically stationary processes,

with rms (root means square) surface height denoted by R.

(This statistical description is used for convenience and is

not central to the algorithm.)

Since the wave field propagates predominantly in one

direction, it has a slowly varying part (or reduced wave) w
defined by

wðx; zÞ ¼ pðx; zÞ expð�ikxÞ:
Incident and scattered components wi and ws such that w
¼wi þ ws are defined analogously. The area of surface illu-

mination is assumed to be negligible for negative x, so that

wi(x, h(x)) ¼ 0 for x � 0, corresponding, for example, to a

Gaussian beam.

Under the assumption of small angles of incidence and

scattering, the parabolic form of the Green’s function can be

introduced (see Thorsos29)

Gðx; z; x0; z0Þ ¼ 1

2

i

2pkðx� x0Þ

� �1=2

exp
ikðz� z0Þ2

2ðx� x0Þ

" #
; (1)

when x0 < x and G¼ 0 otherwise. This Green’s function is

derived under the assumption of forward scattering, i.e., that

the field obeys the parabolic wave equation

wx �
i

2k
wzz ¼ 0; (2)

which holds under the given small-angle assumptions.

Governing integral equations for the parabolic equation

method can be derived for general boundary conditions29

and specialised to Dirichlet29,30 and Neumann.32,33 For the

Neumann case treated here, these become

wiðrÞ ¼
/ðrÞ

2
þ
ðx

0

@Gðr; r0Þ
@z0

/ðr0Þdx0; (3)

where /(x) ¼ w(x, h(x)) is the total field on the surface, both

r ¼ ðx; hðxÞÞ; r0 ¼ ðx0; hðx0ÞÞ lie on the surface, and

wsðrÞ ¼ �
ðx

0

@Gðr; r0Þ
@z0

/ðr0Þdx0; (4)

where r0 is again on the surface and r is now an arbitrary

point in the medium. Here, the normal derivative of the

Green’s function has been replaced by a vertical derivative

under the same approximations.

It is the one-way nature of the Green’s function which

gives rise to the finite upper limit of integration in Eqs. (3)

and (4). The accuracy has been examined by Thorsos29 and

subsequent authors. These equations are not applicable to sit-

uations in which backscattering is significant. In the above

equations, / is defined only at surface points, so that it may

be considered here as a function just of x. The incident field

is taken here to be a Gaussian beam of initial width w, cen-

tred at a distance z0 from the surface. For simplicity, the

beam will be assumed to be directed parallel to the surface

wiðx; zÞ;¼
i

2k

w

ðw2 þ 2ix=kÞ1=2
exp � ðz� z0Þ2

w2 þ 2ix=k

" #
: (5)

This field impinges upon the surface as it propagates; the pat-

tern of illumination along a flat surface rises from zero to a

peak and decays with 1=
ffiffiffi
x
p

. The assumption of zero grazing

angle is not crucial; similar results hold for incidence at

small nonzero angles.

A parabolic (one-way) form Gp of the Green’s function

can be derived32 for a linear profile, in which the exponent

becomes modified. Suppose that refractive index is a func-

tion of vertical coordinate n(z) ¼ n0(1þ az), where n0 is the

constant reference value and a is the “strength” of the profile.

Then, we can write

Gp ¼ G� G2; (6)

where

G2ðr; r0Þ ¼ exp
ik

2
aðzþ z0Þðx� x0Þ � a2ðx� x0Þ3

12

� �� �
: (7)

The Gaussian incident field subsequently changes due to the

profile term. The Gaussian beam can be obtained by the lin-

ear profile Green’s function and integrating over all source

points, which is

wiðx; zÞ ¼
i

2k

w

ðw2 þ 2ix=kÞ1=2
exp �ik axzþ a2x3

6

� �� �

� exp �ðz� z0 þ ax2=2Þ2

w2 þ 2ix=k

" #
: (8)

FIG. 1. Schematic view of the scattering configuration.
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III. DIRECT PROBLEM AND GENERATION OF
SCATTERED FIELD

Scattered field data are generated by two independent

approaches, both valid in the parabolic equation regime. The

first is via the parabolic integral equations above, and the

second by the image medium method of Tappert Nghiem-

Phu,34 in which the rough surface is replaced by an extended

medium and scattering is solved by a partial differential

equation. The latter provides an independent means of pro-

ducing scattered field data, while the integral equations serve

to motivate the inversion algorithm.

In what follows, both the direct and the inverse scatter-

ing problems are considered on a domain of finite extent.

The rough surface may be considered as a segment of an

extended (infinite or semi-infinite) surface which may (but

need not) be otherwise flat. Any discontinuities or edges to

the left of x¼ 0 do not influence the data as they are not inso-

nified/illuminated. Edges to the right, however, may cause

significant backscattering which will violate the parabolic

equations assumptions used throughout.

A. Treatment of integral equations

The parabolic integral equation approach has been well-

documented elsewhere,29,30,33 and we only need to give a

brief overview here. For convenience, we can express the

pair of Eqs. (3) and (4) in operator notation as, say,

wi ¼ A/; (9)

ws ¼ B/; (10)

where A, B represent the operators on the right-hand-sides of

Eqs. (3) and (4), respectively. From integral equation (9), we

obtain the surface field as / ¼ A�1wi and can then substitute

this into the integral (10) to obtain the field ws(r) at any point

r in the medium. By discretizing the surface into (say) n
evenly spaced x-coordinates, these operators become n� n
matrices. The inversion of the integral equation is then

equivalent to the inversion of such a matrix.

Once / has been found on the surface, the field / in the

medium is calculated straightforwardly by substitution into

integral (10).

B. Image medium method

In contrast to the integral equation approach, the image

medium method34–37 does not require the Green’s function

for the medium, which may have refractive index variations.

Instead, the real (physical) half-space is extended to include

an image space, and a transformation is applied to the gov-

erning differential equation giving rise to a virtual refractive

index. This refractive index is the physical one n(z) in the

real medium but has an additional component depending on

n(z) and the surface function h(x) in the image space. In addi-

tion, if the source is located at z¼ f(0) þ z0, then this is aug-

mented by an image source located at z¼ f(0) – z0. It will be

easy to see that for a flat surface this reduces to the standard

image method for wave propagation in a medium with a

profile.

The field is assumed to obey the parabolic wave equa-

tion, above a rough surface. The rough surface and lower

half-space are then replaced by an image medium, with an

image source, whose refractive index profile reflects the

properties of the surface. After some algebraic manipula-

tions, the following equation is derived:

@w
@x
¼ i

2j0

@2w
@z2
þ ij0

2
Nðx; zÞw; (11)

where

wðx; zÞ ¼
wRðx; zÞ z > hðxÞ
wIðx; zÞe2ij0h0ðxÞ z�hðxÞ½ � z < hðxÞ

(
(12)

and

Nðx; zÞ ¼
n2ðx; zÞ � 1 z > hðxÞ
n2ðx;�zþ 2hðxÞÞ � 1

þ 4h00ðxÞ z� hðxÞ½ � z < hðxÞ:

8><
>: (13)

The functions wR, wI are the “real” and “image” solutions,

and as in Ref. 36 it can be shown that this system obeys the

required boundary conditions. This differential equation is

then solved by a straightforward marching technique.

The procedure for the horizontally polarised incident

field is identical. However, since the modified image

medium method solves in a sense a more general problem,

we shall present the results of the vertical polarisation case.

(The results are qualitatively similar, except that the rough

surface causes greater loss of energy into diffuse directions

for vertical polarization, and the interference patterns, most

evident for flat surfaces, are shifted.) This will be done in

Sec. V.

IV. INVERSE PROBLEM: ALGORITHM AND
THEORETICAL TREATMENT

Suppose that the scattered field is known along an inter-

val [0, L] at some distance z from the surface. Throughout

the numerical experiments below, we will use the same inter-

val for both measured data and the domain of reconstruction

as discussed further in Sec. V. Under the forward-scattering

approximation, the scattered field at each x is assumed to

depend only on surface points x0 � x. We can thus attempt to

recover the surface h(x) over the full interval.

The inversion approach at each step is in two stages.

The first is to calculate the total wave (employing at the ini-

tial step an ad hoc guess). The second reconstructs the sur-

face by “marching” in range. In the successive improvement,

this is repeated a small number of times and is found to be

remarkably well-suited to this regime.

We define Hðr; r0Þ ¼ @Gðr;r0Þ
@z0 with

Hðr; r0Þ ¼ a
z� z0

ðx� x0Þ3=2
exp

ikðz� z0Þ2

2ðx� x0Þ

" #
;

where a ¼ �ði=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
ik=2p

p
corresponding to uniform

medium problem and
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Hpðr; r0Þ ¼ aðH1 � H2Þ;

H1ðr; r0Þ ¼ z� z0

ðx� x0Þ3=2
exp

ik

2

ðz� z0Þ2

x� x0

 "

þaðzþ z0Þðx� x0Þ � a2ðx� x0Þ3

12

!#

H2ðr; r0Þ ¼ a

2
ðx� x0Þ1=2

exp
ik

2

ðz� z0Þ2

x� x0

 "

þaðzþ z0Þðx� x0Þ � a2ðx� x0Þ3

12

!#
;

corresponding to the linear profile problem. The integration

domain [0, L] is discretized by N nodes with xr for

r ¼ 0; 1;…;N, where x0 ¼ 0 and xN ¼ L. The space between

each node is denoted as d.

A. Recovery of surface wavefield

With an initial guess, calculating the surface wavefield

is like the direct problem. Once the kernel G is known, Eq.

(3) can be regarded as a Volterra integral equation in /.

After discretization, Eq. (3) can be written as a sum of n sub-

integrals at every node xn 2 ½x1; xN� on the integral domain

wiðrnÞ ¼
/
2
ðrnÞ þ

Xn

r¼1

ðxr

xr�1

Hðrn; r0Þ/ðx0Þdx0

¼
Xn

r¼1

ðxr

xr�1

Hðrn; r0Þ þ dðxn; x0Þ
2

� �
/ðx0Þdx0;

where rn ¼ ðxn; hðxnÞÞ and r0 ¼ ðx0; hðx0ÞÞ. If we assume /
varies slowly over each subinterval compared to Green’s

function, then / can be treated as constant and taken out of

the subintegrals

wiðrnÞ �
Xn

r¼1

/ðXrÞ
ðxr

xr�1

Hðrn; r0Þ þ dðxn; x0Þ
2

� �
dx0; (14)

where Xr ¼ ðxr�1 þ xrÞ=2. For n ¼ 1; 2;…;N, N linear equa-

tions are obtained from Eq. (14), which results in a N�N
linear system. Denote two vectors of size N, Wi 2 C

N
and

U 2 C
N

with

Wi ¼ wiðx1; hðx1ÞÞ;wiðx2; hðx2ÞÞ;…;wiðxN; hðxNÞÞ
� �

;

U ¼ /ðX1Þ;/ðX2Þ;…;/ðXNÞ½ �:

Hence, they are related by

AU ¼ Wi;

where

Aðn; rÞ ¼

ðxr

xr�1

Hðxn; hðxnÞ; x0; hðx0ÞÞdx0; r < nðxn

xn�1

Hðxn; hðxnÞ; x0; hðx0ÞÞdx0 þ 1

2
; r ¼ n

8>>><
>>>:

for 1 � r � n � N. A is a lower triangular matrix, whose

inversion is computationally efficient.

1. Uniform medium

First for r< n, there is no singularity in the integral.

Under the assumption that the exponential term varies slowly

and can be treated as constant, the integral becomes

aEðhðxnÞ; n; rÞ
ðxr

xr�1

hðxnÞ � hðx0Þ
ðxn � x0Þ3=2

dx0;

where

Eðz; n; rÞ ¼ exp
ikðz� hðXrÞÞ2

2ðxn � XrÞ

" #
: (15)

Apply the Taylor expansion on h with hðx0Þ ¼ hðxr�1Þ
þh0ðxr�1Þðx0 � xr�1Þ, then the remaining integral has the

formðxr

xr�1

hðxnÞ � hðx0Þ
ðxn � x0Þ3=2

dx0

¼
ðxr

xr�1

hðxnÞ � hðxr�1Þ � h0ðxr�1Þðx0 � xr�1Þ
ðxn � x0Þ3=2

¼ hðxnÞ � hðxr�1Þð Þ
ðxr

xr�1

dx0

ðxn � x0Þ3=2

�h0ðxr�1Þ
ðxr

xr�1

x0 � xn þ xn � xr�1

ðxn � x0Þ3=2
dx0

¼ LðhðxnÞ; n; rÞ
ðxr

xr�1

dx0

ðxn � x0Þ3=2

þh0ðxr�1Þ
ðxr

xr�1

dx0

ðxn � x0Þ1=2
; (16)

where

Lðz; n; rÞ ¼ z� hðxr�1Þ � h0ðxr�1Þðxn � xr�1Þ:

For r¼ n, there is a singularity in the integral. Apply the

same Taylor expansion with hðx0Þ ¼ hðxnÞ þ h0ðxnÞðx0 � xnÞ,
then the integral becomesðxn

xn�1

a
h0ðxnÞ

ðxn � x0Þ1=2
exp

ik

2
h0ðxnÞ2ðxn � x0Þ

� �
dx0: (17)

To eliminate the singularity, change of variable by

n ¼ ðxn � x0Þ1=2;

then dx0 ¼ �2ndn. Equation (17) turns toð0 ffiffi
d
p a

h0ðxnÞ
n

exp
ik

2
h0ðxnÞ2n2

� �
ð�2nÞdn

¼
ð ffiffidp

0

2ah0ðxnÞ exp
ik

2
h0ðxnÞ2n2

� �
dn:

Apply the formulað
elx2

dx ¼ � i

2

ffiffiffi
p
pffiffiffi

l
p erf ix

ffiffiffi
l
p	 


; (18)
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where erf is the error function. With l ¼ ik
2

h0ðxnÞ2, then the

integral becomes

�ah0ðxnÞ
ffiffiffi
p
pffiffiffi

l
p i erf

ffiffiffi
l
p ffiffiffi

d
p

i
� �

:

Therefore, we can approximate the matrix A by

Aðn; rÞ ¼

aEðhðxnÞ; n; rÞ

� LðhðxnÞ; n; rÞ
ðxr

xr�1

dx0

ðxn � x0Þ3=2

"

þh0ðxr�1Þ
ðxr

xr�1

dx0

ðxn � x0Þ1=2

#
; r < n

�ah0ðxnÞ
ffiffiffi
p
pffiffiffi

l
p ierf

ffiffiffi
l
p ffiffiffi

d
p

i
� �

; r ¼ n:

8>>>>>>>>>>><
>>>>>>>>>>>:

(19)

2. Medium with linear profile

The treatment with the linearly varying profile in the

medium is similar. The integral containing H1 is dealt with

similar to the previous case. For r< n, the same assumption

is applied here that the exponential parts vary slowly com-

pared to other terms and can be taken out of each integral.

Denote it as

Fðz; ; n; rÞ

¼ exp
ik

2
aðzþ hðXrÞÞðxn � XrÞ �

a2ðxn � XrÞ3

12

� �� �
:

Together with the approximation (16), the integral of H1

becomes

EðhðxnÞ; n; rÞFðhðxnÞ; n; rÞ

� LðhðxnÞ; n; rÞ
ðxr

xr�1

dx0

ðxn � x0Þ3=2

"

þh0ðxr�1Þ
ðxr

xr�1

dx0

ðxn � x0Þ1=2

#
:

The singularity also exists when r¼ n; the same singularity

arguments are employed. First, apply the Taylor expansion

on h, then substitute Eq. (18); the integral becomesðxn

xn�1

H1dx0 ¼ �h0ðxnÞ
ffiffiffi
p
pffiffiffi

l
p i erf

ffiffiffi
l
p ffiffiffi

d
p

i
� �h i

FðhðxnÞ; n; nÞ:

On the other hand, the H2 integral can be evaluated immedi-

ately via taking out the exponential parts, for r< n, the inte-

gral becomes

a

2
EðhðxnÞ; n; ; rÞFðhðxnÞ; n; rÞ

ðxr

xr�1

ðxn � x0Þ1=2dx0:

And the singularity part for r¼ n is followed by the

same way

ðxn

xn�1

H2dx0 ¼ FðhðxnÞ; n; nÞ
ð ffiffidp

0

an2 exp
ik

2
ðh0ðxnÞ2n2Þ

� �
dn:

By further changing variables setting f ¼ n2, this becomes

a

2
FðhðxnÞ; n; nÞ

ðd

0

ffiffiffi
f

p
exp

ik

2
h0ðxnÞ2f

� �
df:

Apply the equationð ffiffiffi
x
p

elxdx ¼ 1

l

ffiffiffi
x
p

elx þ i
ffiffiffi
p
p

2l3=2
erf i

ffiffiffiffiffi
lx
p	 


(20)

with the same l ¼ ik
2

h0ðxnÞ2, the integral turns to

a

2
FðhðxnÞ; n; nÞ 1

l

ffiffiffi
d
p

eld þ i
ffiffiffi
p
p

2l3=2
erf i

ffiffiffiffiffiffi
ld

p� �" #
:

Finally, the matrix for the linear profile problem is obtained

Aðn; rÞ ¼

aEðhðxnÞ; n; rÞFðhðxnÞ; n; rÞ LðhðxnÞ; n; rÞ½

�
ðxr

xr�1

dx0

ðxn � x0Þ3=2
þ h0ðxr�1Þ

ðxr

xr�1

dx0

ðxn � x0Þ1=2

�a

2

ðxr

xr�1

ðxn � x0Þ1=2dx0
�
; r < n

�aFðhðxnÞ; n; nÞ h0ðxnÞ
ffiffiffi
p
pffiffiffi

l
p ierf

ffiffiffi
l
p ffiffiffi

d
p

i
� �"

�a

2

1

l

ffiffiffi
d
p

eld þ i
ffiffiffi
p
p

2l3=2
erf i

ffiffiffiffiffiffi
ld

p� �" ##
; r ¼ n:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(21)

B. Surface reconstruction

For all xn 2 ½X1;XN�, the scattered data wsðxn; zÞ are

known at certain height z. Expand Eq. (4) by the similar way

under the same assumption that / can be treated as constant

on each subinterval

wsðxn; zÞ ¼ �
Xn

l¼1

/ðXlÞ
ðxl

xl�1

Hðxn; z; x0; hðx0ÞÞdx0;

where Xl ¼ 1
2
ðxl�1 þ xlÞ. Extract the n – 1 terms on the right

to the left, we have

wsðxn; zÞ þ
Xn�1

l¼1

/ðXlÞ
ðxl

xl�1

Hðxn; z; x0; hðx0ÞÞdx0

¼ �/ðXnÞ
ðxn

xn�1

Hðxn; z; x0; hðx0ÞÞdx0: (22)

Let us denote the left hand side as Sn. If h(Xl) is obtained for

l ¼ 1; 2;…; n� 1, then Sn can be calculated directly as in

the previous part, thus h(Xn) can be obtained by solving Eq.

(22), which leads to a marching method.

1. Uniform medium

First the sum Sn can be evaluated via taking the expo-

nential term out together with Eq. (16)
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Sn ¼ wsðxn; zÞ þ
Xn

l¼1

a/ðXlÞEðz; n; lÞ Lðz; n; lÞ
�

�
ðxl

xl�1

dx0

ðxn � x0Þ3=2
þ h0ðxl�1Þ

ðxl

xl�1

dx0

ðxn � x0Þ1=2

#
; (23)

Once Sn is totally known, Eq. (22) for the uniform medium is

�/ðXnÞ
ðxn

xn�1

a
z� hðx0Þ
ðxn � x0Þ3=2

exp
ik

2

ðz� hðx0ÞÞ2

xn � x0

" #
dx0 ¼ Sn:

Apply a direct approximation on the integral, keep the terms

with the unknown h(Xn) to the left, we have

ðz� hðXnÞÞEðz; n; nÞ ¼ Snðxn � XnÞ3=2

�a/ðXnÞd
:

The problem now transforms into finding the surface from a

non-linear equation. A trick can be employed here. If we

take modulus both sides, the exponential term disappears

immediately; hence, the equation becomes linear with h(Xn)

jz� hðXnÞj ¼
Snðxn � XnÞ3=2

�a/ðXnÞd












:

Finally, the surface height can be obtained directly provided

the height z is above the whole surface

hðXnÞ ¼ z� Snðxn � XnÞ3=2

�a/ðXnÞd












: (24)

2. Medium with linear profile

The same treatments can be applied here, and the sum

Sn is evaluated by

Sn ¼ wsðxn; zÞ þ
Xn�1

l¼1

a/ðXlÞEðz; n; lÞFðz; n; lÞ

� Lðz; n; lÞ
ðxl

xl�1

dx0

ðxn � x0Þ3=2

"

þh0ðxl�1Þ
ðxl

xl�1

dx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn � x0
p � a

2

ðxl

xl�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn � x0

p
dx0
�
: (25)

Equation (22) can be approximated directly by

Sn ¼ �/ðXnÞ
ðxn

xn�1

aðH1 � H2Þdx0

¼ �/ðXnÞadEðz; n; ; nÞFðz; n; nÞ

� z� hðXnÞ
ðxn � XnÞ3=2

� a

2
ðxn � XnÞ1=2

" #
:

Rearrange it and putting h on the left hand side

z�hðXnÞ
ðxn�XnÞ3=2

�a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn�Xn

p" #
Eðz;n;nÞFðz;n;nÞ¼ Sn

�a/ðXnÞd
:

Taking the modulus both sides, the exponential part can be

removed

Sn

�a/ðXnÞd










 ¼ z� hðXnÞ
ðxn � XnÞ3=2

� a

2
ðxn � XnÞ1=2












:

We can solve this equation provided z > hðxÞ þ ad2

8
, where

ad2

8
� hðxÞ. Finally, the surface height is reconstructed via

hðXnÞ ¼ z� Sn

�a/ðXnÞd










þ a

2
ðxn � XnÞ1=2

" #
ðxn � XnÞ3=2:

(26)

C. Successive improvement

Since the surface reconstruction can be obtained with

some initial guess h0, the successive improvement can be

employed. Suppose the first surface reconstruction h1 is

obtained via surface wavefield /1, it can be substituted back

to calculate a new surface wave /2. Then a new surface h2

can be reconstructed with the new surface wave /2. This pro-

cess can be repeated. This kind of iterative method is found

to work well in improving the performance. In order to get

satisfactory surface reconstruction, only a few iterations are

needed (typically three). The whole procedure is shown in

Algorithm 1.

Algorithm 1. Reconstruction of the surface height h(x).

Input: �: number of iterations, wi(x, z), wsðxn; zÞ; n ¼ 1; 2;…;N

Set h0 as initial guess

for j ¼ 1;…; � do

Generate U from AU ¼ Wi constructed by Eq. (19) for uniform medium

or (21) for linear profile using the iterative h

Reconstruct the surface h(Xn) by Eq. (24) for uniform medium or (26) for

linear profile using U obtained above

end for

V. RESULTS

The reconstruction algorithm has been tested on a range

of problems and implemented in Python. The scattered data

were obtained by two methods as described in Sec. III, using

Fortran for the image method and Python for the integral

equation results. In the process of applying the inversions

algorithm, the surface functions h(x) are allowed to take

complex values for computational convenience; the resulting

values are found to have negligibly small imaginary compo-

nent, which can be discarded. This serves as an additional

indirect check on self-consistency.

The random rough surface chosen here is generated

computationally from an autocorrelation function (a.c.f.)

q(g) where g ¼ x0 � x. The examples shown here use wave

number k¼ 1 although by renormalising length scales this

may represent arbitrary wavelengths. We choose a Gaussian-

type a.c.f.
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qðgÞ ¼ r2 exp
�g2

l2

� �
;

where l ¼ 8 ffi 1:3k is the autocorrelation length and qð0Þ
¼ r2 is the variance. A simple way to synthesise the surface

is as a superposition of a sinusoidal components with phases

chosen uniformly in ½0; 2pÞ and applying a filter function to

give rise to the chosen autocorrelation function. These surfa-

ces h(x) were generated on a longer segment and then trun-

cated to xi 2 ½0; L� for evenly spaced elements xi of the

computational grid. The peaks exist along the surface at small

scales. The typical peak-to-trough of the surface is about 0.5.

The incident Gaussian beam is centred at z0 ¼ 22:4 at zero

grazing angle, and initial width is taken to be w¼ 8. The

maximum range L is taken to be L¼ 300m. For this value of

k, this range is thus L ffi 50k. The initial guess of the inverse

problem is chosen as

h0 ¼ sin ð0:05xÞ=1000:

The use of a small non-zero initial function here helps to sta-

bilize the reconstruction. However, it has been found that the

results are highly insensitive to the exact form of this initial

guess.

The key scattering scales in the direct problem within

the parabolic equation regime are the ratio of surface height

to autocorrelation length. In the inverse problem, the incident

wavelengths can in principle be tuned to optimize the algo-

rithms. On the other hand, the non-dimensional ratio of rms

surface height to correlation length is a feature of the particu-

lar physical setup which is not under our control.

The source is taken to be a known Gaussian beam, given

by Eq. (5). For example at zero grazing in free space, i.e., in

the absence of reflecting boundary or refractive index varia-

tion, the field will propagate without distortion. Any depth-

dependent profile will distort the propagating wave. In the

case of a reflecting surface h(x) and a linear profile (or

indeed any profile increasing with distance from h(x)), the

wave field will be refracted towards the surface, where it

will become repeatedly scattered. The contour plot of the

modulus of the field is shown in Fig. 2.

A. Reconstruction

1. Uniform medium

The scattered wave field was sampled along a plane at

the height z¼ 0.7. Computational nodes xi for i ¼ 1;…;N
were evenly spaced for N ranging between 300 and 800 in

different cases. This corresponds to resolution ranging from

around 6 to 16 points per wavelength. The reconstructions

h(xi) are carried out at the same evenly spaced values of xi.

The use of evenly spaced points at the same horizontal loca-

tions for both sampled data and reconstructions is a signifi-

cant numerical convenience, but is not necessary for the

application of the algorithm either theoretically or in

practice.

The algorithm was carried out for 3 iterations. The

reconstruction at third iteration in each case was found to be

clearly satisfactory. It is seen that even though more iterations

are applied, the improvement on the surface reconstruction is

not so much obvious. Figure 3 shows the reconstructed height

plotted against the original surface height at the first and the

third iteration.

The approximated surface closely follows the original

surface, and most detailed features of the surface are recap-

tured. At the first iteration, the reconstruction deviates from

the original surface mainly at the region of the peaks. This is

due to the increasing error caused by the large exponential

term. At the third iteration, the error around peaks is signifi-

cantly reduced since the recovery of the surface wave field

improves.

We also test the algorithm with respect to measurement

noise, by the addition of white noise to the scattered data.

This perturbation ranged from 1% to 5% of the rms scattered

field amplitude, measured from the sum of squares at the

nodes Note that this component was statistically stationary

throughout the spatial domain, including regions where the

exact data were negligibly small, where it can potentially

have a disproportionate effect on the results. Figure 4 shows

the reconstruction with 5% Gaussian noise added. The result

contains oscillations throughout the whole domain.

However, these oscillations are qualitatively similar to the

noise itself. Since in practice the surface is assumed to be

smooth on the smallest scale size of the grid, the oscillations

shown on the reconstruction can be effectively filtered out.

The filtered reconstruction is done by a simple five-point

moving average, which is shown in Fig. 4. The filtered sur-

face again convincingly reproduces the exact form. Thus, the

marching algorithm exhibits a type of self-regularization, in

which large errors at the initial region do not propagate as

the reconstruction proceeds along the propagation direction.

FIG. 2. Plots of the total field amplitude for a Gaussian beam above a flat

surface in a medium with the linear profile.

FIG. 3. Plots of rough surface h from inverse problem for the first and third

iterations.
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2. Linear profile

We now consider the case of a medium with non-zero

linear profile. The profile parameter is taken as a¼ 0.015.

The reconstructed surfaces against the original surface at the

first and the third iteration are shown in Fig. 5. Apparently,

the reconstruction at first iteration is not good enough, espe-

cially towards the end of the domain. Some large peaks are

present in certain areas. The reason for these large oscilla-

tions is that the surface wave field is not good at the area. On

the other hand, at the third iteration, the surface settles down

and fits the original surface well. The reconstruction tends to

stabilize as it progresses to right. It shows that the successive

improvement works better in the linear profile case.

For the linear profile problem, we also test the perfor-

mance with respect to the noise data. Figure 6 gives the

reconstruction with 2% Gaussian noise added and the filtered

surface by the same five-point average. Similar results are

obtained.

B. Error analysis

The nature and extent of the errors in the reconstruction

surface are immediately evident from the plots. We can also

examine the error at each iteration in terms of the l2 norm of

the residual, given by

ej ¼
1

N

XN

i¼1

ðHi � hj
iÞ

2

" #1=2

;

where Hi is the original surface value and hj
i is the recovered

surface at the jth iteration, measured at the nth node. The

performance of the algorithm is examined here in terms of

three controlling parameters: the number of nodes N (which

in turn determines the resolution), the height at which scat-

tered data are measured, and the profile parameter governing

the strength of ducting. Table I gives the error with respect

to the number of nodes at each iteration. It is clear that the

algorithm improves through iteration, and higher resolution

FIG. 5. Plots of rough surface h from inverse problem for the first iteration

(dotted) and the third iteration (dashed).

FIG. 6. Comparison of the actual surface reconstruction (upper) with filtered

reconstruction (lower) at the third iteration for noise level of 2% added to

scattered data.

FIG. 4. Comparison of the actual surface reconstruction (upper) with filtered

reconstruction (lower) at the third iteration for noise level of 5% added to

scattered data.
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also gives rise to better reconstruction. The error obtained

for different scattered data heights is shown in Table II. In

the case of a uniform medium the performance is similar for

different scattered data heights. However, for a linear profile,

the error increases with height of the measurement plane.

Finally Table III presents the error for different values of the

profile parameter. As the scattered data height z or the profile

parameter a increases, the approximation for the exponential

terms Eðz; n; lÞ and Fðz; n; lÞ becomes worse, and these is,

therefore, a decline in performance. Overall, the results are

acceptable giving good agreement, with a relatively small

error.

VI. CONCLUSIONS

We have extended the iterated marching method to the

recovery of a rough surface from grazing angle scattered data

in a ducting medium with a known linearly varying refractive

index. Results are obtained here for surfaces obeying the

Neumann boundary condition. To the best of our knowledge,

the surface reconstruction problem for a non-uniform

medium has not previously been addressed, despite the

importance of these regimes in both radar and underwater or

under-ice acoustics. The method can in principle be applied

to any varying medium provided the Green’s function is

known, and can be extended to include the Dirichlet bound-

ary (although the Neumann boundary causes greater scatter-

ing and has received somewhat less attention in the inverse

problems literature). A refractive index profile in the medium

can channel the wave to become scattered repeatedly at the

surface, thereby increasing the severity of multiple scattering

which is already inevitable at grazing angles. Numerical

experiments have been conducted for a variety of cases and

extremely good agreement has been found between recon-

structed and exact surface shapes. We have also examined

the effect on the algorithm of significantly perturbing the

measured data with white noise, and it is found to be robust.

In this case, the initial surface reconstruction follows the cor-

rect surface profile plus a noisy component with statistical

characteristics similar to the measurement noise which can,

therefore, be easily filtered out.

We note that in contrast to the previous study31 the

numerical results here use purely forward-scattered data

since the methods available to generate scattered data for the

linear profile do not account for backscattering. However,

the relative insensitivity of the method to small perturbations

suggests that this is not crucial for grazing angles and moder-

ate roughness where scattering angles and, therefore, back-

scattered energy are low. We have also found that decreasing

the ratio l/R, i.e., reducing correlation length with respect to

surface height, causes a loss of accuracy. This is partly due

to the decrease in data resolution, but more significantly it

eventually violates the assumptions underlying the parabolic

equation, and the method breaks down. To a limited extent,

this can be overcome by tuning the incident wavelength but

highly diffuse multiple scattering remains a challenge.

Increasing the strength of the linear profile also gradually

degrades the performance, which we believe is due to the

resulting increase in grazing angles which eventually chal-

lenges the parabolic equation assumption.

A more difficult question which merits further work is

the extent to which the method copes with random variations

in the refractive index in addition to the known deterministic

component addressed here. An eventual goal is to develop

this approach for three-dimensional problems and work is

underway on this. The key elements of the algorithm extend

naturally to three-dimensions, but the generation of scattered

data to test the method requires further work.
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