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Summary: We propose a novel response-adaptive randomization procedure for multi-armed trials with continuous

outcomes that are assumed to be normally distributed. Our proposed rule is non-myopic, and oriented towards a

patient benefit objective, yet maintains computational feasibility. We derive our response-adaptive algorithm based

on the Gittins index for the multi-armed bandit problem, as a modification of the method first introduced in Villar

et al. (2015b). The resulting procedure can be implemented under the assumption of both known or unknown variance.

We illustrate the proposed procedure by simulations in the context of Phase II cancer trials. Our results show that, in

a multi-armed setting, there are efficiency and patient benefit gains of using a response-adaptive allocation procedure

with a continuous endpoint instead of a binary one. These gains persist even if an anticipated low rate of missing data

due to deaths, drop-outs or complete responses is imputed online through a procedure first introduced in this paper.

Additionally, we discuss how there are response-adaptive designs that outperform the traditional equal randomized

design both in terms of efficiency and patient benefit measures in the multi-armed trial context.
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1. Introduction

Response-adaptive randomization (RAR) has been widely developed ever since the idea was

first suggested by Thompson (1933) (Hu and Rosenberger, 2006). The usual motivation

behind RAR is to achieve a patient benefit objective, e.g. to reduce exposure to inferior

treatments by skewing the allocation towards superior treatments based on observed re-

sponses. Incorporating such an objective into a trial design is particularly important when

the disease under study is rare — in which case a substantial proportion of patients in the

population will be included in the trial — and when an inferior treatment could result in a

fatal outcome.

Despite the vast array of RAR procedures proposed in the literature, most of them: (i)

assume binary responses; (ii) are defined for trials with only two treatments, and (iii) are

myopic. However, many clinical trials have continuous primary outcomes and include more

than two (multiple) arms. Wason and Trippa (2014) report that 39% of all multi-arm clinical

trials published in four major medical journals during 2012 had normally distributed primary

outcomes. Although most RAR procedures for binary responses are not easily extended to

the continuous case, particularly those based on urn models (Atkinson and Biswas, 2013),

several RAR procedures for continuous outcomes have been proposed (e.g. Zhu and Hu,

2009); a review of these can be found in Chapter 4 of Atkinson and Biswas (2013), and

Biswas and Bhattacharya (2016). Moreover, a “shortage of RAR methodology to handle

cases with multiple treatments” (Zhang et al., 2011) persists, despite the fact that RAR has

the greatest potential for efficiency and patient benefit gains in multi-armed trials (Berry,

2011), which considerably limits their use in practice.

Further, almost all procedures in the RAR literature (for binary or continuous outcomes)

use only past observations (allocations and responses) to influence the decision for the next

patient, without considering the number of patients remaining to be treated (inside or outside
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the trial) or the information they could provide. Such myopic strategies are not optimal in

general (Berry and Fristedt, 1985). An optimal approach, in terms of patient benefit, is

based on the multi-armed bandit problem (MABP) which considers all possible sequences of

trial observations, and the sequence that maximizes patient response is selected (Villar et al.,

2015a). As a result, the traditional dynamic programming approach used to solve the MABP

is much more computationally intensive than myopic procedures, which is the predominant

reason why the latter have been favored in the literature. Recent work proposing non-myopic

bandit-based RAR procedures for binary responses includes Villar et al. (2015b), Williamson

et al. (2017) and Villar and Rosenberger (2018). We will refer to non-myopic procedures as

“forward-looking” hereafter to be consistent with the terminology used in previous papers.

Examples of forward-looking adaptive allocation rules for continuous endpoints relevant

to this paper are Coad (1991b), Wang (1991a) and Smith and Villar (2018), all of which

use the Gittins index for normally distributed outcomes. However, the main limitation of

these designs from a clinical trials perspective is their deterministic nature. Randomization

is essential in order to remove various sources of bias and it additionally provides a basis for

inference (Rosenberger and Lachin, 2015).

Motivated by the above considerations, we propose a novel bandit-based allocation rule

that: (i) applies to continuous outcomes, assumed to be normally distributed; (ii) applies

when the outcome variance is assumed unknown; (iii) is defined for multi-armed trials; (iv)

is forward-looking, thus is oriented towards a patient benefit objective; (v) is computationally

feasible, and (vi) is randomized. Additionally, we investigate the impact on patient benefit

of dichotomizing a continuous endpoint, which is a widely adopted approach in clinical

research that has received considerable attention in the literature (Royston et al., 2006). A

common reason for this practice is to deal with complete responses and missing data (due to

death or drop-out, for example) since these naturally fall into success and failure categories,
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respectively. However, dichotomization comes at an efficiency cost (either a reduced power

or larger sample size) (Lavin, 1981; Wason et al., 2011).

Dealing with complete responses and missing data poses an extra challenge that is exclusive

to the implementation of RAR in a trial. The imputation method suggested in Karrison et al.

(2007), which is the only one that has shown moderate uptake in practice (Wason and Jaki,

2016), imputes unobserved responses using the distribution of data collected at the end of

the trial and therefore, the imputed data cannot be used to perform any adaptations. In this

paper, we suggest a simple modification of the procedure by Karrison et al. (2007) which

permits the use of RAR to allocate patients dynamically during the trial.

In Section 2, we present our forward-looking rule for continuous endpoints with unknown

variance using a simple example to illustrate its implementation. In Section 3, we report

extensive comparative simulation studies in the context of a real Phase II cancer trial. We

discuss the costs of dichotomization in Section 4, and present our method to accommo-

date missing data due to deaths, drop-outs and complete responses in Section 5. We draw

conclusions in Section 6.

2. The Forward-Looking Gittins Index Rule for Continuous Endpoints

We now define a RAR procedure for continuous endpoints, assumed to be normally dis-

tributed, which augments the Forward-Looking Gittins Index (FLGI) rule proposed in Villar

et al. (2015b) for binary endpoints. Following the notation in that paper, we consider a clinical

trial that will test the effectiveness of K experimental treatments against a control treatment

on a sample of T patients, with K and T fixed. Patients are labeled by t (t = 1, . . . , T ) and

treatments by k (k = 0, . . . , K), where k = 0 denotes the control. The response of patient

t allocated to treatment k is a random variable denoted by Yk,t, now assumed to follow a

normal distribution, Yk,t ∼ N(µk, σ
2
k). Without loss of generality, we also assume that a

larger response is desired and that σ2
k is unknown.
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In order to derive our FLGI rule, we need to obtain the Gittins index for the MABP

associated to this trial design problem. A detailed explanation of the problem’s assumptions

and its exact formulation appears in Web Appendix A. The Gittins index for a treatment

with posterior mean ỹk,t and posterior standard deviation s̃k,t, after having observed nk,t

responses from treatment k, G(ỹk,t, s̃k,t, nk,t), can be written as

G(ỹk,t, s̃k,t, nk,t) = ỹk,t + s̃k,tG(0, 1, nk,t + 2, d), (1)

where G(0, 1, nk,t + 2, d) denotes the Gittins index value of a standardized bandit problem

with posterior mean 0, posterior standard deviation 1, nk,t observations, an implicit (prior)

sample size of 2 (refer to Web Appendix A and C) and discount factor 0 6 d < 1. In this

paper, we choose d as recommended in Wang (1991b); Web Appendix B provides further

details.

Notice that in this case we have two unknown parameters, µk and σ2
k, which we assume

have the hierarchical conjugate priors µk|σ2
k ∼ N

(
0,

σ2
k

2

)
and σ2

k ∼ IG
(
1
2
, 1
2

)
, i.e. the normal-

inverse-gamma joint prior (µk, σ
2
k) ∼ NIG

(
0, 2, 1

2
, 1
2

)
, when nk,t = 0. The choice of prior and

its effect on performance measures is explored in Web Appendix C. As in Smith and Villar

(2018), we implement the solution in (1) at a very low computational cost by calculating

the values of G(0, 1, nk,t + 2, d) in advance and interpolating from the tables in Gittins et al.

(2011). Details on how to compute these indices, first computed by Jones (1975), can be

found in Chapters 7–8 of Gittins et al. (2011).

In order to derive a response-adaptive rule that will sequentially randomize the next b

patients among the K + 1 treatments at stage j (j = 1, . . . , J), given the data up to and

including block j − 1, according to what the Gittins index rule would do, we assume that

patients are enrolled in groups of size b over J stages, so that J × b = T . Using (1) and the

Gittins index rule, which states that it is optimal to allocate the treatment with the highest

index value (breaking ties at random), we can compute the FLGI probabilities for the case of
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a normally distributed endpoint (with unknown variance) using equation (3) in Villar et al.

(2015b). The main difference here is that the optimal action probabilities in equation (3) of

Villar et al. (2015b) can no longer be matched to the probabilities of the (binary) outcome

and must be computed for different ranges of the continuous outcome.

Example

To illustrate the proposed rule, we derive the FLGI probabilities for the simplest possible

case of a two-arm trial testing a control treatment (k = 0) against an experimental treatment

(k = 1) with a block of size two (b = 2).

For both k, we assume the following hierarchical (conjugate) prior structure at the start of

the trial: µk|σ2
k ∼ N

(
0,

σ2
k

2

)
and σ2

k ∼ IG
(
1
2
, 1
2

)
, so that (µk, σ

2
k) ∼ NIG

(
0, 2, 1

2
, 1
2

)
. Suppose

further that both patients are randomly allocated to the control treatment in the first block

of the trial, resulting in responses y0,1 = 3.1 and y0,2 = −0.4. Thus, the three relevant

parameters required to obtain the corresponding Gittins index for the control treatment

are: the posterior mean ỹ0,2 = 0.675, the posterior standard deviation s̃0,2 = 1.727, and the

number of observations n0,2 = 2. For the experimental treatment, the relevant parameters

are: ỹ1,2 = 0, s̃1,2 = 1, and n1,2 = 0. From equation (1), setting d = 0.995 and using Table 1

in the Supporting Information, the Gittins index for the control and experimental treatment,

respectively, is G0(0.675, 1.727, 2) = 0.675 + 1.727× 1.8126 = 3.805 and G1(0, 1, 0) = 0 + 1×

65.5848 = 65.585.

Figure 1 illustrates how the FLGI probabilities for block two, given the data in block

one, are computed via a probability tree. Given that the experimental treatment has the

unique maximum Gittins index, the first patient of the second block is allocated to the

experimental treatment with probability 1. When the second patient of the second block

is to be allocated, we need to have observed the (random) outcome of the first patient

in this block, denoted by Y1,3, in order to update the indices and determine the optimal
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action. The updated prior parameters for the experimental treatment, as a function of

the observed information on this treatment and given the previous optimal action, are:

Ỹ1,3 = Y1,3
n1,3+2

, S̃1,3 =
(

1
2

+
Y 2
1,3

n1,3+2

)1/2
, and n1,3 = 1. Thus, the index for the experimental

treatment can be expressed as a function of the random outcome from patient three as follows:

G1(Ỹ1,3, S̃1,3, n1,3 = 1) = Y1,3
3

+
(

1
2

+
Y 2
1,3

3

)1/2
G1(0, 1, 3, 0.995), with G1(0, 1, 3, 0.995) = 4.6049.

For the control treatment, we have no new information and so its index remains unchanged

at G0(Ỹ0,3, S̃0,3, n0,3) = 3.805. According to the Gittins index rule, it is optimal to allocate

the control treatment to the second patient in the block if and only if G1(Ỹ1,3, S̃1,3, n1,3) <

G0(Ỹ0,3, S̃0,3, n0,3), which happens when −0.9508 < Y1,3 < 0.5862. Since Y1,3 is a standard

normal random variable, this happens with probability 0.5503, i.e. Pr(Y1,3 6 0.5862) −

Pr(Y1,3 6 −0.9508) = 0.5503. If Y1,3 < −0.9508 or Y1,3 > 0.5862, which happens with

probability 0.4497, then G1(Ỹ1,3, S̃1,3, n1,3) > G0(Ỹ0,3, S̃0,3, n0,3) and the second patient in the

second block is optimally allocated to the experimental treatment. Notice that if Y1,3 =

−0.9508 or Y1,3 = 0.5862, the index values are equal and it is optimal to allocate any of the

two treatments. In theory, this would happen with probability 0 since Yk,t is a continuous

variable. However, in practice, if this were to happen, we would randomize with probability

0.5. Hence, the normal FLGI procedure would randomize both patients in this block to receive

the experimental treatment with probability 1+(1×0.4497)
2

= 0.7249, and the control treatment

with probability 0+(1×0.5503)
2

= 0.2751. Continuing this example for larger block sizes using

Monte Carlo simulation, the allocation probabilities to the experimental and control arm,

respectively, are: (0.6565, 0.3435) for b = 3, (0.5151, 0.4849) for b = 4, (0.4370, 0.5630) for

b = 5, and (0.3051, 0.6949) for b = 10.

[Figure 1 about here.]
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3. Simulation Study

3.1 Alternative Designs and Performance Measures

Next, we will report simulations that compare the FLGI for a normally distributed endpoint

against the following existing randomization procedures:

(1) Equal Randomization (ER), where each patient is randomly allocated to one of the K+1

arms with equal probability, 1/(K + 1). ER is predominant in practice (implemented e.g. by

a permuted-block randomization), thus it will be used as a reference to compare all designs.

(2) Modified Zhang and Rosenberger (MZR), introduced by Zhang and Rosenberger (2006)

and later modified by Biswas and Bhattacharya (2009) to allow for negative mean responses.

The rule aims at minimizing the total of inverse mean responses, i.e. n0,T/µ0 +n1,T/µ1. This

design results in the optimal allocation proportion ρ∗ shown below:

ρ∗ =


c if {µ0, µ1 > 0 and ρc < c} or

{
µ0, µ1 < 0, σ0

σ1
>
√

µ1
µ0

}
or {µ0 < 0, µ1 > 0} ,

ρc if {µ0, µ1 > 0, c 6 ρc 6 1− c} ,

1− c if {µ0, µ1 > 0, ρc > 1− c} or
{
µ0, µ1 < 0, σ0

σ1
<
√

µ1
µ0

}
or {µ0 > 0, µ1 < 0} ,

where ρc = σ0
√
µ0 /

(
σ0
√
µ0 + σ1

√
µ1

)
and c ∈ [0, 1/2]. The initial parameter estimates are

obtained by allocating the first nER patients using ER. After that, estimates of the unknown

parameters µk and σk are sequentially updated based on the current data available.

(3) Constrained Gittins Index (GI) Rule is a procedure based on Gittins indices proposed by

Wang (1991a) and further studied by Coad (1991b). However, unlike the FLGI, Constrained

GI is not implemented in terms of probabilities, and hence is not strictly randomized. This is

a practical limitation and explains why Constrained GI has been neglected as a comparator

within the RAR literature. The rule is defined as follows: if nc0,t < n1,t, allocate the next

patient to arm 0; if nc1,t < n0,t, allocate the next patient to arm 1; else, allocate the next

patient to the treatment with the largest Gittins index (randomizing if they are equal). The
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parameter c > 1 is a tuning parameter; c = 1 corresponds to ER, and the Gittins index is

eventually recovered as c→∞. Following Wang (1991a), we fix c = 2 in our simulations.

(4) Thompson Sampling (TS) randomizes patients to arms based on their posterior probabil-

ity of being the “best” arm. Specifically, we consider a version of Thompson (1933) suggested

by Thall and Wathen (2007), where the probability of allocating treatment k to patients in

block j is computed as: Pr
(
maxi µi = µk|x̃(j−1)b

)c
/
∑K

k=0 Pr
(
maxi µi = µk|x̃(j−1)b

)c
, where

x̃t = (ỹ0,t, s̃0,t, n0,t, . . . , ỹK,t, s̃K,t, nK,t) and c = (j−1)b/2T is a tuning parameter that recovers

ER when c = 0 and TS when c = 1.

(5) Trippa et al. (2012) Procedure (TP) randomizes patients similarly to TS, but also protects

allocation to the control arm. We have implemented TP as in Villar et al. (2015b).

(6) Controlled FLGI (CFLGI) is a variant of the FLGI design proposed in Villar et al.

(2015b) which, similarly to TP, protects the allocation to the control arm by ensuring that

the corresponding allocation probability is always at least 1/(K + 1).

(7) Gwise et al. (2011) propose a design for comparing K+1 arms with heteroscedasticity. Af-

ter an initial ER phase, patient t+1 is allocated to arm k with probability
σ̂2
k,t/nk,t

σ̂2
0,t/n0,t+···+σ̂2

K,t/nK,t
,

where σ̂2
k,t is the estimated sample variance of the first t responses on arm k.

Note that MZR and Constrained GI are fully sequential and only defined for the two-armed

case, whilst TP and CFLGI apply only to the multi-armed case. For all of the rules which

require specification of a joint prior distribution on µk and σ2
k, we take the same approach

as with the FLGI. For the index based designs, a discount factor of d = 0.995 is used, and

the allocation probabilities defined in the FLGI designs, TS and TP are computed using a

Monte Carlo approximation based on 100 replicates. Additionally, we implement the doubly

adaptive biased coin design by Hu and Zhang (2004) with the target allocation proportions

taken to be the corresponding FLGI probabilities for b = T under H0 and H1.

To evaluate the performance of all designs, we consider patient benefit and usual inferential
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measures. The former includes: (i) the expected proportion of patients in the trial allocated

to the superior treatment, E(p∗), and (ii) the percentage change in expected total outcome

(ETO) for rule r relative to the theoretical expected total outcome for ER (ETOER),

computed as 100× (ETOr−ETOER)/ETOER and denoted in Tables 1 and 2 by RelETO%.

For the inferential measures, we focus on standard operating characteristics, including: power,

1 − β; type I error rate, α; and bias in the maximum likelihood estimate of the treatment

effect, E(∆̂−∆), with ∆ = µk−µ0 and ∆̂ = (µ̂k− µ̂0). For the multi-armed case, we report

both the marginal power (i.e. power to reject H0,k∗ where k∗ is the best arm) and bias for

the best experimental arm under H1. Note that under H0 , we take k∗ to be the control arm.

We consider the following hypotheses: H0 : µ0 = µk ∀ k versus the one-sided alternatives,

H1,k : µ0 < µk for some k > 0 considered the best arm. We will use the test statistic

Tk =
(
Y k − Y 0

)
/
√

σ̂2
k

nk,T
+

σ̂2
0

n0,T
for k = 1, . . . , K, where Y k and σ̂2

k are the sample mean

and sample variance, respectively, of arm k at the end of the trial. In the multi-armed case,

we consider the joint distribution of T1, . . . , TK and use a critical value, t1−α, to achieve a

family-wise type I error rate (FWER) close to the specified α, where FWER is defined as

the probability of obtaining at least one false positive within the family of hypotheses.

3.2 A Two-Armed Trial

To motivate this scenario, we use the example in Karrison et al. (2007) of a two-armed Phase

II cancer trial, in which the primary endpoint is the ratio of tumor size at the time of follow-up

to that at baseline for patient t under treatment k, i.e. the change in tumor size, denoted by

Ck,t. After a log-transformation, Ck,t is continuous and approximately normally distributed,

as shown by Lavin (1981). In keeping with our assumption that a larger outcome is desirable,

we add a minus sign to re-express the endpoint as a measure of tumor reduction. Under the as-

sumption that Y0,t = − log(C0,t) ∼ N(0.155, 0.642) and Y1,t = − log(C1,t) ∼ N(0.529, 0.642),

the total sample size required to detect this treatment difference with approximately 80%

power at the α = 0.05 significance level and assuming complete observations is T = 72.
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Results

Table 1 displays the results from 50, 000 replications of the trial when we assume un-

known variance. As expected, under H0 all the designs are equal in terms of patient benefit

(RelETO% ≈ 0 and E(p∗) ≈ 0.50). The main difference between designs under the null is

the variability of the allocations, represented by the standard deviations (s.d.) of p∗, with

ER and FLGI (for b = 1) being the least and most variable, respectively. As the block

size increases, changes in the allocation probabilities are based on more data and the FLGI

becomes less variable. The index based procedures tend to be more variable because they

aim at maximizing patient response. For example, the Constrained GI design also has a large

variability which is comparable to that of the FLGI. For the MZR design, the variability of the

allocations decreases as the size of the initial ER period, nER, increases. The variability of the

FLGI is also markedly reduced when implemented using Hu and Zhang (2004). In terms of

the bias of the treatment effect estimator, all are (on average) unbiased under H0. Note that

we have used adjusted t-critical values to control type I error rates for all designs following the

approach used in Smith and Villar (2018). The (unreported) type I error inflation incurred

for the the FLGI when using the usual t0.95 critical value is approximately 11% for b = 1

and it decreases as the block size grows, as expected. A similar level and pattern of inflation

occurs for TS.

The results under H1, in which we are testing for superiority of arm 1 (the experimental

arm), show more contrasts among designs. First, we focus on the FLGI design and the

effect of varying the block size on the power versus patient benefit trade-off. When b = 1,

the FLGI design is statistically identical to the fully sequential Gittins index rule and so

favors patient response. At the other extreme, when b = T , the FLGI design is equivalent

to ER and therefore favors power. Thus, consistent with the findings for the binary case,

Table 1 shows that as b increases under H1, the patient benefit measures (and corresponding
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standard deviations) decrease, whilst the power increases (at a faster rate) which illustrates

the natural tension between these two conflicting goals. This relationship is depicted visually

in Figure 2 for T = 128.

In terms of the patient benefit measures, the index based designs (namely the FLGI and

Constrained GI) perform the best out of all the designs considered. Relative to ER, for

a moderate block size of b = 9, the FLGI allocates approximately 34% more patients to

the superior treatment (equivalent to 25 patients). Moreover, the expected total tumor size

reduction is just over 37% greater than that obtained when using ER. Even for a large block

size of b = 36, the FLGI allocates approximately 21% more patients to arm 1 and achieves

an expected total tumor size reduction 23% larger than ER. All other block sizes for the

FLGI have a total tumor size reduction at least 30% greater than ER, on average. The

Constrained GI is shown to perform similarly to the FLGI when b = 9. TS has a total tumor

size reduction rate of at least 20% relative to ER for small b, on average, whereas MZR falls

below this for all nER.

As mentioned above, the cost of these patient benefit gains is a severe reduction in the

power compared to that of ER. However, this is ameliorated as b increases or by implementing

the FLGI probabilities using Hu and Zhang (2004). The ER design attains an unbiased

treatment effect estimator, as expected, with the largest relative bias exhibited by the FLGI

design when b = 1 (i.e. the GI design). This makes sense because this is the design with

the biggest imbalance in favor of arm 1. As a result, µ̂0 will be substantially underestimated

giving rise to an overestimated ∆̂ (and positive bias of treatment effect). As b increases,

and consequently the number of observations on arm 0 increases, the bias (and associated

standard deviations) of the treatment effect estimator decreases.

These results emphasize the very important point that, in a two-armed setting, none of

the designs are uniformly better than the others for every performance measure since each
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design is tailored towards a different competing objective. This makes direct comparisons

between such designs infeasible and motivates our main interest in the multi-armed case.

[Table 1 about here.]

[Table 2 about here.]

[Figure 2 about here.]

3.3 A Multi-Armed Trial

We now use the Phase II cancer trial setting described in Karrison et al. (2007) as a case

study. The primary endpoint is again the change in tumor size from baseline to eight weeks.

Patients were randomly assigned to one of three treatment arms: 150 mg of erlotinib plus

placebo; 150 mg of erlotinib plus 200 mg of sorafenib; or 150 mg of erlotinib plus 400 mg of

sorafenib. We will refer to these as the control, low-dose and high-dose, respectively.

Based on data from previous trials, the log ratio of tumor sizes is assumed to have a

mean of 0.05 for the control (k = 0), −0.07 for the low-dose (k = 1) and −0.13 for

the high-dose (k = 2), with a common standard deviation of 0.346. To be consistent

with our earlier assumption that larger responses are desirable, we instead consider tumor

reduction. Therefore, we assume that Y0,t ∼ N(−0.05, 0.3462), Y1,t ∼ N(0.07, 0.3462) and

Y2,t ∼ N(0.13, 0.3462). We simulate a trial of size T = 120, which should have at least 80%

power using a one-sided test at α = 0.10 when no correction for multiplicity is considered.

In our simulations, we will ensure a one-sided test at the α = 0.10 FWER level, and since

we adjust for multiplicity, the power will fall slightly below 80%, illustrating the effect of

correcting for multiplicity on power.

Results

Under the null, the only relevant difference among designs is the variability of resulting

allocations, with the rules performing the best in terms of patient benefit being the most
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variable. Results under the alternative hypothesis are illustrated in Figure 3 and provided

in full (for both H0 and H1) in Table 4 of the Supporting Information. Figure 3 shows a

star plot summarizing the key features of each design (for blocks 1, 15, 40 and 60) where

the most desirable values lie towards the outer edge of the star plot with the least favorable

values towards the centre. We see that ER performs very well with respect to power, average

bias and variability, but poorly with respect to patient benefit for all block sizes, whilst in

contrast the FLGI design performs poorly with respect to power, average bias and variability

but the best with respect to patient benefit. The CFLGI and TS design have values lying

near to the outer edge of the star plot for all measures, thus showing that they perform

well with respect to all of the performance measures. Although CFLGI and TS have similar

performances, they are not directly comparable as they attain different compromises between

the competing objectives. Rather than having a flat probability protection for the control

arm during the trial, the definition of the CFLGI rule could be adjusted in a similar way

to TS and TP, which we expect would result in an advantage over TS in terms of patient

benefit, especially for smaller trials with several arms.

[Figure 3 about here.]

4. Dichotomization: Patient Benefit and Efficiency Cost

Phase II cancer trials, such as the ones considered above, are traditionally conducted as

single arm studies using a binary response rate as the primary endpoint which is formed

by splitting the underlying continuous data (change in tumor size) into two groups (success

or failure of a treatment), i.e. dichotomizing. This dichotomization is often based on the

Response Evaluation Criteria in Solid Tumors (RECIST) (Eisenhauer et al., 2009) which

categorizes the change in tumor size and number of lesions into four levels: complete response,

partial response, stable disease and progressive disease. A treatment is considered a success if

patients experience either a partial or complete response (i.e. at least a 30% reduction in the



14 Biometrics, June 2018

total diameter of target lesions), and a failure otherwise. If new lesions appear, or non-target

lesions grow beyond a certain percentage, this is also classed as a treatment failure.

Dichotomizing continuous data is a widely adopted approach in clinical research. However,

this comes at the cost of losing power as well as raising issues such as where exactly the

dichotomization cutpoint should be. Within the literature, there is a strong focus on the loss

of efficiency associated with dichotomizing a continuous variable, but no mention of the cost

to patients in the trial. Therefore, we will use the same two-armed example as in Section 3.2

to compare the performance, in terms of patient benefit measures, of the continuous FLGI

to the binary FLGI, as proposed in Villar et al. (2015b). However, since the binary FLGI

compares response rates, we increase the total sample size from T = 72 to T = 128, as this

is the size required to detect an improvement from 20% to 40% with 80% power using a

one-sided test at the α = 0.05 level; a 77% increase on that required for the continuous case.

Figure 2 shows the efficiency costs of dichotomozing a continuous endpoint. A trial of

size 128 achieves almost 100% power to detect the target treatment difference when using a

continuous endpoint, as opposed to 80% power when using a binary one. Moreover, Figure 2

also illustrates that there is an important patient benefit cost of using a binary endpoint

instead of a continuous one when using RAR. In particular, the normal FLGI (all versions)

has not only a higher power level, but also a considerably higher expected proportion of

patients on the best arm for every block size in a trial of size 128.

5. Imputing Complete Responses and Drop-Outs

The patient benefit cost associated with dichotomizing requires an important practical

consideration to be taken into account when interpreting it. To implement any response-

adaptive design in practice, particularly in cancer trials like those used in this paper, we

need an online imputation method to account for patients who: (i) die or drop out of the

trial before the follow-up time, or (ii) have a complete response (since this causes the log
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ratio to be undefined). Two approaches have been proposed to impute these cases in Karrison

et al. (2007) and Jaki et al. (2013); a review of which is provided by Wason and Jaki (2016).

So far, we have assumed that all patients generate an observable response, which is clearly

not realistic. Whereas deaths/drop-outs and complete responses are easily imputed in the

binary case, there is no obvious way of translating these outcomes into continuous variables.

Building upon the solution in Karrison et al. (2007), where the best and worst possible

outcomes are used to impute complete responses and deaths/drop-outs, respectively, we

instead randomize from the upper tail of the (theoretical) distribution under H1 if we observe

a complete response, and from the lower tail of the null distribution to account for deaths

or drop-outs, regardless of which treatment the patient received. Thus, this approach allows

for a response-adaptive algorithm to be used by computing the missing values online as the

trial progresses. Further, choosing the missing values randomly, as opposed to using the same

values every time, is perhaps a better reflection of reality or, at the very least, a reflection

of the distributional assumptions made to determine the size of the study based on power

considerations.

Figure 2 shows the results for the normal FLGI when we implement our online imputation

method assuming that we observe a 4% rate of deaths or drop-outs and a 1% rate of complete

responses. This is illustrated under the assumption of both a known and unknown variance,

labeled FLGI-known with missing data (MD) and FLGI with MD, respectively. These rates

are consistent with values reported in Karrison et al. (2007). Figure 2 shows that, as expected,

this missing data assumption decreases both the efficiency and patient benefit advantages,

relative to the FLGI with complete observations, for both the known and unknown variance

cases. Nevertheless, the imputed continuous FLGI procedure continues to greatly outperform

the binary FLGI with respect to both criteria. Figure 3 suggests that similar conclusions also

apply for the multi-armed missing data case (see FLGI with MD).
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6. Discussion

The RAR literature contains relatively few procedures for a continuous endpoint assumed

to be normally distributed with unknown variance, fewer still that are defined for the multi-

armed case and none that are forward-looking. We propose the first forward-looking RAR

algorithm applicable to this case which is oriented towards an optimality criterion with

respect to patient benefit.

In this paper, we have shown that using a continuous endpoint instead of dichotomizing can

offer efficiency, but also patient benefit advantages, when combined with RAR. Implementing

a RAR procedure, such as the FLGI, in the context of Phase II cancer trials requires dealing

with missing data from patients in an online fashion. The näıve imputation method suggested

in this work, based on the method by Karrison et al. (2007), shows that there are still

important benefits even if a low rate of missing observations is anticipated. Further work is

needed to develop imputation methods that can be used in combination with RAR.

An important advantage of our proposed method is that it can be implemented without

assuming a fixed, known and common variance. In fact, the FLGI with unknown variance

can learn about the variance simultaneously as it learns about the treatment means, and up-

date the randomization probabilities accordingly. Additionally, the method can incorporate

covariates in the way suggested by Villar and Rosenberger (2018).

The motivation of our algorithm is in the setting of clinical trials, but it applies to sequential

allocation problems more generally. Future research could consider the issue of estimation

following the sequential tests in these novel designs, similar to work in Coad (1991a, 1994).
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aGI1,3 = 1

G1(0,1,0) = 65.585
G0(0.675, 1.727, 2) = 3.805

aGI0,4 = 1

G1(Y1,3/3, (1/2 + Y 2
1,3/3)1/2, 1) <

3.805 G0(0675,1.727,2) = 3.805

0.5503−0.9508 < Y1,3 < 0.5862

aGI1,4 = 1

G1(Y1,3/3, (1/2 + Y2
1,3/3)1/2,1) > 3.805

G0(0.675, 1.727, 2) = 3.805

0.4497

Y1,3
< −0.9508 ∪ Y1,3

> 0.5862

Figure 1. The FLGI rule and a probability tree of all trial histories using the Gittins
index rule when K + 1 = 2, b = 2, d = 0.995, the outcome Yk,t is normally distributed with
unknown mean and variance, and parameters (ỹk,3, s̃k,3, nk,3) are given by (0.675, 1.727, 2)
for k = 0 and (0, 1, 0) for k = 1. Bold text indicates the allocated treatment under the
Gittins index rule {aGIk,t}. Note that the FLGI probabilities in this case are 0.7249 and 0.2751
for the experimental and control arm respectively. (For simplicity of the illustration, we
have omitted the branch corresponding to the cases Y1,3 = −0.9508 or Y1,3 = 0.5862 since,
theoretically, this would happen with probability 0).
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Figure 2. The trade-off between the expected proportion of patients allocated to the
superior arm, E(p∗), and power for the: Binary ER, Normal ER, Binary FLGI, Normal
FLGI and Normal FLGI with Missing Data (MD) imputed in an online fashion for block
sizes b = (1, 2, 4, 8, 16, 32, 64, 128) in a two-armed trial of size T = 128. The latter two designs
are shown when assuming both an unknown variance and known (correct) variance (dashed
line and labeled as FLGI-known). NB This figure appears in color in the electronic version
of this article.
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Figure 3. The trade-offs between the expected proportion of patients allocated to the
superior arm, E(p∗), power, average absolute bias in the treatment effect estimate and
variability of patient allocations for the different designs, including Normal FLGI and Normal
FLGI with Missing Data (MD), for block sizes b = (1, 15, 40, 60) in a three-armed trial of
size T = 120 (assuming unknown variance). NB This figure appears in color in the electronic
version of this article.
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µ0 = µ1 = 0.155 µ0 = 0.155, µ1 = 0.529

Design t1−α α E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.) 1− β E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.)

ER (b = 1) 1.654 0.0518 0.49990 (0.06) -0.19 (5.45) -0.0005 (0.15) 0.7884 0.5005 (0.06) 0.20 (5.66) -0.0013 (0.15)

FLGI-known
b = 1 1.991 0.0526 0.4997 (0.33) -0.06 (5.42) -0.0004 (0.49) 0.2290 0.8823 (0.16) 41.69 (7.01) 0.2167 (0.45)
b = 2 1.969 0.0505 0.5002 (0.32) 0.34 (5.42) -0.0003 (0.44) 0.2701 0.8777 (0.16) 41.27 (6.85) 0.1870 (0.41)
b = 6 1.911 0.0481 0.4987 (0.29) -0.03 (5.45) 0.0010 (0.34) 0.3599 0.8605 (0.14) 39.38 (6.59) 0.1147 (0.30)
b = 9 1.864 0.0492 0.4983 (0.28) -0.15 (5.43) 0.0008 (0.30) 0.4235 0.8483 (0.13) 38.14 (6.53) 0.0843 (0.26)
b = 18 1.766 0.0513 0.5017 (0.24) 0.14 (5.44) -0.0010 (0.23) 0.5653 0.8074 (0.12) 33.72 (6.30) 0.0389 (0.20)
b = 36 1.682 0.0495 0.5000 (0.19) 0.26 (5.45) 0.0001 (0.17) 0.7124 0.7139 (0.09) 23.25 (5.98) 0.0087 (0.17)

FLGI
b = 1 2.1820 0.0525 0.5013 (0.29) -0.15 (5.43) 0.0013 (0.29) 0.3289 0.8712 (0.12) 40.62 (6.39) 0.0955 (0.27)
b = 2 2.1590 0.0497 0.5016 (0.28) 0.21 (5.45) 0.0014 (0.28) 0.3432 0.8651 (0.12) 39.95 (6.41) 0.0902 (0.26)
b = 6 2.1180 0.0477 0.4985 (0.27) 0.18 (5.42) -0.0008 (0.26) 0.3790 0.8521 (0.12) 38.48 (6.36) 0.0801 (0.25)
b = 9 2.0450 0.0514 0.5011 (0.26) -0.01 (5.41) 0.0019 (0.25) 0.4236 0.8412 (0.12) 37.13 (6.36) 0.0698 (0.24)
b = 18 1.8980 0.0517 0.5008 (0.24) -0.04 (5.42) 0.0005 (0.22) 0.5277 0.8047 (0.12) 33.30 (6.23) 0.0356 (0.20)
b = 36 1.7330 0.0505 0.4997 (0.18) 0.01 (5.43) -0.0009 (0.18) 0.6973 0.7128 (0.09) 23.23 (6.00) 0.0097 (0.17)

FLGI-HZ (γ = 2)
b = 1 1.658 0.0509 0.5000 (0.05) 0.12 (5.43) 0.0008 (0.15) 0.6510 0.7784 (0.04) 30.46 (5.51) 0.0001 (0.18)
b = 2 1.660 0.0509 0.5003 (0.05) -0.14 (5.44) 0.0004 (0.15) 0.6499 0.7786 (0.04) 30.61 (5.54) -0.0007 (0.18)
b = 6 1.688 0.0487 0.5001 (0.05) 0.16 (5.42) 0.0000 (0.15) 0.6417 0.7781 (0.04) 30.40 (5.54) -0.0001 (0.18)
b = 9 1.661 0.0529 0.4994 (0.05) 0.43 (5.43) 0.0017 (0.15) 0.6501 0.7777 (0.04) 30.27 (5.52) -0.0004 (0.18)
b = 18 1.684 0.0490 0.4999 (0.05) 0.11 (5.41) 0.0003 (0.15) 0.6570 0.7644 (0.04) 28.99 (5.54) -0.0011 (0.18)
b = 36 1.665 0.0516 0.5000 (0.05) 0.10 (5.41) 0.0017 (0.15) 0.7779 0.5865 (0.05) 9.57 (5.64) 0.0003 (0.15)

TS
b = 1 1.751 0.0496 0.4999 (0.11) -0.1108 (5.44) -0.0001 (0.17) 0.7425 0.6961 (0.11) 21.35 (6.14) 0.0302 (0.19)
b = 2 1.739 0.0497 0.4997 (0.11) -0.0431 (5.41) -0.0016 (0.17) 0.7479 0.6934 (0.11) 21.27 (6.11) 0.0290 (0.19)
b = 6 1.741 0.0513 0.4994 (0.11) 0.3098 (5.44) -0.0001 (0.17) 0.7489 0.6825 (0.10) 19.88 (6.14) 0.0257 (0.18)
b = 9 1.729 0.0499 0.5000 (0.10) 0.1311 (5.42) 0.0001 (0.17) 0.7547 0.6747 (0.10) 18.95 (6.13) 0.0229 (0.18)
b = 18 1.722 0.0494 0.5008 (0.10) 0.4446 (5.42) 0.0013 (0.16) 0.7602 0.6509 (0.10) 16.40 (6.11) 0.0184 (0.17)
b = 36 1.697 0.0507 0.4999 (0.08) 0.4332 (5.41) 0.0013 (0.16) 0.7726 0.6040 (0.10) 11.45 (6.07) 0.0095 (0.16)

CGI (c = 2) 1.887 0.0496 0.4871 (0.28) 0.19 (5.42) 0.0004 (0.24) 0.4298 0.8294 (0.11) 37.59 (6.19) 0.0340 (0.21)

MZR
nER = 2 1.794 0.0516 0.5005 (0.19) 0.2794 (5.41) 0.0002 (0.19) 0.7471 0.6569 (0.12) 17.15 (5.76) 0.0229 (0.17)
nER = 6 1.780 0.0507 0.4998 (0.17) 0.3487 (5.43) 0.0001 (0.18) 0.7632 0.6414 (0.10) 15.47 (5.49) 0.0202 (0.16)
nER = 11 1.751 0.0508 0.5001 (0.14) -0.2534 (5.41) 0.0007 (0.17) 0.7755 0.6173 (0.08) 12.86 (5.29) 0.0155 (0.16)

Gwise
nER = 2 1.877 0.0495 0.4997 (0.13) -0.08 (5.43) 0.0012 (0.18) 0.7193 0.4999 (0.13) -0.11 (6.47) -0.0013 (0.18)
nER = 6 1.697 0.0482 0.5003 (0.06) -0.08 (5.45) -0.0000 (0.15) 0.7833 0.5005 (0.06) 0.02 (5.67) -0.0013 (0.15)
nER = 11 1.705 0.0492 0.4999 (0.06) 0.07 (5.41) 0.0007 (0.15) 0.7837 0.5000 (0.06) -0.20 (5.66) 0.0000 (0.15)

Table 1
Comparison of performance measures for a two-armed trial using different designs when the variance is assumed
unknown (with the exception of FLGI-known) and T = 72, averaged over 50,000 trial replications. Note that the

true variance of the response is σ2
k = 0.642 for k ∈ {0, 1}.
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µ0 = µ1 = 0.155 µ0 = 0.155, µ1 = 0.529

b t1−α α E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.) 1− β E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.)

(i) FLGI-known with σ2
0 = σ2

1 = 1
2
× 0.642

1 2.001 0.0509 0.4983 (0.27) -0.04 (3.84) 0.0013 (0.26) 0.4722 0.9215 (0.07) 46.01 (4.34) 0.1430 (0.29)
2 1.977 0.0505 0.5010 (0.26) 0.17 (3.83) -0.0007 (0.24) 0.5422 0.9142 (0.07) 45.22 (4.32) 0.1209 (0.26)
6 1.925 0.0525 0.4986 (0.24) 0.12 (3.85) 0.0009 (0.20) 0.6642 0.8952 (0.07) 43.29 (4.33) 0.0771 (0.21)
9 1.887 0.0518 0.5002 (0.23) 0.07 (3.82) -0.0004 (0.18) 0.7241 0.8814 (0.07) 41.77 (4.30) 0.0545 (0.18)
18 1.798 0.0509 0.4999 (0.21) 0.14 (3.83) 0.0010 (0.15) 0.8406 0.8370 (0.07) 36.90 (4.29) 0.0224 (0.14)
36 1.698 0.0500 0.5006 (0.16) -0.03 (3.83) -0.0005 (0.12) 0.9341 0.7331 (0.06) 25.53 (4.19) 0.0050 (0.12)

(ii) FLGI with σ2
0 = σ2

1 = 1
2
× 0.642

1 2.280 0.0502 0.5014 (0.30) -0.04 (3.84) 0.0017 (0.21) 0.4301 0.9177 (0.07) 45.60 (4.33) 0.0641 (0.20)
2 2.209 0.0484 0.4987 (0.29) 0.04 (3.83) -0.0013 (0.20) 0.4713 0.9131 (0.07) 45.15 (4.32) 0.0602 (0.20)
6 2.132 0.0491 0.4987 (0.28) 0.01 (3.81) -0.0017 (0.19) 0.5520 0.9008 (0.07) 43.88 (4.35) 0.0537 (0.19)
9 2.080 0.0505 0.4991 (0.27) 0.04 (3.84) -0.0007 (0.18) 0.5958 0.8894 (0.07) 42.55 (4.33) 0.0427 (0.18)
18 1.897 0.0516 0.5004 (0.24) 0.04 (3.84) -0.0004 (0.16) 0.7604 0.8466 (0.07) 37.95 (4.29) 0.0186 (0.15)
36 1.751 0.0501 0.5000 (0.19) -0.22 (3.83) -0.0002 (0.12) 0.9110 0.7401 (0.06) 26.33 (4.18) 0.0035 (0.12)

(iii) FLGI-known with σ2
0 = σ2

1 = 2× 0.642

1 1.940 0.0505 0.4998 (0.37) -0.04 (7.69) 0.0024 (0.81) 0.1517 0.8106 (0.27) 34.25 (10.54) 0.2656 (0.74)
2 1.924 0.0481 0.4997 (0.36) 0.13 (7.64) -0.0015 (0.72) 0.1719 0.8116 (0.26) 34.29 (10.29) 0.2279 (0.66)
6 1.865 0.0484 0.4999 (0.33) -0.28 (7.70) -0.0008 (0.54) 0.2233 0.8018 (0.23) 33.06 (9.85) 0.1441 (0.48)
9 1.790 0.0529 0.4998 (0.31) -0.21 (7.69) -0.0009 (0.45) 0.2730 0.7935 (0.21) 32.21 (9.55) 0.1068 (0.40)
18 1.747 0.0514 0.4998 (0.27) 0.49 (7.70) 0.0006 (0.33) 0.3454 0.7593 (0.18) 28.34 (9.10) 0.0487 (0.30)
36 1.677 0.0497 0.5003 (0.20) -0.03 (7.66) 0.0050 (0.25) 0.4532 0.6837 (0.14) 20.27 (8.53) 0.0108 (0.24)

(iv) FLGI with σ2
0 = σ2

1 = 2× 0.642

1 2.386 0.0518 0.5013 (0.32) -0.04 (7.69) 0.0009 (0.45) 0.1944 0.8117 (0.21) 34.37 (9.55) 0.1326 (0.41)
2 2.323 0.0501 0.4975 (0.31) -0.21 (7.64) -0.0037 (0.43) 0.2047 0.8088 (0.21) 33.57 (9.50) 0.1292 (0.4)
6 2.255 0.0502 0.5008 (0.29) 0.05 (7.68) 0.0000 (0.40) 0.2184 0.7945 (0.20) 32.22 (9.37) 0.1117 (0.38)
9 2.138 0.0525 0.5004 (0.28) -0.07 (7.69) 0.0016 (0.38) 0.2413 0.7827 (0.19) 31.01 (9.27) 0.0936 (0.35)
18 1.888 0.0514 0.4974 (0.25) -0.02 (7.63) -0.0028 (0.32) 0.3346 0.7511 (0.17) 27.18 (8.97) 0.0517 (0.29)
36 1.753 0.0480 0.5002 (0.19) 0.13 (7.69) -0.0012 (0.25) 0.4470 0.6748 (0.13) 19.11 (8.48) 0.0145 (0.24)

Heterogeneous Variances

(v) FLGI-known with σ2
0 = 0.642, σ2

1 = 1
2
× 0.642

1 1.9900 0.0502 0.4284 (0.30) 0.03 (4.61) 0.1030 (0.38) 0.1828 0.9203 (0.09) 45.84 (4.32) 0.2522 (0.41)
2 1.9710 0.0487 0.4358 (0.29) -0.35 (4.60) 0.0902 (0.35) 0.2200 0.9102 (0.09) 44.85 (4.32) 0.2038 (0.37)
6 1.9170 0.0487 0.4587 (0.27) 0.26 (4.63) 0.0583 (0.28) 0.3399 0.8857 (0.09) 42.06 (4.35) 0.1271 (0.28)
9 1.8730 0.0508 0.4666 (0.26) -0.08 (4.65) 0.0477 (0.24) 0.4222 0.8703 (0.09) 40.49 (4.36) 0.0952 (0.24)
18 1.7890 0.0532 0.4836 (0.23) 0.09 (4.68) 0.0280 (0.19) 0.5893 0.8240 (0.09) 35.37 (4.43) 0.0427 (0.18)
36 1.7060 0.0533 0.4992 (0.18) 0.07 (4.70) 0.0131 (0.15) 0.7697 0.7237 (0.08) 24.42 (4.56) 0.0117 (0.15)

(vi) FLGI with σ2
0 = 0.642, σ2

1 = 1
2
× 0.642

1 2.425 0.0489 0.4822 (0.31) -0.07 (4.72) 0.0341 (0.26) 0.2655 0.8897 (0.11) 42.51 (4.58) 0.1104 (0.26)
2 2.331 0.0524 0.4789 (0.30) -0.07 (4.69) 0.0323 (0.25) 0.2969 0.8833 (0.11) 41.94 (4.59) 0.1044 (0.25)
6 2.266 0.0485 0.4752 (0.28) 0.05 (4.74) 0.0282 (0.24) 0.3431 0.8674 (0.11) 40.08 (4.62) 0.0927 (0.24)
9 2.185 0.0510 0.4722 (0.28) -0.37 (4.72) 0.0263 (0.23) 0.3861 0.8562 (0.11) 38.81 (4.62) 0.0813 (0.23)
18 1.977 0.0489 0.4721 (0.25) 0.06 (4.75) 0.0197 (0.19) 0.5261 0.8158 (0.10) 34.69 (4.60) 0.0418 (0.19)
36 1.778 0.0511 0.4786 (0.19) -0.04 (4.72) 0.0120 (0.15) 0.7429 0.7226 (0.09) 24.28 (4.60) 0.0111 (0.15)

(vii) FLGI-known with σ2
0 = 0.642, σ2

1 = 2× 0.642

1 1.981 0.0489 0.5892 (0.34) 0.30 (6.45) -0.1878 (0.65) 0.2669 0.7882 (0.29) 31.44 (11.25) 0.0885 (0.64)
2 1.941 0.0524 0.5747 (0.34) 0.33 (6.51) -0.1584 (0.59) 0.3005 0.7958 (0.27) 32.39 (10.90) 0.0819 (0.55)
6 1.855 0.0519 0.5517 (0.31) 0.01 (6.53) -0.1035 (0.45) 0.3741 0.8034 (0.23) 33.30 (10.18) 0.0586 (0.40)
9 1.821 0.0482 0.5422 (0.30) -0.03 (6.56) -0.0806 (0.38) 0.4119 0.7995 (0.21) 32.71 (9.84) 0.0454 (0.33)
18 1.735 0.0489 0.5194 (0.26) -0.34 (6.59) -0.0469 (0.28) 0.5105 0.7758 (0.17) 30.16 (9.15) 0.0197 (0.24)
36 1.665 0.0475 0.5007 (0.20) -0.04 (6.63) -0.0225 (0.22) 0.6098 0.6982 (0.12) 21.74 (8.20) 0.0004 (0.20)

(viii) FLGI with σ2
0 = 0.642, σ2

1 = 2× 0.642

1 2.238 0.0517 0.5204 (0.32) -0.05 (6.70) -0.0480 (0.38) 0.2806 0.8522 (0.19) 38.78 (9.50) 0.0774 (0.34)
2 2.207 0.0484 0.5249 (0.31) 0.24 (6.65) -0.0433 (0.37) 0.2885 0.8507 (0.18) 38.63 (9.40) 0.0710 (0.32)
6 2.095 0.0509 0.5290 (0.29) -0.06 (6.69) -0.0377 (0.34) 0.3353 0.8405 (0.17) 37.31 (9.28) 0.0637 (0.30)
9 2.039 0.0491 0.5297 (0.28) -0.07 (6.71) -0.0367 (0.33) 0.3554 0.8299 (0.16) 36.31 (9.14) 0.0501 (0.28)
18 1.839 0.0497 0.5284 (0.25) 0.05 (6.72) -0.0296 (0.27) 0.4708 0.7943 (0.14) 32.01 (8.71) 0.0220 (0.23)
36 1.700 0.0489 0.5222 (0.19) 0.15 (6.70) -0.0182 (0.21) 0.6050 0.7017 (0.11) 21.95 (8.05) 0.0030 (0.20)

Table 2
Comparing the performance measures of the FLGI rule when the variance is incorrectly assumed to be known (and

equal to 0.642), in at least one of the two arms, with those obtained when the variance is assumed unknown (but
with an initial estimate, s̃2k,0, of 0.642). In the upper half of the table, the true variance of the response is actually

half or double 0.642 (as shown) and in the lower half, the true variances are heterogeneous. These results are
averaged over 50, 000 replications for a trial of size T = 72.
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