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1 Summary1

Cetaceans face the challenge of maintaining equilibrium underwater and obtaining2

sensory input within a dense, low-visibility medium. The cetacean ear represents a3

key innovation that marked their evolution from terrestrial artiodactyls to among4

the most fully aquatic mammals in existence. Using micro-CT data and histolog-5

ical data, we document shape and size changes in the cetacean inner ear during6

ontogeny, and demonstrate that, as a proportion of gestation time, the cetacean7

inner ear is precocial in its growth compared to that of suid artiodactyls. Cetacean8

inner ears begin ossifying and reach near-adult dimensions and shape as early as9

at 32 percent of the gestation period. Our earliest embryos with measurable inner10

ears (13 percent newborn length) exhibit a flattened cochlea (i.e. smaller distance11

from cochlear apex to round window) compared to later and adult stages. Inner12

ears of Sus scrofa have neither begun ossifying nor reached near-adult dimensions13

at 55 percent of the gestation period, but have an adult-like ratio of cochlear di-14

ameters to each other, suggesting an adult-like shape. The precocial development15

of the cetacean inner ear complements previous work demonstrating precocial de-16

velopment of other cetacean anatomical features such as the locomotor muscles to17

facilitate swimming at the moment of birth.18

2 Keywords19
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3 Introduction22

A central theme in cetacean research is the question of how cetaceans evolved to23

function entirely and exclusively in water. The fact of cetaceans’ obligate aquatic24

nature is in part a function of what makes them instantly recognizable: their25

specialized anatomy (see Rose 2006 for review). Though biologists have made26

considerable progress in investigating cetacean anatomical modifications, many27

cetacean specialities remain incompletely understood.28
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One such speciality is the cetacean inner ear. Numerous studies have docu-29

mented cetacean inner ear modifications (see, for example, Gray, 1907; Ketten30

& Wartzok, 1990; Ketten, 1992; Geisler & Luo, 1996; Lindenlaub & Oelschläger,31

2000; Solntseva, 2002, 2010). Solntseva (1990) examines peripheral auditory sys-32

tem development in cetaceans and pinnipeds. Yamato & Pyenson (2015) and33

Kinkel et al. (2001) provide insight into cetacean middle ear ontogeny, and Solnt-34

seva (1999) documents how auditory structures form in terrestrial, semi-aquatic,35

and aquatic species. However, there are still gaps in the current understanding of36

cetacean inner ear ontogeny and evolution. As Cock (1966) notes, a full under-37

standing of the genetic differences responsible for the variety of shapes and sizes38

present in adult animals requires ontogenetic history. Cetacean inner ears are39

particularly interesting because sound is a crucial means through which cetaceans40

receive input from their surroundings (Ketten, 1994) and because cetaceans need41

to move in a three-dimensional environment. Further, the cetacean ear region is42

able to perform sophisticated functions such as echolocation, particularly in odon-43

tocetes, and is extremely derived. Derivations of the cetacean inner ear alone44

are numerous. Among several derived features of the cetacean inner ear, Fleis-45

cher (1976) describes the low number of turns of cetacean cochleae, the extremely46

small cetacean semicircular canals (see also Spoor et al. 2002), and the unique47

odontocete and mysticete modes of cochlear coiling.48

This paper examines cetacean inner ear ontogeny as it pertains to develop-49

mental events and growth allometry. We ask when during growth the cetacean50

inner ear takes on its adult shape and size, and how individual inner ear compo-51

nents scale with body size during ontogeny. Differences in developmental event52

timing and relative scaling during growth have contributed to work in mammalian53

evolution (see Hautier et al. 2012), life histories (see Lu, 2003), and functional mor-54

phology (see Melin et al. 2005), among other areas. Examinations of ontogenetic55

allometry in cetaceans are limited. Even studies that have addressed cetacean56

allometry from an ontogenetic standpoint have often done so only in postnatal57

specimens (see Clark & Odell, 1999; McLellan et al. 2002) — relatively few have58

examined foetal specimens as well (see Dunkin et al. 2005; Tsai & Fordyce, 2014;59

Yamato & Pyenson, 2015). There is relatively little information on how cetacean60

cranial morphology changes during foetal growth, though the studies on the topic61
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that exist (for example, Klima, 1995; Rauschmann et al. 2006; Armfield et al.62

2011; Roston et al. 2013) have provided key insights into cetacean evolution and63

development.64

Cetaceans are now strongly supported as aquatic artiodactyls — a group of65

even-toed terrestrial mammals that includes suiforms, tylopods, and ruminants66

— with hippopotamids as their closest living relatives (see Gatesy et al. 1999;67

Gingerich et al. 2001; Thewissen et al. 2001; Spaulding et al. 2009 for discussion).68

Lovell & Harper (2007) endorsed the use of Sus scrofa as a model against which to69

compare cetacean auditory systems, and Kandel & Hullar (2010) used Bos taurus70

to better understand the cetacean vestibular apparatus. As such, we examine inner71

ear ontogeny in S. scrofa as a comparison between terrestrial and obligate aquatic72

artiodactyls. We seek to observe changes in shape, size, and ossification onset in73

both whales and a closely related terrestrial artiodactyl (S. scrofa). Specifically,74

we examine whether the timing of ossification onset as well as developmental stage75

at which the organisms’ ears attain adult proportion is conserved or labile between76

these species. This may shed light on mammalian developmental novelties and the77

role of the auditory and vestibular apparatus in aquatic life.78

4 Methods79

4.1 Three-dimensional data80

We analyzed 29 unique, unsexed cetacean specimens, including adult petrosals81

(one specimen each of Delphinapterus leucas and Phocoena phocoena), a subadult82

skull (one specimen of Megaptera novaeangliae), and embryos or foetuses of up83

to 40cm in total length (10 specimens of D. leucas, four specimens of Delphinus84

delphis, one specimen of Delphinus sp., two specimens of P. phocoena, one speci-85

men of Hyperoodon ampullatus, six specimens of M. novaeangliae, one specimen of86

Balaenoptera borealis, and one specimen of Balaenoptera musculus, as summarized87

in Table 1). Our samples for three-dimensional analysis included 20 odontocetes88

and nine mysticetes. We measured total length as the circumferential (rather than89

straight) distance between the tip of the rostrum to the tail fluke notch, similar90

to Yamato & Pyenson (2015), and followed Yamato & Pyenson (2015) in dividing91
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each specimen’s total length by previously reported newborn total length measure-92

ments (see Table 1). We also analyzed four unique, unsexed S. scrofa specimens,93

including an adult skull, a postnatal skull, and two whole foetuses of 23 - 24cm94

crown rump length (CRL), measured from the top of the head to the tail base.95

Table 1 provides details of embryonic and foetal specimens.96

We obtained three-dimensional data for all specimens using micro computed97

tomography (µCT) at the Helmholtz-Zentrum Berlin for Materials and Energy98

(HZB), the American Museum of Natural History (AMNH), and the Departments99

of Zoology and Engineering, University of Cambridge. We performed the scans100

with different spatial resolutions varying between 9.8 and 91µm depending on the101

sample size, collecting between 775 and 2316 reconstructed slices for each speci-102

men. To obtain optimal contrast for the bone tissue we used X-ray energies of up to103

100kV. We visualized the µCT data and created three-dimensional reconstructions104

of inner ear endocasts using the MIMICS Innovation Suite (Materialise’s Interac-105

tive Medical Image Control System) medical imaging software. Due to software106

limitations we reduced the size of the TIFF format image stacks, first using the Im-107

ageJ “Binner” plugin (x and y shrink factors of 2, median pixel binning method),108

and then converting the slices from 16-bit to 8-bit images before importing them109

into MIMICS. This process resulted in a size reduction from ∼19-25GB to ∼1-4GB110

per stack. In creating three-dimensional reconstructions we used digital segmenta-111

tion for those scans with fully and densely ossified petrosals as thresholding values112

were consistently different between tissue boundaries. We used manual segmenta-113

tion for those scans in which the bony labyrinth was incompletely ossified, and thus114

whose tissue boundaries were gradients that were sometimes challenging to differ-115

entiate, to avoid the errors that would likely arise from insufficiently pronounced116

digital thresholding of boundaries.117

Following Spoor et al. (2002), we chose the parameters cochlear slant height,118

first, second, and third (if appplicable) cochlear turn diameters, overall cochlea119

size, and semicircular canal radius of curvature to quantify inner ear anatomy120

(Figure 1). We also visually inspected each image stack to determine whether or121

not a specimen’s bony labyrinth had ossified. To count the number of cochlear122

turns in each sample, we approximated the landmarks that Geisler & Luo (1996)123

used for this purpose. We defined the first landmark as the edge of the round124
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window closest to the “end” of the cochlea in three-dimensional reconstructions,125

approximating the beginning of the laminar gap that serves as the first landmark in126

Figure 5 of Geisler & Luo (1996). We took the second landmark to be the cochlear127

apex, following Geisler & Luo (1996). For those specimens whose bony labyrinths128

were very incompletely ossified, and thus produced thresholding gradients with129

noisy three-dimensional reconstructions in MIMICS, we estimated the number of130

cochlear turns from two-dimensional image stacks in the axial and coronal planes.131

Cochlear slant height (Spoor et al. 2002) refers to the straight distance between132

the cochlear apex and the topmost edge (furthest from the apex) of the round133

window (Gray, 1907; Spoor et al. 2002; see Figure 1a). First, second, and third134

cochlear turn diameters refer to the largest diameter between the lumen centers of135

the first, second, and third cochlear turns respectively (see Figure 1b). To ensure136

consistent and comparable diameters across all specimens, we identified the best fit137

plane through the anterior semicircular canal (ASC) arc and translated this plane138

to the parts of the cochlea with the largest cochlear turn diameters, following Spoor139

(2014, pers. comm.; see Figure 1c). Specimens with cartilaginous bony labyrinths140

did not possess a clearly visible ASC in µCT. For these specimens, we estimated141

analogous planes to the ASC arc-best fit plane based on the position of the round142

window (when visible), the first and second cochlear turns, and the cochlear apex,143

following the suggestion of Spoor (2014, pers. comm.). Overall cochlea size refers144

to the mean of the slant height and the first, second, and third (if applicable)145

cochlear turn diameters (Spoor et al. 2002). Semicircular canal radius of curvature146

refers to the average of semicircular canal arc height and width, divided by two147

(Spoor et al. 2002; Spoor & Thewissen, 2008; Silcox et al. 2009), with arc height148

and width following the definitions of Spoor & Zonneveld (1995), slightly modified.149

We measured arc width perpendicular to arc height for all canals (see Figure 1d),150

and did not account for the angle of the measurements relative to the orientation151

of the lateral semicircular canal. Some specimens did not have sufficiently ossified152

bony labyrinths for accurate semicircular canal measurement.153

We obtained three-dimensional data for 33 adult cetacean specimens and 1154

adult S. scrofa specimen from Spoor et al. (2002). The cetacean specimens in-155

cluded Eubalaena glacialis (2), Caperea marginalis (1), Eschrichtius robustus (1),156

Balaenoptera acutorostralis (1), Balaenoptera borealis (1), B. musculus (1), Bal-157
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aenoptera physalis (1), M. novaeangliae (2), Physeter catodon (1), Kogia sp. (1),158

Berardius bairdii (1), Mesoplodon densirostris (1), Ziphius cavirostris (1), Pla-159

tanista gangetica (1), Inia geoffrensis (1), Pontoporia blainvillei (1), D. leucas160

(1), Monodon monoceros (1), Delphinus sp. (2), Feresa attenuata (1), Globi-161

cephala sp. (1), Grampus griseus (1), Lagenorhynchus obliquidens (1), Orcinus162

orca (1), Stenella sp. (1), Tursiops truncatus (3), Neophocaena phocaenoides (1),163

and P. phocoena (1).164

4.2 Histological data165

We analyzed four unique histological series of cetacean embryos from the Univer-166

sity of Tübingen (one specimen of Delphinus sp., 1200 slices in total, 342 slices167

covering one ear, slice distance 20µm, Azan-Heidenhain stain), University Museum168

of Zoology, Cambridge, or UMZC (one specimen of Balaenoptera sp., 1683 slices169

in total, 375 slices covering one ear, slice distance 15µm, haematoxylin and eosin170

stain), and the Zoologisches Museum Berlin, or ZMB (two specimens of M. no-171

vaeangliae, 990 slices in total, 158 slices covering one ear, slice distance unknown,172

haematoxylin and eosin stain and 630 slices in total, 220 slices covering one ear,173

slice distance unknown, haematoxylin and eosin stain). We analyzed one histologi-174

cal series of a S. scrofa embryo (868 slices in total, 320 slices covering one ear, slice175

distance 40µm, Azan-Heidenhain stain) from Tübingen. We photographed histo-176

logical slides from Tübingen using a Canon EOS 600D camera, from the UMZC177

using a Leica DFC420 camera, and from the ZMB using a Leica DFC490 camera,178

and made measurements on those photographs using ImageJ.179

Three-dimensional reconstructions with µCT data are possible due to sev-180

eral factors, including the consistent inter-slice distance recovered between two-181

dimensional reconstructions. Due to the inevitable uncertainties of working with182

tissues that have been decalcified, dehydrated, stained, processed on a microtome,183

mounted on glass slides, etc., it is not possible with most histological series to be184

certain that every slice in a given stack is accounted for. Thus, 100 slices in a185

series cut with a thickness of 20µa will almost certainly depart at least slightly186

from 2mm of anatomy in the original specimen. For these reasons, we create187

three-dimensional anatomical reconstructions from µCT data but not from our188
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histological specimens.189

Due to the different slicing planes of the histological series, we could not trans-190

late the ASC arc plane to the part of the cochlea with the largest diameter of the191

turns. We therefore measured the cochlear diameters of the histological specimens192

in the planes in which they were originally sliced. For the S. scrofa specimen,193

which was sliced in an axial plane, we estimated the ASC arc plane from the194

histological slices in which the ASC arc was visible and translated that plane of195

measurement to the widest parts of the cochlear diameters. We did not measure196

slant height in the histological specimens because of the specimens’ coronal slicing197

planes and/or the lack of a clearly visible round window in the slices, nor did we198

measure semicircular canal radii in the histological specimens, as the fact that we199

could not reslice the histological series according to a best fit plane through each200

canal meant that there was no way to ensure that we were taking measurements201

using the correct landmarks on the vestibule and individual canals.202

We compared foetal inner ear measurements taken from three-dimensional and203

histological data to those of adults of the same species. We compared our inner204

ear measurements for D. delphis foetal specimens to those of adult Delphinus sp.205

We compared our inner ear measurements for the Balaenoptera sp. specimen to206

the mean inner ear measurements of adult B. borealis and B. musculus.207

4.3 Staging, aging, and body mass208

The embryonic and foetal specimens in this study were collected decades ago and209

thus lack data on individual age. Body length measurements, coupled with mor-210

phological observations such as external shape, enabled staging and aging of D.211

delphis embryos and foetuses according to the Stĕrba et al. (2000) classification212

scheme. We estimated the ages of the S. scrofa foetuses using the Ullrey et al.213

(1965) prediction equation. To enable relative comparisons of foetal cetacean and214

S. scrofa growth with newborn individuals and to estimate how far along the215

gestation period foetuses were, we used mean gestation period and newborn and216

adult body length data for various cetacean species and S. scrofa from Struthers217

(1889), Ullrey et al. (1965), Ohsumi (1966), Jefferson et al. (1993), and Stĕrba218

et al. (2000).219
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To enable visual comparison of bony labyrinth shapes between foetal and adult220

cetaceans as well as foetal and adult S. scrofa (Figures 4 and 5), we estimated221

the body masses of foetal specimens using the equation W = aLb proposed by222

Schultz (1938) to predict the weights of large fish and whales, where W is body223

weight in kilogrammes, L is body length in centimeters, and a and b are constants.224

Species-specific a and b values from Doidge (1990). For those species whose a and225

b values Doidge (1990) did not provide we used the values that Schultz (1938)226

provided to estimate the weights of sharks and whales. We took postnatal S. scrofa227

weight to be the mean weight of the youngest age category (“young pigs before the228

typical market weight was achieved”, ≥5 months old) provided by Mutua et al.229

(2011). We estimated foetal S. scrofa weights using the Pomeroy (1960) prediction230

equation for estimating foetal weight. We could not estimate the weight of the231

histological Delphinus specimen because only a crown-rump length was provided,232

or of histological M. novaeangliae specimens because no length data were provided.233

We obtained adult body weight data from Spoor et al. (2002).234

4.4 Statistical Analysis235

We analysed body labyrinth shape deviations between foetal and adult cetacean236

specimens, adult odontocete and adult mysticete specimens, foetal and adult S.237

scrofa specimens, and adult cetacean and adult S. scrofa specimens by comparing238

the various groups graphically and/or using Mann-Whitney U tests. We performed239

all statistical analyses using RStudio 0.97.312.240

5 Results241

5.1 Bony labyrinth ossification242

The bony labyrinth produced enough thresholding contrast to enable three-dimensional243

reconstruction for some foetal cetacean specimens with body lengths >19cm and244

ossified or cartilaginous bony labyrinths, and both foetal S. scrofa specimens (Ta-245

ble 1). None of the bony labyrinths of the histological specimens were ossified; all246

were cartilaginous. The bony labyrinth was densely ossified in all adult cetacean247



Inner Ear Development, T. Thean et al.

and S. scrofa specimens as well as in the postnatal S. scrofa specimen.248

The largest foetal cetacean specimen in absolute length (27 percent newborn249

total length, D. leucas, ZMB 85708) had a clearly ossified bony labyrinth. Visual250

inspection via µCT images showed that this specimen’s bony labyrinth was not251

as densely ossified as the adult D. leucas specimen, however. The largest foetal252

cetacean specimen in percentage of newborn total length (42 percent newborn total253

length, Delphinus sp., ZMB 85736) also had a clearly ossified bony labyrinth. The254

largest foetal S. scrofa specimen (82 percent newborn total length, UMZC2014.7.1)255

had a clearly ossified bony labyrinth, though visual inspection via µCT images256

showed that its bony labyrinth was also not as densely ossified as the adult S.257

scrofa specimen.258

All S. scrofa, cetacean adults, one cetacean subadult specimen, and six cetacean259

whole foetuses had sufficiently visible bony labyrinths to enable three-dimensional260

reconstruction of both the semicircular canals and the cochlea. The cetacean261

specimens were D. leucas, D. delphis, Delphinus sp., and P. phocoena foetuses262

of between 15 and 42 percent newborn total length and a subadult (26cm) M.263

novaeangliae skull. When specimens’ bony labyrinths were cartilaginous, the small264

difference in threshold values between the soft tissues and air as well as the small265

diameters of the semicircular canal lumina caused the semicircular canals to be266

indistinguishable from the bony labyrinth’s grainy surface. In these cases we could267

not identify the semicircular canals with confidence. However, our histological data268

show that they are pre-formed in cartilage at much smaller developmental stages269

than those of our µCT-scanned specimens (e.g. Delphinus sp. of 14cm CRL).270

5.2 Bony labyrinth morphology and measurements271

5.2.1 Cochlea272

Foetal D. leucas and P. phocoena of as little as 13 and 33 percent newborn total273

length had the same number of cochlear turns as did adults. Comparing foetal274

and juvenile D. delphis and M. novaeangliae specimens to adults of those species275

in the published literature (D. delphis, Solntseva, 2010; M. novaeangliae, Ketten,276

1994), showed that foetal and adult specimens of both species had almost the same277

number of cochlear turns as well.278
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In contrast to the very adult-like cochlear turns among foetuses, cochlear slant279

heights for foetal cetacean specimens with cochleae that were visible (though not280

necessarily ossified) in µCT were smaller than those of adult specimens (Figure 2).281

The largest foetal cetacean specimen in absolute length (27 percent newborn total282

length, D. leucas, ZMB 85708) had a cochlear slant height of 65 percent of the283

mean adult slant height. The largest foetal cetacean specimen in percentage of284

newborn total length (42 percent newborn total length, Delphinus sp., ZMB 85736)285

exhibited a more adult-like slant height of 79 percent of the mean adult slant height.286

All foetal cetacean specimens had cochlear slant heights of at least 42 percent of287

the mean adult cochlear slant height.288

Cochlear turn diameters in foetal cetacean specimens were smaller than those289

of adult cochleae. The largest foetal cetacean specimen in absolute length had290

first and second cochlear turn diameters of 81 and 88 percent the length of the291

mean adult first and second cochlear turn diameters. The largest foetal cetacean292

specimen in percentage of newborn total length had first and second cochlear turn293

diameters of 49 and 42 percent the length of the mean adult first and second294

cochlear turn diameters. Most foetal cetacean specimens had cochlear turn di-295

ameters of at least 33 percent of the mean adult size, with the exception of the296

histological Delphinus sp., M. novaeangliae, and Balaenoptera sp. specimens.297

Overall cochlear size of foetal cetacean specimens was between 38 and 75 per-298

cent that of adult specimens. The largest foetal cetacean specimen in absolute299

length and the largest foetal cetacean specimen in percentage of newborn total300

length had overall cochlear sizes of 75 and 59 percent adult size respectively.301

Both foetal S. scrofa specimens (78 and 82 percent of newborn total length) had302

nearly the same number of cochlear turns (3.25) as did the adult specimen (3.5),303

while the postnatal S. scrofa specimen had the same number of cochlear turns as304

did the adult specimen. The foetal and postnatal S. scrofa specimens had adult-305

sized cochlear slant heights, and overall cochlea sizes and first, second, and third306

cochlear turn diameters close to (at least 69 percent of) the mean adult sizes.307

Meanwhile, the S. scrofa histological specimen of 48 percent newborn total length308

had first and second cochlear turn diameters that were about half the adult size,309

and a third cochlear turn diameter that was 81 percent the adult size (Table 1).310



Inner Ear Development, T. Thean et al.

5.2.2 Semicircular canal radius of curvature311

The semicircular canals were visible in eleven of the foetal and embryonic cetacean312

specimens in this study — six of the whole foetuses, one subadult specimen, and313

all four of the histological specimens. Only the posterior semicircular canal was314

visible in one whole foetal specimen (ZMB 85718), while all three canals were315

visible in the others. Of the whole foetuses, all had mean semicircular canal316

radii of at least 51 percent that of the mean adult semicircular canal radii. The317

largest foetal cetacean specimen in absolute length (27 percent newborn total318

length, D. leucas, ZMB 85708) had a mean semicircular canal radius of 66 percent319

adult size. The largest foetal cetacean specimen in percentage of newborn total320

length (42 percent newborn total length, Delphinus sp., ZMB 85736) had a mean321

semicircular canal radius of 65 percent adult size. The subadult M. novaengliae322

skull (26 percent adult skull length) with a near-adult-sized cochlea had an adult-323

sized mean semicircular canal radius.324

Both foetal S. scrofa specimens as well as the postnatal specimen had mean325

semicircular canal radii that were approximately adult-sized.326

Table 1 provides each specimen’s percent adult size for each bony labyrinth327

variable, while Figure 3 shows these percentages for cochlear variables of the D.328

leucas foetal specimens, the species for which we had the greatest number of329

foetuses with visible bony labyrinths in µCT.330

5.2.3 Bony labyrinth shape331

Neither the ratios of cochlear measurements (slant height, first turn diameter, sec-332

ond turn diameter) to mean semicircular canal radius of curvature, nor the ratios333

of these cochlear measurements to each other (e.g., first turn diameter : second334

turn diameter), were significantly different between adult and foetal odontocete335

specimens (Figure 4, Figure 5, Table 2). In contrast, the ratio of cochlear first336

to second turn diameter, the only ratio available for foetal mysticetes, was signifi-337

cantly different between adult and foetal mysticete specimens (p < 0.05, Table 2).338

We included all available odontocete or mysticete species in each ratio calculation.339

Ratios between cochlear measurements and mean semicircular canal radius of340

curvature were significantly different between adult odontocete and adult mys-341
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ticete specimens for all cochlear measurements except for second turn diameter (p342

< 0.001 for all, Table 2). Ratios between cochlear slant height and second turn343

diameter and between first and second turn diameter were significantly different344

between adult odontocete and adult mysticete specimens (p< 0.001 for both ratios,345

Figure 5, Table 2). The ratio between cochlear slant height and first turn diam-346

eter was not significantly different between adult odontocete and adult mysticete347

specimens (Table 2).348

Sample sizes were insufficient to identify ratio differences between foetal and349

adult S. scrofa via a Mann-Whitney U test, but comparing the foetal and post-350

natal ratios to adult ratios graphically suggests that ratios are unlikely to be very351

different between the two groups (Figure 4, Figure 5).352

6 Discussion353

This study sought to apply a quantitative lens to how embryonic and foetal inner354

ear morphologies change during cetacean gestation as well as that of a closely355

related artiodactyl. We asked both when the form and ossification of the bony356

labyrinth would emerge during cetacean development, and what the bony labyrinth357

growth trajectory would look like. Our results provide four major insights:358

First, bony labyrinth ossification onset has occurred in D. delphis at around359

32 percent of their 280-day intrauterine development period, based on the Stĕrba360

et al. (2000) staging and aging classification of embryos and foetuses. At this stage,361

the foetuses have attained a body length of at least 24cm, or 29 percent of their362

approximately 84cm reported newborn total length. Bony labyrinth ossification in363

D. leucas had begun as early as at 15 percent of D. leucas newborn total length.364

Second, cetacean bony labyrinth elements have not achieved full adult size by365

the time of ossification onset; size maturation continues thereafter. For example,366

ossified specimens such as AMNH 31735 (M. novaeangliae, subadult skull) and367

ZMB 85708 (D. leucas, 27 percent newborn total length) have overall cochlear368

sizes of 75 percent of their respective adult sizes.369

Third, bony labyrinth shape, as measured by the ratio of cochlear measure-370

ments to mean semicircular canal radius of curvature and of cochlear measurements371

to each other, does not significantly differ between adult and foetal odontocetes in372
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our sample. It significantly differs between adult odontocetes and adult mysticetes,373

and the ratios between first and second cochlear turn diameters significantly dif-374

fer between adult and foetal mysticetes. Foetal cochleae demonstrate comparable375

numbers of turns to those of adult cochleae. They are, however, compressed along376

the central axis — that is, they have a lower slant height — compared to adult377

cochleae (Figure 2). Foetal cochlear and semicircular canal arc size reach near-378

adult proportions early in ontogeny (e.g. at 27 percent newborn total length in D.379

leucas).380

Fourth, the S. scrofa bony labyrinth has ossified and reached near-adult pro-381

portions at 82 percent of its gestation period, when the foetus has attained 78382

percent of its 29cm newborn total length. The bony labyrinth has not yet ossified383

or reached adult proportions at 55 percent of the gestation period, which is when384

the foetus has attained 48 percent of its newborn total length. However, that a385

foetal cochlea at 55 percent of the gestation period has a nearly equal ratio of first386

to second cochlear turn diameters to that of an adult S. scrofa suggests that the387

S. scrofa bony labyrinth may have attained an adult shape (though not necessar-388

ily size) at this stage of development. Data for a cetacean bony labyrinth at an389

equivalent stage of the gestation period were not available for comparison.390

6.1 Bony labyrinth ossification and size maturation391

As in previous comparative analyses of developmental sequences (e.g. Nunn &392

Smith, 1998; Smith, 2001; Hautier et al. 2012), we do not assume linearity in393

development, or that ontogenetic events (such as ossification or attainment of394

adult proportions in different parts of the skeleton) should happen at the same395

relative time in different species. Rather, we have collected data to test whether or396

not they do. Our results suggest that bony labyrinth ossification has begun by the397

time cetacean foetuses have undergone 32 percent of their intrauterine development398

period — that is, by ontogenetic Stage 12 of the Stĕrba et al. (2000) staging and399

aging classification of embryos and foetuses. The finding of Moran et al. (2011) that400

the otic capsule of Stenella attenuata is not yet ossified at Stage 23 of Thewissen &401

Heyning (2007) (which corresponds to Stage 10 and 11 in the Stĕrba et al. (2000)402

classification — stages that actually succeed Stage 12) suggests that ossification is403
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unlikely to have occurred prior to Stage 12. In contrast, bony labyrinth ossification404

does not occur in S. scrofa until after 55 percent of gestation has occurred, showing405

that as a proportion of gestation time, bony labyrinth ossification occurs earlier in406

cetaceans than in S. scrofa. Bony labyrinth ossification also begins proportionally407

earlier in cetaceans than in humans, whose cochlea and semicircular canals only408

begin to ossify at 40 and 60 percent of the gestation period respectively (Spector409

& Ge, 1993). Yamato & Pyenson (2015) note that cetacean ears are the most410

densely ossified skull bones at roughly 20 and 40 percent of newborn total lengths411

in mysticetes and odontocetes respectively.412

Our results also demonstrate that cetacean bony labyrinth size maturation413

— cochlear slant height, cochlear turn diameter, and semicircular canal radius414

— continues post-ossification, suggesting a difference between cetacean and hu-415

man bony labyrinth growth. Jeffery & Spoor (2004) showed that there are few416

discernible shape changes to the modern human bony labyrinth after otic cap-417

sule ossification, though Cox & Jeffery (2007) observed minor reorientation of the418

semicircular canals during growth, and Spector & Ge (1993) note that the human419

otic capsule achieves adult size before ossification occurs. Human inner ears are420

therefore closer to adult form than are cetacean inner ears when ossification occurs.421

Starck (1994) suggests that that ossification limits the rate of post-hatching422

growth in birds — cartilage facilitates faster growth than does bone, whose histo-423

genesis involves several differentiation stages. Applying this principle to cetacean424

inner ear growth, the cetacean inner ear seems to limit its growth before attaining425

full adult size by ossifying at sub-adult size and then continuing its growth to full426

adult size under the constraints of ossification, while the human ear grows as car-427

tilage — presumably at a higher growth rate than that of an ossified cetacean ear428

— and stops growing when ossified. The ossified foetal S. scrofa bony labyrinths429

we examined were of adult or very near-adult size, suggesting that they may be430

similar to the modern human bony labyrinth in achieving adult size before ossi-431

fication occurs. Further study could test this by measuring the bony labyrinth432

dimensions of newly-ossified S. scrofa specimens.433

The cetacean bony labyrinth ossification onset time — as early as at 32 per-434

cent of the gestation period — agrees with the suggestion by Bruce (1941) and435

Hautier et al. (2012) that ossification tends to begin earlier as a proportion of436
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gestation time in species with longer gestation times. As a proportion of gestation437

time, cetaceans exhibit early ossification onset relative to rodents and terrestrial438

artiodactyls (e.g. S. scrofa). According to Stĕrba et al. (2000), the bones of the439

braincase, face, clavicle, chondrocranium, vertebral arches, ribs, and long limb440

bones have begun to ossify by Stage 9 (29 percent of the gestation period in D.441

delphis, though note that the long bones have ossified by Stage 9 in all species442

studied by Stĕrba et al. (2000) except D. delphis). Moran et al. (2011) similarly443

found that many of the S. attenuata skull bones, but not the otic capsule, had be-444

gun to ossify by Stage 9. With our finding that bony labyrinth ossification occurs445

at Stage 12 or 32 percent of the gestation period, we can infer that bony labyrinth446

ossification begins after that of many other skeletal elements, and hence that a447

large portion of ossification has begun by the time of bony labyrinth ossification448

onset. This suggests that, like Loxodonta africana (see Hautier et al. 2012) and449

other mammals with prolonged gestation times, many cetacean skeletal elements450

have experienced ossification onset by the end of the first third of gestation —451

relatively early compared to mammalian groups such as rodents, in which ossifica-452

tion onset continues to occur well into the final third of gestation (Hautier et al.,453

2012).454

Long gestation periods correlate with precocial development in mammals (Zevel-455

off & Boyce, 1980; Martin & MacLarnon, 1985; Derrickson, 1992). Cetaceans are456

unusual among other precocial neonates in having to locomote independently “at457

the instant of birth” (Dearolf et al. 2000). Developmental traits that likely facil-458

itate this ability include the adult or near-adult size and shape of the tympanic459

bulla and periotic in subadult cetaceans (de Buffrenil et al. 2004; Rauschmann460

et al. 2006; Lancaster et al. 2015) and precocial and positively allometric locomo-461

tor muscle development (Dearolf et al. 2000; McLellan et al. 2002), among others.462

Our study finds precocial ossification and size maturation of the bony labyrinth463

even in the prenatal phase of development. This precocial prenatal ossification and464

growth of the bony labyrinth may offer protection for other inner ear structures465

that must be well-developed at birth to enable sensory control of locomotion and466

detection of acoustic cues. Further work on the prenatal ontogeny of non-skeletal467

inner ear structures such as the basilar membrane would provide further insight468

into this possibility.469
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That the S. scrofa bony labyrinth has ossified and reached adult proportions470

at 82 percent, but not 55 percent, of the gestation period suggests that the S.471

scrofa bony labyrinth reaches adult-like ossification levels and size later than the472

cetacean labyrinth, but earlier than that of rodents. Inner ear ossification cen-473

ters only appear postnatally in Mesocricetus auratus, for example (van Arsdel &474

Hillemann, 1951). Again, this finding corroborates the ossification onset-gestation475

time link of Bruce (1941) and Hautier et al. (2012), given that S. scrofa periotics476

are among the last cranial elements to ossify (Nunn & Smith 1998). Though our477

study demonstrates a difference in the timing (as a percentage of gestation) of a478

developmental event between cetaceans and a closely related artiodactyl, further479

work that examines a sequence of additional developmental events alongside bony480

labyrinth ossification in both taxa would be necessary to investigate further de-481

tails of sequence heterochrony (Smith, 2001; see also Galatius et al. 2006; Galatius,482

2010; Galatius & Gol’din, 2011 for work on cetacean heterochrony).483

6.2 Bony labyrinth shape484

Though limited size maturation continues post-ossification, bony labyrinth shape485

does not significantly differ between adult and foetal odontocetes. Foetal odon-486

tocetes already exhibit adult-like cochlear coiling. Indeed, Solntseva (1999, 2002)487

notes that the complete anatomical formation of mammalian cochleae typically488

occurs before the ear capsule turns cartilaginous. The cetacean cochlea and semi-489

circular canals also reach near-adult size early in ontogeny (e.g. at 27 percent new-490

born total length in D. leucas). This suggests that the odontocete bony labyrinth491

achieves adult shape characteristics relatively early in the gestation period. Fur-492

ther, it shows that a particularly derived cetacean trait — that of relatively small493

semicircular canals — appears early in ontogeny. The only discernible shape494

change between adult and foetal odontocetes was that of cochlear slant height,495

which was significantly different between adult and foetal odontocete species (p496

< 0.001). Visual inspection of three-dimensional bony labyrinth reconstructions497

shows the foetal cochleae as flattened compared to the more sharply-pointed organs498

of adults (Figure 2). Potential functional explanations for this remain unknown.499

The lengthening of the cochlear spiral along the central axis during development500
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may reflect some frequency range expansion, but without a method for establish-501

ing cetacean frequency ranges according to cochlear dimensions this possibility502

remains unexplored.503

The ratio of first to second cochlear turn diameter was significantly different504

between adult and foetal mysticetes (p < 0.05, note that mysticete adult and foetal505

ratios were calculated using µCT and histology respectively due to a lack of visible506

mysticete foetal bony labyrinths in µCT data). The less adult-like shape of the507

foetal mysticete cochlea compared to the foetal odontocete cochlea may reflect the508

accelerating development that occurs in mysticetes at and after the transition from509

embryo to foetus (Roston et al. 2013). The histological mysticete specimens we510

examined all had cartilaginous bony labyrinths, and the Balaenoptera sp. spec-511

imen (the only histological mysticete specimen for which a length measurement512

was available) had a TL of only 13.7cm, consistent with these specimens’ early,513

embryonic stage of development.514

Meanwhile, a foetal S. scrofa cochlea at 55 percent of the gestation period has515

nearly equal first to second cochlear turn, first to third cochlear turn, and second516

to third cochlear turn diameter ratios as an adult S. scrofa cochlea, suggesting517

that the S. scrofa bony labyrinth may have attained an adult shape at this stage518

of development.519

Bony labyrinth shape was significantly different between adult odontocetes and520

adult mysticetes for all ratios (p < 0.001) except those between cochlear sec-521

ond turn diameter and mean semicircular canal radius of curvature, and between522

cochlear slant height and first turn diameter. This result likely relates to the differ-523

ent modes of coiling of odontocete and mysticete cochleae. Ketten (1992) describes524

two odontocete modes: Type I cochleae have spirals that resemble “tightly coiled525

rope”, while Type II cochleae have logarithmic spirals that are more elongated526

along the central axis. Mysticete cochleae are more elongated along the central527

axis than those of both odontocete types, and are not coiled in one plane (Fleischer,528

1976; Ketten, 1992). Fleischer (1976) suggests that a low height to diameter ra-529

tio of the cochlea (which describes odontocete cochleae more than mysticete ones)530

helps cetaceans to detect high frequencies. Further, Fleischer (1976) notes that the531

basal end of some odontocete cochleae curve in a different direction from the rest of532

the cochlear coiling, a countercurvature that mysticete cochleae can also possess to533
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a smaller extent. Our results suggest that there is a significant difference between534

the cochlear slant height to second turn diameter ratios of odontocetes and mys-535

ticetes (the ratio is lower for odontocetes than for mysticetes), but not between the536

cochlear slant height to first turn diameter ratios of odontocetes and mysticetes.537

This disparity may arise because of the different definitions of “diameter” between538

this paper and that of Fleischer (1976), or because of the countercurvature of539

odontocete cochleae that Fleischer (1976) observed. Text-fig. 1 in Fleischer (1976)540

and fig. 35.10 in Ketten (1992) provide useful illustrations of the different shapes541

and modes of coiling between odontocete and mysticete cochleae.542
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6.3 Inner ear growth allometry and Conclusions543

Negative allometry is a common scaling pattern for cetacean skull elements (see544

Read & Tolley, 1997; McLellan et al. 2002; Spoor et al. 2002). Our results demon-545

strate that foetal cochlear and semicircular canal size scale with body mass with546

strong negative allometry, as generally observed for sensory organs throughout547

vertebrates. D. leucas specimens as small as 15 percent of newborn length have548

cochleae of 68 and 60 percent adult cochlear and semicircular canal size respectively549

(Table 1). The observed negative allometry of bony labyrinth growth in cetaceans550

may simply reflect “some form of spatial constraint of otic capsule growth” within551

the skull (Spoor 2014, pers. comm.).552

Cetaceans face a unique challenge among mammals in needing to perform a553

great many life processes entirely in water and being unable to survive outside554

of the medium. It is thus important to adequately understand the morphological555

features of the hearing and vestibular apparatus, key systems that make survival556

possible, in order to better understand the factors that have contributed to their557

remarkable success in achieving independence from land. We have sought to shed558

light on the developmental processes of some of these peculiarities, and discuss how559

they fit into the broader picture of cetacean life history. Inner ear ontogeny is a560

useful character with which to examine mammalian development, and our results561

on cetaceans further underscores this order’s uniqueness among mammals.562
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9 Figure Legends

Figure 1: (a) Measurement of cochlear slant height in an adult D. leucas specimen,
taken as the distance between the cochlear apex and the topmost edge (furthest from
the apex) of the round window (Gray, 1907; Spoor et al. 2002). (b) First and second
turn diameter measurements in an adult D. leucas specimen in the plane of the ASC
arc. Blue line: first turn; red line: second turn. (c) Best fit plane through the ASC arc
in an adult D. leucas specimen, represented by black line. We translated this best fit
plane to the part of the cochlea with the largest diameter of the first and second turns to
measure the first and second cochlear turn diameter. Modeled from instructive diagrams
by Fred Spoor. (d) Measurement of semicircular canal height and width, as defined by
Spoor & Zonneveld (1995). The average of these measurements is then divided by two
to obtain the semicircular canal radius of curvature.

Figure 2: Three-dimensional reconstructions of D. leucas bony labyrinths over on-
togeny: (a) 23cm foetus (b) 40cm foetus (c) Adult. The reconstructions demonstrate
the elongation of the D. leucas cochlea along its central axis — that is, the increase in
cochlear slant height, or apex-round window distance — over ontogeny. Bony labyrinth
coiling remains consistent. We removed stray pixels in Figure 6 (a) and (b), and flipped
both images so that they faced the same direction as Figure 6 (c) for ease of comparison.



Figure 3: Measurements of cochlear slant height, first and second turn diameters,
overall cochlear size, and semicircular canal radius of curvature in six foetal D. leucas
expressed as percentages of mean adult size. Percentages of newborn total length based
on calf data given in Ohsumi (1966) are as follows: ZMB 85709 (15%, blue), ZMB 85710
(15%, pink), ZMB 85701 (17%, orange), ZMB 85703, (17%, ochre), ZMB 85704 (20%,
green), ZMB 85708 (27%, turquoise).

Figure 4: Bivariate plots of ratios of cochlear parameters to mean semicircular canal
radius of curvature onto logarithmically transformed body mass for adult odontocetes,
adult mysticetes, foetal odontocetes, adult S. scrofa, and foetal S. scrofa. Data points:
red, adult odontocetes; blue, adult mysticetes; green, foetal odontocetes; orange, adult
S. scrofa; purple, foetal S. scrofa. Abbreviations: R, mean semicircular canal radius of
curvature.

Figure 5: Bivariate plots of ratios of cochlear parameters to each other onto logarithmi-
cally transformed body mass for adult odontocetes, adult mysticetes, foetal odontocetes,
foetal mysticetes, adult S. scrofa, and foetal S. scrofa. Data points: red, adult odonto-
cetes; blue, adult mysticetes; green, foetal odontocetes; black, foetal mysticetes; orange,
adult S. scrofa; purple, foetal S. scrofa.

ra
Note
revised Fig. 3 caption: 
"Measurements of cochlear slant height, first and second turn diameters, overall cochlear size, and semicircular canal radius of curvature in six foetal D. leucas expressed as percentages of mean adult size. Percentages of newborn total length based on calf data given in Ohsumi (1966) are as follows: ZMB 85709 (15%, blue), ZMB 85710 (15%, red), ZMB 85701 (17%, orange), ZMB 85703, (17%, black), ZMB 85704 (20%, green), ZMB 85708 (27%, grey).














