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Abstract

Linear dimensionality reduction methods are a cornerstone of analyzing high dimensional
data, due to their simple geometric interpretations and typically attractive computational
properties. These methods capture many data features of interest, such as covariance, dy-
namical structure, correlation between data sets, input-output relationships, and margin
between data classes. Methods have been developed with a variety of names and motiva-
tions in many fields, and perhaps as a result the connections between all these methods
have not been highlighted. Here we survey methods from this disparate literature as opti-
mization programs over matrix manifolds. We discuss principal component analysis, factor
analysis, linear multidimensional scaling, Fisher’s linear discriminant analysis, canonical
correlations analysis, maximum autocorrelation factors, slow feature analysis, sufficient di-
mensionality reduction, undercomplete independent component analysis, linear regression,
distance metric learning, and more. This optimization framework gives insight to some
rarely discussed shortcomings of well-known methods, such as the suboptimality of certain
eigenvector solutions. Modern techniques for optimization over matrix manifolds suggest
a generic linear dimensionality reduction solver, which accepts as input data and an ob-
jective to be optimized, and returns, as output, an optimal low-dimensional projection
of the data. This simple optimization framework further allows straightforward general-
izations and novel variants of classical methods, which we demonstrate here by creating
an orthogonal-projection canonical correlations analysis. More broadly, this survey and
generic solver suggest that linear dimensionality reduction can move toward becoming a
blackbox, objective-agnostic numerical technology.

1. Introduction

Linear dimensionality reduction methods have been developed throughout statistics, ma-
chine learning, and applied fields for over a century, and these methods have become in-
dispensable tools for analyzing high dimensional, noisy data. These methods produce a
low-dimensional linear mapping of the original high-dimensional data that preserves some

c©2015 John P. Cunningham and Zoubin Ghahramani.



Cunningham and Ghahramani

feature of interest in the data. Accordingly, linear dimensionality reduction can be used
for visualizing or exploring structure in data, denoising or compressing data, extracting
meaningful feature spaces, and more. This abundance of methods, across a variety of data
types and fields, suggests a great complexity to the space of linear dimensionality reduction
techniques. As such, there has been little effort to consolidate our understanding. Here we
survey a host of methods and investigate when a more general optimization framework can
improve performance and extend the generality of these techniques.

We begin by defining linear dimensionality reduction (Section 2), giving a few canonical
examples to clarify the definition. We then interpret linear dimensionality reduction in a
simple optimization framework as a program with a problem-specific objective over orthogo-
nal or unconstrained matrices. Section 3 surveys principal component analysis (PCA; Pear-
son (1901); Eckart and Young (1936)), multidimensional scaling (MDS; Torgerson (1952);
Cox and Cox (2001); Borg and Groenen (2005)), Fisher’s linear discriminant analysis (LDA;
Fisher (1936); Rao (1948)), canonical correlations analysis (CCA; Hotelling (1936)), maxi-
mum autocorrelation factors (MAF; Switzer and Green (1984)), slow feature analysis (SFA;
Wiskott and Sejnowski (2002); Wiskott (2003)), sufficient dimensionality reduction (SDR;
Fukumizu et al. (2004); Adragni and Cook (2009)), locality preserving projections (LPP;
He and Niyogi (2004); He et al. (2005)), undercomplete independent component analy-
sis (ICA; e.g. Hyvarinen et al. (2001)), linear regression, distance metric learning (DML;
Kulis (2012); Yang and Jin (2006)), probabilistic PCA (PPCA; Tipping and Bishop (1999);
Roweis (1997); Theobald (1975)), factor analysis (FA; Spearman (1904)), several related
methods, and important extensions such as kernel mappings and regularizations.

A common misconception is that many or all linear dimensionality reduction problems
can be reduced to eigenvalue or generalized eigenvalue problems. Not only is this untrue in
general, but it is also untrue for some very well-known algorithms that are typically thought
of as generalized eigenvalue problems. The suboptimality of using eigenvector bases in these
settings is rarely discussed and is one notable insight of this survey. Perhaps inherited from
this eigenvalue misconception, a second common tendency is for practitioners to greedily
choose the low-dimensional data: the first dimension is chosen to optimize the problem ob-
jective, and then subsequent dimensions are chosen to optimize the objective on a residual
or reduced data set. The optimization framework herein shows the limitation of this view.
More importantly, the framework also suggests a more generalized linear dimensionality
reduction solver that encompasses all eigenvalue problems as well as many other important
variants. In this survey we restate these algorithms as optimization programs over matrix
manifolds that have a well understood geometry and a well developed optimization liter-
ature (Absil et al., 2008). This simple perspective leads to a generic algorithm for linear
dimensionality reduction, suggesting that, like numerical optimization more generally, lin-
ear dimensionality reduction can become abstracted as a numerical technology for a range
of problem-specific objectives. In all, this work: (i) surveys the literature on linear dimen-
sionality reduction, (ii) gives insights to some rarely discussed shortcomings of traditional
approaches, and (iii) provides a simple algorithmic template for generalizing to many more
problem-specific techniques.
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2. Linear dimensionality reduction as a matrix optimization program

We define linear dimensionality reduction as all methods with the problem statement:

Definition 1 (Linear Dimensionality Reduction) Given n d-dimensional data points
X = [x1, ..., xn] ∈ IRd×n and a choice of dimensionality r < d, optimize some objective
fX(·) to produce a linear transformation P ∈ IRr×d, and call Y = PX ∈ IRr×n the low-
dimensional transformed data.

Note that throughout this work we assume without loss of generality that data X is
mean-centered, namely X1 = 0. To make this definition concrete, we briefly detail two
widespread linear dimensionality reduction techniques: principal component analysis (PCA;
Pearson (1901)) and canonical correlations analysis (CCA; Hotelling (1936)). PCA maxi-
mizes data variance captured by the low-dimensional projection, or equivalently minimizes
the reconstruction error (under the `2-norm) of the projected data points with the original
data, namely:

fX(M) = ||X −MM>X||2F .

Here M is a matrix with r orthonormal columns. In the context of Definition 1, optimizing
fX(M) produces an M such that P = M>, and the desired low-dimensional projection is
Y = M>X. PCA is discussed in depth in Section 3.1.1.

We stress that the notation of M and P in Definition 1 is not redundant, but rather
is required for other linear dimensionality reduction techniques where the linear transfor-
mation P does not equal the optimization variable M (as it does in PCA). Consider CCA,
another classical linear dimensionality reduction technique that jointly maps two data sets
Xa ∈ IRda×n and Xb ∈ IRdb×n to Ya ∈ IRr×n and Yb ∈ IRr×n, such that the sample corre-
lation between Ya and Yb is maximized1. Under the additional constraints that Ya and Yb
have uncorrelated variables (YaY

>
b = Λ, a diagonal matrix) and be individually uncorre-

lated with unit variance ( 1
nYaY

>
a = 1

nYbY
>
b = I), a series of standard steps produces the

well known objective:

fX (Ma,Mb) =
1

r
tr
(
M>a (XaX

>
a )−1/2XaX

>
b (XbX

>
b )−1/2Mb

)
,

as will be detailed in depth in Section 3.1.4. This objective is maximized when M>a and
M>b are the left and right singular vectors of the matrix (XaX

>
a )−1/2XaX

>
b (XbX

>
b )−1/2. In

the context of Definition 1, the low dimensional canonical variables Ya are then related to

the original data as Ya = PaXa ∈ IRr×n, where Pa = M>a
(
XaX

>
a

)−1/2
(and similar for Yb).

Since Ma has by definition orthonormal columns, CCA, by inclusion of the whitening term(
XaX

>
a

)−1/2
, does not represent an orthogonal projection of the data. Accordingly, CCA

and PCA point out two key features of linear dimensionality reduction and Definition 1:
first, that the objective function fX(·) need not entirely define the linear mapping P to the
low-dimensional space; and second, that not all linear dimensionality reduction methods
need be orthogonal projections, or indeed projections at all.

1. As a point of technical detail, note that the use of two data sets and mappings is only a notational

convenience; writing the CCA projection as Y =

[
Ya
Yb

]
=

[
Pa 0
0 Pb

] [
Xa
Xb

]
= PX, we see that CCA

adheres precisely to Definition 1.
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Note also that both PCA and CCA result in a matrix decomposition, and indeed a com-
mon approach to many linear dimensionality reduction methods is to attempt to cast the
problem as an eigenvalue or generalized eigenvalue problem (Burges, 2010). This pursuit
can be fruitful but is limited, often resulting in ad hoc or suboptimal algorithms. As a spe-
cific example, in many settings orthogonal projections of data are required for visualization
and other basic needs. Can we create an Orthogonal CCA, where we seek orthogonal pro-
jections Ya = M>a Xa for a matrix Ma with orthonormal columns (and similar for Yb), such
that the sample correlation between Ya and Yb is maximized? No known eigenvalue problem
can produce this projection, so one tempting and common approach is to orthonormalize Pa
and Pb found above from traditional CCA. We will show that this choice can be significantly
suboptimal, and in later sections we will create Orthogonal CCA using a generic optimiza-
tion program. Thus matrix decomposition approaches suggest an unfortunate limitation to
the set of possible linear dimensionality reduction problems, and a broader framework is
required to fully capture Definition 1 and linear dimensionality reduction.

2.1 Optimization framework for linear dimensionality reduction

All linear dimensionality reduction methods presented here can be viewed as solving an
optimization program over a matrix manifold M, namely:

minimize fX(M)

subject to M ∈M.
(1)

Given Definition 1, the intuition behind this optimization program should be apparent: the
objective fX(·) defines the feature of interest to be captured in the data, and the matrix
manifold encodes some aspects of the linear mapping P such that Y = PX.2

All methods considered here specify M as one of two matrix forms. First, some methods
are unconstrained optimizations over rank r linear mappings, implying the trivial manifold
constraint of Euclidean space, which we denote as M ∈ IRd×r. In this case, optimization
may be straightforward, and algorithms like expectation-maximization (Dempster et al.,
1977) or standard first order solvers have been well used.

Second, very often the matrix form will have an orthogonality constraint M = {M ∈
IRd×r : M>M = I}, corresponding to orthogonal projections of the data X. In this case
we write M = Od×r. As noted previously, the typical and often flawed approach is to
attempt to cast these problems as eigenvalue problems. Instead, viewed through the lens
of Equation 1, linear dimensionality reduction is simply an optimization program over a
matrix manifold, and indeed there is a well-developed optimization literature for matrix
manifolds (foundations include Luenberger (1972); Gabay (1982); Edelman et al. (1998); an
excellent summary is Absil et al. (2008)).

As a primary purpose of this work is to survey linear dimensionality reduction, we first
detail linear dimensionality reduction techniques using this optimization framework. We
then implement a generic solver for programs of the form Equation 1, where M is the
family of orthogonal matrices Od×r. Thus we show the framework of Equation 1 to be not

2. Note that several methods will require optimization over additional auxiliary unconstrained variables,
which can be addressed algorithmically via a coordinate descent approach (alternating optimizations
over the auxiliary variable and Equation 1) or some more nuanced scheme.
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only conceptually simplifying, but also algorithmically simplifying. Instead of resorting to
ad hoc (and often suboptimal) formulations for each new problem in linear dimensionality
reduction, practitioners need only specify the objective fX(·) and the high-dimensional data
X, and these numerical technologies can produce the desired low-dimensional data. Section
4 validates this claim by applying this generic solver without change to different objectives
fX(·), both classic and novel. We require only the condition that fX(·) be differentiable
in M to enable simple gradient descent methods. However, this choice is a convenience
of implementation and not a fundamental issue, and thus approaches for optimization of
nondifferentiable objectives over nonconvex sets (here Od×r) could be readily introduced to
remove this restriction (for example, Boyd et al. (2011)).

3. Survey of linear dimensionality reduction methods

We now review linear dimensionality reduction techniques using the framework of Section
2, to understand the problem-specific objective and manifold constraint of each method.

3.1 Linear dimensionality reduction with orthogonal matrix constraints

Amongst all dimensionality reduction methods, the most widely used techniques are orthog-
onal projections. These methods owe their popularity in part due to their simple geometric
interpretation as a low-dimensional view of high-dimensional data. This interpretation is
of great comfort to many application areas, since these methods do not artificially create
or exaggerate many types of structure in the data, as is possible with other models that
encode strong prior assumptions.

3.1.1 Principal Component Analysis

Principal component analysis (PCA) was originally formulated by Pearson (1901) as a
minimization of the sum of squared residual errors between projected data points and the
original data fX(M) = ||X−MM>X||2F =

∑n
i=1 ||xi−MM>xi||22. Modern treatments tend

to favor the equivalent “maximizing variance” derivation (e.g., (Bishop, 2006)), resulting in
the objective −tr(M>XX>M). We write PCA in the formulation of Equation 1 as:

minimize ||X −MM>X||2F
subject to M ∈ Od×r.

(2)

Equation 2 leads to the familiar SVD solution: after summarizing the data by its sample
covariance matrix 1

nXX
>, the decomposition XX> = QΛQ> produces an optimal point

M = Qr, where Qr denotes the columns of Q associated with the largest r eigenvalues of
XX> (Eckart and Young, 1936; Mirsky, 1960; Golub and Van Loan, 1996).

There are many noteworthy extensions to PCA. A first example is kernel PCA, which
uses PCA on a feature space instead of the inputs themselves (Schölkopf et al., 1999),
and indeed some dimensionality reduction methods and their kernelized counterparts can
be considered together as kernel regression problems (De la Torre, 2012). While quite
important for all machine learning methods, we consider kernelized methods orthogonal to
much of the presentation here, since using this kernel mapping is a question of representation
of data, not of the dimensionality reduction algorithm itself.
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Second, there have been several probabilistic extensions to PCA, such as probabilistic
PCA (PPCA, (Tipping and Bishop, 1999; Roweis, 1997)), extreme component analysis
(XCA, (Welling et al., 2003)), and minor component analysis (MCA, (Williams and Agakov,
2002)). These algorithms all share a common purpose (modeling covariance) and the same
coordinate system for projection (the principal axes of the covariance ellipsoid), even though
they differ in the particulars of the projection and which basis is chosen from that coordinate
system. We present PPCA as a separate algorithm below and leave the others as extensions
of this core method.

Third, extensions have introduced outlier insensitivity via a different implicit noise model
such as a Laplace observation model, leading to a few examples of robust PCA (Galpin and
Hawkins, 1987; Baccini et al., 1996; Choulakian, 2006). An alternative approach to robust
PCA is driven by the observation that a small number of highly corrupted observations can
drastically influence standard PCA. Candes et al. (2011) takes this approach to robust PCA,
considering the data as low-rank plus sparse noise. Their results have particular theoretical
and practical appeal and connect linear dimensionality reduction to the substantial nuclear-
norm minimization literature.

Fourth, PCA has been made sparse in several contexts (Zou et al., 2006; d’Aspremont
et al., 2007, 2008; Journee et al., 2010), where the typical PCA objective is augmented with
a lasso-type `1 penalty term, namely fX(M) = ||X −MM>X||2F + λ||M ||1, with penalty
term λ and ||M ||1 =

∑
i

∑
j |Mij |. This objective does not admit an eigenvalue approach,

and as a result several specialized algorithms have been proposed. Note however that this
sparse objective is again simply a program over Od×r (albeit nondifferentiable).

Fifth, another class of popular extensions generalizes PCA to other exponential family
distributions, beyond the implicit normal distribution of standard PCA (Collins et al., 2002;
Mohamed et al., 2008). These methods, while important, result in nonlinear mappings of
the data and thus fall outside the scope of Definition 1. Additionally, there are other
nonlinear extensions to PCA; Chapter 12.6 of Hyvarinen et al. (2001) gives an overview.

3.1.2 Multidimensional Scaling

Multidimensional scaling (MDS; Torgerson (1952); Cox and Cox (2001); Borg and Groenen
(2005)) is a class of methods and a large literature in its own right, but its connections to
linear dimensionality reduction and PCA are so well-known that it warrants individual men-
tion. PCA minimizes low-dimensional reconstruction error, but another sensible objective
is to maximize the scatter of the projection, under the rationale that doing so would yield
the most informative projection (this choice is sometimes called classical scaling). Defining
our projected points yi = M>xi for some M ∈ Od×r, MDS seeks to maximize pairwise
distances

∑
i

∑
j ||yi − yj ||2.

MDS leads to the seemingly novel optimization program (Equation 1) over the scatter
objective fX(M) =

∑
i

∑
j ||M>xi −M>xj ||2, which can be expanded as:

fX(M) ∝ tr
(
M>XX>M

)
− 1>X>MM>X1 = tr

(
M>X

(
I − 1

n
11>

)
X>M

)
, (3)

where we denote the vector of all ones as 1. Noting that X has zero mean by definition
and thus X(I − 1

n11>) = X, we see classical MDS is precisely the ‘maximal variance’ PCA
objective tr(M>XX>M).
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The equivalence of MDS and PCA in this special case is well-known (Cox and Cox, 2001;
Borg and Groenen, 2005; Mardia et al., 1979; Williams, 2002), and indeed this particular
example only scratches the surface of MDS, which is usually considered in much more general
terms. Specifically, if we have available only pairwise distances dX(xi, xj), a more general
MDS problem statement is to fit the low-dimensional data so as to preserve these pairwise
distances as closely as possible in the least squares sense: minimizing

∑
i

∑
j(dX(xi, xj) −

dY (yi, yj))
2 is known as Kruskal-Shephard scaling, and the distance metrics can be arbitrary

and different between the original and low-dimensional data. First, it is worth noting that
least squares is by no means the only appropriate stress function on the distances dX and dY ;
a Sammon mapping is another common choice (see for example Hastie et al. (2008), §14.8).
Second, MDS does not generally require the data itself, but only the pairwise dissimilarities
dij = dX(xi, xj), which is often a useful property. When the data is known, we see here
that if we specify a low-dimensional orthogonal projection Y = M>X, then indeed this
objective will result in a class of linear dimensionality reduction programs:

minimize
∑
i

∑
j

(
dX (xi, xj)− dY

(
M>xi,M

>xj

))2

subject to M ∈ Od×r.
(4)

Special approaches exist to solve this program on a case-by-case basis (Cox and Cox, 2001;
Borg and Groenen, 2005). However, by broadly considering Equation 4 as an optimization
over orthogonal projections, we again see the motivation for a generic numerical solver for
this class of problems, obviating objective-specific methods.

Of course, the low-dimensional data Y need not be a linear mapping of X (indeed, in
many cases the original points X are not even available). This more general form of MDS
is used in a variety of nonlinear dimensionality reduction techniques, including prominently
Isomap (Tenenbaum et al., 2000), as discussed below in Section 3.3.

3.1.3 Linear Discriminant Analysis

Another natural problem-specific objective occurs when the data X has associated class
labels, of which Fisher’s linear discriminant analysis (LDA; Fisher (1936); Rao (1948);
modern references include Fukunaga (1990); Bishop (2006)) is perhaps the most prominent
example. The purpose of LDA is to project the data in such a way that separation between
classes is maximized. To do so, LDA begins by partitioning the data covariance XX>

into covariance contributed within each of the c classes (ΣW ) and covariance contributed
between the classes (ΣB) , such that XX> = ΣW + ΣB for:

ΣW =
n∑
i=1

(xi − µci)(xi − µci)> ΣB =
n∑
i=1

(µci − µ)(µci − µ)>, (5)

where µ is the global data mean (here µ = 0 by definition) and µci is the class mean
associated with data point xi. LDA seeks the projection that maximizes between-class
variability tr

(
M>ΣBM

)
while minimizing within-class variability tr

(
M>ΣWM

)
, leading
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to the optimization program:

maximize
tr
(
M>ΣBM

)
tr (M>ΣWM)

subject to M ∈ Od×r.
(6)

This objective appears very much like a generalized Rayleigh quotient, and is so for r = 1.
In this special case, M ∈ Od×1 can be found as the top eigenvector of Σ−1

W ΣB, which can

be seen by substituting L = Σ
1/2
W M into Equation 6 above. This one-dimensional LDA

projection is appropriate when there are c = 2 classes.

A common misconception is that LDA for higher dimensional projections r > 1 can be
solved with a greedy selection of the top r eigenvectors of Σ−1

W ΣB. However, this is certainly
not the case, as the top r eigenvectors of Σ−1

W ΣB will not in general be orthogonal. The eigen-

vector solution solves the similar but not equivalent objective tr
((
M>ΣWM

)−1 (
M>ΣBM

))
over M ∈ IRd×r; these two objectives and a few others are nicely discussed in Chapter 10
of Fukunaga (1990). While each of these choices has its merits, in the common case that
one seeks a projection of the original data, the orthogonal M produced by solving Equation
6 is more appropriate. Though rarely discussed, this misconception between the trace-of-
quotient and the quotient-of-traces has been investigated in the literature (Yan and Tang,
2006; Shen et al., 2007).

The commonality of this misconception adds additional motivation for this work, to
survey and consolidate a fragmented literature. Second, this misconception also points out
the limitations of eigenvector approaches: even when considered the standard algorithm
for a popular method, eigenvalue decompositions may in fact be an inappropriate choice.
Third, as Equation 6 is a simple program over orthogonal projections, we see again the
utility of a generic solver, an approach which should outperform traditional approaches
(and indeed does, as Section 4 will show).

In terms of extensions, we note a few key constraints of classical LDA: each data point
must be labeled with a class (no missing observations), each data point must be labeled with
only one class (no mixed membership), and the class boundaries are modeled as linear. As a
first extension, one might have incomplete class labels; Yu et al. (2006) extends LDA (with a
probabilistic PCA framework; see Section 3.2.2) to the semi-supervised setting where not all
points are labeled. Second, data points may represent a mixture of multiple features, such
that one wants to extract a projection where one feature is most discriminable. Brendel et al.
(2011) offers a possible solution by marginalizing covariances over each feature of interest.
Third, Mika et al. (1999) has extended LDA to the nonlinear domain via kernelization,
which has also been well used.

3.1.4 Canonical Correlations Analysis

Canonical correlation analysis (CCA) is a problem of joint dimensionality reduction: given
two data sets Xa ∈ IRda×n and Xb ∈ IRdb×n, find low-dimensional mappings Ya = PaXa
and Yb = PbXb that maximize the correlation between Ya and Yb, namely:

ρ (ya, yb) =
E
(
y>a yb

)√
E (y>a ya)E

(
y>b yb

) =
tr
(
YaY

>
b

)√
tr (YaY >a ) tr

(
YbY

>
b

) =
tr
(
PaXaX

>
b P
>
b

)√
tr (PaXaX>a P>a ) tr

(
PbXbX

>
b P
>
b

) . (7)
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CCA was originally derived in Hotelling (1936); more modern treatments include Muirhead
(2005); Timm (2002); Hardoon et al. (2004); Hardoon and Shawe-Taylor (2009). This
method in its classical form, which we call Traditional CCA, seeks to maximize ρ (ya, yb)
under the constraint that all variables are uncorrelated and of unit variance: 1

nYaY
>
a = I,

1
nYbY

>
b = I, and YaY

>
b = Λ for some diagonal matrix Λ. As an optimization program over

Pa and Pb, Traditional CCA solves:

maximize
tr
(
PaXaX

>
b P
>
b

)√
tr (PaXaX

>
a P
>
a ) tr

(
PbXbX

>
b P
>
b

)
subject to

1

n
PaXaX

>
a P
>
a = I

1

n
PbXbX

>
b P
>
b = I

PaXaX
>
b P
>
b = Λ.

(8)

Using the substitution Pa = M>a
(
XaX

>
a

)−1/2
for Ma ∈ Oda×r (and similar for Pb), Tradi-

tional CCA reduces to the well known objective:

maximize tr
(
M>a (XaX

>
a )−1/2XaX

>
b (XbX

>
b )−1/2Mb

)
subject to Ma ∈ Oda×r

Mb ∈ Odb×r.

(9)

This objective is maximized when M>a is the top r left singular vectors and M>b is the
top r right singular vectors of (XaX

>
a )−1/2XaX

>
b (XbX

>
b )−1/2. The linear transformations

optimizing Equation 8 are then calculated as Pa = M>a (XaX
>
a )−1/2, and similar for Pb.

This solution is provably optimal for any dimensionality r under the imposed constraints
(Muirhead, 2005).

It is apparent by construction that Pa and Pb do not in general represent orthogonal
projections (except when XaX

>
a = I and XbX

>
b = I, respectively), and thus Traditional

CCA is unsuitable for common settings (such as visualization of data in an orthogonal axis)
where an orthogonal mapping is required. In these cases, a common heuristic approach is
to orthogonalize Pa and Pb to produce orthogonal mappings of the data Ya = M>a Xa and
Yb = M>b Xb. This heuristic choice, however, produces suboptimal results for the original
correlation objective of Equation 7 for all dimensions r > 1 (the r = 1 case is trivially an
orthogonal projection), as the results will show.

Our approach addresses a desire for orthogonal projections directly: with the optimiza-
tion framework of Equation 1, we can immediately write down a novel linear dimensionality
reduction method that preserves Hotelling’s original objective but is properly generalized
to produce orthogonal projections. We call this method Orthogonal CCA, maximizing the
correlation ρ (ya, yb) objective directly over orthogonal matrices:

maximize
tr
(
M>a XaX

>
b Mb

)√
tr (M>a XaX

>
a Ma) tr

(
M>b XbX

>
b Mb

)
subject to Ma ∈ Oda×r

Mb ∈ Odb×r.

(10)

9



Cunningham and Ghahramani

The resulting low-dimensional mappings are then the orthogonal projections that we desire:
Ya = M>a Xa and Yb = M>b Xb. The optimization program of Equation 10 can not be solved
with a known matrix decomposition, thus requiring a direct optimization approach. More
importantly, we point out the meaningful difference between Traditional CCA and Orthogo-
nal CCA: Traditional CCA whitens each data set Xa and Xb, and then orthogonally projects
these whitened data into a common space such that correlation is maximized. Orthogonal
CCA on the other hand preserves the covariance of the original data Xa and Xb, finding
orthogonal projections where correlation is maximized without the initial whitening step.
It is unsurprising then that these two methods should return different mappings, even when
the Traditional CCA result is orthogonalized post hoc. Accordingly, CCA demonstrates
the utility of considering linear dimensionality reduction in the framework of Equation 1;
methods can be directly written down for the objective and projection of interest, without
having to shoehorn the problem into an eigenvector decomposition.

3.1.5 Maximum Autocorrelation Factors

There are a number of linear dimensionality reduction methods that seek to preserve tem-
porally interesting structure in the projected data. A first simple example is maximum
autocorrelation factors (MAF; Switzer and Green (1984); Larsen (2002)). Suppose the
high-dimensional data X ∈ IRd×n has data points xt for t ∈ {1, ..., n}, and that the index
label t defines an order in the data. In such a setting, the structure of interest for the
low-dimensional representation may have nothing to do with modeling data covariance (like
PCA), but rather the appropriate description should include temporal structure.

Assume that there is an underlying r-dimensional temporal signal that is smooth, and
that the remaining d−r dimensions are noise with little temporal correlation (less smooth).
MAF then seeks an orthogonal projection P = M> for M ∈ Od×r so as to maximize
correlation between adjacent points yt, yt+δ, yielding the following objective:

fX(M) = ρ(yt, yt+δ) =
E(y>t yt+δ)√
E(y2

t )E(y2
t+δ)

=
E(x>t MM>xt+δ)

E(x>t MM>xt)
=

tr(M>ΣδM)

tr(M>ΣM)
, (11)

where Σ is the empirical covariance of the data E(xtx
>
t ) = 1

nXX
> and Σδ is the sym-

metrized empirical cross-covariance of the data evaluated at a one-step time lag Σδ =
1
2

(
E(xt+δx

>
t ) + E(xtx

>
t+δ)

)
. This objective results in the linear dimensionality program:

maximize
tr(M>ΣδM)

tr(M>ΣM)

subject to M ∈ Od×r,
(12)

Note again the appearance of the quotient-of-traces objective (as in LDA and CCA). Indeed,
the same heuristic (solving the trace-of-quotient problem) is typically applied to MAF, which
results in the standard choice of the top eigenvectors of Σ−1Σδ as the solution to Equation
12. Though correct in the r = 1 case, this misconception is incorrect for precisely the same
reasons as above with LDA, and its use results in the same pitfalls. Directly solving the
manifold optimization of Equation 1 presents a more straightforward option.
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MAF can be seen as a method balancing the desire for cross-covariance (Σδ) of the
data without overcounting data that has high power (the denominator containing Σ). In-
deed, such methods have been invented with slight variations in various application areas
(e.g., Cunningham and Yu (2014)). For example, one might simply ask to maximize the
cross-covariance E(y>t yt+δ) rather than the correlation itself. Doing so results in a simpler
problem than Equation 12: maximize tr(M>ΣδM) for M ∈ Od×r. In this case the eigenvec-
tor solution is optimal. Second, we may want to maximize (or minimize, as in Turner and
Sahani (2007)) the squared distance between projected points; the objective then becomes
E(||yt+δ − yt||2), which through a similar set of steps produces the similar eigenvalue prob-
lem tr

(
M>(Σ− Σδ)M

)
for M ∈ Od×r. This last choice is a discrete time analog of a more

popular method—slow feature analysis—which we discuss in the next section. Third, one
might want to specify a particular form of temporal structure in terms of a dynamics objec-
tive fX(M), and seek linear projections containing that structure. The advantage of such an
approach is that one can specify a range of dynamical structures well beyond the statistics
captured by an autocorrelation matrix. A recent simple example is Churchland et al. (2012),
who sought a linear subspace of the data where linear dynamics were preserved, namely an
M minimizing fX(M) = ||Ẋ −MDM>X||2F for some dynamics matrix D ∈ IRr×r. This
objective is but one simple choice of dynamical structure; given the canonical autonomous
system ẏ = g(y)+ε, one might similarly optimize fX(M) = ||M>Ẋ−g(M>X)||2F . Optimiz-
ing such a program finds the projection of the data that optimally expresses that dynamical
feature of interest, without danger of artificially creating that structure based on a strong
prior model (as is possible in state-space models like the Kalman filter (Kalman, 1960)).

3.1.6 Slow Feature Analysis

Similar in spirit to MAF, slow feature analysis (SFA; Wiskott and Sejnowski (2002); Wiskott
(2003)) is a linear dimensionality reduction technique developed to seek invariant represen-
tations in object recognition problems. SFA assumes that measured data, such as pixels in
a movie, can have rapidly changing values over time, whereas the identity, pose, or position
of the underlying object should move much more slowly. Thus, recovering a slowly moving
projection of data may produce a meaningful representation of the true object of interest.
Accordingly, assuming access to derivatives Ẋ = [ẋ1, ..., ẋn], SFA minimizes the trace of
the covariance of the projection tr(Ẏ Ẏ >) = tr(M>ẊẊ>M). This objective is PCA on the
derivative data:

minimize tr
(
M>ẊẊ>M

)
subject to M ∈ Od×r.

(13)

Linear SFA is the most straightforward case of the class of SFA methods. Several additional
choices are typical in SFA implementations, including: (i) data points xt ∈ X are usually
expanded nonlinearly via some feature mapping h : IRd → IRp for some p > d (a typical
choice is all monomials of degree one and two to capture linear and quadratic effects); and
(ii) data are whitened to prevent the creation of structure due to the mapping h(·) alone
before the application of the PCA-like program in Equation 13. A logical extension of this
nonlinear feature space mapping is to consider a reproducing kernel Hilbert space mapping,
as has indeed been done (Bray and Martinez, 2002). Turner and Sahani (2007) established
the connections between SFA and linear dynamical systems, giving a probabilistic interpre-
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tation of SFA that also makes different and interesting connections of this method to PCA
and its probabilistic counterpart (Section 3.2.2).

3.1.7 Sufficient Dimensionality Reduction

Consider a supervised learning problem with high dimensional covariates X ∈ IRd×n and
responses Z ∈ IR`×n. The concept behind sufficient dimensionality reduction is to find an
orthogonal projection of the data Y = M>X ∈ IRr×n such that the reduced-dimension
points Y capture all statistical dependency between X and Z. Thus, sufficient dimensional-
ity reduction (SDR) is a problem of feature selection that seeks an M ∈ Od×r which makes
covariates and responses conditionally independent:

pZ|X(z|x) = pZ|M>X(z|M>x) ⇐⇒ Z ⊥⊥ X|M>X. (14)

SDR is in fact a class of methods, as there are a number of ways one might derive an objective
for such a conditional independence relationship. Particularly popular in machine learning
is the use of kernel mappings to characterize the conditional independence relationship
of Equation 14 (Fukumizu et al., 2004, 2009; Nilsson et al., 2007). The essential idea in
these works is to map covariates X and responses Z into reproducing kernel Hilbert spaces,
where it has been shown that, for universal kernels, cross-covariance operators can be used
to determine conditional independence of X and Z (Fukumizu et al., 2004; Gretton et al.,
2012, 2005). Such an approach induces a cost function on the projection:

fX(M) = J(Z,M>X) := tr
(
K̄Z

(
K̄M>X + nεI

)−1
)
, (15)

where K̄Z =
(
I − 1

n11>
)
KZ

(
I − 1

n11>
)

is the centered Gram matrix KZ = {k(zi, zj)}ij
(and similar for K̄M>X). Critically, this cost function is provably larger than J(Z,X), with
equality if and only if the desired conditional independence of Equation 14 holds. Thus, we
have the following linear dimensionality reduction program:

minimize tr
(
K̄Z

(
K̄M>X + nεI

)−1
)

subject to M ∈ Od×r.
(16)

SDR has been extended to the unsupervised case (Wang et al., 2010) and has been imple-
mented with other objectives such as the Hilbert-Schmidt independence criterion (Gretton
et al., 2005). An important review of non-kernel SDR techniques is Adragni and Cook
(2009), in addition to earlier work (Li, 1991).

3.1.8 Locality Preserving Projections

All methods considered thus far stipulate objectives based on global loss functions, which
can be sensitive to outliers and can be significantly distorted by nonlinear structure in the
data. A popular alternative throughout machine learning is to consider local neighborhood
structure. In the case of dimensionality reduction, considering locality often amounts to
constructing a neighborhood graph of the training data, and using that graph to define
the loss function. Numerous nonlinear methods have been proposed along these lines (see
Section 3.3), and this development has led to a few important linear methods that consider
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local structure. First, locality preserving projections (LPP) (He and Niyogi, 2004) is a
direct linear interpretation of Laplacian Eigenmaps (Belkin and Niyogi, 2003). LPP begins
by defining a graph with each data point xi ∈ IRd as a vertex, connecting xi and xj with
the edge δi,j if these points are in the same ε neighborhood (that is, ||xi − xj || < ε). A
kernel (typically the squared exponential kernel) is then used to weight the existing edges.
The cost of the reconstruction yi = Pxi is then:

n∑
i=1

n∑
j=1

||Pxi − Pxj ||22Wij , where Wij = δi,j exp

{
−1

τ
||xi − xj ||22

}
. (17)

Through a few standard steps (see for example Belkin and Niyogi (2003); He and Niyogi
(2004)), this objective results in the linear dimensionality objective:

minimize tr
(
PXLX>P>

)
subject to PXDX>P> = I,

(18)

where the matrix D is diagonal with the column sums of W , namely Dii =
∑

jWij , and
L = D − W is the Laplacian matrix. Note that this constraint set is sometimes called
a flag matrix manifold. As in Traditional CCA (Section 3.1.4), LPP can be solved to
produce the matrix P with columns equal to the generalized eigenvectors vi satisfying
XLX>vi = λiXDX

>vi, by implicitly solving an orthogonally constrained optimization
over M = (XDX>)1/2P> ∈ Od×r:

minimize tr
(
M>(XDX>)−>/2XLX>(XDX>)−1/2M

)
subject to M ∈ Od×r.

(19)

Note again that the resulting linear mapping Y = PX = M>(XDX>)−>/2X is not an
orthogonal projection.

Related to LPP, neighborhood preserving embedding (NPE) (He et al., 2005) has a
largely parallel motivation. NPE is a linear analogue to locally linear embedding (Roweis
and Saul, 2000) that produces a different linear approximation to the Laplace Beltrami
operator, resulting in the objective:

minimize tr
(
M>(XX>)−>/2X(I −W )>(I −W )X>(XX>)−1/2M

)
subject to M ∈ Od×r,

(20)

where the matrix W is the same in LPP. We group these methods together due to their
similarity in motivation and resulting objective.

3.2 Linear dimensionality reduction with unconstrained objectives

All methods reviewed so far involve orthogonal mappings, but several methods simplify
further to an unconstrained optimization over matrices M ∈ IRd×r. We describe those
linear dimensionality reduction methods here.
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3.2.1 Undercomplete Independent Component Analysis

Independent Component Analysis (ICA; Hyvarinen et al. (2001)) is a massively popular class
of methods that is often considered alongside PCA and other simple linear transformations.
ICA specifies the usual data X ∈ IRd×n as a mixture of unknown and independent sources
Y ∈ IRr×n. Note the critical difference between the independence requirement and the
uncorrelatedness of PCA and other methods: for each source data point y = [y1, ..., yr]> ∈
IRr (one column of Y ), independence implies p(y) ≈

∏r
j=1 p

(
yj
)
, where the p

(
yj
)

are the
univariate marginals of the low dimensional data (sources).

ICA finds the demixing matrix P such that we recover the independent sources as
Y = PX. The vast majority of implementations and presentations of ICA deal with the
dimension preserving case of r = d, and indeed most widely used algorithms require this
parity. In this case, ICA is not a dimensionality reduction method.

Our case of interest for dimensionality reduction is the ‘undercomplete’ case where r < d,
in which case Y = PX is a linear dimensionality reduction method according to Definition 1.
Interestingly, the most common approach to undercomplete ICA is to preprocess the mixed
data X with PCA (e.g., Joho et al. (2000)), reducing the data to r dimensions, and running
a standard square ICA algorithm. That said, there are a number of principled approaches
to undercomplete ICA, including (Stone and Porrill, 1998; Zhang et al., 1999; Amari, 1999;
De Ridder et al., 2002; Welling et al., 2004). All of these models necessarily involve a
probabilistic model, required by the independence of the sources. As an implementation
detail, note that observations X are whitened as a preprocessing step.

With this model, authors have maximized the log-likehood of a generative model (De Rid-
der et al., 2002) or minimized the mutual information between the sources (Stone and Porrill,
1998; Amari, 1999; Zhang et al., 1999), each of which requires an approximation technique.
Welling et al. (2004) describes an exact algorithm for maximizing the log-likelihood of a
product of experts objective:

fX(M) =
1

n

n∑
i=1

log p(xi) ∝ 1

2
log |M>M |+ 1

n

n∑
i=1

r∑
k=1

log pθ

(
m>k xi

)
, (21)

where mk are the (unconstrained) columns of M , and pθ(·) is a likelihood distribution
(an “expert”) parameterized by some θk. Thus this undercomplete ICA, as an optimization
program like Equation 1, is a simple unconstrained maximization of fX(M) over M ∈ IRd×r.

Extensions of ICA are numerous. Insomuch as undercomplete ICA is a special case of
ICA, many of these extensions will also be applicable in the undercomplete case; see the
reference Hyvarinen et al. (2001).

3.2.2 Probabilistic PCA

One often-noted shortcoming of PCA is that it partitions data into orthogonal signal (the
r-dimensional projected subspace) and noise (the (d − r)-dimensional nullspace of M>).
Furthermore, PCA lacks an explicit generative model. Probabilistic PCA (PPCA; Tip-
ping and Bishop (1999); Roweis (1997); Theobald (1975)) adds a prior to PCA to address
both these potential concerns, treating the high-dimensional data to be a linear mapping
of the low-dimensional data (plus noise). If we stipulate some latent independent, iden-
tically distributed r-dimensional data yi ∼ N (0, Ir) for i ∈ {1, ..., n}, and we presume
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that the high-dimensional data is a noisy linear mapping of that low-dimensional data
xi|yi ∼ N (Myi, σ

2
ε I) for some given or estimated noise parameter σ2

ε . This model yields a
natural objective with the total (negative log) data likelihood, namely:

fX(M) = − log p(X|M) ∝ log |MM> + σ2
ε I|+ trace

(
(MM> + σ2

ε I)−1XX>
)
. (22)

Mapping this onto our dimensionality reduction program, we want to minimize the neg-
ative log likelihood fX(M) over an arbitrary matrix M ∈ IRd×r. Appendix A of Tip-
ping and Bishop (1999) shows that this objective can be minimized in closed form as

M = Ur(Sr − σ2
ε I)

1
2 where 1

nXX
> = USU> is the singular value decomposition of the em-

pirical covariance, and Ur denotes the first r columns of U (ordered by the singular values).
Tipping and Bishop (1999) also show that the noise parameter σ2

ε can be solved in closed
form, resulting in a closed-form maximum likelihood solution to the parameters of PPCA.
This closed-form obviates a more conventional expectation-maximization (EM) approach
(Dempster et al., 1977), though in practice EM is still used with the Sherman-Morrison-
Woodbury matrix inversion lemma for computational advantage when d � r. Under this
statistical model, the low-dimensional mapping of the observed data is the mean of the pos-
terior p(Y |X), which also corresponds to the MAP estimator: Y = M>(MM>+ σ2

ε I)−1X,
which again fits the form of linear dimensionality reduction Y = PX.

As with PCA, there are a number of noteworthy extensions to PPCA. Ulfarsson and
Solo (2008) add an `2 regularization term to the PPCA objective. This regularization can
be viewed as placing a Gaussian shrinkage prior p(M) on the entries of M , though the
authors termed this choice more as a penalty term to drive a sparse solution. A different
choice of regularization is found in “Directed” PCA (Kao and Van Roy, 2013), where a
trace penalty on the inverse covariance matrix is added. Finally, more generally, several of
the extensions noted in Section 3.1.1 are also applicable to the probabilistic version.

3.2.3 Factor Analysis

Factor analysis (FA; Spearman (1904)) has become one of the most widely used statistical
methods, in particular in psychology and behavioral sciences. FA is a more general case of a
PPCA model: the observation noise is fit per observation rather than across all observations,
resulting in the following conditional data likelihood: xi|yi ∼ N (Myi, D) for a diagonal
matrix D, where the matrix M is typically termed factor loadings. This choice can be
viewed as a means to add scale invariance to each measurement, at the cost of losing
rotational invariance across observations. Following the same steps as in PPCA, we arrive
at the linear dimensionality reduction program:

minimize log |MM> +D|+ trace
(

(MM> +D)−1XX>
)

(23)

which results in a similar linear dimensionality reduction mapping Y = PX for P =
M>(MM> + D)−1. Unlike PPCA, FA has no known closed-form solution, and thus an
expectation-maximization algorithm (Dempster et al., 1977) or direct gradient method is
typically used to find a (local) optimum of the log likelihood. Extensions similar to those
for PPCA have been developed for FA (see for example Kao and Van Roy (2013)).

15



Cunningham and Ghahramani

3.2.4 Linear Regression

Linear regression is one of the most basic and popular tools for statistical modeling. Though
not typically considered a linear dimensionality reduction method, this technique maps d-
dimensional data onto an r-dimensional hyperplane defined by the number of independent
variables. Considering d-dimensional data X as being partitioned into inputs and outputs
X = [Xin;Xout] for inputs Xin ∈ IRr×n and outputs Xout ∈ IR(d−r)×n, linear regression fits
Xout ≈ MXin for some parameters M ∈ IR(d−r)×r. The standard choice for fitting such a
model is to minimize a simple sum-of-squared-errors objective fX(M) = ||Xout−MXin||2F ,
which leads to the least squares solution M = XoutX

>
in(XinX

>
in)−1. In the form of Equation

1, linear regression is:

minimize ||Xout −MXin||2F (24)

This model produces a regressed data set X̂ = [Xin;MXin] = [I;M ]Xin. Note that [I;M ]
has rank r (the data lie on a r-dimensional subspace) and thus Definition 1 applies. To find
the dimensionality reduction mapping P , we simply take the SVD [I;M ] = USV > and set
P = [SV > 0] where 0 is the (d−r)× (d−r) matrix of zeroes. The low dimensional mapping
of the original data X then takes the standard form Y = PX. Chapter 3 of Hastie et al.
(2008) gives a thorough introduction to linear regression and points out (Equation 3.46)
that the least squares solution can be viewed as mapping the output Xout in a projected
basis. Adragni and Cook (2009) point out linear regression as a dimensionality reduction
method in passing while considering the case of sufficient dimensionality reduction (see
SDR, Section 3.1.7, for more detail).

An important extension to linear regression is regularization for bias-variance tradeoff,
runtime performance, or interpretability of results. The two most popular include adding
an `2 (ridge or Tikhonov regression) or an `1 penalty (lasso), resulting in the objective:

minimize ||Xout −MXin||2F + λ||M ||p (25)

for some penalty λ. While the `2 case can be solved in closed form as an augmented
least squares, the `1 case requires a quadratic program (Tibshirani, 1996); though the
simple quadratic program formulation scales poorly (Boyd et al., 2011; Bach et al., 2011).
Regardless, both methods produce an analogous form as in standard linear regression,
resulting in a linear dimensionality reduction Y = PX for P = [SV > 0] as above.

Another important extension, particularly given the present subject of dimensionality
reduction, is principal components regression and partial least squares (Hastie et al., 2008).
Principal components regression uses PCA to preprocess the input variables Xin ∈ IRr×n
down to a reduced X̃in ∈ IRr̃×n, where r̃ is chosen by computational constraints, cross-
validation, or similar. Standard linear regression is then run on the resulting components.
This two-stage method (first PCA, then regression) can produce deeply suboptimal results,
a shortcoming which to some extent is answered by partial least squares. Partial least
squares is another classical method that trades off covariance of Xin (as in the PCA step
of principal components regression) and predictive power (as in linear regression). Indeed,
partial least squares has been shown to be a compromise between linear regression and
principal components regression, using the framework of continuum regression (Stone and
Brooks, 1990). Even still, the partial least squares objective is heuristic and is carried

16



Linear Dimensionality Reduction

out on r dimensions in a greedy fashion. Bakır et al. (2004) approached the rank-r linear
regression problem directly, writing the objective in the form of Equation 1 as:

minimize ||Xout −MoutSM
>
inXin||2F

subject to Mout ∈ Odout×r

Min ∈ Odin×r,
(26)

where S is a nonnegative diagonal matrix, and the optimization program is over the variables
{Min,Mout, S}. This method can again be solved as an example of Equation 1.

3.2.5 Distance Metric Learning

Distance metric learning (DML) is an important class of machine learning methods that is
typically motivated by the desire to improve a classification method. Numerous algorithms—
canonical examples include k-nearest neighbors and support vector machines—calculate dis-
tances between training points, and the performance of these algorithms can be improved
substantially by a judicious choice of distance metric between these points. Many objectives
have been proposed to learn these distance metrics; a seminal work is Xing et al. (2002),
and thorough surveys of this literature include Kulis (2012); Yang and Jin (2006); Yang
(2007).

In the linear case, to generalize beyond Euclidean distance, distance metric learning seeks
a Mahalanobis distance dM (xi, xj) = ||M>xi −M>xj ||2 = ||xi − xj ||MM> that improves
some objective on training data. When M ∈ IRd×d is full rank, this approach is not
a dimensionality reduction. However, as is often noted in that literature, a lower rank
M ∈ IRd×r for r < d implies a linear mapping of the data to some reduced space where
classification (or another objective) is hopefully improved, thus implicitly defining a linear
dimensionality reduction method.

Numerous methods have been introduced in the DML literature. Here for clarity we
survey one representative method in depth and incorporate other popular approaches from
this literature thereafter. Large margin nearest neighbors (LMNN; Weinberger et al. (2005);
Torresani and Lee (2006); Weinberger and Saul (2009)) assumes labeled data: (xi, zi), such
that zi ∈ {1, ..., C} for the C data classes. LMNN typically begins by identifying a target
neighbor set η(i) for each data point xi, which, in the absence of side information, is simply
the k nearest neighbors belonging to the same class zi as point xi. The key intuition behind
LMNN is that a distance metric dM (xi, xj) is desired such that target neighbors are pulled
closer together than any points belonging to a different class, ideally with a large margin.
Accordingly, LMNN optimizes the following objective:

fX(M) =
n∑
i=1

∑
j∈η(i)

(
dM (xi, xj)

2 + λ

n∑
`=1

1(zi 6= z`)
[
1 + dM (xi, xj)

2 − dM (xi, x`)
2
]
+

)
,

(27)
where 1(·) is the indicator function for the class labels zi, z`, and [·]+ is the hinge loss.
Intuitively, the first term of the right hand side pulls target neighbors closer together, while
the second term penalizes (with weight λ) any points x` that are closer to xi than its target
neighbors xj (plus some margin), and have a different label (zi 6= z`).
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As a dimensionality reduction technique, this objective is readily optimized over M ∈
IRd×r, to produce a low dimensional mapping of the data Y = M>X. Beyond LMNN, other
prominent methods explore slightly different objectives with similar motivations. Examples
include relevant component analysis for DML (Bar-Hillel et al., 2003), neighborhood com-
ponent analysis (Goldberger et al., 2004), collapsing classes (Globerson and Roweis, 2005),
discriminative component analysis (Peltonen et al., 2007), latent coincidence analysis (Der
and Saul, 2012), and an online, large-scale method (Chechik et al., 2009). Many of these
works also offer kerneled extensions for nonlinear DML.

3.3 Scope Limitations

Definition 1 limits our scope and excludes a number of algorithms that could be considered
dimensionality reduction methods. Here we consider four prominent cases that fall outside
the definition of linear dimensionality reduction.

3.3.1 Nonlinear Manifold Methods

The most obvious methods to exclude from linear dimensionality reduction are nonlinear
manifold methods, the most popular of which include Local Linear Embedding (Roweis and
Saul, 2000), Isomap (Tenenbaum et al., 2000), Laplacian eigenmaps (Belkin and Niyogi,
2003), maximum variance unfolding (Weinberger and Saul, 2006) and diffusion maps (Coif-
man and Lafon, 2006). These methods seek a nonlinear manifold by using local neigh-
borhoods, geodesic distances, or other graph theoretic considerations. Thus, while these
methods are an important contribution to dimensionality reduction, they do not produce
low-dimensional data as Y = PX for any P . It is worth noting that some of these problems,
such as Laplacian eigenmaps, do involve a generalized eigenvector problem in their deriva-
tion, though typically those eigenproblems are the direct solution to a stated objective and
not the heuristic that is more often seen in the linear setting (and that motivates the use
of direct optimization). A concise introduction to nonlinear manifold methods is given in
Zhao et al. (2007), an extensive comparative review is Van der Maaten et al. (2009), and a
probabilistic perspective on many spectral methods is given in Lawrence (2012).

3.3.2 Nonparametric Methods

One might also consider classical methods from linear systems theory, like Kalman filtering
or smoothing (Kalman, 1960), as linear dimensionality reduction methods. Even more
generally, nonparametric methods like Gaussian Processes (Rasmussen and Williams, 2006)
also bear some similarity. The key distinction with these algorithms is that our definition
of linear dimensionality is parametric: P ∈ IRr×d is a fixed mapping and does not change
across the dataset or some other index. Certainly any nonparametric method violates this
restriction, as by definition the transformation mapping must grow with the number of data
points. In the Kalman filter, for example, the mapping (which is indeed linear) between
each point xi and its low-dimensional projection yi changes with each data point (based on
all previous data), so in fact this method is also a nonparametric mapping that grows with
the number of data points n. This same argument applies to most state-space models and
subspace identification methods, including the linear quadratic regulator, linear quadratic
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Gaussian control, and similar. Hence these other classic methods also fall outside the scope
of linear dimensionality reduction.

3.3.3 Matrix Factorization Problems

A few methods discussed in this work have featured matrix factorizations, and indeed
there are many other methods that involve such a decomposition in areas like indexing
and collaborative filtering. This general class certainly bears similarity to dimensionality
reduction, in that it uses a lower dimensional set of factors to reconstruct noisy or missing
high-dimensional data (for example, classical latent semantic indexing is entirely equivalent
to PCA (Deerwester et al., 1990)). A common factorization objective is to find H ∈ IRd×r
and Y ∈ IRr×n such that the product HY reasonably approximates X according to some
criteria. The critical difference between these methods and linear dimensionality reduction
is that these methods do not in general yield a sensible linear mapping Y = PX, but rather
the inverse mapping from low-dimension to high-dimension. While this may seem a trivial
and invertible distinction, it is not: specifics of the method often imply that the inverse
mapping is nonlinear or ill-defined. To demonstrate why this general class of problem
falls outside the scope of linear dimensionality reduction, we detail two popular examples:
nonnegative matrix factorization and matrix factorization as used in collaborative filtering.

Nonnegative matrix factorization (NMF; Lee and Seung (1999), sometimes called multi-
nomial PCA (Buntine, 2002)), solves the objective fX(H,Y ) = ||X−HY || for a nonnegative
linear basis H ∈ IRd×r+ and a nonnegative low-dimensional mapping Y ∈ IRr×n+ . The critical
difference with our construction is that NMF is not linear: there is no P such that Y = PX
for all points xi. If we are given H and a test point xi, we must do the nonlinear solve
yi = argminy≥0||xi−Hy||2. A simple counterexample is to take an existing point xj and its
nonnegative projection yj (which we assume is not zero). If we then test on −xj , certainly
we can not get −yj as a valid nonnegative projection.

A second example is the broad class of matrix factorization problems as used in collab-
orative filtering, which includes weighted low-rank approximations (Srebro and Jaakkola,
2003), maximum margin matrix factorization (Srebro et al., 2004; Rennie and Srebro, 2005),
probabilistic matrix factorization (Mnih and Salakhutdinov, 2007), and more. As above,
collaborative filtering algorithms approximate data X with a low-dimensional factor model
HY . However, the goal of collaborative filtering is to fill in the missing entries of X (e.g., to
make movie or product recommendations), and indeed the data matrix X is usually missing
the vast majority of its entries. Thus, not only is there no explicit dimensionality reduction
Y = PX, but that operation is not even well defined for missing data.

More broadly, there has been a longstanding literature in linear algebra of low rank
approximations and matrix nearness problems, often called Procrustes problems (Higham,
1989; Li and Hu, 2011; Ruhe, 1987; Schonemann, 1966). These optimization programs
have the objective fX(M) = ||X −M || for some norm (often a unitarily invariant norm,
most commonly the Frobenius norm) and some constrained, low-rank matrix M . PCA
would be an example, considering X as the data (or the covariance) and M as the r-
rank approximation thereof. While a few linear dimensionality reduction methods can be
written as Procrustes problems, not all can, and thus nothing general can be claimed about
the connection between Procrustes problems and the scope of this work.
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Table 1: Summary of Linear Dimensionality Reduction Methods

Method Objective fX(M) Manifold M Mapping Y = PX

PCA (§3.1.1) ||X −MM>X||2F Od×r M>X

MDS (§3.1.2)
∑
i,j

(
dX(xi, xj)− dY (M>xi,M>xj)

)2 Od×r M>X

LDA (§3.1.3)
tr(M>ΣBM)

tr(M>ΣWM)
Od×r M>X

Traditional
CCA (§3.1.4)

tr
(
M>a (XaX

>
a )−1/2XaX

>
b (XbX

>
b )−1/2Mb

)
Oda×r ×Odb×r M>a

(
XaX

>
a

)−1/2
Xa,

M>b
(
XbX

>
b

)−1/2
Xb

Orthogonal
CCA (§3.1.4)

tr
(
M>a XaX

>
b Mb

)
√

tr(M>a XaX>a Ma)tr(M>b XbX
>
b
M
b)

Oda×r ×Odb×r M>a Xa , M>b Xb

MAF (§3.1.5)
tr(M>ΣδM)

tr(M>ΣM)
Od×r M>X

SFA (§3.1.6) tr(M>ẊẊ>M) Od×r M>X

SDR (§3.1.7) tr
(
K̄Z

(
K̄M>X + nεI

)−1
)

Od×r M>X

LPP (§3.1.8) tr
(
M>(XDX>)−>/2XLX>(XDX>)−1/2M

)
Od×r M>(XDX>)−>/2X

UICA (§3.2.1) 1
2

log |M>M |+ 1
n

∑n
i=1

∑r
k=1 log fθ

(
m>k xn

)
IRd×r M>X

PPCA (§3.2.2) log |MM> + σ2I|+ tr
(
XX>(MM> + σ2I)−1

)
IRd×r M>(MM> + σ2I)−1X

FA (§3.2.3) log |MM> +D|+ tr
(
XX>(MM> +D)−1

)
IRd×r M>(MM> +D)−1X

LR (§3.2.4) ||Xout −MXin||2F + λ||M ||p IRd×r SV >Xin for M = USV >

DML (§3.2.5)

∑
i,j∈η(i)

{
dM (xi, xj)

2 + λ
∑
` 1(zi 6= z`)[

1 + dM (xi, xj)
2 − dM (xi, x`)

2
]
+

} IRd×r M>X

3.4 Summary of the framework

Table 1 offers a consolidated summary of these methods. Considering linear dimensionality
reduction through the lens of a constrained matrix optimizaton enables a few key insights.
First, as is the primary purpose of this paper, this framework surveys and consolidates
the space of linear dimensionality reduction methods. It clarifies that linear dimensional-
ity reduction goes well beyond PCA and can require much more than simply eigenvalue
decompositions, and also that many of these methods bear significant resemblance to each
other in spirit and in detail. Second, this consolidated view suggests that, since optimiza-
tion programs over well-understood matrix manifolds address a significant subclass of these
methods, an objective-agnostic solver over matrix manifolds may provide a useful generic
solver for linear dimensionality reduction techniques.
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4. Results

All methods considered here have specifiedM as either unconstrained matrices or matrices
with orthonormal columns, variables in the space IRd×r. In the unconstrained case, nu-
merous standard optimizers can and have been brought to bear to optimize the objective
fX(M). In the orthogonal case, we have also claimed that the very well-understood ge-
ometry of the manifold of orthogonal matrices enables optimization over these manifolds.
Pursuing such approaches is critical to consolidating and extending dimensionality reduc-
tion, as orthogonal projections Y = M>X for M ∈ Od×r are arguably the most natural
formulation of linear dimensionality reduction: one seeks a low-dimensional view of the data
where some feature is optimally preserved.

The matrix family Od×r is precisely the real Stiefel manifold, which is a compact, em-
bedded submanifold of IRd×r. In our context, this means that many important intuitions
of optimization can be carried over onto the Stiefel manifold. Notably, with a differentiable
objective function fX(M) and its gradient ∇Mf , one can carry out standard first order opti-
mization via a projected gradient method, where the unconstrained gradient is mapped onto
the Stiefel manifold for gradient steps and linesearches. Second order techniques also exist,
with some added complexity. The foundations of these techniques are Luenberger (1972);
Gabay (1982), both of which build on classic and straightforward results from differential
geometry. More recently, Edelman et al. (1998) sparked significant interest in optimization
over matrix manifolds. Some relevant examples include Manton (2002, 2004); Fiori (2005);
Nishimori and Akaho (2005); Abrudan et al. (2008); Ulfarsson and Solo (2008); Srivastava
and Liu (2005); Rubinshtein and Srivastava (2010); Varshney and Willsky (2011). Indeed,
some of these works have been in the machine learning community (Fiori, 2005; Ulfarsson
and Solo, 2008; Varshney and Willsky, 2011), and some have made the connection of geo-
metric optimization methods to PCA (Srivastava and Liu, 2005; Ulfarsson and Solo, 2008;
Rubinshtein and Srivastava, 2010; Varshney and Willsky, 2011). The basic geometry of this
manifold, as well as optimization over Riemannian manifolds, has been often presented and
is now fairly standard. For completeness, we include a primer on this topic in Appendix
A. There, as a motivating example, we derive the tangent space, the projection operation,
and a retraction operation for the Stiefel manifold. Appendix A then includes Algorithm 1,
which uses these objects to present an optimization routine that performs gradient descent
over the Stiefel manifold. For a thorough treatment, we refer the interested reader to the
excellent summary of much of this modern work (Absil et al., 2008).

One important technical note warrants mention here. The Stiefel manifold is the man-
ifold of all ordered r-tuples of orthonormal vectors in IRd, but in some cases the dimen-
sionality reduction objective fX(·) evaluates only the subspace (orthonormal basis) implied
by M , not the particular choice and order of the orthonormal vectors in M . This class
of objective functions is precisely those functions fX(M) such that, for any r × r orthogo-
nal matrix R, fX(M) = f(MR). The implied constraint in these cases is the manifold of
rank-r subspaces in IRd, which corresponds to the real Grassmann manifold Gd×r (another
very well understood manifold). As a clarifying example, note that the PCA objective
is redundant on the Stiefel manifold: if we want the highest variance r-dimensional pro-
jection of our data, the parameterization of those r dimensions is arbitrary, and indeed
f(M) = ||X −MM>X||2F = f(MR) for any orthogonal R. If one is particularly inter-
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ested in ranked eigenvectors, there are standard numerical tricks to break this equivalence
and produce an ordered result: for example, maximizing tr(AM>XX>M) over the Stiefel
manifold, where A is any diagonal matrix with ordered elements (A11 > ... > Arr). From
the perspective of optimization and linear dimensionality reduction, the difference between
the Grassmann and Stiefel manifold is one of identifiability. Since there is an uncountable
set of Stiefel points corresponding to a single Grassmann point, it seems sensible for many
reasons to optimize over the Grassmann manifold when possible (though, as our results will
show, this distinction empirically mattered very little). Indeed, most of the optimization
literature noted above also deals with the Grassmann case, and the techniques are simi-
lar. Conveniently, an objective fX(M) can be quickly tested for the true implied manifold
by comparing values of fX(MR) for various R. Because the end result is still a matrix
M ∈ Od×r (which happens to be in a canonical form in the Grassmann case), this fact
truly is an implementation detail of the algorithm, not a fundamental distinction between
different linear dimensionality reduction methods. Thus, we present our results as agnostic
to this choice, and we empirically revisit the question of identifiability at the end of this
section.

To demonstrate the effectiveness of these optimization techniques, we implemented a
variety of linear dimensionality reduction methods with several solvers: first order steepest
descent methods over the Stiefel and Grassmann manifolds, and second order trust region
methods over the Stiefel and Grassmann manifolds (Absil et al., 2008). We implemented
these methods in MATLAB, both natively for first order methods, and using the excellent
manopt software library (Boumal et al., 2014) for first and second order methods. All of
these solvers accept, as input, data X and any function that evaluates a differential objective
fX(M) and its gradient ∇Mf at any point M ∈ Od×r, and return, as output, an orthogonal
M that corresponds to a (local) optimum of the objective fX(M).

4.1 Example of eigenvector suboptimality

We have cautioned throughout the above survey about the suboptimality of heuristic eigen-
vector solutions. Figure 1 demonstrates this suboptimality for LDA (Section 3.1.3). In
each panel (A and B), we simulated data of dimensionality d = 3, with n = 3000 points,
corresponding to 1000 points in each of 3 clusters (shown in black, blue, and red). Data
in each cluster were normally distributed with random means (normal with standard de-
viation 5/2) and random covariance (uniformly distributed orientation and exponentially
distributed eccentricity with mean 5). In the left subpanel of panel A, we then calculated
the r = 2 dimensional projection by orthogonalizing the top two eigenvectors of the matrix
Σ−1
W ΣB (‘Heuristic LDA’). In the right subpanel, we directly optimized the objective of

Equation 6 over Od×r (‘Orthogonal LDA’). We calculate the normalized improvement of
the manifold method as:

−
(
fX
(
M (orth)

)
− fX

(
M (eig)

))∣∣fX (M (eig)
)∣∣ . (28)

Throughout the results we will call the results of traditional eigenvector approaches M (eig)

and the results of our manifold solver M (orth). Figure 1A shows an example where both the
heuristic and manifold optimization methods return qualitatively similar results, and indeed
the numerical improvement (0.02) reflects that indeed this heuristic is by no means wildly
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Figure 1: Cautionary example of differences in objectives for LDA. Panel A shows a dataset that offers only
marginal performance gain by using manifold optimization (Orthogonal LDA, right subpanel
of panel A) rather than the traditional eigenvector heuristic (Heuristic LDA, left subpanel).
Panel B shows a dataset that has a stark difference between the two methods. The measured
performance difference (see Equation 28) is shown.

inappropriate for the stated objective. Indeed, we know it to be correct for r = 1. Figure
1B shows a particularly telling example: both methods distinguish the red cluster easily,
whereas the heuristic method confounds the black and blue clusters, while the optimization
approach offers better separability, which indeed correlates with improvement on the stated
objective of Equation 6. It is critical to clarify the distinction between these two methods:
the heuristic and orthogonal solutions are indeed optimal, but for different objectives, as
discussion in Section 3.1.3. Thus, the purpose of this cautionary example is to highlight the
importance of optimizing the intended objective, and the freedom to choose that objective
without a tacit connection to a generalized eigenvalue problem. These goals can be directly
and generically achieved with the optimization framework of Equation 1.

4.2 Performance improvement

Here we seek to demonstrate the quantitative improvements available by directly optimizing
an objective, rather than resorting to an eigenvector heuristic. First we implemented PCA
(Section 3.1.1) using both methods. We ran PCA on 20 random data sets for each dimen-
sionality d ∈ {4, 8, 16, ..., 1024}, each time projecting onto r = 3 dimensions. Data were
normally distributed with random covariance (exponentially distributed eccentricity with
mean 2). We calculated fX

(
M (eig)

)
and fX

(
M (orth)

)
from Equation 2, and we calculated

the normalized improvement of the manifold method as above in Equation 28. Since the
eigenvector decomposition is provably optimal for PCA, our method should demonstrate
no improvement. Indeed, Figure 2 (purple trace) shows the distribution of normalized im-
provements for PCA is entirely 0 in panel A. We then repeated this analysis for a fixed
data dimensionality d = 100 (generating data as above), now ranging the projected dimen-
sionality r ∈ {1, 2, 5, 10, 20, 40, 80}. These results are shown in Figure 2B, and again, the
optimization approach recovers the known PCA optima precisely. This confirmatory result
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Figure 2: Performance comparison between heuristic solvers and direct optimization of linear dimensional-
ity reduction objectives. The vertical axis denotes normalized improvement of the optimization
program over traditional approaches. Panel A shows dimensionality reduction over a range of
data dimensionalities d ∈ {4, 8, 16, ..., 1024}, with r = 3 projected dimensions. Panel B shows
dimensionality reduction over a range of projected dimensionalities r ∈ {1, 2, 5, 10, 20, 40, 80},
with d = 100 data dimensions. Each method was run 20 times independently for each choice
of (d, r), and the error bars represent median performance improvement and the central 50th
percentile of the distribution.

also shows, pleasingly, that there is no empirical downside (in terms of accuracy) to using
manifold optimization.

We next repeated the same experiment for LDA (Section 3.1.3). We generated data
with 1000 data points in each of d classes, where within class data was generated according
to a normal distribution with random covariance (uniformly distributed orientation and
exponentially distributed eccentricity with mean 5), and each class mean vector was ran-
domly chosen (normal with standard deviation 5/d). We compared the suboptimal LDA
heuristic M (eig) (orthogonalizing the top r eigenvectors of Σ−1

W ΣB) to the direct optimiza-
tion of fX(M) = tr(M>ΣBM)/tr(M>ΣWM), which produced M (orth). Unlike in PCA,
Figure 2 (green traces) shows that directly addressing the LDA objective produces signif-
icant performance improvements. The green trace is plotted at the median, and the error
bars show the median 50% of the distribution of performance improvements across both
data dimensionality d (panel A) and projected dimensionality r (panel B).

We next implemented Traditional CCA and Orthogonal CCA as introduced in Section
3.1.4, which yield the blue performance distributions shown in Figure 2A and B. Dataset
Xa was generated by a random linear transformation of a latent dataset Z (iid standard
normal points with dimensionality of d/2; the random linear transformation had the same
distribution), plus noise, and dataset Xb was generated by a different random linear trans-
formation of the same latent Z, plus noise. Again we see significant improvement of direct
Orthogonal CCA over orthgonalizing Traditional CCA, when evaluated under the correla-
tion objective of Equation 10. First, we note that to be conservative in this case we omit
the denominator term from the improvement metric (Equation 28); that is, we do not nor-
malize CCA improvements. CCA has a correlation objective, which is already a normalized
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quantity, and thus renormalizing would increase these improvements. More importantly,
it is essential to note that we do not claim any suboptimality of Hotelling’s Traditional
CCA in solving Equation 8. Rather, it is the subsequent heuristic choice of orthogonalizing
the resulting mapping that is problematic. In other words, we show that if one seeks an
orthogonal projection of the data, as is often desired in practice, one should do so directly.
Our CCA results demonstrate the substantial underperformance of eigenvector heuristics
in this case, and our generic solver allows a direct solution without conceptual difficulty.

Finally, we implemented MAF as introduced in Section 3.1.5, where we generated data
by a random linear transformation (uniformly distributed entries on [0, d−1/2]) of d di-
mensions of univariate random temporal functions, which we generated with cubic splines
with four randomly located knots (uniformly distributed in the domain, standard normally
distributed in range), plus noise. MAF is another method that has been solved using an
eigenvector heuristic, and the performance improvement is shown in red in Figure 2.

In total, Figure 2 offers some key points of interpretation. First, note that no data lie in
the negative halfplane (see black dashed line atop the purple line at 0). Though unsurprising,
this is an important confirmation that the optimization program performs unambiguously
better than or equal to heuristic methods. Second, methods other than PCA produce
approximately 10% improvement using direct optimization, a significant improvement that
suggests the broad use of this optimization framework. Third, a natural question for these
nonconvex programs is that of local optima. We found that, across a wide range of choices
for d and r, nearly all methods converged to the same optimal value whether started at a
random M or started at the heuristic point M (eig). Deeper characterization of local optima
should be highly dependent on the particular objective and is beyond the scope of this work.
Third, we note that methods sometimes have performance equal to the heuristic method;
indeed M (eig) is sometimes a local optimum. We found empirically that larger r makes this
less likely, and larger d makes this more likely.

A significant point of interpretation is that of size of average performance. We stress
that these data sets were not carefully chosen to demonstrate effect. Indeed, we are able
to adversarially choose data to create much larger performance improvements, and simi-
larly we can choose datasets that demonstrate no effect. Thus, one should not infer from
Figure 2 that, for example, Orthogonal CCA fundamentally has increasing benefit over the
heuristic approach with increasing r (or decreasing benefit with increasing d). Instead, we
encourage the takeaway of this performance figure to be that one should always optimize
the objective of interest directly, rather than resorting to a reasonable but theoretically
unsound eigenvector heuristic, as the performance loss is potentially meaningful.

4.3 Computational cost

Importantly, this matrix manifold solver does not incur massive computational cost. The
only additional computation beyond standard unconstrained first-order optimization of dr
variables is the projection onto or along the manifold to ensure a feasible M ∈ Od×r, which
in any scheme requires a matrix decomposition (see Appendix A). Thus each algorithmic
step carries an additional cost of O(dr2). This cost is in many cases dwarfed by the larger
cost of calculating matrix-matrix products with a data matrix X ∈ IRd×n (which often
appear in the gradient calculations ∇Mf). Second order methods approximate or evalu-
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Figure 3: Computational cost of direct optimization of linear dimensionality reduction objectives. Datasets
are the same as those in Figure 2. The vertical axis in panels A and B denotes runtime in seconds.
Panels C and D show the same data by the number of solver iterations.

ate a Hessian, which incurs more complexity per iteration, but as usual at the tradeoff of
drastically fewer iterations. Accordingly, the runtime of manifold optimization is at worst
moderately degraded compared to an unconstrained first or second order method. Com-
pared to eigenvector heuristics, which if implemented as a compact SVD cost only O(dr2),
direct optimization is an order of magnitude or more slower due to the iterative nature of
the algorithm.

Figure 3 shows the computational cost of these methods, using the same data as in
the previous section. In Figure 3A, at each of d ∈ {4, 8, 16, ..., 1024} and for r = 3, we
ran PCA, LDA, CCA, and MAF 20 times, and we show here the median and central 50%
of the runtime distribution (in seconds). This panel demonstrates that runtime increases
approximately linearly as expected in d: runtime increases by approximately three orders
of magnitude over three orders of magnitude increase in d. We do a similar simulation in
Figure 3B at each of r ∈ {1, 2, 5, 10, 20, 40, 80} for a fixed d = 100, and again runtime is
increasing.
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Figure 4: Comparison of different optimization techniques. PCA was run on 100 independent datasets of
size d = 100, projecting to r = 10 dimensions. Panel A shows the median runtime performance
(across datasets), with optimality gap as a function of runtime in seconds. Panel B shows the
average optimality gap by iteration. PCA was run on each of these datasets independently with
the Stiefel steepest descent (red), Stiefel trust region (green), Grassmann steepest descent (blue),
and Grassmann trust region (brown) solvers.

Figures 3C and 3D show the same data as in Figures 3A and 3B, but by number of
solver iterations. In this figure we used a second-order solver over the Grassmann manifold
in PCA, LDA, and MAF (critically, the same solver for all three), and the second-order
solver over the product of two Stiefel manifolds in the case of CCA. These two panels again
underscore the overall point of Figure 3: runtime complexity is not particularly burdensome
across a range of reasonable choices for d and r, even with a generic solver.

4.4 Choice of solver, and identifiability

We have claimed that the choice of optimization over the Stiefel or Grassmann manifold is
a question of identifiability, and further that empirically it seems to matter little to algo-
rithmic performance. Figure 4 gives evidence to that claim. We created 100 independent
datasets with d = 100 and r = 10 for PCA. Here the choice of algorithm is less important,
and PCA is a sensible choice because we know the global optimum. We ran PCA using
four solvers: first-order steepest descent over the Stiefel manifold, first-order steepest de-
scent over the Grassmann manifold, second-order trust region optimization over the Stiefel
manifold, and second-order trust region optimization over the Grassmann manifold. Figure
4 shows the optimality gap by solver choice for each of these four solvers. Figure 4A shows
the optimality gap as a function of time for the median performing solver (median across
the 100 independent datasets), and Figure 4B shows the optimality gap (mean across all
the 100 independent datasets) as a function of algorithmic iteration. From these figures
it is clear that second-order methods outperform first order methods, though perhaps less
than one might typically expect. More importantly, the difference between the choice of
optimization over the Stiefel or Grassmann manifold is minor at best. This figure, along
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with previous results, suggest the feasibility of a generic solver for orthogonal linear dimen-
sionality reduction.

5. Discussion

Dimensionality reduction is a cornerstone of data analysis. Among many methods, perhaps
none are more often used than the linear class of methods. By considering these methods as
optimization programs of user-specified objectives over orthogonal or unconstrained matrix
manifolds, we have surveyed a surprisingly fragmented literature, offered insights into the
shortcomings of traditional eigenvector heuristics, and have pointed to straightforward gen-
eralizations with an objective-agnostic linear dimensionality reduction solver. The results
of Section 4 suggest that linear dimensionality reduction can be abstracted away in the
same way that unconstrained optimization has been, as a numerical technology that can
sometimes be treated as a black-box solver. This survey also suggests that future linear di-
mensionality reduction algorithms can be derived in a simpler and more principled fashion.
Of course, even with such a method one must be careful to design a linear dimensionality
reduction sensibly to avoid the many unintuitive pitfalls of high-dimensional data (e.g.,
Diaconis and Freedman (1984)).

Other authors have surveyed dimensionality reduction algorithms. Some relevant exam-
ples include Burges (2010); De la Torre (2012); Sun et al. (2009); Borga et al. (1997). These
works all focus on particular subsets of the dimensionality reduction field, and our work here
is no different, insomuch as we focus exclusively on linear dimensionality reduction and the
connecting concept of optimization over matrix manifolds. Burges (2010) gives an excellent
tutorial review of popular methods, including both linear and nonlinear methods, dividing
those methods into projective and manifold approaches. De la Torre (2012) surveys five
linear and nonlinear methods with their kernelized counterparts using methods from kernel
regression. Borga et al. (1997) and Sun et al. (2009) focus on those methods that can be
cast as generalized eigenvalue problems, and derive scalable algorithms for those methods,
connecting to the broad literature on optimizing Rayleigh quotients.

The simple optimization framework discussed herein offers a direct approach to linear
dimensionality reduction: many linear dimensionality reduction methods seek a meaning-
ful, low-dimensional orthogonal subspace of the data, so it is natural to create a program
that directly optimizes some objective on the data over these subspaces. This claim is
supported by the number of linear dimensionality reduction methods that fit naturally into
this framework, by the ease with which new methods can be created, and by the significant
performance gains achieved with direct optimization. Thus we believe this survey offers a
valuable simplifying principle for linear dimensionality reduction.

This optimization framework is conceptually most similar to the projection index from
important literature in projection pursuit (Huber, 1985; Friedman, 1987): both that litera-
ture and the present work focus on optimizing objective functions on projections to a lower
dimensional coordinate space. Since the time of the fundamental work in projection pursuit,
massive developments in computational power and advances in optimization over matrix
manifolds suggest the merit of the present approach. First, the projection pursuit literature
is inherently greedy: univariate projections are optimized over the projection index, that
structure is removed from the high dimensional data, and the process is repeated. This
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approach leads to (potentially significant) suboptimality of the results and requires costly
computation on the space of the high-dimensional data for structure removal. The present
matrix manifold framework circumvents both of these issues. Thus, while the spirit of this
framework is very much in line with the idea of a projection index, this framework, both in
concept and in implementation, is critically enabled by tools that were unavailable to the
original development of projection pursuit.
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Appendix A. Optimization over the Stiefel maifold

Here we offer a basic introduction to optimization over matrix manifolds, restricting our
focus to a first-order, projected gradient optimization over the Stiefel manifold Od×r. Intu-
itively, manifold projected gradient methods are iterative optimization routines that require
firstly an understanding of search directions along the constraint set, called the tangent
space (§A.1). With an objective f , gradients ∇Mf are then calculated in the full space,
in this case IRd×r. These gradients are projected onto that tangent space (§A.2). Any
nonzero step in a linear tangent space will depart from the nonlinear constraint set, so
finally a retraction is needed to map a step onto the constraint set (§A.3). With these
three components, a standard first-order iterative solver can be carried out, with typical
convergence guarantees. We conclude this tutorial appendix with pseudocode in §A.4 and
a figure summarizing these steps (Figure 5).

We have previously introduced the Stiefel manifold Od×r as the set of all matrices with
orthonormal columns, namely: Od×r =

{
M ∈ IRd×r : M>M = I

}
, where I is the r × r

identity matrix. Od×r is a manifold, an embedded submanifold of IRd×r, and bounded and
closed (and thus compact). From these facts we can carry over all intuitions of an explicit
(though nonlinear and nonconvex) constraint set within IRd×r.

A.1 Tangent space TMOd×r

Critical to understanding the geometry of any manifold (in particular to exploit that geom-
etry for optimization) is the tangent space, the linear (vector space) approximation to the
manifold at a particular point. To define this space, we first define a curve on the manifold
Od×r as a smooth map γ(·) : IR→ Od×r. Then, the tangent space is:

TMOd×r =
{
γ̇(0) : γ(·) is a curve on Od×r with γ(0) = M

}
, (29)

where γ̇ is the derivative d
dtγ(t). Loosely, TMOd×r is the space of directions along the

manifold at a point M . While Equation 29 is fairly general for embedded submanifolds,
it is abstract and leaves little insight into numerical implementation. Conveniently, the
tangent space of the Stiefel manifold has a particularly nice equivalent form.
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Claim 1 (Tangent space of the Stiefel Manifold) The following sets are equivalent:

TMOd×r =
{
γ̇(0) : γ(·) is a curve on Od×r with γ(0) = M

}
, (30)

T1 =
{
X ∈ IRd×r : M>X +X>M = 0

}
, (31)

T2 =
{
MA+ (I −MM>)B : A = −A>, B ∈ IRd×r

}
. (32)

Proof The proof proceeds in four steps:

1. X ∈ TMOd×r ⇒ X ∈ T1

Considering a curve γ(t) from Equation 30, we know γ(t)>γ(t) = I (every point of
the curve is on the manifold). We differentiate in t to see γ(t)>γ̇(t) + γ̇(t)>γ(t) = 0.
At t = 0, we have γ(0) = M , and we define the tangent space element γ̇(0) = X.
Then X is such that M>X +X>M = 0.

2. X ∈ T1 ⇒ X ∈ TMOd×r

We must construct a curve such that any X ∈ T1 is a point in the tangent space;
consider γ(t) = (M + tX)(I + t2X>X)−1/2 (a choice that we will see again below
in §A.3). First, this curve satisfies γ(0) = M . Second, γ(·) is a curve on the Stiefel
manifold, since every point γ(t) satisfies:

γ(t)>γ(t) = (I + t2X>X)−1/2(M + tX)>(M + tX)(I + t2X>X)−1/2

= (I + t2X>X)−1/2(M>M + tM>X + tX>M + t2X>X)(I + t2X>X)−1/2

= (I + t2X>X)−1/2(I + t2X>X)(I + t2X>X)−1/2

= I,

where the third line uses M ∈ Od×r and X ∈ T1. It remains to show only that
γ̇(0) = X. We differentiate γ(t) as

γ̇(t) = X(I + t2X>X)−1/2 + (M + tX)
d

dt
(I + t2X>X)−1/2. (33)

The rightmost derivative term of Equation 33 does not have a closed form, but is the
unique solution to a Sylvester equation. Letting α(t) = (I + t2X>X)−1/2, we seek
α̇(0). By implicit differentiation:[

d

dt
α(t)α(t)

]
t=0

=

[
d

dt
(I + t2X>X)−1

]
t=0

α̇(0)α(0) + α(0)α̇(0) =
[
(I + t2X>X)−1

(
2tX>X

)
(I + t2X>X)−1

]
t=0

2α̇(0) = 0,

since α(0) = I. Thus we see α̇(0) =
[
d
dt(I + t2X>X)−1/2

]
t=0

= 0. Equation 33 yields
γ̇(0) = X, which completes the proof of the converse.
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3. X ∈ T2 ⇒ X ∈ T1

Let X = MA+ (I −MM>)B according to Equation 32. Then:

M>X +X>M = M>MA+M>(I −MM>)B +A>M>M +B>(I −MM>)M

= A+A>

= 0,

by the skew-symmetry of A and M ∈ Od×r.

4. X ∈ T1 ⇒ X ∈ T2

We show the transposition X 6∈ T2 ⇒ X 6∈ T1. By the definition of T2, X = MA +
(I−MM>)B is not in T2 if and only if A 6= −A>. Then, using the previous argument,
we see that such an X has M>X +X>M 6= 0, and thus is not a member of T1.

Thus, the three tangent space definitions Equations 30-32 are equivalent. The definition of
Equation 32 is particularly useful as it is constructive, which is essential when considering
optimization.

A.2 Projection πM : IRd×r → TMOd×r

Because Od×r is an embedded submanifold of IRd×r, it is natural to consider the metric
implied by Euclidean space : IRd×r endowed with the standard inner product 〈P,N〉 =
tr(P>N), and the induced Frobenius norm || · ||F . With this metric, the Stiefel manifold is
then a Riemannian submanifold of Euclidean space. This immediately allows us to consider
the projection of an arbitrary vector Z ∈ IRd×r onto the tangent space TMOd×r:

π(Z) = arg min
X∈TMOd×r

||Z −X||F

= arg min ||Z − (MA− (I −MM>)B)||F
= arg min ||(MM>Z −MA) + (I −MM>)(Z −B)||F
= arg min ||M(M>Z −A)||F + ||(I −MM>)(Z −B)||F
= arg min ||M>Z −A||F + ||(I −MM>)(Z −B)||F

where the last equality comes from the unitary invariance of the Frobenius norm. This
expression is minimized by setting B = Z and setting A to be the skew-symmetric part
of M>Z, namely A := skew(M>Z) = 1

2(M>Z − Z>M) (Fan and Hoffman, 1955). This
results in the projection:

πM (Z) = Mskew(M>Z) + (I −MM>)Z. (34)

We note that an alternative canonical metric is often considered in this literature, namely
〈P,N〉M = tr

(
P>(I −MM>)N

)
. The literature is divided on this choice; for simplicity

we choose the standard inner product.
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Figure 5: Cartoon of a projected gradient step on the Stiefel manifold. Notation follows Algorithm 1.

A.3 Retraction rM : TMOd×r → Od×r

Projected gradient methods seek an iterative step in the direction of steepest descent along
the manifold, namely M+βπM (−∇Mf). For any nonzero step size β, this iterate will leave
the Stiefel manifold. Thus, a retraction is required to map onto the manifold. A number of
projective retractions are available (Kaneko et al., 2013); here we define the retraction of a
step Z away from a current manifold point M as

rM (Z) = arg min
N∈Od×r

||N − (M + Z)||F , (35)

that is, the closest point on the manifold to the desired iterate M + Z. For unitarily
invariant norms, a classic result is that rM (Z) = UV >, where (M + Z) = USV > is the
singular value decomposition (Fan and Hoffman, 1955), or equivalently, rM (Z) = W for a
polar decomposition (M + Z) = WP . Conveniently, when Z ∈ TMOd×r, this retraction
has the simple closed form rM (Z) = (M + Z)(I + Z>Z)−1/2 (Kaneko et al., 2013), which
explains the choice of curve in §A.1.

In the cases of the Stiefel and Grassmann manifolds, it is possible to directly calculate
a manifold geodesic (shortest path between two points in the manifold). While more aes-
thetically pleasing, calculating such a geodesic requires a matrix exponential, and thus has
similar computational burden as a projective retraction (often the exponential is slightly
more expensive). Empirically, we have found very little difference in the convergence or
computational burden of this choice, and thus we focus this tutorial on the conceptually
simpler retraction. Absil and Malick (2012) discuss projective retractions compared with
geodesics/exponential maps.

A.4 Psuedocode for a projected gradient solver

Algorithm 1 gives pseudocode for a projected gradient method over the Stiefel manifold.
This generic algorithm requires only a choice of convergence parameters and a linesearch
method, choices which are standard for first-order optimization. Chapter 4 of Absil et al.
(2008) offers a global convergence proof for such a method using Armijo linesearch. Indeed,
the only particular consideration for this algorithmic implementation is the tangent space
TMOd×r, the projection πM , and the retraction rM .
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Algorithm 1 Gradient descent over the Stiefel manifold (with linesearch and retraction)

1: initialize M ∈ Od×r
2: while f(M) has not converged do
3: calculate ∇Mf ∈ IRd×r # free gradient of objective
4: calculate πM (−∇Mf) ∈ TMOd×r # search direction (Equation 34)
5: while f(rM (βπM (−∇Mf))) is not sufficiently smaller than f(M) do
6: adjust step size β # linesearch (using retraction, Equation 35)
7: end while
8: M ← rM (βπM (−∇Mf)) # iterate
9: end while

10: return (local) minima M∗ of f .

It is worth noting that the above operations imply a two-stage gradient step: Algorithm
1 first projects the free gradient onto the tangent space (πM ), and second the proposed
step is retracted onto the manifold (rM ). It is natural to ask why one does not perform
this projection in one step, for example by projecting the free gradient directly onto the
manifold. Firstly, while there is a rich literature of such ‘one-step’ projected gradient
methods (Bertsekas, 1976), convergence guarantees only exist for convex constraint sets.
Indeed, all matrix manifolds we have discussed are nonconvex (except the trivial IRd×r). The
theory of convergence for nonconvex manifolds requires this two-step procedure. Secondly,
in our empirical experience, while a one-step projection method does often converge, that
convergence is typically much slower than Algorithm 1.

This basic algorithm is extended in two ways: first, the constraint manifoldM is taken
to be the Grassmann manifold or some other manifold structure (like the product of Stiefel
manifolds, as in CCA above); and second, conjugate gradient methods or second-order
optimization techniques can be similarly adapted to the setting of matrix manifolds. Beyond
these steps, understanding optimization over matrix manifolds in full generality requires
topological and differential geometric machinery that is beyond the scope of this work. All
of these topics are discussed in the key reference to this appendix (Absil et al., 2008), as
well as the literature cited throughout this paper.
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