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An investigation of numerical techniques for solving hyperbolic partial dif-—
ferential equations is presented. The relevance of the terms convergence, stabil-
ity, consistency and order of accuracy as applied to numerical models solving the
linear equation u, = Lu , where L is a linear differential operator, is dis-—
cussed. With the Lax Richtmyer Equivalence theorem in mind, a review of the sta-
bility analysis for solving these equations with and without boundaries is
presented.

In this dissertation we are mainly concerned with the method of 1lines
approach for solving such equations. The semidiscretisation

S d s
L f acYy(t) = L g.v.(t)
j=—R j dt ij=—r 3
is adopted as an approximation to the linear equation U = oug . By a modifica-

tion of the theory of order stars the maximal accuracy of stable schemes of this
kind is proved to satisfy the bound

P € min { r+s+R+S, 2(r+R+1), 2(s+8) )

By an application of the Padé theory we prove that in some cases schemes achiev—
ing this bound do exist.

We propose solving the ordinary differential system of equations obtained
from the semidiscretisation by a class of two-step Runge Kutta schemes. This par-
ticular class of methods is designed to have the same number of function evalua-
tions as a one-step method whilst obtaining the degrees of freedom associated
with a two-step method. A strategy for exploiting these degrees of freedom to
develop maximally efficient second- and third-order schemes compatible with the
underlying semidiscretisation is described. We also discuss the design of effi-
Cient implementations for both one— and two—-step Runge-Kutta schemes.

A comparison of the characteristics of conservalive and dissipative semi-
discretisations is performed by studying their evolution of three initial condi-
tions under time integration by Runge-Kutta methods and the trapezoidal and mid-
point rules. A group velocity analysis of the spatial discretisations is
Presented and it is demonstrated that for reasonable time steps the influence of
the time integration is negligible. Furthermore, very good shock resolution is
achieved by dissipative methods and conservative methods integrated by particular

Runge-Kutta schemes. Consequently the latter models are vers y good candidates for

inclusion in codes for solving non-linear conservation laws effi ilciently.
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0. INTRODUCTION

In this dissertation we present an investigation of
numerical models for the solution of hyperbolic partial differentiai
equations. The particular models considered are those where
the eqﬁation is approximated by finite differences. Such models
fall into one of two categories; either fully- or semi-
discretised schemes. He;e we concentrate on the latter group
whereby spatial and time derivatives are considered
separately. This approach to solving partial differential

equations is often called the method of lines.

Any investigation of semi-discretised (SD) models
comprises two parts; first to analyse the spatial discreti-
sation and second to consider the time integration of the
resulting system of ordinary differential equations
(O-D.E.) Conveniently, these two problems divide this
dissertation into two parts. In the first four chapters we
consider the stability and order of accuracy of the SD and in the
remaining chapters the solution of the O.D.E. system is dis-
cussed. A special class of two-step Runge-Kutta methods
designed to have the same number of function evaluations as

a one-step method is proposed.

Chapter 1l: We begin with the first chapter by review-
ing some of the literature on the solution of partial dif-
ferential equations by finite-difference methods. Fundamen-
tal in the analysis of such methods is the determination of

their convergence and order of accuracy properties. Here we
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define conditions for convergence of both fully- and semi-
discretised models for the solution of the linear equation
u, = Lu where L 1is a linear spatial differential opera-
tor. By the Lax-Richtmyer Equivalence Theorems convergence
may be investigated via the stability of the model [La56].
With this in mind, we discuss the development of stability
theory from von Neumann's Fourier analysis [Ri67] to the
Kreiss matrix theorem [Kr59] and the Godunov-Ryabenki
analysis of normal modes [Go64]. This discussion of the more
traditional view of stability is completed by describing the
Wiener-Hopf factorisation techniques for implicit models
[St64b], followed by the Gustafsson Kreiss and Sundstrém
version of stability for mixed boundary-value problems
[Gu72]. Further to this the more recent group velocity

interpretation of stability by Trefethen is described

[Tr82a].

Finally, we consider the stability of the O.D.E. system

of equations and demonstrate that absolute stability of the

O.D.E. solver is not sufficient to characterise the'

behaviour of numerical solutions for partial differential
equations. On the contrary, the location of the spectrum of
the infinite dimensional Toeplitz operator describing the SD
system must lie within the absolute‘stability region of the

O.D.E. method.

Chapter 2: Here we start by defining the order of accuracy
of a numerical scheme. From this definition it is demon-

strated that determination of stability may be posed in an
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approximation—theoretic framework. Further, we demonstrate a
relationship between all fully-discretised (FD) and some SD
schemes. As a result of this the stability and accuracy of
the associated SD are inherited from the FD. Hence the max-
imal order of accuracy of stable FD's may be investigated
via the associated SD's. We also prove that the pole condition
for stability of an implicit SD implies a condition on the
location of the zeros of the characteristic function of the

. SD: For stability, the SD defined by [

where vj(t) is an approximation to the exact solution
u(xo + jJAx,t) , has a characteristic function which must
have at least r zeros inside the unit circle and (s-1)
zeros outside the unit circle. Consequently no scheme with

8 = 0 may be stable.

Chapter 3: In this chapter we prove the major result
of the first half of this dissertation. The order of accu-
racy, p, of a stable semi-discretisation for solving the

linear conservation law is bounded by

P € min { r+s+R+S, 2( r+R+1), 2(s+S))} .

This generalises the equivalent result proved by Iserles and
Strang [Is83a] for full discretisations. Initially we

describe the theory of order stars as introduced by Wanner,

:
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Hairer and Ngrgett [Wa78], briefly discussing some of its
more recent developments and applications. A proof of the
given bound follows by incorporating the zero condition into
the geometric properties of the order star and then applying
a combinatorial argument to derive the optimal configuration
’ of the poles and zeros of the cﬁaracteristic function. in
this way we also provide an alternative proof of the bound
2(s8s + 8) for FD schemes. Moreover, we prove that Padé
approximations to - fnz are normal for particular choices

of r, R, s and S.

Chapter 4: In this chapter we prove that some schemes
attaining the maximal accuracy, p=1r +R + s + 8, are
stable. For these schemes the bound on accuracy means that

they must be sufficiently centred:
r+ R<s +S<r+R+ 2,

which’considerably reduces the range of explicit and impli-
cit parts that may be incorporated in the model. Our
analysis concentrates on schemes derived from the appropri-
ate Padé approximations: the Padé schemes. For the associ-
ated SD's proof of stability follows directly from the
results of Iserles and Strang [IsS3a]. Otherwise we rely on
the Padé theory to determine the sign of the error constant
of the approximation from which we prove that the von Neu-
mann condition is satisfied. In addition, the geometry of
the order star is used to decide which configurations of

poles and zeros are possible hence proving that the pole




condition is also satisfied. Consequently we are able to
prove that, as for FD's, stability occurs for the approxima-
tions 1lying on the three leading diagonals of the Padé

tableau.

Chapter 5: In this chapter we elaborate on the discus-
sion in Chapter 1 of the mconvergence of the numerical solu-
tion of the O.D.E. system of equations arising from the spa-
tial discretisation. We discuss some of the advantages and
disadvantages of possible classes of O.D.E. methods for
solving non-linear conservation laws, motivating our deci-

sion to investigate explicit methods.

In solving a partial differential equation by the
method of lines, we require that the family of eigenvalue
curves of the Jacobian matrices of the semi-discretised
equation, obtained as the mesh is refined, lies within the
absolute stability region of the 0.D.E. method. A scheme
which is maximally efficient has the largest possible multi-
ple of the spectrum of the infinite dimensional Toeplitz
operator describing the SD 1lying inside its stability
region. These schemes maximise the Courant number that may
be stably used in the numerical model. Moreover, due to the
varying structure of the Jacobian matrix maximally efficient
schemes for one class of SD methods‘will not be optimal for

another class.

The development of optimal schemes for parabolic equa-

tions has been extensively investigated ([Ve76], [Ho801]).

We review the results for these equations and also discuss




the optimal schemes for hyperbolic equations discretised
using central differences. For the former case extended
stability on the negative real axis, and in the latter
extended stability on the imaginary axis, is required.
There are very few results.in the literature applicable to
hyperbolic equations with dissipative discretishtions. Such
SD's require maximal stability within a closed region of ¢
that adjoins the origin. However we do discuss the applica-
tion of the Comparison Theorems as introduced by Jeltsch and
Nevanlinna [Je82] as well as the possible relevance of the
work described by Manteuffel on Tchebychev iterations

[Ma77].

~

Chapter 6: Here we propose a class of two-step multis-
tage methods for solving an O.D.E. system. This particular
class of methods is designed to have the same number of
function evaluations as a one-step method whilst retaining
most of the degrees of freedom associated with a two-step
method. A strategy for using these degrees of freedom to
derivé schemes with extended stability regions is described.
Furthermore, the optimisation problem is solved for extended
intervals of stability on the imaginary axis and for
extended stability within wedge-shaped regions lying in ¢ .
In this way schemes suitable for integrating either conser-
vative or dissipative SD's of hypérbolic equations in an
efficient manner are obtained. We also apply the optimisa-
tion technique to one-step Runge-Kutta methods and demon-
strate that, at the cost of extra storage, the inéorporation

of the extra step is valuable for increased efficiency.
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Consequently, this particular class of methods is useful for
designing efficient methods not only for partial differen-
tial equations, but also for O0.D.E.'s which require stabil-

ity within wedges adjoining the origin in @ .

Chapter 7: Here a discﬁssion of efficient algorithms with
minimal storage requirements for both one- and two-step Runge-
Kutta methods is presented. First we review algorithms for
the one-step methods. It is demonstrated that, by consider-

ing a specially designed scheme, a fourth-order four-stage

method may be implemented with just two arrays of storage.
This is a considerable improvement on the four arrays of
storage usually required to implement the one-step Runge-
Kutta methods. Therefore we investigate whether the class
of two-step methods introduced in Chapter 6 may be imple-

mented in a comparable manner. We derive minimal-storage

algorithms for two-step schemes by generalising the one-step
implementations. We show that an algorithm requiring only
two arrays of storage, whilst achieving ﬁhird—order accuracy
with three stages, is possible. Alternatively, with less
restrictions on the integration parameters, algorithms

requiring only three or four arrays of storage may be used.

Finally we discuss the implementation of an error control
mechanism for one- and two-step scheﬁes. We demonstrate that
the algorithms which need more storage are more useful in
this context. For these algorithms the schemes still have
some degrees of freedom available that may be used to minim-

ise the number of additional function evaluations. We
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describe a possible method of error control similar to the
Runge-Kutta-Fehlberg technique. Furthermore, an algorithm
using five arrays of storage suitable for the two-stage
methods of order two and the three-stage methods of order

two and three derived in Chapter 6 is suggested.

Chapter 8: In this final chapter a group velocity analysis
of SD schemes is presented. We derive expressions for the
group velocity of both conservative and dissipative SD's, keeping
in mind that the complex natuée of the‘group velocity for
the latter schemes means that its general physical relevance
is not clear. We analyse the group velocity, phase velocity
and amplitude of four SD's, two of which are dissipative. A
comparison of the characteristics of the SD's is then per-
fbrmed by studying their evolution of three initial condi-

tions with different methods of time integration.

The numerical models considered are based on the three-

point and five-point central difference formulae, as well as

two third—order dissipative schemes, with integration by the
midpoint and trapezoidal rules and the one and two-step
Runge Kutta methods obtained in Chapter 6. By choosing
suitable initial conditions, a stepfunction, a pulse and a
wavepacket, the dissipative and dispersive properties of the
models are predicted. Integration of the dissipative schemes
shows that these predictions are insufficient. A wavepacket
evolves faster than group velocity would suggest but ampli-
tude attenuation does occur at a rate predicted by a simple

amplitude analysis. Clearly, energy velocity must also be




considered to obtain a complete picture for these models.
However, group velocity predictions for the conservative
SD's are very accurate. This demonstrates that for reason-
able time steps the influence of the time integration on

group velocity is negligible.

Further, not only is good shock resolution achieved by
dissipative schemes, but also by conservative schemes
integrated by particular Runge-Kutta methods. An extensive
investigation of efficient Runge-Kutta methods for conserva-
tive SD's already exists in the literature. Additionally,
the numerical development of these schemes is easier than
for dissipative SD's. Therefore numerical models based on
the combination of conservative SD's with Runge-Kutta
methods are very strong candidates for inclusion in codes

designed to solve non-linear problems efficiently.
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1. CONVERGENCE AND STABILITY OF PARTIAL DIFFERENTIAL

EQUATIONS

1.1 Nonlinear Egquations

The solution of nonlinear partial differential equations by numer -
ical methods poses many problems. For example, consider the

genuine solutions of the nonlinear conservation laws,
Bl + (g(u))x =0 , u(x,0) = ¢(x) , (1.1.1)

where ¢ is a smooth initial condition and g 1is some suf;
ficiently smooth nonlinear function of u = u(x,t) . it is
well known that the smoothness of ¢(x) does not ensure a
continuous solution u(x,t) for all t>o ([LabOb]. Unique
solutions of (1.1.1) exist only under the additional assump-
tions that all the discontinuities of wu(x,t) are shocks: at
all discontinuities u(x,t) must satisfy the Rankine Hugoniot
jump condition and the entropy condition ([La73]. The aim is
to developbnumerical models whose solutions converge to the
real solution and mimic discontinuities correctly. This is,
at present, an area of active investigation by many authors;
see, for example, references [Le79], [Ro8l], [En80], [Ha76],

where work following along the lines ~of that initially

presented by Lax and Wendroff [La60b] is discussed.

[y

' In some cases the solution of the nonlinear model can




be shown to be stable by applying the energy method directly
[En80]. In most cases, however, non-linear stability is
assumed to depend on the stability of the first variation in
the difference operator. Strang [St64a] proved that this
assumption is justified for systems with suitably smooth
initial conditions solved by a consistent numerical model.
The investigation of the linearised model is thus quite

valid as a guide to the solution of nonlinear equations.

In this chapter the concepts of convergence, stability, con- -
sistency and order of accuracy are explained. Further, a brief
review of the determination of convergence of the numerical
model for various linear partial differential equations with

and without boundary conditions is presented.

1.2 Convergence, Stability and the Lax-Richtmyer

Equivalence Theorems

When solving any partial differential equation by means
of a numerical model the major requirement is that the solu-

tion of the numerical scheme should converge in some sense to

the genuine solution. For this to be possible the numerical
model must be a consistent approximation to the partial dif-
ferential equation, which in turn must be a properly—-posed

problem.

It is convenient to think of the variables describing
the state of a system at fixed time t as elements u(t) of a

Banach space B with a norm # n. The norm of an operator T

L R

-




WTn: = sup {ﬂi&lﬂ | g # 0, Tg exists , g € B}

(1.2.1)

We denote the linear spatial differential operator acting on ele-
ments of B by L, where L is, for simplicity, assumed
independent of t. Then the initial value problem (IVP) is to

find a one-parameter set of elements u(t) such that

ut=Lu+f(x,t) t 20

u(x,0) = @(x) . (1.2.2)

If boundary conditions are present we assume that they are
linear homogeneous and are incorporated by assuming that the
domain of L is restricted to elements satisfying these con-
ditions. In this case we require to solve the initial boun-

dary value problem (IBVP).

A genuine solution of (1.2.2) is the one-parameter set u(t)

such that

i) uw(t) is in the domain of L for all t in the compact
|
interval [0, 7] and

At -0 B (L,“(t’ tE(x,t)) 1 -0 (£-2.43

uniformly in t, for all t in the compact interval [0, 7]

[Lab6].




Alternatively if we pick an element ¢ which is not in
the’dohain of L then obviously we can not always find a
genuine solution satisfying the initial conditions. However
we assume that we can always approximate the initial condi- ‘
tion as closely as required by an element in the domain of |
L. Thus we assume that we can define an evo/utioﬁ operator Eo(t)
which has domain dense in B so that for any genuine solu-

tion u(t) of (1.2.2) depending uniquely on ¢(x)

E
u(t) = Ey(t) d(x) + | Ey(t-s) f(x,8)ds o (1.2.4)
o

l [Ri67].

In addition it 1is desirable that the solution u(t)
should depend continuously on the initial value ¢(x). Thus
we also assume that the operator Ey(t) is uniformly bounded

in any compact interval [0, 7] with respect to the operator

e Y ;T

norm on B8 as defined by (1.2.1). These two assumptions
characterise a properly posed problem according to the notion

of Hadamard [La56].

These definitions mean that genﬁine solutions of prop-
erly posed problems are continuous and differentiable. How- “
ever, such solutions need not exist: recall that solutions

r of non-linear conservations laws may be discontinuous

[LLa73]. But as the evolution operator Eo(t) is bounded with [
domain dense in B it has a unique bounded linear extension ; I
E(t) whose domain 1is the entire space B and whose bound is

the same as that of Eo(t) [Ri67]. Thus for any properly

posed problem and for arbitrary ¢ € B we can interpref the




one-parameter set of elements of u(t) € B given by
t
u(t) = E(t)o(x) + [ E(t-s)f(x,s)ds , (1.2.5)
o

as the generalised or weak solutions of the IBVP. E(t) is called

the generalised evolution operator.

By (1.2.3) any genuine solution of (1.2.2) is continu-
ous with respect to the norm of B. Furthermore, the opera-

tor E(t) acting on B, satisfies the semigroup property,
E(t + s8) = E(t)E(s).

Thus, applying the triangle inequality to (1.2.3) it can be
shown that not only are the integral forms of the general-
ised solutions continuous in any compact interval [0, T ] but
also that their convergence in (1.2.3) is uniform in t, t €

[0, T], for a properly posed IBVP.

Since for a properly posed IBVP (1.2.2) the evolution
operator is formally eLt, we can write the formal solution

of (1.2.2) as

E
u(t) = eLt¢(X) + f eL(t-s)‘f(x,s)ds y (1.2.6)
0

provided that f, (f and L% exist and are continuous functions
of £t for all £t > o [Ri67]. Henceforth we shall assume that

¢ 1is square integrable, since for the formal solution as
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-5 =
given this is sufficient.

In this dissertation we are mainly concerned with numer-
ical models determined by finite-difference approximations ‘
to spatial-differential operators. This approach produces a 1
system of ordinary differential equations that may then be f
integrated by an ordinary differential equation solver. The i
solution of partial differential equations in this way is
often called the method of lines. We call the finite-
difference approximation a semi-discretisation (SD) and abbrevi-
ate implicit and explicit schemes by ISD and ESD respec-

tively.

> Alternatively, both spatial and time derivatives may be
approximated in unison by means of Taylor expansions. This
produces a system of difference equations for the solution
at one time level as a linear combination of solutions at
preceding time levels. A numerical model obtained in this
way 1is called a full discretisation (FD) and if the solution is
determined by solutions at k previous levels, it is called
a k-step scheme. Again, we abbreviate implicit and explicit

FD by IFD and EFD respectively.

Assuming that v(t) is an approximation to u(t),
v“t) =~ u(lexl,jzsz,... ,JmAxm,t),j being a multi-index, we
replace the differential equation (1.2.2) by the semi-

discretisation;

vi(t) = B(Ax)WLt) + F(t)

v(o) = @& . (1.2.7)
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i }

Here the difference operator B has matrix coefficients
which are functions of the grid size
Ax = (Axl,sz, e e e ,Axm)T. F(t) and ® are the projections
of the continuous functions ‘ﬂx,t) and ¢(x) onto the grid

by the projection operator P(Ax).

Consistency of the numerical model (1.2.7) is defined
by requiring that the difference operator B(Ax) approxi-
mates L uniformly for every genuine solution u(x,t) and a
set of initial conditions P(x) dense within the set of

square integrable functions:

lim W (P(Ax)L — B(Ax)P(Ax))u(x,t)n = o (1.2.8)
Ax - 0

Consistency may easily be verified by expanding the product
B(Ax) v as a finite Taylor series. The truncation error
involved in replacing Lu by this differential operator
may be estimated by Taylor's theorem for sufficiently smooth

functions. It can then be used to determine the convergence

of the approximation to the real solution. With the same
conditions as for consistency, the method is defined to be

convergent if

lim I v(t) = P(Ax) u(t)yn = o (1.2.9)
Ax - 0

for every t in a compact interval (o, 7T]."

Stability is a property of the difference approximation

alone and limits the extent to which any component of the




initial function can be amplified by the numerical pro-
cedure. We say that the SD difference scheme (1.2.7) 1is
stable if for every 7T > o there exists a positive constant

8 such that the set,
{ 1etBAX) (1.2.10)

is uniformly bounded for all te(o,7)] and o0 < Ax ¢ & where

Ax = max {Ax.}.
j ]

From the above definitions the following theorem, funda-
mental to the analysis of numerical models of the 1linear

IBVP , may be proved.

Theorem 1.2.1 The Lax-Richtmyer Equivalence Theorem for SD

Methods:

Given a properly-posed partial differential equation
(1.2.2) and a consistent finite-difference SD approximation

(1-.2.7), bonvergence is equivalent to stability [Go77]. a

Therefore the problem of determining under which condi-

tions convérgence of the approximation to the real solution
occurs as the mesh is refined may be investigated via the

stability of the numerical model.

Performing a full discretisation of (l1l.2.2), conver-
gence, stability and consistency are defined in a similar
manner. Let

n+1

v = catyv?

+ Faty , n>o (1.2.11)




be a one-step scheme where C(At) is a matrix function

depending on Ax through At , where v approximates

n ; . . n -
u(n At), % tquAxl,jzsz,...,ijxm,nAt) and F approxi
mates f(nAt). The family of operators C(At) is defined to

be a convergent approximation if

: n
1 (C(AE) J - Etyen -0 , o<t< T , (1.2.12)

for any sequences {Ajt, nj} such that Ajt tends to zero

and njAjI: tends to fixed t as j » = for every ¢ € B. It
*

is stable if for some 7 > 0 the family of operators,

{caty1™, o< at <1, (1.2.13)

for 0 < n At € 7 is uniformly bounded. By the Lax-Richtmyer
Equivalence Theorem for FD methods, stability is equivalent to
convergence under suitable conditions of consistency of the

approximation and well posedness of the equation [La56].

In the following paragraphs we review many of the exist-
ing theories for determining the stability of SD models.
Most of this theory was originally derived for FD models and
then adapted later. Theréfore parallel results, which will
not always be quoted here, do exist for FD models. As we
have already stated, it is the SD model which interests us
more in this dissertation and therefore we feel this rather
"back-to-front" discussion of stability is Jjustified. Many
references to the FD theory will be mentioned and where

results will be required later the exact theory is stated.
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1.3 The Cauchy Problem and Fourier Analysis

Determination of stability criteria is considerably
simpler for the constant coefficient problems defined on a
bi-infinite domain with continuous initial conditions. Such
equations yield straightforwardly to a Fourier analysis. A
similar analysis can be applied if the boundary conditions

are periodic [Is84pb].

Working in the 2, norm, the Fourier transform provides
an I/sometric isomorphism between points in the solution space B8
and the transformation space 35 [Ri67]. Consider the
finite-difference scheme for solving (1.2.2) without a forc-

ing term as follows,

B B
V(0) = @(kax),
where k and B8 are multi-indices. We assume that the
grid is regular in each direction, i.e.
Axl = sz = ... = Axm , and that the coefficients EB and
Jg are constants. The Fourier transform isometry then

enables stability to be investigated in terms of the charac-

teristic function, h(z)

h(z) = (L £,27) (L 9g 2) (1.3.2)
yés 8
B, B s
B _ 1 2 m
where zm = zl z2 PR zm [Is84b].
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Theorem 1.3.1

The method defined by (1.3.1) is stable if and only if there |

exist finite constants « and &6 such that
i0,. V |
I exp(t h (e* %) 1 < « (1.3.3) |

for every t >0, 6 € [0,27]m and o0 <{ Ax < 6.

This theorem follows immediately from the definition of

stability, as the Fourier transformation is norm-preserving. \
a |

Condition (1.3.3) is 6ften called the von Neumann sta-
bility condition, although it sho;ld not be confused with
the condition which we will describe in the next section
that bears the same name. For the Cauchy problem as

described here Lhe two conditions are equivalent but the

second condition is applicable to a wider class of partial

differential equations.

In a similar way, Fourier analysis of the FD scheme

c, Vv (1.3.4)

describes stability in terms of the characteristic function,
a(z, L),

a(z,u) = (L b, (&) 2%y (¢ ¢
8

8

8
8 () z7) (1.3.5)

]
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where 4 1is the Courant number,  p = At/(Ax)K and K 1is the

maximal order of space differentiation occurring in L.

Theorem 1.3.2 ‘

The method defined by (1.3.4) is stable if and only if for |
every 0 € [0,27]" and o0 ¢ Ax { &

I a(eie,u) n< 1. (1.3.6) f

Extensions of Fourier analysis by means of energy ine-
qualities to investigate equations with variable coeffi-
cients have been performed. Extra conditions of Lipschitz

continuity of the defining functions are needed and the

boundedness condition (1.3.6) must be somewhat strengthened

[Labl,62]. In the next section we consider the techniques
usually employed for determining stability of IVP with vari-

able coefficients.

1.4 The Von Neumann Condition and The Kreiss Matrix

Theorem

The matrix B(Ax) satisfies the von Neumann condition
for SD methods if a consLant C exists such that for every

0 ¢ Ax < 6 and X\ € o(B(Ax))

Re A < C . (1.4.1)
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" Obviously the von Neumann condition is necessary for
stability as defined by (1.2.10). In the particular case
when the matrix B is normal, that is it commutes with its
adjoint, condition (1.4.1) is also sufficient for stability.

This will be apparent from the following analysis.

Let B(Ax) be a diagonalisable matrix, B = 0 'pg,
where D 1is diagonal, with spectrum o(B). Then

I etB{n < ;<(Q)et>"malx , A =max {ReX : A\ € o(B)}

max

follows from the definition of the matrix exponential and
the diagonalisabilikty of B. «k(Q) 1is the condition number of
Q which equals one if Q is unitary. If B is normal
then Q is unitary and therefore sufficiency of (1.4.1) is
immediate. However, if B is not normal, it is possible
that «k(Q) may tend to infinity faster than the exponential

decays to zero as the mesh is refined; then stability does

not follow.

Sufficient conditions for stability of methods defined
by non-normal matrices aré more difficult to determine. We
define the Kronecker product of two matrices A and B which
arem X m and n X n respectively as the mn x mn matrix A @ B

with elements

(A ® B)(K—l)n+k,(J—l)m+j = BrgPry -

Decomposing a non-normal operator R as the Kronecker product




Theorem 1.4.]1 The Kreiss Matrix Theorem

of 'a fixed-dimensional non-normal matrix A with an m-

dimensional normal matrix D as

it can easily be shown that

I exp(Rt)N = max I exp(NAL) 1.
A€ 0(D)

As usual o(D) represents the set of eigenvalues of D. Sta-
bility may therefore be determined by the Kreiss matrix
theorem [Kr59] which gives conditions for a family of

matrices to be stable as defined by (1.2.10).

For any family of m x m matrices A(w) where wen, is
an arbitrary complex parameter, the following statements are

equivalent:

i) There exists a constant C such that

I exp(A(w)t) # € C for all t > o.

ii) For some constant C, and all X satisfying Re\ > 0

ReX I(NI - A(w)) ?

ll€C1 .




iii) There exist symmetric matrices H(w) satisfying

Hw) A(w) + A*(w) Hw) €< o , I € H(w)
and I Hw) 1 € C
iv) There exist matrices satisfying iii) and K(m) depend-
ing only on m and not on the family A(w) such that
I Hw) 1 < K(m)Cy
[Go77]. a
The most significant result here is condition 1ii),

known as the resolvent condition, which comes from proving that

I exp(A(w)t) # < K (M) max ReX t(xI-A) T

Rel >0
for some KIUn) [La75]. This characterisation of stability
and its equivalent form for FD methods, [Kr64}], is
extremely useful in theoretical work. In many cases the

question of stability is reduced to an  estimate of the

resolvent ([Kr68], [St80], [Gu72]).

P

An alternative technique for - determining stability
which has already been mentioned is the energy method. This
method is far more general than the above techniques and
relies on the determination of a norm in which the solution
is demonstrated to be uniformly bounded. As application of

the energy method requires proof of stability for each




method considered, it might seem that this technique is not

particularly useful. However, it can be applied not only to
Cauchy problems but also to mixed boundary-value problems
and nonlinear equations, allowing proofs of stability in
difficult cases ([En8l], [Stb64a], [Gu72], [Lab0a]). There-
fore it is extremely useful, even if more complicated to

implement in practice.

The use of the word energy here is rather misleading.
In some cases the energy method does prove that the energy
of the system is conserved, but in general this is not so.

Generally, the idea is to show that,

a 2 2
3t hov(t) 1 € K I wt)
%Kt
for some real constant K. Then v(t) 1 < e I v(o) I and
stability follows since v(t) = eBtv(O).

The incorporation of boundaries further complicates the
stability analysis. In the next section we consider equa-
tions defined on finite domains with homogeneous boundary
conditions and for simplicity restrict the analysis to the

scalar case.

1.5 Toeplitz Operators, Godunov-Ryabenki Analysis and

Homogeneous Boundary Conditions

The Kreiss Matrix Theorem enables determination of
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stability for non-normal operators which may be decomposed
in the particular way shown. Unfortunately the incorpora-
tion of boundary conditions into R affects the normality of

D. Now stability requires uniform boundedness of R as the

mesh is refined. Naturally with this refinement the size of

R and hence D increases. As a consequence the non-
normality of R means that the eigenvalues of the finite
matrices, and hence the preceding analysis, may be quite

misleading as a guide to stability.

We will assume that the boundary conditions are homo-
geneous and that the same model is used to approximate near
the boundary at each time level. Then the boundary condi-
tions only impose a small correction on the normal matrix D
which describes the internal model. Thus stability can be
investigated by the the analysis of local normal modes as

introduced by Godunov and Ryabenki [Go64].

Consider the family of operators {R(Ax)}. The point A
in the complex plane is called a point in the spectrum of
the family of operators {R(Ax)} if, for any positive e we
may choose‘Axo > 0, such that for any Ax, o ¢ Ax < Ax, the
inequality

I (R(Ax) — AI) v i € € 0 v 1 (1.5.1)

is satisfied by some function v belonging to the space on
which R(Ax) 1is defined [Gob64]. The aggregate of all such
numbers A forms the spectrum of the family of operators

{R(AX)}.




.Obviously for any point X\ not in the spectrum of {R(Ax)}
there exists Ax ( Axo such that R(Ax) - M is invertible.
Therefore the G-R criterion which is necessary for stability
of SD methods, is that every‘element A in the spectrum of
{R(Ax)} must have non-positive real part. With this condi-
tion imposed, the amplitudes of normal modes will either
remain constant or decay in time. Therefore normal modes
near the boundaries, which might have a pronounced effect on
stability, are also required to remain constant or. decay.
Notice that the G-R criterion is in a sense an analdgue for

IBVP of the von Neumann condition for IVP.

Until now the implications arising from the possibility

of the operator B(AX) being implicit, B = BIl B, and

Blv/= B2v, have not been discussed. The model. is not solv-

able unless B, is invertible and therefore stability requires
that in addition B,» which depends on Ax, must be uniformly
invertible as the mesh is refined. In the case of a Cauchy
problem, a uniform shift in the centre of the grid to make a
locally invertible B, uniformly invertible would be unno-
ticeable. However, if boundaries are incorporated, such a
shift would alter the position of the boundaries and there-

fore the problem itself.

We restrict our analysis to the schemes in one space
variable suitable for solving the scalar hyperbolic or para-

bolic equations

=
]
u
=
o}
]
o
]
)
=
-
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Full discretisations for solving equations (1.5.2) have been
théroughly investigated by Strang, first on the semi-
infinite interval [St64b], and then on the finite interval,
[St66]. He has also given an extension of the theory to the
variable-coefficient case é(x): sufficient conditions for
stability are the same as for the constant coefficient case
with the additional requirement of Lipschitz continuity of
the defining functions [St64b]. Determination of stability
relies completely on a Wiener-Hopf factorisation of a Toeplitz opera-
tor to define invertibility in terms of an index condition
for the operator. The extension to the SD case was carried

out recently [Is83a].

We consider the SD scheme,

S s
£ vi.(t) = . V.(t 1.5.3
3=):—R i 5(8) j=>3_r 95 Vvi3(®) ( )
or its equivalent in vector notation,
Fv = Gv .
i
Stability requires that F has a bounded inverse. F is

thought of as a Toeplitz matrix with the fj on the j-th

diagonal jE€Z. Now a correspondence between doubly infin-

ite Toeplikz matrices and functions F(eie) is established

by

T(F), T(F)yy = f (1.5.4)

k-3




[St64]. Then the requirement that F has a bounded inverse

| means that F(z) must be analytic in an annulus enclosing the
unit circle. Further, we apply the Wiener-Hopf technique
directly on the half line 0 < x ( . F is factored into a
product UL of upper and lower triangular matrices which are
themselves Toeplitz via the corresponding factorisation of F

into a product of outer and inner functions.

~

We assume that the Toeplitz matrix F can be factorised
as a product UL. Then the associated Laurent polynomial

F(z) can be factored as two polynomials U(z)L(z) where the

S factors corresponding to the largest roots go into U(z)

and the others into L(z) . Then the Wiener-Hopf method

depends entirely on the properties of the correspondence of
I(z) and U(z) with the appropriate lower and upper triangu-
lar matrices L and U. For this correspondence the following

properties may be proved.

i) F(z) = U(z)L(z) implies F = UL.

ii) U is invertible only if all S roots of U(z) satisfy

| >1 and U ' is Toeplitz.

~

iii) L is invertible only if all R roots of L(z) satisfy _

fz,] <1 and L' is Toeplitz..

1

~

iv) F is invertible if and only if both U and [ are

invertible.




v) F 16 =0L'071¢ is similar to A = 0G5! which is
Toeplitz.
ool .
vi) If Re( ~L—E§l ) £ 0 for all @ € [0,27], then H + H is
F(e ")

negative semi-definite [Is83a].

If the pole condition holds, that is h(z) has R poles in
Iz] <1 and S poles in |z| > 1, then by conditions i) to v)
the differential equation can be described in terms of the
new variable w(t) =2ﬂv(t). But then the von Neumann condi-
tion vi) implies that the equation in terms of w(t) is dis-

sipative

d ~ ~ T
d—t(w,w) = ((H+ H)w,w) €0

Thus the original problem was indeed stable and the von Neu-
mann and pole conditions are sufficient for stability. Cer-
tainly by condition iv) if the pole condition does not hold
the matrix F can not be invertible on 0 < x ( . Also it can
be shown that if vi) is violated for some 6 the solution in
terms of w(t) explodes and so the original problem was
unstable [Ié83a]. Thus the von Neumann and pole conditions
are also necessary for stability and we have the following

theorem which determines convergence completely:
Theorem 1.5.1

An equation of the form (1.5.3) is stable if and only

if it satisfies:




i6
i) The von Neumann condition: Re( Ee ) )y €0 for all

F(ele)
6.
ii) The pole condition: F(z) has R =zeros 1in lz| < 1
and S zeros in |z | > 1. o

We also state the equivalent result for the FD equation

S s
L by(u) vg‘” = L oy vrj’ i (1.5.5)
-R -r

Theorem 1.5.2

An equation of the form (1.5.5) is stable if and only

if it satisfies:

1) The von Neumann condition: |a(ele)| €1 for all o

ii) The pole condition: Q(z,x) has R zeros in |z <1

and S zeros in |z | > 1 . (]

Here a(z,u) is the characteristic function as defined by

(1.3.5), , and Q(z,un) is defined by

a(z,n) = z rP(z,u)/Q(z,u)-

1.6 Gustafsson Kreiss and Sundstr&m Theory

The extension of stability analysis to mixed initial
boundary-value problems (IBVP) for systems of equations in one

Space variable occurred mainly for full discretisations. As
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16
i) The von Neumann condition: Re( Sie ) )y €0 for all

F(ele)
6.
ii) The pole condition: F(z) has R zeros 1in lz] < 1
and S zeros in |z| > 1. ]

We also state the equivalent result for the FD equation

S s

b, el o , no 1.5.5
Zli_2 J(u) VJ E cj(u) VJ ( )
- =¥

Theorem 1.5.2

An equation of the form (1.5.5) is stable if and only

if it satisfies:

1) The von Neumann condition: |a(e19)i €1 for all e .
ii) The pole condition: Q(z,x) has R =zeros in lz| < 1
and S =zeros in lz] > 1 . (]

Here a(z,u) is the characteristic function as defined by

(1.3.5), : and Q(z,un) is def ined by

a(z, L) = z Y P(z,u)/Q(z,u).

1.6 Gustafsson Kreiss and Sundstré&m Theory

The extension of stability analysis to mixed initial
boundary-value problems (IBVP) for systems of equations in one

Space variable occurred mainly for full discretisations. As
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few results for semi-discretisations are given in litera-

ture, the course of events for FD is surveyed here.

In the solution of the IBVP the stability of the interior
problem away from the boundaries is obviously crucial. We
assume that the interior problem is stable in the Cauchy
sense, that is for frozen coefficients and the boundaries
removed to infinity. Thus we assume the von Neumann condi-
tion is satisfied and it is natural to assume the G-R cri-

terion as well.

Initial developments were for restricted classes of
problems: a scheme is said to be dissipative of order 2q if
the eigenvalues A(O) of the characteristic function of

the difference scheme satisfy the estimate
79
I A(0)] <1 - 616 (1.6.1)

for a constant &8 >0 , a natural number g > o0 and all 9,

0 £ |0| < [Kr66].

Imposition of dissipati&ity on the IVP ensures that
high frequency components‘possibly introduced by the boun-
dary will aie away in time. Supposing that the matrices
defining the IVP and its difference approximation are Hermi-
tian, uniformly bounded and uniformly Lipschitz continuous
functions in the spatial variable, dissipatiyity is suffi-
cient for stability [Ri67]. Matrices which are simultane-
ously diagonalisable by unitary transformations are called

hyperbolic. Hermitian matrices therefore define a hyperbolic
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system and consequently hyperbolic, dissipative, IVP are

stable. Kreiss [Kr66] uses this property to determine suf-

ficient stability criteria for IBVP with hyperbolic dissipa-
tive interior schemes. Extension to non-diagonalisable sys-
tems takes place by the use of an integral relation to bound
powers of‘the discrete time evolution operators. Stability
is defined in terms of the generalised eigenvalues of the system |

[Kr68].

An alternative approach is to consider the difference
operator for the IBVP as a Toeplitz operator defining the
interior scheme with a finite-rank correction to account for
the boundary values. By means of a Wiener-Hopf type factor-
isation, Osher [0s69] proves sufficient stability conditions
for hyperbolic systems of equations. These are given as a
"separation of zeros" criterion for the characteristic func-
tion of the interior scheme. The separation condition is
weaker than dissipalivity and thus the Kreiss results for
diagonalisable explicit systems [Kr66] follow as a corollary

of Osher's main theorem.

Development of a geneial theory to cater for all sys-

tems of equations, dissipative or nondissipative,

diagonalisable or nondiagonalisable, is by means of a rather
unusual norm for defining stability [Definition 3.3, Gu72],
With this definition the Gustafsson, Kreiss and Sundstrém
(GKS) Theorem [Theorem 5.1, Gu72] states that the difference
scheme is stable if and only if there do not exist any gen-

eralised eigenvalues outside or on the perimeter of the unit




circle. The motivation for this theorem comes from the work

of Kreiss, [Kr70], on the well posedness of a hyperbolic
system of differential equations. Such a system is well

posed only if it has no eigensolutions.

For the finite interval, stability of the two problems
determined by removing one or other boundary to infinity are
investigated separately. Stability of the initial
boundary-value problem defined on the finite interval fol-
lows only if the corresponding left and quarter plane prob-

lems are independently stable [Theorem 5.4, Gu72].

Goldberg and Tadmor [Go78,81], give alternative stabil-
ity criteria in terms of the boundary conditions. Assume
that the boundary schemes are translatory, that 1is the same
scheme is used at all grid points. Then defining stability
as in the CKS theory, they prove that stability follows
independently of the interior scheme, assumed to be Cauchy
stable, if the boundary conditions are generated by an

invertible stable scheme.

Strikwerda, [St80], has provided an extension of GKS
theory to SD schemes in the case of hyperbolic systems of
equations iﬁ one-space variable. Stability, defined with a
GKS-type norm, occurs if and only if there are no eigensolu-
tions of the difference scheme. It appears that stability

of nondiagonalisable SD schemes has not been investigated.




1.7 A Group Velocity Interpretation Of Stability

For a thorough description of the group velocity analysis
of finite-difference schemes; the reader is referred to the
work of Trefethen [Tr82a, 82b,83]. Here some basic defini-
tions are given and the main results concerning the

interpretation of GKS theory are highlighted.

Consider a scalar linear partial differential equation
with constant coefficients admitting solutions of the form

ux,t) = ei(wt+£x)

The dispersion relation for the partial differential equation
is w = w(¢) for each real wavenumber ¢ and corresponding
real frequency w. The speed of propagation of the solution is

called the phase speed,

c(g) = &L

whilst the speed at which energy travels is the group speed

Cle) =§—‘;’<e>

Trefethen, [Tr8la], demonstrates a connection between
the instability of an IBVP and the possibility that a set of
waves can radiate from a boundary. This, in turn, is linked

to wavenumbers with negative group velocity being supported




by the boundary schemes. Further, this is connected with

the normal-mode analysis of GKS for determining the eigenso-
lutions supportable by the scheme. Trefethen points out

the existence of L, -stable models which are unstable in

2
the sense of GKS showing that in the case of zero group
velocity the GKS theory is insufficiént. There is no claim,
however, that the group velocity analysis 1is itself com-
plete. It is limited entirely to non-dissipative schemes
and in some ways the analysis is negative demonstrating only

instability rather than the traditional view of demonstrat-

ing stability.

The different approach of the group velocity technique
for examining stability is, nonetheless important. The
complicated GKS criteria are given physical interpretation
in terms of the group velocity of parasitic waves. In real-
istic physical applications this approach reinforces the
quite evident idea that spontaneous emission of energy from
the boundary into the interior will cause instability. The
relationship between GKS and group velocity is made more

exact in a later work by Trefethen [Tr83].




1.8 Solution Of The Ordinary Differential System Of Equa-

tions

We showed in earlief sections that the semi-
discretisation of a partial d;fferential equation yields an
ordinary differential system of equations v/ = Bv . The solution of
such systems of equations has been thoroughly investigated
and numerous stability concepts derived imposing uniform
boundedness with respect-to various norms on the solution
v(t) . A complete analysis of systems of ordinary differen-
tial equations is given in many traditional texts, for exam-

ple Henrici, [Heb2].

Suppose that we solve the linear constant coefficient
semi-discrete problem by a one-step integration formula

VT - Rat B (1.8.1)

where‘ R(AE B) is a specific matrix-valued polynomial or
rational function. The scalar function R(z): ¢ - ¢ , for
zZ = At\ , A\ € o(B) , is called the stability function and deter-
mines the étabilityvof the scheme. Then (1.8.1) is called
aA@MMeW stable at z € ¢ , if, for this 2z, |R(z)| <1 and
A-stable if it is absolutely stable for‘ all ze ¢ , Rz < O.

The following equivalence holds if the coefficients of the

integration scheme are real constants,

Neo(B) IR(ALA)| ¢ 1 (===> p[R(AEB)] <1 . (1.8.2)
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Then if the spectral radius of R 1is less than one for all
eigénvalues of B, the sequence {vn} vanishes when n - o,
But how relevant is the concept of absolute stability in
the analysis of partial differential equations? We need to
know when absolute stability' guarantees stability of the
partial differential equation. In this case we reqﬁire that

+ + , , +
vn 1 = Rn lv0 satisfies llvn 1H < nvou as n - oo So we

§ RAL

need I <1 and p(R) < 1 is only sufficient if R is a

normal function.

Example 1.8.1

Consider solving the simple hyperbolic partial differen=

tial equation

ut = ux , 0 x <1, t >0
u(i,t) = o, t >o0 (1.8.3)
u(x,0) = ¢(x), 0 < x <1 ,

where d(x) is a smooth initial cqndition. We perform a
semidiscretisation of the spatial derivative by the standard
Euler explicit me?hod on the interval [0,1] divided into m
equal subintervals, Ax = 1/m. The time dependent function
v = [v.,V ,...,vm]T then satisfies,

1" "2

v/ = By, : (1.8.4)

where B is the constant m X m matrix,
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B - ax L
O -1 1

Integration of this equation again by explicit Euler defines

the one-step integration formula

+
vnl n

= Rv

where " approximates v(wat) and R is the m x m matrix,

[(1-4
wu w0
- 5 .
° 73 ¢
0 -4
1-u |

4 = At / Ax being the Courant number.

Obviousiy the spectral radius of R is less than one
for o< u ¢ 2 and the eigenvalues of B 1lie inside the

stability region of R for these bounds on 4 .

However, it is stability of the complete model which is

of interest when solving (1.8.3). It is elementary to show




- 30 -

using the energy method that the solution of ‘the full
discretisation is bounded in the £, norm if and only if

o € 4 € 1. By Brenner, Thomée and Wahlbin this result can be

~extended to stability in lp,‘l < p € » [Br75]. This condi-

tion is far more stringent on the permissible values of u
for ¢ _-stability and consequently absolute stability condi-
p

tions must be viewed with caution in the SD framework.

Notice that if the matrix R' had been normal, then
P(R) = an2 and the correct bound would have been

obtained.

A stability analysis of the time integration method
should be used to bound the size of the time step which can
be safely used. The above example demonstrates that it is
not enough to merely assert that At times the eigenvalue
of the Jacobian matrix B should be inside the stability
region for every eigenvalue. Boundedness is required as the
mesh is refined or equivalently as the size of the matrix
increases. Treating the system as a whole we have an FD
scheme andrwe therefore réquire that the spectrum of the
infinite Toeplitz operator must lie within the stability
region, this being the von Neumann condition necessary for

stability of FD schemes.

If the Toeplitz operator is Hermitian, then the asymp-
totic distribution of the eigenvalues can be determined by
the theory of equal distributions, as defined in GCrenander and

Szeg8 (p.63, [GCr58]). We denote the eigenvalues of the




- 31 -

finite Toeplitz form by

™ < x;m? <ol
Then a consequence of a theorem (p-68, [Gr58]) is that these
eigenvalues are equally distributed amongst the spectrum of
the infinite Toeplitz form as m - . Therefore absolute
stability is a safe criterion if the underlying matrix is
Hermitian as in this case the eigenvalues of the finite form

tend uniformly to the spectrum of the infinite form.

In many cases in the literature the Jacobian matrix has
been Hermitian and therefore the problem demonstrated has
not occurred. The eigenvalues of the Jacobian have been
enough to bound the Courant number. In this dissertation we
investigate some semi-discretisations whose Jacobians are
not Hermitian and demonstrate that consideration of the

eigenvalues alone can indeed be quite disastrous.




2x STABILITY, ORDER OF ACCURACY AND AN APPROXIMATION-

THEORETIC PROBLEM

2.1 Introduction

During the 1last few decades much interest has been
shown in determining the maximal accuracy of schemes for
solving partial and ordinary differential equations. In
some cases maximally accurate schemes can be derived. How-
ever, imposition of stability often drastically reduces the
order of accuracy attainable. Alternatively, upper bounds
for stability can be proved and the problem is then to find
schemes which attain this bound. A further criterion is
whether the maximally accurate stable schemes can be chosen

to have minimal error constants.

Historically, the first success along these 1lines was
the proof by Dahlquist [Da56,63] of stability barriers for
multistep methods in the solution of ordinary differential
equations. The first Dahlquist barrier states that a zero

stable k-step method for the solution of the non-linear

equation, u_. = f(u) , has accuracy bounded by 2 [hgg]
[Dab6]. If A-stability 1is imposed, we have the second

Dahlquist barrier that accuracy cannot be greater than 2
[Dab3]. The scheme with smallest error constant is then the

trapezoidal rule which is a one step method.




The introduction of the theory of order stars by
Wanner, Hairer and Ndgrsett [Wa78] has been instrumental in
proving many similar results. In this paper they general-
ised the Dahlquist second barrier to multistep n-derivative
schemes to prove the Daniel-Moore conjecture, that an A-

stable method cannot have accuracy p > 2n .

However, the investigation of partial differential equa-
tions is more complicated, with' different results being
derived according to the type of the underlying equation.
Much studied is the linear hyperbolic equation in one space

variable,
u, = u . (2.1.1)

Strang [St62] derived maximally accurate explicit FD schemes

-

(1.5.5), Pp s + r, which he proved were stable for Courant

il

"

number 4, 0 ¢ x4 < 1, provided that S=r,r+1o0r r + 2.

~

Instability for other choices of r and s was not proved.
The proof that the one-sided schemes, r = 0, or s =1 have
order p < 2, for stability, was proved by Fngguist and

Osher [En8l1] and Strang [St64a] respectively.
|

Unification of these results for the fully discrete
models relies on the observation made by Iserles and Strang
[Is83a] that associated with every FD scheme, is an SD
scheme which has accuracy and stability properties inherited
from the defining scheme. This relationship will be

described in detail in Section 2.3.
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Iserles [Is82], investigated the maximal order of SD
schemes using an extension of the theory of order stars.

From the relationship just mentioned his saturation result,
P <min {r+s, 2(r + 1) , 28}
for explicit stable schemes, (1.5.3), immediately bounds the
order of explicit stable schemes (1.5.5),
P<min {(r +s, 2(r + 1), 25}

[[s83a]. By the same relationship, they also prove that

stable implicit schemes, (1.5.5), have order bounded by

p < min {£+é+R+s,2(£+ﬁ+1),2(é+é)}

Stable schemes attaining these bounds are derived in both

papers.

For the explicit SD schemes, Iserles [Is82] derived an
expression for the error constants of stable methods from
the class {f, 5} ’ r > s » With accuracy 23 ’ and demon-

strated that increasing the number of steps taken to the

left of the origin does not improve the error constant.

Increasing the number of steps taken to the right of the

origin does, however, lead to a scheme with minimal error

constant [Je84]. Taking an increased set of points to the
right brings us arbitrarily near to the minimal error con-
stant with a stable scheme. But the scheme with minimal

error constant is unstable.




} | ~ss - |

|

An extension of some of these results to multistep
schemes was proved by Strang and Iserles [St82]. An expli-

cit multistep stable scheme using s points to the right

and r points to the left at each time level, has accuracy

p < Z(f + é) . If the variable coefficient problem,
ut = a(x)ux + 18 being solved, then this bound is halved,
p < (r + s) [Is84c].

For parabolic problems, U = wu. , W > 0 , the only

result appears to be that by Iserles [Is83a]. He considers
the solution of this parabolic problem by an implicit fully
discrete scheme using the same number of points, r , to the
left and right at each time level. Maximal accuracy with

stability is p < &r + 1
Most of these recent saturation results have been with

the aid of the theory of order stars and some generalisa-
tions. The question of reconciling accuracy and stability
is posed as a problem in approximation theory. We require
to investigate a rational approximation to some function
where the approximation must, for the sake of stability,
satisfy both the von Neumann condition and the pole condi-
tion. Ordér star theory is crucial here for demonstrating

which particular distributions of poles and zeros can occur.

In the next few sections we aim to complete the work of
Iserles and Strang [Is83a]. We pfove a result bounding
accuracy for all stable implicit semi-discretisations. For
this we must define the appioximation problém completely and
also derive an extra condition for stability that follows

from the pole condition.
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2.2 Order of Accuracy

Determining the order of accuracy of a numerical scheme can
be interpreted as a problem in approximation theory. To
justify this statement we consider the evolution equation in

one space variable,

ut =Lu, ux,0) = ¢(x), u = ux,ty |, (2.2.1)

together with suitable boundary conditions. The operator L

is a linear differential operator of the form,
K ;
L= Y a.DJ (2.2.2)

where the aj are constant coefficients and D = d/3x is

the differential operator. Defining E to be the spatial

shift operator, E u(xj) = u(xj + Ax) , we can reexpress
(2.2.2) as
A (lnE)j
L=L(E)y = T a. : . (2.2.3)
j=o0 J ij

since by operator theory E = eAXD.

The approximation of (2.2.1) by the semidiscrete sys-

tem,
v/ = B(Ax)v , (2.2.4)

is defined to be ~accurate of order o) if‘ B(AX)




approximates the differential operator L with error

ptl definition of

O(Ax ) . Recalling the

consistency,
(1.2.8), it is evident that consistency is equivalent to

order of accuracy being at least one.

Assuming that the same scheme is used to solve (2.2.1)
at all grid points away from the boundary, we write (2.2.4)
more precisely as a system of equations, one for each

V(B

S 1 s
T fjv/m+.<t)=——- L g. v_..(t)

(2.2.5)
-R J AxK j=-r ]

J

where K 1is the maximal order of the differential operator,

d/3x occurring in L .

As the operators D_ = 3/3t and E

B commute, we may

write this as,

S i 1 s j
D v £ R = —=— T g. E v (t)y = 0 .
€ j=-R ] axX j=-r J m

The differential equation (2.2.1) defines Dt = L, therefore
the finite-difference scheme (2.2.5) normalised by At, |is
of order of accuracy p in Ax around zZ, =1
z =1 + O(Ax) 1if and only if

- AtK h(z) = At L(z) + c_, (7 - 1P L Oz - 1P*?

(Ax) B

(2.2.6)




—

Here Cp+1 # 0 1is a constant, h(z) igs the rational func-
tion,
]
v g.zj
- ‘.=—r J -
h(z)y = J—§~—————‘
T £,z
j=-r

and we have allowed At and Ax to vary whilst the Courant
number, m = At/(Ax):K , has been held constant. Assuming
that the implicit part of the operator is invertible for

small Ax , the approximation h(z) 1is well defined.

Similarly, it can be shown that the solution of (2.2.1)

by the full discretisation,

is of order accuracy ﬁ in Ax around 2z =1 if and only

1L,

a(z,u)y = éxp(At L(z)) + E~ (z - 1)p+l + CM | 2 = 1|p+2)
p+1

(2.2.7)

As above, c_ £ 0 is a constant and a(z,u) is a
p+l
rational function which depends on the Courant number via

the dependence of its coefficients, bj and cj on 4 ;




s .
¥ cj(u)zj
iz -r

a(z,uy = =
S )
T bjm)z]
3= -R

Having posed the problem of determination of order of
accuraéy as a problem in approximation theory, we are now in
a position to discover the maximal accuracy obtainable of
some classes of stable schemes. We describe our particular

approximation problem more exactly in the next section.

2.3 The Approximation Problem and a Relationship Between

Fully- and Semi-discretised Schemes

For the solution of the linear hyperbolic equation in
one space variable, (2.1.1), the linear differential opera-
tor, L , is just the partial derivative 438/3x . Thus the

accuracy condition (2.2.6) is,

pt+l Ip+2

h(z) = tnz + cp+l(z - 1) +QO(1z -1 y . (2.3.1)
Necessary and sufficient conditions for stability of models
such as (2.2.5) are given by Theorem 1.5.1 as conditions on
the rational function h(z) . Therefore, determination of
the maximal accuracy of a stable scheme of type (2.2.5) for

solving (2.2.1), can be investigated completely through the

properties of the function h(z). Stated precisely the
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problem is as follows:
Find the maximal order of accuracy, P , of the
rational approximation, . H(zy = 25 Bnez) to

1 zllnz, 2 = r-R, in the neighbourhood of =z = 1 , where h(z)

satisfies the following conditions:

(L) The von Neumann condition: Reh(ela) < 0o for all o ,

(2) The pole condition: h(z) has R poles in |1z <1

and S poles in |z| > 1

This problem was partially solved by Iserles and Strang
[Is83a] when they solved the equivalent problem for the 1
fully discrete scheme. In this case, by (2.2.7), the

characteristic function, a(z,u) , 1is an approximation to

s

az,uy = 2% + & (z - HYPTP v Oz - 1P

l (2.3.2)

-~ -

Thus we seek rational functions, A(z,u) = z° Ra(z,u)

where a(z,u) satisfies the condition of Theorem 1.5.2.

(L) The von Neumann condition: |a(ele,u)| <1 for all

o,

(2) The pole condition: a(z,u&) has R poles in |z | < 1 and

S poles in |z| > 1.

|
|
\
‘ As mentioned in Section 2.1, the partial solution to
|
i
|




our problem arises from a relationship between fully- and

gsemi-discretised schemes. Forming the derivative
with respect to u4 , evaluated at 4 = 0 , gives

approximation to the logarithmic function in the

hood of =z 1 . The SD scheme defined by this

of a(z,u)
a rational
neighbour-

approxima-—

tion is called the associated SD. scheme of the FD scheme.

Each FD scheme must be associated with an SD scheme but not

all SD schemes can be derived in this way.

We have the rational functions,

S

T c.(u)zd
N %
a(z,uy = ==X - C.*_(L.u_)
S ' - b (Zrll-)
> bjunzJ
j= -R
and
S
r @lj:zj .
h(z) = 155 - 4=
vOf i £f (z2)
j=-R

(2.3.3)

(2.3.4)

As we require that the map defined by the FD approaches the

%X b 4
identity as 4 - 0 we have c (z,0) = b (z,0). Therefore,

d
h(z) = 35 [a(z,n) ]’u=o
* X * *
c = b e = 4
- MM [ = sl M [

(2.3.5)
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_ % .
where c; and b# denote the partial derivatives of 5¥and b*
with respect to u. By the accuracy condition (2.3.2), h(z)

approximates ¢gnz with order p 2 é . From (2.3.3) the

' ~% ~ X
powers of z in the numerator of h(z) extend from -r to s

~ % ~ X
| and in the denominator from -R to S where

| £ = max(r,R) , s = max(s,$) (2.3.6) |
|

(l

X - e - i

R = min(r,R) , S = min(s,S) . V

|

. % - % Il

The associated scheme therefore has r=r, 8 =38 ' ‘

~ X ~ X
R=R, S =25 and so r > R, 8 » S. Consequently the set |

of values {r,s,R,S} which the SD scheme may take is res- !
tricted and so not all SD schemes are associated with FD

schemes, As p 2 é , the associated scheme inherits accuracy

—

of the FD scheme and any bound on p obviously bounds p

r The stability conditions in both cases mean that stabil-

‘ ity is also inherited. By Taylor expansion we have,

z . 2 da 2
|acz,u) 1 = lacz,0) 1% + 2uReg, 1, + O™
Hence
| . i6 2 _
’ Reh(ele) = 1lim la(e” ,4)| 1 (2.3.7)
21
| o
and one von Neumann condition implies the other. From

*
(2.3.5) the zeros of zRE (Z) are Jjust the zeros of




~

szXz,O) » apart from the zeros at the origin which correct
for the difference in degree. Onec pole condition therefore

follows from the other.

Iserles and Strang [Is83a] employed this relationship

to determine an upper bound on p by working with SD

schemes with r>R and s25 . They derived the bound,
P < min { 2(r+R+1) , 2(S+S+1) , r+R+s+S} (2.3.8)
for this restricted class of SD schemes. In the next

chapter we extend some of the ideas of the order star

theory, enabling the bound (2.3.8), with the refinement

2(8+5+1) to 2(s+S) , to be derived for all SD schemes.

2.4 The Zero Condition for Stability

Iserles and Strang [Is83a] were able to derive the
upper bound given by (2.3.8) quite straightforwardly, having
presented a relevant order star theory. Consideration of
the evolution equation (2.1.1) with initial condition,
u(x,0) = #(x), ¢ a smooth function, shows that this bound can
not be optimal. Solutions of the evdlution equation travel
along its characteristic curves: u(x,t) = ¢(x+t) . We would
therefore expect signals to travel from tight to left.
Assuming that the Courant number, n =.§% (1 , it may be
expected that the number of points taken to the left would

correspond to the number of peints taken to the right, in
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both'explicit and implicit parts of the of the operator.
Thus there should be a correspondence between r+1 and s ,
and R+1 and § , implying that the bound (2.3.8) 1is too

generous.

A variant of the order star theory is required to deter--

mine the optimal bound on p . The extra condition that the
geometry of the order star has to obey comes about by
realising that the pole condition imposes conditions not
only on the location of the poles but, in doing this, on the
location of the zeros as well. This follows from the
analyticity of the approximation to the logarithmic func-

tion.

Theorem 2.4.1

If the ISD scheme is stable and p > 1 then

h(z) has at most r zeros in 0 < |z| < 1

and at most 8 - 1 zeros in « > |z]| > 1.

Proof

The desired result follows from the argument principle

for meromorphic functions applied along the unit circle.

~However consistency requires h(1) = o and therefore the

argument principle cannot be applied directly. Consider

*
instead the function h (z,¢) defined for o0 ( € « 1 by

°
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h*(z,e) := h(z) - € .

! Then h*(z,e) has the same poles as h(z) and its zeros

are near those of h(z) for small e.

The von Neumann condition for stability leads to

6

. .
Reh*(el »€) < 0 and thus (arg h (ele,e) “g" = 0.

Therefore, the number of zeros and poles inside the unit
circle is the same. This is true for every sufficiently J
small € > o . Hence, by letting € tend to zero, h(z)
has at most R zeros inside the unit circle. However at

most r of these zeros lie away from the origin since h(z)

To. obtain the result outside the unit circle we use the

J

I

|

I

|

l

|

|

|

I

J

\

:

: has a zero of order at least (R - r) at the origin.

|

: mapping w = 1/z to map the outside of the unit circle
| inside and vice versa and apply the argument principle as
above. Then h(z) has at most s =zeros outside the unit

circle away from infinity.

However, h(1) = 0 and so there is at least one zero on
the unit circle which must have migrated from either inside

or outside of the unit circle.

To investigate which of these possibilities  has

b 4
occurred let z,. be a zero of h (z,€) near =z = 1 . I

Z. Wwere complex it would have a conjugate also near z = 1
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and. taking the limit as € tends to zero would make z = 1
‘a-double zero of h(z) . However, =z =1 is only a simple
zero of h(z) since h(z) approximates fnz in the neigh-
bourhood of =z =1 . Thus z, must be real for € <« 1 and

SO we can write zZ, =1+ be + O(ez) for real & .

Now h*(z,e) = 0 means that,
h(ze) = €
and by Taylor expansion we have,

h(ze) = Beh'(1) + 0(52).

Therefore € = 8eh’(1) + 0(62) » which implies that,
)
6 = 1/h (1) + O(e) = 1 + O(€),

, /
since p > 1 implies that h (1) = 1.

Hence the expansion Z, =1+ €+ O(ez) follows and the
zero at z = 1 has migrated from outside the unit circle.
Therefore h(z) has at most s -1 zerosloutside the unit

circle. . (m]

Observe that Theorem (2.4.1) means that no scheme with

8 = 0 may be stable.

- We are now in a position to describe the order star

theory' necessary for the solution of the problem already
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and taking the limit as ¢ tends to zero would make z = 1
a double zero of h(z) . However, =z =1 is only a simple
zero of h(z) since h(z) approximates fnz in the neigh-
bourhood of =z =1 . Thus z, must be real for € « 1 and

SO0 we can write zZ, =1+ Be + O(ez) for real &

w Now h*(z,e) = 0 means that,
h(ze) = €
and by Taylor expansion we have,

|

| 2

’ h(ze) = Beh'(1) + O(e™)H.
|

f

|

Therefore ¢ = 8eh’(1) + O(ez) » which implies that,
1]
6 =1/h (1) + O(e) = 1 + O(e),

/
since p > 1 implies that h (1) = 1.

Hence the expansion zZ_ =1+ € + O(ez) follows and the

<

zero at z =1 has migrated from outside the unit circle.

Therefore h(z) has at most s - 1 zerosloutside the unit

circle. ) |

Observe that Theorem (2.4.1) means that no scheme with

i 8 = 0 may be stable.

We are now in a position to describe the order star

theory necessary for the solution of the problem already




described. Noting that we now have the additional condition,

that for stable schemes the approximation h(z) must

satisfy Theorem 2.4.1.
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3. ORDER STARS AND A SATURATION RESULT

3.1 Order Stars

As previously stated, our aim is to show that the von
Neumann condition and the pole condition imply bounds on the
order of accuracy, P . We achieve this using a modificaj
tion of the theory of order stars as originally introduceé

by Wanner, Hairer and Ngrsett [wWa78].

Initially, the theory was derived as a means of deter-
mining A-acceptability of rational approximations, R(z), to
the exponential Ffunction. Rather than studying the stabil-
ity region of the function R(z), they considered areas of
the complex plane defined by the function S(z)-=1uz)/ez.
Obviously this function has the same zeros and poles as

R(z). The set A,
A: ={z e C | |Sz)| > 1},

which was called the order star, reflects many essential pro-
perties of R(z). These basic propefties are described in
three propositions, Propositions 2-4, [Wa78], which are
proved by elementary complex analytic techniques. The shape
of the oraer star is determined by these propositions
depending on the location of the poles and zeros of R and

the order of accuracy of the approximation. Imposition of
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A-acceptability adds one more constraint on the order star
after which the optimal configuration for stability can be
worked out. Maximal accuracy can then be found by counting
the number of sectors of the order star which approach the

origin.

Since the publication of this innovative paper, there
have been many advances in the theory. Iserles and Powell
[Is81], in their investigation of A-acceptability of
rational approximations interpolating the exponential,
reconsidered the notion of fingers and dual fingers by
introducing the idea of A -regions and 0D -regions. The
order property, Proposition 3, [Wa78], was generalised for
points of interpolation by R(z) and, in so doing, the ori-
ginal proof was somewhat tightened. To exhibit the monotone
behaviour of argsS(z) along oriented boundaries of A and
D the original proposition concerning multiplicity was

split in two.

Iserles, [Is83b], has extended the order star framework
to cater for the analysis of approximations to functions
which are analytic, except for isolated poles and essential
singularities. The importance of the .theory, along with its
extension to Riemann surfaces, as a major tool in approxima-
tion problems, is clear by the number of applications that
have been considered recently, for example 1in [Is83c,834;

Je81,82,83].

In the course of the evolution of the theory many of

the terms, order star, finger, region, etc., have taken on
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new>definitions. We adopt the notation of [Is83b], which
seems to be the most natural approach, where it is the
overall picture that is called the order star rather than
the set A . Therefore, thé notation varies a little from
that used by Iserles and Williamson, [Is84a], on which most

of the following work is based.

The order star under consideration here is the one
introduced by Iserles [Is82], which he calls an order star
of the second kind [Is83Db]. We define the function o(z)

on the strip,
It={z | |Im2z| € 7}
by,

o(z) = h(e®) - z .

The essential properties of h(z) are reflected in the sets

A={ze1l :Re o(z) ) 0}
={z&l:R oz)<o} , (3.1.1)
d = {zel :.Re o(z) = 0}

which together form a decomposition of the strip I. This
decomposition is called the order star of o . Connected
components of A ( and D) are called Ao—regions or A -
regions (Do—regions or D _-regions) according to whether

they are bounded or unbounded.

The order stars for the following four examples, all of

1]

which are chosen to give maximum accuracy p r+s+R+S and
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are derived from the relevant Padé approximations, are given

in Figure 1.

a) R=1,8=1,r =90, 8 = 2,p = a

2
27 - 24 Z — 3 7
h(z) = 1
=~ - 14 - 17 Z

2
It can easily be calculated that both zeros of the denomina-
tor lie inside the unit circle and that for e =m/2 ,
Reruele) > o. Thus the scheme obtained satisfies neither
the pole condition nor the von Neumann condition and so is

unstable.

—2430/Z + 1440 + 990%
2
—3 — 104/z + 1176/z + 2056 + 281z

It can be shown that the denominator of h(z) has three
zeros lying inside the unit circle, one outside the unit
circle and therefore the pole condition is satisfied. How-
ever Reh(eie) >0 at 8 =7 so that the pole condition is

violated and the scheme is unstable.

-24/7 + 24
3 2
1/z° - 5/z2° + 19/z + 9




is represented by the shaded area

denote poles and zeros of h

A

Examples of order stars.

respectively.

' and 'z’

p

and



is represented by the shaded area

denote poles and zeros of h

A

Examples of order stars.

Figure 1.

respectively.

izl

and

and
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As
i6 -12 (1 — cos 9)3
Reh(e ") = 2 3 € 0 for all 6 ,
65 + 1llcos 6 - 13cos O + 9cos @
the von Neumann condition is satisfied. However it can be

shown that two zeros of the denominator lie inside the unit
circle and one outside. Thus the pole condition is violated

and the scheme is unstable.

d) R=2, 8=3,r=1,8=1,p =7

17190/2 + 7200 — 243902

h(z) = 2 2 3
136/z - 6029/zZ — 25784 — 10504z + 656Z - 55%

It can be shown that the pole condition is satisfied since
two of the zeros of the denominator lie inside the unit cir-
cle and three outside. Also Reh(eie)A< o0 for all o and
so the von Neumann condition is satisfied. Therefore this
scheme 1is stable. Note that, in addition, h(z) has one

zero inside the unit circle and one at z =1 and thus as

required it satisfies Theorem 2.4.1.

The geometric form of the order star is described in
four Lemmas which are parallel to Lemmas 2.2 to 2.5 in
[Is83a]. The proofs parallel those of Propositions 3.1 -
3.4 in [Is82], in which a different but analogous order star
was considered. Here we just give a very brief outline of

these proofs.

&
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Lemma 3.1.1 The Order Property:

The scheme (2.2.5) (with K = 1) is of order of accuracy
p only if for =z - o A consists of p+1 sectors of

angle w/(pt+l1) separated by-p+1 similar sectors of D .

The proof of Lemma 3.1.1 follows immediately from the
equation of accuracy (2.3.1) and the demonstration, as given
by Iserles and Powell [Is81], that A and D do not con-
tain sectors which are so tgin that fhey fit between the

sectors which must exist to satisfy (2.3.1). a

Lemma 3.1.2 The Pole Property:

Every pole of o(z) lies on d . Furthermore, each
bounded A or D region has at least one pole of o(z) on

its boundary. o

The proof follows from the maximum modulus principle

for analytic functions or as a corollary to Lemma 3.1.5.

Lemma 3.1.3 The Essential Singularity Property:

i). If 8 > S then for Rez » 0 the 1line segment
[Rez - im, Rez + im] is composed of 2(s - S) + 1 distinct
intervals of A and D . If s < 8 then

[Rez - im, Rez + im] Dbelongs to D for Rez » o.

ii). If r >R then for Rez « 0 the 1line segment
[Rez - im, Rez + im] 1is composed of 2(r - R) + 1 distinct
intervals of A and D . If r < R . then

[Rez - im, Rez + im] belongs to A for Rez <« 0 .
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The proof of (ii) in Lemma 3.1.3 is the same as for (i)
after setting hl(z) = h(1/z) . For part (i) we consider
zZ = X + 16, x » o and look at the dominant terms of

Reo(x + i8) as implied by the explicit form of h(z) . a

Lemma 3.1.4 The Stability Property

The SD scheme is stable if and only if A n [—im, im] = ¢
and o(z) has R poles in I := INn{Rez < 0} and §
poles in I' := IN{Rez > 0} . Note that, h(e?) being
periodic with period =27mi, a pole lying at x + i7 and

X — im 1is counted only once.

Lemma 3.1.4 is an immediate consequence of the stabil-
ity conditions after transformation of the complex plane to

the strip I by w = e® . _ a

These four Lemmas can be used to derive a bound on the
order of accuracy p of a stable scheme. However, we have
not incorporated the extra condition that stability imposes
on the location of the zeros, Theorem 2.4.1. With this in

mind, the following property is evident.
Corollary of Theorem 2.4.1 The Zero Property

If the ISD is stable, then h(eZ) has,

at most r Zzeros 1in I
’ . +
at most 3 - 1 zeros in I . (]

A modification of part of Proposition 4 of [Wa78] as in

[Is81l] leads to a result about how the imaginary part of the




function o changes along the boundary of 8 . Thus we have
the following Lemma, the proof of which is by examining the
normal derivative of Re 0(z) and applying the Cauchy

Riemann equations along 4
Lemma 3.1.5

The imaginary part of o decreases strictly monotoni-
cally along any part of the positively oriented boundary of
an A-region and it increases strictly monotonically along

any part of the positively oriented boundary of a D-region.

Proof

Let ZXZ(z) be a function defined on the whole of the

complex plane with the possible exception of isolated

points. We apply the transformation w = eZ to the complex

plane and define

5(2) = 4n Z(ez) for z € 1
Now
iarg z(e?)

Ze?) = 15e%)) e

so that

o(z) = tn|£(e%)| + iargz(e?)

T—




Thus

Re 0(Zz) = 0 if and only if |5(eZ)| = 1

Re 0(z) 2 0 if and only if |Z(eZ)| 2 1.
Therefore A-regions of X(z) defined by
A={zc€: |Z(z)] > 1}

transform to A-regions of a(z) » defined as in (3.1.1).

Obviously D-regions transform similarly. Also
~ Z
Imo(z) = arg L(e“)

which is by Proposition 4 of [Wa78] a strictly monotone
function. Thus the desired result follows by identifying o

with o. a

The monotonicity of 1Imo along the oriented boqndary
of 438 means that between any two interpolation points of
o(z) , which necessarily belong to 8 , there must be at
least one pole of h(ez) since 1Imo vanishes at interpola-
tion points and is unbounded at poles. This result can be
further refined in a way which although strictly unnecessary
to our analysis, adds to the understanding of the geometry

of the order star. Let us define the WHN number of a region
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as the number of times the boundary of the region crosses an
interpolation point of the function o(z), counting an inter-
polation point the number of times that the boundary crosses
it. Then the WHN number of a region is at most the number

of poles of h(ez) lying on its boundary.

When we try to reconcile accuracy with stability we use
the above Lemmas as in [Is83a] and count the maximum number

of A- and D-regions which may reach the origin from I or
it . To do this we must find the maximal number of poles

which can account for two A-sectors adjoining the origin.

First we define a bounded portion of 3 U (IR + iwm) as a
loop if it is a closed simple curve. By Lemma 3.1.5 poles
of h(ez) and zeros of (o] (i.e. interpolation points)
interlace along each loop. Thus, we say that a pole of
h(e®) is efficient if
a) it lies on R % iw ;

b) it belongs to loops all of which approach the origin;

c) there are no extra poles that 1ie along these loops.
Intuitively speaking, this means that as a pole lying on
R £ im can be counted twice, an efficient pole "accounts"
for two sectors of A that adjoin the origin. Two is the
maximal number of A—secﬁors approaching the origin which can

be accounted for by a single pole.
Lemma 3.1.6

The number of efficient poles N in any interval
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(x; % im, x, *+ iwm) is bounded by,

2

N <min {Z + 1,P}

where P and Z are the number of poles and least number

of zeros respectively of the function h(ez) along R % iw in

the given interval.

Proof

Because 1Imo(z) = ¥F 7 for every z€ R % iwm, the mono-
tonicity of Imo(z) as given by T.emma 3.1.5 implies that an
efficient pole lies between a D-region to the left and an
A-region to the right. Since Reo(x £ im) = h(—ex) - x, it
is clear that h(-ex) > X in any A-region, and h(—ex) { x
in any D-region. Furthermore, h(—ex) becomes unbounded at
the poles. Hence, due to the continuity of the function
h(—ex) away from the poles, there must be a zero of h(*ex)
in the interval between any two efficient poles. The bound

now follows, N < P being trivial. o

We apply this Lemma in the following section to reduce
the theoretical 1limit on accuracy derived by taking into

consideration only the position of the poles.

3.2 An Upper-Bound on Accuracy for Stability

Here we use the results of the previous section to
obtain an upper bound on accuracy for all possible choices

of R, r, S and s . Applying Lemmas 3.1.1 to 3.1.4 as in

-




[Is83a] leads to the bound,

P € min { 2((r—R)++ 2R +1), 2((s—S)++ 28 +1), (m—n)++ 2n }
where,

m=1r+ 38, n=R+ S and (X)+ t=max { X, o } .

This seems to imply that the more implicit methods, i.e.
those with R > r and S » s , will be better since for a
given number of degrees of freedom, higher accuracy, with
stability, will be attainable. However if m = 0 the above
bound is extremely generous since such a method cannot be
consistent, p = 0. A more realistic bound is derived using

Lemma 3.1.6 to take into account the location of the zeros

as well as the poles.
Lemma 3.2.1

a) If the ISD scheme is stable then P € 2(S8S + s8);

b) If the ISD scheme is stable then P € 2(R+r + 1).

Proof

a) We bound from above the number of. sectors of A which

may reach the origin from Y or I . Let




M := the number of sectors of A reaching Lthe origin

from I+ -

M := the number of sectors of A reaching the origin

from I .

Then by Lemma 3.1.1, the order condition, it follows that

and M -1<M <M +1 | (3.2.1)

Also define Q+ and Q as the number of sectors of A
reaching infinity in I+ and I respectively and Nt and

N as the number of efficient poles in 1T ana 1~

respectively. By stability there are R poles in I~ and
S poles in I+ - Now each efficient pole may contribute to
at most two A,-sectors reaching the origin and every A,-
sector that reaches the origin must contain at least one
pole along each loop on its boundary. Also if K > Q + 1
sectors of A_ approach the origin from I , say, then they
must enclose among them at least K-Q Do—regions, none of

which may approach R * iw. Each such Do—region necessarily

contains a pole on its boundary, that may not be efficient.

Therefore, it follows that,

MJ’»szNJr+(s—1~;r+)+Q+

and M < 2N + (R - N) + Q . (3.2.2)

o




As stability implies that there are at most r zeros

in I and s - 1 zeros in I+ » the bound of Lemma 3.1.6

gives,
+ i
N < min {s,8}

and N < min {r + 1, R}

-

To prove part a) we consider the number of sectors

reaching the origin from 1% . Note that by Lemma 3.1.5 in

the case of an A_-region in 1t adjoining the 1line
Imz = 7 ; this region must have a pole on its boundary
that cannot be efficient even if it lies on the 1line
Imz = +7 . Thus in this case, which by Lemma 3.1.3 may

only occur if g ) s » the number of efficient poles is

bounded by,

N' < min {s,8 - 1}

and N+ + Q+ Smin {8,8S - 1} + (8 - S)+ + 1 =8

Alternatively an A_-region in gt is not bisected by the

line Imz = & 7 and

N++Q+<min{s,S}+(s—S)+=s

-

Therefore by (3.2.2),

P
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M < s + s
and by (3.2.1),

P € 2(s8 +8) .

For part b) we notice that the sign of Reu1(ez))
changes from minus to plus when passing through an efficient
pole on the 1line Imz =7 , and that stability gives
Reh(eix) €0 . Thus, associated with every efficient pole

in I is at least one zero and therefore,
N < min {r,R} .
Proceeding as in part a) we obtain,
M < min {r,R} + R + (r - R), +1 =1 +R+1
and by (3.2.1),

P < 2(r + R + 1) .

Note that the proof of part a) ahove reduces the limit
from 2(S + 8 + 1) to 2(S + 8) as mentioned in the intro-
duction. The crucial difference in the proof (from that in
[Is83a]) comes from looking at 1Imo along the positively

oriented boundary of an A-region in 1t which reaches both
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the origin and the line R + iv7w

Lemma 3.2.2
i) If r 2R, 8 28 or R2>r, 8§ >s8 ” then
psm~+n.

ii) If the SD scheme is stable, then p < m + n regard-

less of the values of r,R,s and S .
Proof

Note immediately that for every r >R and s > S the

result is already known [Ba75].

We proceed as in Lemma 3.2.1, to bound from above the
total number K of sectors of A and D which may reach
the origin. By Lemma 3.1.6 the total number of efficient

poles is bounded by,

N <min {r + s, R+ S},

since the total number of poles is R + S and =zeros in
¢/ {o} is r + 8 -1 . Furthermore, by Lemma 3.1.3 the
number of A - and D_-sectors is 2(s - S)+ + 2(r - R)+ + 2.

Therefore,

K<4N+2(R+S—N)+2(s—S)++z(‘r~R)++2

= 2(R + S) + 2N + 2(s - S), + 2(r - R), + 2

+

+




P
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as each efficient pole can contribute to at most four
bounded sectors which reach the origin and each inefficient

pole to two sectors of A and D there.

Therefore, recalling the order property we must have
K =2(p + 1) and the lemma is true for the choices r > R

and 8 > S or S >s and R >r .

In the other two cases, we assume stability and use the

results of the proof of Lemma 3.2.1 to bound the number of

sectors approaching the origin from ¢t and I

separately.

It follows from the proof of Lemma 3.2.1 that,
N=N +N <min {r,R} + min {8,8} .
Hence, as before,

l:

N R

S R+S +N+ (8 - S)+ + (r - R)+ + 1< +8+R+8 +1

giving the required bound. o

Lemmas 3.2.1 and 3.2.2 combine to prove Theorem 3.2.1,

which is the main result of this Chapter:

Theorem 3.2.1

If the SD scheme is stable, then s > 1 and

s
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P<min {r +s + R+ S, 2(r + R+ 1), 2(s + S)y}. (3.2.3)

(]

We shall see in the next Chapter that for some choices
of r, s, R and S it is pbssible to derive schemes which
do attain this bound and thus sometimes it is optimal. For
schemes which attain the maximal accuracy, p =m + n , the
inequality (3.2.3) requires that, as for the FD case

[Is83a], they are sufficiently centred:
r+ R<s+S<r+R+ 2 . (3.2.4)

Again, stability cannot occur away from the three leading

diagonals of the Padé table.

An important consequence of Lemma 3.2.2 concerns the normal-

ity of Padé approximations to zL tn z . Let

H(z) = G(z)/F(z) be the Padé approximation to zL tn z at
Z =1 where m=1r + s is the degree of G(z), n =R + S

is the'degree of F(z) and L =r - R .

Corollary 3.2.1

The Padé approximations to zL tn z are normal for,

a) mz2>n+L and L > 0 ;

b) nz2m-L and L < 0 .
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Proof

By part (i) of Lemma (3.2.2), P <€<m+n . Therefore
the desired result follows by Padé theory [Ba75]: since the
maximal blocksize is one, necessarily P =m+n and the

approximations are normal. o

Note that this result is already known when L = 0 and

m > n [Ba75].

Padé approximations are the natural choice of rational
approximations to consider when only the degree of numerator
and denominator are specified, since they use all the avail-
able degrees of freedom to satisfy the order conditions.
Knowing that in the two above cases the Padé approximations
are normal, we can apply the Padé theory to derive the error
constants of such approximations. It is demonstrated that

this is particularly useful in the following Chapter.




4. PADE SCHEMES

4.1 Introduction

In the previous chapters we demonstrated that an upper
bound on the accuracy attainable by a stable scheme does
exist. Here we try to decide in what sense, if any, this

bound can be optimal.

For the completely explicit schemes, R = § = 0, attain-
ment of the bound was demonstrated by Iserles [Is82].
Application of the Lagrange interpolation formula produced
interpolatory formulae of highest order, r + s. The impli-
cit case is‘ obviously more difficult as rational, rather
that polynomial, approximations are required. As previously
mentiohed, Ehe natural candidates are the Padé approxima-
tions which do attain maximal accuracy for their degree.
Following the notation of Iserles and Strang [Is83a], we
call schemes derived from the relevant Padé approximations

Padé schemes.

When considering fully discretised schemes approxima-

tions to zM , N =TI -R+ u about z = 1 are needed. For-

tunately the polynomials P and M=r + 3,

M/N uN
N =R + 8, of the [M/N] Padé approximations to z)k have
already been calculated as the 1limits of hypergeometric

functions [Is79]. Thus verification of.the von Neumann and

pole conditions in Special cases is possible:- the von
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Neumann condition by explicit calculation of the difference

2 2

D* = iQ(eie)| |P(eie)l and the pole condition by iden-
tification of Q(z) as a multiple of a Jacobi polynomial.
Thus Iserles and Strang [Is83a] were able to characterise
all the stable schemes in which the number of points at the
two time levels differed by at most one. These a;e the Padé
schemes derived from approximations lying on the three cen-
tral diagonals of the Padé tableau. Away from the centre of
the Padé tableau, the hypergeometric idehtity for D*
becomes increasingly complicated, whilst the determination
of the zeros of the Jacobi polynomial can no longer be
treated by classical orthogonal polynomial theory. However,

the case with R = § was successfully resolved for all M

and N

In what follows we make much use of the results derived
in the above mentioned paper to characterise stable SD
methods which are associated with fully discrete methods.
Also, having proved in Corollary 3.2.1 that Padé approxima-
tions are normal, we can consider other choices which are
more implicit that explicit. Without calculating the Padé
approximations explicitly, we can apply Padé theory to
derive expressions for the error constants and order star

theory to determine the location of the poles and zeros.

Consequently we are able to prove stability.
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4.2 Optimal Schemes

Initially we consider those schemes which can be
derived by a limiting procesé as associated schemes and thus

have r > R, 8 2 8§ . Since Padé approximations to z)L '

A=r -R+ 4 can be derived as a quotient of Jacobi poly-
nomials, the Padé approximation to 2zl tn z for L > 0 can
be obtained as the derivative of this guotient. We have
already stated that stability in the FD case is verified
without calculating the approximation explicitly. As a
result the connection between the stability conditions for

the FD and SD cases as discussed in Section 2.3 enables us

to verify stability in a similar way.

The stability conditions for the FD case can be

expressed as follows.

1) The von Neumann stability condition is equivalent to

X

D = get?,ny 2

-1 pet® 2y 1250, 0506 <27 |

where,

©O|d
NN
kR
[
N
a
|
|
s
IS
+
O
N
=
o]
+
-~

A =r - R + 4 and a(z,u) 1is the characteristic function of

the IFD scheme.
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2) . The pole condition means that the Jacobi polynomial
P&a’e)(z) where ¢ =r - R+ 4, 8 =858 -8 + 4 and

N=S5S+R, has R zeros inside and § zeros outside
the complex unit circle (Section 3, Theorem 3,

[Is83a]).

Therefore for those SD schemes which are associated

with FD schemes we have similar conditions for stability.

Lemma 4.2.1

For an SD Padé scheme with r > R and s 2S5 ., the two

requirements for stability are equivalent to,

*

*
a) the von Neumann condition: iﬁt 'u*o 2 0, where D is
defined as above, and
b) the pole condition: The Jacobi polynomial, Pga’e)(z)

where a=r -R, 8=8-8 and n =R + S has
R zeros in the right half plane Rez > 0
and

S =zeros in the left half plane 'Rez < 0 .

Proof

The proof of the von Neumann condition is from equation

(2.3.7), which relates the satisfaction of this condition by

SD and FD schemes, and by application of l‘Hépital's rule.
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For the pole condition we saw from equation (2.3.5) that the
denominator, F(z) of zr_Rh(z), could be identified with
Q(z,0). Thus F(z) is a MBbius transformation of the

required Jacobi polynomial and the result, fol-

lows. o

Applications of the above Lemma leads to immediate
verification of stability in the cases m=n + 1 and

m=n .
Theorem 4.2.1

The only stable Padé schemes with m=n+1 and
r 2 R, s 28 are given by {r=8=8=R+ 1} and

{R=8S=1r=8-1} .

Proof

The choice m=n+ 1 with r 2 R and 8 > S gives
only two <cases to <consider, either {r=R+1 and
g =8 })0or {s=8+1 and r = R }. However Dby Theorem
3.2.1 these schemes must be centred since they are Padé.
Thus the only possibilities are { r = s =S =R + 1 )} and
{ R=8=1r =8 -11}. Therefore we require to prove that
either choice 1is stable. By (2.3.6) the associated FD

schemes are given by,

max { 8, S} S = min { s,

w
1]
U
—

min{f,f{}.

max { r, R } R

=
Il




"dition is thus automatically satisfied and the scheme is
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Without loss of generality we can assume that s = s, S = S,

|
.

r =r and R = R s Therefore we must consider the two

cases

B
1l
(>]]
li
[a R
i
o
I
|~

b)

Proof of stability for a) and b) is similar and hence we

only present the proof for choice a). Recalling that ‘1;\

R+8S8 , M=N+ 1. Also, M is even, ‘
|

M=r+s8 and N

since r = s =8 =R + 1 . Therefore, from [Is83a], I
I
|
|
Il

+ I

\ (-2 (N1 (-MELr), XY |
5* - M M I
[(M + Ny1° |

where X = 2(1 - cos ). i

Now forming the derivative of D* with respect to x and
setting ©# = 0 we have

% |
8D _ L—l)M M! (Nl)3 XM % 0 l

(M + N)l]2 I

By Lemma 4.4 [Is83a] the polynomial Pl(ql'o)(‘z) has [N/2]

zeros in (0,1) and [(N+1)/2] =zeros in (-1,0). The pole con-

stable. : ]
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Theorem 4.2.2

The only stable Padé schemes with m=n, r =R and

s =85 aregiven by r =R =88 = § and have coefficients:

e O . m)2
ay + = Btchy - Ry o) [J]
_1~-1 [m)2
where
m
T ajzJ
h(Z) =J.I_Tlo_—
r 8. z]
j=o J
and
h J k h
. &8 = 1 ’ ¢ =0 -
J kz=:1 / o
Proof

According to [Da56] the above-mentioned coefficients
give a method of accuracy 2n . Hence, by Corollary 3.2.1,

they correspond to the [n/n] Padé scheme.

Now r =R and 8 =8 imply that r =R and

~ ~ *

s = 8 . Therefore M = N and so by [Is83a] D = o.
Consequently the von Neumann condition is satisfied. For
the pole condition we require the =zeros of P;Zg”(z) .

This is a Legendre polynomial whose zeros 1lie in (-1,1)
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and are symmetrically situated around the origin. By equa- |,
tion (3.2.4) this symmetry is consistent with stability only

if R = S and so the only stable scheme has r = R =s = S. O

It is evident that Theorems 4.2.1 and 4.2.2 are immedi-
ate corollaries of Theorems 4B and 4A of Iserles and Strang
[Is83a]: stability of the FD implies stability of the sD,
accuracy is inherited since both schemes are Padé, b =p .,

and the result follows.

In the same way we have an immediate corollary of
Theorem 5 in the same paper. For the Padé schemes with
R=8S, >R, 8 28 , the inequalities (3.2.4) are suffi-

cient as well as necessary.

Now we turn to the more difficult problem of determin-
ing the stability of SD schemes which are not associated
with any FD scheme. For these methods we do not know any-
thing about the explicit form of the Padé approximation.
However Padé theory and some lengthy analysis enables the

investigation of the schemes lying above the diagonal in the

Padé tableau which have n =m+1 and R>r , S > s .
Theorem 4.2.3

The only stable Padé schemes with n=m+1, R2>r
and S 2 s are given by R=S=8=1+1 and

R=g =1r =8 - 1.




e - '7 ,,i

Proof

The proof falls into three parts: first to show that
the von Neumann condition depends on the sign of the error
constant, second to find this sign and finally to examine
the location of the poles and zeros using the geometric pro-
perties of the order star. As in Theorem 4.2.! there are
just two possibilities for n=m+.31 with R 2 r and

S 2 s satisfying Theorem 3.2.1:

a) r=R=8=8 -1; and

=s = s.

[l
|
+
=

b) R
We will now prove that both choices are stable.
i) The von Neumann condition

For r = R,

. -i0 ie
Reh(ele) = g F(e )ieG(e2 )
| F(e” )|

where F(z) and G(z) are the denominator and numerator of

r

H(z) = 2z _I{h(z) )

Therefore

Reh(e'®) < 0 if and only if reF(e 1%)g(el?) < o.

Let ¢ be the error constant of the approximation. Then

h(z)y = ¢anz + c(z—l)p+l + O(|z-1|p+2),
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hence

h(el®) = i6 + c(16)2MF2 4 (923,

Thus I

reF(e™10)a(e0) o (21)Micip(elf)2 p2(MIL) | o p2mH3, |

Substituting

(1-cos 6) = 6°/2 + 0(6*) and F(e'®) = F(1) + 0(0) |

implies that

. . 2 m+1
reF(e %)g(elf?) = e(-1)" 2" F(1)1%(1 - cose)

m+3/2)

+ O((1 - cos @) (4.2.1)

11
But from (2.3.4) . I

Re (F(e %) o(ef)) =re © g.el3® g o e |
j=o =0 |

le

m+1 C |

= Y. r, (1 - cose):l |

j=o 3 |

R(1 - cosg) , (4.2.2)
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where R is a polynomial in (1L — cos@) of degreem + 1 . |

_\
Equating (4.2.1) and (4.2.2) implies that U

. \
\m+1_m+1 ‘
R(1-cos 9) = c(-1) 2 |F(1)|2(1 = cose)m-’-l ‘

where the higher order terms vanish since R has degree at

most m + 1 .
. , m+1
Therefore R(1 - cosf) € 0 if and only if (-1) c € 0.

Similarly, for the second case, where R =71 + 1 , we

obtain

reh(e'®) < 0 if and only if (-1)™c < o.

The von Neumann condition thus depends on the sign of

-

the error constant and the parity of m
b) The error constant

By Corollary 3.2.1 the approximations under considera-

tion are normal and so Padé theory can be used to find the

error constants in terms of the ratio of the determinants of

two matrices whose elements are obtained from the Taylor

series expansion of the underlying function [Ba75].

_ _det aA™?2
det Am+l
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where Am+2 is the Hankel matrix:
[ o i=9 =o0
+ i
(a™ 2)ij = o |
(=1)*"37Y otherwise, 0 < i,j < mt1
it 3

By using elementary row and column operations and then
the Sylvester determinant identity [Ba75], the determinant
of A™2 can be obtained from a recurrence relation with
coefficients that are Cauchy matrices Xk [Gr69, p.54].

The Xk are k-by-k matrices with

(X)ys =335 + Xy =y, = ifl . (4.2.3)

By solving the recurrence relation we obtain,

+
det XML

: m e .3
get AM2 - , (Ml 5 [(m=})1]

oo (2m - 23 + 1)

Now xj > Xy and Yj > Y for all 1 € i ¢ j €m + 1 means

that det X™1 > 0 [Cr69]. Therefore K ,, >0 and so

+2

c = > 0 for all m .
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‘The von Neumann condition is therefore satisfied for w

choice a): m=1xr + g being even, c >o0 implies

; (-1)™ c <o .

- For R = r + 1, | |

I i\
ﬂ
o - _ det H™? “‘
I
get H™Y
It
1“
where, i
w
|
(Hm+2) _ 0 1=3 =0
ij 3 5 = ] 1 : : \‘
(—1)l+3+lh. otherwise, 0 € i,j < mta il

it+] \‘ H

As before we use elementary row and column operations

m+2

to express the determinant of H in terms of a more con-

venient matrix B so that, , |

2

€ I
det H™2 —(-1)™2 4ot B M

where,

-1
(i+j+1)(i+j+2)
1

j+1
ij i : . ] |
i+1

«l
I
=
A
o
n
-
N
=

0 i =3 = m+1 i
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- It is possible to prove én explicit expression for detB
inductively by finding a one stage recurrence relation for
det BY in terms of get B9*L, In this way we can derive an
exact expression for c. However our proof only relies on
finding the sign of ¢ and so we adopt a different and more

elegant technique. Consider the matrix c™*'t given by,

m+1 _ 1
(C )ij T (i+3+1)(i+]+2)

0 i,j€«£m .

m+1

Obviously -C is the leading principal minor of B and

all the principal minors of ™1 are of the same form,

+
1 CZ,.. ,le

namely, C7, . Also it is symmetric and thus

positive definite if and only if all of its principal minors

are positive. Consequently we require only to demonstrate

that ¢™® has a positive determinant for any m 2> 0 to

prove that it is positive definite.
It is possible to express the determinant of ¢™'?! in

) +
terms of a new matrix D™ 1

by letting the k-th row of
the new matrix be the sum of all the rows up to and includ-
ing the k-th row:

m+1 i+1

DTy = GFD(ie5rn © € L3 < me .

Taking a factor (i+1) from the i-th row and a factor

5%3 from the j-th column, o < i,J € m+1 , we see that

det Dm+1 = det Xm-i-1 i
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where X™1 s the Cauchy matrix given by (4.2.3). Recal-
ling that the determinant of this Cauchy matrix is positive,
the matrix c™?1 jg positive definite and all of its eigen-

values are positive.

The eigenvalues of the le;ding principal minor of the
matrix B are thus all negative. Therefore by the separa-
tion theorem for eigenvalues [Wi65, p.103], B has at most
one non-negative eigenvalue. Hence B is non-singular and
has a single positive eigenvalue because xT Bx=1.5 >0

T

for x = (1,0,...... +0,1). The determinant of B is equal to

the product of its eigenvalues, consequently,

m+1
sgn (det B) sgn II xi

i=o

where - {xi : 0 € 1 € mt1} are the eigenvalues of B .

m+l

Therefore the matrices H all have negative determinants

and

Now, m=1r + s being odd and c <o imply that

(-1) ¢ < 0. Thus by part i) the von Neumann condition is

satisfied.




iii) The pole condition

In case a) m is even. We let m = 22 and by Lemma
3.1.1 there are 8% + 4 sectors of A and D approaching the
origin of'the orde: star. The sign of the error constant

means that along the x axis,
h(e*X)y - x = cxP* + 0(xP*?) > o for oqx| « 1

Thus the x axis must bisect an A-region and as there are
2¢ + 1 sectors in each quadrant, the y axis must bisect a

D-region. Let

M':= the number of A -regions approaching the origin

from I+ -

M := the number of D -regions approaching the origin
from I ;

P':=the number of poles in I+;

P :=the number of poles in I .

M+ =22 + 1 and by Lemma 3./.2 P+ 2 L+ 1

M = 22 and by Lemma 3./.2 P~ > ¢ .

it follows from P+ + P =m

£ +1 and P = 2 .

Because the pole condition requires pt = S ,

the only stable configuration occurs

L, S =120 +1.

™
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iii) TIhe pole condition

In case a) m 1is even. We let m = 22 and by Lemma |
3./.1 there are 8L + 4 sectors of A and D approaching the
origin of the order star. The sign of the error constant I

means that along the x axis,
h(e*) - x = cxP*? +O0(xP*?y » o for o|x| «1 .

i
Thus the x axis must bisect an A-region and as there are

22 + 1 sectors in each quadrant, the y axis must bisect a !W

D-region. Let , w
M+:= the number of A -regions approaching the origin

from I+ : Il

M := the number of D -regions approaching the origin
from I ;

P+:=the number of poles in I+; I

P :=the number of poles in I . i

Then ‘; “;\

Mt = 2L + 1 and by Lemma 3.[.2 P* > 1 + 1;

M = 22 and by Lemma 3./.2 P > 1 . |

+ -

It follows from P +P =m+1=2L+1 that i

P" =2 +1 and P =t .
\1‘
Because the pole condition requires pt = S. and i

= R ’ the only stable configuration occurs for fl
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For r +1 =R , the method of proof follows as above.
Since m is odd, m =22 + 1 , and the only stable confi-

guration occurs for R =S =g = 2 + 1, r = £ . a

For a general choice of R, r, s and S there is, at
present, no complete analysis. We have relied on the con-
nection between the fully discrétised and semi-discretised
schemes to derive stability in a few selected cases when the
scheme is more explicit. For schemes which are more impli-
cit, we have only looked at the case when n =m + 1 . This
analysis relies heavily on the results of Padé theory to
investigate the sign of the error constant of the approxima-
tion. Given the sign of the error constant, we are able to
use the geometry of the order star for this particular case
to demonstrate which schemes may at the same time be both

von Neumann stable and satisfy the pole condition.

4.3 Conclusion

In the preceding chapters we have investigated the sta-
bi;ityvand accuracy of finite-difference methods for solving
the linear conservation law, ug = u. . Through a modifica-
tion of order star theory, we have completed the work begun
by Iserles '[1382] and continued by Iserles and Strang

[Is83a] to derive an upper bound on accuracy for all stable

semi-discretisations of such equations:

P £&min {r + s + R + S, 2(r + R + 1),2(s + S)} .

~




,——
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Furthermore, we have demonstrated for numerous choices of
r, s, R and S that this bound is optimal. Certain Padé
app?oximations achieving the bound are stable. As with the
FD case, stability only occurs if the Padé scheme is suffi-

ciently centred:
r+R<s8+S<r+R+2 .

For approximations which are away from the centre of the
Padé tableau, these inequalities spill leave many cases to
be considered. Therefore we are ugable to conjecture what
the right conditions for stability are, either for cases
away from the three main diagonals of the Padé tableau, or
for those cases which use an unbalanced number of explicit

and implicit points R >r , S <(s and R < r, S 2 s .

Extension of this work to the solution of equations
with variable coefficients causes problems. As explained in
Sections 1.5.7 and 1.5.8, stability cannot be determined
solely by the von Neumann and pole conditions. Instead,
some kind of dissipativity needs to be imposed if stability
in {2 is to be considered. Alternatively, stability in a
special norm can be investigated as in the Kreiss theory.
Either way, the existing approximation-theoretic techniques
are unlikely to be sufficient. Certainly the bound derived
here, will be an upper bound, as the von Neumann condition
and pole conditions are necessary, but as Iserles [Is84c]

has proved, a variable coefficient multistep discretisation

has accuracy halved. Thus it is most unlikely that the
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saturation result derived here is an optimal bound for vari-

able coefficient or nonlinear problems. However it undoubt- l
. |

edly reduces the choices and a more educated guess about }
which schemes should be used, can be made. ”
‘ |

I

|

|

I

|

‘1
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5. NUMERICAL, SOLUTION OF THE SEMI-DISCRETISED SYSTEM OF
EQUATIONS

5.1 Introduction

In the second half of this dissertation we consider
numerical models for solving the system of ordinary dif-
ferential equations arising from the semidiscretisation of a
partial differential equation. It is essential that the
numerical model should be chosen in a way which is appropri-
ate for the underlying equation and the SD. Absolute sta-
bility is not sufficient to ensure stable integration of the
ordinary differential system of equations. There are pro-
perties such as conservation, dissipation and monotonicity which may
characterise the 8D system. We will briefly discuss such
considerations in Chapter 8. Initially our main concern is

with the overall stability and efficiency of the model.

In this chapter we will discuss the various methods of
time integration available. We consider the practicalities
of implementation and thus motivate further investigation
into a particular class’ of methods. Then we review stabil-
ity theory for this class of methods and discuss their
optimal versions. Further to this in Chapter 6 we concen-
trate on a smaller class of methods. We derive optimal ver-

sions of these schemes for integrating hyperbolic partial

differential equations.

;
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In Chapter 7 we present various algorithms for imple-
menting our chosen scheme efficiently. We also discuss a

possible method of error control.

Finally in Chapter 8 we implement some of our methods.
We evaluate their usefulness by considering the evolution in
time of some carefully chosen initial conditions which will

exhibit the characteristics of the complete numerical model.

5.2 Methods for Time Integration

Basically there are three categories of finite-
difference methods which we may use to integrate our SD sys-
tem. Our main requirement is for a reasonably efficient and
robust method which can usefully be generalised for multidi-

mensional and nonlinear problems.

The first category to consider is the class of explicit
ordinar} differential equation solvers: Runge Kutta formulae
and the familiar linear multistep schemes based on forward
differencing. .Implementation of explicit methods is rela-
tively easy,>and the storage requirements for multidimen-
sional problems are not too severe. However, efficiency of
explicit methods is necessarily reduced by their conditional
stability properties. For nonlinear problems, where rapid
change 1is occurring, integrating too Ffast would prevent
accuréte observation of transient effects. Therefore res-

tricted steps in time would not be disastrous. However,

when steady state is reached, reasonable speed without




amplification of stationary discontinuities is desirable.

Extending the above class of methods to allow schemes
to be defined implicitly, by, for example, performing backward
differencing, we may obtain unconditional stability proper-
ties. Thus faster time integration would be expected and so
this class might be preferable for steady-state evolution.
The main disadvantage is that we require to solve large
algebraic systems of equations by iterative means. In mul-
tidimensional problems the structure of these systemé
becomes increasingly complicated and storage requirements
are very severe. Also implicit methods have the undesirable

tendency to smooth discontinuities.

Finally, we might consider some kind of splitting method
designed to avoid the excessive storage requirements of the
implicit methods. Examples are the alternating direction
methods and hopscotch techniques [Mi80]. The idea is to
reduce a problem with complicated structure to a series of
Simpler problems which can be solved more efficiently. By
retaining implicitness, splitting methods can also possess
unconditional stability and so might be the natural candi-
dates for investigation. However, they are not so easy to
implement and accurate resolution of discontinuities can

again be a problem.

It would therefore appear that in regions of rapid vari-
ation, where we do not wish to integrate too fast, we should

use explicit methods as they are by far the easiest to

implement. However, when an equilibrium situation is




reached, efficiency would suggest adopting some kind of
implicitness. In practical applications, the resolution of
discontinuities is more important than efficiency and expli-
cit methods usually perform better in this respect. There-
fore we follow the approach of many other authors and opt
for investigating ways of improving the efficiency of expli-
cit methods (cf. [Ho77], [Ve76a], [Ve76b], [Lab66]). Hence
it is quite natural to consider Runge Kutta methods since,
as we shall see, the accuracy conditions do not define the
schemes completely. There is freedom left over which can be

used to improve efficiency.

5.3 Stability and Accuracy of Explicit Finite-Difference
Methods

Before we examine any particular class of explicit
methods more carefully, it is useful to elaborate on the
concepts of stability and accuracy for ordinary differential

equations. We consider the ordinary differential system of

equations
: g—% = f(y) t >2o0
| - 5.3.1
’ y(o) =y, ( )

| Application of a k step m stage method for solving

|
|
|
i

(5.3.1) to the linear test equation

y' = Ny , AN EC




rFr

yields a numerical solution {yn} which satisfies a ‘
‘\
recurrence relation of the form
k m ; , I
L £ a.zly"™ -0, n>o (5.3.2) I
i=0 j=o J i
a, *0 . Il

Here z = \AAt, where At 1is the steplength and yn is an “\‘

approximation to y(tn) = y(n At).

Recurrence relations of this type represent many mul-
tistep methods, in particular Runge Kutta multistep methods, ‘
linear multistep methods and predictor corrector methods. ‘
If the coeffi‘cients akj » 1 € 3j £k all vanish, then the

method is explicit. W‘

As for partial differential equations, stability and i

accuracy of a method may be completely defined by properties i

of an algebraic function. We define the characteristic polynomial

of the method by Il

k m yq 3“‘1‘\
®(a,z)y = T T a.. z3a (5.3.3)
i=0 j=o0 1] I

and its stability region S Dby

Roots aj »,1 £ J <m,of &®(a,z) satisfy |aj|<1}

S’={ZE¢' and if | @, | = 1 then it is a simple root

J
(5.3.4)

The numerical solution {yn} remains bounded as n - = for

fixed At and all possible initial values




e, y1 , ..”yk—l} if and only if 2z € S . Comparing with

Section 1.9 we say that the method is absolutely stable at =z €
¢ 1if =z € 8§ and the method‘is A-stable if =z € S for all
z€ (@ ={ze€€ | Rz<O0)}. Further the method is zero stable

if it is absolutely stable at the origin.

If the method has order of accuracy p and 1is zero

stable, then the algebraic function R(z) given by
®(R(z),z) =0

has a branch R,(z) which is analytic in the neighbourhood

of the origin and satisfies
R(2) - €% = ¢ 2P™Y 4+ Q(ZP*2) | (5.3.5)

It may well happen that R,(z) approximates the exponential
with order q where q > p . In particular, this may occur
for the multistep methods we consider later. We note that
the principal root R,(z) of a multistep method is the
analogue of the stability function for the single-step
methods, and4that it reduces to a polynomial if the method

is both single-step and explicit.

The numerical method is said to be convergent if the
approximate solution tends uniformly to the real solution
for all initial values as the steplength tends to zero.

Zero stability and consistency, p 2 1 , are necessary and

sufficient for convergence of linear multistep methods




[He62]. Thus, as with partial differential equations, we
may investigate the convergence of a method in an approxima-
tion theoretical framework via the principal root of the

characteristic equation.

For multistep multistage methods explicit determination
of the principal root is unlikely. However, Jeltsch and
Nevanlinna have developed a powerful new theory enabling
comparison of methods without evaluating R;(z) explicitly
[Je8la,82,83]. We will describe some of the results of this

theory in a later section of this chapter.

5.4 Extended Stability Regions

We are now in a position to describe exactly what we
mean by extended stability for partial differential egua-
tions. When we are solving an ordinary differential system
of equations which- is an SD of a partial differential equa-
tion, the parameter 2\ represents a value in the spectrum
of the Jacobian matrix of Lhe system. For stability we
require that A should be inside the stability region for
all points of the spectrum. Now \ is inversely propor-
Lional to the mesh size of the SD and thus the size of the
stability region necessarily restricts the size of the
timestep and hence the speed of integration. . Therefore for
maximally efficient integration of a particular SD, we need

a method which has a stability region enclosing as large a

multiple as possible of the set defined by the spectra of




the jacobian matrices as Ax tends to =zero. Consequently,
we can distinguish different problems according to the loca-
tion of the spectral set. 1In turn, this distinguishes dif-
ferent methods as being more‘suitable for integrating sys-
tems arising from different kinds of partial differential

equations.

If the Jacobian matrix is very nearly symmetric or skew
symmelric, then the location of the eigenvalues of the fin-
ite matrix characterises the problem. For parabolic equa-
tions, the Jacobian is usually nearly symmetric and thus has
eigenvalues 1lying inside a 1dng narrow strip around the
negative axis in ¢ . Thus we require stability regions
which encloserthis long narrow strip. Optimal regions may
be determined by mapping the inside of the unit circle onto
¢ : sufficient conditions for the roots of the stability
polynomial to 1lie inside the unit circle can then be
obtained by applying the Routh-Hurwitz criterion to the
transformed equation. For restricted classes of problems
these conditions are linear and optimal methods may be found

by solving a linear programming problem [Ve76b].

However if the partial differential equation is hyper -
bolic, very often its Jacobian is nearly skew symmetric.
Then the eigenvalues lie inside a narrow strip enclosing the
imaginary axis and methods with extended interval of stabil-

ity along the imaginary axis are desirable.

The above situation only occurs if we discretise the

hyperbolic equation using central differencing. For general




différencing, the matrix loses its symmetry properties and
we must consider the spectrum of its infinite Toeplitz form
rather than the eigenvalues of the finite matrix (cf.Section
1.8). These spectra describe Jordan curves in the complex
plane and exteﬁded stability thus requires stability regions
enclosing these curves. Now, as we will describe in Chapter
6, determination of these regions requires the solution of a
non-linear programming problem. This is considerably more
awkward to solve numerically than the 1linear programming
problem which may be obtained for parabolic equations. How-
ever, one often desires to add dissipation to a numerical
model to prevent unrealistic amplification of errors. Conse-
quently, the additional effort required to solve these prob-

lems is worthwhile.

Examples of two spectral curves arising from general
differencing of a linear hyperbolic equation are given in
Figure 2. They correspond to the following semidiscretisa-

tions

4 1d -1 [-1 _ 5
(@) G vy Y2 atY941 = ax { 2 V5-1 " V3t 4"j+1}
(5.4.1)
14 _2d 54 _ 1
®) ZatVy-1 " 3ac s 12dt Vi+1 T ax (Y5 T Vi)

For comparison we also give the eigenvalue curves of the

finite matrices. Notice that these curves lie well inside

the region bounded by the corresponding Jordan curve, and




Figure 2.
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thus extended stability predictions, with respect to the

eigenvalue curves, will be quite misleading.

We call the polynomials wi(z)
m .
vi(z): = ¥y a.. zJ

occurring in (5.3.3) optimal (real or imaginary) stability

‘polynomials if they give rise to a numerical method which

has maximal stability interval along the negative real axis
or imaginary axis respectively. In the next section we dis-—

cuss optimal and nearly optimal real stability polynomials.

5.5 Extended Stability on the Negative Real Axis

Although our main concefn in this dissertation is with
the solution of hyperbolic partial differential equations,
we present in this section a brief review of results for
extended stability of parabolic problems. There has been
much interest in the development of multistep multistage
methods with extended negative real stability. Many of the
problems encountered in the analysis also occur for stabil-
ity regions extended in other ways. Thus this discussion
serves to highlight some of the criteria that always need to

be considered in designing such maximally efficient methods.

There is, however, a problem which arises in designing

methods for parabolic and stiff equations which is of no
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concern for hyperbolic equations. As we have already
explained extended negative real stability is required. To
obtain this, methods which use many stages aré necessary.
Therefore, it is pbssible, that there will be a considerable
accumulation of round-off errors within each timestep. The
extent to which these errors may destabilise the solution
may be limited by analysing the internal stability of the method
[Ho77]. The requirément that an internal stability polyno-
mial should always be bounded by some value, usually the
ratio of the maximal allowable truncation error to the
machine precision, necessarily restricts the size of
timestep further. Alternatively, for hyperbolioc problems
the eigenvalues of the Jacobian are less widely separated
and so methods with many stages are not needed. Conse-

quently, internal instability is unlikely to dominate for

reasonable timesteps.

Riha has proved that the optimal real stability polyno-

mials of order p =1 for one-step multistage methods are
shifted Chebyshev polynomials [Ri72]. These polynomials
have maximal interval of stability on the negative real axis
Breal = 2m2. 7The higher-order polynomials do exist [Ri72]
and those with p € 4 have been constructed numerically
[Ho77]. However, all these polynomials satisfy the equal
ripple property, which means that they attain modulus one
m - p times within the stability interval. Thus despite

having stability interval which increases qhadratically with

m, for small values of p. ‘they cannot be practically used,

particularly if eigenvalues of the Jacobian lie just off the




:
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real axis. Also for p>1 their coefficients must be
derived numerically and this can lead to accumulation of
rounding errors in implementations. For the second and
third-order polynomials, Van der Houwen has derived analytic
expressions for near optimal polynomials as special expan-
sions in Chebyshev polynomials. The second-order polynomi-
als have the reduced interval of stability

2

B = %(Hl - 1) compared with g .82m2 as m - e

-
real real

for the optimal schemes.

By consideration of two-step multistage methods, Verwer

has derived near optimal polynomials of order p =1 and

p = 2 [Ve76a]. His second-order polynomials have
Breal =~ 1.8 nF, » Which is an obvious improvement on the
value above. However once again the coefficients must be

derived numerically through an application of the equal rip-
ple property. Thus, for large m, internal instability may

lead to a deterioration in the solution.

Moving to a special class of three-step schemes without
extra function evaluations, some of this harmful accumula-
tion of errors can be reduced. For this case the polynomial
coefficients are not calculated by application of the equal
ripple property. Thus weak stability is no longer a problem.
Instead they are calculated as a solution of a linear pro-
gramming problem [Ve77]. Considerably improved stability
boundaries Breal = 5,15 m2 » and 2.29 m2 for order one and
two respectively are obtained. However, internal instabil-

ity again becomes prevalent for large m values. It is
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clear that algorithms need to be designed to reduce this “
error accumulation. Fortunately this course of action can '
be followed since the order conditions do not define the ‘H
coefficients completely, and thus there is still some free- il
dom available. Van der Houwen and Sommeijer have imble—
mented some one-step schemes by identifying the polynomials ‘w
of successive stages with shifted Chebyshev polynomials. ;M
They then employ a Richardson-type iterative method for
their solution [Ho80]. 1In this way better internal stabil- it

ity properties are achieved without reducing Breal . ‘WW
Verwer extended this approach to improve the stability
behaviour of his two and three-step schemes achieving |

2 2
B & 5,17 m and = 2,32 m for order one and two

real
respectively [Ve79,82].

Sommeijer and Verwer have carried out a performance
evaluation of some of these one, two and three-step Runge
Kutta methods using a variable step implementation. By com-
paring standard algorithms with those based on Chebyshev
recursions or on Jacobian linearisations, they showed how
important the choice of algorithm is for successful integra-
tion. Despite having larger stability intervals, the
three-step methods did not prove to to be more efficient

unless linearisation of the Jacobian was performed [So080].

Higher-order accuracy up to p =6 has been investi-
gated by means of predictor corrector methods. Van der
Houwen and Sommeijer considered a family of methods of this

type which are constructed with restricted storage

;




requirements by using Chebyshev recursions [Ho83].

It should now be apparent that extended stability is
not sufficient to guarantee greater efficiency. The manner
of implementation is equally important. As already men-
tioned, we are unlikely to need so many stages in order to
obtain the required speed of integration. Consequently
intefnal stability should not play such an important role in
the solution of hyperbolic problems but upper bounds on sta-

bility intervals must still be treated with caution.

5.6 Extended Stability on the Imaginary Axis

Determination of the maximal interval of stability

B is equivalent to maximising Bim so that the roots of

ag
®(a,iy) have modulus bounded by 1 in the interval

imag

o < iyrs iﬁimag and are simple if they attain this bound.

Solving a minimax problem to determine 2Z.

imag means that any

solution is strongly stable in the whole interval. Therefore
for hyperbolic problems we do not have the problem of weak
stability associated with the optimal polynomials for para-

bolic equations.

Determination of optimal imaginary stability polynomi-
als was first considered by van der Houwen [Ho77]. He showed
that construction of the first-order optimal imaginary poly-

nomials can be posed as a minimax problem for a class of

functions. Any polynomial which exists as a solution to this
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problem is necessarily second-order accurate if it derives
from a scheme with an odd number of stages, m > 3. In all
cases the bound ﬁimag < 2[m/g] holds. Thus measuring effi-
ciency by scaling thgv bound by the number of function
evaluations, m , there dan be no increase in efficiency for

increased m . Also, schemes with an even number of stages

are obviously better candidates for increased efficiency.

The optimal imaginary polynomials of order p with m
stages are denoted by Ig(z). Then van der Houwen has shown

that Ig(z) for odd m and p =1 is a sum of shifted

Chebyshev polynomials: *
2 2 2
(1) (2) z z 4 z
I (z) = 1 (z) = T, (1 + )+ 2 (1 +=5)YU,_ o (1 + =)
2k+1 2k+1 k 2kz k kz k-1 22
[Ho77]. These polynomials do attain the bound
= - ; B, .
Bimag m 1. More recently it has been shown that Im(z)

for m even are again sums of shifted Chebyshev polynomials
obtainable from a recurrence relation for 15(2) ([Le84],
[Pi83], [Ki84a]). The bound Bimag =m - 1 is obtained and
thus, contrary to the expectation of van der Houwen's bound,
schemes with an even number of stages cannot be expected to
exhibit increased efficiency. Instead an odd number of
stages may be preferred due to the bonus of gaining order of

accuracy two. Moving to higher-order polynomials Kinnmark

and Gray, [Ki84b] have found expressions for third order

[}
A
polynomials with B8, = //((m = 1)2 - 1). For large m this

imag

bound does approach m - 1 which suggests optimality although
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this has only been proved for m < a. Contrary to the optimal
first order polynomials these polynomials are fourth-order
accurate for an even number of stages. Furthermore, it has
been observed that for increasing m the stability regions
become increasingly slender in their far reaches and this

with the linearity of & as a function of m suggests

imag
that small m is preferable.

Moving to multistep rather than multistage methods
Jeltsch has proved that any consistent linear multistep
method which is stable on the imaginary axis is necessarily
A-stable [Je78]. Thus it is implicit and has order at most
two with the trapezoidal rule having the smallest error con-
stant [Da63].. Further, Dekker has proved that the stability
boundary for linear multistep methods of order greater than
two is at most 3 [De81]. This bound is attained by the

Milne-Simpson method which is of accuracy order four and

implicit.

Therefore for increased efficiency, multistage rather
than multistep should be preferred. If multistep multistage
methods of ~ low order cannot improve on the bound
Bimag =m - 1, we should stay with the simplest explicit
multistage methods possible or consider using an implicit
scheme. For higher order, the bound v3 derived for linear
multistep is easily broken by multistage methods: the Runge
Kutta four-stage method of order four has Bimag = 2V2
Thus it is certainly worth considering whether by moving to

multistep and multistage we might achieve yet greater
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efficiency.

5.7 . Comparison Theorems

So far we have not discussed the more complicated prob-

lem of determining optimal schemes for the solution of SD I

schemeg which have spectra lying completely in @ . The
most promising work in this direction is that of Jeltsch and
Nevalinna [Je81,82,83]. They have sought ways of describing
stability regions without evaluating principal roots so that ﬂ
comparisons between stability regions and hence methods can
be made. It is well outside the scope of this dissertation iy
to describe their work in entirety, but it is interesting to i‘

quote some of their results which are particularly relevant.

Their analysis relies on the fact that the stability
and accuracy properties of a numerical model can be deter-
mined completely by an algebraic function which is the root
of the characteristic equation. The principal branch of
this function dominates the behaviour of the method. There-
fore Jeltsch and Nevalinna have concentrated on describing a
stability region qualitatively by this principal branch. As
the efficiency of numerical methods can be measured in terms
of the number of function evaluations, it is only useful to
compare scaled stability regions. Their major result ena-

bling comparison between explicit methods is that scaled I

| boundaries of any two explicit methods necessarily intersect

if the methods satisfy reasonable conditions which ensure
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convergence.

To determine whether a method is optimal we need to
find its describing algebraic function. The comparison
theorems then give conditions which an optimal function must
satisfy but do not guarantee existence. Thus the major l

problem is to find this optimal function.

Application of the theory to first-order explicit mul- I
tistep multistage methods for maximal interval of stability

B

|
. - ) |
imag Y1€lds the bound 8imag S 2[3]1 Of the one-step Runge I

Kutta. This suggests there is no gain in efficiency by
incorporating more steps. The theorems are based on compar -

ing the closure of stability regions and do not account for

the appearande of branch points. They optimise stability
sets that are closed intervals of the imaginary axis. The
characteristic function & then has a factor A(a,z) which *

is of the form : (i

- A2 _ ..M =iz _,\m
ANla,z) = a 21 'ﬁn( p ya + (-1) . (5.7.1)

where Tm(z)/ is an mth degree Chebyshev polynomial. Obvi-
ously any method which has even number of stages and a fac-

tor A as in (5.7.1) cannot be zero-stable. For m odd,

14 ; ; = P
the largest stability interval is ﬁimag = m 51n(2m and
thus the midpoint rule which has Bimag = 1, is best in the
i scaled sense. However, by suitable construction, we can
show that this bound can be broken. In particular, the

two-step, three-stage method of order three which has
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characteristic function

d(a,z) = az - (2z +-§z3)a -1 (56.7.2)

has Bimag ~ 2.8473. The bound has been broken by perturbing
the coefficients of the characteristic function given by
(5.7.1) so that the branch point no longer occurs on the
pure imaginary axis.

Now the above result is not related to the accuracy of
the method in any way. However, it can also be proved that
there do exist linear k-step methods of order p = k with

an interval of stability 4. where 8 € [0,1] and

imag imag
k €{2,3,4}. For kK =1 mod 2 no explicit linear k step
method of order p = k exists such that Bimag > 0 (Th5.1

[Je81]).

Extension of the theory to implicit methods can incor-
porate their order of accuracy since comparison is in part
performed by the location of the poles of the principal root
which in turn is related to accuracy [Th 2.2, Je82]. That
there is a very close relationship betﬁeen the location of
the poles and the order of the optimal method is proved with
the aid of order stars defined on Riemann surfaces. Com-
parison yields the bound Bimag € vV3 for linear multistep
methods of order greater than 2 already proved in a dif-
ferent way by Dekker [De81]. The equivalent result for

two-stage methods is B € V15 for order p>4 .

imag
Therefore this new theory enables proof of all existing

results for stability on the imaginary axis but, more
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importantly, there are results which may be useful for spec-

tra in ¢ .

In the case that the spectral curve is a slight pertur-
bation from a circle, some of the circle theorems are
relevant. In particular, for any r <1 and k there
exist linear k step methods of order p = k such that the
disc of radius r centred at (-r,0) 1is contained in § .
An m-stage method has a disc of radius m centred at
(-m,0) contained in § only if the algebraic function which

is the root of the characteristic equation is
@(z) = (1 + ':i)m (5.7.3)

([Je8l]). Clearly any function of this form can represent a
consistent, p = 1 , Runge Kutta method with m stages. Thus
efficiency is not encouraging in the single-step multistage

case.

However, the two spectral curves we are considering
indicate that such curves may not be just small perturba-
tions from a circle (cf Figure '12). Our curves are squashed
more towards the imaginary axis and thus we need stability
regions with boundaries that stay near this axis. Unfor-
tunately, an explicit linear multistep method with stability
region which extends further into the left half plane has a
root locus curve which approaches the origin less steeply

along the imaginary axis [Th 2.19, Je82]. Thus this is not

encouraging for the two particular curves being considered.
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So far we have not found any more theoretical results
which enable determination of optimal methods in ¢ . How-
ever it may be possible to apply theory used by Manteuffel
in deriving iteration methods for solving- non-symmetric
linear systems [Ma77]. He develops an algorithm for finding
optimal iteration parameters as a function of the convex
hull of the spectrum. The algorithm relies on some very use-
ful results from complex function theory. If the spectrum
of the infinite Toeplitz form lies inside a region bounded
by an ellipse not containing the origin in its interior,
then the unigque polynomial of degree m attaining its
bounds on the boundary of the region is a translated Che-
byshev polynomial. The algorithm presented finds the
optimal polynomial by solving a minimax problem which deter-
mines the optimal ellipse or circle bounding the spectrum.
We may be able to use this algorithm to develop optimal
one-step multistage schemes. Certainly it is worthwhilevto

investigate this work further.

For the present, we concentrate on examining the stabil-
ity properties of a class of multistage two-step formulae of
Runge Kutta fype. We have seen what interval of stability
we can achieve on the imaginary axis by allowing only one-
step, and that by moving to two steps we can attain a rea-
sonable bound for the method described by (5.7.2). Also the
circle theorems have shown that by considering either mul-
tistep or multistage alone, efficiency is restricted. Thus,
by allowing two steps but many stages, we may hope to attain

improved efficiency. However as we have no theory to rely
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on, we only obtain numerical approximations to optimal solu-

tions.
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6. A CLASS OF TWO-STEP MULTISTAGE METHODS

6.1 Introduction

In this chapter we intend to discuss some multistep
multistage methods belonging to the class of so-called
hybrid methods. Generally a hybrid method shares the pro-
perty of Runge Kutta methods of utilising data at non-step
points. We consider particular two-step members of this
class which bear some similarity to those already discussed

by Verwer [Ve76a,76b] and Watt [Wa67].

Our main objective is to develop efficient methods for
integrating hyperbolic systems of equations. Here we con-
centrate on designing methods of second-order and third-
order accuracy with extended regions of stability. In
Chapter 7 we will consider ways of reducing storage in
implementation. A method of error control is also proposed
similar to a Runge-Kutta-Fehlberg scheme for one-step

methods.

Equivalent one-step Runge Kutta methods are also
designed. In a later chapter we compare the performance of
stabilised one- and two-step Runge Kutta along with two com-
monly used methods of time integration. The comparison is
by investigating the propagétion of monochromatic and

polychromatic signals as well as the propagation of discon-

tinuities under integration by these schemes.
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6.2 Two-Step Multistage Runge Kutta Formulae

We define a two-step m-stage Runge Kutta scheme for

solving the system of equations vy = f(y) by

m m
Y e -y + 8y T+ n T vik; +h T w e
i=1 i=1
where
i-1
_ n-1 - n-1i
kl = f (y ) . ki f(y + h .§ aijkj)
j=1
(6.2.1)
- n i-1
ll = f(y") , Li = f(y + h j§1 aij zj) .

The vector yn represents a numerical approximation to the

analytical solution y(t) at L = tn where the points

tn+1 , tn . tn_1 are the reference points of the formula,

and h 1is the steplength, tn+l = tn + h, tn—l = tn - h.

Notice immediately that this particular class of
methods is designed so that function evaluations at time
tn_1 are the same as those taken at time tn in the previ-
ous step. Therefore we gain the extra‘degrees of freedom

associated with a two-step scheme without the need for exira

function evaluations. Consequently we can expect to be able to

design schemes which allow faster integration. However, we
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can only derive benefit from these schemes if we store the
necessary values from step to step. Thus we have the
increased efficiency of a two-step scheme at the cost of
extra storage requirements: this does not present too much
of a problem. The choice of a two-step scheme which is of
Runge-Kutta type means that there is still some freedom in
the coefficients of the scheme after the requirements for
stability have been satisfied. Hence we may use the remain-
ing freedom to design algorithms which allow implementation
of this class of method with minimal storage. We will inves-
tigate some suitable algorithms in Chapter 7. Here we are
concerned with deriving efficient schemes for integrating

hyperbolic equations.

First it is helpful to restate the definitions for mul-
tistep multistage schemes previously discussed in Section

5.3. In the following sections we will discuss the order of

accuracy of these methods and their absolute stability pro- -

perties.

The method defined by (6.2.1) is convergent only if for
every solution, y(t) , of the initial-value problem
y' = f(y)y , y(0) = Yo, defined on the interval tefo,7]

where f |is sufficiently smooth

For convenience we associate the multistage method

(6.2.1) with a nonlinear difference operator
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-1
yn+1 _ Z(yn , yn )

Then the method 1is said to be accurate of order p , at

t = tn » if p 1is the largest integer such that

1i "
heo (Y(Eny) = ZOXCEL) L vk _ 0y =0mPHy (6.2.2)

If p 21, the method is said to be consistent.

Let us define the polynomial pm(a) by
2
Pp(@) = @ - (1 - 8)a -8 . (6.2.3)

We say that the method is zero stable if no root of this poly-
nomial has modulus greater than one and if a root has

modulus one then it is simple.

Then the method is convergent if and only if it is zero

stable and consistent [Wa67].

Immediately we see that the method is zero stable only

if -1 <8< 1 since P (@) has roots & = 4 and
@, = -8 . Using Taylor's theorem and expanding y(tn+l)
and y(tn_l) about y(tn) in (6.2.2) yields

s [v(tnep) - Ziveg)ye, 1] =

m
, B 2
h(1 + 8)y(t ) igl(vi tw o E (y1 + 0Ty .

(6.2.4)
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Thus the method is consistent if and only if

m
1+ 8= Y (v, + W) (6.2.5)

m
and convergent only if r (vi + wi) # 0 since otherwise
i=1

the difference scheme might approximate a wrong differential
equation. Therefore the method is convergent if and only if
-1 {8 <1 and 1 + B8 is equal to the sum of weights. If &
is very near -1 , the convergence condition is nearly
violated and therefore this situation should be avoided for

accurate results.

As for linear multistep methods, it is convenient to
estimate accuracy of the method by means of a normalised
error constant rather than through the truncation error

alone. Therefore the truncation error is normalised by the

m
factor T (vi + wi) which tends to zeroc if convergence is

i=1
nearly violated. In this way we see again that we require
the coefficient B8 not to move too close to -1 or else

the normalised truncation error will be too large.

6.3 Order Conditions

Applying Taylor's theorem for several . variables, we can

expand the difference (6.2.2) further than in (6.2.4) to

obtain order conditions. As our concern is with schemes
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having third order with error control by a fourth-order
method, we perform an expansion up to terms which are fourth
order in h. Usually one employs the theory of elementary
differentials, as introduced by Butcher [Bu62], to find the
terms in this expansion. Alternatively one may use the ten-
sor nététion as described by Henrici [He62]. Here we adopt
the latter approach where derivatives of f are abbreviated

as follows:

ay- - Ty " T
Yj J dYJdY J
i i .th
and where yx(tn), £ are the i components of

y(tn) and f respectively. Then this expression is

Yi(tnu) - Zryey) . y(t:n_l)]i =c.h el 4 c21h2 f; £+
c,, 1’ f;k £ £5 + ¢ 0 f§ £ 5+ (6.3.1)
c4lh4 f;kl £ £% ¢t 4 ¢, nt f;k £ £5 £t s
c,,h* f;Afil £ £t + ¢, n* £l £ £ f£‘+ o (h°%) .

It can be proved inductively that the coefficients Cij'

which are constants determined by the parameters of the
method, are as given in Table 6.3.1. The condition C, =o0
is the consistency condition (6.2.5), whilst from the defin-

ition ofi order of accuracy it is apparent that the scheme

has order 2 if in addition C21 = 0, order 3 if C32 = C31 =0

as well and order 4 if the coefficients C41' C C and 044

42' T43

are also zero.
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m
C,=148 - L (V. + W,) |
1 iz1 i i |
m i-1 m
C - 28 v T a (V, + Ww.) + ¥ v,
e ¥ i=2 j=1 1J i=1 !

m i-1 m i-1 ‘

1+8 1 2 2
C_.= (L V. (L a.. -1)Y + £ w., (E a..)Y)] \
31 6 2 "2, 1 =1 ij j2p, 1 =1 ij |
. I
m i-1 j-1 i—3 m
1+8 1 ;
C..= - )N Y (v, + w,) a,. a. ): Y via,.. - = ¥ v, ‘
32 6 i=3 j=2 k=1 i i ij “jk i=2 j=1 i7ij 2 ;2,01 |
: . “u
u m i-1 m i-1 :

1- 1 3 1 3
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| |
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‘ m i-1 i-1 j-1 i-1 |
1-8 1 ‘1
C .= - ¥ V. (Y a.. -1 L r a..a. Y a.. +<) [
42 8 j-1 1 j=1 ij j=2 k=1 ij ik j=1 ij 2 “,
m i-1 i-1 j-1 |
- L w, (L (L L @ ) I
i=3 1! j=1 13 j=2 k=1 13 73k |
I
: m i-1 j-1 -1 m “
A=8 _ 1 2 2.1 1
C..= - v Y a.. (w, (L a Y+ wv( L a.,. - 1)) + v ‘
43 24 2 2, j=1 13 ite2, Ik Vo, Ik 6 ;o1 1
m i-1 j-1 k-1 m i-13j-1 ‘

1-8 \
c =—2_- v ¥ © ¥ a..a.a (V, + W)+ r ¥ L a.
L ke Vi iZ3 4oz k=1 17 T3k Vi

Table 6.3.1 Order conditions for a two-step m stage scheme.
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It is immediately evident that the order conditions
comprise a set of nonlinear equations in the coefficients of
the numerical scheme. Theoretically, the maximal order of a
scheme can be determined by solving these equations. How-
ever, even for a relatively small number of stages, non-
linearity makes solution of the equations difficult. As for
one-step Runge Kutta formulae, it is likely that an m stage
formula cannot necessarily be made mth—order accurate. As
the number of stages increases, the number of conditions
required to be satisfied increases faster than the number of
degrees of freedom and a large degree of dependence is

th

necessary if m order is to be obtained.

Comparing with the maximal order of the usual one-step
schemes, there is improved accuracy for schemes with up to
three stages; However, even for just four stages the equa-
tions are increasingly complicated to solve and we merely
conjecture that it seems very likely that fifth order is
attainable. Whether sixth order is attainably by é five-
stage scheme is doubtful. A éomparison between the maximal
order of one and two-step schemes and the number of degrees
of freedom is given in Table 6.3.2. We see immediately that
the number of parameters in a two-step scheme is the same as
for a one-step scheme with an extra function evaluation. It

is therefore fairly reasonable to expect at least an

increase by one in maximum order attainable.
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No. of No. of Maximal No. of No. of

Stages Steps order p €Conditions Parameters
1 1 1 1 1
1 2 2 2 3
2 1 2 2 3
2 2 3 4 6
3 1 3 4 6
3 2 4 8 10
4 1 4 8 10
4 2 (5) 17 15
5 1 4 8 15
5 2 - (6) 37 21

Table 6.3.2 Maximal order of one and two-step schemes where the
bracketed expressions are conjectures for maximal
order.

The extra order attainable by the schemes with few
stages, m <3, Jjustifies the investigation of this partic-
ular class of methods. Without any extra function evalua-

tions but possibly a little extra computational complexity,

an extra degree of order is achievable.
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Table 6.3.3 Coefficients of three-stage, fourth-order schemes

(Here, for clarity, we have made the following changes in notation;

Ogy = @ Qg = Y, Qg = § )

In Table 6.3.3 we give the coefficients of a fourth-
order, three-stage scheme as an example of the solution of
the equations in Tablé 6.3.1. Notice that even with fourth
order there is still some freedom in the computation avail-
able. However as we shall see in the next section, none of
these parameters can be used to increase stability. For
fourth order, the remaining degrees of freedom can only be
used to determine the {aij} which, in turn, determine the
intermediary points of the calculation. Nonetheless, as we
describe in Chapter 7, this flexibility proves to be very

useful in the design of error control schemes which use a

minimal number of extra function evaluations.
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Even though the scheme given in Table 6.3.3 does attain
fourth order, we suggest caution in its use for a global

and w, = -V we do not have

integration. Since w, = -v 5 2

3 3

positivity of coefficients and so we increase the likelihood
of cancellations in rounding errors occurring during calcu-
lation. However this is not a deterrent in itsvimplementé—
tion as a means of error control of a lower-order scheme

where we only need to integrate locally.

6.4 Absolute Stability

™

The absolute stability of a method is investigated, as
in Section 5.3, by applying it to the linear test model

y =Xy , A&C . (6.4.1)

Putting z = h\X we obtain the recursion relation (5.3.2)

for a two-step scheme

Yney = S(2)y, + P(Z)y, (6.4.2)

(cf. [Ve76al). Here the polynomials S(z) and P(z) are

polynomials of degree m whose coefficients can be shown to

be defined by the coefficients of the scheme as follows:
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m i m i
S(z) = YL siz , P(z) = ¢ piz
m
3 =1- 8 ’ S = E A\
© Pooga
m A gy %
s. = ¥ r ... ©L a a w 2 € 1< m
t k.=ik =i-1 k.=1 klkz ki—lkl Kl
1 2 i
m
p. = 8 7 p, = L V. (6.4.3)
© 1 4= 1
m Kt ki ;71
p. = L r ... © a ... v 2 < 1i<m.
& k. =ik =i-1 k.=1 k1k2 kl—lkl K,

Notice that the nature of the method chosen, whereby the

intermediary'points of the calculation are the same at sub-

sequent steps, means that the coefficients
{si » Py | 1 € i € m} are similar, differing only by the
weights of the method {vi , wi}.

As explained in Section 5.3, the recurrence relation

has the characteristic equation
@ - S(z)a - P(z) =0 ; z =h\ (6.4.4)
the roots of which determine the properties of the method.

Consistency of order p requires that one root of (6.4.4),

the principal root, is an approximation to the exponential

function, exp(z), of order p
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It is convenient to express the consistency conditions
of the method 1in terms of the polynomial coefficients.

Since the principal root does approximate exp(z) to order p

we may do this by substituting the Taylor expansion for

exp(z) up to terms of order p in Equation 6.4.4. Then for
accuracy up to order p = 3 , we have the following condi-

tions

(6.4.5)
+ + = ;

8, P, So 2 order 1;

%o
s, + 8, + 57+ p, =2 order 2;

s s

21 =] = 2 .
Sy + 8, + 5+ 2+ py = 3 order 3;

The first condition of (6.4.5) is satisfied automati-
cally by the choice already made, 8, = 1 -8, Py = s . 1If
order p = 2 is required, then the conditions here are suf-
ficient; however if order p = 3 1is required, then we see

by Table 6.3.1 that there is an extra condition. The condi-

tions here only correspond to ;=0 , C)y =0 and

Cyy =0 . In addition we require Cy; = 0 which we cannot
obtain from the characteristic equation. However, it is
useful to obtain an expression for Cy; 1in terms of the

coefficients {si,pi}. Obviously we may do this by finding
expressions for {vi,wi} from Equations 6.4.3 and substitut-

ing them into that for ¢ For a two or three-stage scheme

31°

this gives




Py *+ 38, 2
(p, + s, + (‘—a—a—)(('y +86) - a(y + 36)) =0 .

(6.4.6)

Then the solution of (6.4.6) with (6.4.5) for a two-
stage scheme completely defines the coefficients {si , pi}

in terms of one free variable as

(6.4.7)

However for a three-stage scheme, equations (6.4.5) are suf-
ficient to determine the number of degrees of freedom avail-
able for stability. Equation (6.4.6) merely provides a res-
triction on the {aij} once optimal coefficients {s.1 , pi}
have been calculated. Notice that once stability is deter-
mined,‘the scheme is not completely predicted: some of the
{aij} are still free. We stress again that this is the pro-
perty of Runge Kutta methods which makes them so advanta-
geous for an analysis of this sort. The extra available
degrees of freedom may be used either to reduce storage
requirements or for designing a éarticularly efficient

method of implemehtation.

We now turn to the major problem which will concern us

in the next section, the maximal efficiency of the method.
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As 1in Section 5.2, we define the stability region of the

method by

Both roots ai(z) of (6.4.4) satisfy }

- ={ Al 3 la;1<1 and if |e,|=1 then it is simple

(6.4.8)
We say the method is absolutely stable at a point =z if
z € § . Recall that, stability of the numerical model of the
partial differential equation requires that the infinite
spectrum of the Jacobian multiplied by the steplength
h = At should lie inside S . For an efficient scheme we
therefore require as large a multiple as possible of this
spectrum to lie inside S . Since the values of the spec-

trum are proportional to where Ax 1is the largest

Ax
grid size in the spatial discretisation, this is equivalent
to finding the maximal Courant number u = %& for which the
partial differential equation can be stably integrated.
Consequently we will now discuss how we may calculate the
coefficients of efficient schemes and hence find maximal

Courant numbers.
6.5 The Stability Problem

As previously mentioned, we wish to construct stabil-
ised schemes allowing maximal Courant number, x , subject to
the order conditions (6.4.5). For hyperbolic systems being

solved by conservative SD's the general problem is to find

the maximal interval of stability on the imaginary axis.
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However, for systems with spectra which lie in € , no gen-
eral solution is sufficient for all problems. Either we

must find a solution for each semidiscretisation employed or

solve a general problem to give a set of approximate solu-

tions. As explained in Section 5.7, it is only application
of the maximum modulus principle which makes it feasible to

find any approximate solution at all.

We rely on finding a region in @  within which the
roots of the characteristic equation have modulus less than
one and attain modulus one on its boundary. By the maximum
modulus principle we only need to determine the roots of the
characteristic equation along the boundary of the region.
It is not sensible to find the roots of the characteristic
equation at several points on ¢ and then evaluate their
moduli. Instead we need criteria by which we can determine
whether roots at a given point will satisfy the stability

property.

Recall that for points 1lying on the real axis, the
Routh Hurwitz criterion provides sufficient conditions to
determine stability and thus maximising 4 is a linear pro-
gramming problem [Ve76b]. However, we are interested in the

, |
more complicated problem where the characteristic equation
cannot be transformed to an equation with real coefficients.
In this case sufficient conditions for stability at a given

point are provided by the Cohn-Schur criterion. For the

quadratic equation (6.4.4) this criterion takes the form of

two nonlinear inequalities,
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i) - |P(z)| €1 ; and
. 2 _ (6.5.1)
ii) | IP(z)l -1 2 | S(z)P(z) + S(z) |-

If strict inequality holds the roots of the quadratic equa-
tion lie inside the unit circle [Mi71]. Therefore evalua-
tion of maximal 4 is a nonlinear programming problem sub-
ject to the linear constraints (6.4.5) along with the condi-

tion for zero stability -1 {( 8 < 1 .

We will describe a solution of this nonlinear program-
ming problem in the next section. First a few cases for

which solutions are known exactly are discussed.
Theorem 6.5.1

The maximal interval of stability attainable on the ima-
ginary axis by a two-step third-order scheme is given by
Bimag = 1. The schemes which achieve this wvalue for Bimag
have characteristic function

2 12 2.2
5 5 5

(6.5.2)

Proof

We saw in Section 6.4 that the coefficients of the poly-
nomials S(z) and P(z) for a two-step two-stage scheme
can be obtained from relations (6.4.7). Substitution of

these coefficients into conditions (6.5.1) and putting

z = iy yields
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i - - 2y L + 3 2 _@1-py<o
) 1aa (5 Py Y 12 (1 Py (3 PLY ( Py)
2
2 (1 - Py)
ii)y y” < 24 ——5 .
(5 - po)
Here condition ii) implies condition i) for lpol {1 . The

maximal value of y satisfying ii) is y =1 and occurs

for p = 1/5 . Thus 8. =1 and the characteristic
o imag

equation is of the given form after substituting Py = 1/5

in equations (6.4.7). o

We now refer to the result of Jeltsch and Nevanlinna
which was discussed in Section 5.7: for an m-stage scheme
either I _c S or Th = § and the characteristic polyno-
mial has the factor (5.6.1) where Ir ={iy | |yl £} .

By (5.%.1) the two-step three-stage schemes with T. = §

3

are defined by the characteristic equation

@ - (2z + & 2%)a-1=0 (6.5.3)
and thus have order-of-accuracy two. Nevertheless, the
largest value of r such that Irc:S is r = 1.5 . This

is because the comparison theorems do not cater for the
occurrence of branch points and (6.5.3) has a branch point
at z = 1.51i . Fortunately, as mentioned in Section 5.7, we
can break the bound on r if we remove the condition of
closure. The third-order schemes defined by (5.7#.2) have

r %2.£433. These schemes have the advantage that their coef-

ficients are known exactly and their stability bound is
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'nearly optimal . Implementation of these schemes

requires that we solve for the parameters {vi,wi} from the
polynomial coefficients. It is preferable that coefficients W
are known exactly so that there is no loss in accuracy when H
solving for the parameters since the stability regions are
sensitive to perturbations in the polynomial coefficients
particularly if the zero-stability parameter Bimag becomes

close to -1. Therefore we have not attempted to find any

better approximation numerically.

For spectra lying in € , we have the results of the
circle theorems which may give approximately optimal solu- W
tions for spectral curves being small perturbations from
circles. By (5.7.3) the one-step Euler method described by Il

@(z) = 1 + z is the most efficient one-step m-stage method

of first order for the circle of radius 1 centred at (-1,0)
lying inside § . Thus for higher-order methods, no discs
of radius m can lie inside S , but the largest such disc

is not known. Also for two-step m-stage methods, m > 1 ,

the largest disc lying inside S is not determined.

Consequently the existing theory in the literature is ﬂ
not sufficient to determine the maximally efficient schemes $
for integrating hyperbolic equations. In general we must
resort to numerical techniques for solving the nonlinear
problem described by the Cohn-Schur ériterion. A technique |

, \
for finding optimal, or near optimal, schemes for arbitrary J

domains lying within ¢ is described in the next section. w
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6.6 A Solution Technique

Here we give a method for solving the non-linear equa-
tions (6.5.1). An optimal scheme with stability region com-
pletely enclosing a domain N is sought. Heuristically the
idea is to perform a discretisation along the boundary of

N, i.e. define points z. 1€ Jj <N which become dense

3’
along the boundary 4N, as N - . Thus we have 2N non-
linear constraints on the variables {pi » 8y O € i € m} by
requiring that the Cohn-Schur criterion is satisfied at each
point zj. Solving the consistency conditions (6.4.6) and
(6.4.5) enables these constraints to be expressed in terms
of M independent variables where M varies with the
number of stages and order imposed. As the points zj
depend on the Courant number x4 via the equation defining
the boundary of N , we have M + 1 independent variables.

Then adding the condition for zero stability, we may state

the optimisation problem as follows:
maximise u

subject to

-1 < Ps <1
|P(zj)| €1 1€ Jj<N (6.6.1)
|§(zj)P(zj)+S(zj)| € |11 - |P(zj)|2| 1<j<N

where P(zj) and S(zj) are functions of X = (u,Xl,...,XM)
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and {Xi|1<i<M} is a subset of {pi,si ] o€i<m}.

A solution to this problem was found by using the NAG
library routine EO4VBF. This routine attempts to find a
minimum of a function of several variables subject to gen-
eral constraints as described by (6.6.1). It uses a sequen-
tial augmented Lagrangian method and solvesvthe minimisation

subproblems by a modified Newton method.

The approach we employed was to solve the problem for a
very small value of N , say N =5 , and then successively
increase the value of N using each preceding solution as a
starting point for the next problem. Generally we found
that the solution failed to converge for N > 20 , although
in the case of M =1 convergence for values of N wup to
N = 40 could be achieved. At each stage we checked the
feasibility of the solution by seeing whether the coeffi-
cients did indeed generate a stable scheme. This was neces-
sary because at convergence the norm of the residual of the
active constraints is required to be a minimum. Thus
several of the constraints may be satisfied as equalities
and hence some of the zeros with modulus one may not be sim-
ple. In this way we also found that in some cases where
convergence had apparently not occurred because the residu-
als were too large, the non-converged solutions were in fact
stable and hence near-optimal. In such cases a minimum was
predicted because the other convergence criterion which

measured the difference of the gradient vector and a multi-

ple of the Jacobian of the active constraints was small.
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Therefore our solutions are only approximations to the
optimal solutions. However, experiments show that tﬁey are
reasonable. In many cases trying to impose the convergence
criteria more exactly caused the programme to converge to
solutions with P, = 71 . This is not acceptable since then
convergence of the solution of the numerical scheme to the
solution of the differential equation 1is not guaranteed.
When this did occur, a suboptimal solution was obtained by
restricting the value of Ps to some smaller interval such
as -.9 < Po €1 . The programme then converged to the
solution with P, on its lower bound confirming that in

fact the optimal solution would not be zero stable.

‘We recall that the Cohn-Schur criterion does not ensure
that roots 1lying on the unit circle are simple but that if
strict inequality is imposed, all roots do lie inside the
unit circle. However the optimisation procedure relies on
the constraints being achievable as equalities and thus we
cannot guarantee the stability of a solution. To avoid this
difficulty, we did attempt to find a solution to the damped
problem where the roots are required to lie on or inside a
circle of radius 1less than one (cf. Verwer [Ve76b]). This
approach did not seem to be particularly beneficial, since
allowing no roots to have modulus one produced radically
reduced Courant numbers. It was somewhat better to stay
with the rather ad hoc approach of finding approximate solu-

tions by carefully examining non-converged results.

In the course of our investigations, various other
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attempts at a solution technique were tried. The method
and routine used here gave the best results of those con-
sidered. However it is likely that with the development of
new routines for solving nonlinear optimisation problems,
better results can be achieved. Certainly the schemes
developed here will be good candidates with which to begin

any other iterative procedure.

In view of our discussion of the normalised error con-
stant.in Section 6.2 it would be beneficial to restrict Po
to some value away from -1. As yet the consequences of
this course of action have not been fully investigated but

we do intend to continue the experiments at a later date.
6.7 Application Of The Technique To Some Specific Problems

Our original intention has always been to design a
stable numerical method of third-order accuracy for solving
hyperbblic systems of partial differential equations. It is
unlikely that any method of time integration with order of
accuracy greater than three would be very useful since effi-
ciency is likely to be further reduced. Also, the accuracy
of the time integration should be compatible with that of
the spatial discretisation which, even if of order three in
regions where thé solution is smooth, will certainly have
reduced accuracy in the neighbourhood of discontinuities.

In regions where the solution is rapidly varying, considera-

tion of too many stages in the solution process might lead




- 133 -

to unnecessary accumulation of errors. Therefore, for the
present, we only consider the design of two-step schemes
with two or three stages and order of accuracy two and
three. The schemes of order.two are developed for the sake
of comparison. We also develgp equivalent one-step schemes
to see whether there is any benefit in taking the extra step

into account.

No of No. of Order Free
steps stages P variables
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