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Abstract

Model Selection, Uniform Inference and Nonparametric Regression

Alexis De Boeck

Model selection in the nonparametric regression model is inevitable since any nonpara-

metric estimator requires tuning parameters to be speci�ed in order for it to be feasible.

It is, however, standard practice to carry over the theory of nonparametric estimators

when the model is �xed to the case where the tuning parameters are no longer �xed, but

chosen by, possibly, data-driven model selection algorithms. This theory is not necessar-

ily valid as the model selection step is not taken into account. This thesis contributes to

the nonparametric econometrics and statistics literature and, in particular, to the theory

of series estimators, by showing that such estimators have desirable properties and that

valid inference is possible even when a model-selection step precedes estimation.

The �rst chapter is concerned with K-fold cross-validation and shows that the cross-

validated least-squares estimator predicts the response equally well as the unfeasible

best-linear predictor whose dimension may diverge with the sample size. This prop-

erty, known as risk consistency, is uncommon in econometrics, but it has the bene�t that
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it holds under few and very weak conditions. The risk-consistency result crucially re-

lies on the non-asymptotic analysis of the di�erence between the prediction error of the

cross-validated estimator and the best-linear predictor. As the dimension of the parame-

ters may diverge, this set-up analyses both the high-dimensional linear model as well as

the nonparametric regression model which reduces the need for duplicate theories. An

extensive Monte Carlo experiment corroborates the theoretical results by showing that

the non-asymptotic bound becomes arbitrarily small as the sample size diverges.

The second chapter returns to more classical statistics and econometrics by studying the

uniform consistency of the series estimator for the conditional mean function and its

linear functionals. The uniformity holds both in the support of the covariates as well

as the models considered. Under high-level assumptions, a non-asymptotic linearisation

result delivers uniform rates of convergence for the series estimator. By verifying the

high-level assumptions, case-speci�c rates can easily be derived. For example, the series

estimator attains, up to a small logarithmic penalty, the minimax rate of convergence for

functions lying in a Hölder ball.

The results from the second chapter form the basis for the inference procedure proposed

in the �nal chapter in order to construct valid uniform con�dence bands for the series

estimator. The uniform con�dence bands are valid in the sense that they control the

asymptotic size for the conditional mean function, or its linear functionals, seen as a pro-

cess in the covariates and the models considered. Given that the results hold uniformly

over the models considered, the inference procedure is valid regardless of which model-

selection algorithm delivers the �nal model used to estimate the parameters of interest.

The key quantity is the maximal t-statistic correctly studentised using an estimator for

the standard error. The theory relies on the uniform linearisation result from chapter two

and the concept of strong approximations, or couplings, as the limit distribution of the
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maximal t-statistic does not exist. A Monte Carlo study establishes that the uniform con-

�dence bands have the correct coverage even in �nite samples. The chapter concludes

with an application testing for shape restrictions on the demand function for gasoline in

the US using a cross-validated series estimator.

v





Contents
Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1

1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Series Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Examples of Basis Functions . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Multivariate Series Estimators . . . . . . . . . . . . . . . . . . . . 6

2 Risk-Consistency with Many Regressors After Cross-validation 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Risk Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Monte Carlo Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Uniform Convergence of Series Estimators and its Linear Functionals 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Model Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Uniform Linearisation and Convergence . . . . . . . . . . . . . . . . . . 30

3.3.1 Estimation of the Variance . . . . . . . . . . . . . . . . . . . . . . 33

vii



4 Uniform Inference and Model Selection 38

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Uniform Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Testing for Shape Restrictions . . . . . . . . . . . . . . . . . . . . 49

4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Monte Carlo Experiment . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Application to Gasoline Demand . . . . . . . . . . . . . . . . . . 53

References 58

A Appendix of Chapter 2 64

A.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.1.1 Additional Technical Results . . . . . . . . . . . . . . . . . . . . . 69

A.2 Monte Carlo Experiment Set-Up and Extra Results . . . . . . . . . . . . . 71

B Appendix of Chapter 3 75

B.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.1.1 Additional Technical Results . . . . . . . . . . . . . . . . . . . . . 79

C Appendix of Chapter 4 88

C.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

C.1.1 Additional Technical Results . . . . . . . . . . . . . . . . . . . . . 92

C.2 Extra Monte Carlo Experiment Results . . . . . . . . . . . . . . . . . . . 97

C.3 Descriptive Statistics and Estimation Results . . . . . . . . . . . . . . . . 102

D Mathematical Tools 104

D.1 Rudelson’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

D.2 Additional Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

viii



List of Figures

2.1 Quantiles of E (mCV ,m∗) in Design 1. . . . . . . . . . . . . . . . . . . . . 22

2.2 Quantiles of E (mCV ,m∗) in Design 2.1. . . . . . . . . . . . . . . . . . . . 22

2.3 Quantiles of E (mCV ,m∗) in Design 2.2. . . . . . . . . . . . . . . . . . . . 23

2.4 Quantiles of E (mCV ,m∗) in Design 2.3. . . . . . . . . . . . . . . . . . . . 23

4.1 Empirical distributions of t-statistics . . . . . . . . . . . . . . . . . . . . . 41

4.2 Empirical coverage of con�dence bands . . . . . . . . . . . . . . . . . . . 52

4.3 Plot of gasoline prices versus consumption . . . . . . . . . . . . . . . . . 54

4.4 Estimates of the price elasticities of gasoline demand . . . . . . . . . . . 57

A.1 Deciles of E (mCV ,m∗) in Design 1. . . . . . . . . . . . . . . . . . . . . . . 73

A.2 Deciles of E (mCV ,m∗) in Design 2.1. . . . . . . . . . . . . . . . . . . . . . 73

A.3 Deciles of E (mCV ,m∗) in Design 2.2. . . . . . . . . . . . . . . . . . . . . . 74

A.4 Deciles of E (mCV ,m∗) in Design 2.3. . . . . . . . . . . . . . . . . . . . . . 74

C.1 Plot of д(x ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

ix



List of Tables

4.1 Summary of the simulation study parameters. . . . . . . . . . . . . . . . 50

4.2 Monotonicity test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.1 Data-generating models in Design 1. . . . . . . . . . . . . . . . . . . . . 71

A.2 Regressors included in the model set for Design 1. . . . . . . . . . . . . . 72

C.1 Simulation results for a signi�cance level α of 90%. . . . . . . . . . . . . 99

C.2 Simulation results for a signi�cance level α of 95%. . . . . . . . . . . . . 100

C.3 Simulation results for a signi�cance level α of 97.5%. . . . . . . . . . . . . 101

C.4 Descriptive statistics on household data. . . . . . . . . . . . . . . . . . . 102

C.5 OLS Regressions of log-linear model. . . . . . . . . . . . . . . . . . . . . 103

x



1 Introduction

At the core of this thesis lies the nonparametric regression model

(1.1) Y = д(X ) + ε,

where Y is a real-valued response, X is a set of covariates and ε is the residual. Series

estimators, as explained in Section 1.2, o�er an attractive method to estimate the non-

linearity in (1.1) if a linear parametric speci�cation is not appropriate. Before introducing

the concept of series estimation, it is important to set out the notation which is used

throughout.

1.1. Notation

The consistency of the notation is vital in order to make the arguments in the text and

proofs easy to follow. Unless explicitly mentioned, all quantities are indexed by the sam-

ple size n, but this dependence is dropped in order to avoid repeatedly making use of

double subscripts. Much of the notation is, in fact, consistent with the notation in the

empirical process literature. For X1, . . . ,Xn ∈ X i.i.d. random variables drawn from

X ∼ P , let F be a sequence of classes of functions X → R. The empirical mean indexed

by F is

(1.2) En f =
1
n

n∑
i=1

f (Xi ),
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and denote the empirical process by

(1.3) Gn f =
1
√
n

n∑
i=1

f (Xi ) − E f (Xi ).

The randomised empirical process is denoted by

(1.4) Gon f =
1
√
n

n∑
i=1

ςi f (Xi ),

where ςi is an i.i.d. Rademacher random variable with P (ςi = 1) = P (ςi = −1) = 1
2 .

The set of natural numbers and real numbers are respectively written as N and R. The

model set Mn ⊆ N is loosely de�ned as {m, · · · ,m} where m and m are respectively the

minimum and maximum of Mn and its cardinality is m̃ = |Mn |. Its members will be

made explicit in the text when necessary. The letter m, without any accent marks nor

sub- or superscripts, is used to either index the model set or to denote a generic m ∈ N,

but its meaning will be clear from the context. This is to avoid confusion between the

various lettersm introduced in the text. The indexing set In is exclusively used to denote

the Cartesian product of the support X and the model set Mn. The unit sphere in Rm is

denoted by Sm−1.

The notation ‖a‖ or ‖A‖ denotes the `2-norm of a vector a or the spectral norm of a

matrix A such that ‖A‖ =
√

trA′A. The minimal and maximal eigenvalues of a matrix A

are denoted by λmin(A) and λmax(A). For any real-valued random vector x ∈ Rm, ‖x ‖p =

(E |x |p )1/p where for p = ∞ this is ‖x ‖∞ = E max1≤j≤m |xj |. Additionally, let ‖x ‖p,n =

(En |x |
p )1/p where the expectation is taken under the empirical measure and let ‖ f ‖F =

supf ∈F | f | for some arbitrary function f ∈ F . The covariance matrix is denoted by

Σm = E[Zi,mZ
′
i,m] for an i.i.d. random vector Zi,m ∈ Rm. Its sample analogue is written as

Σ̂m.
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I write a . b if there exists a universal C > 0 such that a ≤ Cb. Similarly, a .P b if

for some C > 0, a ≤ Cb on an event with probability 1 − o(1). Let a � b denote that

c < a/b < C . The letters c and C are constants which do not depend on n, but may

change meaning depending on where in the text they are used. Let a ∨ b = max{a,b}

and a∧b = min{a,b}. Finally, non-random sequences converging to zero which are only

used as prove devices are given by δn.

1.2. Series Estimation

Let me conclude the introduction with a brief overview of series, or linear sieve, estima-

tion of the regression model in (1.1). The method of sieves (Grenander 1981) relies upon

approximating the (possibly) in�nite-dimensional parameter д ∈ G by �nite-dimensional

parameters whose dimension may grow with the sample size. The sieve space is

(1.5) Gm,n =
{
д(·) :

m∑
j=1

βmj Z
m
j (·), β ∈ R

m
}
,

where Zm
j : X → R and Zm (·) = (Zm

1 (·), . . . ,Zm
m (·))′ is a system of orthonormal basis

transformation on X . Equation (1.5) reveals that the tuning parameter for this estimator

is the number of series terms m. The structure of Gm,n restricts the estimator in such a

way that estimation boils down to a straightforward least-squares problem

(1.6) βm = arg min
β∈Rm

E
(
Yi − Zm (Xi )

′β
)2
,

and its sample analogue

(1.7) β̂m = arg min
β∈Rm

En
(
Yi − Zm (Xi )

′β
)2
.

3



The approximating function mapping X into R is

дm (x ) = Zm (x )
′βm,

and its plug-in estimator is

д̂m (x ) = Zm (x )
′β̂m .

De�ne the approximation error as

(1.8) rm (x ) := д(x ) − дm (x ),

which leads to the decomposition

д̂m (x ) − д(x ) = Zm (x )
′(β̂m − βm ) − rm (x ).

Series estimators are especially attractive as they immediately o�er estimators for linear

functionals of the conditional mean function. Consider the linear operator T : G → R

applied to the decomposition in (1.8)

θ (x ) := (Tд)[x] = (TZm )[x]′βm + (Trm )[x],

which suggests using the plug-in estimator

(1.9) θ̂m (x ) = (TZm )[x]′β̂m,

as an estimator for any linear functional ofд. The approximation error of linear function-

als will similarly to (1.8) depend on the number of series termm. In Chapters 2 and 3 this

will be heavily exploited as the theory for series estimators of д carries over to plug-in

estimators of the linear functional θ with minimal e�ort under suitable conditions. For

ease of notation, write αm (x ) for (TZm )[x]. A non-exhaustive list of linear operators and

functionals which are within the scope of this thesis are:
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1. the identity operator θ (x ) = Tд[x] = д(x ) with

x 7→ αm (x ) = Zm (x ) and x 7→ rθ ,m (x ) = rm (x );

2. the di�erential operator θ (x ) = Tд[x] = ∂jд(x ) with

x 7→ αm (x ) = ∂
jZm (x ) and x 7→ rθ ,m (x ) = ∂

jrm (x );

3. the integral operator θ (x ) = Tд[x] =
∫
д(x ) dF (x ) with

x 7→ αm (x ) =

∫
Zm (x ) dF (x ) and x 7→ rθ ,m (x ) =

∫
rm (x ) dF (x ).

1.2.1. Examples of Basis Functions

Below, I review some of the most commonly used basis functions in the literature. For a

more in depth reference see Chen (2007) or Belloni et al. (2015).

Example 1.1 (Polynomials). The space of polynomials of degreem − 1 is given by

Zm (x ) = (1,x ,x2, . . . ,xm−1)′.

Example 1.2 (Fourier). The space of Fourier series of degree (m − 1)/2 for an odd m is

given by

Zm (x ) = (1, cos(2π jx ), sin(2π jx ))′ for j = 1, . . . , (m − 1)/2.

Example 1.3 (Splines). Let N be a positive integer and t1, . . . , tN be a real knot sequence

with ti < tj for i < j. The space of splines of degree p with knot sequence {ti }Ni=1 is given

by

Zm (x ) =
(
1,x ,x2, . . . ,xp, (x − t1)

p
+, . . . , (x − tN )

p
+

)′
,

wherem = 1 + p + N .

5



Example 1.4 (B-Splines). Let N be a positive integer and t0, . . . , tN be a real knot se-

quence with ti < tj for i < j and de�ne the �rst-order B-Spline as

Bi,1(x ) =




1 if x ∈ [ti , ti+1)

0 otherwise,

and higher-order B-Splines by

Bi,k+1(x ) =
x − ti
ti+k − ti

Bi,k (x ) +
x − ti+k+1

ti+k+1 − ti+1
Bi+1,k (x ),

with the convention that any Bi,k+1(x ) = 0 for x < t0 or x > tN . This recursion is known

as the Cox-de Boor recursion (De Boor 1978). The space of B-Splines of order p is given

by

Zm (x ) = (Bi,k (x ))
′ for i = 1, . . . ,N , k = 1, . . . ,p − 1,

withm = N + p.

1.2.2. Multivariate Series Estimators

The examples above only work for univariate covariates, i.e. d = 1. It is easy to construct

basis transformations for d > 1 from these univariate basis functions. This is generally

referred to as a tensor product of basis functions. Let x = (x1, . . . ,xd ) ∈ X ⊂ Rd and let

Zmi ,i (xi ) be a univariate basis transformation of xi for i = 1, . . . ,d . The tensor product of

basis functions is

Zd
m := Zm1,1(x1) ⊗ · · · ⊗ Zmd ,d (xd ),

which forms a basis system for Gd
m,n = ⊗

d
i=1G

d
m,n,i with dimension

dimGd
m,n =

d∏
i=1

mi =: m.
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The estimation problem using a tensor product of basis functions in (1.7) becomes

β̂m = arg min
β∈Rm

En
(
Yi − Z

d
m (Xi )

′β
)2
.

The subscript onm in each of the univariate basis functions indicates that the number of

series terms for each one needs to be chosen. There are a total ofd tuning parameters to be

speci�ed. This results in the number of parameters to be estimated to grow exponentially

with the dimension of the covariates. Finally, there is no need for each of the dimensions

to use the same basis functions. It is perfectly possible to, say, specify B-Splines for one

covariate and polynomials for another. Tensor products make the implementation and

the theory of series estimators straightforward when the dimension of the regressors is

greater than one.
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2 Risk-ConsistencywithManyRegressorsAf-

ter Cross-validation

2.1. Introduction

This chapter considers choosing the regressors in high-dimensional linear models by

K-fold cross-validation (KFCV). I show that the cross-validated least-squares estimator

predicts the outcome Y equally well as the best linear predictor (BLP) of dimension m∗

under a minimal set of assumptions. Let (Y ,X ) ∈ R × Rd be a real-valued response and a

vector of covariates such that there exists some relationship between Y and X captured

by an unknown function д ∈ G up to some disturbance term ε

(2.1) Y = д(X ) + ε,

which is estimated by the series estimator as introduced in Chapter 2. Given a triangular

array (Yi,n,Xi,n ) ∈ R ×X , I analyse the properties of the cross-validated estimator in two

main cases of interest simultaneously:

(1) Nonparametricmodel (NP): the researcher transforms the observed independent

variables X using basis functions Zm = Zm (X ) where Zm : X → Rm. The basis

functions form an orthonormal system on X ⊂ Rd . The resulting estimator β̂m

yields the series estimator Zm (X )′β̂m which is a �nite-dimensional approximation

to the in�nite-dimensional function д ∈ G. In this case, the covariates are �xed for
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�xedn, but KFCV chooses the number of series termsm to enter into the regression

which are contained by the model set Mn.

(2) High-Dimensional Linear model (HDL): Contrary to the NP model, the regres-

sors are such that Z = X . Here, the function д is �nite-dimensional and the goal

is to explicitly let KFCV choose which regressors from the model set to enter into

the model. The number of regressors is allowed to but does not need to diverge as

n → ∞, which means that even though д is �nite-dimensional its dimension may

change with the sample size.

By estimating the model using the series estimator, the estimation problem reduces to

a least-squares problem such that for Zi,m = Zm (Xi ) = (Zm
1 (Xi ), . . . ,Z

m
m (Xi ))

′ and Di =

(Yi ,Zi,m )
n
i=1 a random sample of observations drawn from P yields the least-squares esti-

mator

(2.2) β̂m := arg min
β∈Rm

En
(
Yi − Z

′
i,mβ

)2
.

In many situations the choice of regressors or the number of variables to enter into the

model is unknown. Data-driven procedures can be very helpful in choosing an appro-

priate model, but common techniques use the same data for model selection as for esti-

mation. It is vitally important to derive the statistical properties of these estimators by

taking into account the model-selection step rather than assuming that the usual prop-

erties carry over from the case where the model is �xed. The goal in this chapter is to

study the properties of the least-squares estimator when the number of regressors can

grow with the sample size, but the �nal dimension is chosen by KFCV.

The well-known KFCV procedure in the least-squares setting is as follows. De�ne a

sequence of modelsMn = {m, . . . ,m}, called the model set, where the researcher chooses

9



m andm beforehand. For anym ∈Mn partition the data intoK independent sub-samples,

Sk . For each fold k ∈ {1, . . . ,K } compute the least-squares estimator β̂m,−k withholding

the data in Sk such that the cross-validated choice ofm is

(2.3) mCV = arg min
m∈Mn

RK (m),

for

RK (m) :=
1
K

K∑
k=1

1
|Sk |

∑
i∈Sk

(
Yi − Z

′
i,m β̂m,−k

)2
.

After obtaining mCV , estimate the least squares estimator in (2.2) using these regres-

sors.

I establish the optimality of the cross-validated estimator in terms of risk consistency

which is de�ned below. Let Dn+1 = (Yn+1,Zn+1,m ) be a new observation drawn from P

and denote the predictive risk conditional on the data used for estimation by

R (βm ) := EDn+1 |D1,...,Dn [(Yn+1 − Z
′
n+1,mβm )

2].

I want to compare the cross-validated estimator to the BLP of dimensionm∗, whose par-

ticular role will be discussed in more detail after De�nition 2.1, by studying the excess

risk between these two quantities

(2.4) E (mCV ,m∗) := R (β̂mCV ) − R (βBLPm∗ ),

where,

(2.5) βBLPm∗ := arg min
β∈Rm∗

E
(
Y − Z ′m∗β

)2
.

Using these concepts, risk consistency is then de�ned as follows.
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De�nition 2.1 (Greenshtein and Ritov 2004). A sequence of estimators β̂m is risk con-

sistent if, for any sequence of P ∈ P

(2.6) E (m,m∗)
p
−→ 0,

wherem is not necessarily equal tom∗.

Any estimator that satis�es this de�nition asymptotically predicts the outcome equally

well as the theoretically optimal but practically infeasible best linear predictor (BLP) us-

ing m∗ regressors. This criterion is uncommon in econometrics, but there are several

advantages of using risk consistency. Firstly, far fewer assumptions are maintained to

establish optimality in this sense compared to the usual `2-distance between β̂ and some

β . For example, there is no need for exogeneity assumptions nor any assumptions on

the conditional heteroskedasticity of the data. The exact assumptions maintained in this

chapter are set out below. Secondly and more importantly, it allows for the comparison

between the data-driven estimator β̂mCV and the infeasible choice βBLPm∗ . This makes a

direct comparison between quantities of di�erent dimensions possible and straightfor-

ward. Finally, establishing the properties of estimators in terms of risk consistency is

useful and meaningful in applications where R (βm )
p
−→ 0 is unlikely, as pointed out in

Greenshtein and Ritov (2004).

Therefore, I do not explicitly assume the existence of a true model. The goal is to use

the information in X to predict Y , rather than to conduct inference on д. Hence, it is

not assumed that д is correctly speci�ed and thus does not necessarily have the usual

interpretation of the conditional mean function. Both cases are, however, covered by

the theory. For this reason, the de�nition of m∗ is left as general as possible on pur-

pose. However, the interpretation of m∗ should depend on the application at hand. In

the NP model, it is natural to consider a sequence of m∗ such that it diverges at a rate

11



at which the researcher believes the series estimator attains the optimal rate of conver-

gence. The leading constant in nonparametric rates of convergence is often unknown.

The researcher could specifym,,m andm∗ to diverge at the same rate, but starting from

di�erent levels. Therefore, it would be perfectly possible that m∗ is not a member of the

model set for some n. In contrast, it would make more sense in the HDL model that

m∗ ∈Mn with the understanding that the researcher usually has some prior knowledge

of which regressors are good predictors for Y . It is then natural to study the performance

of the cross-validated estimator to the BLP of some dimension m∗ ∈ Mn. The simula-

tion results in Section 2.3 show how this comparison could work in practice by setting

m∗ to the true data-generating process in the HDL model and to the optimal L2-rate of

convergence in the NP model. The generality also o�ers the additional bene�t that it

is possible to give upper bounds on how complex the estimated model can be given the

maintained assumptions. The rates of convergence derived on the excess risk, and in par-

ticular in Corollary 2.1.2, provide a useful indication of how large an m∗ one can choose

before KFCV breaks down. Condition 2.4 formally states how Mn, throughm, relates to

m∗ which, given the discussion above, is left as general as possible for the theory to go

through whilst leaving room for practitioners to make the comparisons they �nd most

appropriate and relevant.

The main result establishes a non-asymptotic bound on the excess risk under minimal

assumptions on the data. Using this non-asymptotic bound I derive a rate of convergence

for the excess risk and establish the risk consistency of the cross-validated estimator

as the sample size grows. Like Shao (1993), I show that leave-one-out cross-validation

(LOOCV) is not necessarily optimal, i.e. not risk consistent, as this is equivalent to KFCV

withK = n. In fact this holds for any cross-validation method for whichK � n. There is a

trade-o� between how fast K andm can grow with the sample size. This is the �rst such
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result in a high-dimensional linear setting. To truly show that LOOCV is sub-optimal,

one would need to establish a lower bound on the risk consistency which is not within

the scope of the theory presented here.

Remark 2.1. The results presented in the chapter continue to hold for model choices m̌

and some non-random sequence τn > 0 such that

RK (m̌) ≤ RK (m
CV ) + τn .

This would come at the cost of carrying the term τn around in Theorem 2.1 and the proofs

with the assumption that τn → 0 as n → ∞. This is especially relevant when the cross-

validation objective function RK (m) is �at in a neighbourhood aroundmCV . In such cases,

researchers may wish to select the most parsimonious model within a certain tolerance

level around RK (m).

2.1.1. Related literature

This chapter mainly contributes to the literature on cross-validation which has been ex-

tensively studied in statistic and econometrics. Much of the work, especially on LOOCV,

dates back to the 1970s starting with Allen (1974), Stone (1974), Geisser (1975) and Wahba

and Wold (1975). In a seminal paper, Li (1987) established the optimality of LOOCV in

terms of asymptotic e�ciency, i.e.

(2.7)
L(β̂mCV )

infm∈Mn L(β̂m )

p
−→ 1,

where L(βm ) is the L2-loss with m regressors. Andrews (1991b) extended these results

to the heteroskedastic case. Hansen (2014), in turn, extended their work to the non-

parametric setting where cross-validation is used to select the number of series terms to
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enter into the regression. However, his results are limited to LOOCV and to nested models

which are truly in�nite dimensional. Neither of which is assumed here. The question

answered in this chapter is fundamentally di�erent from the ones in the cited literature

as I do not establish that KFCV can approach the optimal m ∈ Mn in mean-squared

error sense, but compare how well cross-validation does compared to the BLP whose

dimension is a sequencem∗ which need not be a member of the model set Mn.

Several optimality criteria exist and the various �avours of cross-validation may be op-

timal according to one and sub-optimal according to another. Shao (1993) showed that

LOOCV is inconsistent if a true �nite-dimensional model exists, but leave-K-out cross-

validation is consistent which is in line with this chapter but for another optimality cri-

terion. Lastly, Arlot and Celisse (2010) contains and extensive review of the theoretical

results on various �avours of cross-validation combined with practical guidelines for re-

searchers using these techniques in applied work.

This chapter also contributes to the literature where risk consistency is used as the (main)

property of interest. Despite it being uncommon in econometrics, it has been used quite

successfully in the statistical literature. In particular, it is popular in establishing opti-

mality in penalised estimators. For example, Greenshtein and Ritov (2004) for the Lasso

under L2 loss and van de Geer (2008) for the Lasso under Lipschitz loss functions. Hsu,

Kakade and Zhang (2014) establish the risk consistency of the least-squares and ridge

regression estimators.

These authors established the risk consistency property under weak assumptions, but

the main drawback is that they do not take into account that the tuning parameters are

usually chosen by some data-driven procedure. Homrighausen and McDonald (2013)

�lled in this gap by proving the risk consistency of the Lasso where the penalty is chosen
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by KFCV. Since the use of these regularisation estimators in practice usually includes a

model-selection step it is important to establish their properties rather than ignoring the

model-selection step as is all too common.

2.2. Risk Consistency

Before presenting the main results – the non-asymptotic bound on the excess risk and the

risk consistency of β̂mCV – I list the assumptions which are maintained to deliver these

results.

Condition 2.1 (Nested models). For the set of regressorsMm with dimensionm, we have

thatm < m′ implies thatMm ⊂Mm′ .

Condition 2.1 simply states that the models are nested, which means that the regressors

are nested for increasing values ofm. In the HDL model this literally means that the set of

regressors is nested, but in the NP model this states that the series expansions are nested

after the regressors are transformed by some basis transformation. For example, this is

the case when the transformations are splines of a �xed degree, but the knot sequences

are nested asm increases.

Condition 2.2 (Sample). The data Di = (Yi ,Zi,m )
n
i=1 is a random sample from P ∈ P .

Condition 2.3 (Distribution). Let P be the set of distributions P for which the following

holds: (i) E
[

max1≤i≤n |Yi |
2

]
+ E

[
max1≤i≤n ‖Zi,m∗ ‖

2
]
=: ξ 2

m∗ < ∞; (ii) for some C < ∞,

maxj≤m∨m∗ E |ZijYi |
3 ≤ C ; (iii) λmin(Σn ) ≥ c > 0 for Σn := E[DiD

′
i].

The second set of assumptions, Conditions 2.2 and 2.3, summarises the characteristics of

the distributions over which the results hold uniformly. These impose mild conditions
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on the moments of the data. In particular, Condition 2.3(i) does not require the support of

the data to be bounded almost surely which is a common simplifying assumption in the

literature. Of course, all results will be valid if this is indeed the case. Condition 2.3(ii)

states that the covariance matrix of the regressors of dimensionm is invertible, but under

weak conditions on the density of the data this can always be achieved (Belloni et al.

2015). The design is random, but without loss of generality Σn = In.

Condition 2.4 (Dimensions). The relationship betweenm andm∗ is such thatm �m∗.

Condition 2.4 is a high-level assumption laying out the relationship between m and m∗.

It basically states thatm may not be ‘too far’ fromm∗ and incorporates the two situations

of interest: m and m∗ are �xed or m and m∗ diverge with the sample size. There should

ideally be a way to choose m such that it adapts to the rate in Corollary 2.1.1. However,

such a method should not introduce extra nuisance parameters as this would defeat the

point. How to choosem is still very much an open question and beyond the scope of the

research presented here.

The quantity E (mCV ,m∗) is a random variable since KFCV is a data-driven procedure

which means that mCV and m∗ may di�er. It is possible for the excess risk to be nega-

tive, but Lemma 2.1 below provides some high-level conditions under which this event

is unlikely to happen, at least asymptotically.

Lemma 2.1. Suppose that Condition 2.1 holds and thatm = o(m∗). Then,

(2.8) E (mCV ,m∗) ≥ 0,

with probability at least 1 − o(1). The inequality in (2.8) holds almost surely ifm =m∗.

Let me introduce the quantities below which simplify the exposition of the main results
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and the proofs:

√
A :=

√
m∗ +

√
ξ 2
m∗ logm∗/n

ϵ1 := c +
√
m∗ + 2

√
K

ϵ2 := (c′ + 4
√
K )A,

for constants c = 3 + 2
√

2 and c′ = c +
√

2.

Theorem2.1. Assume that Conditions 2.2 and 2.3 and Condition 2.4 hold and thatn ≥ Cξ 2
m∗ logm∗

for C > 0 su�ciently large. Then, uniformly in P ∈ P ,

(2.9) E (mCV ,m∗) .P (ϵ1 + ϵ2)

√
ξ 2
m∗ logm∗

n
.

The non-asymptotic bound in Theorem 2.1 shows that under minimal assumptions the

excess risk is bounded for �nite n with high probability. Theorem 2.1 delivers a rate of

convergence on the excess risk under the following growth condition.

Condition 2.5 (Growth rates). Kξ 2
m∗m

2
∗ logm∗ = o(n).

Condition 2.5 rules out a meaningful upper bound for LOOCV which hints at its sub-

optimality similar to the results in Shao (1993). However, it does provide a justi�ca-

tion for the usual wisdom that 3 or 5-fold cross-validation works well in prediction-type

problems. Theorem 2.1 combined with Condition 2.5, a mild growth condition on the di-

mension of the infeasible BLP, shows that the cross-validated estimator is risk consistent

according to De�nition 2.1. It thus shows that the cross-validated estimator can predict

the outcome equally well asymptotically as the infeasible BLP.

Corollary 2.1.1. Assume the conditions in Theorem 2.1 and Condition 2.5, then

E (mCV ,m∗) = OP

(√
Kξ 2

m∗m
2
∗ logm∗/n

)
= o(1).
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Corollary 2.1.1 only uses the high-level conditions as stated above, but it is straightfor-

ward to apply it to obtain a rate of convergence on the excess risk for the HDL and NP

model.

Corollary 2.1.2. Assume that the conditions in Corollary 2.1.1 hold. Furthermore, assume

that E[|Yi |s] . 1 for some s > 2 and that ‖Xi ‖ . 1 for any n. In the HDL model with

bounded regressors, i.e. Z = X , it follows that

E (mCV ,m∗) = OP

(√
Km2

∗ logm∗/n(s−2)/s
)
= o(1).

Furthermore, in the NP model

E (mCV ,m∗) = OP

((
n1/s ∨

√
m∗

)√
Km2

∗ logm∗/n
)
= o(1),

if the basis transformations Z : X → Rm : x 7→ Z (x ) are tensor products of B-Splines on Rd

or

E (mCV ,m∗) = OP

(
(n1/s ∨m∗)

√
Km3

∗ logm∗/n
)
= o(1),

if the basis transformations Z are tensor products of polynomials on Rd .

For polynomials and B-Splines, respectively, it holds that ‖Zm‖ . m and ‖Zm‖ .
√
m

for any m. Hence, it only remains to combine a bound on ξm in Condition 2.3 with

Corollary 2.1.1 to derive the rate of convergence of the excess risk. The bound on ξm

will inevitably depend on the tails of Y and Z . The tails of the response will di�er from

application to application, but bounds on ‖Zm‖ are readily available for many basis trans-

formations, see e.g. DeVore and Lorentz (1993).
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2.3. Monte Carlo Experiment

In this section, I conduct an extensive Monte Carlo experiment to study the �nite-sample

properties of the excess risk E (mCV ,m∗). Two main designs are considered: one relat-

ing to the HDL model and one relating to the NP model. For each of the designs the

experiment is replicated 100,000 times for the sample sizes 50, 100, 250, 500 and 1000.

Each experiment uses K = 5 which relates to 5-fold cross-validation (5FKV). In addition

to studying the behaviour of KFCV, I include the results from LOOCV and the Akaike

Information Criterion (AIC) for comparison.

Design 1 is inspired by the Wild Bootstrap (Wu 1986; Liu 1988). The linear model is

(2.10) Yi,n = X ′i,nβn + εn,

where (Yi,n,Xi,n ) is an observed response and a vector of regressors. The data-generating

process used in the simulation study is

Y ∗i,n = X ′i,n β̂n + ui,n,

where β̂ is the estimator for β in (2.10) and ui,n ∼ N (0, 1). The data used to calibrate

the model is a real-world dataset from Riphahn, Wambach and Million (2003) on German

health care.1 This dataset collects data from a panel study, but I �x the year to 1988 to

obtain a cross-sectional dataset. The independent variable is the log of household income

and ‘true’ model is chosen from the available regressors. Note that the subscript n in

(2.10) implies that the model changes for each n = 50, 100, 250, 500, 1000. Speci�cally, the
1This dataset can be downloaded from https://dx.doi.org/10.1002/jae.680 together with a ‘readme’ doc-

ument fully explaining the dataset.
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dimension of the regressors used to estimate βn diverges as n → ∞. This yields a high-

dimensional �xed-regressors design with Gaussian noise. The comparisons are made

versus m∗ which is set to the true model generating the data. See Appendix A.2 for the

speci�cation of the true models and the model set from which the three model-selection

techniques can choose a model for estimation.

The model generating the data in the NP case (Design 2) is:

Y = log( |6x − 3|) sgn(x − 0.5) + ε .

The random variable X is a uniform random variable on (−3, 3) and ε is a centred Gaus-

sian random variable. This function is a rescaled version of the one used in Newey and

Powell (2003) and Chen and Christensen (2015a).

There are three sub-cases: a low and high-variance homoskedastic case (Design 2.1 and

2.2) and a heteroskedastic case (Design 2.3). In Design 2.1, σ 2 =
√

0.5, in Design 2.2

σ 2 = 2
√

2 and in the heteroskedastic Design 2.3 σ 2 =
√

0.5X . Note that in the �nal

case, the error variance is not bounded away from zero. The unknown conditional mean

function д is approximated using cubic splines with a sequential knot sequence Sn on

(−3, 3) where the knots are multiple of 0.25:

Sk
n =

k⋃
j=0

{
±

j

4

}
.

For Designs 2.1-2.3, the knot sequences are set with k = 2, 3, 5, 7, 9 for the oracle and

kmax = 4, 6, 10, 14, 18 for n = 50, 100, 250, 500, 1000. The latter is also the number of

models since the lower bound for the model set is zero for each n. This translates to

the following number of parameters m∗ = 9, 12, 15, 19, 23 and m = 13, 17, 25, 33, 41. The

sequence m∗ ensures that the infeasible д̂m∗ = Z ′m∗ β̂m∗ attains the optimal L2-rate, see

Belloni et al. (2015).
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Figures 2.1 to 2.4 summarise the results. They accompany the theoretical results nicely

by showing that 5FCV works well for predicting the unknown response, but that LOOCV

does not perform as consistently as hinted at by Theorem 2.1. This is especially apparent

in Figure 2.2. Surprisingly, the AIC works well in all cases despite the fact that Andrews

(1991b) showed that optimality breaks down in heteroskedastic designs albeit for a dif-

ferent optimality criterion. This suggests that the AIC deserves more attention even in

heteroskedastic designs. More results showing the deciles of E (mCV ,m∗) for each of the

sample sizes are collected in Appendix A.2.
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Figure 2.1: Quantiles of E (mCV ,m∗) in Design 1.
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Figure 2.2: Quantiles of E (mCV ,m∗) in Design 2.1.
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Figure 2.3: Quantiles of E (mCV ,m∗) in Design 2.2.
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Figure 2.4: Quantiles of E (mCV ,m∗) in Design 2.3.
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3 Uniform Convergence of Series Estimators

and its Linear Functionals

3.1. Introduction

Chapter 2 showed that the cross-validated series estimator predicts the outcome Y well

in high-dimensional linear or nonparametric models. In this chapter, I return to a more

classical optimality criterion and turn the attention to the conditional mean function

д ∈ G and its linear functionals θ : G → R in the nonparametric regression model in (1.1).

The main result in this chapter is the uniform consistency with a rate of convergence of

the series estimator where the uniformity holds both over the support of the covariates

X as well as the model set Mn, i.e. it holds for any (x ,m) ∈ X ×Mn =: In. For functions

in a Hölder ball, the series estimator attains the minimax rate of Stone (1982) up to a

small logarithmic factor due to the uniformity over the model set Mn.

A non-asymptotic bound together with an undersmoothing condition on the approxi-

mation error is central in establishing the uniform consistency result. These results

are of independent interest, but more importantly they lay the foundation for the the-

ory presented in Chapter 4. The non-asymptotic bound requires deriving properties on

high-dimensional covariance matrices. Therefore, this chapter concludes by showing

that the heteroskedasticity-consistent standard errors for θ̂m are uniformly consistent in

Mn.
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3.1.1. Related Literature

The literature on the consistency and asymptotic normality of sieve and series estima-

tors is mature. Classical results can be found in Andrews (1991a), Stone (1994), Newey

(1997), Huang (2003) and an excellent review chapter in Chen (2007) summarising results

which are still relevant today. More recent results are in Chen and Christensen (2015b),

Belloni et al. (2015) and Hansen (2015). Belloni et al. (2015) were the �rst authors to study

the consistency and inference uniformly in the support of the regressors and extended

the theory of series estimators in several directions. However, their results only hold

uniformly in X .

As pointed out in Chapter 2, there is also an extensive literature on the optimality of

data-driven series estimators, see Li (1987), Andrews (1991b) and Hansen (2014). How-

ever, many of these concentrate on proving that the chosen m delivers a model which

minimises some variant of the mean-squared error, yet inference on the ‘true’ д or θ

is often the end goal in econometrics. These papers fail to address the issue that data-

driven procedures also deliver uniformly consistent estimators, let alone valid inference.

An important exception to these works is Chetverikov, Liao and Chernozhukov (2019)

who derive the rate of convergence of the cross-validated Lasso estimator when m � n.

Their theory could be adapted to the nonparametric case, but this is not a trivial exercise.

The set-up here circumvents the problem of handling each model-selection procedure on

a case-by-case basis. Due to the uniformity over Mn, it holds that the data-driven series

estimator is consistent regardless of the algorithm used in choosing the number of series

terms.

The uniform convergence results presented in this chapter �ll a gap in the series literature

which has long been �lled in the kernel literature. Einmahl and Mason (2005) proved
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the uniform-in-bandwidth consistency of kernel estimators in density estimation and

in nonparametric regression. The techniques used in their paper are unfortunately not

transferable due to the fact that the choice of the smoothing parameter is inherently

discrete in series estimation. Hence, this research complements the kernel literature and

tries to bridge the gaps in the results already proved in that area.

3.2. Model Framework

The model is as in (1.1)

(3.1) Y = д(X ) + ε,

where д : X → R is the unknown conditional mean function. With a sample (Yi ,Xi )

drawn from (Y ,X ) ∼ P , the model can be decomposed into three components

Yi = Z ′i,mβm + ri,m + εi ,

for Zi,m = Zm (Xi ) ∈ R and ri,m = rm (Xi ) and any m ∈ Mn. The quantities Yi ,Xi and д

may all change with n, but this notation is suppressed for simplicity. The model set

(3.2) Mn :=
{
m ∈ N : m ∈ [m,m]

}
,

collects the models under consideration and contains the number of series terms to ap-

pear in the expansion (1.5). The vector βm is the best linear predictor which solves

(1.6) such that Z ′i,mβm is the BLP of д ignoring the deterministic bias rm. Thus, for any

m ∈Mn

д̂m − д = Z ′m (β̂m − βm ) − rm,
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where β̂m is the least-squares estimator solving (1.7), which motivates using д̂m = Z ′i,m β̂m

as an approximation for д. This decomposition conveniently carries over to linear func-

tionals using the notation from Section 1.2

θ̂m − θ = α
′
m (β̂m − βm ) − rθ ,m .

The approximation error, rθ ,m depends on the functional θ as well as the order of the

approximationm. The dependence on θ will be assumed and will not be made explicit in

the notation. This allows me to handle the case for the conditional mean function and

linear functionals simultaneously without the need for duplicate theories for both cases.

Linear functionals will be of particular interest in Section 4.3.2 where I use the theory

derived in this chapter to derive uniform inference methods to test the monotonicity of

the demand function for US gasoline.

Remark 3.1. The popular partially linear model (Blundell, Chen and Kristensen 2007;

Cattaneo, Jansson and Newey 2018a,b) is fully supported in the framework as described

above. Writing this model with X = (X1,X2) ∈ X1 × X2 as

Y = д(X1) + X
′
2γ + ε .

Then, de�neZm (x1,x2) = (Z1,m (x1)
′,x′2)

′where the basis transformations areZ1,m : X1 →

Rm and βm = (β′1,m,γ
′)′. The theory continues to hold if the assumptions described below

are adapted appropriately.

Within this set-up, various quantities are left to the researcher to specify. The �rst choice

is which basis functions to use to approximate д and θ well. This will ultimately de-

pend on the nature of the observed data and the application at hand. The theory is pre-

sented to accommodate frequently used basis functions or tensor products thereof, see

Sections 1.2.1 and 1.2.2. The most important quantity is the model set Mn as de�ned in
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(3.2). At an abstract level, the researcher needs to specify the minimumm and maximum

m number of series terms to appear in the approximation of the conditional mean func-

tion. Gaps in Mn are allowed, but the size of the model set m̃ := |Mn | will no longer be

m−m+1 in that case. This will be assumed implicitly, but it is not a material assumption,

see e.g. Corollary 3.3.1.

The uniformity results depend on the tail behaviour of the additive noise ε . The quan-

tity νn :=
√

E[max1≤i≤n ε
2
i ] will, therefore, feature frequently. In the description of the

assumptions below, �x m ∈ Mn to avoid repeatedly having to use ‘uniformly over

m ∈Mn’.

Condition 3.1. (Data) (Xi ,Yi )
n
i=1 is an i.i.d sample from P and satis�es (1.1). Furthermore,

the support of X , X , is a bounded set in Rd for any n.

Condition 3.2. (Sieve space) The basis transformations are such that Σm = E[Zi,mZ
′
i,m] is

a positive de�nite matrix with λmax(Σm ) . 1.

Condition 3.3. (Loadings) The loadings αm in the approximation to the linear functional

θ are such that ξm := supx∈X ‖αm (x )‖ ≤ Cn, 0 < c ≤ ξm and log ξm . logm.

Condition 3.1 is a standard assumption. The support X is bounded, but its diameter is

allowed to depend on the sample size n. Condition 3.2 implies without loss of generality

that Σm = Im. It is always possible under this assumption to rotate the basis transfor-

mations such that they are uncorrelated and have unit variance, see Proposition 2.1 in

Belloni et al. (2015). Hence, the design is random with an unknown covariance matrix.

The growth condition on ξm depends on the number of regressorsm and is generally in-

creasing inm. Therefore, the results are stated in terms of its upper bound ξm as ξm ≤ ξm

for any m ∈ Mn if the basis transformation remain the same across the di�erent m. If

this is not the case then ξm can be replaced by ξm̃ := maxm∈Mn ξm. The bounded-support
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condition and ξm can be relaxed to assumption on the moments ofX at the cost of greater

technicalities. See Chapter 2 or Hansen (2015) who replaces this assumption by showing

that the growth rate ofm is invariably linked to the number of moments of X .

Condition 3.3 is a regularity condition stating which linear functionals are allowed. This

makes it possible to normalise αm to lie in the unit sphere Sm−1 without loss of generality.

Of course, with αm (x ) = Zm (x ) these bounds immediately follow from the properties of

the actual basis functions and are readily available in many situations as discussed in

Example 3.1.

Condition 3.4. (Noise) The errors satisfy: (i) E[εi |X ] = 0; (ii) c < E[ε2
i |X ] a.s. for some

c > 0; (iii) E[εsi |X ] . 1 a.s. for some s > 2.

Condition 3.5. (Bias) The approximation errors satisfy ‖ri,m‖∞ ≤ bm ≤ bm̃ where

bm̃ := maxm∈Mn bm < ∞.

Condition 3.6. (Growth rates) Let the following growth rates be: (i)bm̃ = o(1); (ii) (νn∨bm̃ )

ξmm̃
2 = o(

√
n); (iii) (νn ∨ bm̃ )ξ 2

m
m̃ logm logm̃ = o(

√
n).

Condition 3.4 is a mild condition stating that the errors are exogenous with conditional

variance bounded from above and below. However, I do not need to maintain that they

are homoskedastic. The estimators of the variance of θ̂m in Section 3.3.1 is the well-

known heteroskedasticity-consistent estimator from the parametric setting. This implies

that a heteroskedastic design is assumed by default as this estimator is valid under het-

eroskedasticity as well as the lack thereof. Condition 3.5 relates to the bias term rm which

is deterministic but does depend on the chosen model m. The results are most useful if

bm̃ → 0 which surely happens whenm → ∞ and Condition 3.1 is satis�ed.

It is helpful to keep the following example in mind for the results on uniform conver-
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gence. This example also aids in making the abstract theorems more concrete and prac-

tical as evidenced in Theorem 3.3 and Corollary 3.3.1.

Example 3.1. Recall the de�nition of a Hölder ball in X , Hp ≡ Hp (X ). Let Cu (X ) be

the space of uniformly continuously di�erentiable functions on X then de�ne the Hölder

ball as

Hp :=
{
f ∈ Cu (X ) : 


f

([p])


∞ + sup
x,x̌ ,x ,x̌∈X

���D
[p] f (x ) − D[p] f (x̌ )���
‖x − x̌ ‖p−[p] ≤ c

}
.

for p > 0 and [p] the integer part of p for some radius 0 < c < ∞. Suppose that the linear

functional θ lies in Hp , that X ∈ X ⊂ Rd and that Zm : Rd 7→ Rm are tensor product

B-Splines of order p0. Standard approximation theory then states that

ξm .
√
m and bm̃ . m

−(p∧p0)/d .

Approximation results for many linear and non-linear sieve spaces are widely available

and do not need to be derived specially for boundingbm orbm̃, see e.g. DeVore and Lorentz

(1993), Huang (2003) and Chen (2007).

The example above already highlights that the rates will depend on how m and m grow

with n and on the unknown smoothness of the conditional mean function. It is worth

re-iterating that the techniques in this chapter do not adapt to the unknown smoothness

of θ .

3.3. Uniform Linearisation and Convergence

The uniform linearisation in Theorem 3.1 establishes the connection between θm (x ) −

θ (x ), Zi,m, εi and ri,m. It is a non-asymptotic result and thus holds for somen large enough
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with high probability. This non-asymptotic bound on θm (x ) −θ (x ) uniformly in (x ,m) ∈

In is the foundation for the main result in this chapter: the uniform convergence in

(x ,m) ∈ In under high-level conditions.

Theorem 3.1. Under Conditions 3.1 to 3.5 it follows that

√
nαm (x )

′(β̂m − βm ) = αm (x )
′GnZi,mεi + R1,n (αm (x )) + R2,n (αm (x )),

with

R1,n (αm (x )) .P (νn + bm̃ )

√
ξ 2
m
(m logm) (m̃2 logm̃)

n
=: r 1n,

summarising the impact of estimation, and

R2,n (αm (x )) .P bm̃

√
m logm logm̃ =: r 2n,

summarising the impact of the approximation error, uniformly over (x ,m) ∈ In.

Remark 3.2. Them logm terms in the bounds of Theorem 3.1 can be improved to logm

by maintaining an extra assumption on α (x ), namely a Lipschitz condition

‖α (x ) − α (x̌ )‖ ≤ L‖x − x̌ ‖,

where L potentially depends on n such that it may diverge as n → ∞. This relaxes

the bounds on the covering numbers used in the proofs, see e.g. De�nition D.1 and

Lemma B.6. The reason for this is that the covering numbers under a Lipschitz con-

dition depend on d , the dimension of X which is �xed, rather than the dimension of Zm.

See Chernozhukov, Chetverikov and Kato (2014b), Belloni et al. (2015) and Belloni, Cher-

nozhukov and Fernandez-Val (2019) where this condition has been successfully used to

improve the rates. However, I prefer to present a slightly worse rate which circumvents

an extra condition that would have to be veri�ed in practice.
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The uniform linearisation result in Theorem 3.1 is a key result in order to obtain a non-

asymptotic bound on the L∞-norm of the processes αm (x )′(β̂m − βm ) and θ̂m (x ) − θ (x )

where the latter quantity takes into account the bias term.

Theorem 3.2. Assume that the conditions from Theorem 3.1 hold. Then,

(3.3) sup
(x ,m)∈In

���αm (x )
′(β̂m − βm )

��� .P
ξm
√
n

(√
m logm logm̃ + r 1n + r 2n

)
,

and

(3.4) sup
(x ,m)∈In

���θ̂m (x ) − θ (x )
��� .P

ξm
√
n

(√
m logm logm̃ + r 1n + r 2n

)
+ bm̃ .

Theorem 3.2 is the second main result and immediately provides a non-asymptotic bound

in the sup-norm on the estimator of the conditional mean function as well as its linear

functionals. This abstract result can readily be used to derive rates of convergence for

these quantities of interest where the rate will ultimately depend on the application at

hand. Theorem 3.2 is the �rst one to consider uniform convergence in both the support

of the regressors as well as the number of series terms. Below, I show how to derive a

more familiar rate of convergence for linear functionals which lie in a Hölder ball with

�nite radius as in Example 3.1.

Theorem 3.3. Let Conditions 3.1 to 3.5 hold. In addition assume that X ⊂ Rd , θ ∈ Hp and

(νn + bm̃ )m̃ξm .
√
n. If the vector of approximating functions Z consists of a tensor product

of polynomials of order p, then

(3.5) sup
(x ,m)∈In

���θ̂m (x ) − θ (x )
��� .P

√
m3 logm logm̃

n
+m1−p/d .

Also, if the vector of approximating functions Z consists of a tensor product of B-Splines of

order p0, then

(3.6) sup
(x ,m)∈In

���θ̂m (x ) − θ (x )
��� .P

√
m2 logm logm̃

n
+m−(p0∧p)/d .
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The conditions used to derive the rate in Theorem 3.3 are completely in line with the

results in Belloni et al. (2015) up to the m̃ term, but the rate itself is slower due to the

uniformity over Mn.

Corollary 3.3.1. In the setting of Theorem 3.3 with the vector of approximating functions

a tensor product of B-Splines of order p0 ≥ p assume the Lipschitz condition on the loadings

αm as in Remark 3.2 with L . 1. Then, choosing for c < C

m = c

(
logn
n

)−d/(2p+d )
and m = C

(
logn
n

)−d/(2p+d )
,

it follows that

(3.7) sup
(x ,m)∈In

���θ̂m (x ) − θ (x )
��� = OP

(√
logn − log logn

( logn
n

)p/(2p+d ))
= o(1),

if p/d > 1/2 and s > 2 + 2
p/d−0.5 .

The
√

logn − log logn term is the price to pay for uniformity over the model set. Up to

this term, the rate derived in Corollary 3.3.1 is the optimal rate of Stone (1982) in this

problem and matches the one derived in Belloni et al. (2015). The Lipschitz condition

as discussed in Remark 3.2 makes it possible to compare the rate presented here with

those derived in the literature on equal terms. Note that Theorem 3.3 and Corollary 3.3.1

implicitly assume Condition 3.6(i), i.e. bm̃ → 0. It is a necessary condition that the

approximation error vanishes as n → ∞ since α ′mβm is only an approximation to the the

in�nite-dimensional linear functional θ . Despite the fact thatm andm grow at the same

rate in Corollary 3.3.1, the size of the model set m̃ diverges with the sample size.

3.3.1. Estimation of the Variance

This section provides non-asymptotic bounds on the estimation error of the covariance

matrices which ultimately leads to the consistency and rate of convergence of the vari-
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ance of θ̂m uniformly inm ∈Mn. The central covariance matrix is

Σm := E[Zi,mZ
′
i,m],

with its natural estimator

Σ̂m := En[Zi,mZ
′
i,m].

These quantities play an important role in the least-squares estimator

βm = Σ−1
m E[Zi,mYi] and β̂m = Σ̂−1

m En[Zi,mYi].

Theorem D.1 in Appendix D, which has also been extensively used in Chapter 2, provides

the following non-asymptotic bound on high-dimensional random matrices. These re-

sults depend on an important inequality due to Rudelson (1999), see Lemma D.1. There is

a rich literature on bounds of this type for random matrices, see Tropp (2015) for a exten-

sive summary and Belloni et al. (2015) and Chen and Christensen (2015b) for applications

in econometrics.

Corollary 3.3.2. Under Conditions 3.1 to 3.4, it follows that

(3.8) ‖Σ̂m − Σm‖ .P νn

√
ξ 2
m

logm
n

and ‖Σ̂−1
m − Σ−1

m ‖ .P νn

√
ξ 2
m

logm
n

.

Furthermore,

(3.9) max
m∈Mn

‖Σ̂m − Σm‖ .P νn

√
ξ 2
m
m̃2 logm

n
,

and if the models indexed bym ∈Mn are nested

(3.10) max
m∈Mn

‖Σ̂m − Σm‖ .P νn

√
ξ 2
m

logm
n

.
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Corollary 3.3.2 establishes that under very mild conditions, I can consistently estimate

both Σm as well as its inverse which has the same rate. Similarly, the estimator Σ̂m is

uniformly consistent with a small m̃ penalty term. However, this penalty term disappears

when the models are nested since maxm∈Mn ‖Σ̂m − Σm‖ = ‖Σ̂m − Σm‖. Crucially the rate

requires that

ν2
nξ

2
m logm/n → 0,

for pointwise convergence and the stronger condition

ν2
nξ

2
mm̃

2 logm/n → 0,

for uniform convergence. Note that this does not impose the need for any m ∈ Mn to

diverge with the sample size. Next, I turn to the estimation of the variance of θ̂m. For this

purpose de�ne the matrices

Ξm := E[(εi + ri,m )2Zi,mZ
′
i,m] and Ωm := Σ−1

m ΞmΣ
−1
m ,

and their plug-in estimators

Ξ̂m := En[ε̂2
i,mZi,mZ

′
i,m] and Ω̂m := Σ̂−1

m Ξ̂mΣ̂
−1
m .

The matrix Ω̂m is the well-known heteroskedasticity-consistent covariance estimator

from the linear regression model which shows, once more, how sieve estimation can

be viewed through the lens of the high-dimensional linear model. The important dis-

tinction in the nonparametric model is that ε̂i,m is an estimator for εi + ri,m such that it

implicitly nests the bias.

These matrices act as estimators of the the variance of θ̂m de�ned as

(3.11) σ 2
m (x ) :=

αm (x )
′Ωmαm (x )

n
,
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with estimator

(3.12) σ̂ 2
m (x ) :=

αm (x )
′Ω̂mαm (x )

n
.

This σ̂ 2
m is used in the construction of the maximal t-statisticTn in (4.4) in Chapter 4. The

third and fourth main results establish a non-asymptotic bound on the spectral norm

between Ω̂m and Ωm and the ratio σ̂m/σm uniformly overm ∈Mn.

Theorem 3.4. Assume Conditions 3.1 to 3.5 hold. If (νn ∨ bm̃ )m̃ξm .
√
n, then

max
m∈Mn

‖Ξ̂m − Ξm‖ .P (νn + bm̃ )

√
ξ 2
m
(m logm) (m̃2 logm̃)

n
,(3.13)

and

max
m∈Mn

‖Ω̂m − Ωm‖ .P (νn + bm̃ )

√
ξ 2
m
(m logm) (m̃2 logm̃)

n
.(3.14)

Theorem 3.4 allows for uniformly consistent estimation of the covariance matrix Ωm

under stronger conditions than for Σm, namely that

(ν2
n ∨ b

2
m̃ ) (ξ

2
mm̃

2m logm logm̃)/n → 0,

as stated in Condition 3.6(iii). Not surprisingly this requirement depends on the tails of

εi through νn and on the bias bm̃ due to the use of ε̂i,m which accounts for both the noise

as well as the bias term. This rate carries over into the uniform consistency of σ̂m which

is a direct consequence of Theorem 3.4.

Corollary 3.4.1. With the same set-up as in Theorem 3.4 together with Condition 3.6(iii),

for any α ∈ Sm−1

(3.15) max
m∈Mn

�����
σ̂m (x )

σm (x )
− 1

�����
.P (νn + bm̃ )

√
ξ 2
m
(m logm) (m̃2 logm̃)

n
= o(1).
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Remark 3.3. The consistency is in terms of the ratio such that σ̂m/σm = 1 + op (1) rather

than the more common |σ̂m−σm | = op (1). However, this will be su�cient for the inference

procedure presented in Chapter 4.
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4 Uniform Inference andModel Selection

4.1. Introduction

Consistency of series estimators is often a means to an end resulting in valid inference

on a statistic of interest. Using the set-up and the results from Chapter 3, I suggest an

inference procedure which delivers valid uniform con�dence bands for θ capturing both

the conditional mean function or its linear functionals in the nonparametric regression

model. As in Chapter 3, the uniformity holds simultaneously over the space of the co-

variates as well as the model set. Uniform con�dence bands for series estimators are

interesting in their own right, but these bands have the added bene�t that they are valid

regardless of the model-selection technique used to decide on the dimension of the series

expansion. Therefore, the inference procedure yields con�dence bands which cover the

process {θ (x ) : x ∈ X } and θ (x ) for any �xed x ∈ X . The con�dence bands are asymp-

totically exact for the whole process, whereas they are conservative in the latter case.

This is the price to pay for the generality of the set-up presented here.

The inference procedure described in Algorithm 4.1 yields a feasible critical value c̃∗n (α )

such that the uniform con�dence band

(4.1) C̃n,m :=
{ [
θ̂m (x ) − c̃

∗
n (α )σ̂m (x ), θ̂m (x ) + c̃

∗
n (α )σ̂m (x )

]
: (x ,m) ∈ In

}
,

is valid for the whole process {θ (x ) : x ∈ X } in the following sense

(4.2) P
(
θ (x ) ∈ C̃n,m for all (x ,m) ∈ In

)
= 1 − α + o(1),
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and valid, yet conservative, for any �xed (x ,m) ∈ In

(4.3) P
(
θ (x ) ∈ C̃n,m

)
≥ 1 − α + o(1).

A key assumption is the undersmoothing condition, Condition 3.6(i), which states that

the bias in the uniform linearisation in Theorem 3.1 vanishes as the sample size diverges.

Without this assumption, the uniform con�dence bands asymptotically control the size

for the pseudo-true process {θm (x ) : (x ,m) ∈ In} or are conservative for θm (x ) for any

�xed (x ,m) ∈ In. See Remark 4.1 below for further discussion on the distinction between

θ and θm.

In light of (4.2), the proposed critical value also allows for pointwise hypothesis test-

ing

H0 : θ (x ) = θ0(x ),

as well as testing for shape restrictions

H0 : sup
x∈X
|θ (x ) | ≤ 0.

The latter has received a lot of attention lately in both statistics and econometrics, see

e.g. the review article by Chetverikov, Santos and Shaikh (2018). Sections 4.2.1 and 4.3.2

explore the theory and an application of testing for shape restrictions.

In order to obtain a valid critical value, I study the studentised empirical process

(4.4) Tn := sup
(x ,m)∈In

√
n

�����
θ̂m (x ) − θ

σ̂m (x )

�����
,

where σ̂ 2
m (x ) is the estimator of the variance of θ̂m (x ) introduced in (3.12). Notice that

this quantity is the usual t-statistic where the supremum is taken over the support and

the set Mn. The main results are two strong approximation theorems. The �rst one
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shows that there is a random variable T ∗n , whose distribution could be simulated if σm

were known, which is su�ciently close to Tn. The second main result shows that there

exists another random variable T̃ ∗n su�ciently close to T ∗n . The advantage of using T̃ ∗n

is that its distribution can easily be approximated by simulation. Hence, the inference

procedure asymptotically controls the size when using a plug-in estimator for σm and

when the critical value is estimated by simulation.

In real-world applications the ‘true’ model is always unknown which implies that re-

searchers often search over multiple candidate models. This amounts to choosing the

number of series terms to use in the approximation to θ . The uniformity over all the

models considered is of paramount importance. To explain why this is the case, consider

the following thought experiment. Suppose that researchers are interested in testing the

hypothesis H0 : д(x ) = д0(x ) on the conditional mean function with the prior assump-

tion that the hypothesis is false. They search over a multiple number of series terms

and report the results using the expansion which delivered the highest t-statistic. This

practice increases the probability of rejecting the null since the model is no longer �xed

and the distribution of the t-statistics are no longer Gaussian, even asymptotically, as

predicted by standard theory on series estimators (Newey 1997; Chen 2007). Figure 4.1

shows the empirical distribution of the t-statistics whenm is �xed,m is chosen by K-fold

cross-validation and m is the number of series terms which yielded the highest absolute

t-value. The data comes from the Monte Carlo experiment in Section 4.3.1. It is clear that

the usual Gaussian critical values are not appropriate when the number of series terms is

chosen in a data-driven manner. The theory presented here does away with this problem

by o�ering an inference procedure which is valid regardless of which algorithm is used

to decide on the �nal dimension of the estimated model.
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(a) Fixedm

−4 −3 −2 −1 0 1 2 3 4
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(b) Maximal t-statistic
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(c) 5-Fold Cross-Validation

Figure 4.1: Three examples of the empirical distribution of the t-statistics from the sim-

ulation study in Section 4.3.1 evaluated at x = 0.5 overlaid with the standard Gaussian

density function where (a) keeps m �xed; (b) is the maximal t-statistic over all m ∈Mn;

(c) picks an m̂ using 5-fold cross-validation. The sample size in each case is 500 with

10,000 replications.

4.1.1. Related Literature

The paper closest to this chapter is Kang (2019) which established similar uniform infer-

ence procedures. An important contribution of his paper is that uniform-in-m con�dence

bands are correctly sized for �xed x ∈ X . The uniform con�dence bands presented here
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will be conservative in the pointwise case which shows that it is important to continue

studying pointwise inference procedures. Furthermore, he also proved the validity of

the multiplier bootstrap in order to approximate the distribution ofTn. This is especially

desirable when the estimator of V – the central covariance function in this chapter as

de�ned in (4.6) – is non-singular. However, his paper did not incorporate the extension

to shape restrictions which can be found in Section 4.2.1.2

The theory on the construction of uniform con�dence bands in nonparametric statis-

tics dates back to at least Bickel and Rosenblatt (1973). More recent contributions are

Claeskens and Van Keilegom (2003), Giné and Nickl (2010) and Horowitz and Lee (2012).

These works all rely on limit theorems of the statistic under investigation. In many appli-

cations, as is the case here, such limit distributions may not exist for models of increasing

complexity as n → ∞. Chernozhukov, Chetverikov and Kato (2014a) recognised this and

developed the theory to construct uniform con�dence bands through strong approxi-

mations which is bene�cial in situations where a limit distribution does not exist or is

di�cult to simulate. The proofs of the main results heavily rely on their apparatus, see

e.g. Theorem D.3 in Appendix D.

The use of uniform con�dence bands for controlling multiple inference is not new. This

problem has an extensive history in both statistics and econometrics, see e.g. White

(2000) and Lehmann and Romano (2005). However, few papers make the link between

uniform inference and data-driven tuning parameters. An important exception is Arm-

strong and Kolésar (2018). They established similar results to the ones derived in this

chapter for uniform inference on kernel estimators of the conditional mean function.

The bene�t of their set-up is that they can tabulate critical values which only depend on
2At the time of writing I only knew of Kang (2018) and was unaware of the new version Kang (2019).

The latter is a major improvement and provides many extensions over the earlier working paper version.
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the kernel and the ratio of the maximal and minimal bandwidthsm/m. As is the case here,

their critical values lead to conservative con�dence bands when the researcher wants to

cover θm (x ) for some �xed (x ,m) ∈ In rather than the whole process {θm (x ) : (x ,m) ∈

In}.

There is a large and growing literature on post-selection inference which is related, but

logically distinct from the results presented here. This body of research was initiated

by the impossibility theorems in Leeb and Pötscher (2006). Seminal papers are Belloni,

Chernozhukov and Hansen (2010, 2014). The former established valid inference in instru-

mental variable models after the �rst-stage regressors are chosen by regularisation. The

latter derived methods for valid inference on high-dimensional parameters by orthogo-

nalising the estimation equations with respect to the nuisance parameters. Both of these

papers heavily rely on the theory of the Lasso and a full review on these techniques is

available in Chernozhukov, Hansen and Spindler (2015). Another strand on research orig-

inating with Berk et al. (2013) developed valid post-selection inference, not on the �xed

true parameter of interest, but on some pseudo-true parameter conditional on a model

selection event. Loftus (2015) and Markovic, Xia and Taylor (2017) extended their work

for cross-validated estimators using various estimation techniques such as the Lasso and

forward stepwise regression. However, these techniques only apply to high-dimensional

parameters in sparse models and they are computationally very intensive making them

nearly impossible to solve when the number of regressors is greater than twenty.
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4.2. Uniform Inference

The reason for using strong approximations instead of appealing to conventional convergence-

in-distribution type arguments is the following. The complexity of the classes of func-

tions indexing the Gaussian process in (4.4) above or (4.5) below,

F =
⋃

m∈Mn

Fm,

for

Fm =
{
(Z , ε ) 7→ α ′mZε,αm ∈ S

m−1
}
,

increases too quickly as the dimension ofZm diverges withn → ∞. This process is, there-

fore, not asymptotically equicontinuous which renders standard Donsker-type theorems

as in van der Vaart and Wellner (1996) useless. Hence, it is impossible to establish a result

of the form

Tn ⇒ sup
f ∈F
|G∞ f |,

for some �xed, centred Gaussian process G∞. The use of strong approximations circum-

vents this problem as it is a key step in order to show that the distribution of Tn can be

approximated by a sequence of distributions of T ∗n or its feasible version T̃ ∗n which are

de�ned below. In turn, this establishes that the uniform con�dence bands using their

(1 − α )-quantiles, respectively denoted by c∗n or c̃∗n, as critical values asymptotically con-

trol the size.

A strong approximation, or coupling, is a result which shows thatTn is su�ciently close

to a sequence of random variables T ∗n on the same probability space. De�ne this random

variable as

(4.5) T ∗n := sup
(x ,m)∈In

���Gn,m (x )
���,
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whereGn = Gn,m (x ) is a tight, centred Gaussian process in `∞(In ) with covariance func-

tion

(4.6) V [(x ,m), (x̌ ,m̌)] := E[Gn,m (x )Gn,m̌ (x̌ )
′] =

αm (x )
′Σ−1

m E
[
Zi,mZ

′
i,m̌ε

2
i

]
Σ−1
m̌ αm̌ (x̌ )

σm (x )σm̌ (x̌ )
.

All the conditions maintained here are the same as the ones stated in Section 3.2. Since

the goal is uniform inference rather than uniform convergence there are stricter require-

ments on the number of moments of the errors in (1.1). Condition 4.1 below replaces

Condition 3.4.

Condition 4.1. (Noise) The errors satisfy: (i) E[εi |X ] = 0; (ii) c < E[ε2
i |X ] a.s. for some

c > 0; (iii) E[εsi |X ] . 1 a.s. for some s > 4.

Theorem 4.1. Assume that Conditions 3.1 to 3.3, 3.5 and 4.1 hold. Furthermore, if Condi-

tion 3.6(i), (iii), r 1n + r 2n . δ
−1
n and

ξ 2
m
(m logm logm̃)γ

n1−1/s → 0,

for some γ > 0 hold, then

(4.7) ���Tn −T
∗
n

��� = oP
(
δ−1
n

)
,

for δn =
√
m logm logm̃.

The approximation Tn ≈ T ∗n , as a result of Theorem 4.1, heuristically suggests using the

distribution of T ∗n to approximate the distribution of Tn. The accuracy of the approxima-

tion crucially depends on how quickly the bias and the estimation error, r 1n + r 2n from

Theorem 3.1, vanish. The strong approximation is an important result, but does not in

itself deliver that c∗n is, even asymptotically, a valid critical value. Theorem 4.1 yields,

under suitable conditions, a bound in the Kolmogorov distance which is crucial in the

proof of Theorem 4.2 which does establish its validity.
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Corollary 4.1.1. With the same set-up as in Theorem 4.1

(4.8) sup
t∈R

���P (Tn ≤ t ) − P (T ∗n ≤ t )��� = o(1).

Theorem 4.2. Under the conditions in Theorem 4.1 it follows that

(4.9) P
(
Tn ≤ c∗n

)
= 1 − α + o(1),

such that

(4.10) P
(
θ (x ) ∈ Cn,m for all (x ,m) ∈ In

)
= 1 − α + o(1),

and that for any �xed (x ,m) ∈ In

(4.11) P
(
θ (x ) ∈ Cn,m

)
≥ 1 − α + o(1).

Remark 4.1. Theorem 4.2, and Theorem 4.4 below, continue to hold when replacing θ in

the de�nition of Tn with the pseudo-parameter θm, which is α ′m β̂m such that rθ ,m := rm =

θ −θm. In fact, it would be more correct to do so, as inference on θ inevitably depends on

the undersmoothing condition in Condition 3.6(i). The undersmoothing condition ulti-

mately depends on multiple factors which are nearly impossible to verify not in the least

because the smoothness of the function class to which θ belongs is unknown. Adaptive

inference where the choice of the tuning parameter adapts to the unknown smoothness,

see e.g. Chapter 8 in Giné and Nickl (2016), still requires the choice of tuning parameters

such that it does not solve the problem of how to choosem. It is still very much an open

problem on how to satisfactorily deal with the bias. In practice, inference is always con-

ducted on θm with the hope that the undersmoothing condition holds and rm vanishes as

n → ∞. If the bias is of no importance to practitioners and they are happy to conduct

inference on pseudo-true parameters then the inference procedure and its theory carry

over to the HDL model described in Section 2.1 as well. This showcases once more the
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�exibility of series estimators. When there is one true model – �xed or dependent on n

– this no longer holds. The bias in such a setting does not necessarily need to vanish as

any chosen model in Mn can be arbitrarily bad.

Theorem 4.2 shows that c∗n is a critical value which delivers valid inference on the whole

process {θ (x ) : x ∈ X } or is conservative for θ (x ) and any �xed x ∈ X . As discussed in

Remark 4.1 the use of c∗n is also correct for the pseudo-true process {θm (x ) : (x ,m) ∈ In}

under milder assumptions, i.e. the usual undersmoothing condition is not necessary. The

catch, however, is that c∗n is not feasible as the residuals, Ωm or σx ,m are unknown. For

this purpose, de�ne

(4.12) T̃ ∗n = sup
(x ,m)∈In

���G̃n,m (x )
���,

where Gn,m conditional on the data Zm = (Z1,m, . . . ,Zn,m )
′ is a centred Gaussian process

with covariance function

(4.13) V̂ [(x ,m), (x̌ ,m̌)] =
αm (x )

′Σ̂−1
m

∑n
i=1

∑n
j=1[Zi,mZ

′
j,m̌ε̂i,mε̂j,m̌]Σ̂−1

m̌ αm̌ (x̌ )

σ̂m (x )σ̂m̌ (x̌ )
.

Theorem 4.3 solves this problem by showing that T̃ ∗n , whose distribution can be simulated

by using plug-in estimators for the unknown quantities, is close to the sequenceT ∗n .

Theorem4.3. Under Conditions 3.1 to 3.3, 3.5, 3.6 and 4.1 and r 1n + r 2n = oP (1/
√
m logm logm̃),

for some τn → 0 it holds that

(4.14) P

(
���T̃
∗
n −T

∗
n

��� ≥
τn√

m logm̃

)
= o(1).

Theorem 4.4 using Theorem 4.3 establishes that c̃∗n also asymptotically controls the size

of the uniform con�dence bands. Algorithm 4.1 describes how to compute this critical

value by simulation.
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Theorem 4.4. Under the conditions in Theorem 4.1 it follows that

(4.15) P
(
Tn ≤ c̃∗n (1 − α )

)
= 1 − α + o(1),

such that

(4.16) P
(
θ (x ) ∈ C̃n,m for all (x ,m) ∈ In

)
= 1 − α + o(1),

and that for any �xed (x ,m) ∈ In

(4.17) P
(
θ (x ) ∈ C̃n,m

)
≥ 1 − α + o(1).

I �nish this section by describing the algorithm to compute c̃∗n by simulation on a �ne,

but discrete grid Xдrid on X . The maximum, as all sets are �nite, is computed over the

set Jn := Xдrid ×Mn with cardinality |Jn | = m̃ |Xдrid |.

Algorithm 4.1.

(1) Compute V̂ with typical elements as described in (4.13) for any (x ,m) ∈ Jn;

(2) For b = 1, . . . ,B, take i.i.d draws of the |Jn |-dimensional Gaussian random vector(
G̃n,b
m,x

)
(x ,m)∈Jn

∼ N (0, V̂ );

(3) Compute the maximal t-statistics

Tb
n = max

(x ,m)∈Jn

���G̃
n,b
m,x

���;

(4) Estimate the critical value c̃∗n (α ) by taking the (1 − α )-sample quantile of

{Tb
n : 1 ≤ b ≤ B};

(5) Use c̃∗n (α ) to construct the uniform con�dence band in (4.1) or to test the desired

hypothesis as usual.

48



4.2.1. Testing for Shape Restrictions

The procedure laid out in this chapter can also be used for testing shape restrictions on

linear functionals θ of the conditional mean function д. Section 1.2 gives some examples

of linear functionals: partial derivatives and integrals are of particular interest in eco-

nomics and econometrics as discussed in Section 4.3.2 below. The hypothesis of interest

is

(4.18) H0 : sup
x∈X

θ (x ) ≤ 0 vs. H1 : sup
x∈X

θ (x ) > 0.

For this purpose, de�ne the one-sided test statistic

(4.19) T
shape
n,m = sup

x∈X

√
n
θ̂m (x )

σ̂m
,

Observe, that under H0

sup
x∈X

√
n
θ̂m (x )

σm
≤ sup

x∈X

√
n
θ̂m (x ) − θ (x )

σm
= T os

n ,

forT os
n the one-sided equivalent ofTn. Let c̃osn be the (1−α )-quantile the distribution ofT os

n

conditional of the data. Reject the null in favour of the alternative whenT
shape
n,m > c̃osn (1 −

α ). This critical value can be estimated in the same way as described in Algorithm 4.1 by

removing the absolute values.

Theorem 4.5. Assume that Conditions 3.1 to 3.3, 3.5, 3.6 and 4.1 hold. Then,

P
(
T
shape
n,m < c̃osn (1 − α )

)
≥ 1 − α + o(1),

if r 1n + r 2n = oP (1/
√
m logm logm̃).

Theorem 4.5 shows that using c̃osn (1−α ) asymptotically controls the size of tests for shape

restrictions as in (4.18). The construction of the critical values for testing inequality hy-

potheses does not take into account whether the linear functional θ is on the boundary
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or not. Hence, combining this critical value with the method of moment selection (Cher-

nozhukov, Hong and Tamer 2007; Andrews and Soares 2010) could increase the power of

the test when all inequalities are indeed slack.

4.3. Numerical Results

4.3.1. Monte Carlo Experiment

To assess the �nite sample performance of the proposed inference procedure, I conduct

a small Monte Carlo experiment. The model is

Yi = arctan
[(

2Xi +
1
2

)
log

(
2Xi +

1
2

)]
+ εi ,

where Xi and εi are i.i.d samples drawn from a uniform distribution on [0, 1] and a

standard Gaussian distribution for each replication. The approximating functions are

B-Splines of order 2 or 3 with equally spaced knot sequences in [0, 1].

Table 4.1: Summary of the simulation study parameters.

n repetitions order knots (#) m m |Mn |

100 10,000 {2, 3} {1, 2} 3 4 4
250 10,000 {2, 3} {2, . . . , 4} 4 7 6
500 10,000 {2, 3} {2, . . . , 6} 4 9 10
1000 10,000 {2, 3} {2, . . . , 8} 4 11 14

The model set is the Cartesian product of the orders of the B-Splines and the knot se-

quences considered. Hence, the size of Mn can grow with the sample size. The minimum

number of parameters m remains �xed, but m grows at an increasing rate as n diverges.
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The parameters are summarised in Table 4.1. Figure 4.2 plots the average coverage using

the standard Gaussian critical values (Naive) and the ones suggested in this chapter based

on the maximal t-statistic (Max. t-stat) for 10, 000 replications andn = 100, 250, 500, 1000.

I consider two con�dence bands to cover дm:

1. using the estimator with the largest absolute t-statistic for allm ∈Mn{
max
m∈Mn

д̂m (x ) − c
(j )
n (1 − α )σ̂m (x ), max

m∈Mn
д̂m (x ) + c

(j )
n (1 − α )σ̂m (x )

}
,

2. using the estimator chosen with 5-fold cross-validation from the set Mn{
д̂cvm (x ) − c (j )n (1 − α )σ̂m (x ), д̂cvm (x ) + c (j )n (1 − α )σ̂m (x )

}
,

where c (j )n is either the naive and incorrect critical value or c̃∗n.

Not surprisingly, the critical values derived in this chapter perform best with the naive

ones signi�cantly undercovering the conditional mean function for any x in the grid and

any of the sample sizes. The empirical coverage for both the maximal t-statistic and

the cross-validated estimator improves as the sample size diverges. The cross-validated

estimator results in conservative con�dence bands which is also predicted by the theory

as the cross-validated estimator is not necessarily the one which delivers the maximal

t-statistic.

The empirical coverage level is slightly below the nominal level even for the maximal

t-statistic for n = 1000. This is probably due to the fact that the model set is too large

or that m diverged too quickly in this case. Yet, for larger sample sizes the empirical

coverage is close to the nominal level as predicted by the theory showing that these

critical values perform well even when the standard deviation and the critical value need
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to be estimated. Similar results were obtained for the 90 and 97.5 per cent levels and are

included in Appendix C.3.
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Figure 4.2: Coverage using the critical values proposed in this chapter (Max. t , —) and the

incorrect critical values from the standard Gaussian tables (Naive, – –) at a 95 per cent

level for n = 100, 250, 500, 1000 applied to both the maximal t-statistic and the t-statistics

from a cross-validated estimator. Computed over an equally spaced grid of 20 points in

(0, 1).
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4.3.2. Application to Gasoline Demand

I illustrate the inference methods developed in this chapter by applying them the non-

parametric estimation of the demand function for gasoline using US household data. The

data is from Blundell, Horowitz and Parey (2012) which is based on the 2001 National

Household Travel Survey (NHTS).3 The data set is comprised of household-level data

from telephone surveys conducted in 2001. The main variables in the analysis are the

annual gasoline consumption Q , the gasoline price P and the household income Y all de-

noted in US dollars. The dataset contains only the data for which P lies within the 5th and

95th percentiles of observed gasoline prices as reported in the original ORNL (2001) data.

This results in 2,912 observations. As in Blundell, Horowitz and Parey (2012), I identify

three income subgroups based on the midpoints $42,500, $57,500 and $72,500 which will

be referred to as the lower, middle and upper income groups respectively. The data is

selected into a subgroup if the household income lies within 0.5 of that group’s midpoint

(in log terms). Figure 4.3 plots the log of gasoline prices versus the log of gasoline de-

mand. Table C.4 reports descriptive statistics on the main variables in the data set. For a

more in-depth description of the data, see Blundell, Horowitz and Parey (2012) or ORNL

(2001) on the actual implementation and details on the survey.

A benchmark model for the demand for gasoline is the parametric log-linear speci�cation.

For shorthand, de�ne p = log P , q = logQ andy = logY andX and extra set of regressors

explained below which yields the log-linear model

(4.20) q = β0 + β1p + β2y + X
′δ + ε,

This is a workhorse model to estimate the average demand function of gasoline, see e.g.

Hausman and Newey (1995), Schmalensee and Stoker (1999), Yatchew and No (2001) and
3The data can be downloaded from https://doi.org/10.7910/DVN/0YALNP.
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Figure 4.3: Scatter plot of the log of gasoline prices and the log of gasoline consumption.

Blundell, Horowitz and Parey (2012). Table C.5 reports the estimation results from (4.20)

estimated on the full dataset and the lower, middle and upper income subgroups using

the main variables described above and extra control variables to capture heterogeneity

in gasoline demand at the household level. The extra covariates include the log of age

of the survey respondent, log of household size, log of the number of drivers, number of

workers in household, a public transport indicator and 12 variables on urbanisation and

population density.

There is no good reason why, a priori, the average demand function for gasoline should

be linear in prices. Therefore, I drop the log-linear speci�cation and instead estimate the

partially linear model

(4.21) q = д(p) + β2y + X
′δ + u .

Blundell, Horowitz and Parey (2012) estimate a similar model to (4.21) using kernels in-

stead of series estimators. They remark that the estimates of the demand functions for all
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three subgroups are nonsensical as the price elasticities in multiple regions are positive.

They propose to estimate the demand function under a Slutsky condition which stabilises

the estimates and makes them conform to standard economic theory. Rather than impos-

ing the Slutsky restriction, I directly test the monotonicity of the price elasticity of US

gasoline demand using the tools developed in this chapter. The price elasticity is

θ : P → R : p 7→
∂д(p)

∂p
,

and the hypothesis of interest is

H0 : θ (p) ≤ 0 for all p ∈ P vs H1 : θ (p) > 0 for some p ∈ P .

The bene�t of parametrisingд in terms ofp instead of P means that I can directly compute

the price elasticity as ∂q/∂p ≡ ∂д(p)/∂p. The unknown function д is estimated with B-

Splines of degrees 2 or 3 with 5 possible knots sequences: no knots, 1, 2, 3 or 4 equally

spaced knots in P . Hence, the model set Mn includes 10 models. I choose the model

for constructing the test statistic by 5-fold cross-validation. An estimator for θ follows

directly from the estimator for д as θ̂m (p) =
∂Zm (p)
∂p

′
β̂ . The one-sided test statistic is as

explained in Section 4.2.1 for m̂ the cross-validated choice ofm ∈Mn

T := sup
p∈P

θ̂m̂ (p)

σ̂m̂ (p)
,

which corresponds to the least-favourable choice of θ = 0. To estimate the distribution

of Tn, I use the procedure described in Algorithm 4.1 to obtain a sequence

T̂b
n := sup

(p,m)∈Jn

G̃n,b
m,p,

for b = 1, . . . ,B where B = 100, 000 and where (G̃n,b
m,p )(p,m)∈Jn ∼ N (0, V̂ ) for Pдrid a �ne

grid on the support P and Jn := Pдrid ×Mn. The critical value is approximated by

(4.22) ĉn (α ) := (1 − α )-quantile of
{
T̂ (1)
n , . . . , T̂

(B)
n

}
.
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Table 4.2 contains the results of the monotonicity test for the full sample and the three

income groups. The cross-validation procedure chose the most parsimonious model for

the three sub-sample which implies linear elasticities. For the full sample, a more com-

plicated model was chosen such that the price elasticity is quadratic. The naive critical

value was computed by only taking the supremum over P and not over the model set in

(4.22). The correct critical values are only slightly larger than the naive ones indicating

that there is a small cost to pay for uniformity over the model set. The test does not reject

the null for monotonicity in any of the speci�cations, supporting what one would expect

a priori.

Table 4.2: Results from monotonicity test for the model chosen by 5FCV.

degree knots T -statistic ĉn (naive) ĉn p-value reject

Full sample 3 None 0.321 3.286 3.793 0.374 No
Lower sample 2 None -0.876 3.286 3.791 0.809 No
Middle sample 2 None -0.963 3.286 3.792 0.832 No
Upper sample 2 None -0.789 3.286 3.793 0.785 No

The elasticities as well as uniform con�dence bands using the critical values suggested

in this chapter (green) and the naive critical values (blue) are plotted in (4.22). Despite

the fact that the elasticities are linear in the three income sub-samples, they are in fact

close to the constant elasticities estimated in the log-linear model. This casts doubt on

the validity of the nonparametric speci�cation in this application and is in stark contrast

to the results found in Blundell, Horowitz and Parey (2012). Interestingly, the uniform

con�dence bands in the correct case are not that much wider than in the naive case. This

again shows that there is a small penalty to be paid in order to get valid con�dence bands

after model selection.
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(b) Middle income group
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(c) Upper income group
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Figure 4.4: Estimates of the price elasticities of gasoline demand for the full sample and

the three income sub-samples. The series estimators are B-Splines with the degree and

knots chosen by 5-fold cross-validation, whereas the log-linear estimates are the constant

elasticities as reported in Table C.5. The blue bands are uniform con�dence bands over

P and the green bands are uniform con�dence bands over P ×Mn.
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A Appendix of Chapter 2

A.1. Proofs

Proof of Lemma 2.1. Let Dm be the domain over which (2.5) is minimised with m regres-

sors. Then,

P
(
E (mCV ,m∗) < 0

)
= P

(
R (mCV ) < R (m∗)

)
≤ P (mCV > m∗)

≤ P (m > m∗)

≤
m

m∗
= o(1),

where the �rst inequality follows because βBLPm∗ is a minimiser of (2.5) over Dm∗ and

DmCV ⊂ Dm∗ for any mCV < m∗ by Condition 2.1, the second and third inequalities

follow becausem ≥ mCV by de�nition and Markov’s inequality respectively and the last

equality by the assumptions of the Lemma. The �nal claim follows directly if m = m∗

replaces the assumption thatm = o(m∗). �

For ease of notation, let αm = (−1, βm ), α̂m = (−1, β̂m ) and let SK = {S1, . . . , SK } be the

set of folds. The subscripts s and −s , respectively, denote computed with the data in fold

s or without the data in fold s . This notation carries over to the covariance matrices Σn,

Σs and Σ−s where, respectively, all the data is used, the data in fold s is used and all the

data without fold s is used. The actual dimension of the covariance matrices depends on

the dimension of αm in the quadratic forms in the proof Theorem 2.1 below. Quantities

64



with a ‘̂ ’ are the sample analogues of the population quantities. The proof then relies on

writing R (β̂mCV ), R̂K (mCV ) and R (βBLPm∗ ) as quadratic forms. For example,

R (β̂mCV ) = α̂ ′
mCV Σnα̂mCV .

Proof of Theorem 2.1. De�ne m̌ :=m ∧m∗ and decompose the excess risk in �ve terms

E (mCV ,m∗) = (I ) + (I I ) + (I I I ) + (IV ) + (V ),

where

(I ) = R (β̂mCV ) − R̂K (m
CV )

(I I ) = R̂K (m
CV ) − R̂K (m̌)

(I I I ) = R̂K (m̌) − R̂ (β̂m̌ )

(IV ) = R̂ (β̂m̌ ) − R̂ (β̂m∗ )

(V ) = R̂ (β̂m∗ ) − R (β
BLP
m∗ ).

Notice that both (I I ) ≤ 0 and (IV ) ≤ 0. The former is true as mCV is the solution to

(2.3) such that R̂K (mCV ) is minimal. In the latter case, if m̌ = m∗ then R̂ (β̂m̌ ) = R̂ (β̂m∗ )

by de�nition and if m̌ = m then R̂ (β̂m̌ ) ≤ R̂ (β̂m∗ ) as both β̂m̌ and β̂m∗ are least-squares

solution, but β̂m̌ is a constrained version of β̂m∗ . Therefore, only (I), (III) and (V) need to

be bounded.

Step 1: Bound (I ).

R (β̂mCV ) − R̂K (m
CV ) = α̂ ′

mCV Σnα̂mCV −
1
K

∑
s∈SK

α̂ ′
mCV ,−s

Σ̂sα̂mCV ,−s

= α̂ ′
mCV Σnα̂mCV + α̂ ′

mCV Σ̂nα̂mCV − α̂ ′
mCV Σ̂nα̂mCV −

1
K

∑
s∈SK

α̂ ′
mCV ,−s

Σ̂sα̂mCV ,−s

= α̂ ′
mCV (Σn − Σ̂n )α̂mCV + α̂ ′

mCV Σ̂nα̂mCV −
1
K

∑
s∈SK

α̂ ′
mCV ,−s

Σ̂sα̂mCV ,−s .
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For the �rst term, by Condition 2.4, Lemmas A.1 and A.2 and Theorem D.1

α̂ ′
mCV (Σn − Σ̂n )α̂mCV ≤ (1 + ‖β̂mCV ‖

2)‖Σ̂n − Σn‖

.P (1 +A)‖Σn‖1/2
√
ξ 2
m∗ log(1 +m∗)

n
.

Rewrite the remaining two terms as follows

α̂ ′
mCV Σ̂nα̂mCV −

1
K

∑
s∈SK

α̂ ′
mCV ,−s

Σ̂sα̂mCV ,−s =
1
K

∑
s∈SK

α̂ ′
mCV Σ̂nα̂mCV −

1
K

∑
s∈SK

α̂ ′
mCV ,−s

Σ̂sα̂mCV ,−s

+
1
K

∑
s∈SK

α̂ ′
mCV ,−s

Σ̂nα̂mCV ,−s −
1
K

∑
s∈SK

α̂ ′
mCV ,−s

Σ̂nα̂mCV ,−s

=
1
K

∑
s∈SK

(α̂ ′
mCV Σ̂nα̂mCV − α̂ ′

mCV ,−s
Σ̂nα̂mCV ,−s )

+ α̂ ′
mCV ,−s

(Σ̂n − Σ̂s )α̂mCV ,−s .

Since α̂mCV minimizesα ′Σ̂nα overRmCV +1, α̂ ′
mCV Σ̂nα̂mCV ≤ α̂ ′

mCV ,−s
Σ̂nα̂mCV ,−s for any s ∈ SK

such that

≤
1
K

∑
s∈SK

α̂ ′
mCV ,−s

(Σ̂n − Σ̂s )α̂mCV ,−s

=
1
K

∑
s∈SK

α̂ ′
mCV ,−s

(Σ̂n − Σn )α̂mCV ,−s + α̂
′

mCV ,−s
(Σn − Σ̂s )α̂mCV ,−s .

Then by Lemma A.2

≤
1
K

∑
s∈SK

‖α̂mCV ,−s ‖
2
(
‖Σ̂n − Σn‖ + ‖Σn − Σ̂s ‖

)

.P

(
1 +

K

K − 1
A
) (

1 +
√
K
)
‖Σn‖

1/2

√
ξ 2
m∗ log(1 +m∗)

n
,

where the �nal inequality again holds by Condition 2.4, Lemma A.1 and Theorem D.1

and the fact that the sample size in each fold is n/K . Combining these bounds yields

(A.1) (I ) .P

[
1 +A +

(
1 +
√
K
) (

1 +
K

K − 1
A
)]
‖Σn‖

1/2

√
ξ 2
m∗ log(1 +m∗)

n
.
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Step 2: Bound (I I I ). For any given fold s ∈ SK consider

α̂ ′m̌,−s Σ̂sα̂m̌,−s − α̂
′
m̌Σ̂nα̂m̌ = α̂

′
m̌,−s Σ̂sα̂m̌,−s − α̂

′
m̌Σ̂nα̂m̌ + α̂

′
m̌,−s Σ̂−sα̂m̌,−s − α̂

′
m̌,−s Σ̂−sα̂m̌,−s

= α̂ ′m̌,−s (Σ̂s − Σ̂−s )α̂m̌,−s − α̂
′
m̌Σ̂nα̂m̌ + α̂

′
m̌,−s Σ̂−sα̂m̌,−s

= α̂ ′m̌,−s (Σ̂s − Σ̂−s )α̂m̌,−s − α̂
′
m̌Σ̂nα̂m̌ + α̂

′
m̌,−s Σ̂−sα̂m̌,−s

+ α̂ ′m̌Σ̂−sα̂m̌ − α̂
′
m̌Σ̂−sα̂m̌

≤ α̂ ′m̌,−s (Σ̂s − Σ̂−s )α̂m̌,−s + α̂
′
m̌ (Σ̂−s − Σ̂n )α̂m̌,

where the inequality follows because α̂ ′m̌,−s minimizes α ′Σ̂−sα such that the �nal two

terms together are negative. Therefore,

(I I I ) ≤
1
K

∑
s∈SK

α̂ ′m̌,−s (Σ̂s − Σ̂−s )α̂m̌,−s + α̂
′
m̌ (Σ̂−s − Σ̂n )α̂m̌

Analogously to Step 1, by applying the triangle inequality and Lemma A.2 to each term

individually

≤
1
K

∑
s∈SK

‖α̂m̌,−s ‖
2
(
‖Σ̂s − Σn‖ + ‖Σ̂−s − Σn‖

)
+ ‖α̂m̌‖

2
(
‖Σ̂−s − Σn‖ + ‖Σ̂n − Σn‖

)

.P

(
1 +

K

K − 1
A
)
‖Σn‖

1/2


√
K

√
ξ 2
m∗ log(1 +m∗)

n
+

√
K

K − 1

√
ξ 2
m∗ log(1 +m∗)

n



+

(
1 +An

)
‖Σn‖

1/2
√

K

K − 1

√
ξ 2
m∗ log(1 +m∗)

n

=

[(√
K +

√
K

K − 1

) (
1 +

K

K − 1
A
)
+

√
K

K − 1
(1 +A)

]
‖Σn‖

1/2

√
ξ 2
m∗ log(1 +m∗)

n
.

Where the probabilistic bound is similar to the previous steps and the �nal equality is an

algebraic simpli�cation.

Step 3: Bound (V ). First, consider

‖βBLPm∗ ‖ = ‖ (E[Zi,m∗Z
′
i,m∗

])−1 E[Zi,m∗Yi]‖
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.
( m∗∑

j=1
E |Zm∗

ij Yi |
2
)1/2

.
√
m∗,

where the �rst inequality follows by Condition 2.3(iii) and Jensen’s inequality, and the

second by Hölder’s inequality and Condition 2.3(ii). Then,

R̂ (β̂m∗ ) − R (β
BLP
m∗ ) = α̂ ′m∗ Σ̂nα̂m∗ − α

BLP
m∗
′Σnα

BLP
m∗

= α̂ ′m∗ Σ̂nα̂m∗ − α
BLP
m∗
′Σ̂nα

BLP
m∗ + α

BLP
m∗
′Σ̂nα

BLP
m∗ − α

BLP
m∗
′Σnα

BLP
m∗

As before, α̂ ′m∗ Σ̂nα̂m∗ minimises α ′Σ̂nα such that the �rst two terms together are negative

≤ αBLP
m∗
′Σ̂nα

BLP
m∗ − α

BLP
m∗
′Σnα

BLP
m∗

≤ ‖αBLP
m∗ ‖

2‖Σ̂n − Σn‖

.P (1 +
√
m∗)‖Σn‖

1/2

√
ξ 2
m∗ log(1 +m∗)

n
,

where the penultimate and �nal inequalities are the results of Lemma A.2, and the bound

on ‖βBLPm∗ ‖ and Theorem D.1 respectively.

Step 4: Noticing that K/(K − 1) ≤ 2 for K ≥ 2 such that

1+A+
(
1+
√
K
) (

1+
K

K − 1
A
)
+

(√
K +

√
K

K − 1

) (
1+

K

K − 1
A
)
+

√
K

K − 1
(1+A)+1+

√
m∗,

is bounded from above by

1 +A +
(
1 +
√

2 + 2
√
K
)
(1 + 2A) +

√
2(1 +A) + 1 +

√
m∗,

and combining the results from Steps 1–3 delivers the bound on E (mCV ,m∗). �

Proof of Corollary 2.1.1. Both equalities follow directly from substituting Condition 2.5 in

the non-asymptotic bound from Theorem 2.1. �
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Proof of Corollary 2.1.2. In the HDL model with bounded regressors, the assumption that

E[|Yi |s] . 1 implies that E[max1≤i≤n Y
2
i ]+max1≤i≤n ‖Xi ‖

2] . n2/s , see Lemma B.2. Hence,

the �rst result follows from ξm . n1/s . For B-Splines in the NP model, it holds that

supx∈X ‖Zm (x )‖ .
√
m for anym ∈ N (Newey 1997). This combined with

E
[

max
1≤i≤n

Y 2
i

]
. n2/s ,

yields ξm . n1/s∨
√
m which establishes the second claim. The third claim for polynomials

follows analogously with ξm . n1/s ∨m as supx∈X ‖Zm (x )‖ . m. �

A.1.1. Additional Technical Results

Lemma A.1. Assume that Condition 2.3 holds. Furthermore, let η := ηn ≥ 0 be a sequence

converging to zero su�ciently slowly. Then with probability at least 1 − η

(A.2) ‖β̂m‖ .
√
m +

√
ξ 2
m log(m/η)/n,

for the least-squares estimator in (2.2). Moreover, if log 1/η ≤ C logm then

(A.3) ‖β̂m‖ .
√
m +

√
ξ 2
m logm/n.

Proof. Start from

‖β̂m‖ = ‖ (EnZiZ
′
i )
−1EnZiYi ‖

≤ λ−1
min(EnZiZ

′
i )‖EnZiYi ‖

≤
√
mλ−1

min(EnZiZ
′
i )‖
√
nEnZiYi ‖∞/

√
n.

By Theorem D.1, the event λ−1
min(EnZiZ

′
i ) . 1 holds with probability at least 1−η so long

as η ≥ α . Next, by the triangle inequality such that

‖
√
nEnZiYi ‖∞ ≤ ‖

√
nEn (ZiYi − E[ZiYi])‖∞ + ‖

√
n EEnZiYi ‖∞ .

√
log(m/η) +

√
n,
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again with probability at least 1 − η which holds using Condition 2.3(ii) where the �rst

term follows from Lemma 5 in Belloni et al. (2012) using the theory of self-normalizing

sums. The second claim follows immediately from log 1/η . logm. �

Lemma A.2. Let a ∈ Rm and A ∈ Rm×m be a symmetric matrix. Then

a′Aa ≤ ‖A‖‖a‖2.

Proof. The matrix A, because it is symmetric, can be diagonalised

A = QΛQ′,

where Q is the orthogonal matrix of eigenvectors and Λ the diagonal matrix of eigenval-

ues of A. Then,

a′Aa = a′(QΛQ′)a

= b′Λb

=

m∑
j=1

λjb
2
j

≤ max
1≤j≤m

|λj |

m∑
j=1

b2
j

= ‖A‖‖a‖2.

The second and �nal equalities follows by de�ning b = Q′a, the fact that b′b = a′QQ′a =

a′a and A being symmetric such that its operator norm is equal to its maximal absolute

eigenvalue. �
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A.2. Monte Carlo Experiment Set-Up and Extra Results

The HDL model in Design 1 uses regressors from the real-world dataset in Riphahn,

Wambach and Million (2003) to construct a dataset (X ,Y ∗) where the true model is cho-

sen from a subset of the regressors in X after which the parameters are estimated using

the observed Y . The pseudo-response Y ∗ is then constructed from the �tted model by

discarding the estimated residuals, but re-adding Gaussian noise. For any sample size

n the design is Gaussian with �xed regressors, but as reported in Table A.1 the design

changes with n. The models which the selection procedure could select from for each

n are summarised in Table A.2. Figures A.1 to A.4 below contain the same results as in

Section 2.3, but in these �gures they show the deciles of the excess risk for each sample

size.

Table A.1: Data-generating models in Design 1.

n Modela

50 –
100 β3(aдe × educ )

250 β3(aдe × educ ) + β4aдe
2

500 β3(aдe × educ ) + β4aдe
2 + β5(aдe × f emale ) + β6(educ × f emale ) + β7(aдe × educ × f emale )

1000 β3(aдe × educ ) + β4aдe
2 + β5(aдe × f emale ) + β6(educ × f emale ) + β7(aдe × educ × f emale )

+β8hhkids + β9beamt + β10handper

aNotes: Dependent variable is log of household income, loghhninc . Model column reports X ′2δ in Y =

X ′1β + X
′
2δ + ε where X1 contains a constant, aдe and educ and is common across all sample sizes.
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Figure A.1: Deciles of E (mCV ,m∗) in Design 1.
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Figure A.2: Deciles of E (mCV ,m∗) in Design 2.1.
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Figure A.3: Deciles of E (mCV ,m∗) in Design 2.2.
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Figure A.4: Deciles of E (mCV ,m∗) in Design 2.3.
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B Appendix of Chapter 3

B.1. Proofs

The proofs of the main results in the text rely on several intermediate lemmas which are

stated and derived in Section B.1.1.

Proof of Theorem 3.1. First, observe that

R1,n (αm (x )) = αm (x )
′(Σ̂−1

m − Σm )GnZi,m (εi + ri,m ).

By the triangle inequality

sup
(x ,m)∈In

|R1,n (αm (x )) | ≤ ϵ1 + ϵ2,

where

ϵ1 := sup
(x ,m)∈In

|αm (x )
′(Σ̂−1

m − Σm )GnZi,mεi |,

and

ϵ2 := sup
(x ,m)∈In

|αm (x )
′(Σ̂−1

m − Σm )GnZi,mri,m |.

From Lemma B.1,

ϵ1 .P νn

√
ξ 2
m
(m logm) (m̃2 logm̃)

n
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ϵ2 .P bm̃

√
ξ 2
m

logm(m̃2 logm̃)

n
,

which yields the bound on R1,n (αm (x )). De�ning

ε3 := sup
(x ,m)∈In

|R2,n (αm (x )) |,

such that by Lemma B.1

ε3 .P bm̃

√
m logm logm̃,

which immediately establishes the second claim. �

Proof of Theorem 3.2. Both (3.3) and (3.4) are a direct consequence of Theorem 3.1, the

�nal bound in Lemma B.1 and Condition 3.2. �

Proof of Theorem 3.3. It follows directly from approximation theory that ξm . m and

ξm .
√
m by Condition 3.1 for tensor products of polynomials and B-Splines respectively.

Furthermore, it also holds that bm̃ . m1−p/d for polynomials, and bm̃ . m−(p0∧p)/d for B-

Splines, see Lemma 1 from Belloni, Chernozhukov and Fernandez-Val (2019). Combined

with the condition that (νn ∨bm̃ )m̃ξm .
√
n implies that r 1n + r 2n .

√
m logm logm̃ from

Theorem 3.2 which immediately proves the claim for both polynomials and B-Splines. �

Proof of Corollary 3.3.1. First, observe that given the choices ofm andm

logm̃ . logn − log logn.

With the Lipschitz condition as explained in Remark 3.2, the rate for B-Splines in Theo-

rem 3.3 simpli�es to

sup
(x ,m)∈In

|θ̂m (x ) − θ (x ) | .P

√
m logm logm̃

n
+m−(p0∧p)/d ,
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as the extram drops out. Hence, the result follows upon realising that (νn∨bm̃ )m̃ξm .
√
n,

which implies the growth rate of r 1n + r 2n, holds by Lemma B.2 if

2d
2p + d

< 1 −
2
s

and
2d − 2p
2p + d

< 1.

This holds if p/d > 1/2 and

s > 2 +
2

p/d − 0.5
.

�

Proof of Theorem 3.4. To bound the �rst quantity, note that by the triangle inequality

max
m∈Mn

‖Ξ̂m − Ξm‖ ≤ δ1 + δ2,

with

δ1 := max
m∈Mn

‖Enε̂
2
i,mZi,mZ

′
i,m − (εi + ri,m )

2Zi,mZ
′
i,m‖,

and

δ2 := max
m∈Mn

‖En (εi + ri,m )
2Zi,mZ

′
i,m − E(εi + ri,m )2Zi,mZ

′
i,m‖.

The �rst quantity can be bounded as follows

δ1 ≤ max
m∈Mn

‖En (Z
′
i,m (β̂m − βm ))

2Zi,mZ
′
i,m‖ + 2 max

m∈Mn
‖En (εi + ri,m )Zi,mZ

′
i,m‖

≤ max
m∈Mn

max
1≤i≤n

|Z ′i,m (β̂m − βm ) |
2‖Σ̂m‖ + 2 max

m∈Mn
(max
1≤i≤n

|εi | + max
1≤i≤n

|ri,m |)‖Σ̂m‖

.P
ξ 2
m

n
(
√
m logm logm̃ + r 1n + r 2n )

2 + (νn + bm̃ )
ξm
√
n
(
√
m logm logm̃ + r 1n + r 2n )

. (νn + bm̃ )

√
ξ 2
m
m logm logm̃

n
,
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where the �rst inequality is due to the fact that (a + b)2 − b2 = a2 − 2ab and ε̂i,m =

εi +ri,m−Z
′
i,m (β̂m−βm ), the third inequality follows from Theorem 3.2 and Conditions 3.3

to 3.5 and the fact that (νn ∨ bm̃ )m̃ξm .
√
n implies r 1n + r 2n . m logm logm̃. Secondly,

by Theorem D.1, a union bound and Assumptions

δ2 .P (E max
1≤i≤n

|εi |
2 + max

m∈Mn
max
1≤i≤n

|ri,m |
2)1/2m̃

√
ξ 2
m

logm
n

. (νn + bm̃ )m̃

√
ξ 2
m

logm
n

.

Hence,

max
m∈Mn

‖Ξ̂m − Ξm‖ .P (νn + bm̃ )

√
ξ 2
m
(m logm) (m̃2 logm̃)

n
.

For the estimation of Ω̂m,

max
m∈Mn

‖Ω̂m − Ωm‖ ≤ max
m∈Mn




Σ̂
−1
m (Ξ̂m − Ξm )Σ̂

−1
m




 + max
m∈Mn




(Σ̂
−1
m − Σ−1

m )ΞmΣ̂
−1
m






+ max
m∈Mn




Σ
−1
m Ξm (Σ̂

−1
m − Σ−1

m )




≤ max
m∈Mn




Σ̂
−1
m





2


Ξ̂m − Ξm




 + max
m∈Mn




Σ̂
−1
m − Σ−1

m








Ξm








Σ̂
−1
m






+ max
m∈Mn




Σ
−1
m








Ξm








Σ̂
−1
m − Σ−1

m





.P (νn + bm̃ )

√
ξ 2
m
(m logm) (m̃2 logm̃)

n
,

where the �nal inequality follows since the maximal eigenvalues of Σ̂−1
m , Σ−1

m and Ξm are

bounded from above combined with Theorem D.1, Lemma B.3 and (3.14). �
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Proof of Corollary 3.4.1. From the inequality |x/y − 1| ≤ |x2/y2 − 1| for x ,y > 0 and the

fact that the minimal eigenvalue of Ωm is bounded from below

max
m∈Mn

�����
σ̂ (αm )

σ (αm )
− 1

�����
≤ max

m∈Mn

�����
σ̂ 2(αm )

σ 2(αm )
− 1

�����
≤ max

m∈Mn

�����
α ′mΩ̂mαm
α ′mΩmαm

− 1
�����

≤ max
m∈Mn

‖Ω̂m − Ωm‖

λmin(Ωm )

. max
m∈Mn

‖Ω̂m − Ωm‖.

The result then follows from Theorem 3.4. �

B.1.1. Additional Technical Results

Lemma B.1. Assume that Conditions 3.1 to 3.4. For the empirical errors de�ned in Step 1

of the proof of Theorem 3.1 it holds that

ϵ1 .P νn

√
ξ 2
m
(m logm) (m̃2 logm̃)

n
,(B.1)

ϵ2 .P bm̃

√
ξ 2
m
(m logm) (m̃2 logm̃)

n
,(B.2)

ϵ3 .P bm̃

√
m logm logm̃,(B.3)

and

ϵ4 .P

√
m logm logm̃.(B.4)

Proof. Step 1: (Bounds on empirical errors)

First, I prove (B.1). Recall the class of functions from Lemma B.5 and

V =
⋃

m∈Mn

Vm,
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with envelope V := max1≤i≤n |εi |maxm∈Mn ‖Σ̂
−1
m − Σm‖‖Σ̂m‖

1/2 such that

ϵ1 ≡ sup
v∈V
|v |.

Consider the symmetrised process vo which, conditional on the data, satis�es by Theo-

rem D.2

E[‖vo‖V |Z , ϵ] .
V∫

0

√
logN (V, ‖ · ‖2,n,τ ) dτ

≤ V

1∫
0

√
logN (V, ‖ · ‖2,n,τV ) dτ

. V

1∫
0

√
m log(m̃/τ ) dτ ,

where the �rst inequality holds as the envelopeV does not depend on i such that ‖V ‖2,n =

V , the second inequality by a change-of-variables argument and the third inequality by

Lemma B.4 and Lemma B.5. Hence,

(B.5) E[‖vo‖V |Z , ϵ] ≤ V
√
m logm̃.

The symmetrisation Lemma 2.3.1 in van der Vaart and Wellner (1996), the bound on V

from Step 2 and (B.5) proves (B.1)

(B.6) ‖v ‖V ≤ 2 E[‖vo‖V |Z , ε] .
√
m logm̃V .P νn

√
ξ 2
m
(m logm) (m̃2 logm̃)

n
.

To prove (B.2), we have

ϵ2 . max
m∈Mn




(Σ̂
−1
m − Σm )GnZi,mri,m






≤ max
m∈Mn




Σ̂
−1
m − Σm




 max
m∈Mn




GnZi,mri,m



.
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Combining this with (B.10) and (B.13) in Step 2 establishes

ϵ2 .P bm̃

√
ξ 2
m

logm(m̃2 logm̃)

n
.

For the error ϵ3, recall the class of functions from Lemma B.7 such that

K =
⋃

m∈Mn

Km,

yields

ϵ3 ≡ sup
k∈K
|Gnk |.

This class has envelope K = bm̃ξm and its variance is bounded by b2
m̃. The quantity of

interest can be bounded by applying Corollary 3.5.8 from Giné and Nickl (2016) together

with Lemmas B.4 and B.7 such that

(B.7) E ‖Gnk ‖K . bm̃
√
m log(ξmm̃1/m ) +

bm̃m log(ξmm̃1/m )
√
n

.

Using the assumption that log ξm . logm results in

(B.8) E ‖Gnk ‖K . bm̃
√
m logm + logm̃ +

bm̃ (m logm + logm̃)
√
n

.

Similar to the calculations in Step 2

m logm + logm̃
√
n

=

√
m logm + logm̃

√
m logm + logm̃

n

. o
(√

m logm + logm̃
)
.

This shows that for su�ciently large n

E ‖Gnk ‖K . bm̃
√
m logm + logm̃.

This together withm logm+ logm̃ . m logm logm̃, (B.8) and Markov’s inequality estab-

lishes (B.3).
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The �nal bound (B.4) follows completely analogously to the previous step, but now ap-

plied to the class of function in Lemma B.6 which completes the proof.

Step 2: (Auxiliary calculations)

To bound the envelope V from Step 1, �rst note that by Lemma B.2

(B.9) max
1≤i≤n

|εi | .P n
1/s ,

and by Theorem D.1, a union bound and Markov’s inequality

(B.10) max
m∈Mn

‖Σ̂−1
m − Σm‖ .P m̃

√
ξ 2
m

logm
n

.

And similarly,

(B.11) max
m∈Mn

‖Σ̂m‖
1/2 ≤

√
max
m∈Mn

‖Σ̂m − Σm‖ + ‖Σm‖ .P 1.

Combining (B.9), (B.10) and (B.11) yields

V .P νnm̃

√
ξ 2
m

logm
n

.

Next, I bound

(B.12) max
m∈Mn




GnZi,mri,m



,

which is used in the bound for ϵ2, by considering the class of functions

H = {(Zm, rm ) 7→ Zm · rm : m ∈Mn}.

For any h ∈ H

‖h‖∞ ≤ bmξm,
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and since ‖Zi,m‖∞ ≤ ‖Zi,m‖2

‖h‖22,P . b
2
mξm .

Then, by Lemma 19.33 in van der Vaart (1998)

E ‖Gnh‖H . bm̃
√
m logm̃ +

bm̃ξm logm̃
√
n

. bm̃

√
m logm̃,

since ξ 2
m

logm̃/
√
n ≤

√
m logm̃

√
ξ 2
m

logm̃/n . o(
√
m logm̃). By Markov’s inequality

(B.12) is bounded by

(B.13) max
m∈Mn




GnZi,mri,m



 .P bm̃

√
m logm̃.

�

Lemma B.2. Assume that Condition 3.4(iii) holds. Then,

νn :=
√

E
[

max
1≤i≤n

ε2
i

]
. n1/s .

Proof. Firstly, by Condition 3.4(iii) and Lemma 2.2.2 from van der Vaart and Wellner

(1996)

E
[

max
1≤i≤n

εsi |X
]
. n max

1≤i≤n
E[εsi |X ] a.s.

Hence, by Hölder’s inequality√
E

[
max
1≤i≤n

ε2
i

]
≤

(
E

[
max
1≤i≤n

εsi

])1/s
. n1/s .

�

83



Lemma B.3. Let A and B be two positive de�nitem ×m matrices with λmin(A) > cA and

λmin(B) > cB for cA, cB > 0 and

(B.14) 


A − B



 ≤ δ .

Then,

(B.15) 


A
−1 − B−1


 ≤ Cδ ,

for some constant C > 0.

Proof. Notice that

A−1 − B−1 = −A−1(A − B)B−1.

Using this,




A
−1 − B−1


 ≤




A
−1







A − B








B
−1


 ≤




A − B





λmin(A)λmin(B)
≤ Cδ ,

where the conclusion holds by setting C = c−1
A c−1

B . �

Lemma B.4. Let F1, . . . ,Fm be a collection of classes of functions with envelopes Fi such

that ‖Fi ‖2,P < ∞ for each i . Let F := ∪mi=1Fi . Then,

(B.16) sup
P

N (F , ‖ · ‖2,P ,τ ‖F ‖2,P ) ≤ m max
1≤i≤m

sup
P

N (Fi , ‖ · ‖2,P ,τ ‖Fi ‖2,P ),

for F = max1≤i≤m Fi and 0 < τ ≤ 1.

Proof. The covering number of F with balls of radius δ is bounded from above by the

sum of the individual covering numbers of the classes of functions in F . The same holds

for any δi ≤ δ as covering numbers are non-decreasing in δ , i.e.

N (F , ‖ · ‖2,P ,δ ) ≤
m∑
i=1

N (Fi , ‖ · ‖2,P ,δi ),
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such that

N (F , ‖ · ‖2,P ,δ ) ≤ m max
1≤i≤m

N (Fi , ‖ · ‖2,P ,δi ).

The conclusion of the lemma follows by de�ning δ = τ ‖F ‖2,P , δi = τ ‖Fi ‖2,P and taking

the supremum over all discrete probability measures P . �

Lemma B.5. For vi,m (α ) = α ′(Σ̂−1
m − Σm )Ziεi , consider the class of functions

Vm = {(v1, . . . ,vn ) ∈ Rn : vi,m (α ),α ∈ Sm−1}.

Under the empirical L2-norm, this class has envelope

Vm := max
1≤i≤n

|εi |‖Σ̂
−1
m − Σm‖‖Σ̂

1/2
m ‖,

and

logN (Vm, ‖ · ‖2,n,τ ‖Vm‖2,n ) . m log(1/τ ).

Proof. The envelope follows immediately from the calculation below√
En[α ′(Σ̂−1

m − Σm )Ziεi]2 ≤ max
1≤i≤n

|εi |
√
Enα ′(Σ̂

−1
m − Σm )ZiZ

′
i (Σ̂
−1
m − Σm )α ′

≤ max
1≤i≤n

|εi |‖Σ̂
−1
m − Σm‖‖Σ̂

1/2
m ‖ =: Vm,

where the Cauchy-Schwarz inequality delivers the �nal inequality. Similarly, I can bound

the diameter of Vm by√
En[α ′(Σ̂−1

m − Σm )Ziεi − α̌ ′(Σ̂
−1
m − Σm )Ziεi]2 ≤ max

1≤i≤n
|εi |‖Σ̂

−1
m − Σm‖‖Σ̂

1/2
m ‖‖α − α̌ ‖,

again by the Cauchy-Schwarz inequality. The bound on the entropy follows from the fact

that balls in Rm can be covered by (C/τ )m balls of radius τ for some C > 0 and Example

19.7 in van der Vaart (1998, p. 271) �
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Lemma B.6. De�ne the class of functions

Fm = {(Z , ε ) → α ′Zε,α ∈ Sm−1},

mapping Rm×R into Rwith envelope Fm := Fm (Z , ε ) = ξm |ε |. The uniform entropy numbers

of Fm satisfy

sup
P

logN (Fm, ‖ · ‖2,P ,τ ‖Fm‖2,P ) . m log(2/τ ) for 0 < τ ≤ 1.

Proof. For any α , α̃ ∈ Sm−1, we have

|α ′Zε − α̃ ′Zε | ≤ Fm‖α − α̃ ‖,

by the Cauchy-Schwarz inequality. Then, by example 19.7 from van der Vaart (1998) for

0 < τ ≤ 1

N (Fm, ‖ · ‖2,P ,τ ‖Fm‖2,P ) .
(2
τ

)m
,

thus establishing the lemma. �

Lemma B.7. De�ne the class of functions

Hm = {(Z , r ) 7→ α ′Zr ,α ∈ Sm−1},

mapping Rm × R into R with envelope Hm := Hm (Z , r ) = bmξm. The uniform entropy

numbers ofHm satisfy

sup
P

logN (Hm, ‖ · ‖2,P ,τHm ) . m log(2/τ ) for 0 < τ ≤ 1.

Proof. For any α , α̃ ∈ Sm−1, we have

|α ′Zr − α̃ ′Zr | ≤ |r |‖Z ‖‖α − α̃ ‖

≤ bmξm‖α − α̃ ‖,
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where the �rst inequality follows by the Cauchy-Schwarz inequality and the second by

the assumptions on Z and r . Then, similarly to the proof of Lemma B.6

N (Hm, ‖ · ‖2,P ,τHm ) .
(2
τ

)m
.

�
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C Appendix of Chapter 4

C.1. Proofs

This section contains the proofs of the results from Chapter 4. Additional technical results

needed in the proofs of the main results are stated and derived in Section C.1.1. The proofs

heavily rely on the results and techniques used in Section 3.3.

For the proof of Theorem 4.1 de�ne the following processes:

T̃n := sup
(x ,m)∈In

�����
√
n
αm (x )

′(β̂m − β )

σm

�����
,(C.1)

T̃ ′n := sup
(x ,m)∈In

�����
αm (x )

′GnZi,mεi
σm

�����
.(C.2)

Proof of Theorem 4.1. By the triangle inequality,

(C.3) ���Tn −T
∗
n

��� ≤
���Tn − T̃n

��� +
���T̃n − T̃

′
n

��� +
���T̃
′
n −T

∗
n

���.

The �rst term on the RHS can be bounded by Theorem 3.2, Corollary 3.4.1, r 1n + r 2n . δ
−1
n

and maxm∈Mn σ̂m/σm .P 1

���Tn − T̃n
��� ≤ sup

(x ,m)∈In

����
√
n
αm (x )

′(β̂m − β )

σ̂m
−
√
n
αm (x )

′(β̂m − β )

σm

����

= sup
(x ,m)∈In

√
n���αm (x )

′(β̂m − β )
���
����

1
σ̂m
−

1
σm

����

= sup
(x ,m)∈In

√
n���αm (x )

′(β̂m − β )
���
����

1
σ̂m
−

1
σm

����
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.P sup
(x ,m)∈In

√
n���αm (x )

′(β̂m − β )
���
����
σ̂m
σm
− 1

����

.P δ
−1
n (νn + bm̃ )

√
ξ 2
m
(m logm) (m̃2 logm̃)

n
.(C.4)

The bound on the second quantity follows directly from Theorem 3.1 and Condition 3.6(iii)

(C.5) ���T̃n − T̃
′
n

��� .P δ
−1
n .

Then, the �nal term on the RHS of (C.3) can be bounded using Corollary 2.2 from Cher-

nozhukov, Chetverikov and Kato (2014b). Recall the class of functions from Lemma B.6

with αm replaced by ρm = αm/σm

Fm,n =
{
(Z , ε ) → ρ′Tε, ρ ∈ Sm−1

}
,

such that for

Fn =
⋃

m∈Mn

Fm,n,

it follows that

T̃ ′n ≡ sup
f ∈Fn

|Gn f |.

By Lemma B.4 and Lemma B.6, this class is a VC-class of functions such that for any

�xed n it is pre-Gaussian. Hence, for any n ≥ 1 there exists a Gaussian random variable,

Gn ∈ `
∞(Fn ), with mean zero and covariance function

E[Gn ( f )Gn ( f
′)] = cov[f (X1, ε1), f

′(X1, ε1)] for f , f ′ ∈ F ,

such that Bn = Gn f is the desired process. Next, let C4 = supx∈X E[ε4
1 |X = x] with the

auxiliary calculations

E[(ρ′mZmε )
2] ≤

√
C4 . C4,

E[|ρ′mZmε |
3] ≤ (1 +C4)ξm (ρ

′
m E[ZmZ ′m]ρm )
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= (1 +C4)ξm

E[(ρ′mZmε )
4] ≤ C4 E[(ρ′mZm )

4]

≤ C4ξ
2
m,

where the third inequality follows from |x |3 ≤ 1 + x4. Then, with bn = ξm and σ 2 = C4

with `n = m logm logm̃ by Corollary 2.2 from Chernozhukov, Chetverikov and Kato

(2014b)

(C.6) ���T̃
′
n −T

∗
n

��� .P n
−1/6ξ 1/3

m
`n + n

−1/4ξ 1/2
m
`5/4n + n

−1/2+1/qξm`
3/2
n .

Combining (C.4), (C.5) and (C.6) with the condition

ξ 2
m
(m logm logm̃)γ

n1−1/s → 0,

concludes the proof. �

Proof of Corollary 4.1.1. This follows directly from Lemma 2.3 in Chernozhukov, Chetverikov

and Kato (2014b), the �nal bound in Lemma B.1 and Theorem 4.1. �

Proof of Theorem 4.2. By Corollary 4.1.1 it immediately follows that

P
(
Tn ≤ c∗n (α )

)
≤ P

(
T ∗n ≤ c∗n (α )

)
+ o(1) = 1 − α + o(1),

where the equality is by the de�nition of c∗n. The opposite direction holds by the same

reasoning. Finally, (4.16) is a direct consequence of these two bounds. �

Proof of Theorem 4.3. By Theorem 3.4 and Corollary 3.4.1 it follows by the same argu-

ments as used in those proofs that for V and V̂ de�ned in (4.6) and (4.13)

‖V̂ −V ‖ . δn,
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with

δn = (νn + bm̃ )

√
ξ 2
m
(m logm) (m̃2 logm̃)

n
.

Together with the assumption that r 1n + r 2n = oP (1/
√
m logm logm̃), it follows thatδn

√
m logm̃ =

oP (1/
√
m logm logm̃). This of course, immediately implies that

δn

√
m logm̃ = oP

(
1√

m logm̃

)
.

Using this and Lemma C.3 it holds that

E ���T̃
∗
n −T

∗
n

��� ≤ oP

(
1√

m logm̃

)
.

Hence, Markov’s inequality together with τn = γm for γm from Lemma C.3 which delivers

the result. �

Proof of Theorem 4.4. For shorthand, let κn = τn/
√
m logm̃ be the sequence from Theo-

rem 4.3. By the same Theorem for some sequence ηn = o(1)

(C.7) P
(
|T̃ ∗n −T

∗
n | ≥ κn

)
≤ ηn .

Hence,

P (c̃∗n (α ) > c∗n (α − ηn ) + κn ) = o(1),(C.8)

and

P (c̃∗n (α ) < c∗n (α + ηn ) − κn ) = o(1).(C.9)

Secondly, by Lemma C.1 and the anti-concentration theorem, Theorem D.3, due to Cher-

nozhukov, Chetverikov and Kato (2014a, Corollary 2.1)

(C.10) Pκn
(
T ∗n

)
:= sup

t∈R
P
(���T
∗
n − t

��� ≤ κn
)
= o(1).
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Then, as in the proof of Theorem 4.2 by Corollary 4.1.1

P
(
Tn ≤ c̃∗n (α )

)
≤ P

(
T ∗n ≤ c̃∗n (α )

)
+ o(1)

≤ P
(
T ∗n ≤ c∗n (α − ηn ) + κn

)
+ o(1)

≤ P
(
T ∗n ≤ c∗n (α − ηn )

)
+ P

(���T
∗
n − c

∗
n (α − ηn )

��� ≤ κn
)
+ o(1)

≤ P
(
T ∗n ≤ c∗n (α − ηn )

)
+ Pκn

(
T ∗n

)
+ o(1)

= 1 − α + ηn + o(1)

= 1 − α + o(1),

where the second line follows from (C.8) and the �nal two equalities by the de�nition of

c∗n, (C.10) and ηn → 0 as n → ∞. The opposite direction follows analogously instead of

(C.8) using (C.9). Combining these two bounds delivers the result. �

Proof of Theorem 4.5. The claim follows directly from the same argument in Theorem 4.4

removing the absolute values in the de�nitions of Tn, T ∗n and T̃ ∗n . �

C.1.1. Additional Technical Results

Lemma C.1. Let Bm (rm ) be an rm-ball in Rm and let {Xm ∈ Rm : m ∈Mn} be a collection

of i.i.d Gaussian random vectors and de�ne the classes of functions

Ln,m =
{
X 7→ α ′X : α ∈ Bm (rm )

}
.

mapping Rm into R. Then, for

Ln =
⋃

m∈Mn

Ln,m,

it follows that

(C.11) E
[

sup
f ∈Ln

| f |

]
. r

√
m logm̃,
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with r = maxm∈Mn rm.

Proof. First note that

sup
f ∈Ln

| f | = max
m∈Mn

sup
α∈Bm (rm )

|α ′X |.

By Lemma 2.2.2 in van der Vaart and Wellner (1996),

(C.12) E
[

max
m∈Mn

sup
α∈Bm (rm )

|α ′X |

]
.

√
logm̃ max

m∈Mn







sup

α∈Bm (rm )

|α ′X |





ψ2

.

For �xedm ∈Mn, by Corollary 2.2.5 in van der Vaart and Wellner (1996) given that α ′X

is a Gaussian process and thus sub-Gaussian







sup

α∈Bm (rm )

|α ′X |





ψ2

.

rm∫
0

√
logN (Bm (rm ), ‖ · ‖2,P ,τ ) dτ

= rm

1∫
0

√
logN (Bm (rm ), ‖ · ‖2,P ,τrm ) dτ

. rm

1∫
0

√
m log(5/δ ) dτ

. rm
√
m,

where ‖ · ‖ψ2 is theψ2-Orlicz norm and the upper bound on the entropy of balls in Rm in

the third line follows from Lemma 2.5 in van de Geer (2000). Plugging this bound into

(C.12) delivers the result. �

Lemma C.2. Let {Xm ∈ Rm : m ∈ Mn} be a collection of Gaussian random vectors and

de�ne the processes

T̃n := sup
(x ,m)∈In

�����
αm (x )

′Ω̂1/2
m

√
nσ̂m

Xm

�����
,
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and

T ∗n := sup
(x ,m)∈In

�����
αm (x )

′Ω1/2
m

√
nσm

Xm

�����
.

For a sequence δn such that

max
m∈Mn




Ω̂m − Ωm‖ + max
m∈Mn

�����
σm (x )

σ̂m (x )
− 1

�����
.P δn,

it holds that,

(C.13) E
[���T̃n −T

∗
n

���
]
. δn

√
m logm̃.

Hence, if δn
√
m logm̃ = o(1/

√
m logm̃)

(C.14) P
(���T̃n −T

∗
n

��� > βn/
√
m logm̃

)
= o(1),

for some sequence βn converging to zero slowly enough as n → ∞.

Proof of Lemma C.2. Start from the observation that

���T̃n −T
∗
n

��� ≤ sup
(x ,m)∈In

������
αm (x )

′*
,

Ω̂1/2
m

√
nσ̂m (x )

−
Ω1/2
m

√
nσm (x )

+
-
Xm

������
.

Proceeding conditional on the data such that

Tn =
{
α̃ ′x ,mXm : α̃x ,m ∈ Rm,m ∈Mn

}
,

with

α̃x ,m = αm (x )
′*
,

Ω̂1/2
m

√
nσ̂m (x )

−
Ω1/2
m

√
nσm (x )

+
-
,

is a collection of zero-mean Gaussian processes. Next, consider

‖α̃x ,m‖∞ = sup
(x ,m)∈In








αm (x )

′*
,

Ω̂1/2
m

√
nσ̂m (x )

±
Ω1/2
m

√
nσ̂m (x )

−
Ω1/2
m

√
nσm (x )

+
-
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≤ sup
(x ,m)∈In

‖αm (x )‖
√
nσ̂m (x )




Ω̂
1/2
m − Ω1/2

m ‖ + sup
(x ,m)∈In




αm (x )Ω
1/2
m





√
nσm (x )

�����
σ̂m (x )

σm (x )
− 1

�����

. max
m∈Mn




Ω̂
1/2
m − Ω1/2

m ‖ + max
m∈Mn

�����
σm (x )

σ̂m (x )
− 1

�����
. max

m∈Mn




Ω̂m − Ωm‖ + max
m∈Mn

�����
σm (x )

σ̂m (x )
− 1

�����
.P δn,

where the �rst line is due to the triangle and Cauchy-Schwarz inequality, the second by

Condition 3.3, Corollary 3.4.1, the third Lemma A.2 from Belloni et al. (2015) and the

�nal inequality by the assumptions of the Lemma. Applying Lemma C.1 to the class of

functions Tn with α̃x ,m restricted to lie in the ball of radius δn up to some constantC large

enough establishes (C.13). The second claim in (C.14) is a direct consequence of Markov’s

inequality applied to (C.13). �
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Lemma C.3. Let Xm ∈ Rm and Ym ∈ Rm be twom-dimensional Gaussian random vectors.

Furthermore

Xm ∼ Nm (0,V ) and Ym ∼ Nm (0,W ),

such that if ‖W ‖ . 1 and

(C.15) ‖V −W ‖ .P δm,

then,

‖Xm − Ym‖∞ .P δm

√
m logm.

Furthermore, if δmm logm = o(1), then for a γm converging to zero slowly enough and for

somem ≥ m

P

(
‖Xm − Ym‖∞ ≥

γm√
m logm

)
= o(1).

Proof of Lemma C.3. First, note that Xm = V
1/2Nm and Ym =W

1/2Nm for Nm a standard

Gaussian random vector. Also,

(C.16) ‖V 1/2 −W 1/2‖∞ ≤
√
m‖V 1/2 −W 1/2‖ .

√
m‖V −W ‖,

where the �nal inequality is due to Lemma A.2 from Belloni et al. (2015) and the fact that

‖W ‖ . 1 by assumption. Hence,

‖Xm − Ym‖∞ ≤ ‖V
1/2Nm −W

1/2Nm‖∞

≤ ‖V 1/2 −W 1/2‖∞‖Nm‖∞

.P δm
√
m‖Nm‖∞

.P δm

√
m logm,

where the penultimate inequality follows from (C.15) and (C.16) and the �nal inequality

from a similar argument as used in the proof of Lemma C.2.
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Similar to the �nal step in the proof of Lemma C.2, the �nal claim follows from Markov’s

inequality and the fact that δmm logm = o(1) implies that√
m logm‖Xm − Ym‖∞ ≤ oP (1),

for somem ≤ m such that

P

(
‖Xm − Ym‖∞ ≥

γm√
m logm

)
= o(1).

�

C.2. Extra Monte Carlo Experiment Results

This appendix contains extra material on the Monte Carlo experiment described in Sec-

tion 4.3.1. Figure C.1 plots the unknown conditional mean function д : [0, 1]→ R

д(x ) = arctan
[(

2x +
1
2

)
log

(
2x +

1
2

)]
.

Table C.2 contains the data on the used to plot Figure 4.2 for the 95 per cent coverage

results. Additionally, Tables C.1 and C.3 report the outcome on the coverage at the 90

and 97.5 per cent levels which are similar to the 95 per cent results.
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Figure C.1: Plot of д(x ) on [0, 1] used in the Monte Carlo experiment.
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C.3. Descriptive Statistics and Estimation Results

This section reports the descriptive statistics and the results from the log-linear model in

(4.20) estimated on the full sample and the three subgroups described in Section 4.3.2.

Table C.4: Descriptive statistics on Blundell, Horowitz and Parey (2012) household data.

Statisticsa q p y share log(hhsize ) log(driver ) log(hhraдe ) total_wrkr

n 2912 2912 2912 2912 2912 2912 2912 2912
x̄ 7.12 0.288757 11.05 0.035 1.38 0.78 3.64 1.88
std. dev. 0.65 0.042177 0.57 0.041 0.23 0.23 0.23 0.75
max 9.22 0.361399 11.69 0.823 2.64 2.30 4.48 10.00
75% 7.53 0.326036 11.41 0.040 1.61 0.69 3.78 2.00
50% 7.16 0.282514 11.12 0.026 1.39 0.69 3.66 2.00
25% 6.77 0.248640 10.77 0.017 1.10 0.69 3.50 1.00
min 2.69 0.228076 7.82 0.001 0.00 0.00 2.89 0.00

aNotes: See the text for the de�nition and explanation of the variables reported in the table.
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Table C.5: OLS Regressions of log-linear model.

Regressorsa (1) (2) (3) (4)

Log price −1.206 −1.573 −1.131 −1.228
[0.262]∗∗ [0.395]∗∗ [0.324]∗∗ [0.349]∗∗

Log income 0.308 0.446 0.382 0.350
[0.020]∗ [0.061]∗∗ [0.048]∗∗ [0.065]∗∗

Log age of household respondent 0.0303 0.036 −0.045 −0.097
[0.048] [0.067] [0.061] [0.067]

Log household size 0.111 0.070 0.129 0.131
[0.051]∗ [0.074] [0.063]∗ [0.070]

Log number of drivers 0.380 0.332 0.294 0.286
[0.059]∗∗ [0.091]∗∗ [0.079]∗∗ [0.087]∗∗

Number of workers in household 0.099 0.102 0.099 0.097
[0.017]∗∗ [0.026]∗∗ [0.022]∗∗ [0.024]∗∗

Public transit indicator −0.111 −0.081 −0.082 −0.107
[0.026]∗∗ [0.043] [0.032]∗∗ [0.034]∗∗

Small town 0.796 0.487 0.666 0.797
[0.059]∗∗ [0.141]∗∗ [0.114]∗∗ [0.152]∗∗

Suburban 0.675 0.378 0.561 0.682
[0.063]∗∗ [0.146]∗∗ [0.120]∗∗ [0.158]∗∗

Second city 0.667 0.422 0.589 0.696
[0.060]∗∗ [0.142]∗∗ [0.118]∗∗ [0.156]∗∗

Urban 0.629 0.352 0.513 0.639
[0.071]∗∗ [0.154]∗∗ [0.127]∗∗ [0.162]∗∗

Constant 2.767 1.639 2.331 2.815
[0.231]∗∗ [0.563]∗∗ [0.462]∗∗ [0.613]∗∗

Population density (8 categories) Yes Yes Yes Yes
Observations 2912 1351 1858 1572
R2 0.208 0.136 0.129 0.127

aNotes: The dependent variable is log of annual gasoline demand measured in gallons. The

heteroskedasticity-consistent standard errors are given in brackets below the point estimates. The superscripts

∗ and ∗∗ indicate signi�cance at the 5 and 1 per cent level respectively. Regression (1) contains the output for

the whole sample, whereas (2), (3) and (4) contain the results for the lower, middle and upper income groups.

See Section 4.3.2 for details on these divisions.
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D Mathematical Tools

D.1. Rudelson’s Inequality

An important inequality due to Rudelson (1999) is key in establishing Theorem D.1 which

is used in Chapters 2 to 4. The inequality is an ingredient for proving non-asymptotic

properties of high-dimensional covariance matrices equivalent to a law of large numbers

in the asymptotic framework. In particular, Lemmas D.1 and D.2 lead to Theorem D.1

below.

LemmaD.1 (Rudelson’s Inequality). LetX1, · · · ,Xn be a sequence of independent random

vectors inRm and ε1, . . . , εn be a sequence of i.i.d. Rademacher variables. Then, conditionally

on X1, . . . ,Xn

Eε








n∑
i=1

εiXiX
′
i








.

√
logn ∧m max

1≤i≤n
‖Xi ‖









n∑
i=1

XiX
′
i









1/2

.

Proof. See Rudelson (1999). �

The following lemma is a symmetrisation lemma for random matrices.

Lemma D.2. Let X1, . . . ,Xn be independent random elements in Rm×m and ε1, . . . , εn be a

sequence of i.i.d. Rademacher variables. Then,

E








n∑
i=1

Xi − EXi








≤ 2 EX Eε









n∑
i=1

εiXi








,

where the expectation over ε is conditional on Xi .
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Proof. Let Y1, . . . ,Yn be an independent copy of X1, . . . ,Xn. Then, for �xed X1, . . . ,Xn









n∑
i=1

Xi − EYi







=









n∑
i=1

E(Xi − Yi )








≤ EY









n∑
i=1

Xi − Yi








,

by Jensen’s inequality. Therefore,

(D.1) EX









n∑
i=1

Xi − EXi








≤ EX ,Y









n∑
i=1

Xi − Yi








,

and by symmetry

(D.2) EX ,Y









n∑
i=1

Xi − Yi








= EX ,Y Eε









n∑
i=1

εi (Xi − Yi )







,

where the expectation over ε is taken conditionally on Xi and Yi . Combining (D.1), (D.2),

the triangle inequality and the fact that Xi and Yi are identically distributed by construc-

tion establishes the lemma. �

Below I prove Theorem D.1 which is used in Chapters 2 to 4 as the behaviour of the

quantity En[XiX
′
i ], for some Xi ∈ Rm appropriately de�ned in the text, plays a central

role.

Theorem D.1. Let a1, . . . ,an be independent random variables and X1, . . . ,Xn be inde-

pendentm-dimensional random vectors with ‖Xi ‖2 ≤ ξm for all i = 1, . . . ,n. Furthermore,

let Ψ̂m = Ena2
iXiX

′
i , Ψm = EEna2

iXiX
′
i and EEnXiX

′
i = Im. Then,

(D.3) E ‖Ψ̂m − Ψm‖ . ν

√
ξ 2
m logm

n
∨
ν2ξ 2

m logm
n

,

where ν := (E max1≤i≤n |ai |
2)1/2. If ν2ξ 2

m logm . n, then with probability at least 1 − α

(D.4) ‖Ψ̂m − Ψm‖ . ν

√
ξ 2
m logm
nα2 .
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Proof of Theorem D.1. The proof is standard and based on non-commutative Khichine in-

equalities for matrices. First, by the triangle inequality

(D.5) ‖Ψ̂m‖ ≤ ‖Ψ̂m − Ψm‖ + ‖Ψm‖ . ‖Ψ̂m − Ψm‖ + 1.

To bound the �rst term on the left-hand side, consider a sequence of independent Rademacher

random variables (ςi )ni=1

E ‖Ψ̂m − Ψm‖ ≤ 2 Ea,X Eς |a,X ‖EnςiaiXiX
′
i ‖

≤ C

√
logm
n

E max
1≤i≤n

‖aiXi ‖‖Ena
2
iXiX

′
i ‖

1/2

≤ C

√
ξ 2
m logm

n
E max

1≤i≤n
|ai |‖Ψ̂m‖

1/2

≤ Cν

√
ξ 2
m logm

n

√
E ‖Ψ̂m‖,

where the �rst inequality follows from Lemma D.2, the second by Lemma D.1, the third

by ‖Xi ‖∞ ≤ ξm and the �nal one by the Cauchy-Schwarz inequality. For shorthand, let

E = E ‖Ψ̂m − Ψm‖ and c = Cν

√
ξ 2
m logm

n . Taking expectations of (D.5) and combining it

with the above inequality yields

E ≤ c (E + 1)1/2.

Notice that for x , c ≥ 0, x ≤ c
√
x + 1 implies that x ≤ (c2 +

√
c4 + 4c2)/2. Hence,

E ‖Ψ̂m − Ψm‖ . c + c2,

using the elementary inequality
√
a + b ≤

√
a +
√
b for any a,b ≥ 0. This establishes the

�rst claim. The second claim follows directly from an application of Markov’s inequality

and the fact that

ν

√
ξ 2
m logm

n
∨
ν2ξ 2

m logm
n

= ν

√
ξ 2
m logm

n
,

since ν2ξ 2
m logm . n. �
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D.2. Additional Tools

This section outlines some of the most commonly used tools in the proofs. By no means is

this meant as a textbook exposition or a review chapter, but merely as an accompaniment

to make the proofs more complete and ultimately easier to follows. For a precise treat-

ment on this subject, I refer the reader to three excellent textbooks: van der Vaart and

Wellner (1996), van der Vaart (1998) and Giné and Nickl (2016). However, any graduate-

level textbook on mathematical statistics, in particular on in�nite-dimensional models,

will su�ce.

In Chapters 3 and 4 a recurring quantity is the empirical process indexed by a class of

functions F

Gn f =
1
√
n

n∑
i

f (Xi ) − E[f (Xi )].

In order to make meaningful statements about this process I need the concept of a cov-

ering number of the class of functions F and the entropy of F .

De�nition D.1 (De�nition 2.1.5 (van der Vaart and Wellner 1996)). Let (F ,d ) be some

metric space of real functions f : X → R. The covering number N (F ,d,τ ) is the min-

imum number of d-balls of �nite radius τ needed to cover the set F . The entropy of F

relative to d is the logarithm of the covering number.

Intuitively, the covering numbers are a measure for the complexity of the function classes

indexing the empirical processes which determine how the suprema over these classes

behaves. Lemmas B.4 to B.7 control the entropy of various classes of functions which are

of interest in this thesis.
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De�nition D.2. A centred stochastic process X f , f ∈ F is sub-Gaussian with respect to

some distance d on F if

E exp
{
t
(
X f − X f̌

)}
≤ exp

{
t2d2( f , f̌ )

}
for t ∈ R and f , f̌ ∈ F .

Sub-Gaussian processes play an important role due to the following result, known as

Dudley’s inequality (Dudley 1967).

Theorem D.2. Let (F ,d ) be a metric space where D := diam(F ) and let X f be a centred

sub-Gaussian process indexed by F . If,

∞∫
0

√
logN (F ,d,τ ) dτ < ∞,

then,

E sup
f ∈F

���X f
��� .

D/2∫
0

√
log 2N (F ,d,τ ) dτ .

Proof. See Theorem 2.3.7 in Giné and Nickl (2016). �

Theorem D.2 is convenient to work with as it is possible under suitable conditions to

show that

(D.6) E sup
f ∈F
|Gn f | ≤ E sup

f ∈F
|Gon f |,

where Gon f is the symmetrised process from (1.4). Proceeding conditionally on the data,

the symmetrised process is a sub-Gaussian process. This follows from the fact that

Rademacher random variables have a bounded support such that De�nition D.2 holds.

As such, the right-hand side in (D.6) can be bounded by applying Dudley’s inequality
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above. The �nal step is to take the expectation over the data and bound this �nal expec-

tation which is usually a much simpler quantity to deal with. For an application of this,

see Step 1 in the proof of Lemma B.1.

To conclude this section, I state the anti-concentration result for the suprema of Gaussian

processes from Chernozhukov, Chetverikov and Kato (2014a).

Theorem D.3 (Corollary 2.1 (Chernozhukov, Chetverikov and Kato 2014a)). LetX f , f ∈

F be a separable Gaussian process indexed by a semi-normed space F such that E[X f ] = 0

and E[X 2
f
] = 1 for all f ∈ F . Assume that supf ∈F X f < ∞ a.s. De�ne

a( |X |) := E supf ∈F |X f |, then for all κ ≥ 0

sup
x∈R

P
(��� sup

f ∈F
|X f | − x

��� ≤ κ
)
. κ

(
a( |X |) + 1

)
.

This result can be seen as a reverse of the traditional concentration inequalities for Gaus-

sian processes. The result is most useful when κ = o(a( |X |)−1) which implies that the

supremum of |X f | cannot concentrate too fast around any x ∈ R. This result plays a key

role in establishing the validity of the critical values in Theorem 4.4. Traditional results

assume the existence of a limiting distribution of an appropriately studentised empirical

process in order to establish the validity of uniform con�dence bands in nonparametric

regression. However, as is the case in this thesis the studentised empirical process does

not have a limiting distribution. The combination of the strong approximation in Theo-

rem 4.1 and Theorem D.3 delivers the validity of the critical values and by extension that

of the uniform con�dence bands in Theorem 4.4.
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