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ABSTRACT

A cross-validated statistical model has been developed to produce hindcasts for the 1980–2016 November–

December–January (NDJ; assumed El Niño peak) mean Niño-3.4 sea surface temperature anomalies

(SSTA). A linear combination of two parameters is sufficient to successfully predict the peak SSTA: 1) the

58N–58S, 1308E–1808, 5–250-m oceanic potential temperature anomalies in February and 2) the 58N–58S,
1408E–1608W cumulative zonal wind anomalies (ZWA), integrated from November (one year before) up to

the prediction month. This model is simple but is comparable to, or even outperforms, many NOAAClimate

Prediction Center’s statistical models during the boreal spring predictability barrier. In contrast to most

statistical models, the predictand Niño-3.4 SSTA is not used as a predictor. The explained variance between

observed and predicted NDJ Niño-3.4 SSTA at a lead time of 8 months is 57% using 5 yr for cross validation

and 63% in full hindcast mode.Predictive skill is lower after 2000 when the mean climate state is more La

Niña–like because of stronger equatorial easterly ZWA. Strengthened Pacific subtropical highs are ob-

served, with weaker westerly ZWA that emerge at a later time during El Niño. The western Pacific is more

recharged, with stronger upwelling over the eastern Pacific. The resulting strong zonal subsurface tem-

perature gradient provides a high potential for Kelvin waves being triggered without strong westerly

ZWA. However, the persistent easterly ZWA lead to more central Pacific–like El Niños. These are more

difficult to predict because the contribution of the thermocline feedback is reduced. Overall, the authors

find that the importance of the recharge state for ENSO prediction has increased after 2000, contradicting

some previous studies.

1. Introduction

El Niño–Southern Oscillation (ENSO) is one of the

most important interannual fluctuations of the climate

system. ENSO affects many parts of the globe through

teleconnections and influences Pacific marine ecosys-

tems and commercial fisheries (e.g., Kiladis and Diaz

1989; Ropelewski and Halpert 1987). Hence, ENSO

prediction is of considerable public interest. Predictions

are based on either dynamical or statistical models. For

ENSO predictions, dynamical models solve physical

equations of the ocean–atmosphere system ranging

from relatively simple to complex fully coupled ocean–

atmosphere models. The fully coupled models perform

slightly better than statistical models (Latif et al. 1994;

Barnston et al. 2012). Their higher forecasting skill is

due to higher spatial resolution and advanced data as-

similation systems for initialization (Balmaseda and

Anderson 2009). The expense of running these models

often limits the number and frequency of forecasts

conducted (Goddard et al. 2001). Statistical models, on

the other hand, use long historical datasets to estimate

their predictor–predictand relationships. They are much

cheaper, and the use of longer historical data and finer

temporal resolution often leads to better forecasts

(Barnston et al. 2012).

Both types of models have problems in predicting

boreal winter tropical Pacific sea surface temperature

(SST) when forecasts start in boreal spring (February–

May). This is called the spring predictability barrier

(e.g., Flügel and Chang 1998; Jin et al. 2008). The ENSO

SST anomalies (SSTA) and associated sea level pressureCorresponding author: Michael Herzog, mh526@cam.ac.uk
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anomalies are weakest during spring, but the noise in the

tropical Pacific air–sea system is nearly constant

throughout the year (Xue et al. 1994). Hence, the signal-

to-noise ratio is small in boreal spring and forecasts are

more sensitive to random variability. In addition, during

spring the intertropical convergence zone is situated

close to the equator and the climatological SST reaches

its maximum in the eastern equatorial Pacific. This leads

to unstable air–sea interactions in the eastern equatorial

Pacific, whereby the release of latent heat by the ocean

alters surface winds, further inducing latent heat release

(Philander et al. 1984). Since zonal SST gradients are

weak during spring, small perturbations can be amplified

over a large domain, leading to very different spatial

patterns (Latif et al. 1994). Springtime also sees more

ENSO events in the decaying phase because ENSO is

seasonally phase locked with peaks usually during bo-

real winter (Torrence and Webster 1998). The decaying

phase implies that the SSTA in boreal spring are rela-

tively small, making SSTA associated with ENSO more

difficult to detect and forecast accurately, leading to a

minimum predictability in spring (Jin et al. 2008).

The explained variance R2 between observed SSTA

and forecasts made in spring for the following winter

Niño-3.4 SST ranges from 1% to 24% for statistical

models and from 4% to 64% for dynamical models

(Barnston et al. 2012). In this study, we present a new

simple statistical model that performs as well as some of

the best dynamical models and outperforms most of the

statistical models during the period around the spring

predictability barrier. Our model is conceptually similar

to Clarke and Van Gorder (2003) but avoids using past

information about the predicted SSTA in the forecast

method. In the following, we present all forecasting skill

in terms of explained variance R2; a stricter measure of

the strength of the predictor–predictand relationship

than the correlation coefficient R.

Some studies have suggested that El Niño (EN) can

occur in two different flavors: the warm pool or central

Pacific (CP) El Niño (CPEN) and the canonical eastern

Pacific (EP) El Niño (EPEN) (Graf 1986; Ashok et al.

2007; Kao and Yu 2009; Kug et al. 2009; Yu and Kim

2010). Although not the primary focus of this study, CP

and EP La Niña (LN) patterns have also been identi-

fied (Lee and McPhaden 2010). Whether EN can be

classified discretely into these two types is still a matter

of debate. More recent studies have shown that EN is a

continuum, with CPEN and EPEN as the end members

of the spectrum (Giese and Ray 2011; Johnson 2013;

Fedorov et al. 2015; Chen et al. 2015; Lai et al. 2015).

Also, as Graf (1986) suggested and Lai et al. (2015)

have shown, El Niño is a two-stage process. All ENs

start as CP and, depending on the involvement of the

thermocline feedback, can develop into more or less

strong EP events (Graf 1986; Lai et al. 2015). Most ENs

are hybrid events, with both CPEN and EPEN char-

acteristics, that do not evolve into very strong events.

The variability of the November–December–January

(NDJ) EN peak intensity, and therefore the diversity of

EN events, depends strongly on the initial west Pacific

thermocline recharged state and on the western to

central equatorial Pacific cumulative zonal surface

wind anomalies (ZWA) (Lai et al. 2015). Our model

will only use these two parameters to predict the Niño-
3.4 SSTA at lead times (LTs) extending to 9 months

(i.e., across the spring predictability barrier).

Often ENSO forecast methods use not only pre-

cursors within the tropical Pacific basin, but also exter-

nal forcings. In this sense, several authors have relied on

the importance of the SSTs in other tropical basins to

predict ENSO events. Dayan et al. (2014) have reported

an enhancement of ENSO prediction skill associated

with diverse SST patterns in the tropical Atlantic and

Indian basins. Furthermore, Frauen and Dommenget

(2012) have explored the contribution of each basin,

putting forward that IndianOcean SSTs are necessary to

the correct simulation of ENSO dynamics, while the

initial conditions of the tropical Atlantic SSTs are cru-

cial for ENSO predictability.

Recent studies have focused on the role of tropical

Atlantic interannual variability for the tropical Pacific. In

this sense, Keenlyside et al. (2013) found an improvement

of ENSO prediction across boreal spring when the At-

lantic SSTs are included. Nevertheless, the Atlantic im-

pact on ENSO seems to be modulated at decadal time

scales. Martín-Rey et al. (2015) demonstrated the exis-

tence of windows of opportunity to enhance ENSO pre-

diction using the information from theAtlantic sixmonths

in advance. Only during the first and last decades of the

twentieth century, when the Atlantic–Pacific Niños con-
nection takes place (Rodríguez-Fonseca et al. 2009; Ding

et al. 2012;Martín-Rey et al. 2014; Polo et al. 2015), a good

prediction skill is obtained. Therefore, Suárez-Moreno

and Rodríguez-Fonseca (2015) developed a statistical

model taking into account the nonstationary behavior of

the climate teleconnections between tropical oceans.

However, as McGregor et al. (2014) showed, these tele-

connections and their influence on ENSO are mediated

through a response in theWalker circulation and a change

in zonal surface wind anomalies.

In addition, there is evidence that these teleconnections

between tropical oceans also favor certain types ofEN. For

instance, SST anomalies in the north tropical Atlantic

during boreal spring could entail an atmospheric re-

sponse over the central-eastern tropical Pacific modifying

the surface winds and favoring the CPEN development
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(Ham et al. 2013a;Wang et al. 2017).Moreover, equatorial

Atlantic SSTs (i.e., Atlantic Niño) could also alter the

Walker circulation, impacting on the surface winds in the

central-western Pacific, and trigger oceanic Kelvin waves

(Rodríguez-Fonseca et al. 2009; Ham et al. 2013b; Polo

et al. 2015; Li et al. 2016).

Stratospheric volcanic eruptions are another example

of externally forced events that influence ENSO

(Adams et al. 2003). As a recent modeling study has

shown, volcanic cooling for tropical eruptions is stronger

in the high latitudes, leading to an enhanced equator-to-

pole temperature gradient and tending to accelerate the

westerlies while enhancing baroclinic instability closer

to the equator (Stevenson et al. 2016).

In summary, although there are many causes of

westerly wind anomalies, the simplest method to include

these causes in a statistical method for ENSO prediction

is through the resulting westerly wind anomalies and

through indicators of the original cause of these wind

anomalies itself.

ENSO predictability has dropped for recent years.

Barnston et al. (2012) analyzed the seasonal forecast skill

of many dynamical and statistical models for the most

recent decade. This study shows that forecasting ENSO

posed a greater predictive challenge after the early 2000s.

Reasons are not entirely clear, but this study suggests that

it could be related to a smaller ENSO amplitude and

greater year-to-year fluctuations between El Niño and La

Niña. McPhaden (2003) proposed that the warm water

volume [i.e., the mean upper-ocean heat content (OHC)

of the 1208E–808W equatorial Pacific] is often a good

predictor for ENSO seasonal forecasting, since lag cor-

relations are greater than 0.7 at lead times of 7–9 months

for anomalies starting in February through May. How-

ever, several recent studies have pointed out that the

equatorial Pacific OHC has a weaker correlation with the

Niño-3.4 region since 2000 (Horii et al. 2012; McPhaden

2012). In addition, there has been a westward displace-

ment of the anomalous wind forcing associated with

ENSO after 1999 (Bunge and Clarke 2014).

As noted in many studies, the Pacific has undergone a

climate regime shift in the late 1990s after the strong 1997/

98 EPEN (Minobe 2000; Bond et al. 2003; Hong et al.

2014). This shift is characterized by a warming of the west

Pacific (WP) and a cooling of the CP. Such a shift may

explain the breakdown of the OHC as one of the ENSO

predictors after 2000 (Horii et al. 2012; McPhaden 2012;

Bunge and Clarke 2014). The reduced predictability of

ENSO might also be due to the recent El Niño shift to a

more CPEN flavor, in which the SST warming is not re-

lated to a thermocline feedback (Chung and Li 2013;

Xiang et al. 2013; Lai et al. 2015). Possible causes can be

related to natural ENSO variability on interdecadal time

scales (Chen andWallace 2015). This includes subtropical

and extratropical signatures in SST, such as the Pacific

decadal oscillation (PDO) pattern (Pascolini-Campbell

et al. 2015). Hu et al. (2013) found that the interannual

thermocline variability has decreased for 2000–11, citing a

stronger Walker circulation as a possible cause. Con-

versely, Sohn et al. (2013) suggested that a decadal vari-

ation of El Niño (more CPEN) caused the Walker

circulation to intensify. Wen et al. (2014) also support the

view that the basinwide mean thermocline variation is

not a good predictor for El Niño after 1999. They pro-

posed that strengthened subtropical cells provide a

pathway for the enhanced influence of off-equatorial

thermocline variations on the development of ENSO

events after 1999. Lyon et al. (2014) found that after re-

moving the effects of ENSO and global warming from the

data, the climate regime shift around 1999–2000 could

result from a change in the PDO phase, but the causality

between the two was not addressed.

Besides the PDO, other large-scale decadal SST pat-

terns such as the Atlantic multidecadal oscillation

(AMO) could also contribute to the observed regime

shift. Several authors have proposed thatAMO-like SST

patterns could modify the tropical Pacific background

state and ENSO seasonal cycle, enhancing–reducing

ENSO variance (Dong et al. 2006; Timmermann et al.

2007; Zhang and Delworth 2005; Zanchettin et al. 2016;

Levine et al. 2017). Another factor could be global

warming, which could interact with the natural internal

variability to generate the ENSO variations during re-

cent decades (Kucharski et al. 2011; Kang et al. 2014; Liu

and Sui 2014).

Xiang et al. (2013) point out that the more La Niña–
like ocean state after 1999 caused an anomalous sub-

sidence in the CP, displacing the weak westerlies to the

west. This, together with anomalous easterlies in the EP,

restricts the SST anomalies to the central part of the

basin, favoring a CPEN development. The La Niña–like
mean state after 1999 could also favor the occurrence of

negative ENSO events, since the ENSO asymmetry

seems to be attributed to zonal displacement of the

surface winds and the wind–SST feedback (Kang and

Kug 2002; Frauen and Dommenget 2010). Furthermore,

the ENSO phase, together with its flavor (CP and EP

spatial configurations), seems to be crucial to determine

its characteristics and teleconnections (Dommenget

et al. 2013; López-Parages et al. 2016).
In this paper, we update, augment, and refocus the

analysis of the change in mean climate state that has led

to a change in forecast performances.

The paper is structured as follows. In section 2 we de-

scribe our new simple statistical model for ENSO fore-

casts. Model validation and performance are presented in
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section 3a. Observational evidence for recent changes in

the key parameter of ourmodel is presented in section 3b.

Potential mechanisms for a reduced forecast skill after

the year 2000 are discussed in section 4. Conclusions and

outlook follow in section 5.

2. Statistical model for ENSO prediction

The LT is defined by the number of months of sepa-

ration between the forecast and the central month of the

3-month target (i.e., December for NDJ). For example,

using observed data from themonths up to and including

June represents a lead time of 5 months for a NDJ

prediction. The notations (21), (0), and (1) attached to

each month indicate the year before, during, and after

the El Niño occurrence, respectively. The peak of an El

Niño is assumed to be November(0)–December(0)–

January(1), or NDJ hereafter.

The National Oceanic and Atmospheric Administra-

tion (NOAA) definition of El Niño is adopted. As de-

scribed in Lai et al. (2015), an El Niño (La Niña) event
starts when the monthly mean SSTA exceeds (is below)

0.5K for at least 6 consecutivemonths anywhere between

1608E and 808W along the 58N–58S equatorial band. The

onset month is the first of the 6 consecutive months.

During an El Niño event, a monthly SSTA pattern is

considered to be aCPwarming pattern if regions of SSTA

with 1.0K or above do not reach the coast of Peru (i.e., do

not reach the Niño-1 or Niño-2 region). The threshold of

1.0K is chosen because a 0.5-K threshold (used for de-

fining onset and end of the ENSO episode) is not suffi-

ciently high to distinguish the spatial differences between

CPEN and EPEN, due to the high noise of SSTA in this

region. For an EP SSTA pattern SSTA exceed 1.0K near

the coast of Peru (in eitherNiño-1 orNiño-2).AnElNiño
event is considered to be a CPEN event if only a CP

warming pattern occurs during its evolution. It is con-

sidered an EPEN event if more months are characterized

by an EP than a CP pattern over the lifetime of the event.

Mixed CP and EP patterns occurring over the lifetime

simultaneously or subsequently are called hybrid El Niño
events (HBEN).

Since our statistical model is motivated by west wind

anomalies as a trigger for Kelvin waves, we focus in the

discussions on El Niño events. However, all years in-

cluding neutral and La Niña years are included in the

analysis so that the model is optimized for all years, not

just El Niño years.

In our model, an expected peak in Niño-3.4 SSTA

during NDJ hTpeaki is calculated using a linear relation-

ship between two parameters obtained from the NOAA

1980–2014 reanalysis (Reynolds et al. 2002; Compo et al.

2011) and the Global Ocean Data Assimilation System

(Behringer and Xue 2004): the cumulative 58N–58S,
1408E–1608WZWA, DU, starting in November(21) and

cumulated to the month t in which the prediction is

made, and the February(0) 58N–58S, 1308E–1808, 5–250-m
oceanic subsurface potential temperature anomalies

(PTA) Du:

hT
peak

i5a(t)
Du

u
2b(t)

1

�U �
t

i5Nov(21)

DU(i) . (1)

The u and �U are the climatological means of oceanic

subsurface potential temperature and zonal wind for the

same domain as for Du and DU, respectively. The minus

sign in front of coefficient b ensures positive values of

b for westerly wind anomalies (DU . 0) and easterly

mean zonal wind (�U . 0).

Note that the upper-ocean heat content can also

be estimated by other parameters (e.g., Meinen and

McPhaden 2000; Fedorov et al. 2015). The calculation

for hTpeakiwas repeated for each year from 1980 to 2016

and for each month starting from February (9-month

lead time). The computation of hTpeaki is also applied to

LN events and neutral years, as it is meant to represent

the NDJ Niño-3.4 SSTA for all years and not just for

warm events.

The PTA and ZWA are normalized by their clima-

tological means to describe effects through relative de-

viations so that the coefficients a and b both have units

of temperature. The b3 SDU/�U describes the combined

effects of thermocline feedback, zonal advection, and

heat flux due to zonal wind forcing on SST. The values of

a and b are listed in Fig. 1. They are determined, for

each lead time, by a least squares fitting over the training

period so that R2 of the relationship between predicted

hTpeaki and the observedTpeak for a given t is maximized.

ZWA from the European Centre for Medium-Range

Weather Forecasts (ECMWF) interim reanalysis (ERA-

Interim) data produced very similar results (not shown)

compared to the NOAA based ZWA data.

We tested the R2 for different times of the PTA

around boreal spring. The Feb(0) PTA lead was found

to be the optimal choice. This is consistent with

McPhaden (2003), who found a maximum lag correla-

tion for the equatorial Pacific warm water volume

(WWV) at lead times of 9 months in February. In ad-

dition, several domain sizes for averaging the PTA and

for cumulating the ZWA around the WP–CP were also

tested. The chosen domains for PTA and ZWA result in

the highestR2. Restricting PTA to theWP deviates from

McPhaden (2003), who proposed the use of warm water

volume (WWV) across the entire equatorial Pacific to

overcome the spring predictability barrier. However,

WWV is not a good predictor after the 2000 Pacific
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climate regime shift (Bunge andClarke 2014). Averaged

over the whole equatorial Pacific, negative PTA in the

east tend to cancel positive PTA in the west after 2000.

Our model is built based on the physical mechanisms

described in Lai et al. (2015). Much in line with Wyrtki

(1975) and Graf (1986), this study suggests that the WP

recharged state during boreal spring can force positive

EP SSTA through the thermocline feedback. Once the

FIG. 1. Scatterplots of the observed Niño-3.4 SSTA in NDJ against the expected NDJ SSTA from our model during the period 1980–

2016. The LT in months and the coefficients (a and b) that maximized R2 and R2 are shown on top of each plot. Plot for LT 5 9 is not

shown. The 1:1 line is marked in gray.
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WP is recharged, sustained strong westerly wind

anomalies over the WP and CP can trigger eastward-

propagating Kelvin waves from the WP recharged re-

gion and cause a full-fledged EPEN. This results in

higher SSTA compared to those associated with a

CPEN, which are caused by zonal advection feedback

and local air–sea interaction, mainly through the ex-

change of latent and sensible heat. Lai et al. (2015)

found that theWP recharged state and cumulative zonal

wind anomalies can explain about 70% of the total

variance in the SSTA Niño-3.4. We therefore propose

thatWP recharged state is a better predictor than taking

into account the entire equatorial Pacific, which would

include signals over the EP induced by the climate re-

gime shift. The opposite changes inOHC forWP andEP

would mask changes in the WP recharge state if the

OHC of the entire equatorial Pacific was used as a

predictor. Note that the optimal time and area for the

calculation of PTA and ZWA may change when the

base state of the Pacific climate system changes.

We compare our model results with other statistical

models and two dynamical models. Results for the sta-

tistical models were obtained from the original authors.

These include the NOAA Climate Prediction Center’s

(CPC) linear inverse model (LIM) by Penland and

Magorian (1993), CPC constructed analog (CA) by Van

den Dool (1994), CPC Markov model by Xue et al.

(1994), CPC canonical correlation analysis (CCA) by

Barnston and Ropelewski (1992), and the Florida State

University’s multiple regression model (FSU) by Clarke

and Van Gorder (2003). Results for the dynamical

models are obtained from the International Research

Institute Data Library website for the NASA Global

Modeling and Assimilation Office (GMAO) and the

NOAA Climate Forecast System, version 2 (CFS). In-

formation about the models is summarized in Table 1.

It is inevitable that each model has different training,

verification, and validation periods. FSU is trained using

1981–2001, so that hindcasts for this time period are not

cross validated. CA uses 1956–2015 as its cross-

validation period and is trained using 1982–95 with a

1996–2006 verification period. Hindcasts are then re-

produced for 1980–2007. For later years, CCA uses an

adaptive regression so that new predictions are based on

themost recently available data.Markov is trained using

1980–95 and built with threemultivariate EOFs in which

the anomalous fields of SST, sea level, and wind stress

are equally weighted. LIM is trained using 1950–84 and

then verified using 1985–90. For all models, forecasts are

made up to 2014 in operational mode after verification

and cross validation. Cross validation is performed for

those years that are excluded from the training of

the model.

Because of these differences in verification and vali-

dation, the comparison with other models might favor

our model. However, instead of showing whether our

model is the best or not, we want to emphasize the

simplicity of our model. Derived from a simple theo-

retical framework, it works at least as well as more

complex models. To test overfitting of our model, we

applied a Monte Carlo method to validate the model, as

suggested by DelSole and Shukla (2009). The choice of

parameters for predictions is based on a physical

mechanism and optimized by explained variance as ex-

plored in Lai et al. (2015). Our model is calibrated using

all years between 1980 and 2016. For validation, the

37 years of data are partitioned into two subsets of 32- and

5-yr samples, similar to Newman et al. (2011). The a and

b are then computed for the target season of NDJ

through a linear least squares fitting, taking into account

only data from the 32-yr sample. The remaining 5yr (not

included in the least squares fit) are then used for vali-

dation. Subsets are chosen by a Monte Carlo random

sampling method and repeated 70 times. Validation

results are already converged after approximately 50

repetitions. A one-year cross validation [e.g., as done in

TABLE 1.Models whose forecasts for Niño-3.4 SSTA are included in this study. Hindcasts are provided by the authors, the stated websites,

or people in the acknowledgment section.

Acronyms Full name Authors

CPC Climate Prediction Center

CPC LIM Linear inverse model Penland and Magorian (1993)

CPC CA Constructed analog Van den Dool (1994)

CPC MRKOV Markov model Xue et al. (1994)

CPC CCA Canonical correlation analysis Barnston and Ropelewski (1992)

FSU Florida State University,

multiple regression

Clarke and Van Gorder (2003)

NASA GMAO Global Modeling and

Assimilation Office

http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/

NOAA CFS Climate Forecast System,

version 2

Saha et al. (2014); http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
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Clarke and Van Gorder (2003)] yields very similar R2

compared with the mean R2 from the 5-yr cross valida-

tion, indicating that themethods are robust (not shown).

To investigate the drop in forecast skill after 2000, we

present R2 for the subperiods 1980–99 and 2000–16.

To assess the performance of the cross-validation

method we not only compare mean and median

values of the individualR2 of the 70 repetitions but also

use the Akaike information criteria (AIC; Burnham

and Anderson 2002) to calculate optimal coefficients

abest 5�N

j51wjaj and bbest 5�N

j51wjbj, where N 5 70 is

the number and aj and bj are the coefficients of each

cross-validation calculation. The weighting factors wj

are estimated from the AIC values the individual cross-

validation calculations:

w
i
5

exp(20:5D
i
)

�
N

j51

exp(20:5D
j
)

,

D
i
5AIC

i
2AIC

min
, and

AIC5 n ln

�
RSS

n

�
1 2K1

2K(K1 1)

n2K2 1
.

RSS is the sum of squares of differences between pre-

dicted and actual hTpeaki, K 5 2 is the number of co-

efficients in our model, n 5 5 the number of years used

to test the model in each cross-validation calculation,

and AICmin 5 min
j

AICj.

3. Results

a. Model validation and performance

During the 1980–2016 period, including the 2015/16 El

Niño event, there are 12 El Niños and 12 LNs. Figure 1

shows scatterplots of observed NDJ Niño-3.4 SSTA and

predicted hTpeaki for each LT. The offset of the best-fit

linear regression lines is negligible. Different flavors of

the El Niño continuum, CPEN, EPEN, and hybrid (Lai

et al. 2015), are shown in green, red, and orange, re-

spectively. Neutral years are gray open circles. LNs are

in blue.

Initially, forecasts tend to underestimate the SSTA for

El Niño (i.e., dots for El Niño are mostly above the main

diagonal in Fig. 1). Although the ocean signal (PTA) is

strongest during the boreal spring recharged state, the

influence of the atmospheric signal (westerly ZWA)

increases over time. As time progresses, more in-

formation is available to predict an El Niño event.

Forecasts improve from LT 5 8 up to LT 5 0 as in-

dicated by the convergence of the data points toward the

regression lines. Almost all data points are in the correct

quadrant, except for the weak 2003/04 CPEN, which is

predicted to be a cold event throughout. Although the

main focus was not to predict LN, all predicted LN

events gradually shift to the ‘‘cold’’ bottom left quad-

rant. This indicates that there is no false prediction for

LN events starting from LT 5 5. Even though the

model’s domain might capture a strong positive PTA

prior to LN, the effect of strong easterly ZWA that

generate strong oceanic upwelling throughout the sea-

sons leading to an LN is typically well captured by

the model.

Figure 2a shows the range of R2 for each LT obtained

from the 70 sets of 5-yr validations. The bottom and top

of the whiskers indicate the minimum and maximumR2,

respectively. The bottom of the box, the line inside the

box, and the top of the box indicate the 25th percentile,

median, and 75th percentile, respectively. The range of

R2 as seen in the whisker plot is wide because the R2 for

observed and predicted hTpeaki is sensitive to the specific
control and validation sample. For example, for LT5 8,

R2 ranges from 0% to 92%, whereas 25th to 75th per-

centiles are between 42% and 83% explained variance

with a mean and median of 58% and 63%, respectively.

Very low R2 are inevitable because the randomly se-

lected 5 yr sometimes include years with considerable

forecasting challenges. However, overall, the R2 distri-

butions are negatively skewed toward the lower values.

Median values are larger than mean values as seen by

the whisker boxes. The optimal model from the AIC

method has a and b coefficients that are almost identical

to the coefficients of the full hindcast model. Thus, the

R2 for the optimal coefficients from the cross-validation

method is only 2% smaller than from a full hindcast.

Figure 2b indicates that our model performs well for

ENSO prediction during the spring forecast barrier for

LT 5 9 to 6 (black solid line). For LT 5 6 and 7, only

NOAA CFS and CPC CA are better. Unfortunately,

predictions for LT 5 8 and 9 are not available for the

NOAA CFS model. NOAA CFS has the best skill in

terms of R2, which is about 10% higher than our model

from LT 5 6 to 0. The FSU model, which uses similar

parameters compared to our model, does not perform

better until LT 5 2. FSU uses Indo-Pacific wind stress

anomalies and upper-ocean heat content, with a longi-

tudinal domain at which the wind stress anomalies are

obtained shifting from the east to the west during the

course of the year. In addition, it includes the Niño-3.4
SSTA of the month from which the forecast is being

made (Clarke and Van Gorder 2003). Thus, FSU in-

cludes observational information of the predictand,

leading naturally to high forecast skill at short LT. Our

statistical forecast model avoids such an inclusion of the

predictand in the forecast method, since the main signal

of the ENSO evolution is below the ocean surface at
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long LT, not in the SST (Lai et al. 2015). CPCCA can be

regarded as the best statistical model, which performs

better than ours from LT 5 6 to 0 and is comparable to

our model at LT 5 7, 8, and 9. Interestingly, NASA

GMAO has lower skill until LT 5 3. Most models have

about 5% higher explained variance than our model at

very short lead times LT 5 2 to 0. For comparison, we

have added in Fig. 2b the explained variance of our

model in full hindcast mode as a black dashed line. The

R2 is approximately 10% higher for LT . 3 when all

available data are included in the best fit calculation. To

test the hypothesis that the strongest EPEN might

have a dominant effect on the regression results, we

removed the 1982/83 and 1997/98 EPEN from the

analysis. Evenwith both these EPEN removedR2 values

are reduced by no more than 0.1 (i.e., 10%) even for the

longest lead times.

It is worth noting that all other statistical models in-

clude the observed SSTA in their SSTA prediction.

Whenmaking a prediction inNovember forNDJ (LT5 1),

the observed November SSTA is already used for the

prediction. Our model does not directly use SSTA. It is

FIG. 2. (a) The whisker plots of R2 when our model is cross validated using 70 sets of Monte

Carlo randomly selected 5-yr samples. The black line shows the mean R2 of the 70 sets and

the gray line the R2 of the AIC optimized model as described in the text. The whiskers from

bottom to top show the minimum, 25th percentile, median, 75th percentile, and maximum.

(b) Temporal R2 between model forecasts and observed NDJ Niño-3.4 SSTA as a function of

lead times. The black line shows themeanR2 for our model from the 5-yr cross validation, the

gray line the R2 of the AIC optimized model. The black dashed line is for the 1980–2016

hindcast.
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only based on the western Pacific PTA of February and

the cumulative ZWA. The predictand (SSTA, the ob-

served variable of interest) might, however, implicitly

contribute to the values of zonal wind anomalies through

its influence on Walker and Hadley cells (Bjerknes

1969). By just using ZWA and PTA, the physics of the

‘‘recharge oscillator’’ can be tested robustly, with one

degree of freedom less than the conceptually similar FSU

model. Overall, our model shows good potential for

ENSO prediction during the spring predictability barrier

by a very simple method.

Barnston et al. (2012) note that ENSO forecast skill is

generally lower after the year 2000. A comparison of the

R2 before and after the year 2000 is shown in Figs. 3a,b.

Here, we again used 5 yr for validation; that is, from the

20 (17) yr of the 1980–99 (2000–16) subperiod we ran-

domly selected 15 (12) yr to calculate the a and

b coefficients in Eq. (1), determined R2 from the

remaining 5 yr, and repeated the procedure until the

resulting mean R2 (shown as a block solid line) con-

verged for each subperiod. For comparison we added

the mean R2 for the full 1980–2016 period (see Fig. 2a)

as a black dashed line. As expected, the cross-validated

R2 for the 1980–99 subperiod are significantly higher

compared to the 2000–16 subperiod. For 2000–16, the

cross-validated mean and AIC optimized R2 drops be-

low 0.5 for LT. 6 and LT. 7, respectively, whereas for

1980–99, R2 remains larger than 0.6 even for LT5 9. As

can be seen from the minima of the whisker plots in

Figs. 3a,b, the small R2 for some of the 5-yr validation

sets for the full 1980–2016 period in Fig. 2a are domi-

nated by years between 2000 and 2016. The spread be-

tween first and third quartiles is significantly smaller for

the pre-2000 than for the post-2000 period. The mean–

AIC optimized R2 for the early period is significantly

larger than mean–AIC optimized R2 for the full period,

FIG. 3. (a),(b) As in Fig. 2a, where 5 yr from the subperiod of 1980–99 and 2000–16, respectively, are left out from

the calibration and then used for validation, resulting in the whiskers and mean (black line). The black dashed line

shows the mean R2 of subperiod hindcast and the gray line the R2 from the AIC optimized model. (c),(d) As in

Fig. 2b, but only for the subperiods, with black dashed and gray lines as in (a) and (b), respectively.
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whereas mean–AIC optimized R2 for the later period

is significantly lower than this, particularly for long

lead times.

The corresponding comparison of the cross-validated

R2 with other models for each subperiod is shown in

Figs. 3c and 3d, respectively. For the time before the

Pacific climate shift in the late 1990s (Hong et al. 2014),

our forecast system is slightly less skillful than the CPC

CA for all lead times and more or less in the ballpark of

others, which become more and more skillful with

shorter lead times. After the year 2000,R2 for all models

decreases. However, the R2 for our model does not de-

crease as much as for other models. For the long lead

times LT 5 9 to 4, our model outperforms all other

models except for NCEP CFS when compared with the

cross-validated mean R2 for our model but is as good as

NCEP CFS when AIC optimized R2 are considered. For

LT 5 3 and shorter, the explained variance of NOAA

CFS and CPC Markov is higher than for our model.

Interestingly, the difference between the 5-yr mean

cross-validated R2 and R2 based on a full hindcast in our

model is hardly noticeable for the 1980–99 subperiod

(Fig. 3c), whereas this difference is much larger for the

2000–16 subperiod. This difference is a reflection of the

negative skewness of the R2 distribution from the cross

validation and largely disappears when the AIC opti-

mized R2 are considered instead.

A number of recent studies have stated that the lower

skill after 1998 is due to a reduced influence of the ocean

heat content on Niño-3.4 SSTA predictions (e.g., Horii

et al. 2012; McPhaden 2012; Bunge and Clarke 2014). In

Fig. 4a, the ratio of b/a is shown as a function of lead

times when the coefficients are optimized for each indi-

vidual period before and after the climate regime shift

and for the 1980–2016 period as a reference. A larger

ratio means ZWAhave a stronger influence on the SSTA

evolution than the initial oceanic recharged–discharged

state. Before the climate regime shift (1980–99), westerly

ZWA are more important, especially during the boreal

spring period.Westerly ZWA are sustained at shorter LT

in maintaining the SSTA. After the climate regime shift

(2000–16), the initial recharged state becomes more im-

portant in predicting the SSTA than the forcing from

ZWA. This contradicts the aforementioned studies.

Studies like Bunge and Clarke (2014) analyzed the re-

lationship between SSTA and the OHC across the entire

tropical Pacific, but the changes in the mean state are

different for WP and EP and partially compensate with

an overall more La Niña–like mean state and cooler than

usual EP (Fig. 5b). The correlation with the OHC across

the entire tropical Pacific has therefore decreased be-

cause the changes in EP do not directly influence the

Niño-3.4 SSTA evolution, whereas theWP recharge state

does. Taking the entire tropical Pacific’s mean OHC in-

cludes less relevant information that degrades the pre-

dictive skill for Niño-3.4 SSTA. In our analysis, we

concentrate on the WP OHC since this remotely forces

the EP SSTA through the thermocline feedback via

eastward-propagating Kelvin waves generated in that

region (Fedorov et al. 2015; Lai et al. 2015).

To analyze this further, Figs. 4b–e show the contri-

butions of PTA and ZWA to the predicted Niño-3.4
SSTA in our model, normalized to a 18C observed

warming and for El Niño events only. As already seen in

Figs. 3a,b, the spread of the predicted contributions is

significantly larger after 2000. For the 1980–99 sub-

period both factors, PTA and ZWA contribute on av-

erage positively to the Niño-3.4 SSTA at all lead times.

The distributions of the individual contributions are

symmetric and relatively narrow since the first and third

quartiles are within60.18–0.28C of the mean, and mean

and median values agree very well. Both contributions

add to 0.58C for LT5 9. This sum increases to 0.98C for

LT5 0. By construction and for perfect predictions both

normalized contributions would add to 18C. Thus, our
model on average underpredicts warm events. This is

because our model has been optimized for all years in-

cluding neutral and cold years and not just warm years.

The 2000–16 subperiod behaves very differently. At

longer lead times (LT . 4), ZWA has on average a

negative contribution even when positive SSTA were

observed. For short lead times (LT , 3) and compared

to the 1980–99 subperiod, ZWA contributes only about

half as much to the predicted SSTA. The distributions of

the individual contributions are skewed toward negative

numbers so that, with few exceptions, median values are

larger than mean values. This is even more evident for

the PTA contributions in Figs. 4b and 4c. Before 2000

there is practically no difference between median and

mean PTA contribution; however, after 1999 themedian

is much larger than the mean. For the later period, the

mean is reduced to almost zero whereas the median is

much larger than before. Thus, in the mean of all El

Niños, PTA does not seem to contribute after 1999 al-

though for a significant number of cases the PTA con-

tribution is much larger than before since the median

value is much larger after 2000 than before. As shown by

the whiskers, even after 1999 the OHC contribution is

positive in over 75% of all cases. There are a few El

Niños, mainly CPENs, where the WP in the selected

region during November in the year before the event

has a strongly negative OHC anomaly. It is these few

cases with strong negative OHC anomaly, and thus

negative PTA contribution, that cause the zero mean

despite the overwhelming number of cases with positive

PTA contribution. This supports our conclusion from
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Fig. 4a that PTA and, therefore, OHC has become more

important in the later subperiod.

b. Changes in key parameters after the year 2000

Further investigating the effect of the Pacific climate

regime shift, we examine potential mechanisms influencing

forecast skill for 1980–99 and 2000–16. For El Niño events,

Figs. 5 and 6 show the composites of the February(0) PTA

and the ZWA Hovmöller diagrams of these two periods,

respectively. Theblack rectangles indicate thedomain from

which the data are taken for our ENSOpredictions.Within

our PTA domain there are positive PTA indicating a re-

charged state for both periods (Figs. 5a,b). Although areas

of statistical significance are small due to the small sample

size and the high variability between El Niño events, the

composites suggest that after the year 2000, the WP is in a

more recharged state and that the region of recharge is

more confined toward the westernmost portion of the

equatorial Pacific. In theEP, statistically significantly colder

water masses extend toward 1208W.

Strong evidence of the climate regime shift can also be

seen in the ZWAHovmöller diagrams in Figs. 6a and 6b.

FIG. 4. (a) The ratio b/a when these two coefficients are optimized for individual periods of 1980–99 (red) and

2000–16 (blue). (b),(c) Whiskers of the distribution of Niño-3.4 SSTA contributions from PTA normalized to 18C
observed warming for 1980–99 and 2000–16, respectively. (d),(e) As in (b) and (c), but for contributions from ZWA.
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Westerly ZWA are much stronger before 2000, and over

time they gradually extend into the central-eastern Pa-

cific. The domain used in our model captures the tem-

poral and spatial patterns of the westerly ZWA well

during 1980–99. However, after 2000 the ZWA patterns

have changed. Westerly ZWA are weaker and more

confined toward the WP. Furthermore, westerly ZWA

occur later, starting only around May(0). There are also

notably stronger easterly ZWA at long lead times

(February–April) that contribute to negative cumula-

tive ZWA when the sampling area is kept too close to

the date line. The analysis of individual El Niño events

(shown in Lai et al. 2015) indicates that these easterly

ZWA are one of the main reasons for the under-

prediction of some warm events. The strengthened

easterly winds also explain the cooler subsurface oceanic

water masses over the EP. Stronger easterly winds en-

hance surface divergence and upwelling of cold water

from the deep ocean, and, therefore, the mean state of

the equatorial Pacific becomes more La Niña–like (e.g.,

Hong et al. 2014; Bunge and Clarke 2014). Figures 7a

and 7b show the NDJ SSTA for El Niño events before

and after 2000, respectively, thus the SSTA that our

model is designed to predict with input from Fig. 5 and 6.

Figure 7 confirms the transition from a more EPEN-like

pattern to a more CPEN-like pattern. As discussed in

the introduction, many studies suggest that external

forcings from outside the Pacific basin contributed to the

climate regime shift with the tropical Atlantic playing an

important role. Underlying processes and mechanisms

are complex and beyond the focus of this study. Here we

only focus on the effect that these external factors have

on ZWA in the tropical Pacific.

The 2009/10 event is an example of an under-

predicted El Niño (Fig. 8a). The event is also not well

predicted by many statistical models during boreal

spring–early summer. Most models start off with a

negative SSTA prediction during February(0) and

March(0). The two dynamical models (NOAA CFS

and NASA GMAO), however, manage to predict the

El Niño event, because dynamical models are more

sensitive to the initial condition of the ocean (Barnston

et al. 2012) and the western Pacific is recharged at this

time (Fig. 8b). The main reason for the under-

prediction is the strong La Niña during the previous

year with persistent strong easterly ZWA until April

2009 (Fig. 8c). Westerly ZWA are weak or absent early

in the year of 2009 and occurred farther to the west,

outside of our domain. As a result, the cumulative

ZWA values are initially strongly negative for our

forecast model, so that our model only predicts a

neutral-to-weak El Niño event later in the year starting

around August 2009. The strong easterly ZWA during

boreal spring are also the main cause of most under-

predictions of the statistical models because the ZWA

pattern resembles that of an LN event, and the oceanic

conditions take time to evolve into an El Niño.
To further explore relevant features of the two cli-

mate regimes (Chen and Wallace 2015; Hu et al. 2013;

Lyon et al. 2014; McPhaden et al. 2011; Hong et al. 2014;

Wen et al. 2014) and their relation to the change in

forecast skill, Fig. 9 displays the difference of after (2001–

16) minus before (1980–96) the climate regime shift

for the four seasons of sea level pressure (SLP) and

precipitation. Boreal spring, summer, autumn, and

winter are the 3-month mean of March–May (MAM),

June–August (JJA), September–November (SON), and

December–February (DJF), respectively. Figure 10

shows Hovmöller diagrams of ZWA. Note that the

transition period 1997–2000 is excluded, although

FIG. 5. El Niño events composites of the February(0) PTA (K) as a function of depth averaged over 58N–58S. The
following El Niño events are included: (a) 1982, 1986, 1991, 1994, and 1997 and (b) 2002, 2003, 2004, 2006, 2009,

2014, and 2015. The black rectangles are the domain used in our forecasting model. The hatching indicates a sta-

tistical significance at the 95% confidence level based on the Student’s t test.
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results are not sensitive to the removal of any year during

1997–2000 period (not shown).

The SLP in Fig. 9a shows a zonal pattern in the Pacific

with increased pressure over the EP and decreased

pressure over the WP warm pool and Indian Ocean. The

North and South Pacific subtropical highs have strength-

enedmainly during boreal winter and spring. This leads to

an intensification of the Hadley cell across the EP and

stronger trade winds in equatorial regions. In the South-

ern Hemisphere this strengthening of the Hadley cell is

noticeable throughout the year, whereas in the north this

is only the case for boreal winter and spring. Figure 9b

indicates a similar zonal dipole pattern of drier conditions

around the CP and EP regions and more precipitation

over the Indo-Pacific warm pool. Figure 10 shows that

ZWA around the CP have undergone pronounced

FIG. 7. As in Fig. 5, but for the NDJ SSTA pattern.

FIG. 6. As in Fig. 5, but for Hovmöller plots of ZWA (m s21) from May(21) to May(1).
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changes. There were westerly anomalies before the cli-

mate shift, but those anomalies have become strong

easterlies after the early 2000s. The Pacific zonal pressure

gradient has led to an intensified low-level airflow from

the EP to WP. This intensification of the Walker cell is

weakest during JJA but noticeable throughout the year.

Higher pressure over the EP also suppresses convective

activities; conversely, lower pressure over the WP warm

pool area enhances convections as seen in Fig. 9b. All

these atmospheric responses indicate that the recent trade

winds have increased due to a strengthening of both the

Walker and Hadley cells. In response, this has led to a

more La Niña–like background mean state.

4. Discussion

The strengthening of the Pacific subtropical highs,

and, thus, strengthening of the Hadley cell is consistent

with increase in trade winds, hence the stronger easterly

ZWA in recent decades (England et al. 2014). Conse-

quently, the chance of anomalous wind convergence

around the CP has increased even when there are

westerly ZWA, as shown in Fig. 6b, which is a favorable

condition for the occurrence of CPEN. We find a west-

ward displacement of the anomalous wind forcing as-

sociated with ENSO after 1999, which supports the

findings in Bunge and Clarke (2014). This is consistent

with more frequent CPEN in the recent decades, espe-

cially after around the year 2000 (e.g., Xiang et al. 2013;

Chung and Li 2013). Furthermore, despite the strongly

recharged state of the WP that might have normally led

to Kelvin waves for an EP-type El Niño to develop if the

westerly ZWA would have allowed, CP-type El Niños
still dominate (Chung and Li 2013; Lai et al. (2015).

The more persistent easterly trade winds have led to a

stronger recharged state over the WP. According to

FIG. 8. (a) Niño-3.4 NDJ SSTA predictions for each forecast base time starting in February(0). The black line is

our model, and green line is the observed Niño-3.4 NDJ SSTA. (b) February 2009 PTA (K). (c) November 2008 to

January 2010 ZWA (m s21). The rectangle indicates the domain used to obtain data for our forecasting model.
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some studies, there are signs that the Indian Ocean

warming now extends into the WP, where the WP warm

pool gets warmer, and its eastern edge extends farther

eastward (e.g., Rao et al. 2012; Cravatte et al. 2009).

Warmer water over the Indo–western Pacific enhances

convective activity, leading to more precipitation and

lower SLP. This lower SLP increases the pressure gra-

dient across the equatorial Pacific thereby strengthening

the Walker circulation. This together with the afore-

mentioned strengthening of the Hadley cell further en-

hances easterly wind anomalies in the lower troposphere

over the eastern part of the equatorial Pacific. This can

be further examined by the divergent component of the

horizontal flow and vertical motion (Krishnamurti 1973).

Figure 11 shows the 200- minus 850-mb velocity poten-

tial (shaded) and the 200-mb divergent wind at the 95%

statistical significance level (vectors). Negative velocity

potential implies rising air motion that is associated with

deep convection and diverging wind at the upper tro-

posphere of 200mb (1mb 5 1 hPa). Figure 11 indicates

that stronger rising air motion and upper-tropospheric

divergence over the warm pool enhance the Hadley cell

and further strengthen the subtropical high pressure sys-

tems. Such motions are strongest during boreal spring.

This accelerates trade winds and increases equatorial

upwelling in the central and eastern Pacific, thereby

FIG. 9. Differences of the period post–climate regime shift 2001–16minus pre–climate regime shift 1980–96 for (top)–(bottom) theDJF,

MAM, JJA, and SON3-monthmean of (a) sea level pressure (mb) and (b) precipitation anomalies (mmday21). Dots and hatching denote

the 95% statistical significance level using the Student’s t test.
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lowering the SST there. As a result, a La Niña–like
mean state is developed, with less precipitation over

the EP (Fig. 9b). Figure 11b shows the seasonally

varying mean SSTA before minus after the climate

regime shift. SST gradients significantly increased in

the north–south direction (between 408S and 408N
around 1608E–1608W) as well as in the east–west di-

rection along the equator. This is consistent with the

already-mentioned intensification of Hadley as well as

Walker cell.

More CPEN mean that ENSO forecasting is more

challenging because the onset and evolution of CPEN is

mainly governed by a local zonal advection feedback

(Fedorov et al. 2015; Chen et al. 2015; Lai et al. 2015).

Such a mechanism is subject to atmospheric stochastic

zonal wind forcing, for instance westerly wind bursts,

which are difficult to predict (Gebbie and Tziperman

2009). Because westerly ZWA are associated with many

different processes, including extratropical cold surges

(Kiladis et al. 1994; Chen et al. 2013), tropical cyclones

(Keen 1982; Hartten 1996), the Madden–Julian oscilla-

tion (DeMott et al. 2015; Puy et al. 2016), or a combi-

nation of all (Yu and Rienecker 1998), westerly ZWA

are sometimes assumed to be part of the ‘‘weather

noise’’ with the timing of individual bursts difficult to

predict. In addition, El Niño–related SSTA modulate

westerly ZWA; therefore, the ZWA should not be re-

garded purely as a stochastic forcing (Eisenman et al.

2005). However, the coupled dynamics that act to con-

fine the SST warming over the CP for a CPEN is still not

fully understood. For instance, it is not yet clear why

some westerly ZWA initiate anomalous CP warmings

that are sufficiently sustained to become a CPEN event

and some do not. The role of thermocline feedback is

still controversial. Kao and Yu (2009), Kug et al. (2009),

and Lai et al. (2015) agree that equatorial thermocline

variations are not crucial in producing CPEN. However,

Ashok et al. (2007) and Marathe et al. (2015) still em-

phasize the importance of wind-induced thermocline

variations within the tropical Pacific to the SST evolu-

tion of CPEN. Based on case studies, Yu andKim (2010)

and Su et al. (2014) note that there is a large variety of

CPEN. Their initiation and evolution depend on the

equatorial recharged state and the influence from the

subtropical SSTA. A model study by Choi et al. 2011 is

consistent with our findings from observations; the

background state of the tropical Pacific can produce

ocean and atmospheric conditions that favor the gen-

eration of CPEN or EPEN events. On the other hand,

the genesis of a canonical EPEN involves the thermo-

cline feedback mechanism as part of the Bjerknes

feedback, which is well understood via the delayed os-

cillator theory (Bjerknes 1969; Suarez and Schopf 1988)

and the recharged–discharged oscillator theory (Jin

1997). Once major Kelvin waves are triggered, the EP

SSTA are more predictable than during its CPEN

counterpart.

AWP recharged state is necessary but not sufficient to

trigger Kelvin waves that cause significant EP warming.

Westerly ZWA over the western-central Pacific are

needed to displace the WP warm pool eastward, trig-

gering Kelvin wave propagation and suppressing EP

upwelling. The level of constructive or nonconstructive

superposition of both parameters will result in a range of

ElNiño intensities, which is theEl Niño continuum, with

CPEN and EPEN as end members (Lai et al. 2015).

FIG. 10. As in Fig. 8, but forHovmöller of zonal wind anomalies composites of the period: (left) pre-, (center) post-, and (right) post- minus

pre-climate regime shift. Hatching denotes the 95% statistical significance level using the Student’s t test.
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Since Eq. (1) is mainly based on the thermocline feed-

back mechanism, the model works less well for CPEN,

because CPEN is caused by local air–sea interaction and

zonal advection feedback (Kao and Yu 2009; Kug et al.

2009; Yeh et al. 2014; Choi et al. 2011). The coefficient

b includes the combined effects of thermocline feedback,

zonal advection, turbulent flux, and heat flux due to

zonal wind forcing on SST. The model might be im-

proved by disentangling b intomore coefficients that are

associated with different processes. For instance, one

coefficient could be used for the basinwide thermocline

feedback and others for local processes such as local

FIG. 11. As in Fig. 8, but for (a) 200-mb minus 850-mb velocity potential (m2 s21 3 106; color shaded) and 200-mb divergent wind (m s21;

vectors, reference vector below each panel under the 60W). Dots and vectors denote the 95% statistical significance level using the Student’s

t test for velocity potential and divergent wind, respectively, and for (b) the mean SSTA after minus before the climate regime shift.
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divergence and turbulent fluxes. Another way to im-

prove our model would be to try to add terms to ex-

plicitly present remote forcing, for example, from the

tropical Atlantic. However, this would have the issue of

double counting. In our current approach local and re-

mote factors influencing ZWA are considered together.

Before adding terms for remote forcing, their influence

on ZWA would need to be separated from the total

ZWA. Since to our knowledge no simple relationship

between remote forcing and local effect on Niño-3.4
SSTA has been identified, and given the already high R2

of our model compared to other methods (Fig. 2), such

an improvement would be very difficult. We believe that

a full dynamical forecast model is needed to capture

local and remote forcing factors in a meaningful way.

During 1980–99, the PTA shows an initial recharged

state that extends farther to the east than after 2000. The

westerly wind anomalies are strong during ElNiño events
within this earlier period, covering most of the domain

used in our model. Therefore, the theory of a recharged–

discharged oscillator (Jin 1997) and the delayed oscillator

(Suarez and Schopf 1988) as well as atmospheric forcing

such as the westerly wind anomalies (Fedorov et al. 2015;

Hu et al. 2014; Lai et al. 2015) works well for ENSO

predictions before the Pacific climate shift.

After 2000, the WP warms accompanied by EP cool-

ing. This could be due to the recent rapid Indian Ocean

and warm pool warming (Cravatte et al. 2009; Rao et al.

2012; Luo et al. 2012) or the recent negative phase of the

Pacific decadal oscillation (England et al. 2014; Lyon

et al. 2014). This facilitates the strengthening of the

easterly trade winds, Walker circulation, subtropical

highs, and Hadley cell (England et al. 2014). Cai et al.

(2015) also found that under global warming, the Indo-

nesian Maritime Continent is warming faster than the

equatorial CP to EP region. The increasing zonal tem-

perature gradient between the two can drive stronger

anomalous zonal easterly winds. In addition, the recent

North Atlantic warming potentially contributed to the

intensification of theWalker circulation through upward

motion and lower SLP over the Atlantic and an en-

hanced descending air motion and higher pressure in the

eastern Pacific, which in turn strengthened the trade

winds over the central tropical Pacific (McGregor et al.

2014; Li et al. 2015; Zanchettin et al. 2016). This is

consistent with Fig. 9a. Strong 200-mb divergence

(convergence) is observed over the eastern Atlantic

(western Atlantic and EP) in Fig. 11. The latter is in-

dicative of a remote forcing from the Atlantic basin as

discussed in the introduction (e.g., Kucharski et al. 2011,

2016; Zhang and Karnauskas 2017).

Other studies have already shown that the warm water

volume (mean upperOHC of the 1208E–808Wequatorial

Pacific) has a weaker correlation with the Niño-3.4 region
since 2000 (Horii et al. 2012; McPhaden 2012; Wen et al.

2014). Our study shows that this breakdown of the

predictor–predictand relationship can partially be ad-

dressed if only the WP (1308E–1808) recharged state is

considered as an El Niño predictor. This is because, de-

spite the atmospheric forcing, the Niño-3.4 SSTA is re-

motely forced by theWP recharged state, whereas the EP

oceanic state is largely irrelevant. Using the entire tropi-

cal Pacific’smeanOHC includes less relevant information

from the cooler EP in the new climate regime, degrading

the predictive skill for Niño-3.4 SSTA.

Theweak 2014/15 ElNiño event is a recent example of

some models not accurately predicting the Niño-3.4
during boreal spring (Menkes et al. 2014). This event

attracted much attention because it had a high initial

recharged state mainly over the WP in February(0),

which is consistent with the previously observed post-

2000 El Niño events. It was also an unusual event be-

cause it had a prolonged CP warming from February

2014 to April 2015, and then a strong EPEN developed

from then until July 2016, with intensities being the third

strongest on record, just below 1997/98 and 1982/83.

Statistically, the warm water volume shows a mean

equatorial recharged state similar to the 1997 initial

state. Models that are sensitive to this oceanic state have

overestimated the event during boreal spring (McPhaden

2015). However, what followed was a lack of continuous

westerly ZWA, and therefore the CP warming did not

evolve into a fully-fledged EPEN (Li et al. 2015). We

speculate that since the Pacific is still affected by the

strengthened mean easterly trade wind climate regime,

the expected strong westerly ZWA failed to develop and

to be sustained. This is in line with McPhaden (2015),

who claims that the warming trend of the Indian Ocean

and Indo-Pacific warm pool might have prevented deep

convection to shift toward the CP or EP. The associ-

ated increase in precipitation in this area is also evident

in Fig. 9b.

For the 2014–15 case, our model (calibrated for the

full 2000–16 period) predicted a weak El Niño during

the boreal spring (Fig. 12b) close to observations. This is

because in our model, although a high initial oceanic

recharged state was present, weak cumulative ZWA

were also detected. The two parameters did not interact

constructively so that a strong EPEN could not develop

(Lai et al. 2015). In contrast, other models, for example

the FSU,NOAACFS, andNASAGMAO, overpredicted

theElNiño signal earlier in the year. Figure 12a shows that
our model, as well as other models, performs very well

for 1997/98. However, skills decrease for the 2015/16

EPEN (Fig. 12c).Most models underpredict max SSTA

during boreal spring compared to the 1997/98 EPEN
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due to the stronger role of CPEN dynamics for 2015/16

(Paek et al. 2017). Under the new climate regime,

easterly winds still dominate the earlier period, leading

to a later prediction of a strong El Niño event for

various models.

In light of the change in base state, we have repeated

our analysis by using the mean state after 2000 to com-

pute the cumulative ZWA rather than the usual practice

of using a climatology based on the past 30 yr. However,

this did not improve our predictions. This implies that

FIG. 12. As in Fig. 7a, but for the NDJ predictions of a 1997/98 Niño-3.4, (b) 2014/15 Niño-3.4,
and (c) 2015/16 Niño-3.4.
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there are other, yet unidentified processes that have

becomemore important so that the two parameters used

here are insufficient to explain the observed variability.

Whether other parameters need to be included deserves

further research. The reduced El Niño predictability in

our model could also be due to the use of a fixed domain

to calculate the wind anomalies, which is recently mis-

aligned with the region where positive PTA are found.

Easterlies ZWA have shifted into our wind domain

causing the skill of our model to decrease. Xiang et al.

(2013) have attributed this displacement of westerlies to

the west to the more La Niña ocean state after 1999 and

an anomalous subsidence in the CP. Testing a shift of the

wind area to where the PTA are actually observedmight

help improve the predictions at long lead times. Pro-

cesses leading to an initial CP warming might be of

particular importance in predicting the emergence of an

El Niño event in the future. Also, the current climate

regime could persist if the Indo-Pacific warming con-

tinues, favoring more CPEN and suppressed EPEN (Lai

et al. 2015).

5. Conclusions and outlook

Based on the western–central Pacific cumulative

ZWA from November(21) and western Pacific (WP)

recharge–discharge state in February(0), a simple sta-

tistical model for predicting the NDJNiño-3.4 SSTA has

been developed [Eq. (1)]. Additional information from

observed SSTA is not needed because the main ENSO

evolutionary signals are embedded in the upper-ocean

heat content.

For the springtime barrier, our model has higher

predictive skill than many other models in this study,

except the NOAA CFS and CPC CA. On average, our

model has R2 5 57% for a lead time LT 5 8, but for

other models R2 5 50% at best. Only the weak 2003/04

El Niño event is being predicted to be a cold event at

LT5 4 to 0 (‘‘wrong’’ top left quadrant in Fig. 1), while

all La Niña data points are in the correct ‘‘cold’’ quad-

rant and the amplitudes are captured reasonably well.

Our model underpredicts an El Niño event if the PTA

domain is in a discharged initial state or if the westerly

ZWA occur in late boreal summer. For example, CP

warming not due to thermocline feedback dominated

initially for the 1994/95 and 2003/04 events. A strong

recharged initial oceanic state can lead to Kelvin waves

with only small westerly ZWA, like for the 2009/10 El

Niño event.

All forecasts after the year 2000 are less skillful due to

the Pacific climate regime shift (Hong et al. 2014).

However, R2 for our model decreases less than for other

models, especially for LT5 9 to 4. This suggests that the

physical mechanisms on which our model is based are

less sensitive to the decadal climate change in the Pa-

cific. By using the heat content of the WP as a predictor,

our model better maintains skill for the post-2000 El

Niño events compared to statistical models that are

based on the ocean heat content for the entire tropical

Pacific. Our analysis shows that the influence of the WP

recharge state on ENSO predictions has increased after

2000, contrasting previous studies where the recharge

state is based on the ocean heat content for the entire

tropical Pacific.

To further investigate cause and effect and to un-

derstand the underlying physical processes that charac-

terize the climate regime shift and the reduction in ENSO

forecast skill after the year 2000, studies with a coupled

ocean–atmosphere climate model, similar to Li et al.

(2015), are necessary. In coupled model simulations that

are forced with observed SST for the Atlantic and Indian

Ocean, Li et al. (2015) have investigated observed

changes in themean tropical climate. Their study needs to

be extended to the analysis of the evolution and pre-

dictability of EN and LN events with a focus on the sta-

tistical relationships identified in our study.
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