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Optimal ignition placement in diffusion flames by
nonlinear adjoint looping

By U. A. Qadri†, L. Magri, M. Ihme AND P. J. Schmid†

We derive and implement a gradient-based optimization framework to identify the
best place to ignite a mixture of fuel and oxidizer. We have used the time-averaged in-
crease in thermal energy as the cost function that indicates the success of ignition. We
use direct numerical simulation (DNS) of the low Mach number Navier–Stokes equations
with single-step finite-rate reaction chemistry to model spark ignition of an axisymmetric
methane jet in air. We model the spark as a two-dimensional Gaussian function. We solve
the adjoint of these equations to obtain the sensitivity of the cost function with respect
to the position of the spark. We find that the optimal locations track the stoichiometric
mixture fraction surface in the flow. At low Reynolds numbers, the optimization prefers
locations downstream that allow upstream flame propagation.

1. Introduction

The combustion of fossil fuels is the main source of energy for transportation and
power generation in the world today, and is expected to remain the case for the near
future. The process of spark ignition of a turbulent mixture can generally be considered
to have three stages (Mastorakos 2009). In the first stage, kernel generation, the spark
leads to a localized flame kernel. In the second stage, flame expansion, the flame front
propagates and spreads through the rest of the unburnt fluid. In the third stage, flame
stabilization, the flame achieves a (statistically) steady and stable configuration.
Numerous studies have examined the factors that affect these stages of the ignition

process (Mastorakos 2009). These studies, which are both experimental and numerical in
nature, investigate the probability of successful ignition by carrying out a large number of
individual spark trials and observing the final flame configuration. The results emphasize
that the probability of ignition depends on many more factors than just the local mixture
fraction profiles, which determine the flammability limits of the flow. The probability of
all three stages being successful is not necessarily the same as the probability of kernel
generation, which itself is not necessarily related to the flammability limits of the flow.
The local strain rate, convection velocity, spark energy, spark size, and flow configuration
all play a part in determining successful ignition.
Given the high sensitivity observed in experiments and simulations and the large num-

ber of degrees of freedom in the system, understanding the effect of the different factors on
the process of ignition can be quite tedious, requiring a large number of parametric stud-
ies. One approach to overcome this challenge is to use ideas from optimal control theory.
It involves formulating a constrained optimization problem for a suitable cost function of
interest and using the adjoint operator to obtain gradient information cheaply in systems
with a large number of degrees of freedom. This general approach has previously been
used, for example, to optimize aircraft wing design (Jameson 1988), to understand and
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optimize mixing (Foures et al. 2013) and transition to turbulence (Pringle & Kerswell
2010), and to understand thermoacoustic instabilities in a simple model (Juniper 2011).
Its application to the problem of ignition is significantly more complex.
The high sensitivity of ignition that has been observed in turbulent flows, as described

above, is due not only to the stochastic nature of the turbulent flow. It has also been
observed in laminar flames (Richardson & Mastorakos 2007). More recently, Capecelatro
et al. (2016) used adjoints to calculate the sensitivity of ignition to several different
parameters of the ignition process and identify the largest sources of uncertainty. In this
project, we take this idea a step further and use the gradients provided by the adjoints
as part of an optimization algorithm to find the ‘best’ place to ignite a gaseous mixture
of fuel and oxidizer.
Experiments on ignition in turbulent flames (Mastorakos 2009) have found that the

ignition probability in premixed flames is 100 % in large regions of the flow, whereas the
ignition probability in non-premixed flames is high in small localized regions. As such, in
this project, we focus on non-premixed flames because the competition between diffusion
and reaction is more likely to produce localized optimals.
In Section 2, we describe the governing equations and formulate the nonlinear opti-

mization problem in terms of the cost function of interest and the relevant constraints.
In Section 3, we describe briefly the numerical implementation and flow configuration
and present the results obtained during the summer program. Finally, in Section 4 we
offer some conclusions and identify directions for future work.

2. Mathematical formulation

2.1. Governing equations

We treat the fuel and oxidizer as perfect gases and investigate the evolution of the flame
in a domain Ω. The fluid in the domain has velocity u = (ux, ur, uθ), density ρ, pressure p,
and temperature T . The concentration of the fuel is described using the mixture fraction
Z, which has a value of Z = 1 for pure fuel and Z = 0 for pure oxidizer. We use the
reacting low Mach number (LMN) equations as described by Nichols & Schmid (2008) to
describe the motion of the fluid. In nondimensional form, these equations can be written
as

∂ρ

∂t
+∇ · (ρu) = 0,

∂(ρu)

∂t
= −∇p+∇ · (

1

S1Re
τ − ρuu),

ρ(
∂Z

∂t
+ u · ∇Z) =

1

S1ReSc
∇2Z, (2.1)

ρ(
∂T

∂t
+ u · ∇T ) =

1

S1RePr
∇2T +Daρ3ω,

ρ [(S1 − 1)Z + 1] [(S2 − 1)T + 1] = 1,

where τ =
[

∇u+ (∇u)T
]

− 2
3 (∇ · u)I is the non-isotropic component of the rate-of-

strain tensor. We have neglected body forces and assumed Fourier’s law of conduction.
We assume that the effects of buoyancy are negligible and that the viscosity, thermal dif-
fusivity, mass diffusivity and specific heat capacity are uniform throughout the flow. The
Prandtl number, Pr, and Schmidt number, Sc, then describe the ratio of the diffusivity
of temperature and mass, respectively, to the diffusivity of momentum.
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The flow variables have been nondimensionalized by using a suitable reference length
and velocity scale based on the fuel and the oxidizer density. These scales depend on the
flow configuration being considered and are defined in Section 3. The Reynolds number,
Re, however, is defined in terms of the fuel density. This definition introduces a 1/S1

factor in front of the viscous terms in Eq. (2.1). The nondimensional temperature is
defined as T = (T ∗ − T0)/(Tf − T0), where T ∗ (K) is the dimensional temperature,
Tf is the dimensional adiabatic flame temperature, and T0 is the dimensional ambient
oxidizer temperature. The ratio of the oxidizer density to fuel density defines the density
ratio parameter, S1. The source term, Daρ3ω, is equivalent to the nondimensional rate of
enthalpy release per unit volume. For the rate of reaction, ω, we use a one-step chemistry
mechanism described by the Arrhenius law

ω =

{(

Z −
T

s+ 1

)(

1− Z −
sT

s+ 1

)

− κT 2

}

exp

[

−β(1− T )

1− α(1 − T )

]

. (2.2)

The chemistry of the reaction is described by the mass stoichiometric ratio, s, the equilib-
rium constant, κ, the heat release parameter, α ≡ (Tf−T0)/Tf , and the Zeldovich number
β ≡ αTa/Tf , where Ta (K) is the dimensional activation temperature of the reaction,
and Tf (K) is the dimensional adiabatic flame temperature. The ratio of the adiabatic
flame temperature to the oxidizer temperature at the inlet defines the temperature ratio
parameter, S2 ≡ Tf/T0.

2.2. Variational framework

The governing equations describe the evolution of the state vector, q(xi, t) ≡ [mi, Z, T, ρ]
T ,

wheremi = ρui is the momentum, starting from an initial condition q(xi, t = 0) = q0(xi).
We seek to find the initial condition q0 that maximizes a cost function J . This cost
function should be a good measure of successful ignition. In this study, we use the time-
averaged temperature as a measure of successful ignition. This has been shown to be
suitable for optimization over short times following ignition (Capecelatro et al. 2016).
The cost function is given by

J =
1

2V

∫ t=τ

t=0

∫

Ω

T 2dV dt, (2.3)

where V is the volume of the domain Ω. This cost function is constrained by the governing
equations, Eq. (2.1), and by the initial condition q0. The optimization problem can then
be posed as the Lagrangian

L =

J (T )−

〈

m+
i ,

∂mi

∂t
+

∂p

∂xi

+
∂

∂xj

(

mimj

ρ

)

−
S−1
1

Re

(

∂2

∂x2
j

(

mi

ρ

)

+
1

3

∂

∂xj∂xi

(

mi

ρ

)

)〉

−

〈

Z+, ρ
∂Z

∂t
+mi

∂Z

∂xi

−
S−1
1

ReSc

∂2Z

∂x2
i

〉

−

〈

T+, ρ
∂T

∂t
+mi

∂T

∂xi

−
S−1
1

RePr

∂2T

∂x2
i

−Daρ3ω̇

〉

−

〈

p+,
∂ρ

∂t
+

∂mi

∂xi

〉

−
〈

ρ+, ρ [(S1 − 1)Z + 1] [(S2 − 1)T + 1]− 1
〉

−
[

q+0 , q(x, 0)− q0
]

,

(2.4)
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where the inner products are defined as

〈a, b〉 =

∫ t=τ

t=0

1

V

∫

Ω

aT b dV dt

[a, b] =
1

V

∫

Ω

aT b dV. (2.5)

The adjoint variables q+(xi, t) ≡ [m+
i , Z

+, T+, ρ+]T act as Lagrange multipliers and
enforce the constraints described by the governing equations. When the cost function is
maximized, δJ = 0 by definition. In the constrained problem, this is achieved by setting
first variations with respect to all variables to zero. This produces a set of equations that
describes the evolution of the adjoint fields. Following Chandler et al. (2012) and Qadri
et al. (2015), to ensure numerical stability of the adjoint equations, the expression in Eq.
(2.4) is first rearranged to remove the unsteady term in the continuity equation,

L =

J −

〈

m+
i ,

∂mi

∂t
+

∂p

∂xi

+
∂

∂xj

(
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ρ

)

−
S−1
1

Re

(

∂2

∂x2
j

(
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ρ

)

+
1

3

∂2

∂xj∂xi

(

mi

ρ

)

)〉

−

〈

Z+,
∂Z

∂t
+

mi

ρ

∂Z

∂xi

−
S−1
1

ReScρ

∂2Z

∂x2
i

〉

−

〈

T+,
∂T

∂t
+

mi

ρ

∂T

∂xi

−
S−1
1

RePrρ

∂2T

∂x2
i

−Daρ2ω̇

〉

−

〈

p+,
∂

∂xi

(

mi

ρ

)

−
K2

S1ReSc

∂2Z

∂x2
i

−K1

(

1

S1RePr

∂2T

∂x2
i

+Daρ3ω̇

)〉

−
〈

ρ+, ρ [(S1 − 1)Z + 1] [(S2 − 1)T + 1]− 1
〉

−
[

q+0 , q(x, 0)− q0
]

, (2.6)

where K1 = (S2 − 1)[(S1 − 1)Z + 1] and K2 = (S1 − 1)[(S2 − 1)T + 1]. Taking first
variations with respect to the flow variables, we express the linearization of the reaction
term and density as

δω̇ = KZδZ +KT δT (2.7)

δρ = −ρ2(K1δT +K2δZ). (2.8)

This yields the adjoint equations

δL

δmi

= 0 =⇒ −
∂m+

i

∂t
−

1

ρ

∂p+

∂xi

−
mj

ρ

(

∂m+
i

∂xj

+
∂m+

j

∂xi

)

−
1

S1Reρ

(

∂2m+
i

∂x2
j

+
1

3

∂2m+
j

∂xj∂xi

)

+
T+

ρ

∂T

∂xi

+
Z+

ρ

∂Z

∂xi

:= 0 (2.9)

δL

δZ
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−mi
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ρ
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1
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i

(
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ρ
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)
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]
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(

T+

ρ
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+

)

KZ +K2ρρ
+ = 0 (2.10)
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δL

δT
= 0 =⇒ −
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∂t
−mi

∂
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(
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ρ

)
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ρ

∂mi
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−
1
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i

(

T+

ρ
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+

)

−

[
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i

]
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(
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ρ
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+

)
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j

+
1

3
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+
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−
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(

mi
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∂xi
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1
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∂x2
i
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−
T+

ρ2

(

mi
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∂xi

−
1

S1RePr

∂2T

∂x2
i

+ 2Daρ3ω̇

)

− 3Daρ2K1ω̇p
+ +

ρ+

ρ
= 0. (2.12)

The adjoint equations have to be solved backward in time from t = τ to t = 0.
Integrating the time derivatives produces additional terms that are used to initialize the
adjoint based on the form of the cost functional and the initial conditions. For our choice
of cost function, the initial conditions for the adjoint are all zero, m+

i (τ) = Z+(τ) =
T+(τ) = 0, but we have an additional term forcing the adjoint temperature equation.
Alternatively, optimizing based on the final temperature would give us

J =
1

V

∫

Ω

1

2
T (τ)2dV =⇒ m+

i (τ) = Z+(τ) = 0, T+(τ) = T (τ). (2.13)

The first variation with respect to the initial conditions provides the gradient that we
are interested in. This is given by the adjoint field at t = 0,

δL

δq0
= 0 =⇒

δL

δq0
= q+(t = 0). (2.14)

The gradient describes how the initial condition should be changed to maximize the
cost function. In this study, the initial condition is a spark, modeled as a Gaussian with
amplitude A and width in each direction ∆i in the temperature field at location si,

T0(xi) = T (xi, t = 0) = A exp

[

−
(xi − si)

2

∆2
i

]

, (2.15)

where the indices indicate summation over the number of spatial dimensions. Using the
chain rule, the gradient for the spark position is given by

δL

δsi
=

δL

δT0

∂T0

∂si
= T+(t = 0)

∂T0

∂si
. (2.16)

This gradient can then be used with a suitable optimization algorithm to arrive at an

optimal spark position s
(opt)
i .

3. Flow configuration and results

We now apply the framework described in the previous section to study an axisym-
metric jet of fuel containing 50% H2 and 50% N2 exiting into a cylindrical domain filled
with air. For this fuel-oxidizer combination, S1 = 1.92, S2 = 6.88, and s = 8, and we set
β = 3, κ = 0.01, and Pr = Sc = 0.7. We use the jet diameter, D, and jet axial velocity
as reference scales and consider flow at Re = 200 with Da = 100000.



100 Qadri et al.

Figure 1. (a) The non-reacting base flow, showing contours of (top) axial momentum and
(bottom) temperature used as the initial condition, (b) the evolution of the thermal energy
Et =

1

V

∫
Ω
T 2 dV with time during the ignition process.

3.1. Numerical solution

We use an axisymmetric DNS code (Qadri et al. 2015) to solve the governing equations. A
fourth-order Runge-Kutta scheme is used to march the discretized equations forward in
time. The equations are discretized in space using a sixth-order compact finite difference
scheme. We use a grid with 255×513 points for a cylindrical domain measuring 8.0×10.0
jet diameters in the radial and axial directions, respectively. We find this to produce
results that are well converged and well resolved based on previous simulations (Qadri
et al. 2015).
Along the lateral boundary, r/D = 4.0, we use a viscous traction free boundary condi-

tion for the momentum and set T = 0 and Z = 0. At the outlet boundary, x/D = 10.0,
we use a convective boundary condition for the momentum, temperature and mixture
fraction. These boundary conditions model flow into a semi-infinite domain in the down-
stream and radial directions. The pressure-projection scheme used in the code uses a
discrete cosine transform to set boundary conditions for the pressure at the inlet and
outlet boundaries. We use a half-wave cosine transform, which sets dp/dx = 0 at the
inlet and outlet boundaries. Along the lateral boundary, we set p = 0. At the inlet
boundary, we set the axial velocity and mixture fraction to have a top-hat profile. The
temperature profile at the inlet is set to be uniform.

3.2. Flow characterization

Before we proceed with optimizing the ignition placement, we find it useful to simulate the
ignition process. We obtain a non-reacting base flow setting Da = 0, shown in Figure 1(a).
We ‘ignite’ the flow by imposing a 2-D Gaussian on the temperature field at a nominal
location (sx, sr) = (2.0, 0.5) and observe how the flame develops. In this axisymmetric
flow configuration, our ignition model corresponds to a ring rather than a point source. In
Figure 1(b), we plot the l2 norm of the temperature field at each point in time. The cost
function, Eq. (2.3), corresponds to the area underneath this curve. We notice that the
thermal energy rises rapidly and then levels off and achieves a steady state. Comparing
this curve with Figure 2, we notice that the initial rapid rise corresponds to the flame
growing through the flow (Figure 2(ab)). Once the flame has grown through the entire
numerical domain, the thermal energy begins to level off (Figure 2(c)) and the flame
adjusts and stabilizes to reach a steady state (Figure 2(d)).

3.3. Gradient information

In their study on ignition in a mixing layer, Capecelatro et al. (2016) found that solving
the governing equations over a short time frame after spark placement produced robust
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Figure 2. The evolution of the temperature field with time during the ignition process, from
left to right, (a) t = 1, (b) t = 5, (c) t = 20, (d) t = 60.

Figure 3. The evolution of the (left) temperature and (right) adjoint temperature fields with
time during the ignition process, from top to bottom, t = 0, t = 0.4, t = 0.8, and t = 1.0.

sensitivity gradients. We solve the governing equations forward in time and the adjoint
equations backward in time for 0 < t < τ . In Figure 3, we plot the evolution of the
temperature and adjoint temperature fields for τ = 1.0. At each point in time, the ad-
joint field identifies the most sensitive regions in the flow. These are the regions where
a small change produces the largest effect on the cost function. We notice that, at in-
termediate times at which the flame is growing, the adjoint fields have large magnitudes
around the flame front. This makes physical sense because the reaction rates and thermal
gradients are high here. The adjoint temperature field at t = 0 provides information on
the sensitivity of the initial condition. We notice that this field is not as localized as the
initial condition itself. It identifies regions downstream and radially outward that are
influential compared with the original spark position. A rough interpretation of this field
is to deduce that moving the spark to a lighter region in the figure will increase the cost
function, whereas moving the spark to a darker region in the figure will decrease the cost
function. A more quantitative interpretation can be obtained by calculating the gradient
in Eq. (2.16). This gradient vector has two components, an axial component and a radial
component. For this flow, we find that the gradient in the radial direction is an order of
magnitude larger than the gradient in the axial direction.
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Figure 4. The convergence of the cost function J (squares), axial position (crosses) and radial
position (circles) of the spark during an optimization loop starting from (a) (sx, sr) = (1.0, 0.5)
(left) and (b) (sx, sr) = (2.0, 0.5) (right).

3.4. Optimization of ignition location

We use this gradient as part of an iterative optimization algorithm to converge toward
an optimal location. We found that a standard steepest ascent or conjugate gradient
algorithm did not converge efficiently toward an optimal. This is due to the inherent bias
in the gradient vector—the radial component is much larger than the axial component.
This is because the mixture fraction and flow properties vary weakly in the axial direction
but vary strongly in the radial direction. To overcome this limitation, we used a hybrid
algorithm in which we applied the steepest ascent approach (with line-search) alternately
in the axial and radial directions. In one step, we updated the axial position of the spark,
and in the next step, we updated the radial position of the spark. At each step, the new
initial condition is normalized to maintain the same spark energy, Es =

1
V

∫

Ω T 2
0 dV .

Figure 4 shows the results of the optimization procedure for a short time-period τ =
0.1, starting from two different initial conditions. In both cases, the algorithm converges
to the same position (4.05, 0.79), which we interpret as a local optimal. To understand the
physical significance of this result, we follow an alternative optimization strategy where
we fix the axial position and find the optimal radial position at each axial location.
The results of this optimization procedure are shown in Figure 5. We notice that the
optimal ignition locations are close to the stoichiometric mixture fraction surface. The
optimization algorithm prefers ignition on the lean side of the stoichiometric surface. One
explanation for this is that the scalar dissipation rate is maximal at Z = 0.5, which is
on the lean side of the stoichiometric surface. This also explains why, in Figure 4, the
algorithm selects a location upstream before it moves downstream. The initial conditions
at (2.0, 0.5) and (1.0, 0.5) are well into the rich side of the mixture fraction. The first
step corresponds to a step in the streamwise direction. The algorithm chooses to go
upstream because this is where it is more likely to find the most reactive mixture or
the stoichiometric mixture at r = 0.5. Going downstream, the stoichiometric mixture
would be at a larger value of r. It is also interesting that the cost function increases
more gently farther downstream. Increasing the value of τ over which the optimization is
carried out also tends to favor locations farther downstream. We have checked that the
results are not spurious, and the flame ignites successfully even when the spark is placed
at axial locations x/D > 7.0. In this case, this is because this flow configuration and
low Reynolds number allow upstream flame propagation. There is, therefore, a greater
increase in thermal energy if the flame grows upstream as well as downstream. This result
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Figure 5. (a) The optimal spark position (circle) at various axial locations downstream of the
inlet plane with contours of axial momentum of the non-reacting flow. The black line represents
the stoichiometric surface Zst = 0.306 for this fuel-oxidizer combination. (b) The cost function
at the spark positions shown in (a).

is not general, however, and we expect that at higher Reynolds numbers, and in flows
with recirculation, such as bluff-body or swirl-stabilized flames, we would find strong
localization in the axial direction as well. This can also be checked by using a different
cost function. One possibility is to use the heat release in Eq. (2.2) integrated over the
domain and over time, which will be investigated in a follow-up study.

4. Conclusions and outlook

In this project, we have developed and implemented a gradient-based optimization
procedure to identify the ‘best’ place to ignite a fuel-oxidizer mixture. We have used the
time-averaged increase in thermal energy as the cost function that indicates the success
of ignition. We have used the unsteady adjoint of the nonlinear LMN equations to obtain
sensitivity gradients of the cost function with respect to the position of the spark. We
used this technique to study an axisymmetric jet diffusion flame. We found that the
optimal locations track the stoichiometric mixture fraction surface in the flow. In this
study, we have fixed the shape of the initial condition and optimized the location. A
natural extension is to allow the shape to vary and find the optimal initial condition of
fixed energy. This could lead to insights into new approaches for ignition.
The techniques developed here can easily be applied to flows in more complex ge-

ometries and flows featuring highly unsteady behavior. To begin with, we will study a
lifted jet diffusion flame at Re = 1000. Preliminary results for this flow suggest that
the optimization procedure finds multiple local optimals, in this case at (3.03, 0.63) and
(5.53, 0.65). It remains to be seen whether these lead to flames with different lift-off
heights.
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