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Abstract
Robotics competitions stimulate the next generation of cutting edge robotics solutions and innovative technologies. The
WorldRobot Summit (WRS) Industrial Assembly challenge posed a key research challenge: how to develop adaptive industrial
assembly robots. The overall goal is to develop robotswhereminimal hardware or software changes are required tomanufacture
a new or altered product. This will minimise waste and allow the industry to move towards a far more flexible approach to
manufacturing; this will provide exciting new technologies for the manufacturing industry and support many new business
models and approaches. In this paper, we present an approachwhere general-purpose grippers and adaptive control approaches
have been developed to move towards this research goal. These approaches enable highly flexible and adaptive assembly of a
belt drive system. The abilities of this approach were demonstrated by taking part in theWRS Industrial Assembly Challenge.
We achieved second place in the kitting challenge and second place in the adaptivemanufacturing challenge andwere presented
with the Innovation Award.

Keywords Adaptive manufacturing · Industrial robotics ·Manufacturing competitions

1 Introduction

Increasingly, there is a need for industrial robots that can
manufacture or assemble products which are bespoke or have
a variable design and bill of materials [1]. Application areas
include aerospace, the space industry, and industrial assem-
bly [2,3], where it is useful to manufacture small runs of
specific assemblies and rapidly adapt to changing or evolv-
ing designs. Developing adaptive manufacturing systems has
the potential to reduce waste, increase the rate of assembly,
and allow bespoke design.

There has been much existing work in this area, in par-
ticular with a focus on how dual-arm systems can work
collaboratively with humans to assemble systems [4–8]. It
is now necessary to advance this research to move towards
fully autonomous, flexible, and adaptive assembly systems.
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It has also been shown that robotics competitions provide
a means of driving innovation, comparing and benchmark-
ing different technologies, and quantifying the quality and
applicability of research [9]. The DARPA robot challenge
demonstrated how the limitations of existing robot systems
could be identified, and how overtime solutions can be devel-
oped which ‘solve’ the challenges posed, [10]. There has
been a recent increase in the number of manipulation-based
robotics competitions which seek to address mobile manipu-
lation, service manipulation tasks, soft robotic manipulation,
and warehouse picking [11–14]. Robot competitions provide
a great opportunity to drive and test robotic research into
industrialmanipulation. It provides an opportunity to develop
agile, efficient, and lean assembly systems which enable the
production of bespoke assemblies [15].

The World Robot Summit (WRS) Industrial Assembly
Challenge is one such robot competition in the area of
industrial robotics [16]. The competition has an overall
aim of developing robotic technologies, vision and learning
approaches to allow the assembly of complex systems, and
how the system can respond to assembling a varied product.
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This is both a challenging research question and also a novel
competition framework. The major focus is on the ability to
perform flexible manipulation opposed to showing high per-
formance of a single product. The challenge is summarised
in Fig. 1.

We propose an approach to achieve adaptive manufac-
turing where general-purpose mechanical grippers and end
effectors are developed to allow awide range of tools and dif-
ferent objects to bemanipulated. Themechanical approaches
also seek to minimise the precision or accuracy required,
by utilising material properties and software-based control
procedures to reduce the requirement for high accuracy
and precision. This enables unknown and previously unseen
parts to be easily manipulated. Additionally, we have devel-
oped modular and scalable vision and learning approaches
which allow rapid detection of previously unknownor unseen
parts.

In this paper, the exact competition problem definition
and system overview are given in Sect. 2. Following this,
Sect. 3 introduces the novel techniques which have been
implemented to achieve adaptive assembly and manufactur-
ing. Section 4 then presents the results of experimental tests,
with the paper finishing with a discussion and conclusion on
the system developed and also the role of competitions in
driving and testing research in this area.

2 Problem definition and system overview

2.1 World robot summit assembly challenge

The World Robot Summit [17] is an international Robotics
Competition which was held for the first time in October
2018. There were a number of leagues, notably rescue, ser-
vice, and assembly. The industrial assembly task is the focus
of this work. The overall aim is to develop adaptive indus-
trial robotic assembly systems. Specifically to develop a robot
system which could manufacture a belt drive system, in an
adaptive way such that if changes are made to the design of
the belt system, minimal changes are required from the robot
in terms of both software and hardware. The belt drive sys-
temwhichmust be assembled is shown in Fig. 1. The specific
tasks in the competition include:

– Task board This is to demonstrate the key components
which must then be integrated to achieve full assembly
of the belt drive system. Each of the individual parts is
placed on a taskmat. The specific partsmust be identified,
classified, and then manipulated and placed on the task
board, which replicates the physical task required in the
full assembly challenge. For example, screws must be
picked up, manipulated and screwed into the task board,
and shafts inserted into holes.

Fig. 1 The four tasks which make up the WRS Industrial Assembly
challenge: task board, kitting, assembly, and adaptive assembly

– Kitting Given a bill of materials, the correct parts must
be picked from parts bins where the parts are arranged
randomly. This involves picking small items (e.g. wash-
ers, nuts, bolts), larger items (e.g.motors, pulleys, shafts),
and also flexible items (the pulley belt). The objects must
also be placed into kitting trays, for example, bolts must
be placed with accuracy into screw holders.

– Assembly For a known set of parts and assembly details,
a belt drive system must be assembled autonomously
(including pick up the parts). The main parts which form
the belt assembly include a motor, output pulley, shaft
housing, shaft, end cap, large pulley, and belt. This must
be completed to both a high standard and also as quickly
as possible.

– Surprise assembly Given an altered assembly, for exam-
ple, with different sized parts or an assembly with a
different structure, the updated belt drive should be
assembled. Only one hour preparation time is given with
the new parts to allow development and testing. Thus, the
robot should be designed to be adaptive so only minimal
changes are required in the mechanics and software to
achieve this assembly challenge.

In this paper, we focus on the three most challenging
aspects: kitting, assembly, and the most interesting aspect
from a research perspective, flexible assembly.
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Fig. 2 Overview block diagram of the system showing the vision, con-
trol, and mechanical parts of the system

2.2 System overview

The system developed uses two 6 axis robotic arms (UR5,
Universal Robots) working collaboratively together. Custom
arm control and motion planning software has been devel-
oped.Three customend-effectors havebeendevelopedwhich
are controlled via micro-controllers. A single 4K Ultra HD
Camera (BRIO, Logitech) is used above for vision, and the
internal force feedback from the arms is used to enable com-
plex multi-arm movements. A block diagram of the system
is shown in Fig. 2, with the entire setup as shown in Fig. 3.

The custom grippers are mounted at the end of the UR5
arms. These are controlled by the micro-controllers which
communicate with the main computer over serial. The pincer
gripper uses a DC motor and threaded rod mechanism to
move two fingers to provide high-force pinching gripping to
pick up objects of different sizes. The micro-controller uses
current feedback from the DC motor to control the position
and detect when the gripper closes.

The second gripper, a custom rotating gripper, has a vari-
able size aperture which also allows infinite rotation. This
has been designed to allow for grasping and manipulation

of a wide variety of different objects of different sizes and
shapes with a minimal control requirement.

The final gripper, the tack gripper, uses sticky Blu-tack to
grasp small parts for the kitting challenge. A servo is then
controlled by the micro-controller to remove the item. This
allows for robust, high-speed pick and place of many varied
parts with very minimal control and with a low reliance on
precision.

This research aims to investigate how agile and adaptive
manufacturing can be achieved by:

– Reducing the control complexity by developing mechan-
ical systems which are flexible to changes in locations or
parts and size and shape of parts

– Achieving agility through general-purpose grippers and
softwarewhich allowawide range of objects to bemanip-
ulated.

– Developing robotic manipulators can use a wide range of
tools of different sizes, which all use the same underlying
control approaches.

– Using a kitting approach which is general for all parts,
requiring low precision and enables the same control and
manipulation approach to be used for all

– Flexibility and adaptability through modular software
and vision system

3 Adaptivemanufacturingmethods

3.1 Adaptive assembly grippers

The first gripper, the pincher gripper (Fig. 4b), is a simple
parallel plate mechanism with reinforced 3d printed fingers.
The fingers are shaped and elongated to pick in a variety
of parts including motors, fixing plates, and smaller parts
such as bolts. This gripper uses an Mbed micro-controller

Fig. 3 Pictures showing the overall system setup with the two arms (UR5, Universal Robots), overhead camera, lighting, and three custom grippers
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Fig. 4 The custom grippers developed for flexible assembly. a rotary gripper, b two-finger pincher gripper, and c kitting gripper

to communicate with the PC and to control the single motor
and read the motor current and switch. The motor current
defines the end-stops and the force applied to any object in
the gripper. The switch defines the home position, and this
central position saves time when opening and closing.

The second gripper, the rotary gripper (Fig. 4a), is a more
specialised design. This gripper design uses two motors, one
to open and close the fingers and one to rotate the fingers.
The fingers can rotate continuously and independently of the
position, enabling the screwing in motion for assembly. The
fingers contain springs which force the grippers open; this
is exploited to enable another method of picking by grip-
ping from the inside of a part. When the position bearing is
extended, the fingers are squeezed together. This manipula-
tor excels at picking up cylinders and triangular or hexagonal
prisms. The limits of the open and closed position of the grip-
per are detected by monitoring the current in the motor. The
rotations of the fingers are tracked by a single micro-switch;
this also allows position calibration of the rotating head. The
gripper enables the robot to adapt, by picking tools of dif-
ferent heads and sizes, and perform agile assembly with new
parts.

The key task which this gripper enables is the use of tools,
specifically the use of Allen keys to allow screwing of bolts.
We have developed an innovative approach to enable bolts
to stay at the end of Allen keys. This is the use of grease.
The Allen key is dipped in grease and then inserted into
bolt heads. When lifted, the screw remains attached to the
bolt. This combination of the rotary gripper and tool usage
makes this gripper very powerful and highly adaptive tomany
different tool types.

3.2 Adaptive kitting grippers

One fixed size gripper has been designed which allows kit-
ting of all of the small parts (washers, nuts, bolts, etc.). This
gripper has a soft adhesive pad (made from Blu-tack) which
allows parts to be picked using adhesion. Adhesion has been

previously shown to be an effectivemethod for pick and place
[18] and also for achieving climbing or holding onto walls
[19].

To remove the part from the pad, a servo-controlled sleeve
can push the part of the adhesive pad. The size of the adhesive
pad has been designed to have sufficient adhesive and tack
force to lift a single piece of all the small parts whilst also
only allow picking of one piece to minimise the precision
required from the vision system. Figure 4c shows the gripper
developed. This method achieves adaptive gripping as the
same gripper can be used to grip many parts of different form
factors with no physical changes required. It also requires
minimal accuracy and precision from the vision to minimise
the development of custom systems.

3.3 Collaborative arm control

Collaborative two-arm control is required to achieve some of
the complex assembly tasks. This provides the ability to:

– Pass parts between grippers so they can be held in an
optimum position or by an alternative gripper.

– Hold certain parts stable whilst another gripper screws or
otherwise interfaces with other parts.

– Perform sub-assemblies, for example, put washers on a
screw held in another hand before this sub-assembly can
then be integrated with the rest of the system.

To achieve this, the two arms were calibrated together
by determining the co-ordinates for the two robots at three
separate points. One point is the base point, the other two
points form vectors which are used to extrapolate the posi-
tions of the robots relative to each other. This allows the
two hands to move together or move relative to each other.
Figure 5 shows collaborative two-arm and gripper control
which enables complex movements including the assembly
and bolting of a motor to a motor bracket.
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Fig. 5 Two-hand manipulation to enable screwing of a motor into the
motor plates

Fig. 6 Flowchart for basic hole finding function using force feedback

3.4 Force feedback

Force feedback algorithms for insertion and hole finding
have been developed to remove the need for high precision
and hard coding. The reduction of the need for hard coding
makes the system more adaptive when the parts which must
be assembled are changed. The force measurements from the
UR5 are imprecise and fluctuate especially when accelerat-
ing. This is overcome by monitoring the difference in forces
and thresholding. The hole finding function, Fig. 6, attempts
to find the hole by moving towards it until a force limit has
been exceeded or the final position has been reached. If the
final position has not been reached, or no drop in force is
detected, this indicates the hole has not been found. Thus, the
end-effector performs a hunt, moving in circles of increasing
radii until the force drops significantly, indicating the hole
has been located. The drop in force indicates that the hole
has been found; the robot then attempts a final force move to
fully insert into the hole.

This insert function has many different input parameters
which can be tuned for different holes and environments,
including the force limit, circle radii, and speed of rotation
and whether the hunting continues if the final force move in
Fig. 6 does not reach the final position.

This insert function is used widely within the assembly.
It is used to insert Allen keys into bolt head, the pulley onto
the motor shaft, bolts into bolt holes, the shaft into the shaft
housing andmuchmore. The universal nature of the function

Fig. 7 Key elements of the vision pipeline showing the vision work-
space and the pre-processed example images used in the identification
stage

allows it to be used for different parts, different locations, and
to serve different overall functions.

3.5 Vision

Vision is used to detect and localise the different parts. It was
important to develop a vision and learning system which can
be rapidly expanded to include new or altered parts.

3.6 Data set and image pre-processing

A core part of the object recognition process is image pre-
processing. The data set used for the experiments comprises
1500RGB images of dimension 1920×1080×3. Each image
was taken by a camera directly above the workspace, facing
perpendicularly downwards on the object mat (see Fig. 7a).
For each image in the data set, themat was shifted and rotated
manually at random; moreover, the objects are relocated in
different positions. The labelling of the data set is achieved
by selecting a bounding box over each object on the original
images and a method which decreases labelling times.

Before feeding the data to a network, it is necessary to
make the objects in the data set comparable to each other.
First, we convert the RGB images into grey scales, reduc-
ing the dimensionality of the input layer and thus training
time, and forcing the network to focus on geometrical infor-
mation, rather than colour discrimination. We choose an
object-detection image size of 300×300, based on the dimen-
sion of the largest object in the figures, i.e. the belt, and
automatically crop each object based on its labelled bound-
ing box. Each object image is padded on each side, to reach
the 300× 300 standard dimension. As shown in Fig. 7b, the
object will thus be at the centre of the image, surrounded
by ‘0’ pixel values. Here, the dimension of the outer padding
provides useful information for object discrimination. More-
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Fig. 8 The network design for the object recognition in flexible assem-
bly

over, ‘0’ pixels do not excite any weight units in the network
and will thus be naturally discarded for discrimination. After
the pre-processing procedure, the data set corresponds to
15,200 images, each containing a single object (Fig. 8).

3.7 Inception convolutional neural network for
object recognition

To perform object recognition and to cope with objects of
different sizes, we devised a shallow inception convolutional
neural network. The ICNN devised is comprised of an input
layer, an inception layer, two convolutional layers with 3×3
kernels with 32 channels (shallow convolutions), and two
fully connected layers before an output layer classifying each
object into its class with a softmax function. The inception
layer is formed of 4 parallel convolution layers with 20 chan-
nels and increasingly larger kernels of 2×2, 3×3, 5×5 and
7×7. The relative size of kernels allows the network to learn
local features at different scales, thus copingwith the varying
size of the objects in the data set. All units in the network
perform a ReLu non-linear transformation.

4 Experimental results and demonstration

In this section, we include experimental results of the system
and also demonstration of the performance and abilities of
the system.

4.1 Vision

4.2 Object recognition

We use TensorFlow [20] to create the network described in
Sect. 3.7 and train the network with 75% of the images in the
data set, each pre-processed, padded, and containing a single
object at its centre.We use RMSProp [21] with decay = 0.9,

Fig. 9 Comparative validation error of the CNN and ICNN networks

Fig. 10 Comparative validation accuracy of the CNN and ICNN net-
works

ε = 1e − 10, learning rate = 0.0001, and no momentum
and perform gradient descent on the softmax cross entropy
between the logits in output by the neural network and the
one-hot encoding of the object labels.

Similarly, we devise a new convolutional neural network,
identical to the network designed in Sect. 3.7, but substi-
tute the inception layer devised by a 5×5 convolution layer
with 80 channels. We train both networks to compare their
performance and early stop only when the validation error,
computed over 25% of the data set, does not improve for over
10 epochs. Figures 9 and 10 show the validation error and
accuracy of both networks over all epochs before early stop-
ping. As clear from the figure, the ICNN performs overall
better than its convolutional counterpart. Finally, the classic
convolutional neural network reaches a maximum accuracy
level of 78.33% and minimum error of 0.8873, in compari-
son to the ICNN, which reaches a max validation accuracy
of 89.5 and minimum error of 0.6198, thus improving per-
formance on both accounts.

This vision system was used in the task board and kitting
task, to accurately detect the parts and the location.

4.3 Kitting

To test the kitting system, the reliability of the system topick a
single item and place it in a kitting tray tested for the different
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Table 1 Results from the kitting
experiments showing the
success of picking the different
items, success when removing
and also the average number of
items picked

Item Picking success (%) Release success (%) Average number picked

Washer 90 85 1.2

Bolt M3 95 90 1.1

Bolt M4 95 100 1

Large washer 100 100 1

Spacer cylinder 100 100 1

End cap 100 100 1

Nut 100 100 1

This experiment was repeated 20 times for each item, with the average results given

items. The vision system was used to identify a specific part
to pick. For circular items (washers, nut, spacers, etc.), the
edge of the circular part was chosen as the grasping point.
For other parts (bolts), the head was chosen as this provides
the greatest contact area. The Blu-tack gripper was moved
above the part and then lowered until the force feedback
indicates that the gripper had made contact with the part (a
minimum force threshold was met.) The results can be found
in Table 1.

The gripper was highly successful with the larger parts
(e.g. nut and end cap) where the parts are larger than the
gripper andhave a large surface area.Althoughwashers could
be reliably picked, oftenmore than one could be picked as the
washers are smaller in diameter than the diameter of the soft
adhesive; additionally, in some cases, the release mechanism
did not remove the item as the item is smaller than the size
of the adhesive unit. Pictures showing the gripping of these
items are shown in Fig. 11.

This approach provides a universal method to kitting and
enables simple control strategies to be used to achieve a com-
plex and challenging manipulation procedure.

4.4 Assembly manipulation tasks

Adaptive manipulation is achieved by using the grippers
which show a huge range of abilities to pick and place and
perform various manipulation of different parts and tools.
The abilities to achieve these tasks in a variety of scenar-
ios are shown in Fig. 12. The ability to pick up parts of
highly varying form factor (diameter and height) is shown
in Fig. 12a–c where a large pulley, thin shaft, and washer are
all picked using the same gripper and using the same control
function where the gripper is closed until the current feed-
back of motor rises above an appropriate threshold. To pick
up parts where there is an inner hole or lip, the gripper can
be closed tight lowered into the hold and then the lips of the
gripper open, so the part can be gripped from the inside. This
is shown in Fig. 12dwhere is possible to pick up the large and
troublesome shaft housing using the inner lips of the gripper.
Finally, it is also possible to pick up tools and Allen keys of
a range of sizes. This is shown in Fig. 12e–g.

Fig. 11 Pictures showing the successful picking of a wide variety of
different parts as required for the kitting challenge

The adaptive nature can be quantified. It can pick up parts
with a diameter ormaximumdiameter of 40mmand likewise
parts can be picked up using an inner hold with a minimum
diameter of 30 mm. This includes the holding of prism-
shaped tools (e.g. Allen keys/sockets) which are within these
size limits.

4.5 Adaptivemanufacturing

The abilities of the system to perform adaptive, flexible
manufacturing were tested in the final round of the WRS
competition when it was necessary for the robot system to
manufacture a belt drive system which has some changes in
design which were not seen until 1 hour before the competi-
tion.

Theoriginal assembly (Fig. 13 top) and the adapted system
which was manufactured during the competition are shown
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Fig. 12 Rotary gripper picking examples. a Pulley, b Shaft, c Washer, d Shaft housing, eM4 Allen key, f M2 Allen key, and g M10 Socket

Fig. 13 Image of the constructed pulley system (top) and the assembly
with the surprise parts which were given only once before the start of
competition and was achieved in around 20 min of competition time

in Fig. 13. With only 1 hour practise time with these new
updated parts, and then only 20 minutes of competition time,
the assembly shown was manufactured. This included an
assembly of a sprocket on the output shaft of the motor and
also anM3 screw to hold this onto the motor shaft. Addition-
ally, a new shaft and spacer were inserted into the bearing
housing.Although additional sub-assembly taskswere devel-
oped, this was not achieved during the time allotted in the
competition.

4.6 Competition results

The performance of the system was tested and benchmarked
against other systems at theWRS competition. We came 2nd
in the Kitting challenge and 2nd in the combined assem-
bly and flexible assembly challenges. Indeed, we were the
only team to demonstrate significant assembly in the sur-
prise tasks. We were awarded the special innovation award,
due to the abilities of the system to achieve flexible assembly
and also the innovative and novel gripper designs.

5 Discussion

5.1 Adaptivemanufacture

This research has demonstrated how adaptive manufacturing
systems can be developed. This has been achieved by devel-
oping adaptive grippers which can pick up a wide range of
parts and tools, and also accompanying control strategies
which use force feedback to achieve resilience to changes
in design. We have demonstrated the ability of the system
by demonstrating how it can be used to assemble an updated
assemblywith veryminimal changes required to the software
and control.

To achieve flexibility in kitting, adhesivematerial has been
used to develop a ‘Blu-tack’ gripper. This method of picking
parts provides an approach to many parts, with the controlled
uniform across all. This provides a system which can be
rapidly changed toperformkittingof previously unseenparts.

This system has been tested in a competition environment,
where, unlike a lab environment, the success could only be
tested in a single run where it must ‘work’. There are no
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opportunities to rerun or retest, and it is a great benchmark
to test the true ‘here and now’ capabilities of the system.
However, further exploration is required to better understand
the scope of the flexible assembly behaviour, to understand
the extent to which these general-purpose grippers can be
used, and to quantify the scope of this approach.

5.2 Role of competitions

This work also highlighted how competition can be used
to drive innovation in industrial assembly. By developing
a competition in this area where there is an unseen and
unknown task, in this case the surprise/flexible assembly
task, it was possible to truly test research of agile and flex-
ible assemble. This competition identified how challenging
this adaptive assembly task is. Performing automated assem-
bly of the belt drive was sufficiently challenging. Further,
developing this to achieve adaptivemanufacturingwashighly
complex. The competition identified the remaining research
which must be addressed to solve this problem.

This competition provided an opportunity to benchmark
different research solutions and approaches. It also high-
lighted both the need and requirements from industry for
flexible and adaptive robotic assembly systems and identified
the researchwhich is required tomeet this goal. The inclusion
of the flexible assembly task in the challenge forced teams to
design and develop a robotic system which was adaptive and
flexible opposed to hard-coding and engineering a specific
solution to achieve a single task. The design of the competi-
tion in this way was shifted the research direction to address
this more interesting and challenging and problem. This is an
approach which should be used in further competitions such
that competitions can be used to drive research innovation.
In this way, the research does not become too closely defined
by the specific aims of the competition and innovation and
creativity is not stifled.
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