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ABSTRACT Staphylococcus argenteus is a newly named species previously described
as a divergent lineage of Staphylococcus aureus that has recently been shown to
have a global distribution. Despite growing evidence of the clinical importance of
this species, knowledge about its population epidemiology and genomic architec-
ture is limited. We used whole-genome sequencing to evaluate and compare S. au-
reus (n � 251) and S. argenteus (n � 68) isolates from adults with staphylococcal
sepsis at several hospitals in northeastern Thailand between 2006 and 2013. The ma-
jority (82%) of the S. argenteus isolates were of multilocus sequence type 2250
(ST2250). S. aureus was more diverse, although 43% of the isolates belonged to
ST121. Bayesian analysis suggested an S. argenteus ST2250 substitution rate of 4.66
(95% confidence interval [CI], 3.12 to 6.38) mutations per genome per year, which
was comparable to the S. aureus ST121 substitution rate of 4.07 (95% CI, 2.61 to
5.55). S. argenteus ST2250 emerged in Thailand an estimated 15 years ago, which
contrasts with the S. aureus ST1, ST88, and ST121 clades that emerged around 100
to 150 years ago. Comparison of S. argenteus ST2250 genomes from Thailand and a
global collection indicated a single introduction into Thailand, followed by transmis-
sion to local and more distant countries in Southeast Asia and further afield. S. ar-
genteus and S. aureus shared around half of their core gene repertoire, indicating a
high level of divergence and providing strong support for their classification as sep-
arate species. Several gene clusters were present in ST2250 isolates but absent from
the other S. argenteus and S. aureus study isolates. These included multiple exotox-
ins and antibiotic resistance genes that have been linked previously with livestock-
associated S. aureus, consistent with a livestock reservoir for S. argenteus. These

Received 16 May 2017 Accepted 8 June
2017 Published 5 July 2017

Citation Moradigaravand D, Jamrozy D,
Mostowy R, Anderson A, Nickerson EK,
Thaipadungpanit J, Wuthiekanun V,
Limmathurotsakul D, Tandhavanant S,
Wikraiphat C, Wongsuvan G, Teerawattanasook
N, Jutrakul Y, Srisurat N, Chaimanee P, Eoin
West T, Blane B, Parkhill J, Chantratita N,
Peacock SJ. 2017. Evolution of the
Staphylococcus argenteus ST2250 clone in
northeastern Thailand is linked with the
acquisition of livestock-associated
staphylococcal genes. mBio 8:e00802-17.
https://doi.org/10.1128/mBio.00802-17.

Invited Editor Timothy D. Read, Emory
University School of Medicine

Editor Bruce R. Levin, Emory University

Copyright © 2017 Moradigaravand et al. This is
an open-access article distributed under the
terms of the Creative Commons Attribution 4.0
International license.

Address correspondence to Danesh
Moradigaravand, dm16@sanger.ac.uk, or
Narisara Chantratita, narisara@tropmedres.ac.

RESEARCH ARTICLE

crossm

July/August 2017 Volume 8 Issue 4 e00802-17 ® mbio.asm.org 1

 
m

bio.asm
.org

 on A
ugust 9, 2017 - P

ublished by 
m

bio.asm
.org

D
ow

nloaded from
 

http://orcid.org/0000-0002-7069-5958
https://doi.org/10.1128/mBio.00802-17
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:dm16@sanger.ac.uk
mailto:narisara@tropmedres.ac
http://crossmark.crossref.org/dialog/?doi=10.1128/mBio.00802-17&domain=pdf&date_stamp=2017-7-5
http://mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


genes appeared to be associated with plasmids and mobile genetic elements and
may have contributed to the biological success of ST2250.

IMPORTANCE In this study, we used whole-genome sequencing to understand the
genome evolution and population structure of a systematic collection of ST2250
S. argenteus isolates. A newly identified ancestral species of S. aureus, S. argenteus
has become increasingly known as a clinically important species that has been re-
ported recently across various countries. Our results indicate that S. argenteus has
spread at a relatively rapid pace over the past 2 decades across northeastern Thai-
land and acquired multiple exotoxin and antibiotic resistance genes that have been
linked previously with livestock-associated S. aureus. Our findings highlight the clini-
cal importance and potential pathogenicity of S. argenteus as a recently emerging
pathogen.

KEYWORDS genomic epidemiology, Staphylococcus argenteus, Staphylococcus aureus,
antibiotic resistance

Until recently, Staphylococcus argenteus was considered a community-associated
lineage of Staphylococcus aureus and was classified by multilocus sequencing

typing (MLST) as clonal complex 75 (CC75) (1, 2). However, multiple lines of evidence,
including genetic distance from S. aureus, supported its reclassification as a distinct
species (2–4). S. argenteus was first reported in northern Australia (5), and early
descriptions were connected with remote communities, but an increasing number of
reports have confirmed that this species is globally distributed, with most reports
originating in tropical areas (2, 6, 7). CC75 is composed of four sequence types (STs) that
have been isolated in various European and Far Eastern countries (2, 4, 6). One of the most
frequent STs is ST2250, which has been isolated in the United Kingdom and from patients
with community onset invasive infections in several provinces in Thailand (7, 8).

S. argenteus has been proposed to be a less pathogenic ancestral lineage of S. aureus
(9). S. argenteus is less resistant to a range of antibiotics than S. aureus is and lacks some
well-characterized S. aureus virulence factor genes. This includes an apparently univer-
sal absence of staphyloxanthin (a carotenoid pigment that protects against oxidative
stress [9]) and an absence of the gene encoding Panton-Valentine leukocidin in the
majority of isolates (5, 6, 9, 10). Isolation in Australia has predominantly been in the
context of skin and soft tissue infections (5), but S. argenteus has been proposed to be
an important cause of community-acquired invasive infections in Thailand, where a
sharp rise in its prevalence has been reported since 2006 and 2007 (8). A large
multicenter study in Thailand in which the clinical features of patients with invasive
infections caused by S. argenteus and S. aureus were compared found that rates of
bacteremia and drainage procedures were similar in the two groups (8). S. argenteus
precipitated significantly less respiratory failure than S. aureus, with a similar but
nonsignificant trend for shock, but this did not translate into a difference in death at
28 days (8). This suggests that S. argenteus is equipped with genes that facilitate
invasion of and virulence in humans.

S. argenteus harbors a smaller accessory genome than S. aureus but has a genome
with several distinctive features (9). The genome of S. argenteus MSHR1132 includes a
set of clustered regularly interspaced short palindromic repeat (CRISPR) elements,
which are rare in S. aureus. This suggests that changes in the genetic repertoire of
S. argenteus, including the acquisition of accessory genes, may be affected by mecha-
nisms different from those seen in S. aureus (9). This, together with the reported lack of
recombination between S. argenteus and S. aureus, is consistent with the genetic
separation of S. argenteus (9). However, since that study was limited to one S. argenteus
genome, the conclusions are not generalizable.

To provide detailed population and epidemiological genomic insights into S. argen-
teus, we performed whole-genome sequencing of a systematic collection of 68 S. ar-
genteus (predominately ST2250) and 251 S. aureus isolates from two previous studies in
which isolates were recovered from patients with community-associated invasive in-
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fections at multiple hospitals across northeastern Thailand (8). We demonstrate that the
ST2250 clone has spread across northeastern Thailand over the last few decades. Our
results confirm a distinctive profile of antibiotic resistance genes in S. argenteus and
identify genes that are exclusive to ST2250, including multiple exotoxin and tetracy-
cline resistance genes, some of which have been associated previously with livestock-
associated S. aureus.

RESULTS

The 251 S. aureus and 68 S. argenteus isolates used in this study originated from
patients with invasive staphylococcal diseases who resided across northeastern Thai-
land. The S. argenteus population was composed mainly of ST2250 (57/68, 83%), and
the rest were assigned to ST1223, ST2854, and ST2198 (Fig. 1A). All four S. argenteus STs
have been isolated in other countries, indicating that the S. argenteus isolates obtained
in Thailand belong to globally circulating lineages. The S. aureus collection was more
diverse, but five STs (ST121, ST88, ST1, ST97, and ST6) each contained at least 10 isolates
and together constituted 63% of the S. aureus collection. The predominant S. aureus ST
(ST121, 108 isolates) has been identified previously as common in Thailand and other
Far Eastern and European countries (7, 28–30). Isolates within the major S. aureus and
S. argenteus ST clades originated in hospitals across the region. ST2250, ST121. and ST88

FIG 1 (A) Phylogenetic tree constructed from SNPs in the S. aureus (red) and S. argenteus (blue) core genome alignment. Outer ring:
STs of clusters containing 10 or more isolates. Inner ring: BAPS clustering represented by three bands to depict three parameter values,
i.e., 20, 40, and 60, of the estimated number of clusters. (B) Bayesian analysis to define the age of the MRCA of S. argenteus ST2250
and the five predominant S. aureus STs (ST88, ST1, ST97, ST6, and ST121). Error bars denote 95% CIs (see Materials and Methods for
details). (C) Distribution of rates of spread of ST2250, ST121, and ST6, which had a temporal signal. Each box shows the interquartile
range, and the whiskers indicate the boundary of 1.5 times the interquartile range. The white marker denotes the median value. The
colored area is the probability density of the data at different values.
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contained isolates from all four hospitals, whereas ST1, ST6, and ST97 were from three
hospitals (see Fig. S1A in the supplemental material).

The phylogenetic tree reconstructed from the single nucleotide polymorphisms
(SNPs) in the core genome shared by S. argenteus and S. aureus revealed a clear
distinction between the two species, together with a clonal structure within each
species (Fig. 1A). The population structure inferred by Bayesian analysis was highly
concordant with STs for S. aureus, while S. argenteus ST2250 consisted of two closely
related Bayesian analysis of population structure (BAPS) clusters (Fig. 1A). Mapping of
patient residences has been reported previously for all but 10 cases and showed that
patients infected with S. argenteus and S. aureus were drawn from a comparable
geographic area across northeastern Thailand (7, 8). To determine whether patients
with genetically related isolates were spatially clustered, the geographic distance was
plotted against the pairwise SNP distance of each of the major S. argenteus and
S. aureus clades. This demonstrated low geographical clustering, with isolates with the
same SNP distances, including closely related isolates, being uniformly distributed
across the region (Fig. S1B).

The genomic characteristics of S. argenteus ST2250 (based on 2,107 core genome
SNPs) and the five major STs in the S. aureus population (ST121, ST88, ST1, ST6, and
ST97, containing 7,424, 1,852, 1,809, 931, and 1,201 SNPs, respectively) were compared
(Fig. S2). The pairwise SNP distance of isolates within the S. argenteus ST2250 clade
indicated high diversity, with few instances of closely related isolates in the major
S. argenteus and S. aureus clades (Fig. S2A to C). For instance, only 11 isolate pairs
(average difference of 11 SNPs) of 2,211 isolate pairs were �20 SNPs apart (Fig. S2A),
suggesting that the collection does not contain isolates associated with one or more
outbreaks.

Bayesian analysis indicated a substitution rate of 4.66 (95% confidence interval [CI],
3.12 to 6.38) mutations per genome per year (or 1.76 � 10�6 per site per year) for
S. argenteus ST2250. This was comparable to the substitution rate of 3.53 (95% CI, 2.87
to 4.18) for S. aureus ST121 in our collection, which is slightly lower than a previous
estimate of 5.6 (95% CI, 3.36 to 7.84) for a global collection of CC121, including ST121
(13). The age of the most recent common ancestor (MRCA) of ST121 in our collection
was 132 (95% CI, 86 to 184) years, which is comparable to the previously estimated
MRCA of 129 (95% CI, 88 to 186) years in reference 13. Our results indicate that
S. argenteus ST2250 emerged in Thailand an estimated 15 years ago, as did S. aureus
ST97. However, the S. aureus ST1, ST88, and ST121 clades emerged around 100 to
150 years ago (Fig. 1B). Moreover, S. aureus ST121 from Thailand was only distantly
related to ST121 isolates from Europe and Africa, with a �150-year divergence between
Thai and non-Thai isolates (Fig. S2B). The ancestral clade appeared to have undergone
a subsequent expansion over a period of 40 to 60 years (Fig. S2B).

S. argenteus ST2250 appeared to have been geographically disseminated across
northeastern Thailand at a higher rate than S. aureus ST121 (Fig. 1C and S2A). To take
into account the fact that ST121 is an old clade, we considered the rate of geographical
expansion of the subclade that formed 58 years ago as shown in Fig. S2B. The ST6 clade
appeared to be more recent than the ST2250 clade and has spread at a higher rate than
ST2250 (Fig. 1C). These findings indicate that, compared to most S. aureus clones,
S. argenteus ST2250 is a relatively recent clone that is spreading rapidly in northeastern
Thailand.

The dissemination of ST2250 in Thailand may be associated with a broader global
circulation of ST2250. To explore this, we compared the Thai genomes with those of
S. argenteus isolates recovered in Malaysia, Singapore, Israel, and France. The resulting
tree indicated that the four Malaysian and Singaporean isolates were ancestral to the
expansion of ST2250 in Thailand. The introduction of this lineage into Thailand ap-
peared to have occurred within the past 20 to 30 years (Fig. 2A). After this putative
introduction, the Thai lineage served as the source of reintroductions into Malaysia and
Singapore, as well as France and Israel on at least three occasions, indicating regional
and more distant transmissions (Fig. 2A and B). The inferred Malaysian status of the root
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of the ST2250 clade was observed when the analysis was repeated for different
subsamples of Thai isolates, and therefore, the findings do not appear to be influenced
by the different sizes of the Thai and non-Thai collections (Fig. S3A). We also observed
mixing between Thai ST2250 and non-Thai isolates for randomly generated collections
of Thai and non-Thai isolates. Furthermore, to account for the temporal bias in sample
collection, we repeated the analysis for the collection composed of non-Thai and Thai
isolates that were collected in the same period as non-Thai isolates, i.e., between 2009
and 2011 (Fig. S3B). The resulting tree indicated that the findings for the status of the
root and mixing of isolates remained robust (Fig. S3B).

We then compared the genomes of S. argenteus and S. aureus to determine the
extent to which the two collections share core and accessory genes (Fig. 3A). A total of
1,015 genes were present in every S. aureus and S. argenteus isolate. Using a lower
identity cutoff of 70% to define a locus match, Méric et al. found 1,478 genes present
in every isolate of S. aureus and S. epidermidis (14), which is more distantly related to
S. aureus than S. argenteus is. Although we used a different pangenome construction
method, repetition of our analysis with a 70% identity cutoff for a locus match
identified 1,813 genes. This reveals that the closer genetic distance is also reflected in
a greater proportion of shared genes.

Defining the core genome as the genes present in �90% of the isolates examined,
we found a total of 1,110 genes in the shared core genome of S. argenteus and S. aureus.
The numbers of core genes identified in S. argenteus and S. aureus were 2,063 and
2,412, respectively. This means that around half of the genes of each species are
exclusive, indicating a high level of divergence and strong support for their classifica-
tion as separate species (15) (Fig. 3A and B). The numbers of accessory genes (present

FIG 2 (A) Bayesian phylogenetic tree of S. argenteus ST2250 including isolates from Thailand and elsewhere. Node values are node
ages in years. Bars on the nodes show 95% CIs. The arrow shows the node in which the tet(L) gene was acquired. (B) Phylogenetic
tree of the data presented in panel A with ancestral states of nodes inferred from maximum-likelihood analysis. Pie charts show the
marginal probability of each status (country of origin) for each node.
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in �90% of the isolates) of S. argenteus and S. aureus were comparable (5,977 and 5,651,
respectively), indicating that the accessory genome of S. argenteus is equivalent in size
to that of S. aureus. This contrasts with the previous report on S. argenteus MSHR1132,
where a single genome was analyzed (9). As shown in Fig. 3B, the two species shared
some genes that were otherwise variably present in the two populations. Genes
present in �90% and �10% of the isolates of both species might be involved in
ongoing adaptation and so were further explored. The majority of the genes in this
category were associated with phages. Excluding phage-related proteins, several pu-
tative virulence genes were detected that were associated with known phages. These
included the staphylokinase encoded by sak, which increases bacterial resistance to the
host immune response (16). This gene had been independently acquired by several
lineages of both species (Fig. S4 and S5) and appeared to be carried by the temperate
Sa3int phage (17) present in the majority of ST2250 and other S. argenteus isolates
(Fig. S4). Several putative pathogenicity island genes, e.g., group_448, group_1635, and
group_1289 genes, were detected in ST2250 isolates and in some S. aureus STs
(particularly ST121) (Fig. S4), and the linked bacteriophage encoding Panton-Valentine
leukocidin (pvl) was sporadically distributed in S. argenteus ST2250 but was predomi-
nant in S. aureus ST121 (Fig. S4 and S5). Recombinant regions in ST2250 were limited
to a small phage region in the genome, although the inserted elements appeared to be

FIG 3 (A) Phylogenetic tree based on SNPs in the core genome of S. aureus and S. argenteus and the presence or absence of accessory genes across the
genomes. Heatmap colors denote the frequency of each accessory gene across the collection. (B) Comparative pangenome analysis of S. aureus and S. argenteus.
The values on each side of the table show the percentages of isolates of that species harboring the gene, and the values within the table are the numbers of
genes shared by those isolates. (C) The relative frequency of known antibiotic resistance genes in the S. argenteus and S. aureus populations. (D) Alignment of
genomic components of plasmids P1-tetL-cad-bla and P2-cad-bla, and known plasmid p18813-P04.
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similar to S. aureus genomic regions in the NCBI nonredundant nucleotide database.
These results reveal similarities between putative pathogenicity mechanisms and bac-
teriophages in both species.

The observation that ST2250 is a recently expanded lineage led us to investigate
accessory genes that were specific to this lineage and might account for its biological
success. Several gene clusters were present in ST2250 isolates but absent from the
other S. argenteus and S. aureus isolates (Fig. S6A and B). These included an enterotoxin
gene cluster composed of seC-bov (enterotoxin C-bovine) and entQ (staphylococcal
enterotoxin Q). These were inserted into the chromosome upstream of a region that
was identified as a putative vSa� genomic island, which may indicate that these are
accessory components of the vSa� island. vSa� and vSa� are genetic elements iden-
tified in various S. aureus genomes that contain a number of variably distributed
putative virulence genes (18). Both genetic elements were identified in S. argenteus
MSHR1132, suggesting that the islands were likely acquired by a common ancestor of
S. aureus and S. argenteus (9). Sequences flanking the seC-bov/entQ gene cluster were
homologous with the S. argenteus MSHR1132 genome, suggesting that the cluster was
inserted into a conserved genomic region. The coding sequence identified immediately
downstream of sec-bov was highly similar (94% nucleotide sequence identity) to
MSHR1132 locus SAMSHR1132_16480, located within vSa�. Furthermore, a sequence
corresponding to entQ and sec-bov together with flanking genes was identified in the
genomes of various human clinical S. aureus isolates, e.g., ST772-MRSA-V (GenBank
accession number CP010526), which means that gene sharing by the two species might
have occurred via homologous recombination. The presence of pathogenicity genes
associated with lineages of bovine origin implies links between S. argenteus and
livestock-associated S. aureus. Furthermore, we also found several linked exotoxin
genes (i.e., group_5536 to group_5540, group_5545, and group_5546 in Fig. S6)
seemingly located in an operon and lipoprotein genes, all of which were found on the
vSa� genomic island, which shares high sequence identity with the corresponding
chromosome region of MSHR1132 (96% sequence identity over 92% of the sequence
length) (Fig. S6A and B). We also identified a CRISPR element exclusively in the ST2250
clade that is known to be involved in defense against mobile genetic elements (19, 20)
that was linked to hsd and cas genes and inserted into orfX, as described in reference
9 (Fig. S6A and B). However, in contrast to the MSHR1132 reference genome, no
staphylococcal cassette chromosome mec (SCCmec) element was associated with these
genes. This supports the hypothesis that these CRISPR elements are highly mobile and
capable of horizontal transfer, even independently of SCCmec (9). These elements are
rare in human-associated S. aureus, and only livestock-associated S. aureus ST398 has
been previously reported to harbor a CRISPR-Cas locus (21). Taken together, our results
indicate that genes specific to S. argenteus ST2250 and absent from the S. aureus
isolates may have originated from other ancestral isolates and are linked to livestock-
associated lineages.

S. argenteus is known to have lower phenotypic resistance to antimicrobial drugs
than S. aureus (8). We extended this previous analysis by defining the relative frequency
of genes encoding resistance to commonly used antimicrobial drugs (Fig. 3C) and
defining the relationship between phylogeny and phenotypic (detailed in reference 8)
or genetic resistance (Fig. S7). blaZ accounted for penicillin resistance in the two
collections (Fig. S7A), but the blaZ variant in S. argenteus ST2250 differed from that in
ST121 and was more similar to those in uncommon STs in the S. aureus collection
(Fig. S7B). Tetracycline resistance genes varied in the two species (Fig. 3C, S5, and S7).
tet(L) appeared to have been introduced into the ancestral strain of the expanded
ST2250 clone in Thailand and was present in all but five ST2250 isolates (Fig. 2A, S5, and
S7). This gene has been frequently identified on plasmids derived from livestock-
associated methicillin-resistant S. aureus (MRSA) belonging to ST398, as well as ST9
(22–24).

We explored the context of tet(L) and bla(Z) and found both genes located on a
novel plasmid that did not show full sequence identity to any other previously reported
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elements and is named P1-tet(L)-cad-bla (Fig. 3D). This was 26.7 kbp in size and carried
multiple antibiotic and heavy metal resistance-encoding genes, including czcD, which
encodes an inducer of cobalt, copper, and cadmium resistance, and acr, which encodes
arsenic resistance (Fig. 3D). Resistance to heavy metals in livestock-associated S. aureus
has been frequently reported (25). Plasmid P1-tet(L)-cad-bla was most closely related to
p18813-P04 (99% sequence identity across 88% of the sequence; GenBank accession
number CP002146), which was derived from a human clinical isolate representing
MRSA clone USA300 (26). Plasmids P1-tet(L)cad-bla and p18813-P04 varied on the basis
of a region containing a cluster of antimicrobial resistance genes (Fig. 3D); i.e., plasmid
p18813-P04 carries a mer operon that is absent from P1-tetL-cad-bla. Instead, P1-tet(L)-
cad-bla contained a tet(L) resistance gene flanked by two copies of the IS431 insertion
sequence (Fig. 3D). Insertion elements such IS431 have been previously implicated in
the emergence of novel multiresistance plasmids by mediating plasmid cointegration
(23). Several non-ST2250 isolates (ST1223) also carried an element that closely resem-
bled the P1-tetL-cad-bla plasmid but lacked tetL, which we termed plasmid P2-cad-bla
(Fig. 3D and S5). Plasmid P1-tet(L)-cad-bla shared 68% of its sequence with P2-cad-bla
plasmid (99% identity), and was distinct from P2-cad-bla on the basis of the presence
of tet(L), as well as the czcD and acr3 heavy metal resistance genes (Fig. 3D). Similar to
tet(L), the aph(H) gene appears to be more frequent in S. argenteus than in S. aureus
(Fig. 3C) and is inserted in the chromosome (results not shown).

DISCUSSION

In this study, we conducted an in-depth genomic comparison of community-
acquired invasive S. argenteus (predominantly ST2250) and S. aureus isolates from
people living in northeastern Thailand. The sampling framework, combined with the
fine-scale resolution of whole-genome sequencing, allowed us to elucidate the differ-
ences and similarities between the genome contents of these closely related staphy-
lococcal species. We found that ST2250 was the predominant ST of S. argenteus isolates
and has become disseminated across northeastern Thailand. Furthermore, we found
distinctive genomic features in ST2250 and several lines of evidence supporting gene
flow or shared gene reservoirs between ST2250 and S. aureus plasmids and lineages.

Genes that were unique to ST2250 may indicate a biological basis for the success of this
lineage based on the ability to be transmitted to, be carried by, or infect the human host.
This contrasts with initial genomic and nongenomic findings on S. argenteus, which, on the
basis of the lack of well-characterized S. aureus virulence factors such as staphyloxanthin,
was considered to be a less virulent ancestor of S. aureus (9). Despite lacking several known
S. aureus virulence factors, ST2250 has acquired putative virulence mechanisms that may
have transformed ST2250 into an invasive human pathogen.

Our results also indicate that adaptation of ST2250 to ecological niches has occurred
concurrently with the gain of genes that facilitate adaptation both within ST2250 [for
example, the acquisition of tet(L)] and between ST2250 and other S. argenteus and
S. aureus STs (for example, the acquisition of multiple enterotoxins in ST2250). In
particular, S. argenteus has acquired genes previously observed only in livestock-
associated S. aureus and plasmids. S. argenteus is frequently reported in remote
populations (2, 5–7) where exposure to livestock is common, and our finding suggests
that gene flow between livestock-associated S. aureus and S. argenteus has taken place.
In the case of tet(L) and heavy metal resistance genes, the expansion of ST2250 appears
to have occurred after the insertion of this gene into a plasmid in the ancestral strains,
presumably in response to the use of this antibiotic in humans or animals. The impact
of the gain of these genes in facilitating the adaptation and spread of ST2250 requires
experimental verification. Sampling of animals in the region to isolate livestock-
associated S. aureus, determine the presence of S. argenteus, and undertake a genomic
comparison of isolates that cocolonize individual animals or farms would provide more
direct evidence of genetic interaction between the bacterial species.

Our findings provide population genomic evidence that supports the genetic
distinction between S. argenteus and S. aureus, with around half of the core genes being
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exclusive to each species. Despite this clear separation, convergent forces have led the
two species to acquire similar virulence mechanisms and for S. argenteus to gain
specific resistance and virulence genes from other S. aureus strains. Crucial to this are
the mobile genetic elements and plasmids that have transferred important genetic
elements between staphylococcal strains. Horizontal gene transfer has the potential to
facilitate adaptation not only within one species (27) but also between two closely
related species.

The deep-sampling method used here allowed us to obtain a high-resolution view
of invasive S. argenteus ST2250 and to compare this with invasive S. aureus in the same
population. Despite this, our study has several limitations that could be addressed in
future studies to fully elucidate the global structure of the S. argenteus population and
putative reservoirs. Most importantly, our study was focused on one region that was
dominated by a single S. argenteus ST. Furthermore, our collection was restricted to
invasive isolates associated with community onset infection and therefore does not
fully represent the whole population associated with carriage or with hospital-
associated infection, including outbreaks, for which denser sampling and comprehen-
sive epidemiological data would be required. A study of global S. argenteus and
assessment of its presence in livestock are now warranted.

MATERIALS AND METHODS
Isolate collection. The isolate collection from northeastern Thailand consisted of 251 S. aureus and

68 S. argenteus isolates drawn from two prior studies (8). The first of these contributed 10 S. argenteus
isolates from patients with community onset invasive staphylococcal diseases at Sunpasitthiprasong
Hospital, Ubon Ratchathani, between 2006 and 2007 (8). The second study contributed 251 S. aureus and
58 S. argenteus isolates from patients recruited into an observational study of community onset invasive
staphylococcal infections conducted at four hospitals across northeastern Thailand between 2010 and
2013 (8). In brief, patients were identified in both studies by daily screening at each hospital diagnostic
microbiology laboratory. An invasive infection was defined as culture of the isolate from a sterile-site
sample. A community onset infection was defined as a positive culture taken within 2 days of hospital
admission. Ethical approval for the 2006-2007 study was obtained from the Ethical and Scientific Review
subcommittee of the Royal Thai Government Ministry of Public Health and the Oxford Tropical Research
Ethics Committee. Ethical approval for the 2010 to 2013 study was obtained from the Faculty of Tropical
Medicine, Mahidol University (approval no. MUTM 2011-007-01); Sunpasitthiprasong Hospital, Ubon
Ratchathani (approval no. 004/2553); Udon Thani Hospital, Udon Thani (approval no. 0027.102/2349);
Khon Kaen Hospital, Khon Kaen; and Faculty of Medicine (Srinagarind Hospital), Khon Kaen University,
Khon Kaen, Thailand (approval no. HE541113).

Antibiotic susceptibility data for the collection had been established previously for cefoxitin, clinda-
mycin, trimethoprim-sulfamethoxazole, erythromycin, fosfomycin, fusidic acid, gentamicin, levofloxacin,
oxacillin, penicillin, tigecycline, and vancomycin (for 10 isolates, fosfomycin, levofloxacin, and tigecycline
susceptibility data were not available). All S. argenteus isolates were methicillin susceptible and mecA
negative, while seven S. aureus isolates (six ST2399 isolates and one ST241 isolate) were MRSA and mecA
positive. pvl was detected in 13% (9/68) of the S. argenteus isolates. MLST performed previously revealed
38 STs in total. The most common STs of S. aureus and S. argenteus were ST121 (n � 108, 42%) and
ST2250 (n � 57, 83%), respectively.

To evaluate the Thai S. argenteus ST2250 isolates in relation to S. argenteus isolates obtained from
other geographic regions, additional genomes were obtained for a further 10 clinical isolates (6 from
Malaysia, 2 from Singapore, and 1 each from France and Israel), obtained from the Tigecycline Evaluation
and Surveillance Trial between 2009 and 2011 (28). The accession numbers and the attributes of the
isolates studied are provided in Table S1.

Sequencing and pangenome analysis. Genomic DNA was extracted with the QIAxtractor (Qiagen)
as detailed in the manufacturer’s instructions. Illumina sequencing libraries with a 450-bp insert size were
prepared in accordance with the manufacturer’s protocol and sequenced on an Illumina HiSeq2000 with
100-bp paired-end reads. Reads were mapped to the reference genome of S. aureus (strain NCTC 8325)
for S. aureus isolates and tht of S. argenteus (strain MSHR1132) for S. argenteus isolates with SMALT v0.7.4
(www.sanger.ac.uk/science/tools/smalt-0) by using maximum and minimum inserts sizes of 1,000 and 50,
respectively. SNPs were then called and annotated with SAMtools mpileup (29) and BCFtools as detailed
in reference 30. The parameter values included a minimum base call quality of 50 and a minimum root
mean squared mapping quality of 30 to call an SNP. SNPs at sites with heterogeneous mapping, where
the SNP was present in �75% of the reads, were removed. The average mapping quality was 84%
(minimum, 77%; maximum, 93%) for S. aureus isolates and 93% (minimum, 92%; maximum, 94%) for
S. argenteus isolates.

We then used an assembly improvement pipeline (31) based on Velvet (32) to create de novo
assemblies from short reads. Assemblies were annotated with Prokka (33), the output of which was used
as input for the pangenome pipeline Roary (34) by using the default parameter values, including a
minimum percent identity of 95%. Roary produced an alignment of core genes. The output of Roary and
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sequences in the pangenome of the entire collection have been deposited in a public repository
(https://data.mendeley.com/datasets/phphbtzjxh/2). SNPs in the core genome alignment were identified
with an in-house tool that is publicly available at http://www.github.com/sanger-pathogens/snp-sites.
We identified 123,850 SNP sites in the core genome alignment of the S. aureus and S. argenteus isolates.
Neighbor-joining phylogenetic trees were constructed with the ape package in R. Microreact (http://
www.microreact.org), iTOL (35), FigTree (http://tree.bio.ed.ac.uk/software/figtree/), and Easyfig (36) were
used to visualize the tree and the associated metadata.

HierBAPS (37) was used to conduct BAPS to cluster similar genomic sequences, for which SNPs were
first extracted from the multiple alignment of the S. aureus and S. argenteus core genomes with an
in-house tool (available at http://www.github.com/sanger-pathogens/snp-sites) and the parameters of
two clustering iterations and expected numbers of clusters of 20, 40, and 60. We considered BAPS
clusters to represent recent clades, and these corresponded to clades comprising individual STs in the
S. aureus collection. The S. argenteus ST2250 clade was created by merging two BAPS clusters. These
recent clades were then used in downstream Bayesian analysis.

Identification of antimicrobial resistance genes. Known antibiotic resistance genes were identified
with the SRST2 package by using a 90% coverage cutoff (38). For specific accessory genes of interest, we
determined whether they were associated with a mobile genetic element. To do this, we identified all
accessory elements, which were defined as genomic fragments not uniformly distributed across all of the
isolates analyzed, as described previously (30). We performed a BLAST analysis of genes of interest
against the identified accessory elements to determine their association. We then ran BLAST on the
whole identified mobile genetic element against the NCBI nonredundant nucleotide database to
determine whether the mobile genetic element exhibited similarity to previously sequenced genomes.
To find the distribution of the mobile genetic element across the other isolates analyzed, we used
MUMmer (39) to map the whole-genome assemblies against the mobile genetic elements identified.
Reads were then mapped to the reference genomes of plasmids as detailed above.

Recombination analysis and Bayesian analysis. After identifying recent clades on the phylogenetic
tree, we extracted isolates within each clade and mapped the reads to the local reference pseudog-
enome constructed by concatenating contigs of the isolate with the highest N50 value (the best
assembly statistics). The mapping and SNP calling and annotation were done as described above.

After constructing the multiple alignment for each recent clade, we identified potential recombina-
tion as high SNP density blocks with Gubbins (11) by using five iterations. In total, we found 117
recombinant blocks (average size, 12,551 bp; minimum, 22 bp; maximum, 46,558 bp) and extracted the
genomic regions longer than 100 bp to identify potential donors of the recombined regions by searching
the NCBI nonredundant nucleotide data set with BLAST. To obtain the recent substitution rate and
divergence times of the clusters identified in the population, recombined regions were removed and the
alignment was used as the input for the downstream Bayesian analysis.

To assess the temporal signal of the major clades, ST88, ST6, ST97, ST1, ST121, and ST2250, we
assessed the significance of the R-squared value from the plot of root-to-tip distance versus time of
isolation. To this end, we first constructed a neighbor-joining tree from the alignment for each clade and
plotted the root-to-tip distance values against the years of isolation. After extracting the R-squared value,
we generated 10,000 samples by randomizing the years of isolation (i.e., resampling with replacement)
and then assessed the value of the real R-squared value against the distribution of R-squared values. We
found a strong signal for the ST2250 clade (the R-squared value of the data set was �99% of the
calculated R-squared values for randomized samples) and weaker signals (the R-squared value of the data
set was �60% of the calculated R-squared values for randomized samples) for the ST121 and ST6 clades
(Fig. S2A to C). ST88, ST1, and ST97 lacked any temporal signal and therefore were excluded from the
Bayesian analysis (Fig. S2C).

We then performed a Bayesian analysis within BEAST v1.7 (12) on clades with a temporal signal, i.e.,
clades ST2250, ST121, and ST6, testing various models that included a constant population size with a
strict molecular clock (with uniform, normal, and log-normal distributions). Furthermore, continuous
phylogeography analysis of the Thai isolates within the ST121, ST6, and ST2250 clades was performed
with BEAST (by using the same models as above) and by incorporating the longitude and latitude
information for patient addresses in the model. In each run, we ran three independent chains for 50
million generations, sampling every 10 generations. We then excluded 10 million initial states as burn-in
and used an effective sample size cutoff value of �200. The TreeAnnotator software, which is part of the
BEAST package, was used to summarize the trees and obtain CIs for divergence times, node ages, and
node estimated locations.

To assess whether improving the temporal signal influences the results for the ST121 clade, which is
the most common S. aureus ST in our collection, we included a further six global ST121 isolates from
reference 13 that were mapped �90% to the reference genome. The inclusion of these isolates resulted
in a strong temporal signal (the R-squared value of the data set was �99% of the calculated R-squared
values for randomized samples) (Fig. S2B). Although this resulted in smaller 95% CIs for the key
parameters, such as the age of the MRCA and substitution rates, the results remained similar, indicating
that the temporal signal within the Thai isolates appears to be robust.

To compute the age of the MRCA of the S. aureus clades without a temporal signal, i.e., the ST88,
ST97, and ST1 clades, we divided the root distance of each tree by the mean substitution rates of the
ST121 and ST6 clades, which had temporal signals. In addition, we used the means of the maximum and
minimum values of the upper and lower 95% error bars of the substitution rates of the ST121, ST6, and
ST2250 clades to compute the error bars for the ST97, ST88, and ST1 clades.
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We used the maximum-likelihood tool in the phytools package (40) to obtain the probabilities of the
ancestral states of the country of origin. Since sampling bias (i.e., different sampling counts from different
countries) can potentially affect the findings on the ancestral status of the root, we conducted a
sensitivity analysis to determine the impact of the size of the Thai collection on the inferred status of the
root. To this end, we constructed collections consisting of non-Thai isolates and added a random
subsample of Thai isolates. We then calculated the marginal likelihood of the root of the constructed
trees. We repeated this step 50 times for six sample sizes and report the mean and standard deviation
of each sample size (Fig. S3).

Data availability. The sequence data obtained in this study have been submitted to the European
Nucleotide Archive (http://www.ebi.ac.uk/ena) under the accession numbers listed in Table S1. The study
numbers are PRJEB9575 (http://www.ebi.ac.uk/ena/data/view/PRJEB9575) and PRJEB1915 (http://www
.ebi.ac.uk/ena/data/view/PRJEB1915) for the Thai and non-Thai collections, respectively.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00802-17.
FIG S1, PDF file, 0.4 MB.
FIG S2, PDF file, 0.5 MB.
FIG S3, PDF file, 0.1 MB.
FIG S4, PDF file, 0.1 MB.
FIG S5, PDF file, 0.1 MB.
FIG S6, PDF file, 0.2 MB.
FIG S7, PDF file, 0.2 MB.
TABLE S1, CSV file, 0.04 MB.
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