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Abstract

Current and future high significance CMB lensing-galaxy cross-correlations will soon
precisely probe the growth of structure and provide powerful tests for parameter
tensions, non-Gaussianity, neutrino mass, and modifications to Λ−CDM and gravity.
However, such cross-correlations are sensitive to CMB foreground contamination, and
the resulting biases represent an important challenge for cosmological analyses. In
this thesis we describe new CMB lensing cross-correlation measurements and a novel
multi-frequency cleaning-based technique to mitigate foreground effects in lensing
maps. In particular, we present a tSZ cleaned cross-spectrum between Atacama
Cosmology Telescope lensing and BOSS galaxies using a modified version of the
standard quadratic estimator that retains most of the signal-to-noise.

To minimize lensing foreground biases, geometry-based methods that modify the
form of the standard quadratic estimator have been developed as well. We discuss
how to optimally combine these with multi-frequency cleaned data to mitigate the
impact of foreground contamination while maintaining maximal significance. For a
Simons Observatory-like experiment, we find that for the CMB lensing auto-spectrum
it is possible to reduce the foreground induced bias by a large factor, compared to the
standard quadratic estimator, at a modest noise cost. We find a similar result for a
cross-correlation with an LSST-like sample, with a large reduction in bias at small
noise cost.

Finally, we turn to the three-dimensional large scale structure of the Universe
probed by galaxy surveys. We show how we can reconstruct the large-scale density field
from galaxy modes using CMB lensing-inspired methods and use this reconstruction
to improve constraints on local primordial non-Gaussianity.
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deprojected lensing maps for the cases of lCMB,max = 3000 and lCMB,max =
3350, where lCMB,max is the maximum CMB multipole used in the lens-
ing reconstruction. Since extragalactic foregrounds rise rapidly towards
high l, a substantial foreground residual in the cross-correlation would
cause a null-test failure. However, our null-test results shown here are
consistent with zero contamination for both fields (blue: points for BN,
orange: points for D56). . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.9 The same test as shown in Figure (3.8), but applied to the ACT-only
maps which have not been foreground cleaned (blue: points for BN,
orange: points for D56). The PTE for BN shows a (mild) failure of the
null test, as is expected if foreground residuals are important. . . . . 93

4.1 The temperature power spectra of different multi-frequency combina-
tions of frequency maps for a Simons Observatory-like experiment: in
red is the standard internal linear combination (ILC); in blue is the
ILC with CIB deprojection; in orange is the ILC with tSZ deprojection.
In cyan we show the cross correlation between the tSZ-deprojected
and CIB-deprojected combinations. In black is the lensed CMB theory
curve. For the tSZ-deprojected curve in orange, the large power on
large scales is due to atmospheric noise. . . . . . . . . . . . . . . . . 101

4.2 CMB lensing reconstruction noise curves for the standard quadratic
estimator (QE), shear (SH), point source hardened estimator (PSH),
and the profile hardened estimator with a tSZ profile (PH), all applied to
a minimum variance temperature-only ILC map, as well as noise curves
for the standard symmetric estimator with tSZ-deprojection (Symm)
and two new estimators that we introduce later in the text: point
source hardening on the symmetric estimator with tSZ-deprojection
(SymmPSH), profile hardening on the symmetric estimator with CIB-
deprojection (SymmPH), and finally the minimum variance estimator
with both temperature and polarization (QE MV). For the temperature
maps we take ℓmin, ℓmax = 30, 3500 in this figure, while for polarization
we assume ℓmin = 30, ℓmax,pol = 5000. In black we show the CMB lensing
signal Cκκ

L . In the bottom panel we show the total bias to the CMB
lensing autospectrum (as a fraction of the signal power) for some of the
estimators. The relative statistical error for the standard QE is shown
in grey. Note that the standard QE is biased at most scales. . . . . . 103
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4.3 Values of measurement standard deviation σ and bias b for the CMB
lensing power spectrum amplitude A, assuming only temperature (TT )
reconstruction is used in the lensing power spectrum measurement.
Results are shown for the different estimators with different types of
foreground mitigation that have been proposed so far; several values
are assumed and plotted for the maximum CMB multipole used in
the lensing reconstruction. In this and the following plots, [QE, SH,
PSH, PH, Symm] indicate the standard quadratic estimator, shear
estimator, point source hardened estimator, profile hardened estimator,
and symmetric tSZ-deprojected estimator respectively. The colored
bands represent regimes where the bias is greater than a certain fraction
of the statistical noise. We can see clearly that a trade-off between
bias and noise exists for the different estimators proposed thus far:
estimators that aim to reduce biases unfortunately incur a significant
noise penalty. We would like to be able to reduce both foreground
bias and variance of lensing estimators simultaneously (obtaining new
estimators that are somewhat closer to the lower left corner of this plot).105

4.4 As for Figure 4.3, but with the addition of two new combined estimators:
i) SymmPSH, which stands for point source hardening applied to a
symmetric estimator with tSZ deprojected; ii) SymmPH, given by profile
hardening applied to a symmetric estimator with CIB deprojected. We
can see that, for some configurations, these new estimators allow us to
obtain somewhat lower bias at the same noise in comparison with the
existing estimators shown in Figure 4.3, although potential remains for
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4.5 As for Figures 4.3 and 4.4, but now including results from performing an
optimized linear combination of individual estimators (in this plot we
only consider lensing measurement from temperature). The solid black
dots show the optimized points, with results shown for optimization
with fb = 0, 0.1, 1, 2, 4 going from dots on the right to the left (recall
that fb parametrizes the importance of bias-squared relative to variance
in the optimization). We can see that the black dots representing
the linear combinations of estimators perform significantly better than
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4.6 Composition of the optimized linear combination estimators shown
in the solid black points in the previous figure. The pie charts show
the fractional contribution made by each individual estimator in the
linear combination, calculated as

∫
L⃗ w(L)ai(L). In the pie charts, colors

indicate the type of estimator and shading indicates the maximum
CMB multipole used in the reconstruction. When assuming fb = 0,
i.e. optimizing for minimum variance alone, as expected the standard
QE alone is dominant. For an optimization which heavily penalizes
bias using fb = 4, a combination of PH and SymmPH is the best
combination; this combination only has a 0.5% bias, although the
signal-to-noise falls below 70. We may notice that for high fb PH with
a high lmax is chosen, and not with a low one that we might expect
to give lower bias. The reason is that at the important scales for the
calculation of the CMB lensing amplitude, the PH with higher lmax is
lower in bias compared to the ones with lower lmax. This is because
there are internal cancellations in the calculation of the bias, depending
on the specific lmax (and set of simulations). . . . . . . . . . . . . . . 112
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case of temperature-lensing-only power spectrum optimization with
fb = 1. The top panel shows the signal-to-noise ratio squared per mode
for the lensing reconstruction, the middle panel shows the Gaussian-
smoothed absolute value of the total foreground bias for each estimator.
On the bottom, the weights per mode are shown for each estimator;
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combination. It can be seen that, for fb = 1 where bias and variance
are assigned equal importance, the optimization tries to compromise
between bias and noise per mode. Most of the constraining power for
the CMB lensing amplitude derives from L ≤ 500. . . . . . . . . . . . 113

4.8 As for Figure 4.7, but here showing results for an optimization run
with fb = 4, i.e. the bias is assigned approximately four times more
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4.9 Linear-combination optimization results for the lensing power spectrum
as in Figure 4.6; however, in this plot, we consider not just temperature
data but are also including polarization data. As before, the pie
charts represent the contribution from each estimator, calculated as∫
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cleaning, namely Shear and SymmPSH. This is different than the result
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4.14 Optimization results for the cross correlation of lensing from polarization
and temperature data with an LSST-like sample. The pie charts repre-
sent the contribution from each estimator, calculated as

∫
L⃗ w(L)ai(L).

As the primary cross-bias has no contributions from (foreground-free)
polarization, we can see that for high deprojection of the bias, at far
left, the results are very similar to the TT only cross-correlation case. 121

4.15 Can the (sometimes complex) optimal linear combinations of estimators
be easily simplified? Black dots show the optimal points for the CMB
lensing auto-spectrum shown in previous plots. The grey cross is the
shift in this optimal point, if we choose to simplify the combination by
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5.1 Reconstruction noise power spectra for estimators that use each of the
quadratic mode-couplings discussed in Sec. 5.2.2. We omit curves for
the c01 and c02 estimators, which are greater than the upper limit of the
plot. The G (“growth") estimator has the lowest noise by far. These
curves are computed for a DESI-like survey, but the hierarchy between
them is unchanged for the other surveys we consider. The signal to
noise on reconstructed modes (not shown) is likewise much higher for
the G estimator than for S or T, justifying our use of the G estimator
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5.2 Left: Contamination in the expectation value of G estimator, cor-
responding to separate multiplicative biases on the amplitude of a
reconstructed mode, computed for a DESI-like survey. Blue solid line
is the estimator growth bias shown for comparison. Dashed lines in-
dicate negative values. Several of these curves inherit the k−2 scaling
of the scale-dependent bias in δg arising from nonzero fNL, implying
that reconstructed modes can be used to constrain fNL in the same
way. Right: Ratio of scale-dependent bias from fNL (for a fiducial value
of fNL = 1) to total bias for δg (solid) and δr (dot-dashed). Local
primordial non-Gaussianity has roughly the same relative contribution
to the bias of δg or reconstructed modes. . . . . . . . . . . . . . . . . 142

5.3 Cross correlations of estimators ∆̂α corresponding to the growth, shift,
and tidal mode-couplings with the linear density field δ1. We compare
theory predictions (lines) with simulations (points) for three different
smoothing scales, R = 20h−1 Mpc, R = 10h−1 Mpc and R = 4h−1

Mpc, corresponding to maximum wavenumbers kmax = 0.05h Mpc−1,
0.1h Mpc−1, and 0.25h Mpc−1 respectively. In this figure, we plot
⟨∆̂αδ1⟩/Nαα (in contrast to what is defined in Eq. (5.17), in simulations
we define the estimators ∆̂α without a prefactor Nαα). We find very
good agreement for the growth estimator for all smoothing scales, and
also reasonably good agreement for the other estimators. . . . . . . . 145

5.4 Auto-correlations of the quadratic estimators ∆̂α, for the same smooth-
ing scales shown in Fig. 5.3. The predictions for the growth estimator
agree with simulations for all smoothing scales. However, for other
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but for the low smoothing scales, the predictions slightly disagree with
simulation results as higher-order terms become more important. . . . 146

5.5 Comparison of the auto power spectrum of the growth estimator ∆̂G,
normalised by NGG computed from theory (in red), with (⟨∆̂Gδ1⟩)2/Plin

(in blue). We compare simulation results (points) with theory predic-
tions (lines) for the same smoothing scales as Figs. 5.3 and 5.4. We
again find excellent agreement between simulations and theory. In
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5.6 2D slices of the 3D linear density field (left panel) and the growth
estimator ∆̂G (right panel). For the growth estimator we used R = 4h−1

Mpc smoothing which corresponds to kmax = 0.25h Mpc−1. We apply
an external smoothing of R = 20h−1 Mpc to both the linear and
reconstructed fields. As expected, we find that the reconstruction
reproduces many of the large-scale features in the linear density field. 150

5.7 Probability distribution functions (histograms) of the linear density
field and the reconstructed field from the halo density field of mass bin
I. As in Fig. 5.6, we use kmax = 0.25h Mpc−1 for the reconstruction and
apply an external smoothing scale of R = 20h−1 Mpc to both the linear
field and the reconstructed field. The PDFs of the reconstructed field
are scaled to have the same variance as the linear field, and shifted to
have mean 0. We find that the PDF of the reconstructed field is very
close to Gaussian. Note that here we have applied a low-k cutoff to
the modes used for reconstruction of kmin = 0.05h Mpc−1 in order to
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5.8 Expected errorbars on the reconstructed power spectrum Prr for the
surveys and redshift bins we consider (blue), along with cosmic-variance-
limited errorbars (orange), computed for bandpowers with ∆K =
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5.10 The analog of the right panel of Fig. 5.9, with a variety of (mostly
artificial) modifications to the forecasts. There is no improvement in
σ(fNL) when δr is neglected at K < Kmin, indicating that the inclusion
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5.14 Modifications to the base PUMA forecasts, neglecting the foreground
wedge. In the low-z bin, modes of δr with K < Kmin are entirely
responsible for the improvement in σ(fNL), with most other modifi-
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1
Introduction

We live in the era of big data. Current and future cosmological surveys will probe the
Universe with unprecedented precision. We will challenge again the simple and, until
now, very successful, mainstream cosmological model, and in doing so hope to gain
insights into its unknown pillars: dark matter, dark energy, and inflation.

Gone are the days where mysteries could be unraveled with little thought. Cautious
and ambitious has to be he who wants to take paths from theory to observations.
Ambitious, to get the most out of new cosmological data. Cautious, as surveys are no
longer statistically limited, as we have to consider more systematic effects.

The focus of this thesis is to provide methods for more robust and enhanced
reconstructions of the sky, or more precisely, the large-scale structure.

The distribution of matter in the Universe weakly lenses the cosmic microwave
background (CMB) photons along their way to us. In the last decade, several surveys
of the sky used small-scale CMB information to reconstruct the projected matter
distribution, and extract insights about dark energy, neutrino masses, and dark matter.

As we go to smaller and smaller CMB scales, foregrounds dominate more and
more. This might result in biased measurements that lead to an incorrect cosmo-
logical inference. For low-resolution surveys, this was not significant; however, for
high-resolution temperature-dominated ones, foreground contamination might induce
detectable biases. The first two parts of this thesis focus on exploring and implement-
ing methods for foreground reduction. We quantify foreground biases arising in CMB
lensing analyses. Then, we develop methods for foreground mitigation, preserving
most of the signal-to-noise.

Once we have a clean, robust CMB lensing map, we can cross-correlate it with
large-scale structure probes. Cross-correlation science has become one key way to
constrain cosmology. Galaxies and CMB lensing trace the same common underlying
matter field. Cross-correlations break degeneracies among certain parameters, cancel
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systematics in auto-analyses, allow for sample variance cancellation, and make possible
tomographic analyses to trace the growth of structure with time. Using the methods
developed in this thesis, we will build a foreground-free CMB lensing map, which we
will then cross-correlate with BOSS galaxies.

In principle, we should be able to cross-correlate CMB lensing with any other
probe of the matter, but in practice this is not always possible. For example, intensity
mapping has a good overlap in the high-redshift range with CMB lensing, but the
foreground filtering of intensity mapping surveys removes most of the low-k|| modes
that source CMB lensing, destroying the correlation between the two observed fields. A
possible solution is to get the lost intensity mapping large-scale modes from small-scale
power.

Due to gravity, long-wavelength density modes affect the power of the locally
measured small-scale matter power. Exploiting this, it is possible to reconstruct
large-scale modes from small-scale ones. Inspired by CMB lensing reconstruction, in
the last chapter we present a method to reconstruct large-scale modes from galaxy
surveys, obtaining a new probe for cosmology. Our method accounts for the effects of
non-linear bias and non-Gaussianity for the first time. We perform a Fisher forecast
for a joint constraint primordial local non-Gaussianity with this new field and the
original one. By taking advantage of cosmic variance cancellation, we show that we
can improve our constraints on fNL. This will be especially relevant for upcoming
large-scale structure observations. It might help reduce viable inflationary theories
and guide us into our journey to obtaining a deeper understanding of the physical
world.

Overview of this thesis

Formally the thesis is structured as follows.

1. In Chapter 2 we start by reviewing some background cosmology. We discuss pri-
mordial inflationary perturbations, subsequent generation of CMB perturbations,
and some secondary anisotropies of the CMB. We devote time to CMB lensing,
followed by a presentation of dark matter perturbations. We end discussing the
topic of large-scale reconstruction with quadratic estimators.

2. In Chapter 3 we present a cross-correlation between ACTPol CMB lensing maps
and CMASS BOSS galaxies ([72]). The CMB lensing maps are built with a
novel foreground-free estimator which exploits multi-frequency cleaned data.

3. In Chapter 4 we first give an overview of some known CMB lensing estimators for
foreground mitigation. Then, we optimally combine them, with respect to some
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loss function, to extract the best possible combination that minimizes foreground
induced bias and maximizes the signal-to-noise, for the lensing amplitude in
auto and cross-correlations.

4. In Chapter 5, we discuss a quadratic estimator-based reconstruction of the
linear density field from galaxy clustering. We incorporate non-linearities due
to gravity, galaxy biasing, and primordial non-Gaussianity, then verify our
predictions with N -body simulations. We perform a Fisher matrix analysis to
show that the reconstructed field in combination with the biased tracer field can
improve constraints on local-type primordial non-Gaussianity. We find significant
improvement on constraints due to cosmic variance cancellation, resulting from
the additional correlated modes of the reconstructed field, similar to multi-tracer
analyses ([71]).

5. Finally, in Chapter 6 we present a summary of our results and the impact these
results have in the field, including a future outlook.



2
Review of Cosmological Perturbations

Our goal in this chapter is to understand cosmological perturbations. We start with
some background cosmology. We then proceed to a discussion of how to describe
cosmological observables. Inflationary cosmology, as well as CMB anisotropies are
considered. The focus then shifts to CMB secondary anisotropies, with particular
emphasis on CMB lensing. We also introduce perturbation theory for large-scale
structure and biasing. Finally, we discuss large-scale reconstruction from CMB and
large-scale structure.

2.1 The Expanding Universe

We will use units such that c = 1. The metric signature is (−, +, +, +).

2.1.1 The FLRW Metric

We assume, on large scales, a homogeneous and isotropic space evolving in time. We
write the most general metric satisfying these geometrical considerations in this way
(e.g. [50])

ds2 = gµνdxµdxν = −dt2 + a2(t)γijdxidxj , (2.1)

where gµν is the four metric, γij represents the metric of the space, t is the proper
time, xi are comoving coordinates, and a is the scale factor. We slice the space time
into maximally symmetric (i.e. homogeneous and isotropic) spatial slices Σ rescaled
by the scale factor as a function of time. Latin indices (i, j, ...) represent spatial
components, and Greek indices (µ, ν, ...) all four space time components. The inverse
of the four-metric gµν raises space time indices (and likewise γij , the inverse of γij , for
space indices).
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The metric in (2.1) is also known as FLRW metric, and it can be written as

ds2 = gµνdxµdxν = −dt2 + a2(t)
[

dr2

1− kr2 + r2dΩ2
]

, (2.2)

where k is a curvature parameter, r a distance coordinate with units of length, and
dΩ2 = dθ2 + sin2θdϕ2 is the metric on the two-sphere. If k = 0 we have flat space,
k > 0 a three-sphere, and k < 0 a hyperbolic space. In this thesis we focus on flat
space, which has Cartesian coordinates γij = δij. In this case the distance coordinate
r represents a radius.

We can use the metric discussed for several purposes, one of which is studying
the propagation of light. Light rays propagate on null geodesics, ds2 = 0.1 Light
trajectories are simple in certain coordinates. Let us switch our time variable from
physical time to conformal time:

dη ≡ dt

a(t) (2.3)

such that the FLRW line element becomes

ds2 = a2(η)
[
−dη2 + γijdxidxj

]
. (2.4)

Due to isotropy, the radial trajectory with ϕ, θ = const. is a geodesic, and dη2 =
dr2

1−kr2 ≡ dχ2, and radial geodesics are described by χ(η) = ±η + const., corresponding
to simple straight lines at ±π

4 in the η–χ plane. These will set the limit of how far we
can see.

If the universe has a finite age, starting at some time ti, then there is a maximum
amount of time for light to have traveled. The volume of space from which we can
receive information at any given time is limited. The boundary of the volume is called
the particle horizon [191]. The maximum comoving distance light can travel is,

χp(η) =
∫ t

ti

dt

a(t) = η − ηi , (2.5)

where ηi sets the beginning of the universe.
To obtain the physical distance between two radially separated points on the same

spatial slice, parametrized by η, we multiply χp with the scale factor:

dp(t) = a(η)χp(η) . (2.6)
1This is true in special relativity. Then, it is true in general relativity for local inertial coordinate

frames. Given the invariance of the line element under coordinate transformations, this is true for
light geodesics in curved space times.
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In practice, the maximum distance light can travel to us in our universe is set by
the time of recombination. Suppose we shoot out a photon today from our position,
making it “go back” in time. It will scatter frequently around 13.7 billion years
ago, because prior to that, the Universe was opaque to photons. It trapped them
in a plasma, and released them near hydrogen recombination. Thus, there is a
maximum distance that we can see in practice with light. This is the “optical” horizon
dopt = a(η)(η−ηr) = a(t)

∫ t
tr

dt
a

, where ηr (tr) is the time of decoupling [191]. In practice
we can infer information about earlier times with these photons. In principle we could
directly look back with cosmic background neutrinos or cosmological gravitational
waves, as they decouple earlier. In practice this is difficult for now, although CMB
perturbations still allow us to infer information about the very early universe.

To characterize distances and time traditionally we use the redshift. Redshift is
the fractional shift in the wavelength of a photon emitted from someplace at time te

and observed today at t0:

z = λ0 − λe

λe

, (2.7)

where λ0 is the wavelength today, and λe is the wavelength at emission.
The expansion of the Universe leads to a cosmological redshift of the photon

wavelength, λ ∝ a(η), so that

1 + z = a0

ae

. (2.8)

We can see that there is a one-to-one relation between z and ae ≡ a(te), making
the redshift a measure of time, if we fix t0 for a0 ≡ a(t0). On the other hand, the
redshift can also be used as a measure of space. Indeed, the comoving distance

χ = η0 − ηe =
∫ t0

te

dt

a(t) = 1
a0

∫ z

0

dz′

H(z′) (2.9)

can be written in terms of of the redshift, where we used that dz = −(1 + z)H(t)dt by
differentiating the definition of redshift, χ = r for a flat universe, and H(t) = 1

a
da
dt
≡ ȧ

a

the Hubble parameter as a function of time.
We are often interested in measuring the angular size of observed objects. The

angular size is the angle that an object of given proper physical size subtends on the
sky. The same object can have different angular sizes, depending on the underlying
cosmology. Relating a proper physical size to the observed one, we can extract
cosmological parameters.

One definition of distance in cosmology comes from the following. In a Euclidean
space, an object of proper size s, subtending a small angle θ, has s = a(te)χθ, where



2.1 The Expanding Universe 7

χ is the comoving radial distance from the observer. For general geometries, this is
not true, as the geometry of the universe might not be flat. We define the angular
diameter distance dA to be the distance such that θ can still be given by the Euclidean
relation [284]

θ = s/dA , (2.10)

where in flat space

dA = a(t)χ . (2.11)

The evolution of a(t) is important for understanding the FLRW metric.
To describe the evolution of the geometrical properties of space time described by

the metric, and in FLRW by a, we need to solve Einstein’s equations,

Gµν = 8πGTµν + Λgµν , (2.12)

where Gµν is the Einstein tensor, related to the space time Ricci tensor Rµν (depending
on the metric and its derivatives):

Gµν ≡ Rµν −
1
2gµνR , R ≡ gµνRµν , Rµν ≡ Rλ

µλν , (2.13)

with the space time Riemann tensor defined as

Rµ
νκλ = ∂κΓµ

νλ − ∂λΓµ
νκ + Γµ

ακΓα
νλ − Γµ

αλΓα
νκ , (2.14)

and the affine connection coefficients Γµ
νκ

Γµ
νκ = 1

2gµλ(∂νgκλ + ∂κgλν − ∂λgνκ) . (2.15)

The the energy-momentum tensor Tµν describes the content of the Universe. We
will choose to model it with a perfect fluid description:

Tµν = (p + ρ)uµuν + pgµν , (2.16)

where p and ρ are the proper pressure and energy density measured in the fluid rest
frame, and uµ = dxµ

dλ
(dλ2 ≡ −ds2) is the fluid four velocity (e.g. [39]). Comoving

coordinates will be chosen such that the fluid is at rest, ui = 0, ∀i ∈ {1, 2, 3}, and we
see that T 00 = ρ, T 0i = 0, and T ij = a−2pδij.2

2If to describe the components in the Universe there are other effects like weak collisions, or
thermal conduction, then T µν acquires an extra term Σµν to describe the imperfectness of the fluid
(e.g. [39, 284]).
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The Friedmann Equation

For the FLRW metric, Einstein’s equations, with a perfect fluid, reduce to two
equations (by symmetries of space time). The Friedmann equation comes from the 00
component:

H2 =
(

ȧ

a

)2
= 8πG

3 ρ− k

a2 + Λ
3 ; (2.17)

and the second Friedmann, or Raychaudhuri, equation comes from the ii ones:

ä

a
= −4π

3 G(ρ + 3p) + Λ
3 , (2.18)

where H = ȧ
a

is the Hubble parameter. The energy density appearing in both equations
can be understood as the sum of (independent) fluid components i, with their own
energy density, ρi and pressure, pi. Therefore, ρ is to be understood as ρ = ∑

i ρi. The
dominant components will vary in time. For example, in the early Universe, assuming
negligible contribution from dark energy in the form of cosmological constant, we have
ρ = ρb + ργ + ρm + ρν , where we have baryon, photon, dark matter, and neutrino
contributions respectively. For now, we will put this aside, and write just ρ.

A relativistic perfect fluid will obey a local continuity equation (in the absence of
collision terms)

∇µT µν = 0 . (2.19)

From the continuity equation for FLRW with a perfect fluid

ρ̇ = −3H(ρ + p) , (2.20)

which is just a manifestation of Bianchi’s identity, as it can be derived from the
Friedman and Raychadhuri equations.

To solve for the evolution of a, ρ, p, we also need to specify an equation of state
connecting the density ρ to the pressure p. We will take the simple relation of a
barotropic fluid p = p(ρ) = wρ, where w will be assumed constant.3 For example, the
case with w = 0 represents pressureless dust, a good approximation for collisionless
non-relativistic fluids.

The continuity equation then becomes
3This is not a valid assumption for all components. For example, from a phenomenological point

of view, it is possible to model the late-time dark energy with w = w0 + (1− a)wa, with w0, wa some
parameters, and in this case, the equation of state becomes time-dependent.
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ρ̇

ρ
= −3H(1 + w) . (2.21)

Solving for ρ we find ρ ∝ a−3(1+w), and, for w ̸= −1, a ∝ t
2

3(1+w) or a ∝ η
2

1+3w .
The specific behavior of a then depends on the specific components that dominate

the Universe. The most important ones are: photons (γ) and (relativistic/massless)
neutrinos (ν) as radiation with w = 1

3 , electrons (e) and protons (p) as baryons (b),
cold dark matter (c) that with baryons constitute matter (m) with w ≈ 0, and finally
dark energy (Λ), with w = −1 for a cosmological constant.4

In cosmology, it is useful to define the critical density ρc ≡ 3H2

8πG
. Then, for any

component ρi we define the density parameter Ωi(a) = ρi(a)/ρc(a), and Ωk(a) ≡
− k

H2(a)a2 . When the argument of Ωi(a) is not written, Ωi will mean its present value,
Ωi ≡ Ωi(a0), where a0 is the scale factor today, chosen such that a0 = 1.5

Then, we can write the Friedmann equation in the useful form

1 =
∑
i∈C

Ωi(a) + Ωk(a) (2.22)

In particular, for a flat universe, the sum of the densities over the components C
satisfies ∑i∈C Ωi(a) = 1, and we see that the critical energy density is quite useful, as
in this case, it is equal to the total energy density matching the Hubble constant.

Today, we know that the energy density budget of the Universe is given by roughly
31% matter, of which 5% baryonic matter and the rest is dark matter, 69% dark energy.
Other contributions are from photons Ωγ ≈ 5× 10−5, and neutrinos Ων∼ O(10−3).6

Finally, we have |Ωk| < 0.01.
To derive these numbers, one has to go through a cosmological analysis, where

observables are studied to connect to the fundamental parameters. Thus, we proceed
now to discussing how we describe cosmological observables.

4Λ is used for the cosmological constant, but as our current cosmological model is based on that,
we will stray from this, and refer to dark energy in general with Λ.

5In equation (2.2) we can rescale a→ λ−1a, r → λr, k → λ−2k, without changing it. Therefore
we can always choose λ to be the value of a today, such that with the rescaling a0 = 1.

6Neutrinos are considered radiation in the early universe, where they are relativistic. As the
universe expands and they slow, they become non-relativistic and therefore count as matter. The
value of Ων∼ O(10−3) comes from considering the neutrinos non-relativistic with some mass: roughly
nνmν , where nν is the number density of neutrinos, and the mν the sum of their masses.



2.2 How do we describe cosmological observables? 10

2.2 How do we describe cosmological observables?

We assume that the density variations that we observe today in the Universe are from
a random process whose statistics, but not any of its particular realizations, can be
predicted. This can be described by a random field in space f(x⃗) with a functional
P(f), indicating the probability of realizing some field configuration of f in space.

A basic quantity is the correlator, defined as

⟨f(x⃗)f(y⃗)...⟩ =
∫
DfP(f)f(x⃗)f(y⃗)...., (2.23)

where ⟨....⟩ denotes an ensemble average, an average over many realizations of the
random process. This definition can be generalized to include multiple different fields,
although we will stick to only one here. Correlators are useful as they can be used to
study the probability functional describing f .

In accordance with observations, we will assume f to have two properties:

• Statistical isotropy, in the sense that the correlation (2.23) is invariant under
rotations. The rotated field R̂f(x⃗) = f(R−1x⃗) has the same expectation value
(2.23) as f for any rotation R in space described by the group representation R̂

on the space of functions.

• Statistical homogeneity, in the sense that the correlation (2.23) is invariant under
translations. The translated field T̂ f(x⃗) = f(x⃗ + a⃗) has the same expectation
value (2.23) as f , for any shift a⃗ described by the operator T̂ .

Under homogeneity, and assuming that in a correlator the fs with distant arguments
are uncorrelated (i.e. lim|u⃗|→∞⟨f(x⃗ + u⃗)f(y⃗ − u⃗)...⟩ = lim|u⃗|→∞⟨f(x⃗)...⟩⟨f(y⃗)...⟩), it is
possible to prove the ergodic theorem [284], which implies that

⟨f(x⃗)f(y⃗)...⟩ =
∫
DfP(f)f(x⃗)f(y⃗).... ≈ 1

V

∫
V

d3z⃗f(x⃗ + z⃗)f(y⃗ + z⃗).... (2.24)

where V is a large enough volume such that spatial correlations can decay sufficiently
rapidly with increasing separation in such a way that we have many statistically
independent volumes in one realization [284]. Each volume should provide a fair
sample of the original (functional) probability distribution describing f .

To recap, ergodicity means that the ensemble average (2.23) is equal to a spatial
average taken over one realization of the random field over a large volume in our
universe realization. This is important, as it will allow us to make (volume) averages
from observations, and connect these observations to theory.
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If V is not large enough, the spatial average can be quite different from the ensemble
expectation value. The mean square difference between the ensemble expectation
value of a quantity predicted by theory and the observed average approximating it is
called cosmic variance [167, 284]. This limits how accurately we can compare theory
and observations. We will see examples later for the CMB, as well as a way we can
overcome these limits in Chapter 5.

Given a volume, and a large number of independent, identically distributed random
fields, by the central limit theorem, the distribution of their sum tends to a Gaussian.7

Gaussian distributions

Let us consider f with zero ensemble mean.8

The functional governing f is said to be Gaussian if the average of a product of an
even number of fs is given by the sum over averages of pairs of all the different ways
of pairing the fs with each other [284]

⟨f(x⃗)f(y⃗)...⟩ =
∑

ordered pairings

∏
unique pairs

⟨ff⟩ , (2.25)

and any expectation value of an odd number of fs vanishes. Put simply, the two-point
function, and the mean, describes the entire field.9 As an example, the CMB can be
assumed to not deviate from a Gaussian [11]. As the Ergodic theorem applies to Gaus-
sian random fields (assuming lim|u⃗|→∞⟨f(x⃗+ u⃗)f(y⃗− u⃗)...⟩ = lim|u⃗|→∞⟨f(x⃗)...⟩⟨f(y⃗)...⟩
sufficiently quickly) [284], we then simply need to take averages over data to study it.

Non-Gaussian distributions

If we find any extra residual in the correlation functions with respect to what defines
a Gaussian field, then we have a non-Gaussian field. There are many ways to be
non-Gaussian. A simple one is by squaring a Gaussian field f , as g ≡ f 2 will have a
non zero ⟨ggg⟩. There are scenarios where non-Gaussianity could arise in the early
universe [167], although from current observations, primordial fluctuations are still
constrained to be nearly Gaussian (e.g. [11]).

Later, we will see that the additional presence of correlation in the four-point
correlator of the CMB, with respect to a Gaussian-only case, leads to additional
powerful observables in cosmology.

7In general it is important that the sum is not dominated by one variable, or a small, number of
variables. If we have equally distributed variables, then this is satisfied [85].

8If there is any non-zero ensemble mean we just subtract it from f .
9The definition that we provided for a Gaussian random field is basically the Isserliss-Wick theorem

(e.g. [85]).
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2.2.1 Fourier space

Cosmological fields can be described in real space, and in other spaces, such as Fourier
space. Each one has its own advantages and disadvantages. In particular, the Fourier
space description is useful as it focuses on the behavior on a certain scale (e.g. [95]).

Given a field f , we consider the Fourier transform, with the following convention

f(k⃗) ≡ f̃(k⃗) =
∫

d3x⃗exp[−i⃗k · x⃗]f(x⃗) (2.26)

with an inverse

f(x⃗) =
∫ d3k⃗

(2π)3 exp[i⃗k · x⃗]f(k⃗) . (2.27)

We can make a translation by a⃗, so that the translation representation in the
Fourier space gives an extra phase factor for the Fourier transform

f(k⃗)→ exp[i⃗k · a⃗]f(k⃗) , (2.28)

and similarly for the product of two fields

f(k⃗)f ∗(k⃗′)→ exp[i(k⃗ − k⃗′) · a⃗]f(k⃗)f ∗(k⃗′) . (2.29)

Taking the ensemble average of this, and requiring invariance under translations, we
see that the exponential term above requires k⃗′ = k⃗. Therefore we require [54, 21]

⟨f(k⃗)f ∗(k⃗′)⟩ = (2π)3δ
(3)
D (k⃗ − k⃗′)F (k⃗) . (2.30)

Similarly, by requiring statistical invariance under rotations we obtain that [21]

⟨f(k⃗)f ∗(k⃗′)⟩ = (2π)3δ
(3)
D (k⃗ − k⃗′)F (|⃗k|) . (2.31)

If a field is real, f(k⃗) = f ∗(−k⃗), the expression above can also be written as
⟨f(k⃗)f(k⃗′)⟩ = (2π)3δ

(3)
D (k⃗ + k⃗′)F (|⃗k|).

Working in Fourier space allows for certain operations, such as smoothing with
some window function W :

fR(x⃗) =
∫

d3y⃗ WR(y⃗)f(x⃗− y⃗)→ fR(k⃗) = f(k⃗)WR(k⃗) , (2.32)

where we have taken advantage of the convolution theorem

f(x⃗) = [g ∗ h](x⃗) =
∫

d3y⃗g(y⃗)h(x⃗− y⃗)→ f(k⃗) = g(k⃗)h(k⃗) . (2.33)
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which is important for many numerical applications.
In general f will represent an observable, O, with some perturbation with respect

to a background value, Ō. In cosmology, perturbations are a tricky concept which
require attention here.

2.2.2 Cosmological perturbations: gauge issue

Thus far, we have focused on a homogeneous universe, but our universe contains
large-scale structure, such as galaxies and galaxy clusters, as a consequence of the
growth of small-in-amplitude density fluctuations in the early universe.

We used the term small-in-amplitude density fluctuations. With this we imply
that the early universe space time is close to the homogeneous and isotropic one.

Suppose we have some quantity Q in the physical space time. The perturbation
of this quantity is defined as its value in the physical space time with respect to its
value in the hypothetical unperturbed reference background, at the same coordinate
values. Since we have two different space times, we need to specify some mapping
between them in order to obtain this difference, also known as gauge choice. In
general relativity there is no unique choice for a mapping, as we are free to choose
any coordinate system. This introduces gauge artifacts (e.g. [191, 284]), where even a
homogeneous space time can have fluctuations with a coordinate change.

As an example, suppose we have a homogeneous isotropic fluid described by
ρ(η, x⃗) = ρ̄(η). General relativity allows us to choose any coordinate system by
specifying hypersurface slices with constant-time, and line threads with fixed-space.
Let us take a position-dependent time slicing, where η → η̃ = η + ξ(η, x⃗). Then,
ρ̄(η) → ρ̃(η̃, x⃗) ≡ ρ̄(η(η̃, x⃗)) = ρ̄(η̃ − ξ) = ρ̄(η̃) − ρ̄′(η̃)ξ(η, x⃗) ≡ ρ̄(η̃) + δρ̄(η̃, x⃗), for
a small ξ. We can see that our total density is given by a background value plus a
position dependent perturbation, even if that perturbation itself is not physical in
origin. Figure 2.1 illustrates visually the implication of this.



2.3 How perturbations may arise 14

Fig. 2.1 A one-dimensional density field evolving in time. On the y-axis, is the time
slice, on the x-axis, the position. We can see that the field is spatially constant in
these coordinates. If we now choose another time slicing, represented by η̃, we see
that for the new time coordinate η̃, the field is no longer constant. This figure is taken
from [121].

To resolve this discrepancy between real and fake perturbations, one could identify
gauge-invariant quantities [27, 190], or fix a gauge and perform calculations in this.
We will see an example of this when studying the CMB fluctuations and inflation.10

2.3 How perturbations may arise

Cosmological inflation is one of the most important theories of the early Universe.
It addresses problems of the old big bang model, such as why the Universe is so
homogeneous on large scales. Furthermore, it has a mechanism for seeding the
structure we observe today in the Universe.

There are three important generic predictions for the properties of perturbations
generated by (slow-roll single field) inflation: Gaussianity, adiabaticity, and nearly
scale-invariant initial conditions. Until now, we have still not seen deviations from
these [13].

10There are advantages and disadvantages to working with different gauges. For example, for
the scalar perturbations in inflation, working in the Newtonian gauge, a good choice for CMB
perturbations, mixes the spatial metric perturbation Φ and the inflaton perturbation δϕ, making
equations difficult. Switching to the so-called spatially flat slicing makes calculations much easier, so
one may prefer to work in this one. Gauge-invariant variables can help connecting between the two
gauges.
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2.3.1 Seeding perturbations with inflation

Inflation solves several problems of the hot Big Bang paradigm. The problems are as
follows (e.g. [284]): large-scale homogeneity in the structure observed today, despite
the absence of causal contact between very distant regions (horizon problem); the
flatness of the Universe, despite the instability of the spatial curvature term during
matter/radiation domination (flatness problem); the absence of magnetic monopoles
left over from phase transitions at very high energies (monopole problem).

Inflation is a period of rapid accelerated expansion in the early Universe which
lasts long enough to solve these problems (e.g. [284, 81]).

This process can be described by a slowly-varying vacuum energy component such
that the scale factor a(t) grows quasi-exponentially. This means that a magnetic
monopole (ρ ∝ a−3) will be washed out, losing energy density faster than the source of
inflation, and the same happens for the spatial curvature term (with a corresponding
equivalent energy density ρ ∝ a−2). The beauty of inflation is that it also provides a
mechanism for the generation of the primordial fluctuations that seeded the structure
we observe today in the Universe, such as galaxy clusters or CMB fluctuations.

The important aspects of inflation can be shown with a single scalar field ϕ(x⃗, t),
the inflaton field, with a large but flat potential V (ϕ), with an action given by

S =
∫

d4x
√
−Det(g)

[
M2

plR

2 − 1
2gµν∇µϕ∇νϕ− V (ϕ)

]
. (2.34)

By varying the action, the equation of motion of this field in the FLRW metric is
given by

ϕ̈ + 3Hϕ̇− ∇
2ϕ

a2 = −∂V

∂ϕ
. (2.35)

If the scalar field is homogeneous and isotropic, then the stress-energy tensor is
described by [30]11

ρϕ =
(1

2 ϕ̇2 + V (ϕ)
)

, pϕ =
(1

2 ϕ̇2 − V (ϕ)
)

. (2.36)

To have inflation we need an accelerated expansion ä > 0, and from the Raychaudhuri
equation, we see that this requires ρ+3p < 0. If the potential is large enough compared
to the kinetic term, i.e. V (ϕ)≫ 1

2 ϕ̇2, then pϕ ≈ −ρϕ. For a flat large enough potential,
we will therefore have cosmological constant-like behavior. Importantly in this case
a ∝ eHt, and the ordinary matter will scale as ρm ∝ a−3, while radiation ργ ∝ a−4.
Inflation washes out everything.

11General expression is ρ = ρϕ = 1
2 ϕ̇2 + V (ϕ) + 1

2a2 (∇⃗ϕ)2, p = pϕ = 1
2 ϕ̇2 − V (ϕ)− 1

2a2 (∇⃗ϕ)2.
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We will assume the slow-roll approximation (for the the flatness of the potential,
the small kinetic term, and neglecting ϕ̈ in the equation of motion for the inflaton):

ϵ≪ 1, |ηs| ≪ 1, (2.37)

with the slow-roll parameters12

ϵ ≡ − Ḣ

H2 , ηs ≡
ϵ̇

Hϵ
. (2.38)

Fluctuations in the inflaton field

We can now add small perturbations to the inflaton field, which will be the origin
of cosmological fluctuations, such as the CMB and galaxy clustering. We consider
an independent primordial fluctuation generated at some mode scale λ ∼ k−1, with
wavenumber k, starting inside the comoving Hubble radius H−1 = (aH)−1.13 During
inflation the comoving Hubble radius decreases (e.g. [284]), so that the mode will exit
the horizon at some k ∼ aHk, where subscript k denotes the moment of exit, only
to reenter after inflation has ended at some other later time, and source late-time
observables.

To understand scalar perturbations in inflation, we will consider a gauge with
spatially flat slicing, so that the spatial part of the metric is gij = a2δij. In this way,
we can neglect metric perturbations, and consider only the ones for the inflaton (e.g.
[81]).14

We can rewrite (2.35) using conformal time

ϕ′′ + 2Hϕ′ −∇2ϕ + a2∂ϕV = 0 , (2.39)

where H = a′

a
.

We can describe the inflation field as given by an unperturbed (classical) part
ϕ̄(η) and a small (quantum) perturbation δϕ(x⃗, η) (⟨δϕ2⟩ ≪ ϕ̄2(η)), i.e. ϕ(x⃗, η) =
ϕ̄(η) + δϕ(x⃗, η).

Plugging this into (2.39), and considering only the perturbations

δϕ′′ + 2Hδϕ′ −∇2δϕ + a2∂2
ϕϕV δϕ = 0 . (2.40)

12Note that ä
a = Ḣ + H2 = (1− ϵ)H2, therefore for inflation ϵ < 1.

13The reason for which we consider the comoving Hubble radius as the scale of reference is because
we can write the comoving particle horizon as

∫
dt
a =

∫
da
a

1
aH =

∫
dlna 1

H , and we can see that H−1

determines if two regions separated by some comoving distance are going to communicate or not.
14In general perturbations in the metric and in the inflaton will be coupled, making calculations

more tedious. To simplify, we use the concept of gauge-invariance, where in as long as we maintain
the relevant degrees of freedom, we can choose our coordinate system to study the problem at hand.
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We can now rescale δϕ as u ≡ aδϕ. Next, we turn to quantizing this rescaled
function. Writing (2.40) in terms of u(η, x⃗), we obtain

u′′ −∇2u +
(

a2∂2
ϕϕV − a′′

a

)
u = 0 . (2.41)

We see that a′′

a
= 2a2H2 ≫ a2∂2

ϕϕV from (2.37) and (2.38), and so we can neglect
this a2∂2

ϕV term. Going to Fourier-space

u′′
k⃗

+
(
|⃗k|2 − a′′

a

)
uk⃗ = 0 . (2.42)

We now proceed to quantization. Note that the equations of motion that we derived
for u can be obtained from an action S =

∫
dηL = 1

2
∫

dηd3x⃗
(
u′2 + a′′

a
u2 − |∇⃗u|2

)
. We

then quantize the theory by promoting u and the conjugate momentum π = ∂L
∂u′ = u′

to operators, using the bosonic equal-time canonical commutation relations

[û(η, x⃗), π̂(η, y⃗)] = iδ
(3)
D (x⃗− y⃗), [û(η, x⃗), û(η, y⃗)] = 0, [π̂(η, x⃗), π̂(η, y⃗)] = 0 . (2.43)

We then expand the field operators in mode functions, making sure to have
Hermiticity,

û(η, x⃗) =
∫ d3k⃗

(2π)3 ûk⃗(η)eik⃗·x⃗, ûk⃗(η) = âk⃗uk(η) + â†
−k⃗

u∗
k(η) (2.44)

with the mode functions uk(η) solutions of the classical equations of motion (2.42),
and â†

k⃗
, âk⃗ the creation and annhilation operators respectively, satisfying the condition

[âk⃗, âk⃗′ ] = [â†
k⃗
, â†

k⃗′ ] = 0 , [âk⃗, â†
k⃗′ ] = (2π)3δ(3)(k⃗ − k⃗′) . (2.45)

Inserting the mode function expansion in the first expression of (2.43) we obtain

[û(η, x⃗), π̂(η, y⃗)] = 1
(2π)3

∫
d3k⃗iW (uk, uk′)eik⃗·(x⃗−y⃗) (2.46)

where we have the Wronskian W given by W (uk, uk′) = uk(u∗
k)′ − u∗

k(uk)′ = i.
We now impose (2.42) onto the mode functions. We note that during inflation

H ≈ const, a(t) ∝ eHt, so that a(η)≈− 1
Hkη

around the time that a mode of comoving
scale k−1 exits the horizon, where in this case Hk is the Hubble parameter at horizon
exit. Therefore (2.42) becomes for the mode functions

u′′
k +

(
k2 − 2

η2

)
uk = 0 . (2.47)
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The general solution to this equation is (e.g. [30])

uk(η) = e−ikη

√
2k

(
1− i

kη

)
, (2.48)

where we have imposed Minkowski initial conditions and the Wronskian condition
too, for η → −∞, uk = 1√

2k
e−ikη: given a mode k, by considering scales well inside

the (Hubble) horizon we have that perturbations oscillate just as in flat space, and
well outside the (Hubble) horizon, the perturbations δϕ will be constant. Indeed,
after horizon exit, we have that |η| ≪ k−1, and we can write uk(η) ≈ − i

kη
√

2k
, so that

ûk⃗(η) = − i
kη

√
2k

(
âk⃗ − â†

−k⃗

)
.

The primordial curvature perturbation

Outside the horizon, we can calculate the power spectrum of the inflaton fluctuations
(defining the vacuum state by â|0⟩ = 0 and ⟨0|â† = 0)

⟨0|δ̂ϕk⃗δ̂ϕk⃗′|0⟩ ≡ (2π)3Pδϕ(k)δ(3)
D (k⃗−k⃗′) =Super Horizon

⟨0|âk⃗â†
k⃗′ |0⟩

2η2a2k3 = (2π)3 H2
k

2k3 δ
(3)
D (k⃗−k⃗′) ,

(2.49)
where we used η = −1/(aH) during inflation, and from the commutator relation
âk⃗â†

k⃗′ = â†
k⃗
âk⃗′ + (2π)3δ

(3)
D (k⃗ − k⃗′), and we denote the exit from the horizon as

Super Horizon. As H is nearly constant in slow-roll inflation, we obtain a nearly
scale-invariant, dimensionless power spectrum for a light scalar field

∆2
δϕ ≡ k3Pδϕ/(2π2) ≈

(
Hk

2π

)2
(2.50)

as a consequence of the quantum fluctuations δϕ.
A common variable chosen to study scalar perturbations is the comoving curvature

perturbation R, a gauge-invariant quantity, whose expression in the spatially flat
gauge R is (e.g. [81])

R = −Hδϕ

ϕ̄′
, (2.51)

with ′ a derivative with respect to the conformal time.
Therefore, the power spectrum of R at horizon exit is

∆2
R(k) =

 H2

2π ˙̄ϕ

2 ∣∣∣∣∣
k=aH

. (2.52)
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We can parametrize the power spectrum of inflationary scalar perturbations as a
power law, with respect to some scale k∗, amplitude As, and spectral index ns,

∆2
R(k) = As(k∗)

(
k

k∗

)ns−1

. (2.53)

as the logarithmic derivative, with respect to k, of its logarithm is first order in the
slow-roll parameters. Under the slow-roll approximation, it is possible to show that
(e.g. [30])

ns − 1 = −2ϵ− η . (2.54)

In particular, a scale-invariant spectrum will have a zero derivative with respect to
scale, and therefore ns = 1. For a blue spectrum ns>1, and for a red one, ns<1.

The spectral index gives us direct information about the shape of the inflaton
potential (as it is related to the potential itself and its derivatives).

Soon after the end of inflation, the scalar field ϕ starts oscillating near the minimum
of its potential, producing many elementary particles, in a relatively unknown period
called reheating [284]. We do not know well the equations governing the perturbations
at that time. So, how do we relate inflation to late-time observables? Luckily, the
wavelength of the perturbations that concern us was outside the horizon well before
this uncertain time, satisfying a conservation condition that allows us to connect the
distant past to the more recent past.

There is a general theorem [283] which states that whatever the constituents of the
universe are, and their classical equations, there is always at least one conserved scalar
adiabatic mode, such that R′ = 0 (in the limit of k ≪ aH). In particular, single-field
inflation excites this adiabatic mode, as there is no other source of fluctuations, and
different components satisfy the same equation [284]

δρi

ρi(1 + wi)
= 3RH

a

∫
a(t′)dt′ , (2.55)

where wi = pi/ρi sets the equation of state for the energy component i with energy
density ρi and pressure pi, and δρi is the energy density fluctuation. For example, for
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matter m and radiation r, we have the relation δρm

ρm
= 3

4
δρr

ρr
.1516 The violation of this

relation would rule out single-filed models of inflation [145].
Super-horizon primordial perturbations with scale given by k re-enter the comoving

horizon when k ≥ (aH)−1. The connection between these primordial and late-time
scalar fluctuations can be summarized, assuming linear evolution, as [32]

O(k⃗, η) = TO(k, η, ηe)R(k⃗, ηe) , (2.56)

where O is the late-time observable, ηe the time of horizon exit, and TO(k, η, ηe) a
transfer function that accounts for the sub-horizon evolution of perturbations after
horizon re-entry.

An example of an application of this equation is the relation between the matter
power spectrum and the primordial scalar power spectrum [81]

∆2
m(k, z) = 9

25
k4

Ω2
mH2

0
T 2

m(k)D2
m(k, z)∆2

R(k) . (2.57)

In this case the matter transfer function is given by the product of Tm for connecting
to primordial fluctuations and Dm, a function describing the sub-horizon growth of
perturbations at late-times.

Primordial non-Gaussianity

One of the remarkable properties of the free single-field inflation is that perturbations
are described by a Gaussian distribution, similar to the ground state of a harmonic
oscillator [249], with only small deviations from it [172].

It might be that inflation could generate higher-order correlation functions, beyond
the power spectrum, potentially due to interactions in the early universe [53].

15A simpler way to discuss this is by modelling the inflation ϕ field as a clock, and its perturbation
δϕ as a perturbation in the local time δη. Adiabatic fluctuations have the property that the perturbed
state of the fluid at (η, x⃗), is the same as the one in a background universe at (η + δη(x⃗), x⃗). Then
we have δρi = ρ̄i(η + δη(x⃗))− ρ̄i = ρ̄′

iδη, giving δη = δρi

ρ̄′
i

= δρj

ρ̄′
j

.
16Another way to achieve adiabatic conditions is thermal equilibrium between photons and baryons,

giving naturally adiabatic conditions, leading to 3 δT
T̄

= δρb

ρ̄b
= 3

4
δρν

ρ̄ν
, where ρ is the mass density

for baryons, and T is the temperature (e.g. [284]). Similarly, even if dark matter does not interact
with photons, they could have been in equilibrium in the past, as interaction rate increases with
energy (depending on the specific interaction). A priori, there is no reason to expect adiabatic
initial conditions, although they are not violated by any specific data [13]. With single-field inflation,
however we expect adiabatic initial conditions even if dark matter and photons were not in thermal
equilibrium.
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A popular way to parametrize non-Gaussianity generated by some inflationary
models is the primordial local non-Gaussianity

ΦNG = ΦG + fNL[Φ2
G − ⟨Φ2

G⟩] , (2.58)

where ΦG is a Gaussian auxiliary field, and fNL is a dimensionless non-linearity
parameter (or in general some function). As this is the square of a Gaussian, this
will generate a non-zero three-point function in the large-scale gravitational potential
ΦNG.17

This concludes our overview of inflation. To summarize, we followed primordial
fluctuations generated in the early universe until the end of inflation. Now, we study
the evolution of perturbations after they re-enter the horizon, and propagate to the
late-time observables. One of these is the CMB, the oldest light in the Universe.

2.4 How the Universe looks today

Our Universe is filled with cosmic microwave background radiation (CMB). Figure
2.2 is a picture of this radiation as seen by the Planck satellite experiment. From our
measurements, we know the following:

• Today, it can be fitted by a black body spectrum with a temperature of TCMB =
2.725K and brightness

Bν(TCMB) = 2hν3 1
ehν/(kBTCMB) − 1 . (2.59)

• There are approximately nγ ∼ 400 cm−3 (photons per cubic centimeter).

• The CMB is an isotropic distribution over the sky to the precision of δT (n̂)
TCMB

∼ 10−5

(after removing the dipole anisotropy due to the motion of our Solar system with
respect to the rest frame of the CMB).

• The CMB is weakly polarized, with radial/tangential patterns around tempera-
ture spots.

After years of understanding, we know that the CMB is the earliest picture of the
Universe when it was only 380000 years old. It represents the free-streaming photons

17Note that the late-time non-Gaussianity we observe today in cosmological observables could come
from different sources: the primordial non-Gaussianity we have just discussed, second-order non-
Gaussianity arising from non-linearities (e.g. in the transfer function relating curvature perturbation
to CMB anisotropies, or in gravitational evolution in the large-scale structure), secondary non-
Gaussianity as given by gravitational lensing in the CMB or non-Gaussianity from foregrounds.
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that were released when the universe was cool enough that electrons could combine
with nuclei to form neutral hydrogen. The fluctuations shown in Figure 2.2 are a
direct consequence of metric perturbations caused by primordial density fluctuations.
Hence the CMB is a powerful probe of the physics of the early universe. In the next
section, we will study these fluctuations.

Fig. 2.2 Temperature fluctuations from the cosmic microwave background (CMB) that
were mapped by the Planck Satellite experiment.

2.4.1 CMB fluctuations

The primordial fluctuations generated in the early Universe will affect metric pertur-
bations, in turn perturbing the energy of CMB photons and leading to temperature
anisotropies.

A basic quantity that we will focus on is the momentum of photons: as they
propagate through space, photons will lose or gain momentum as they pass through
potential wells and troughs. They will also experience a change in direction of the
momentum due to gravitational deflection.

To study the evolution of the four-dimensional momentum of photons we will need
the geodesic equation, and this requires specifying the metric.

Here we will consider only scalar perturbations to the metric, and we will take the
space time metric in the Newtonian gauge

ds2 = −a2(η)(1 + 2Ψ(x⃗, η))dη2 + a2(η)(1− 2Φ(x⃗, η))δijdxidxj , (2.60)

where Ψ is Newton’s gravitational potential, and Φ is the spatial scalar curvature
perturbation (deforms area, as it is a perturbation to the determinant of the spatial
metric). If there is no anisotropic stress (e.g. from imperfect fluid) Ψ = Φ, as can
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be seen from Einstein equations in the Newtonian gauge. In this gauge, it is easier
to interpret the formation of CMB anisotropies compared to other ones, as we can
use Newtonian intuition for the gravitational redshift, and the infall of photons in
potentials.18

Photons propagate in space along geodesics, as given by the geodesic equation for
a freely falling body

d2xµ

dλ2 + Γµ
νρ

dxν

dλ

dxρ

dλ
= 0 , (2.61)

where λ is an affine parameter along the photon’s path. The second term in the equation
keeps the form of the equation invariant under general coordinate transformations, a
statement that gravity comes from geometry and is described by Γµ

νρ.
We study the evolution of the photon momentum pα = dxα

dλ
, as it describes how

photons lose or gain energy while propagating through our clumpy universe. It is
one of the key ingredients to studying the CMB temperature anisotropies with the
Boltzmann equation, which involves the photon distribution function f(xµ, pµ).

In terms of the photon’s momentum, the geodesic equation becomes

dpµ

dλ
+ Γµ

νρpνpρ = 0 . (2.62)

The photon 4-momentum pα is subject to the null geodesic condition gµνpµpν =
0 = −a2(1+2Ψ)(p0)2 +p2 = 0, where we define p2 = gijp

ipj = a2(1−2Φ)δijp
ipj . Then

we have, when Ψ≪ 1,
p0 = p

a
√

1 + 2Ψ
≈ p

a
(1−Ψ) . (2.63)

We parametrize the photon momentum by the energy E measured by a comoving
observer with four-velocity uµ, satisfying gµνuµuν = −1. In an unperturbed FLRW
universe, the comoving observer 4-velocity is uµ = −aδ0

µ (by definition of the comoving
frame). The measured energy is E = −pµuµ = ap0= p, or p0 = E/a, leading to
pµ = E

a
(1, p̂), where p̂ is the photon propagation direction (normalized such that

δij p̂
ip̂j = 1).
For a perturbed Universe, the same calculations as before lead to u0 = −a(1 + Ψ),

and E = −pµuµ = a(1 + Ψ)p0. This appearance of Ψ for an observer at rest represents
gravitational redshift. This will be important later for photons of the CMB.

18While studying perturbations for the single inflaton field, the gauge with spatially flat slicing is
cleaner than the Newtonian one.
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If we write the spatial part of the momentum with its direction p̂ and an amplitude
A, then pi = Ap̂i. It follows that

p2 = gijp
ipj = a2δij(1− 2Φ)p̂ip̂jA2 = a2(1− 2Φ)A2 . (2.64)

Then, the amplitude of the spatial part of the momentum is A = p
a

√
1−2Φ ≈

p(1+Φ)
a

,
so that when Φ≪ 1

pi = Ap̂i = p
(1 + Φ)

a
p̂i . (2.65)

Then we finally obtain that the four-momentum can be written as

pµ = p

a
(1−Ψ, (1 + Φ)p̂i) . (2.66)

From the 0 component of the photon’s geodesic equation (2.62), and using the
explicit expression for the Christoffel symbols (e.g. [21]), one can derive

1
p

dp

dη
= −

(
H− ∂Φ

∂η
+ p̂i ∂Ψ

∂xi

)
= −H− dΨ

dη
+
(

∂Ψ
∂η

+ ∂Φ
∂η

)
. (2.67)

This equation tells us how the photon energy changes as it propagates. The total
derivative of the photon energy along its path is given by a series of terms in the
middle side of this equation. First, a cosmological redshift (in absence of perturbations
p ∝ 1

a
). We then have a term similar to a cosmological redshift: the spatial part

of the metric has a2(η)(1− 2Φ)d2x⃗2, so that photons locally experience a new scale
factor ã(η, x⃗) ≈ a(η)(1− Φ), and the photon momentum goes as p ∝ ã. Finally, p̂i ∂Ψ

∂xi

represents gravitational redshift, and photons lose energy when climbing up a potential
well. For example, Ψ < 0 in a potential well, as a photon climbs up it Ψ increases and
therefore ∂iΨ is positive, and the negative sign in the expression makes a photon lose
energy.19 The time dependence of the gravitational potentials is suppressed during
matter domination, when potentials are constant on all scales and are contributing
only at early-times during the matter-radiation transition, and at late-times when
dark energy starts taking over. The latter effect will be important for example when
studying dark energy with the CMB power spectrum.

Similarly, from the ith component of the geodesic equation, it is possible to derive
an expression for the change in direction of the photons [54]

dp̂i

dη
= −(δij − p̂ip̂j)∂j(Ψ + Φ) . (2.68)

19There should also be a term representing gravitational waves changing in time, that we will not
consider here for simplicity, and it is not dominant for the temperature anisotropies.
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This term describes the gravitational lensing by gradients of scalar perturbations
perpendicular to the line of sight. We will consider CMB lensing later in section (2.6),
as it will be a second-order effect for our discussion here.

The photon distribution

As the CMB is a blackbody to experimental accuracy, for the form of the photon
distribution, we will consider the form of a Bose-Einstein distribution in equilibrium,
where we describe the CMB with its temperature at position x⃗, with some direction p̂,
and frequency given by a momentum p:

f(η, x⃗, p̂, p) =
[
exp

(
p

T̄ (η)(1 + Θ(η, x⃗, p̂)

)
− 1

]−1

≈ f̄(p)
[
1−Θ(η, x⃗, p̂)p∂lnf̄

∂p

]
(2.69)

Here, f̄(p, η) is the zero-order distribution function in absence of the temperature
perturbation Θ, and for the first-order correction part we have used

T̄
∂f̄

∂T̄
= −p

∂f̄

∂p
. (2.70)

We parametrize the temperature fluctuations with Θ, such that T = T̄ (η)[1 +
Θ(x⃗, p̂, η)]. We assume here that the Θ does not depend on p, i.e. there are no spectral
distortions.20

We now want to turn to answering the question of how the temperature fluctuations
evolve. To do this we must follow the photon distribution evolution.

2.4.2 Boltzmann equation

Our goal here is to describe the CMB anisotropies from primordial (curvature) pertur-
bations.21 With this goal in mind, there are two main requirements. First, to write
out the evolution of the phase-space distribution of photons in the metric perturbed
by the primordial density fluctuations, and second, to determine how these density
fluctuations evolve. In this way, we will be able to obtain the energy density fluctu-

20However, spectral distortions could occur if free electrons have been heated significantly above
the CMB temperature, or photons/energy has been dumped into the CMB from an external source,
as it happens with secondaries in the CMB.

21As references for this section, we mainly follow [175, 21, 31, 144, 122].
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ations of photons and relate these to the CMB anisotropies. In particular, in this
section, we will derive the CMB temperature ones.22

First, we will focus on the (one-particle) phase-space distribution f(xµ, pµ), a
function of the space time position and four-momentum, that gives us the number of
particles in an infinitesimal phase space volume d3xd3p as dN = f(xµ, pµ)d3xd3p. The
evolution of the photon phase-space distribution is given by the Boltzmann equation
[144]

L[f ] = Cc[f ] , (2.71)

where L is the Liouville operator and Cc is a collision operator that contains all possible
collision terms for f . It takes into account the observation that the (one-particle)
phase-space distribution can change due to collisions which scatter a particle into or
out of a volume element d3xd3p in phase space [85]. In its absence, the phase-space
distribution is conserved along the photon’s path, i.e. L[f ] = df

dλ
= 0, with λ an affine

parameter that parametrizes the photon’s path.
Using the geodesic equation, it is useful to write explicitly the Boltzmann equation

(we implicitly use the geodesic equation here):

L[f ] = df

dλ
= pα ∂f

∂xα
− Γα

βγpβpγ ∂f

∂pα
= Cc[f ] . (2.72)

We can see that the presence in the equation of the Christoffel symbol

Γα
βγ ≡

1
2gαλ(∂βgγλ + ∂γgλβ − ∂λgβγ) (2.73)

shows how the gravitational effects from the metric perturbations affect the distribution
function.23

Looking at the 0th component of the photon momentum p0 = dx0

dλ
= dx0

dη
dη
dλ
→ dλ

dη
=

1
p0

dx0

dη
= 1

p0 . We can then divide (2.72) by p0 and obtain

df

dη
= C[f ] , (2.74)

where the left-hand side is a total derivative with respect to the conformal time η, and
we have defined the collision operator as C[f ] ≡ 1

p0 Cc[f ].
The left-hand side of the Boltzmann equation (2.74) can be expanded to give

22In this thesis we will mainly focus on the CMB temperature anisotropies. The CMB polarization
theory for primordial anisotropies and weak lensing is omitted, although good reviews are in e.g.
[131, 47, 153].

23Note, we assume the collision term local, so it will not be affected by the presence of gravity.
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df

dη
≡ ∂f

∂η
+ ∂f

∂xi

dxi

dη
+ ∂f

∂p

dp

dη
+ ∂f

∂p̂i

dp̂i

dη
= C[f ] . (2.75)

The comoving position time derivative can be calculated as

dxi

dη
= pi

p0 = p̂i(1 + Ψ + Φ) , (2.76)

where we ignore second-order contributions in the potentials. We want then to
substitute this expression in the Boltzmann equation. We note that the terms having
Ψ+Φ are negligible in the Boltzmann equation since they multiply ∂f

∂xi and this already
contains first-order corrections, as the unperturbed distribution does not depend on
the position.

We saw before that the dp̂i

dη
term already depends on the gradient of the potentials

in the direction perpendicular to the path of photons. Multiplying this term by ∂f
∂p̂i

gives a second-order contribution that we can ignore for now. We will return to this
later when talking about CMB gravitational lensing in the late Universe.

Therefore, the Boltzmann equation simplifies to

∂f

∂η
+ p̂i ∂f

∂xi
+ ∂f

∂p

dp

dη
= C[f ] . (2.77)

Later we will address the collision distribution, and we will see that scattering
starts at first order. Remembering the expression (2.69) we can write the previous
one (at first order) as

− p
∂f̄

∂p

[
dΘ
dη
− 1

p

dp

dη

]
= C[f ] . (2.78)

Using equation (2.67) we are able to obtain to first order

−p
∂f̄

∂p

[
∂Θ
∂η

+ p̂i ∂Θ
∂xi
− ∂Φ

∂η
+ p̂i ∂Ψ

∂xi

]
= −p

∂f̄

∂p

[
dΘ
dη

+ dΨ
dη
− ∂(Φ + Ψ)

∂η

]
= C[f ]

(2.79)
If we set C[f ] = 0, the observed temperature perturbation is given by integration of

this expression, from the time of the last scattering until today, along the line of sight.
The presence of a potential well will redshift a photon, and the time variations in the
scalar metric perturbations will boost photon energy if > 0, as happens during dark-
energy domination, giving the late time-Integrated Sachs-Wolfe effect (late ISW). But
what happens if we consider the interactions between photons and charged particles?
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Collision term

Before recombination, photons Thomson scatter efficiently off non-relativistic free
electrons, as the rate of scattering is high compared to the Hubble expansion rate:

e−(q⃗) + γ(p⃗)←→ e−(q⃗′) + γ(p⃗′) . (2.80)

We want to estimate changes in the photons (γ) distribution related to Compton
scattering.

In general, the collision term of the Boltzmann equation per unit proper time is
given by [144]24

Ĉ[f ] = 1
E(p⃗)

∫ d3q⃗

(2π)32Ee(q⃗)

∫ d3q⃗′

(2π)32Ee(q⃗′)

∫ d3p⃗′

(2π)32E(p⃗′)
|M|2(2π)4δ

(3)
D (p⃗+q⃗−p⃗′−q⃗′)×

× δD(E(p⃗) + Ee(q⃗)− E(p⃗′)− Ee(q⃗′))
[
fe(q⃗)f(p⃗)− fe(q⃗′)f(p⃗′)

]
, (2.81)

where fe is the phase-space density of electrons, |M| is the Lorentz invariant matrix
element of the Compton scattering, averaged over initial and final spins,25 and the
delta functions impose energy and momentum conservation.

To lowest order in the electron energy transfer (in the CMB rest-frame), the
following is true

|M|2 = 6πσT m2
e(1 + cos2 θ) , cos θ = p̂ · p̂′ . (2.82)

For simplicity we ignore the θ dependence inM, and replace it by its angular average
4
3 , so that |M|2 = 8πσT m2

e.
For non-relativistic Compton scattering, by performing the integrals in (2.81) it is

possible to obtain (e.g. [81], [175])

C[f ] = −p
∂f̄

∂p
ΓT [Θ0 −Θ(p̂) + p̂ · v⃗b] , (2.83)

where C is calculated per unit conformal time, ΓT = aneσT is the scattering rate,
given by the product of the Thomson-scattering cross-section σT and the electron
number density ne, and v⃗b is the peculiar bulk velocity of the electrons. Finally, Θ0 is
the monopole of the temperature perturbation

24The factor of 2E in the denominator is because
∫

d3p⃗
∫∞

0 dEδD(E2 − p2 − m2) =∫
d3p⃗ δD(E−(p2+m2)1/2)

2E . Also note the 1
E(p⃗) , is simply p for photons.

25We also implicitly assume invariance under time reversal, and that the density of electrons is low
enough that we ignore the blocking emission factors that would appear in the collision term (e.g. if
the final state is occupied by a fermion, a process should be blocked). See [144] for more details.
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Θ0 =
∫ d2p̂

4π
Θ(η, x⃗, p̂) . (2.84)

The −Θ term in (2.83) is related to photons scattering from a phase-space element
(η, x⃗, p, p̂) to another one (reducing the distribution function), the term Θ0 is related
to photons with the arbitrary direction of propagation that scatter to align with p̂

(increasing the distribution function), and finally, the last term p̂ · v⃗b is related to the
energy change of photons when they scatter off moving electrons (a Doppler effect).
This is a very simple structure with only a non-vanishing monopole and dipole.

Boltzmann equation for the photons Now we have laid the foundation for
studying the temperature anisotropies. Combining gravity effects on the perturbation
in (2.79) with the scattering one in (2.83)

dΘ
dη

= ∂Θ
∂η

+ p̂i ∂Θ
∂xi

= +∂Φ
∂η
− p̂i ∂Ψ

∂xi
+aneσT [Θ0 −Θ(p̂) + p̂ · v⃗b] . (2.85)

For convenience, we then define the optical depth,

τ(η, η0) =
∫ η0

η
dη′Γ(η′) =

∫ η0

η
dη′a(η′)neσT . (2.86)

This defines the probability of no scattering for a photon traveling from η to η0

as e−τ . It is very large at an early time when the ne is large, and very small at late
times when ne is small.

It is convenient to switch to Fourier space here as spatial derivatives will become
factors of ki, and as the perturbations are small we will have uncoupled differential
equations for each Fourier mode26

Θ(η, x⃗, p̂) =
∫ d3k⃗

(2π)3 eik⃗·x⃗Θ(η, k, µ) (2.87)

where µ ≡ k̂ · p̂. We have (noting ∂τ
∂η

= −neσT a)

∂Θ
∂η

+ ikµΘ = ∂Φ
∂η
− ikµΨ− ∂τ

∂η
[Θ0 −Θ + iµvb] , (2.88)

where we assume that the baryon velocity is irrotational v⃗b ≡ ik̂vb.
Since the fluctuations from a single Fourier mode for scalar perturbations are

axisymmetric (dependence only on µ), we can use the Legendre polynomials expansion
26Note the abuse of notation where the Fourier transform Θ̃ is replaced by Θ, with the arguments

distinguishing the two.
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Θ(η, k⃗, µ) =
∞∑

l=0
(2l + 1)(−i)lΘl(η, k⃗)Pl(µ) , (2.89)

where Θl are multiple moments of the distribution

Θl(η, k) = il

2

∫ 1

−1
dµΘ(η, k, µ)Pl(µ) . (2.90)

We can use this expansion for equation (2.88) by multiplication by Pl, and integra-
tion over µ, plus the recursion relation

µPl(µ) = l + 1
2l + 1Pl+1(µ) + l

2l + 1Pl−1(µ) (2.91)

for the term µΘ, to obtain

Θ′
l − k

l

2l + 1Θl−1 + k
l + 1
2l + 1Θl+1 − τ ′Θl = δl0(Φ′ − τ ′Θ0) + 1

3δl1(kΨ + τ ′vb) , (2.92)

where we denote ′ ≡ ∂
∂η

, and use P0 = 1, P1 = µ.
We, therefore, obtain a system of coupled ordinary differential equations for Θl(η, k),

where each multipole l is related to nearby ones. To close the system, we would also
need to write the Boltzmann equation for dark matter and baryons, the evolution for
the metric perturbations, and finally decide the initial conditions (e.g. [81]).

We notice that to know the multipole l, we need to solve for all the previous
ones, and know the subsequent one. If we want to calculate the anisotropies to, say,
l ∈ O(103), then we need to solve for more than 103 equations (or to the lmax of choice
in a real experiment, set by the experimental resolution for example).

A better way to solve the system is line-of-sight integration, developed in [248]. It
helps to calculate the CMB multipoles faster than solving the coupled system, and it
provides a simple way to understand the CMB power spectrum.

Connecting to temperature anisotropies on a 2-D sky

Now we follow free-streaming photons from the last-scattering surface to the obser-
vation, as done in [248]. After rewriting the left-hand side of (2.88) with a total
derivative, and multiplying by e−τ+ikµη and integrating over η from some initial time
ηinit to a receiving time η0, it is possible to obtain (e.g. [21])



2.4 How the Universe looks today 31

Θ(η0, k⃗, n̂) = eikµηe−τ (Θ+Ψ)|η0
ηinit =

∫ η0

ηinit
dη′ [Ψ′ + Φ′−τ ′Ψ− τ ′Θ0 − iτ ′µvb] e−τ(η,η0)eikµη′

(2.93)
where we use that τ(η0) = 0, Ψ(η0, x⃗0) gives an unobservable monopole for the
perturbations (and thus can be dropped as it is absorbed into TCMB), and for some
early enough initial time ηinit we can approximate τ(ηinit) ≈ ∞. This means that any
initial anisotropy is completely erased by Compton scattering.

Now we can write

Θ(η0) =
∫ η0

ηinit
dηe−ikµ(η0−η)S(η, k⃗) , (2.94)

where we define the source term as

S(η, k) = (Ψ′ + Φ′)e−τ(η,η0) + g [Θ0 + Ψ+iµvb] (2.95)

and the visibility function g = −τ ′e−τ .
In the end, we get the Legendre coefficients by using the plane-wave expansion

e−ikµ(η0−η) = ∑
l il(2l + 1)jl(k(η − η0))Pl(µ). But before doing that we must account

for the µ dependence in the last term of S. To this goal, we note that S multiplies
an exponential in equation 2.94. The µ term in S can be obtained by taking the
derivative 1

ik
∂ηeikµη. By integrating by parts it is possible to turn the µ part into a

derivative operator and be able to obtain the Legendre coefficients (e.g. [81])

Θl(η0, k) =
∫ η0

ηinit
dηS̃(η, k)jl(k(η − η0)) . (2.96)

where now we have defined

S̃ = (Ψ′ + Φ′)e−τ(η,η0) + g

[
Θ0 + Ψ− v′

b

k

]
− vb

k
∂ηg . (2.97)

Terms in the integral weighted by the visibility function g are localized near the
last-scattering surface, while the ones proportional to e−τ(η) have an integrated effect
till today.

Instantaneous Recombination A general physical understanding of the different
terms in the line-of-sight solution can be achieved by noting that the visibility function
is very peaked at around recombination, so we will approximate g(η) ≈ δ

(1)
D (η − ηrec),

and the line-of-sight solution will give us several terms.
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First, (Θ0 + Ψ)rec, also known as Sachs-Wolfe effect (SW), due to radiation over-
densities and photon redshifting due to potentials at emission. Then,

∫ η0
ηrec dη′(Ψ′ + Φ′)

also known as the Integrated Sachs-Wolfe effect (ISW), due to photons moving in
evolving in time gravitational potentials. And finally, (iµkvb)rec is the Doppler effect,
caused by the change in energy due to the photons scattering off moving electrons.

The solution for the multipoles Θl will depend on Θ0, Ψ, Φ, vb, and a few derivatives.
The highest multipole entering these is Θ1, although as we ignored the angular
dependence of the Compton scattering there is also a Θ2 term. To have this accurately
calculated we need to look at the first few multipoles of the temperature anisotropies
in the Boltzmann hierarchy, up to some truncating lmax ∈ O(10) [81].

Acoustic oscillations We will now study the tight-coupling limit (Γ≫ H), where
the mean free path of the photons is much smaller than the horizon. It is possible to
show ([81]) that in this case the only non-negligible moments Θl are l = 0, 1, with all
the other ls suppressed, giving

Θ′
0 + kΘ1 = Φ′ , (2.98)

Θ′
1 −

k

3Θ0 + ΓΘ1 = 1
3(kΨ +−Γvb) . (2.99)

By considering the perturbed stress-energy tensor for photons (Tµν =
∫ d3p⃗

E(p⃗)fpµpν)
(e.g. [31]) it is possible to show that Θ0 = 1

4δγ, where δγ is the density contrast of
photons, and Θ1 ∝ vγ, the photon gas bulk velocity. Assuming that photons and
baryons are tightly coupled via Compton scattering (until recombination), vγ = vb,
and combining the solution for vb from the baryon Euler equation with the photon
Euler equation ((2.99) but with vγ in it), and taking time derivatives for the photon
continuity equation ((2.98) but with δγ in it), it is possible to obtain (e.g. [21], [31])

Θ′′
0 + HR

1 + R
Θ′

0 + c2
sk

2Θ0 = −1
3k2Ψ + Φ′′ + HR

1 + R
Φ′ , (2.100)

where R = ρb

ργ+pγ
= 3

4
ρ̄b

ρ̄γ
is the baryon-to-photon ratio, c2

s = 1
3(1+R) gives the sound

speed, and as usual H = aH. This equation represents the acoustic oscillations of the
baryon-photon fluid: the left hand side has friction and pressure terms, and the right
hand side gravitational and time dilation terms. The metric potentials are obtained
from Einstein’s equations, with contributions from dark matter. In particular, for
constant metric perturbations (2.100) becomes the equation for a forced harmonic
oscillator, and we get oscillations for Θ0, the source of the CMB peaks.
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Diffusion damping We assumed that photons and baryons are tightly coupled,
behaving as a single fluid. In reality, interactions between photons and baryons are
not instantaneous, and become less efficient as we approach the epoch of decoupling:
photons travel a finite distance between scattering, with a mean free path of Thomson
scattering λ ∼ 1

neσT
. The mean distance travelled by photons in a Hubble time is

D = 1√
neσT H

[81], determining a diffusion scale kD ∼ 2π/D, projected onto the CMB
as lD ∼ kDdA(tdec) ∼ 1500–2000 around the photons’ decoupling. The temperature
perturbations get washed out by the diffusion of photons on scales l ≥ lD, resulting in
a CMB power damped by a factor of e−l2/l2D [258, 81].

Reioinization On their way to us, CMB photons are affected by a number of
secondary effects. In particular, radiation from the first stars in the Universe reionizes
the intergalactic gas, freeing electrons that scatter CMB photons, and reducing the
amplitude of fluctuations on scales smaller than horizon size at reionization by a factor
of e−τ , where τ is the optical depth due to reionization. Later we will discuss other
secondary effects on the CMB anisotropies.

The CMB temperature power spectrum

The temperature fluctuations Θ are given by a statistically isotropic field over a sphere
(with directions n̂). This makes the use of a harmonic description of the fluctuations
suitable as it is better than the real-space one in separating out different scales with
different contributions (e.g. inflation affects all the scales, photon diffusion only small
scales, etc.).

Second, CMB anisotropies are, with good approximation, linear in the primordial
fluctuations, therefore if the primordial fluctuations are described by a complex
Gaussian random field, the same will hold for the temperature anisotropies. We will
hence need a mean, and a two-point function to describe them.

We employ the spherical harmonics Ylm(n̂), eigenfunctions of the Laplace operator
on the sphere that form an orthonormal set of functions over the sphere

∫
d2n̂Y ∗

lm(n̂)Yl′m′(n̂) = δll′δmm′ . (2.101)

This allows us to write any scalar function on the sky as a sum of contributions over
different angular scales with a multipole expansion. The integral is an angular integral
done over the volume element d2n̂ = dΩ ≡ dcosθdϕ, with θ ∈ [0, π[, ϕ ∈ [0, 2π].

We write the CMB temperature fluctuations as
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Θ(n̂) = T (n̂)− T̄

T̄
=

∞∑
l=0

l∑
m=−l

ΘlmYlm(n̂) , (2.102)

such that the multipole coefficients are

Θlm =
∫

d2n̂Y ∗
lm(n̂)T (n̂)− T̄

T̄
. (2.103)

We will be more interested in the statistics of a CMB map rather than what is the
exact temperature is in a particular direction (and time). This is because, as initial
conditions set up by inflation are stochastic, we cannot tell from theory what precise
value the CMB temperature will take.

The Θ are just fluctuations from an average temperature so that

⟨Θlm⟩ = 0 , (2.104)

and from statistical isotropy

⟨ΘlmΘ∗
lm⟩ = δll′δmm′Cl , (2.105)

where Cl is the dimensionless temperature power spectrum.27 Assuming Gaussian
temperature fluctuations, the physics of the primordial CMB can be described by this
quantity. Therefore in real experiments, we will want to estimate the temperature
CMB power spectrum from CMB maps.

We can rewrite the temperature perturbations Θl in terms of a transfer function
T containing a line of sight integral over source term and the geometrical spherical
Bessel functions jl, (e.g. [81, 21]) giving an expression for the CMB power spectrum,
assuming instantaneous recombination, (e.g. [21])

Cl = 2
π

∫ dk

k
∆2

R(k)T 2
l (k, η∗) . (2.106)

This writing of this equation makes it clear how our basic model affects the
observed power spectrum. If ∆2

R(k) is scale-invariant we can see that the wiggles for
l ≥ 60 in Figure 2.3 are due to the transfer function, that encodes information about
the photon-baryon fluid and its interactions, and we can gain insight from just the
CMB. On large scales, l ≤ 60, the spectrum is almost flat (in l(l + 1)Cl): these scales
correspond to scales larger than the horizon near recombination: therefore no causal
physics could act on them, and they represent a direct contribution from the initial
conditions, visible through the SW effect [191] (we neglect ISW effects here).

27In the literature it is also reported in µK2, temperature squared units. To do this, one just
multiplies by the average temperature of today.
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Currently, we have access to only one realization of our Universe, and we cannot
access the random process of creation to obtain a statistical average. The best that
we can do for now is to construct an estimator for Cl. Assuming full sky, an estimator
for the variance of the temperature fluctuations Θlm is

Ĉl = 1
2l + 1

l∑
m=−l

|Θ̂lm|2 . (2.107)

This has the property that

⟨Ĉl⟩ = Cl (2.108)

and, assuming Gaussian random variables,

⟨(Ĉl − Cl)2⟩ = 2
Nmodes

C2
l = 2

2l + 1C2
l , (2.109)

where Nmodes is the number of modes at a given l.
The expected square difference, over realizations, between this power spectrum

estimator and the real power spectrum, is non zero, and equal to the cosmic variance
we already discussed in the beginning of this chapter. For higher and higher ls the
relative difference becomes smaller and smaller, as we have access to a larger sample
of the statistical realization of alm (with size given by 2l + 1, the number of modes) to
estimate the power spectrum.28 Cosmic variance then limits the accuracy of the CMB
observation with theory, as seen in Figure 2.3 for the lowest multipoles.

Cosmic variance is a general property of the observables in our universe, and it does
not hold only for the CMB. Despite this, we will see in Chapter 5 that it is possible
to overcome the cosmic variance limitations by combining different observables of the
same underlying fluctuations.

Flat-Sky

For small angular separations on the sky, it is possible to take the limit of the spherical
harmonic expansion to derive the temperature fluctuations in Fourier space [286]

δT (n̂) =
∫ d2l⃗

(2π)2 Θ(⃗l)ei⃗l·n̂ , (2.110)

and define the power spectrum as
28If we assume that the different |alm|2 are identically distributed and independent, then for smaller

and smaller scales, the Gaussian approximation for the power spectrum holds. This in general is not
true for the largest CMB scales (l < 30). In these cases one might want to use other non-Gaussian
approximations.
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⟨Θ(⃗l)Θ∗(l⃗′)⟩ = (2π)2δ
(2)
D (⃗l − l⃗′)Cl . (2.111)

From now on, we will focus on the flat-sky approximation.

Fig. 2.3 CMB (lensed) band powers from recent ACTPol [63], Planck [8], and SPT
[269] measurements marginalized over galactic and extragalactic foreground emission
and Sunyaev-Zel’dovich effects. In grey, a theoretical curve from parameters of a
best-fit of Planck in ΛCDM. Image taken from LAMBDA https://lambda.gsfc.nasa.
gov/graphics/.

Cosmological parameters from the CMB

The shape of the CMB power spectrum is a direct probe of key parameters, such as
the matter density Ωmh2, baryon density Ωbh

2, and the shape of the primordial power
spectrum. The overall amplitude is sensitive to As.29 In particular, very large angular
scales, larger than the sound horizon at decoupling, are not affected by oscillations
in the photon-baryon fluid, and reflect the distribution of photons and potentials,
directly connected to primordial quantum fluctuations.

There are many ways to see how the CMB changes in practice, including:

• Constraining Ωbh
2 from the CMB. The ratio of successive peak heights in the

power spectrum is given by (1 + 6R)2 [31]: the larger the baryon-to-photon ratio
29Actually, the overall amplitude is sensitive to Ase−2τ , where As is the amplitude of scalar

primordial fluctuations, and τ the optical depth to reionization (this degeneracy can be broken with
polarization data, measuring the E−mode reionization bump on large scales).

https://lambda.gsfc.nasa.gov/graphics/
https://lambda.gsfc.nasa.gov/graphics/
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is, the bigger this parameter, making the compression in the baryon-photon
plasma stronger (and the pressure will not be much affected by more baryons).
As the baryons’ physical density increases, therefore, the relative amplitude of
odd acoustic peaks in the power spectrum is higher than the even-numbered ones,
as can be seen from Figure 2.4. Also, adding more mass to the baryon-photon
fluid will decrease the frequency of oscillations, as in a spring, pushing the
position of the peaks to slightly higher multipoles l.30

• Constraining Ωk from the CMB. The geometry can be measured from the position
of the first peak, as this depends on the projected size of the sound horizon at
recombination, θ∗ ∼ s∗

dA
where s∗ ∼ csη∗, depending on the angular diameter

distance changes. We can see from Figure 2.5 that for Ωk > 0, the peaks are
shifted to the right, meaning that a CMB fluctuation of a fixed intrinsic physical
size will appear smaller compared to a flat universe.

Fig. 2.4 CMB (lensed) power spectrum for a varying baryon density term, calcu-
lated from a best-fit cosmology given by Planck [8], using CAMB [154]. In black
Ωb = 0.022, red Ωb = 2 × 0.022, and in green Planck binned band powers as from
LAMBDA https://lambda.gsfc.nasa.gov/graphics/tt_spectrum/TT_data_2020aug_
csv_format.dat. We can see the shift in acoustic peaks based on the baryon density
term.

30The shape of the damping tail is sensitive to the physical baryon density too, allowing an
independent determination. Therefore the damping tail of the power spectrum provides a consistency
check for parameters extraction.

https://lambda.gsfc.nasa.gov/graphics/tt_spectrum/TT_data_2020aug_csv_format.dat
https://lambda.gsfc.nasa.gov/graphics/tt_spectrum/TT_data_2020aug_csv_format.dat
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Fig. 2.5 CMB (lensed) power spectrum for a varying curvature term, calculated from
a best-fit cosmology given by Planck [8], using CAMB [154]. In black Ωk = 0, red
Ωk = 0.1, and in green Planck binned band powers as from LAMBDA https://lambda.
gsfc.nasa.gov/graphics/tt_spectrum/TT_data_2020aug_csv_format.dat. We can
see the shift in acoustic peaks based on the curvature term.

2.5 Secondary Anisotropies of the CMB

The primary CMB fluctuations are an unparalleled probe of the early Universe. Their
primordial spectrum has three main components: on large scales, a plateau directly
proportional to the primordial power spectrum; on intermediate scale, a series of peaks
due to acoustic oscillations in the primordial photon-baryon fluid; and on small scales,
a fall in power due to diffusion damping. Armed with this understanding, we explored
fundamental cosmological parameters through these effects.

During their journey, CMB photons interact with the cosmic structure and experi-
ence gravity. An example is the (late) ISW effect, caused by time-varying potentials
along the line of sight. Furthermore, our telescopes capture the CMB as well as light
from other sources. We refer to all these effects as secondary anisotropies of the CMB.

In this section, we will discuss CMB foregrounds. Then, in the next one, the
gravitational effect of lensing of the CMB photons, one of the main themes in this
thesis. For reviews of secondaries of the CMB, see e.g. [126, 9].

https://lambda.gsfc.nasa.gov/graphics/tt_spectrum/TT_data_2020aug_csv_format.dat
https://lambda.gsfc.nasa.gov/graphics/tt_spectrum/TT_data_2020aug_csv_format.dat
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Fig. 2.6 Comparison between Planck only, ACT+ Planck ,and ACT only for a single
frequency (90 GHz) in a small, 3 × 3 deg2 patch of the sky. We can see how the
higher resolution of ACT allows for detection of small-scale features, such as clusters,
compared to Planck, which by contrast captures better the large scales compared to
ACT alone. The figure is taken from [193], where there are many other examples that
emphasize the difference between Planck and ACT on small scales.

2.5.1 Foregrounds

Foregrounds are all the radiation between us and the last-scattering surface contami-
nating the pure CMB. For example, galaxies and dust in our Universe contaminate
CMB observations. Going to higher and higher resolution, CMB surveys become
large-scale structure surveys. We can detect galaxy clusters by eye in a CMB map.
Figure 2.6 shows this effect, where increasing resolution allows us to see, by eye, point
sources or galaxy clusters.

Foregrounds are divided into two categories: galactic and extragalactic. Galac-
tic foregrounds include thermal radiation of the interstellar medium dust, with an
anisotropic distribution, or synchrotron radiation (for example see figures in [193]).
Extragalactic foregrounds include light from background galaxies, and effects on the
CMB due to scattering of CMB photons off gas in and around clusters and galaxies.

Both galactic and extragalactic foregrounds act as contaminants for CMB measure-
ments: this is a problem for the interpretation of CMB observations when connecting
to theory, as they bias the cosmological parameters. For example, foregrounds bias
the inference of the spectral index ns [185] , or the primordial local non-Gaussianity
parameter fNL [112].

A common solution, at the price of losing signal-to-noise, is to mask the most
problematic areas of a map. People have also developed other methods to mitigate
contamination of foregrounds in CMB maps.

In this section, we will only focus on extragalactic foregrounds, as these will be
important for the main thesis topic of CMB lensing, as they dominate small angular
scales, and we will discuss a very simple and blind method for foreground reduction.
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The main idea of this method, as well as others, is to exploit the fact that the CMB
and foregrounds have, in general, different emission laws, i.e. emission as a function of
the frequency of observation. Then, we can construct maps of the sky where the CMB
fluctuations are independent of frequency, while most of the foreground contamination
is dependent.31

tSZ effect

The thermal Sunayaev-Zel’dovich [272] effect is a frequency-dependent change in the
observed CMB temperature fluctuations due to the inverse Compton scattering of
CMB photons off hot electrons along the line of sight, e.g. within galaxy clusters.
This results in spectral distortions in the observed CMB, with fewer photons at lower
frequencies, and more at higher frequencies.

The induced temperature fluctuation is given by an integral over the line-of-sight
distance l of the electron pressure, for some direction n̂

δTtSZ(n̂)
TCMB

= ftSZ(ν) σT

mec2

∫
dl ne(n̂, l)kBTe(n̂, l) , (2.112)

where (for the non-relativistic tSZ)

ftSZ = x
ex + 1
ex − 1 − 4 , (2.113)

with x = hν
kBTCMB

, ne, Te are the electron number density and temperature respectively,
σT the Thomson cross-section, mec

2 the electron rest-mass energy, and kB the Boltz-
mann constant. For low frequencies/energies, ftSZ = −2, resulting in a temperature
dip.

As we expect to see ionized hot gas within galaxy clusters, the tSZ effect will be
visible in the CMB in the direction of these, making it useful for detecting clusters, in
particular high-redshift clusters, as the change in the CMB temperature fluctuations
does not depend on the distance to the cluster (see e.g. [113]).

31Basically, the total sky brightness for several astrophysical components i is B(ν, r̂) =
∑

i Bi(ν, r̂),
where ν is the frequency, and r̂ unit vector the direction. The CMB contribution, for temperature
across the sky TCMB(r̂) = T̄ + δT (r̂), has an isotropic background component B̄ given by T̄ , and
a correction BCMB(ν, r̂) = (∂B̄(ν)

∂T̄
)δT (r̂) (in general δT/T̄ ≈ 10−5 for primordial fluctuations - we

ignore dipole here, of order 10−3). And so we can define a general temperature anisotropy for the
emission i as δTi(r̂) = Bi(ν, r̂)/

(
∂B̄(ν)

∂T̄

)
.
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kSZ effect

The kinematic Sunayaev-Zel’dovich (kSZ) effect is a Doppler shift of the CMB due
to Compton-scattering of CMB photons off free electrons of clusters with a non-zero
line-of-sight bulk velocity (with respect to us). This induces a change in the observed
CMB temperature given by (see e.g. [89])

δTkSZ(n̂)
TCMB

= −σT

∫
dle−τ ne(n̂, η)v⃗e · n̂ (2.114)

where τ the optical depth to Thomson scattering, and v⃗e is the peculiar velocity of
electrons.

The kSZ preserves the blackbody spectrum of the CMB, with a negligible small
change in the blackbody temperature (to lowest order in (v

c
), where v is the line-of-sight

velocity), and is therefore difficult to distinguish from the CMB.
The kSZ effect arises not only in galaxy clusters but in general in ionized gas,

such as during the epoch of reionization, when early quasars ionized the surrounding
intergalactic medium.

Cosmic infrared background

The cosmic infrared background (CIB) is composed of the cumulative infrared emission
from dusty star-forming galaxies at different redshifts. Due to the spatial correlation of
these galaxies, the CIB signal will be described by a clustered component, and a shot
noise one, due to the discrete nature of sources assumed from a Poisson distribution.
If galaxies trace the underlying matter distribution, then the CIB can be used to infer
properties of the clustering of matter.

Formally speaking, the clustered CIB can be described by the halo-model ([67]),
which assumes that galaxies reside in dark matter halos (according to some halo
occupation distribution). Correlations can be large-scale ones, between two separate
halos (2-halo term), or small-scale ones within a single halo (1-halo term). For a
practical example of modeling the CIB, see [250], where the CIB power spectrum is
described as an emissivity-weighted integral of the galaxy power spectrum. In contrast
to the tSZ effect, the CIB is not a single field that can be rescaled across frequency
channels according to a fixed spectral dependence. However, as an approximation, we
can write the following spectral energy distribution for the CIB

fCIB(ν) ∝ ν3+β

ehν/(kBTCIB)−1
(

dB(ν,T )
dT
|T =TCMB

) , (2.115)
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where β is a spectral index, and TCIB is a dust temperature parameter.32

Foregrounds, with respect to the CMB, are a rich source of information about the
Universe, and in recent years they have been a great source of focus not just for the
purpose of understanding cosmological information, but also inferring information
about galaxy formation (e.g. [18, 230]).

In the next section, we will see that, by treating foregrounds as contaminants to
CMB observations and not as signals on their own, we can mitigate their effect on the
measured CMB fluctuations.

2.5.2 A component separation method

If our goal is to study the CMB, then foregrounds can cause confusion in our un-
derstanding of the Universe, and it is thus important to remove these from our
observations to extract the CMB.

There are multiple techniques to disentangle the CMB anisotropies from fore-
grounds, mainly based on the different spectral and spatial properties of the two.
Some methods, known as non-blind methods, assume parametric forms for properties
of the foregrounds. Then the parameters are fitted, given a likelihood, in a model that
includes both CMB and foregrounds (e.g. [84]). One can then marginalize over the
contributions of the foreground parameters.

Other methods, known as blind, assume only that the component of interest is
dependent on the frequency of observation, in our case the CMB is known perfectly,
with minimal assumptions about the foregrounds. A very popular and simple method
is Internal Linear Combination (ILC), where observations of the sky at different
frequencies are linearly combined to obtain an estimate of the CMB.

For a review of some popular foreground cleaning techniques see e.g. [76] (and for
semi-blind methods see e.g. [280]). We now discuss briefly the ILC method.

We assume that the observed sky at Nf different frequencies can be written as

d⃗ =
∑
j∈S

s⃗j + n⃗ , (2.116)

where d⃗ is the data vector whose components dν are maps at a single frequency, and s⃗j

is the vector for the emission j ∈ S (e.g. CMB, tSZ, ...), and n⃗ is a noise component.
As the ILC method is agnostic to the space of interest (e.g. real, harmonic, needlet),
we will omit any dependence on some p in a pixel space, setting x⃗ ≡ x⃗(p).

32Note, this is only an approximate treatment for the CIB. In reality, as we have a sum of emissions
from dusty galaxies, over a range of redshifts, we do not have one field with signal rescaled across
frequencies. Different maps at different frequencies will include different CIB fluctuations. See for
example [250], [177].
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Given a component of interest c⃗ ≡ s⃗m, m ∈ S, we assume that the template of its
emission is the same at all frequencies of observation, c⃗ = a⃗msm ≡ a⃗s where a is a
recalibration coefficient and s is the template,33 and that observations are calibrated
with respect to the component of interest, a⃗ ≡ e⃗ where (e⃗)ν = 1,∀ν. Therefore, we
can write the problem as

d⃗ = e⃗s +
∑
j∈S′

s⃗j + n⃗ , (2.117)

where now S ′ excludes the component of interest.
Now we form a linear combination of the observation at different frequencies with

weights w⃗,

ŝ = w⃗T d⃗ , (2.118)

and with the condition that w⃗T e⃗ = 1, so that the linear combination is unbiased for
extracting s.

In the ILC method, one seeks to minimize the variance of the above linear combi-
nation

σ2 = w⃗T Rw⃗ , (2.119)

where R is the covariance matrix for the data. In particular, if the component of
interest is uncorrelated with the other components (in this case the foregrounds, and
the noise) then this means that we are seeking to minimize the total variance of
foregrounds and noise.

Using Lagrange multipliers, it is possible to show that the following weights achieve
this goal

w⃗ILC = R−1e⃗

e⃗T R−1e⃗
, (2.120)

where the denominator acts as the normalization to satisfy the condition w⃗T e⃗ = 1.34

There are two considerations for the ILC:

• If there are no foregrounds, then ILC leads to the minimum noise solution.

• If there is no noise, and some components are correlated, then to give the
minimum variance output map, the ILC combination will create a biased map

33This is true for example for the CMB, kSZ, or (non-relativistic) tSZ, but not CIB, where the
emission depends on the frequency too (e.g. [250, 177])

34This can be generalized to w⃗ILC = R−1e⃗
a⃗T R−1a⃗

for recalibration coefficients aν .
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(ŝ = s + b, where b will depend on the correlation of the components) with some
foreground residuals remaining [76].

In general, even if in a true model the component of interest and other components
(including noise) are uncorrelated, there might be some empirical correlation in the
data covariance matrix. A large fluctuation in the data will result in a large fluctuation
of the covariance matrix, as it depends on the data, leading to an excessively down-
weighted mode in the ILC solution, and then leading to a bias. This will be particularly
true for small data sets. There are ways to overcome this, mainly based on reducing
this empirical correlation [77].

Another important point is if there is a second component, different from the one of
interest but with the same frequency response, then this will propagate untouched to
the final map. For our case, in general, an ILC combination to extract the primordial
temperature anisotropies will be composed of the CMB+kSZ signal, as the latter has
the same spectral signature as the former.

Given its simplicity, ILC is a very popular method with a few extensions: depro-
jecting unwanted emissions of the sky [224] by adding to the ILC problem a constraint
of the form w⃗T f⃗j = 0 for some foreground j, or by partially deprojecting the same
component [2], or formally by optimizing the linear combination of data at different
frequencies to account for foregrounds arising in CMB lensing [227].

2.6 CMB Weak Lensing

The CMB photons released at the last scattering surface will be deflected while
propagating to us through the gravitational field generated by the large scale structure
fluctuations. As a consequence, the observed CMB anisotropies are distorted, as
are their statistics, and the angular power spectrum is modified with respect to the
primordial CMB. It is therefore of great importance, for a complete understanding
of observations, to account for this effect during a CMB cosmological data analysis.
In addition, given the theoretical understanding of the primordial CMB, the CMB
lensing signal can be extracted and used as an independent probe for the (projected)
matter distribution in the Universe.

CMB lensing is a small effect, with an RMS of the deflection of around 2 arcmin,
although the deflections are coherent over scales of a few degrees, making CMB lensing
an important effect [153]. The small size of the CMB lensing effect made it observa-
tionally challenging to detect in earlier CMB experiments like WMAP. Nevertheless,
by cross-correlating WMAP data with other tracers of large-scale structure, it was
possible to get the very first detections of gravitational lensing using CMB temperature
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at a 3σ level [117, 262, 115]. And the first detection of CMB lensing from the CMB
alone was from the Atacama Cosmology Telescope (ACT) collaboration [75].

In the next section, we will study the CMB lensing effect, then we will see how
this affects the observed CMB.

2.6.1 The CMB lensing potential

Weak CMB lensing deflection

By studying the term (2.68) it is possible to calculate the deflection angle that CMB
photons experience while traveling from the last scattering surface (LSS) to us. The
deflection angle will be the sum of several deflections, resulting in an integral over
the photon path. Since deflections are small, we can make the assumption that the
integral can be taken along the unperturbed photon’s path, also known as the Born
approximation [153].

We can write the deflection angle for direction n̂ as the gradient on the sphere of a
projected CMB lensing potential35

d⃗(n̂) = ∇⃗n̂ϕ(n̂) , (2.121)

where

ϕ(n̂) = −2
∫ χ∗

0
dχ

fK(χ∗ − χ)
fK(χ∗)fK(χ)ΨW (χn̂, η0 − χ) , (2.122)

where fK(χ) is the comoving angular diamater distance corresponding to the comoving
distance χ (= χ for K = 0), χ∗ is the comoving distance to last scattering, η0 is the
conformal time at reception today, and ΨW = (Ψ + Φ)/2 the Weyl potential. From
this expression we see that from fK and ΨW we can probe the geometry and growth
information of the Universe. Furthermore, as ΨW evolves with time, it affects the
CMB temperature anisotropies through the ISW effect, with a main contribution
from z ≤ 2 (when dark energy leads to decaying potentials). The same potentials
gravitationally deflect CMB photons: there is a correlation between ϕ and T . This
is an effect important on large-scales, with little contribution on intermediate- and
small-scales (see [153]), and so we will ignore it here.36

From now on we will assume a flat Universe, and for GR we can set ΨW = Ψ so
that the expression for the lensing potential is

35Here we assume no curl component for the displacement field.
36Although it has important consequences for the estimation of some cosmological parameters,

such as fNL, as a bispectrum in T arises, see e.g. [143].
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ϕ(n̂) = −2
∫ χ∗

0
dχW (χ, χ∗)Ψ(χn̂, η0 − χ) , (2.123)

where the CMB lensing kernel window function is

W ϕ(χ) ≡ W (χ, χ∗) = χ∗ − χ

χ∗χ
. (2.124)

To understand better the power of studying the CMB lensing potential, we will
further assume linear evolution from primordial density fluctuations. Then considering
Ψ in Fourier space, we have

Ψ(k⃗, η) = TΨ(k, η)R(k⃗) , (2.125)

where TΨ is the linear transfer function, and R(k⃗) is the primordial curvature pertur-
bation, with a dimensionless power spectrum ∆R(k⃗). Considering then the lensing
potential in harmonic space [153], its power spectrum is:

Cϕϕ
L = 16π

∫ dk

k
∆R(k)

[∫ χ∗

0
dχTΨ(k, η0 − χ)jL(kχ)W (χ, χ∗)

]2
. (2.126)

Cosmological parameters from CMB lensing

If we are able to measure (2.126) we can infer cosmological parameters. To get a
simple understanding of the dependence of Cϕϕ

L on the cosmology, it is possible to
derive an expression for the limit of high L > 100, or high redshift, around some
fiducial cosmology for ΛCDM under several assumptions (see [203, 3]).37 The basic
dependence of the CMB lensing power spectrum on ΛCDM parameters can then be
summarized as [3]

L4Cϕϕ
L ∝ AsΩαL

m hβL , (2.127)

where αL, βL are non-zero coefficients, in particular αL = 9/10 and βL = 3/2 for
L = 200.

Taking into account the full evolution of the matter power spectrum that enters
the CMB lensing power spectrum other effects arise, e.g. due to massive neutrinos.

Massive neutrinos have important effects at the level of perturbations because of
the free-streaming effect. Due to their large velocities, neutrinos do not cluster on small
scales, but contribute to the background expansion of the universe. The overall effect is

37We assume the growth factor of perturbations to be one, a scale-invariant primordial power
spectrum, and approximate the shape of the power spectrum near some fiducial model [3].
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Fig. 2.7 The effect of massive neutrinos on the CMB lensing potential as we increase∑
mν from 0 meV to 150 meV. We fix other cosmological parameters in producing

this plot, using CAMB [154].

that they suppress the growth of structure and so reduce the power spectrum of matter
fluctuations (e.g. [86, 264, 140, 151]). This results in a scale-dependent suppression
of Cϕϕ

L , as seen in Figure 2.7. One can use CMB lensing to put an upper bound on
the sum of neutrinos’ masses, as shown for example in [256] where ∑mν < 0.396 eV
(using ACTPol lens+ACTPol CMB + BAO, 95%). Tighter constraints are expected
from future experiments, such as Simons Observatory (SO) with a forecast on the
error bars of σ(∑mν) = 31 meV (SO Goal+DESI-BAO) [5].

CMB lensing is also useful for breaking degeneracies between parameters con-
strained by the CMB alone. For example, the unlensed CMB has a geometric
degeneracy, the angular diameter distance degeneracy. To explain this, we fix the
comoving size of the sound horizon at decoupling s∗, at the fixed decoupling redshift
zdec (in essence, we fix the physical densities Ωbh

2, Ωch
2). Then, the angular scale of

the primary acoustic peaks is [264, 85]38

la ∼
D∗

s∗
, (2.128)

where D∗ is the angular diameter distance to recombination. The quantity D∗ depends
on late-Universe parameters such as w, ΩK and Λ. But not all of them can be

38To be more precise, given a scale λn for the nth acoustic peak, the angle which subtends is given
by: θn = λn/D∗, with D∗ = dA(tdec) the angular diamater distance to the LSS. Roughly speaking, in
spherical harmonics this angle corresponds to ln ≈ π/θn = πD∗/λn. This can be seen in the simple
case where we neglect the time variations in the potentials Ψ, Φ in (2.100). Then one can obtain
a harmonic oscillator equation with a constant gravitational forcing term, where there is a cosine
cos(ks∗) contributing to the acoustic oscillations, so we want kns∗ = nπ, with n constrained as an
integer. Now, λn = 2π/kn, where kn is the wave-number of the peak, given by kns∗ = nπ. Therefore,
ln ∼ πD∗/λn ∼ πn D∗

s∗
→ la = D∗

s∗
.
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constrained by D∗. Indeed, it is possible to vary any of the parameters in [w, ΩK ],
by adjusting the dark energy density ΩΛ such that the angular diameter distance at
recombination is unchanged, making the unlensed CMB power practically fixed.

The CMB lensing potential comes to the rescue. This can be written as a line-of-
sight integral that includes geometric distances, and the power spectrum of the evolving
potential. There is a dependence on late-time parameters such as [Ωνh2, w, ΩK ], and
varying these alters CMB lensing. Therefore we can break the angular diameter
distance degeneracy with CMB alone, as shown in Figure 2.8 from [253].

Later, and in Chapter 3, we will discuss one of the most promising uses of CMB
lensing: understanding the bias relation between the luminous observed tracers of
matter, and matter itself. This is possible as CMB lensing is a direct probe of the
projected matter distribution (via the Laplacian of the CMB lensing potential, with
the connection made through the Poisson equation). Furthermore, the combination of
CMB lensing with other probes of matter can play an important role in overcoming
cosmic variance errors, allowing, in principle, much higher precision for parameters
such as fNL, or the sum of neutrino masses [237].39

We will now turn to the observable effects of lensing on the CMB temperature
anisotropies, and later, given the richness of information that we can gain from the
CMB lensing potential, how we it can be extracted from observations.

2.6.2 The lensed CMB

The observed lensed CMB temperature anisotropies T (n̂) are a remapping of the
primordial unlensed CMB temperature anisotropies T u(n̂) with a deflection angle
d⃗(n̂):40

T (n̂) = T u(n̂ + d⃗(n̂)) . (2.129)

If the deflection angle is small, |d⃗| ≪ 1, we can express the temperature fluctuations
as

T (n̂) = T u(n̂) + d⃗(n̂) · ∇⃗T u(n̂) + 1
2 d⃗ · Hess[T u](n̂)d⃗(n̂) + O(|d⃗|3) , (2.130)

39Note there might be some factors that could degrade constraints when doing this type of analysis.
For example, higher-order bias parameters could degrade constraints, if all free without priors. For
other caveats see [237].

40A real observed CMB map is given by CMB anisotropies, plus a noise component due to finite
experimental sensitivity, plus contamination as the SZ effects we discussed above. Here we have only
the CMB.
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Fig. 2.8 Top panel: CMB TT power spectrum for two geometrically degenerate models:
in blue, one with a curved Universe and no cosmological constant (ΩΛ = 0, Ωm = 1.29);
and in red a flat ΛCDM Universe (ΩΛ = 0.73, Ωm = 0.27). The black dots are the
seven-year WMAP temperature power spectrum data [147]. We can see that the
data do not significantly favor either model. Lower panel: we show CMB lensing
deflection power spectra for the same two models. We can see that they are no longer
degenerate, with the ΩΛ = 0 universe producing a lensing power spectrum larger than
that measured by ACT data. Figure reproduced from [253].
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where Hess[T u] is the hessian of T u, with components Hess[T u]ij = ∇i∇jT
u.

Thanks to Helmholtz’ theorem, the deflection field d⃗(n̂) can be decomposed into a
curl-free part (∇×ω⃗ = 0), and a divergence-free one (∇·v⃗ = 0). Neglecting linear-order
tensor perturbations (e.g. from inflation), second-order scalar density fluctuations,
and foreground contamination, we can ignore the curl mode (e.g. [194], [114]), and
write the deflection angle as a pure gradient ∇⃗ϕ, where ∇⃗ is the covariant derivative
on the unit sphere, and ϕ a scalar field, the CMB lensing potential we discussed above.
In Chapter ?? we will see how the curl mode can be use as a diagnostic to check for
contaminants in the estimated gradient mode [66].

In general, as there are also low-redshift contributions to the CMB anisotropies
coming from the large-scale structure, a CMB map would also include these secondary
contributions, X̃s. They will be correlated to the CMB lensing potential as it traces
large-scale structure and a non-zero correlation with X̃s will appear, inducing additional
non-Gaussianities in the total observed CMB field (e.g. at the bispectrum level). We
will ignore such biases for now, and return to them in Chapters 3, 4.

Focusing only on temperature anisotropies, in Fourier space, the expression above
reads as

T (⃗l) =
∫

dn̂T (n̂)e−i⃗l·n̂ ≈ T u(⃗l) + δT u(⃗l) + δ2T u(⃗l) +O(ϕ3)

= T u(⃗l) +
∫ d2l⃗′

(2π)2 T u(l⃗′)Kϕ(⃗l, l⃗′) + 1
2

∫ d2l⃗′

(2π)2

∫ d2l⃗′′

(2π)2 Kϕϕ(⃗l, l⃗′, l⃗′′)T u(l⃗′) , (2.131)

where

Kϕ(⃗l, l⃗′) = −(⃗l− l⃗′) · l⃗ϕ(l⃗′) , Kϕϕ(⃗l, l⃗′, l⃗′′) = −(l⃗′ · l⃗′′)[(l⃗′′ + l⃗′− l⃗) · l⃗′]ϕ(l⃗′)ϕ∗(l⃗′ + l⃗′′− l⃗) .

(2.132)
From this expression, we can now calculate the power spectrum for the lensed tem-

perature CMB. The lensed power spectrum is given, assuming statistical homogeneity
in Fourier space, by [129]:

⟨T (⃗l)T ∗(l⃗′)⟩ = (2π)2δ
(2)
D (⃗l − l⃗′)C|⃗l| . (2.133)

Substituting (2.131) and (2.132) into this, and assuming the CMB lensing potential
is Gaussian and statistical independence between the unlensed temperature and the
lensing potential, and using also ϕ(⃗l) = ϕ∗(−l⃗), the power spectrum of the lensed
temperature CMB map is [123, 153]
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C|⃗l| = Cu
|⃗l| + CδT uδT u

|⃗l| + CT uδ2T u

|⃗l| +O(ϕ4) =1−
∫ d2l⃗′

(2π)2 Cϕϕ

|l⃗′| (l⃗
′ · l⃗)2

Cu
|⃗l| +

∫ d2l⃗′

(2π)2 Cϕϕ

|⃗l−l⃗′|C
u
|l⃗′|[(⃗l − l⃗′) · l⃗′]2 . (2.134)

The last term in (2.134) is a convolution term that blurs and smooths the power
spectrum of the CMB peaks. The negative term in the big square brackets almost
cancels in amplitude the convolution term, leaving the smoothing. We can see the
overall effect in Figure 2.9, where we plot the fractional difference between lensed and
unlensed CMB temperature power spectra, with respect to the unlensed CMB one.
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Fig. 2.9 The fractional difference between lensed and unlensed CMB temperature
power spectra, with respect to unlensed CMB power spectrum.

The variance of the temperature field in real space is

σ2(T ) =
∫ d2l⃗

(2π)2 C|⃗l| =

=
∫ d2l⃗

(2π)2 Cu
|⃗l|−

∫ d2l⃗

(2π)2

∫ d2l⃗′

(2π)2 Cϕϕ

|l⃗′| (l⃗
′·⃗l)2Cu

|⃗l|+
∫ d2l⃗

(2π)2

∫ d2l⃗′

(2π)2 Cϕϕ

|⃗l−l⃗′|C
u
|l⃗′|[(⃗l−l⃗′)·⃗l′]2 =

=
∫ d2l⃗

(2π)2 Cu
|⃗l| = σ2(T u) . (2.135)

Weak CMB lensing conserves the total power of temperature fluctuations, redistributing
it among different scales. In particular, for l ≥ 2000, the CMB primordial unlensed
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Fig. 2.10 Example of power spectra of some of the sources discussed so far in the
text. In solid black we have the lensed CMB, dashed black the unlensed CMB, in
dotted purple some experimental Gaussian noise with white noise level of 7µKarcmin
and beam size of 1.4 arcmin. Then, we have foregrounds tSZ, CIB spectra at a single
frequency of 148 GHz in red and orange, respectively, in green the kSZ signal, and
finally in blue the sum of all the contributions. For this example, we use the szar
code,41 and access quickly to a precalculated theory CMB with the orphics code,42

using spectra calculated from CAMB. The feature in the red line at around l ∼ 300 is
from numerical fitting errors.

power spectrum is suppressed by diffusion damping, and therefore we expect some
power transfer from large scales to small scales through the convolution between the
lensing potential and the primordial CMB power spectrum. Going to very small scales,
l ≥ 3000, this can be clearly seen by the lensed temperature expansion T ∼ ∇⃗ϕ · ∇⃗T u,
neglecting T u due to diffusion damping. In (2.134) the convolution term will be
mainly from |⃗l′| ≪ |⃗l| for high |⃗l|, and the power spectrum will be simplified as
Cl = l2Cϕϕ

l
1
2⟨|∇⃗T u|2⟩ = l2Cϕϕ

l
1

4π

∫ dl′

l′
l′4Cu

|l⃗′|, i.e. the lensed CMB temperature power
becomes proportional to the unlensed gradient power and the deflection power l2Cϕϕ

l

[153].
Figure 2.10 presents a visual picture, where we see in solid black the CMB lensed

power spectrum, and in dashed black the unlensed one, as well as the foregrounds
components we already discussed for comparison.

We discussed the CMB lensing potential and its effects on the temperature power
spectrum. What if we wanted to undo the effect of lensing, or wanted to use the
potential as probe independent from the temperature fluctuations? The expansion
T ∼ T u + ∇⃗ϕ · ∇⃗T u shows that we might be able to recover ϕ by ϕ̂ ∼ |T ∇⃗T u|,
ignoring some spurious correlations for |T u∇⃗T u|. But before tackling CMB lensing
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reconstruction, we will first discuss another tracer of matter fluctuations, then in
section (2.8.1) we will discuss CMB lensing reconstruction.

2.7 Dark Matter and Biasing

Lensing is a powerful probe of the invisible (dark) matter field, although it gives
only a direct projected mass distribution map of the Universe, i.e. two-dimensional
information. In contrast, the matter field itself is three-dimensional, leading in principle
to a higher number of modes that can be studied with respect to CMB lensing, although
we cannot directly observe it.

Luckily, the distribution of galaxies in the Universe allows us to trace the three-
dimensional matter field. But galaxies are biased with respect to the mass field, i.e.
there is an excess of clustering of galaxies (g) compared to the matter (m) density field.
One of the simplest ways to describe this, on large scales, is by measuring the auto/cross
power spectra of the fields involved, and taking the time and scale-dependent ratios
ba =

√
Pgg/Pmm, bc = Pgm/Pmm.

To relate the underlying matter field to the observed galaxies we need an under-
standing of the bias. From the current standard cosmological theory, galaxies form in
potential wells of virialized clumps of dark matter, also known as dark matter halos,
where baryons can cool sufficiently fast [287]. Baryonic processes are very compli-
cated to describe in detail, and simulations support our study of these phenomena.
Nevertheless, it is still possible to gain understanding theoretically, with the common
practice of separating galaxy clustering into two steps: first, non-linear evolution leads
to clustering of dark matter halos, then these halos are occupied with galaxies (e.g.
[22]).

Observationally speaking, we take the opposite route: we observe galaxies and
study their statistics, and then we are able to make inferences about the non-linear
matter field.

In the next section, we will start by focusing on the non-linear evolution of the
matter field, with the goal of relating it to the initial linear (Gaussian) field. Then we
will discuss galaxy clustering, with the goal of discussing the basics of biasing.

2.7.1 Late-time matter field

Netwonian Dynamics

In accordance with our current cosmological model, dark matter is the main component
in which structure forms, so we will focus on it here. For the goals of this section, we
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assume a pressureless, non-relativistic, collisionless dark matter fluid driven only by
gravity.

During matter-domination, on sub-horizon scales, with small velocities, and for
pressureless matter, the continuity and Einstein equations in the conformal Newtonian
gauge correspond to the second-order Newtonian fluid equations: the continuity (or
mass conservation) equation, Euler (momentum conservation) equation, and Poisson
equation respectively (e.g. [21])

δ′ + ∇⃗ · [(1 + δ)v⃗] = 0 , (2.136)

v⃗′ +Hv⃗ + (v⃗ · ∇⃗)v⃗ = −∇⃗Φ , (2.137)

∇2Φ = 3
2Ωm(η)H2δ , (2.138)

where the prime ′ denotes the time derivative with respect to conformal time, and v⃗ is
the velocity perturbation, which can be decomposed in a curl-free part with θ ≡ ∇⃗ · v⃗
and a divergence-free part.43 We emphasize that for the Poisson equation at late
times, energy density fluctuations are dominated by the fluctuations in the matter
density, as we assume that the (dominant) dark energy component in the Universe is
homogeneous. In addition, here we are considering, on top of a pressureless perfect
fluid, no anisotropic stress.

Taking the Fourier transform of the continuity equation, and using the fact that
v⃗(k⃗, η) = i⃗k θ(k⃗,η)

|⃗k|2 , we have

δ′(k⃗, η) + θ(k⃗, η) = −
∫ d3k⃗1d

3k⃗2

(2π)3 δ
(3)
D (k⃗ − k⃗1 − k⃗2)α(k⃗1, k⃗2)θ(k⃗1, η)δ(k⃗2, η) , (2.139)

where we define the mode-coupling function

α(k⃗1, k⃗2) = (k⃗1 + k⃗2) · k⃗1

k2
1

. (2.140)

Similarly, the Fourier transform of the Euler equation, in conjunction with the
Poisson equation (2.138), gives

43In absence of anisotropic stress, or primordial velocity with vorticity, we can neglect the vorticity
term, as it decays at a linear level with the scale factor. This can be seen by solving the linear-order
equation in the vorticity, ω⃗ +Hω⃗ = 0, which comes from the linear order Euler equation separating
scalar and vectorial parts, giving |ω⃗| ∝ a−1, where ω⃗ = ∇⃗ × v⃗. If there is no initial vorticity, and in
absence of anisotropic stress, gravitational evolution will still not generate vorticity (although from
simulations at late-times there is some evidence for it [21]).
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θ′(k⃗, η) +Hθ(k⃗, η) + 3
2H

2Ωm(η)δ(k⃗, η) =

= −
∫ d3k⃗1d

3k⃗2

(2π)3 δ
(3)
D (k⃗ − k⃗1 − k⃗2)β(k⃗, k⃗1, k⃗2)θ(k⃗1, η)θ(k⃗2, η) , (2.141)

where we have defined

β(k⃗, k⃗1, k⃗2) ≡ β(k⃗1, k⃗2) = (|⃗k1 + k⃗2|)2(k⃗1 · k⃗2)
2k2

1k2
2

(2.142)

representing the term (v⃗ · ∇⃗)v⃗ in the Euler equation (2.137).
A closed-form solution for the system (2.139), and (2.141), in general, is not known.

However, thinking about the large scales, where the fluctuations are small, linear
theory is enough, and we can describe our fields with independent Fourier modes that
have the same statistics as the primordial one. But when there are nonlinearities,
there is a coupling of Fourier modes, and the analysis becomes more complicated.
We can try to solve the above system under the assumption that we can expand the
density and velocity fields perturbatively around linear solutions, using a power-law
ansatz, in the limit of δ ≪ 1, θ ≪ 1. This is the basis of the next section, standard
perturbation theory (e.g. [38]).44

Standard Perturbation Theory

If we neglect all the quadratic terms in (2.139), with the limit of δ ≪ 1, θ ≪ 1, we
obtain the following

δ′(k⃗, η) + θ(k⃗, η) = 0 . (2.143)

Taking the conformal time derivative of this equation, substituting it in the
linearized version of (2.141), and using the Poisson equation, we have the linear
growth equation

δ′′(k⃗, η) +Hδ′(k⃗, η)− 3
2H

2Ωm(η)δ(k⃗, η) = 0 , . (2.144)

This is a second-order differential equation with a damping term.
Seeing this in terms of the derivative with respect to the scale factor a, it is possible

to solve (2.144) with growing and decaying-mode solutions, with separable spatial and
44In what follows, we will only discuss the Eulerian approach for the fluid equations, where we

follow density and velocity fields of a fluid in a fixed coordinate system, as opposed to the Lagrangian
approach, where we concentrate on the trajectory of individual particles in the fluid.
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temporal parts, δ(k⃗, η) = D+(η)δ+,0(k⃗) + D−(η)δ−,0(k⃗), where δ+,0(k⃗) and δ−,0(k⃗) are
initial density perturbations.

The decaying-mode solution is (e.g. [21])

D−(η) = D−,0H = H/a , (2.145)

and the growing-mode solution

D+(η) = D+,0H
∫ a(η)

0

da′

H3(a′) , (2.146)

with D+,0 a normalization factor such that D+(a = 1) = 1 (e.g. [21]). In a matter
only Universe, H = a−3/2, and thus D+ = a, D− = a−3/2.45 As for structure
formation, the decaying mode is not important, from now on, we will always focus
on the growing-mode solutions, D ≡ D+, or δ1(k⃗, η) = D(η)δ1(k⃗), with δ1(k⃗) the
linear density field today. Using this, and from the linearized continuity equation
in Fourier space, and assuming a gradient only velocity, we can write the velocity
divergence as θ(k⃗, η) = −f(η)Hδ1(k⃗, η), where we introduce the logarithmic growth
rate f(η) = d ln D

d ln a
. During matter domination this will be unity, and it will decrease at

late times during dark energy domination.
To solve (2.139) and (2.141) at higher-order (with the non-linear terms) and on

large enough scales to neglect vorticity effects, we expand the δ and θ in series of the
nth-order solutions, and write the latter in powers of the linear solution δ1 to obtain
(e.g. [38, 242, 21])

δ(k⃗, η) =
∞∑

n=1
δ(n)(k⃗, η) =

∞∑
n=1

∫ n∏
m=1

d3qm

(2π)3 δ1(q⃗m, η)Fn(q⃗1, ..., q⃗n, η)(2π)3δ
(3)
D (k⃗ −

n∑
i=1

q⃗i) ,

(2.147)
and

θ(k⃗, η) =
∞∑

n=1
θ(n)(k⃗, η) =

= −f(η)H(η)
∞∑

n=1

∫ n∏
m=1

d3qm

(2π)3 δ1(q⃗m, η)Gn(q⃗1, ..., q⃗n, η)(2π)3δ
(3)
D (k⃗ −

n∑
i=1

q⃗i) , (2.148)

45For a ΛCDM Universe, there is a similar behavior deep in the matter domination phase, then
the growth stalls as the cosmological constant starts to dominate.
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where Fn, Gn are dimensionless, symmetrised kernels in their wavevector arguments.
Focusing on an Einstein-de Sitter (EdS) cosmology, we can separate the time depen-
dence of the density field as δ(n)(k⃗, η) = Dn(η)δ(n)(k⃗), where D = a.46

At first order F1 = G1 = 1, such that the expanded δ is the linear field. At
higher order, one substitutes (2.147) and (2.148) into (2.139) and (2.141), obtaining a
recursion relation connecting the kernels Fn, Gn to lower-order ones Fm, Gm, m < n,
up to the more fundamental mode coupling functions α and β (e.g. [21], [38, 242]).

As an example, the second-order solution for the density field gives a first non-trivial
kernel, which will be important in Chapter 5, which can be obtain from (2.147) and
(2.148) substituting into (2.139) and (2.141).Then we use first-order terms from the
power series in the non-linear coupling terms on the right-hand side and second-order
terms on the left hand side, plus the time dependence of the series ansatz, to obtain a
coupled system from F2, G2 that leads to

F2(k⃗1, k⃗2) = 5
7 + k⃗1 · k⃗2

2

(
1
k2

1
+ 1

k2
2

)
+ 2

7
(k⃗1 · k⃗2)2

k2
1k2

2
, (2.149)

which can be written slightly differently as

F2(k⃗1, k⃗2) = 17
21 + k⃗1 · k⃗2

2k1k2

(
k2

k1
+ k1

k2

)
+ 2

7

(k⃗1 · k⃗2)2

k2
1k2

2
− 1

3

 . (2.150)

The terms in F2 correspond to the growth term, the advection term, and the tidal
term respectively, (e.g. [252]). The growth term describes the enhanced growth factor
in the presence of a long wavelength background mode, the advection term accounts
for the displacement of initial perturbations due to bulk motions and the tidal term
describes the mode coupling due to the tidal fields [21].47

Then, to obtain the non-linear matter power spectrum, or the n−point correlation
functions, one plugs in the above series expansion, and using Wick’s theorem the
power spectrum is written as a sum of terms that include convolutions of powers of
the linear matter power spectrum, with couplings given by the kernels. In Chapter
5 we will see this more explicitly.48 In this way, one can connect the linear power
spectrum to the process of seeding the fluctuations in the Universe, and hence extract
information about the primordial Universe.

46Formally speaking, the equation should be δ(n)(k⃗, η) = Dn(η)δ̄(n)(k⃗), where δ̄ depends only on
space. Although, unless ambiguous, we will just use δ.

47There is another way to obtain this result. This is by noticing that a long-wavelength density
perturbation corresponds to a tidal field on small scales. In the squeezed limit where the long-
wavelength is much bigger than the short one on small scales, in an Einstein-de Sitter universe, it is
possible to recover the standard perturbation theory kernel F2 [235].

48Here we assume a Gaussian linear matter field, such that contributions only come from even
correlators.
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Fig. 2.11 Example of matter power spectrum. Solid lines are for z = 0, dashed ones
for z = 0.8. Black is the linearly evolved power spectrum, while red accounts for
non-linear corrections in the power spectrum. We can see how clustering changes going
from dashed, z = 0.8, to solid z = 0, and how small scales are affected by non-linearity,
with an enhanced power spectrum with respect to the linear case. Figure taken from
https://camb.readthedocs.io/en/latest/CAMBdemo.html, using spectra calculated
from CAMB.

Assuming an initial Gaussian linear random field that is also statistically homoge-
nous and isotropic, the evolved linear field will preserve the same properties, with a
linear power spectrum P1

⟨δ1(k⃗1, η)δ1(k⃗2, η)⟩ = (2π)3δ
(3)
D (k⃗1 + k⃗2)P1(|⃗k1|, η) . (2.151)

In particular, by definition, the three-point function will be zero. Contrary to this,
the evolved non-linear field δ will acquire a bispectrum. Writing δ ∼ δ(1) + δ(2), at
leading order we have

⟨δ(k⃗1, η)δ(k⃗1, η)δ(k⃗1, η)⟩ = ⟨δ(2)(k⃗1)δ(1)(k⃗2)δ(1)(k⃗3)⟩+ 2 cyc. , (2.152)

leading to

B(k⃗1, k⃗2, k⃗3) = 2F2(k⃗1, k⃗2)P1(k1)P1(k2) + 2 cyc. , (2.153)

where cyc. is a cyclic permutation of the three vector modes. We can see that this term
is only due to gravitational non-linearity. The shape dependence of this bispectrum is
encoded in the F2 kernel. This observation is essential, as it makes the bispectrum a
useful probe for cosmological parameters.

https://camb.readthedocs.io/en/latest/CAMBdemo.html
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Standard perturbation theory is a great way to study the non-linear matter power
spectrum. Despite this, it has some problems [21]:

• The power series expansion is not convergent, as on small scales the matter
density is large.

• We assume a perfect pressureless fluid, when in reality, this is not valid on small
scales, where shell crossing leads to multi-streaming.

• For certain initial power spectra, loop corrections to obtain the non-linear
matter spectrum are UV divergent, requiring a UV cut-off that means the SPT
predictions are all UV cut-off dependent, which is clearly unphysical.

To resolve these issues, today we have the Effective Field Theory of Large Scale
Structure (EFTofLSS), The EFTofLSS provides answers to these shortcomings and
provides physical, cut-off independent predictions. In this thesis, we will not use the
EFTofLSS, although excellent reviews can be found elsewhere [33, 48].

During the matter-dominated era, the linear matter fluctuations grow as δ ∝ a, as
long as δ ≪ 1. For δ ≫ 1 this relation with the scale factor breaks for the non-linear
matter density fluctuations, as these collapse gravitationally to form halos. Galaxies
will be hosted by these halos. Dealing exactly with these non-linear processes is
difficult, and usually, simulations or semi-analytic calculations are employed to study
the formation and evolution of halos. However, we can treat the problem on large
enough scales by describing dark matter halos and galaxies as biased tracers of the
matter field.

2.7.2 Biasing

One of the main goals of this section is to show how we can extract information about
fundamental physics by studying the observed luminous matter distribution as seen
in galaxies. To this end, we want to relate the (mostly invisible to light) non-linear
matter field to the galaxy field. In the current cosmological picture, galaxies form in
potential wells of virialized clumps of dark matter, also known as halos, where baryons
can cool sufficiently fast. Understanding the precise details of galaxy formation is
a difficult task, that involves all the relevant processes of halo formation, as well as
stochastic contributions due to the finite number of objects. Nevertheless, we can form
a picture, on large enough scales, where we understand galaxy formation as follows:
first, we have the clustering of dark matter halos, second, the occupation of these
halos with galaxies. The result is that both halos and galaxies are seen as biased
tracers of the underlying matter field.
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Ideally, in our theoretical modeling, the galaxy bias should include non-local (e.g.
containing gradients of the density field), and non-linear effects (e.g. higher-order
biases), as for example represented by galaxy-formation physics. In Chapter 5 we will
look in further detail at some of these terms. For now, our objective is to gain a basic
understanding of biasing.

Abundance of halos

A simple way to gain intuition about halo/galaxy bias is starting with the spherical
collapse model, where regions in the (initially linear) density field exceeding a threshold
∝ δc today collapse to form bounded objects (see e.g. [22]). To determine the number
density of collapsed objects of mass M at a given time, also known as the halo mass
function, Press and Schechter (PS) [215] introduced the concept of smoothing the
initial density field, with some filter of width R enclosing the mass M .

Suppose we generate the initial density fluctuations with a distribution P (δ0).
Then, the probability distribution for the linearly-evolved density fluctuations δlinear

has the same form as the initial distribution, giving P (δlinear) (e.g. [146]). The number
of collapsed objects at a given time is related to P (δ > δc), counting the fraction of
the volume occupied by collapsed regions.

PS assumes a zero-mean Gaussian distribution, as current data suggests that the
initial fluctuations are Gaussian or at least nearly Gaussian, i.e.

P (δlinear) = 1√
2πσ

exp
(
−δ2

linear
2σ2

)
, (2.154)

where σ2 is the variance of the density fluctuations.
Now we need to find overdense regions with a certain mass M . We use a sharp

filter to bin the fluctuations. A filter W with width R, corresponding to a mass scale
M = 4π

3 ρ̄R3 (ρ̄ is the average matter density of the Universe),49 gives a smoothed
matter field, with original power spectrum P (q), with a variance of

σ2(M) =
∫ d3q⃗

(2π)3 P (q)W 2[q, R(M)] . (2.155)

We can see that σ2 is proportional to the power spectrum, and therefore its growth
is given by the growth of matter density fluctuations squared, σ2 ∝ D2. To trace

49Note that R is not the real radius of objects observed today with a given mass. It is rather the
radius that these objects would have if they had a mean density equal to the mean mass density
of the Universe. Regions then expand with the expansion of the Universe, turn around, and then
contract to form objects with radii smaller than R (e.g. [146]).
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this, a key parameter often used in cosmology is the variance of matter fluctuations
smoothed on a scale of R = 8h−1 Mpc,

σ2
8 ≡

∫ d3q⃗

(2π)3 P (q)W 2[q, R(M)] (2.156)

From observations, its value is around σ8 ≈ 0.8 for ΛCDM , and it is, in essence, a
normalizing factor for the power spectrum.

Using a random walk in a Gaussian random field, PS derived that the number
density of collapsed objects of mass M can be calculated as [215]

n(M) = −
√

2
π

ρ̄

M2 ν exp
(
−ν2

2

)
d ln σ

d ln M
. (2.157)

Actually, the mass function can be reduced to a (nearly) universal functional
form for different redshifts and cosmologies, as tested in numerical simulations, when
expressed in terms of the peak height 50

ν =
(

δc

σ(M)

)2

, (2.158)

as

n(M) ≡ n(M, z) = νf(ν) ρ̄

M2
d ln ν

d ln M
(2.159)

and f(ν) is the fraction of mass that collapses into halos between ν and ν + dν.
Predicting the mass function n for different redshifts and cosmologies is crucial

for interpreting observed cluster abundances. Despite the simple starting point of the
spherical collapse model,51 PS gives a good rough agreement with the mass function
from N−body simulations, although it underestimates the abundance of massive halos.
But measuring precisely the mass function is important, as it is an observable quantity
that can predict σ2, and from this the growth rate squared, D2, as a function of
redshift, to give constraints on models of dark energy, for example. To improve the
agreement with simulations, there have been other proposals, such as the modified
version of the PS mass function with fitting formulae to numerical simulations [257,
135], as well as non-Gaussian (in particular nearly Gaussian) extensions (e.g. see [23]
and references therein).

50Definitions of ν may vary in the literature, where some authors define it as ν = δc/σ. We follow
the definition of [260].

51Plus an artificial factor of 2 in the mass function to account for the assumption that all the mass
in the universe is enclosed in halos [215], that we did not discuss here.
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Biasing

A very simple way to understand halo biasing is with the Peak-Background Split
argument (PBS) ([27, 65, 257]): halos in general form from short-wavelength fluctua-
tions, as they have a larger root mean squared amplitude and are more likely to cross
the critical collapse density;52 the short-wavelength’s fluctuations are modulated by
the presence of long-wavelength fluctuations. A positive long-wavelength fluctuation
will amplify the small scale one, making it easier to cross the critical threshold, or
equivalently the collapse threshold goes from δc to δc − δl, thus affecting the number
density n

n→ nnew = n− dn

dδc

δl , (2.160)

where δl is the large-scale density mode.
This simply gives, to first order, a large-scale bias

b = δg

δl

= −d ln n

dδc

, (2.161)

where we define δg = nnew/n− 1.
On large scales, there is a linear relationship between the large-scale mode and the

change in the number density of objects, so that the shape of the galaxy and matter
power spectra are the same.

On small scales, we must use other models for the clustering of galaxies. A popular
one is the halo model [67], built under the ansatz that all dark matter is partitioned
into halos. Galaxies trace dark matter halos on large scales with a large scale bias,
and on small scales the clustering is different from that of halos, counting correlations
between galaxies in the same halo.

In general, we can approximate the relation between halos and the matter field
with a local one:

δg(x⃗) = B[δm(x⃗), ϵ] , (2.162)

where B is some functional, and ϵ is a random variable representing the stochasticity of
the galaxy bias, as the relation between the galaxy and matter field is not deterministic
(e.g., [290]). The simplest form of stochasticity is white noise, uncorrelated with the
matter field ⟨ϵδ⟩ = 0.

52This can be seen in our simple model by considering σ2(M) for smaller and smaller radius, giving
a bottom-up scenario of structure formation, starting from small objects that merge to form larger
ones.
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In Chapter 5 we will extend the definition of bias, although for now, it is interesting
to look at one particular example ([92, 178])

δg(x⃗) = b1δm(x⃗) + b2

2!δ
2
m(x⃗) + 1

3!b3δ
3
m(x⃗) + ϵ , (2.163)

where bi are bias parameters. Their precise value depends on the galaxy formation
process, as well as on the physical properties of the galaxies. These could be, on
their own, interesting, although usually when doing cosmological inference from data
using our model, we do not care about the precise value of the biases, as we are only
concerned about cosmological parameters. In absence of a more sophisticated theory,
or faithful numerical simulations, in general, bias parameters will be marginalized
over, at the price of increased error bars of the inferred cosmological parameters. To
avoid a large inflation of the error bars, semi-analytic methods have been developed,
combining fits to N-body simulations with perturbation theory calculations, in such
a way that non-linearities in the matter fluctuations and non-linear bias terms can
describe the galaxy field (e.g. [148, 281, 187, 56, 57]). 53

The Bispectrum

Until now, we have focused on the power spectrum of the matter field. This is the only
quantity we need, if matter density fluctuations today are Gaussian. But gravitational
non-linear evolution induces non-Gaussianities in the matter field today (i.e. non-zero
connected n-point functions for n > 2), making the power spectrum incomplete for
a full understanding. Here we will focus on the large-scale bispectrum. This can
be combined with the power spectrum to measure non-linear biases and break the
degeneracy between the linear bias on large scales and the amplitude of the power
spectrum.

A simple toy model is given by a local bias expansion, where the halo field is given
in real space by

53Here we did not discuss some important observational effects, as we are just focusing on the
comoving galaxy field. For example, we do not measure galaxy clustering distances directly in
comoving space, rather we measure galaxy redshifts. Redshift is given by the Hubble expansion,
as well as the peculiar velocities of galaxies. These lead to redshift space distortions: the observed
redshift space overdensity of the galaxy field is given by the real space overdensity and a correction
due to peculiar velocities [138]. In the distant-observer approximation, basically small angular
separations between galaxies, on large-scales the correction depends on cosmological parameters via
the logarithmic growth rate in linear theory f(z) = d lnD

d lna , and on large-scales, the total observed
galaxy clustering signal part only is Prsd = Pm(k)

[
b1 + fµ2]2, where µ is the angle between the

line of sight and the k⃗ vector. In particular, f(z) ≈ Ωγ(z), with γ ≈ 0.55 for ΛCDM, making this
parameter critical for dark energy, as well as modified gravity models.



2.7 Dark Matter and Biasing 64

δh(x⃗) = b1δm(x⃗) + 1
2b2δ

2
m(x⃗) . (2.164)

Then, at leading order, the halo power spectrum and bispectrum, given by gravitational
effects only, in perturbation theory are

Ph(k) = b2
1Pm(k) , (2.165)

Bh(k1, k2, k3) = b3
1Bm(k1, k2, k3) + b2

1b2(Pm(k1)Pm(k2) + 2 cyc) , (2.166)

where Bm is the gravitational non-linear matter bispectrum, taking the form of
Bm(k1, k2, k3) = 2Pl(k1)Pl(k2)F2(k⃗1, k⃗2) + 2 cyc.

Measuring only Ph does not allow us to distinguish between b1 and the amplitude
of the matter fluctuations (as measured by σ8 for example). But as the bispectrum
Bh can distinguish, thanks to Bm, between different triangle configurations in F2, we
can break the degeneracy.

A non-vanishing matter bispectrum beyond the non-linear gravitational one could
signal the presence of non-Gaussian initial conditions [23]. This will be discussed
further in Chapter 5.

Measuring the bispectrum is more complicated, and time-consuming than measuring
a power spectrum, making it challenging to include it in standard cosmological analyses.
Recently, deep learning methods (e.g. [103]) have been used to overcome these problems,
although they still lack transparency in their interpretation. On the other hand, simple
proxy estimators, as in [236], have been proposed to access non-Gaussian information
from the large-scale structure. In Chapter 5 we will see another estimator that helps
to constrain primordial non-Gaussianity.

Even without bispectrum measurements, we can still break degeneracies between
cosmological parameters by combining multiple datasets in the same cosmological
analysis. Cross-correlation science has been gaining importance in recent years. In
Chapter ?? we will take a look at the example of a CMB lensing-galaxy cross-correlation.
Due to its power, extracting CMB lensing from CMB data is an important task that
we will explore in the next section.
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2.8 Reconstructing modes with quadratic estima-
tors

If we take a closer look at equations (2.131) for weak CMB lensing, and (2.147) for
matter clustering, in the SPT picture, we will notice that they are quite similar in their
form. They both have an observed field that has a first-order part, and higher-order
mode couplings. We will see how we can use this picture to recover modes of the
coupling field in an easy way. These can be then used for data analysis to extract
cosmological parameters.

Quadratic Reconstruction

We model the observed field X i at a generic Fourier mode t⃗ as given by an original
statistically homogeneous and isotropic field Y coupled with an extra field Z, with a
mode coupling αZ :

X (⃗t) = Y (⃗t) +
∫

t⃗′
αZ(t⃗′, t⃗)Y (t⃗′)Z (⃗t− t⃗′) , (2.167)

where
∫

t⃗ ≡
∫ dN t⃗

(2π)N , for N dimensions.
If we now measure the correlation of X at two different t⃗ ̸= t⃗′, averaging over Y ,

and fixing Z (if we imagine Y and Z to be uncorrelated), and assuming Z is real
(Z∗(t⃗′ − t⃗) = Z (⃗t− t⃗′)),

⟨X (⃗t)X∗(t⃗′)⟩Y =
[
α∗(⃗t, t⃗′)CY

|⃗t| + α(t⃗′, t⃗)CY
|t⃗′|

]
Z (⃗t− t⃗′) . (2.168)

We see that the field has extra non-diagonal covariance, breaking statistical
homogeneity.

We can write an estimator for the field Z that sums over pairs of modes with some
weighting function g

Ẑ(T⃗ ) =
∫

t⃗1

∫
t⃗2

gY Y
X (⃗t1, t⃗2)X (⃗t1)X (⃗t2)δN

D (T⃗ − t⃗1 − t⃗2) . (2.169)

We note that the weighting, in general, is not symmetric in its arguments.
We have some freedom on the weighting. Usually, the most important request for

the estimator is to not be biased,

⟨Ẑ(T⃗ )⟩Y = Z(T⃗ ) , (2.170)

and this gives a constraint on g.
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The covariance of the Z estimator can be split into two parts, one Gaussian and
one non-Gaussian

⟨Ẑ(T⃗ )Ẑ∗(T⃗ ′)⟩ − ⟨Ẑ(T⃗ )⟩⟨Ẑ∗(T⃗ ′)⟩ = (2π)NδN
D (T⃗ − T⃗ ′)

(
CovG

[
Ẑ(T⃗ ), Ẑ∗(T⃗ ′)

]
+CovNG

[
Ẑ(T⃗ ), Ẑ∗(T⃗ ′)

])
.

(2.171)

The Gaussian part will be given by disconnected two point functions, using Wick’s
theorem,

CovG
[
Ẑ(T⃗ ), Ẑ∗(T⃗ ′)

]
=
∫

t⃗

∫
t⃗′

gY Y
X (⃗t, T⃗ − t⃗)gY Y ∗

X (t⃗′, T⃗ ′ − t⃗′)

×
[
⟨X (⃗t)X(T⃗ − t⃗)X(t⃗′)X(T⃗ ′ − t⃗′)⟩ − ⟨X (⃗t)X(T⃗ − t⃗)⟩⟨X(t⃗′)X(T⃗ ′ − t⃗′)⟩

]
=

=
∫

t⃗

∫
t⃗′

gY Y
X (⃗t, T⃗ − t⃗)gY Y ∗

X (t⃗′, T⃗ ′ − t⃗′)×

×
[
P XX (⃗t)P XX(T⃗ − t⃗)(2π)NδN

D (⃗t− t⃗′)(2π)NδN
D (T⃗ − T⃗ ′)+

+P XX (⃗t)P XX(T⃗ − t⃗)(2π)NδN
D (T⃗ − t⃗− t⃗′)(2π)NδN

D (T⃗ − T⃗ ′)
]

=

= (2π)NδN
D (T⃗ − T⃗ ′)

∫
t⃗
gY Y

X (⃗t, T⃗ − t⃗)×

×
[
gY Y ∗

X (⃗t, T⃗ − t⃗)P XX (⃗t)P XX(T⃗ − t⃗) + gY Y ∗
X (T⃗ − t⃗, t⃗)P XX (⃗t)P XX(T⃗ − t⃗)

]
,

(2.172)

where we use the property of Dirac delta functions in RN f(x⃗)δN
D (x⃗−x⃗′) = f(x⃗′)δN

D (x⃗−
x⃗′), and we define the power spectrum P XY between two fields X, Y .

With this notation we want to capture the relevant cases of N = 2, where
P (⃗t) ≡ C (⃗l), and N = 3, where P (⃗t) ≡ P (k⃗). The Gaussian part of the covariance
matrix will contain contributions coming from the total power spectrum, which in
general will include cosmic variance error due to finite number of modes and noise.

2.8.1 CMB lensing reconstruction

We will now apply the ideas of the previous section to CMB lensing reconstruction. As
discussed previously, CMB lensing is a direct probe of the projected matter distribution
in the Universe, containing information about the clustering and its geometry, and
making this application significant. How, then, do we reconstruct the CMB lensing
potential from the observed CMB?

We begin by writing the CMB lensed field in the first order in the lensing potential
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T (⃗l) = T u(⃗l) +
∫ d2l⃗′

(2π)2 T u(l⃗′)Kϕ(⃗l, l⃗′) , (2.173)

where we remember equation (2.132).
This expression bears resemblance to (2.167). The lensing potential introduces

couplings between different CMB modes. If we imagine the late large-scale structure
to be uncorrelated from the primordial CMB, and in the limit of a fixed structure,
averaged over statistical realizations of the primordial CMB, we have that for two
different lensed (beam-deconvolved) temperature modes l⃗, l⃗′ [129]

⟨T (⃗l)T (l⃗′)⟩CMB = fT T (⃗l, l⃗′)ϕ(L⃗)|L⃗=l⃗+l⃗′ , (2.174)

where the function fT T is

fT T (⃗l, l⃗′) = Cu
l (⃗l + l⃗′) · l⃗ + Cu

l′ (⃗l + l⃗′) · l⃗′ , (2.175)

and we have used (2.173), statistical homogeneity in Fourier space, and ϕ∗(L⃗) = ϕ(−L⃗)
for reality of ϕ.

The fluctuations are Gaussian but they become statistically anisotropic, with
anisotropy proportional to the lensing potential calculated at some L⃗. Inspired by this
formula, a naive (sub-optimal) estimator for the lensing potential is thus

ϕ̂(L⃗) ∼ T (⃗l)T (L⃗− l⃗)
fT T (⃗l, L⃗− l⃗)

(2.176)

This is an unbiased estimator for ϕ, ⟨ϕ̂⟩CMB ∼ ϕ, although it is a much noisier
estimator than taking all the CMB pair modes with a difference equal to the CMB
lensing mode to be reconstructed.

A better estimator than this, which exploits more modes, is

ϕ̂(L⃗) =
∫ d2l⃗

(2π)2 T (⃗l)T (L⃗− l⃗)gT T (⃗l, L⃗− l⃗) . (2.177)

From the results of the previous section, and using that fT T is real and symmetric in
its arguments, we find that

gT T (⃗l, L⃗− l⃗) = NT T (L⃗)FT T (⃗l, L⃗− l⃗) = NT T (L⃗)fT T (⃗l, L⃗− l⃗)
2C|⃗l|C|L⃗−l⃗|

, (2.178)

and the normalization, to ensure that ⟨ϕ(L⃗)⟩ = ϕ(L⃗), is

N(L⃗) =
[∫

l⃗
fT T (⃗l, L⃗− l⃗)g(⃗l, L⃗− l⃗)

]−1
. (2.179)
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In reality, the CMB lensing estimator uses input CMB maps that contain a CMB
part, an experimental noise part (due to finite resolution of the experiment and
possibly the atmosphere), and foregrounds. Repeating the same exercise as above,
and requiring that the estimator recovers the true lensing field with the minimum
noise possible, we find that

gT T (⃗l, L⃗− l⃗) = NT T (L⃗)FT T (⃗l, L⃗− l⃗) = NT T (L⃗) fT T (⃗l, L⃗− l⃗)
2C|⃗l|,expC|L⃗−l⃗|,exp

, (2.180)

where, now, we specify the total beam-deconvolved experimental CMB power spectrum,
C|⃗l|,exp.

The CMB lensing power spectrum can be estimated from data as follows

⟨ϕ̂(L⃗)ϕ̂∗(L⃗′)⟩ = N2(L⃗)
∫

l⃗

∫
l⃗′

F (⃗l, L⃗′)F (l⃗′, L⃗′)⟨T̃exp(⃗l)T̃exp(L⃗− l⃗)T̃exp(l⃗′)T̃exp(L⃗′ − l⃗′)⟩ .

(2.181)
This CMB lensing power spectrum estimator is biased, with several unwanted

contributions, such as the Gaussian part of the four-point function, present even in
the absence of gravitational lensing. This can be seen by applying Wick’s theorem to
(2.181).

We can then write

⟨ϕ̂(L⃗)ϕ̂∗(L⃗′)⟩ = (2π)2[Cϕϕ
L + NL + · · · ]δ(2)

D (L⃗− L⃗′) , (2.182)

where · · · includes higher-order biases to the CMB lensing reconstruction (e.g.
[256]).

In general, we will measure the same lensing potential from all the available CMB
quadratic couplings, e.g. XY ∈ {TT, TE, EE, EB}. Formulae for the specific weights
can be found in [130], although the unlensed power spectra there should be replaced
by lensed power spectra, as suggested in [109], to cancel higher-order biases to the
estimator that uses unlensed spectra. In Figure 2.12 we show an example of a measured
CMB lensing power spectrum from the Atacama Cosmology Telescope CMB survey
[256].
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Fig. 2.12 In red, the two-season ACTPol measured lensing power spectrum. In black,
the theoretical best fit in ΛCDM CMB lensing power spectrum Cϕϕ

L . Figure from
[256].



3
The Atacama Cosmology Telescope: A CMB

lensing mass map over 2100 square degrees of
sky and its cross-correlation with BOSS-CMASS

galaxies

Summary

We construct cosmic microwave background lensing mass maps using data from the
2014 and 2015 seasons of observations with the Atacama Cosmology Telescope (ACT).
These maps cover 2100 square degrees of sky and overlap with a wide variety of optical
surveys. The maps are signal dominated on large scales and have fidelity such that
their correlation with the cosmic infrared background is clearly visible by eye. We also
create lensing maps with thermal Sunyaev-Zel’dovich contamination removed using a
novel cleaning procedure that only slightly degrades the lensing signal-to-noise ratio.
The cross-spectrum between the cleaned lensing map and the BOSS CMASS galaxy
sample is detected at 10-σ significance, with an amplitude of A = 1.02± 0.10 relative
to the Planck best-fit LCDM cosmological model with fiducial linear galaxy bias. Our
measurement lays the foundation for lensing cross-correlation science with current
ACT data and beyond.

3.1 Introduction

Along their paths to our telescopes, the photons of the cosmic microwave background
(CMB) are deflected, or lensed, by the gravitational influence of the matter in our
Universe. This leads to a remapping of the observed CMB anisotropies on the
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sky described by T (n̂) = T u(n̂ + d⃗), where T and T u are the lensed and unlensed
temperature fields and n̂ is the line of sight. (Analogous expressions hold for the
remapping of polarization Q and U .) The lensing deflection field d⃗(n̂) that describes
the remapping depends on a weighted integral of the mass along the line of sight;
although this integral extends to the last-scattering surface, most of the lensing signal
arises between redshifts z = 0.5 and z = 3 [291, 153]. Since maps of the CMB
lensing signal are sensitive to the total matter distribution, including dark matter,
they contain a wealth of information about cosmology and fundamental physics [e.g.,
152, 254, 212].

In this chapter, we present a CMB lensing map constructed from new observations
from ACT, which will be useful for cross-correlation analyses.

Cross-correlation measurements can be used to break the degeneracy of galaxy
bias (the factor relating the galaxy and matter density contrasts) and the amplitude
of matter density fluctuations. This allows us to determine the amplitude of structure
at different redshifts σ8(z) [e.g., 96, 205, 100, 83] and hence probe physics such as dark
energy, modified gravity, and neutrino mass. CMB lensing cross-correlations can also
be used to constrain multiplicative biases in shear measurements [e.g., 276, 73, 108,
164, 231], measure cosmographic distance ratios [e.g., 127, 74, 186, 214], calibrate the
masses of galaxy groups and clusters [e.g., 168, 35, 184, 211, 295, 220, 34, 220, 221],
and probe astrophysics via the relation of dark to luminous matter [e.g., 255, 42, 279,
16, 208, 93, 107, 133, 199, 222]. However, a key challenge in such analyses is that CMB
lensing maps reconstructed from temperature anisotropies can be contaminated by
foreground emission and scattering [263, 118, 277, 75, 89], which can induce 10–20%
level biases in the measured cross-correlation signal [200, 36]. For cross-correlations
with low-redshift tracers, these foreground biases arise predominantly from the thermal
Sunyaev-Zel’dovich (tSZ) residuals that lie in the map.

To solve this problem, in this paper we develop and implement a new cleaning
method, building on [169] (hereafter MH18), in order to eliminate foregrounds from
the tSZ effect in cross-correlations. The foreground removal in our method is achieved
while preserving nearly all of the cross-correlation signal-to-noise.

We demonstrate the potential of our new foreground-cleaned CMB lensing maps,
which overlap with a variety of optical surveys, by measuring a robust cross-correlation
of these maps with Sloan Digital Sky Survey DR12 BOSS CMASS spectroscopic
galaxies [223].

We also note that some analyses found a lower cross-correlation spectrum between
CMB lensing and both low-redshift galaxies and weak lensing than expected from
the Planck cosmology [e.g., 217, 163]. Testing this possible discrepancy with our new
lensing maps provides further motivation for our analysis.
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This chapter is structured as follows. Section 2 explains the theoretical background
for our cross-correlation measurement. In Section 3 we present our data and discuss the
new lensing maps constructed from ACT data. In Section 4 we discuss the construction
of tSZ-free lensing maps. In Section 5 we present the cross-correlation measurement
with CMASS BOSS galaxies, followed by a discussion of systematic errors in Section
6. The conclusions follow in the final section of the chapter. Two appendices explain
the CMB map pre-processing and discuss, in more detail, the cleaning method used
to remove the tSZ bias from the lensing maps.

3.2 Theoretical Background

The CMB lensing convergence field κ, which is related to the lensing deflection
via κ = 1

2∇⃗ · d⃗, is a direct measure of the projected matter field. In particular,
the convergence can be shown to equal a weighted integral of the matter density
perturbation along a line of sight with direction n̂:

κ(n̂) =
∫ z∗

0
dzW κ(z)δ(χ(z)n̂, z) , (3.1)

with z∗ the redshift at the last-scattering surface, δ the three-dimensional matter
density contrast field at redshift z, χ(z) the comoving distance at redshift z, and the
window response kernel W κ for redshift z given by [e.g., 255]

W κ(z) = 3
2H(z)Ωm,0H

2
0 (1 + z)χ(z)χ∗ − χ(z)

χ∗
, (3.2)

where H(z) is the Hubble parameter as a function of redshift, H0 its value today,
χ∗ = χ(z∗),and Ωm,0 is the value of the matter density parameter today.

The 3D distribution of galaxies can provide an independent view of the matter
distribution in combination with lensing, and one that can probe the time dependence
of structure growth. (In contrast, κ is a projection of the matter field over a very
wide range of redshifts and so cannot provide tomographic information.) The relevant
cosmological field is the fractional number overdensity of galaxies in a direction n̂,
given by another weighted integral along the line of sight

δg(n̂) =
∫ z∗

0
dzW g(z)δ3D

g (χ(z)n̂, z), (3.3)

where δ3D
g is the three-dimensional galaxy distribution at redshift z and the window

function W g(z) is dn
dz

(z), the redshift distribution of galaxies in a galaxy survey,
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normalized to unity.1 In this work, we consider a spectroscopic galaxy survey with a
redshift-binned sample such that the kernel W is only non-zero between zi and zf ,
with zi, zf the low and high redshifts defining the survey.

Since galaxies are biased tracers of the underlying matter distribution, the matter-
galaxy power spectrum is

Pmg(k, z) = bcross(k, z)P (k, z) , (3.4)

where bcross(k, z) is a general scale- and redshift-dependent clustering bias and P (k, z) is
the matter power spectrum [41]. In our cross-correlation analysis, we explicitly choose
the scales and redshift-range included such that the scale- and redshift-dependence of
the galaxy bias is not large and bcross(k, z) ≈ b = const. We will consider multipoles L

in the range 100 < L < 1000; this choice will be motivated in Section 5.
The cross-power spectrum of the two observables κ and g is directly related to

the cosmological parameters of the underlying ΛCDM model. Using the Limber
approximation [158], the expression for the cross-spectrum in the linear ΛCDM model
is [e.g., 198]:

Cκg
L =

∫ z∗

0
dz

H(z)
χ2(z)W κ(z)dn

dz
(z)Pmg

(
k =

L + 1
2

χ(z) , z

)
. (3.5)

3.3 Lensing Maps from ACT Data Alone

We construct two CMB lensing maps. The first map, described in this section, uses
ACT data alone. The second, described in the following section, also uses multi-
frequency data from Planck in order to clean foregrounds.

3.3.1 CMB maps for lensing analysis

The lensing convergence maps used in this work are constructed from CMB temperature
and polarization data taken by the polarization-sensitive receiver on the Atacama
Cosmology Telescope (ACT), a 6-meter CMB telescope operating in the Atacama
desert in Chile [see e.g., 275, 62, 10]. The CMB field maps are obtained from
observations made during seasons 2014–2015 in the 98 GHz and 150 GHz frequency
bands; these maps will be made public, along with our lensing maps, in the upcoming
ACT data release 4 (DR4). We will consider data coming from two regions of the

1We do not include magnification bias, since its magnitude is negligible given the low redshift
range of the galaxy catalog used in this work.
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sky, one referred to as BN (from the 2015 season, covering ≈ 1633 sq. deg. of the sky
overlapping the SDSS BOSS northern field, with effective co-added white noise level of
approximately ∆T = 21µK-arcmin for temperature and ∆P =

√
2∆T for polarization),

and the other referred to as D56 (seasons 2014–2015, covering ≈ 456 sq. deg. of the
sky, with effective co-added white noise level of approximately ∆T = 10µK-arcmin for
temperature and ∆P =

√
2∆T for polarization).2 Given the proximity of the maps

to the equator and their moderate extent in declination, the flat-sky approximation
is sufficient at our accuracy for constructing lensing maps; a simple estimate of the
inaccuracy of this approximation gives no detectable effect for D56 and only a 1%
multiplicative bias for BN. We do not use 2013 or 2016 observations in our analysis
(even though the latter are part of DR4), because the 2013 observations cover too
little sky area and the 2016 observations are still too shallow to contribute significant
signal-to-noise to cross-correlation measurements.

We combine the per-season and per-frequency CMB maps presented in [62] to
provide the input maps for our lensing estimator. The details of this procedure are
described in Appendix (A.1), but we briefly summarize them here. We construct our
CMB input maps by co-adding source-subtracted3 maps from the two frequencies and
two seasons of the data and convolving the result to a common beam after masking.
In addition, we inpaint (fill with an appropriately correlated Gaussian random field) a
6-arcmin-radius circular area around bright compact sources and SZ clusters using the
maximum likelihood method of [44]. This inpainting step serves to reduce foreground
biases arising from bright sources and massive clusters. We note that the main
difference from the map processing employed in [256] is that the different frequencies
and seasons are coadded with weights that are local in Fourier space rather than
real space; this is more optimal for multifrequency data due to the strong frequency
dependence of the beams.

The results of our map construction and preparation process are masked, beam-
deconvolved dimensionless CMB fluctuation maps of temperature T as well as Q

and U polarization in each of the two sky regions. The Q and U polarization maps
are transformed into E–B polarization maps using the pure E–B decomposition
method outlined in [166]. As a final step in the preparation of the maps for lensing
reconstruction, we follow the nominal analysis methodology of [62] to reduce the
impact of ground contamination in the T , E and B maps, filtering out all modes
l⃗ = (ℓx, ℓy) that have |ℓx| < 90 and |ℓy| < 50. We also remove all modes that are
outside the range of scales 500 < ℓ < 3000 in order to restrict our lensing analysis to

2Atmospheric noise contributes a 1/f component that is non-negligible and must be included
when forecasting the signal-to-noise in the lensing map.

3See [170], [62], [10] for details.
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scales where the ACT map-maker transfer function is small4 and where contamination
from foregrounds is small (ℓ < 3000).

As well as processing data, we also produce N = 511 CMB simulations matching
each of the CMB maps described above. These simulations are generated using the
pipeline described in [62] and include primary CMB, lensing, noise and foregrounds.
The foregrounds are Gaussian and spatially homogeneous and the noise is Gaussian but
spatially inhomogeneous, as described in [62]. We use the simulations to test our lensing
reconstructions, derive small transfer function corrections and construct covariance
matrices, as described in the following sections of this chapter. To reconstruct lensing
convergence maps from simulations we use the same pipeline that we apply to the
data. We describe this lensing reconstruction pipeline in the following subsection.

3.3.2 Lensing reconstruction and validation

Exploiting the mode couplings induced by lensing, we reconstruct the lensing con-
vergence field from our CMB maps with a minimum variance quadratic estimator
[130]:

κ̄XY (L⃗) = AXY (L⃗)
∫ d2l⃗

(2π)2 X (⃗l)Y (L⃗− l⃗)fXY (⃗l, L⃗) , (3.6)

where AXY (L⃗) is a normalization (derived from our fiducial cosmology) to ensure
that the estimator is unbiased. fXY (⃗l, L⃗) is an optimal weighting function chosen
to minimise the reconstruction noise of the estimator; it includes a Wiener filter
for the CMB input fields X, Y . As in [256] we will consider only the pairs XY ∈
{TT, TE, EE, EB}, as the TB combination has negligible signal-to-noise. Expressions
for the weighting function f and the theory normalization A can be found in [130],
although following [109] we replace the unlensed spectra with lensed spectra in the
weighting functions to cancel higher-order biases. A spurious signal on the largest
scales of the reconstructed lensing map arises from non-lensing statistical anisotropy
due to sky masks or inhomogeneous map noise; this spurious lensing “mean field”
must be subtracted from Equation (3.6) [e.g., 195]. We calculate this mean field
correction by generating 511 lensing reconstructions from simulations and averaging
these reconstructions. We thus obtain the mean-field subtracted lensing convergence

4The map-maker transfer function is close to unity for ℓ > 500 in D56, but the deviation from unity
may be as large as 10% in the BN analysis region between ℓ of 500 and 600 [62, 10]. However, because of
the fact that the lensing estimator only draws a small fraction of its statistical weight from multipoles
500 < ℓ < 600 (less than 2%, see e.g. [239]), we expect an effect on lensing cross-correlations that is
much smaller than the statistical uncertainty and is thus negligible.
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estimator
κ̂XY (L⃗) = κ̄XY (L⃗)− ⟨κXY

s (L⃗)⟩s, (3.7)

where κXY
s (L⃗) is the lensing reconstruction κ̄XY for the simulation realization s and

the angle average ⟨⟩s is over simulations.
We complete the lensing map by creating a minimum variance combination of the

different types of quadratic estimators XY ∈ {TT, TE, EE, EB},

κ̂MV
L⃗

=
∑
XY

wXY (L⃗)κ̂XY (L⃗), (3.8)

where wXY (L⃗) are minimum-variance weights.
Finally, the particular form of the normalization AXY (L⃗) used in Equation (3.6)

is valid for CMB maps with periodic boundaries. This is clearly an idealization;
for example, using masked CMB maps introduces spurious gradients at the mask
boundary [116], changing the form of the correct lensing normalization (although
this effect is reduced by apodization). We capture this and other non-idealities by
introducing an extra multiplicative normalization function rMC(L).

To calculate this function, we cross-correlate our N = 511 reconstructed lensing
simulations κ̂MV

s with the true input lensing convergence field κs used to generate the
simulations,5 obtaining the reconstruction-input cross-spectrum ĈRI,s

L . We compare
this cross-spectrum with the auto-spectrum of the input convergence field ĈII,s

L . Taking
the ratio of averages over the N sims ⟨ĈII,s

L ⟩s/⟨ĈRI,s
L ⟩s, we obtain a one dimensional

binned function of L = |L⃗|, where Lmin = 20, Lmax = 3000, and ∆L = 100. We then
interpolate this over a two dimensional grid to get the final isotropic correction function
rMC(L⃗) that we apply to the lensing maps to obtain the MC corrected minimum
variance lensing maps

κ̂L⃗ = rMC(L⃗)κ̂MV
L⃗

. (3.9)

If our pipeline is estimating the lensing signal reliably, the Monte-Carlo based
normalization correction of Equation (3.9) should only require a rescaling of order a
few percent. To validate our pipeline, we therefore test whether our lensing map is
nearly correctly reconstructed even in the absence of Monte-Carlo renormalization.

In Figure (3.1) we show a comparison between ⟨CRI,s
LL ⟩s and ⟨CII,s

L ⟩s for the D56
patch without the Monte-Carlo normalization (this figure uses foreground-cleaned
ACT+Planck lensing maps that we will introduce in the next section, but the residuals

5To mimic the processing of the reconstructions we mask κs with the square of the data-mask, as
this enters twice in the quadratic lensing estimator used to reconstruct the lensing simulation.
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Fig. 3.1 Verification of our lensing reconstruction pipeline for the tSZ-free lensing maps
(shown for the D56 patch). We plot the average cross-spectrum of the reconstructed
lensing maps with the input lensing simulations (blue dots), the average power
spectrum of the input lensing simulations (red crosses) and a binned lensing power
theory curve in black. (The BN patch gives quantitatively similar results.) The bottom
panel shows the fractional difference of the input-reconstruction cross-correlation
relative to the input lensing power. The ACT only simulations give residuals of similar
magnitude. From the good agreement of the input-reconstruction cross-correlation
with the input lensing power, we can see that the true lensing signal in the simulations
is recovered within percent-level accuracy; we absorb only a small correction into a
simulation-based re-normalization.
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for the ACT-only maps are similar). We recover the signal with only percent-level
deviations (which implies that rMC(L⃗) is within a few percent of unity); this gives
confidence that our pipeline is functioning correctly. We obtain quantitatively similar
results for the BN patch.

3.3.3 Visualization of the maps and their correlation with
large-scale structure

An image of the ACTPol CMB lensing maps is shown in Figure (3.2). The maps
have been Wiener filtered to show the signal-dominated scales (roughly 1 degree or
larger for BN and 0.5 degrees or larger for D56) and have been converted to maps of
the lensing potential using the appropriate filtering (given by switching between the
lensing convergence κ and the lensing potential ϕ with κ = L2ϕ/2). We also overplot
contours of Cosmic Infrared Background (CIB) emission obtained from the GNILC
Planck component separated maps [213]; the CIB maps have the same filtering applied
as the lensing ones. In the BN region, we mask the CIB map using the Planck PR2
Commander high-resolution map of thermal dust emission [210]. The mask is made by
thresholding the dust map such that it covers regions of the CIB map that have visibly
low power due to dust contamination; we only use this mask for the visualization
of Figure (3.2). The CIB arises from similar redshifts as CMB lensing and hence is
known to be highly correlated with lensing [265, 120, 209]. Indeed, even by eye a high
correlation of our lensing maps and the CIB is visible. This illustrates the fact that
our lensing maps are signal-dominated over a range of large scales and are a faithful
tracer of the mass distribution (for other highly signal-dominated CMB lensing maps,
see also [289]).
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3.4 Foreground-mitigated lensing maps with new
cleaning methods

CMB temperature maps contain secondary anisotropies not only from lensing, but
also from tSZ, CIB (Cosmic Infrared Background), kSZ (kinetic Sunyaev-Zel’dovich),
and other foreground contributions arising from a wide range of redshifts. The lensing
estimator is sensitive to these extragalactic foregrounds [see 277, 202, 89], which can be
problematic: foreground contamination which has leaked through the lensing estimator
can correlate with the galaxy distribution, giving spurious biases to cross-correlation
measurements. It is important to mitigate these foregrounds in temperature, as
many current- and next-generation lensing maps will still depend to a large extent on
temperature data, rather than on polarization. Indeed, for our current dataset, the
temperature (TT ) lensing estimator still provides the dominant contribution (> 50%)
to our minimum-variance lensing estimate of Equation (3.8).

One of the primary goals of making a lensing map is to enable cross-correlation
science. For low-z large-scale-structure tracers, such as the CMASS galaxies used in
later sections of this chapter, the main contribution to the cross-correlation bias comes
from the tSZ contamination of the temperature maps [277, 36, 169]. The tSZ is most
important because, while the tSZ and the CIB can both be significant contaminants,
the CIB only weakly correlates with low-z galaxies (as only a small fraction of the
CIB arises from low redshifts).

The observed, SZ-contaminated temperature map, denoted Twith−sz, now includes
an SZ contribution TtSZ, so that Twith−sz = Tcmb + TtSZ.6 When inserting this CMB
map into a quadratic lensing estimator κ̂(Twith−SZ, Twith−SZ) and cross-correlating the
resulting lensing map with a galaxy map g, the cross-correlation is now biased by a
new bispectrum term of the form ⟨gTtSZTtSZ⟩.

For typical cross-correlations, this effect can be significant, giving biases up to a
10–20% level on large scales [200, 36]. The shape of the bias on large scales is typically
similar to that of the signal itself; the sign of the effect is generically negative on large
and intermediate scales L < 1000 (with a positive bias only arising on very small
scales), so that a cross-correlation with a tSZ-contaminated lensing map is biased
low.7

6The observed temperature map clearly also has other contributions in addition to Tcmb and TtSZ,
but our focus here will be just on these two components.

7A physical explanation for this negative bias effect is the following. Consider a direction in which
there is a long-wavelength overdensity. Due to non-linear evolution and mode coupling, small-scale
tSZ fluctuations are also enhanced in this direction, which increases the CMB temperature power at
small scales, l > 2000. This excess small-scale power is similar in effect to an overall ‘shift’ of the
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Since low cross-correlations were found in several analyses [e.g., 217]; it is interesting
to consider if this type of contamination could have an impact on previously published
cross-correlation measurements. However, we note that most of the analyses with
low cross-correlations used Planck lensing maps. For Planck, such foreground biases
are expected to be much less problematic (due to the lower experimental angular
resolution).

3.4.1 A new tSZ-free estimator

To account for the potential problem of tSZ contamination, we attempted to use the
method of MH18 to remove foreground contamination. However, this method did not
perform as well as expected. We therefore developed a new foreground-cleaned lensing
estimator, extending and revising the MH18 method; we will explain the relevant
details in the following paragraphs.

The basic goal of our foreground-cleaning approach is to remove foreground contam-
ination without assuming a model for the foregrounds’ statistical properties, relying
instead on the fact that the foregrounds’ frequency dependence differs from that of the
CMB. A simplistic frequency cleaning of the CMB maps, however, typically degrades
the lensing signal-to-noise. MH18 uses the standard lensing convergence quadratic
estimator written in real space in a form where a gradient and a non-gradient field
can be distinguished [e.g., 124, 153]. Usually, for the temperature quadratic estimator
κ̂(T1, T2), the two fields T1, T2 are chosen to be identical. However, one may, of course,
use two different CMB temperature maps in the estimator; the two maps could be
processed differently or even come from different surveys. In particular, since the
spectral energy distribution (SED) of the tSZ effect is known to high accuracy (barring
relativistic and multiple-scattering effects), CMB maps made from multi-frequency
data that explicitly null or deproject the tSZ can be made. Such maps generally
have higher noise. In the procedure suggested by MH18, it is pointed out that even
if only one of the two fields in the quadratic estimator is free from tSZ, then the
resulting lensing map cross-correlation will still have zero tSZ contamination, while the
noise increase due to foreground cleaning will only be moderate (since only one noisy
cleaned map is used, instead of two). One way of understanding this is to note that,
since the cross-correlation bias arises from a foreground-foreground-galaxy bispec-
trum ⟨gTtSZTtSZ⟩, nulling even one of the foreground fields sets the whole bispectrum
⟨gTtSZ0⟩ to zero, which gives an effectively bias-free cross-correlation measurement.

primary CMB towards smaller scales. The lensing estimator interprets this locally as arising from
demagnification due to a matter underdensity: cross-correlating this spurious underdensity lensing
signal with the distribution of galaxies (which trace the overdensity) therefore results in a negative
cross-correlation[277].
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We denote this foreground-cleaned MH18 estimator as κ̂(Tno−tSZ, Twith−tSZ) (where the
first map is the gradient field in the lensing estimator). Despite the use of a noisier
tSZ-deprojected map in one field of the quadratic estimator, the loss in signal-to-noise
in constructing this foreground-free lensing map was claimed in MH18 to be only
≈ 5%.

However, when implementing the MH18 estimator, we found that the actual lensing
map noise obtained in both simulations and in data was larger for L < 800 (by more
than an order of magnitude at L ≈ 100, see Figure (A.1)) than the noise forecast
presented in MH18. The explanation for this result is the following: in MH18 a
simplified formula for the noise forecast was used (namely assuming the noise is equal
to the normalization, i.e. NL ∝ L2AL); however, this is only valid if the weights in the
estimator are minimum-variance. As detailed in Appendix (A.2), the MH18 estimator
does not use minimum-variance weights, which explains why the true noise we find is
larger than the simplified forecast results. We note that the MH18 forecast is however
accurate for cluster scales, where the gradient approximation holds in the squeezed
limit [124, 221].

To solve the problem of increased noise on large scales, we propose a new ‘sym-
metrized’ cleaned estimator, in which we coadd the κ̂(Tno−tSZ, Twith−tSZ) MH18 esti-
mator with a version where the two fields have been permuted, κ̂(Twith−tSZ, Tno−tSZ).
In particular, we define κ̂T T

symm, tSZ−free = ∑
wα(L⃗)κ̂α(L⃗) with weights

wα(L⃗) =
∑

β N−1
αβ (L⃗)∑

γ,β N−1
γβ (L⃗)

, (3.10)

where α ∈ {(Tno−tSZ, Twith−tSZ), (Twith−tSZ, Tno−tSZ)} and N−1 is the inverse 2 × 2
covariance matrix taking into account the cross-correlation between the two estimators.

The resulting κ̂T T
symm, tSZ−free map retains the property that the resulting cross-

correlation with large-scale structure is unbiased, but the lensing map now has
significantly lower noise: in fact, we find that our method appears to effectively
recover the original forecast results of MH18, primarily due to the cancellation of
anti-correlated noise on large scales from each of the two terms in the new estimator.
Details can be found in Appendix B.

3.4.2 Application to data

The above technique requires maps of the CMB in which the tSZ signal has been
deprojected (i.e., nulled) using multi-frequency data. Such maps were presented in
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[170]; these maps were constructed by combining Planck and ACT8 data using an
internal linear combination (ILC) algorithm. We use the constrained ILC CMB map
(with tSZ deprojection) and the standard ILC CMB map (with no deprojection)9 from
that analysis as the two input maps for the symmetrized cleaned lensing estimator
κ̂T T

symm, tSZ−free described above; we thus create new foreground-cleaned temperature
lensing maps.1011

The maximum CMB multipole, ℓmax
CMB = 3000, typically used in CMB lensing

analysis is motivated by the desire to reduce contamination from foregrounds such as
the tSZ. Since the tSZ bias is nulled in this new estimator, it is plausible that this
maximum multipole is unnecessarily conservative and can be increased, thus improving
the signal-to-noise of the estimator. Motivated by this possibility, we increase our
maximum multipole for the tSZ-free TT estimator map somewhat, to ℓmax

CMB = 3350; we
perform a null test (see next section) to test for problematic contamination from other
foregrounds such as CIB or kSZ. (This type of contamination becomes large when we
use a higher lmax, such as 3500 and 4000, causing null-test failures; for this reason, we
choose to only modestly increase ℓmax

CMB to 3350.) Furthermore, since the ILC maps
include information from Planck for ℓ < 500, we also relax the minimum multipole
cut from ℓmin

CMB = 500 to ℓmin
CMB = 100, providing additional gains in signal-to-noise.

We then create a foreground-cleaned minimum-variance lensing map as in Equation
(3.8). The coadding procedure is the same as for the ACT-only lensing map, except
that temperature lensing is now obtained from the tSZ-free symmetric estimator
κ̂T T

symm, tSZ−free. We successfully repeat the lensing validation described in Section 3.3
with our new foreground cleaned estimator; the results are shown in Figure (3.1).

8Despite including Planck data, in these maps, the small-scales relevant for lensing are dominated
by the ACT 148 GHz and 97 GHz channels.

9We use version v1.1.1 of the maps for which bandpass corrections for the tSZ response may not
be accurate at the few percent level at the map-level. However, since the tSZ bias is at most 20% in
power, tSZ-cleaned cross-correlations are only affected at the 1% level, an order of magnitude below
the statistical sensitivity of this work.

10Before applying the lensing estimator to these ILC maps we also inpaint SZ clusters as described
for the ACT-only maps.

11We note that on CMB small scales (lCMB ∼ 3000), our multi-frequency cleaning for tSZ
deprojection is primarily achieved through the combination of 90 and 150 GHz channels from ACT,
as the Planck data lacks useful information for lCMB > 2200. In the tSZ deprojected leg, the CMB
noise is very high on these small scales, as there are just two useful frequencies, and so we effectively
do not use them for lensing reconstruction. Indeed, the gradient cleaning estimator picks most of the
information from ⟨TlowThigh⟩, where lCMB,low ≤ 2200 and the lCMB,high can be up to some lCMB,max,
e.g. of 3000.
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3.5 Galaxy cross-correlation measurement

In the previous sections, we have introduced two types of CMB lensing maps, which
will be publicly available as part of the upcoming data release DR4 associated with
[10] and [62]. As an example of their utility, we cross-correlate these lensing maps
with galaxies from the BOSS survey’s CMASS galaxy catalog.

3.5.1 The CMASS galaxy map

We use the CMASS galaxy catalog (with redshifts z ∈ [0.43, 0.7]) provided by the
DR12 release of the BOSS spectroscopic survey12 to construct a galaxy overdensity
map. Given a pixel x⃗, we estimate the galaxy overdensity as

δg(x⃗) =
∑

i∈unmasked x⃗ wi
1
N

∑
i,all unmasked wi

− 1 , (3.11)

where N is the number of unmasked pixels (see below) and following [217, 186] each
galaxy i inside the pixel x⃗ is weighted according to

w = (wnoz + wcp − 1)wseewstar , (3.12)

where wnoz accounts for redshift failures, wcp for fiber collisions, wstar for bright star
contamination and wsee for effects of seeing.

The galaxy mask used to mask pixels is created using ‘random catalogs’ provided
by the BOSS collaboration; these catalogs contain a dense sampling of sky locations
proportional to the survey conditions but not to any cosmological galaxy clustering
signal. The random catalogs are mapped to a number density count map (created
setting w = 1) and then smoothed with a Gaussian beam with a width corresponding
to a standard deviation of 2 arcminutes. To obtain the final mask, we then set to zero
the regions of the smoothed randoms’ counts below a threshold of 10−3. The above
choices are made so as to preserve survey information without picking up fluctuations
in the random sampling. Our baseline analysis accounts for the effect of this mask
simply by applying an overall scaling factor which compensates for the loss in power
due to zeroed regions, as described in the next section. In general, the mask can also
cause coupling of Fourier modes of the map leading to a modification of the estimated
power spectrum. Although these effects are expected to be small since our mask is
smooth, we test the impact of the mask on our cross-correlation measurement.

12http://www.sdss3.org/surveys/boss.php

http://www.sdss3.org/surveys/boss.php
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Fig. 3.3 Lensing reconstruction test, as for Figure (3.1), but now correlating with
a simulated galaxy field instead of the input lensing convergence field. The shaded
region shows the multipole range used for the cosmological analysis. The lower panel
shows the fractional difference with respect to the theory curve. (The BN patch gives
similar results.)

We validate the treatment of the galaxy mask by applying it to mock Gaussian
galaxy overdensity simulations which are correlated with the lensing signal according
to a theoretical cross-spectrum with a fiducial bias b = 2. We verify that the cross-
power spectrum measured from these simulations, with a multiplicative correction
for the mask as described in the next section, reproduces the original input theory
cross-correlation signal. As shown in Figure (3.3) we recover Cκsg

l to better than five
percent over the cosmological analysis range, with no indication of an overall bias.
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3.5.2 Extracting power spectra and obtaining the covariance
matrix

Having constructed CMB lensing and galaxy maps we measure their cross-power
spectra. Binned cross-power spectrum measurements are obtained using the following
estimator valid for statistically isotropic fields,

Ĉκg
Lb

= 1
wκg

1
NA

∑
L⃗∈A

κobs
L⃗

gobs∗
L⃗

(3.13)

where A is an annulus in the Fourier plane with average radius L = |L⃗|, NA gives the
number of modes in this annulus, and wκg is a correction factor due to masking that
depends on the masked fields taken in consideration. For a slowly varying window
function this is given by

wκg = ⟨W 2
κ (x⃗)Wg(x⃗)⟩ , (3.14)

where Wκ is the mask we apply to our CMB map before lensing reconstruction, Wg

is the mask applied to our galaxy overdensity map, and the average is performed
over pixels. Two powers of the CMB mask appear in the correction above because
the lensing reconstruction is a quadratic estimator involving two powers of the CMB
map.13

We obtain the covariance matrix for the cross-spectra from simulations as follows:

ĈLb,L′
b

= ⟨(CS
Lb
− ⟨ĈS

Lb
⟩S)(CS

L′
b
− ⟨ĈS

L′
b
⟩S)T ⟩S (3.15)

where the column power spectrum vector is ĈS
Lb

= (CκSgS
Lb

)T and the average is over
the simulations S.

To calculate this matrix, we cross correlate the N = 511 lensing reconstruction
simulations with the QPM mock catalogs of CMASS galaxies [285].14 The cosmological
signals in these simulations and catalogs are uncorrelated. We expect this not to be
problematic because the uncorrelated part of the cross-correlation error dominates
over the sample variance contribution. We verify this by calculating Gaussian theory
standard errors with and without the

(
Cκg

Lb

)2
sample variance term that arises from

the presence of correlated structures, finding sub-percent level agreement between the
two calculations.

13To avoid confirmation bias we did not plot a y-axis scale or overplot a theory curve over our
cross-spectrum measurement until all the null tests and systematics checks, described in Section 3.6,
had been successfully passed.

14Although more realistic mocks are available, the QPM mocks are sufficiently accurate for our
purposes, i.e. to calculate error bars and verify our cross-correlation signal at the 10% level.
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The inverse covariance matrix obtained from N simulations is calculated as in
[111]:

Ĉ−1 = βĈ−1 , (3.16)

where β = N−p−2
N−1 with p the number of angular bins.

Finally, we note that some care is required when choosing the range of scales
Lmin < L < Lmax which we use in our analysis. Our theoretical model is expected
to break down on smaller scales, since we are assuming a simple scale-independent
linear galaxy bias, ignoring baryonic feedback on the matter power spectrum and also
assuming that the non-linear matter power spectrum derived from HMCode [182],
implemented in CAMB, is reliable. We therefore initially pick a range of scales based on
the cross-correlation measurement; we set the requirement that the difference between
a cross spectrum obtained from linear theory and one obtained from a non-linear
power spectrum (HMCode), assuming a linear constant bias, should not be larger
than the 1-σ uncertainty for our cross-spectrum measurement. In this way, we obtain
that the appropriate cutoff is approximately Lmax,κg = 1000. 15

In addition to the small-scale cuts described above, we also wish to avoid systematic
errors which enter on large, degree-angular scales. On the galaxy side, such systematic
errors include depth and selection function variations over the survey footprint; on the
CMB lensing side, the main large-scale limitation is the challenge in simulating and
subtracting the mean-field term sufficiently accurately, since it grows rapidly towards
very low L (L < 50). While many systematics are nulled in cross-correlation, they
could induce additional variance, and to be safe we choose Lmin = 100 for our analysis;
at this scale, the power spectrum of the mean field is still smaller than that of the
signal.

For our measurements, we choose a binning of ∆L = 150; with this binning, we
find that the correlations between different bandpowers are not strong (< 13%).

3.5.3 Galaxy cross-correlation: results

In Figure (3.4) we show the new tSZ-free CMB lensing–galaxy cross-correlation
measurement. We also show the same cross-correlation with the ACT-only lensing
maps, which have not been cleaned of tSZ.

A small shift between the bandpowers can be seen. It appears to match the form
expected from bias due to tSZ in the ACT-only maps, i.e., a deficit on large scales

15Even if this is beyond the non linear scale given at redshift z ∼ 0.57, the mid-redshift of the
CMASS catalog, the relatively large 1σ uncertainty in the cross correlation at L ∼ 1000 implies that
we are insensitive to the difference between linear and non-linear theory at that scale. Furthermore,
as shown in Figure (3.5), including wave numbers beyond L ∼ 1000 only very slightly affects a simple
cosmological analysis.
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Fig. 3.4 The cross-correlation between CMASS galaxies and CMB lensing convergence
reconstructions from ACT. The cross-correlation measurements in the D56 and BN
patches are coadded to obtain these results. The red points show results using an
ACT-only lensing map, the blue points show results using a lensing map that has been
tSZ cleaned. The multipole values for different versions of lensing maps are slightly
offset for visualisation purposes. See Figure (3.5) for comparison with a theory curve
fit to the cleaned measurement.
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Fig. 3.5 This plot shows our main CMB lensing – BOSS galaxy cross-correlation
measurement with the ACT+Planck tSZ free lensing maps (blue points). A Planck-
cosmology (and fiducial galaxy bias bfid = 2) theory template, with a free amplitude
fit to the data (A = b/bfid), is also indicated with a dashed line. The green dashed
theory curve is fit only over a restricted analysis range (shaded region for scales
100 < L < 1000); the black solid curve is fit over the full L range shown in this
plot. (The bandpowers are nearly independent, with the off-diagonal elements of the
covariance matrix showing correlations of less than 13%). We find good consistency in
both cases with the Planck-cosmology derived theory template.

and an excess on small scales. However, the difference was not found to deviate from
zero by a statistically significant amount, with a χ2 probability to exceed (PTE) of
0.29 (for the cosmology range). Nevertheless, we note that the difference is a good fit
to a simplified foreground bias model (given by a 10% deficit in the cross-correlation
at L < 800); the χ2 to this model is lower than for a fit to null by ∆χ2 = 2.2.

Although the tSZ-free measurement contains no bias from tSZ, the measurement
errors on large scales are similar, which highlights the power of this new technique in
providing unbiased measurements that do not sacrifice significant signal-to-noise.16

16The fact that measurement uncertainties do not significantly increase in our method, although
it removes foregrounds, is not just due to the inclusion of Planck data; indeed, a naive application
of the standard quadratic estimator Tno−tSZ∇⃗Tno−tSZ to tSZ-deprojected ACT+Planck maps gives
cross-correlation uncertainties that are ≈50% larger. Planck enables better multifrequency cleaning,
rather than adding much raw statistical weight to the ACT maps.
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We adopt the tSZ-cleaned cross-correlation as our standard analysis. We fit the
cross-correlation with a fiducial theory model; this model uses both fiducial Planck
parameters as well as a fiducial linear bias of b = 2, motivated by previous BOSS
analyses [15]. The cross-correlation measurement as well as a fit of the amplitude
of this fiducial model are shown in Figure (3.5). It can be seen that, for both the
restricted analysis multipole range and the full range, the amplitudes obtained are
consistent with the fiducial value (A = 1). In particular, we obtain A = 0.92± 0.12
for a fit to the restricted analysis range and A = 1.02 ± 0.10 for the fit to the full
range of scales. Both theory curves are a good fit to the measurements, with χ2 PTEs
of 0.25 and 0.28 respectively. Thus, we find good consistency in both cases with the
Planck-cosmology derived theory template.

3.6 Systematics and Validation of the cross-
correlation measurement

We perform several tests for systematic errors to validate both our lensing maps and
our cross-correlation measurement. Note that the relevant covariance matrices are
obtained from Monte Carlo simulations of each test. These covariances are used to
derive a χ2-to-null probability to exceed (PTE) for every test.

Our first null test relies on the fact that we expect the cosmological lensing signal
from gravitational scalar perturbations to give rise to gradient-like deflections. Hence,
this deflection field should be irrotational, with zero curl.17 In contrast, systematics
that mimic lensing can have non-zero curl. Therefore, a detection of a curl signal can
be a signature of unknown systematic errors present in our data. By using a quadratic
estimator Ω̂XY (L⃗) similar to that for the lensing potential but with different filters [66]
(essentially the dot product in the potential estimator is replaced by a cross product),
it is possible to extract the curl signal and cross correlate it with the BOSS galaxy
field. As shown in Figure (3.6), this cross-correlation signal is consistent with zero,
with a PTE of 0.51 for the tSZ-cleaned lensing cross-correlation. We note that for the
ACT-only cross-correlation, the PTE is only 0.05, although this may simply be due to
a statistical fluctuation.

As a second test, we cross-correlate the galaxy map of one patch with the lensing
convergence map of the other patch18 and check for consistency with zero. It is very

17The potential cosmological curl signal coming from tensor perturbations at linear order or from
scalar perturbations at second order is well below current sensitivity.

18To perform this correlation, we extend with zero values the maps of the smaller patch, in this
case D56, so that the two fields have the same size.
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Fig. 3.6 A curl null test: verification that the extracted curl-lensing – galaxy cross-
correlation, which should be negligibly small in the absence of systematic errors, is
consistent with the null hypothesis. The results shown are for a combination of both
D56 and BN patches. The χ2 probability-to-exceed (PTE) for this null test is also
shown in the legend.
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Fig. 3.7 A null test verifying that cross-correlating the lensing map on one field with the
galaxy map on the other field (and combining both spectra) gives a signal consistent
with zero. Red points show ACT-only results, blue points show tSZ-deprojected
lensing results. The fact that the PTEs in both cases are consistent with zero signal
supports the conclusion that our uncertainty calculations are correct.



3.6 Systematics and Validation of the cross-
correlation measurement 92

Fig. 3.8 An extragalactic foreground null-test for the cleaned maps. We show the
difference between the cross-correlations of CMASS with the tSZ-deprojected lensing
maps for the cases of lCMB,max = 3000 and lCMB,max = 3350, where lCMB,max is the
maximum CMB multipole used in the lensing reconstruction. Since extragalactic
foregrounds rise rapidly towards high l, a substantial foreground residual in the cross-
correlation would cause a null-test failure. However, our null-test results shown here
are consistent with zero contamination for both fields (blue: points for BN, orange:
points for D56).
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Fig. 3.9 The same test as shown in Figure (3.8), but applied to the ACT-only maps
which have not been foreground cleaned (blue: points for BN, orange: points for D56).
The PTE for BN shows a (mild) failure of the null test, as is expected if foreground
residuals are important.
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difficult to imagine systematics that would correlate fields that are so far apart, and
so this test primarily serves as a validation of our covariance matrix and uncertainty
calculation. In Figure (3.7) we see that the results of this null test are consistent with
zero, with a PTE of 0.75 obtained for the tSZ-cleaned lensing map and 0.12 for the
ACT-only map.

Thirdly, we wish to test for the presence of residual foreground-induced bias in
the cross-correlation measurement, even though we expect to be insensitive to the
dominant tSZ contamination when using our symmetric cleaned lensing estimator.
To test for residual foreground biases from the CIB, kSZ [e.g. 89] or other sources
(including those arising from incomplete tSZ cleaning), we make use of the fact that
foreground contamination should become worse as the maximum CMB multipole
ℓCMB,max used in the lensing reconstruction increases. If our foreground cleaning
is working as expected and residual foregrounds are negligible, results with a high
ℓCMB,max,high and a lower ℓCMB,max,low used in the reconstruction should be consistent.
In Figure (3.8) we show this foreground null test for the symmetric cleaned estimator;
in particular, we plot the difference Cκlowg

L − C
κhighg
L of the cross-correlation C

κhighg
L

with a higher lensing reconstruction ℓCMB,max,high = 3350 (the baseline used in this
work) and the cross-correlation with a lower ℓCMB,max,high = 3000, Cκlowg

L . It can be
seen that this difference is consistent with zero overall, with PTEs of 0.74 and 0.16
found for D56 and BN respectively. The error bars are obtained from simulations and
hence take into account the covariance between the two spectra. For comparison, in
Figure (3.9) we perform the same test for the ACT-only maps which are not free of
tSZ; perhaps unsurprisingly, we find a (mild) null test failure (PTE of 0.02) for the BN
patch, although the D56 PTE of 0.71 still appears acceptable.19

Finally, to check for sensitivity to large-scale systematics, we vary the lowest
multipole Lmin of the first bandpower of the cross-correlation measurement; we find
that the value of the first bandpower is stable. This was the only null test done after
we unblinded.

Our suite of null tests does not show evidence for foreground or systematic contam-
ination to our measurement, as long as we use the symmetric cleaned lensing estimator.
In particular, for the combined BN+D56 cleaned measurement we find a PTE of 0.28
for the foreground residual test, showing no evidence for foreground contamination in
the cross-correlation.

19The fact that only one patch shows a null test failure does not have a clear explanation, although
it may reflect the fact that our measurement errors are still fairly large compared to the foreground
biases (and so fluctuations can be expected).
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3.7 Discussion

In this chapter, we present maps of CMB lensing convergence derived from ACT
observations made in 2014–15. The lensing maps are constructed in two different
ways: first, by applying the standard quadratic lensing estimator to only ACTPol
CMB data; second, by implementing a new “symmetric” foreground-cleaned lensing
estimator, which makes use of component separated ACTPol+Planck CMB maps to
return lensing maps that are free of tSZ-bias in cross-correlation.

We report combined cross-correlation measurements of our CMB lensing maps with
BOSS CMASS galaxies at ≈ 10σ significance. We find that the use of our new tSZ-free
estimator does not significantly increase the size of measurement uncertainties.

We will release these lensing maps to enable other cross-correlation analyses with
large-scale-structure. However, several caveats should be kept in mind when making
use of these maps. Only the bispectrum ⟨gTtSZTtSZ⟩ tSZ contamination is nulled in
our procedure, where TtSZ is the tSZ signal and g is the large-scale structure field (e.g.,
galaxy overdensity or galaxy shear); this is the dominant source of contamination
for near-term cross-correlations with z < 1 structure. Users of these maps should
be aware that high-redshift cross-correlations can be contaminated with the CIB
field TCIB, both through ⟨gTCIBTCIB⟩ as well as through its correlation with the tSZ
⟨gTtSZTCIB⟩. For cross-correlations where CIB contamination is more of a concern than
tSZ contamination (e.g., for cross-correlations with the CIB itself), our pipeline allows
the application of the analog of our symmetric cleaned estimator on CIB-deprojected
maps from [170]. Such analyses should be validated on realistic simulations [e.g., 245,
267] to verify that the tSZ contamination is sub-dominant. Looking beyond the 2014
and 2015 data used in this work, high-resolution 230 GHz data collected with the
Advanced ACTPol instrument from 2016 and onward should allow for simultaneous
deprojection of both the tSZ and CIB contamination for use in symmetric cleaned
estimators that are robust at all redshifts. The contamination from the kSZ will,
however, remain, since the kSZ has the same blackbody frequency spectrum as the
primary CMB, although the contamination is much lower in amplitude [75, 89].
Alternatives to our method include shear-only reconstruction [228] (which requires
the inclusion of smaller scales in the CMB map to achieve similar signal-to-noise)
and source hardening [202] (primarily targeted at reducing contamination from point
sources and clusters). The optimal combination of all of these methods that minimizes
bias (both from foregrounds and higher-order effects) and maximizes signal-to-noise
will be discussed in Chapter 4.
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We also caution users that the auto-spectrum of the lensing potential presents a
much broader set of analysis challenges, both for mitigation of foregrounds (where
the CIB contamination is expected to be larger [277]) and for characterization and
subtraction of reconstruction noise bias. The latter requires an extensive set of
simulations [e.g., 256, 270] and methods robust to mismatch of simulations and the
observed sky [e.g., 195]. The CMB lensing auto-spectrum from ACT data from 2014
and 2015 will appear in a separate work. In addition, care should be taken when
attempting to interpret the signal from stacking massive clusters on our released CMB
lensing maps; first, because inpainting and masking steps can introduce complications,
and second, because higher-order effects can bias the standard quadratic estimator
near the most massive clusters [125].

This work lays the foundation for upcoming, higher precision ACTPol and Advanced
ACT cross-correlations with galaxy and lensing surveys. For upcoming cross-correlation
analyses with ACT and other experiments, powerful methods to obtain foreground
free measurements are necessary; our work represents one promising solution to this
problem.



4
Optimizing foreground mitigation for CMB lensing

with combined multifrequency and geometric
methods

Summary

A key challenge for current and upcoming CMB lensing measurements is their sen-
sitivity to biases from extragalactic foregrounds, such as Sunyaev-Zel’dovich (SZ)
signals or cosmic infrared background emission. Several methods have been developed
to mitigate these lensing foreground biases, dividing broadly into multi-frequency clean-
ing approaches and modifications to the estimator geometry, but how to optimally
combine these methods has not yet been explored in detail. In this chapter, we examine
which combination of lensing foreground mitigation strategies is best able to reduce
the impact of foreground contamination for a Simons-Observatory-like experiment
while preserving maximal signal-to-noise. Although the optimal combination obtained
depends on whether bias- or variance-reduction are prioritized and on whether polar-
ization data is used, generally, we find that combinations involving both geometric
(profile hardening, source hardening or shear) and multifrequency (symmetric cleaning)
methods perform best. For lensing power spectrum measurements from temperature
(polarization and temperature), our combined estimator methods are able to reduce
the bias below σ/4 or 0.3% (0.1%), a factor of 16 (30) lower than the standard QE
bias, at a modest signal-to-noise cost of only 18% (12%). In contrast, single-method
foreground-mitigation approaches struggle to reduce the bias to a negligible level below
σ/2 without incurring a large noise penalty. For upcoming and current experiments,
our combined methods therefore represent a promising approach for making lensing
measurements with negligible foreground bias.



4.1 Introduction 98

4.1 Introduction

Along their paths to our telescopes, photons of the cosmic microwave background
radiation (CMB) are deflected by the gravitational influence of matter in our Universe.
This leads to a remapping of CMB photons that depends on a weighted integral of
the matter perturbations along the line of sight. The ability to map directly the
projected mass distribution out to high redshifts makes CMB lensing a powerful source
of cosmological information (such as constraints on neutrino masses or dark energy
properties) (e.g. [219, 5]).

When reconstructing the projected matter fluctuations from observations, CMB
foreground contamination in temperature is expected to induce ∼ 5%-level biases in
the CMB lensing power spectrum and lensing cross-correlations with tracers of the
matter field [202, 278, 89, 36, 263, 75, 169, 229, 226]. These biases are especially
concerning for high-resolution ground-based CMB experiments, such as AdvACT,
SPT-3G and Simons Observatory, since these experiments still rely heavily on lensing
reconstruction from temperature and derive more information from small angular
scales which have higher levels of foreground contamination.

Several mitigation strategies have been proposed to address this key foreground
challenge for CMB lensing. Broadly, these strategies divide into geometric methods
and frequency-based methods. Geometric methods [196, 229, 226], which include bias
hardening, profile hardening, and shear reconstruction, aim to modify the lensing
estimators’ weight functions in order to null or reduce the biases induced by foregrounds.
Frequency-based methods [77, 224, 169, 2, 171, 14, 43], which include foreground
deprojection in a constrained or partially constrained ILC, as well as gradient cleaning
and symmetric cleaning, use the departure of the foregrounds’ spectral properties from
a blackbody to null or reduce the foreground bias levels.

While many of these methods can reduce foreground biases quite effectively, with
increasing measurement precision the requirements on bias mitigation are becoming
increasingly stringent, and further improvements are becoming well motivated. A key
question for upcoming experiments therefore is: which combination of bias mitigation
strategies minimizes the biases most effectively while preserving as much signal-to-noise
as possible?

To address this question, we consider estimators composing – i.e., simultaneously
applying – geometric and frequency-based mitigation methods; we also consider linear
combinations of different estimators at the lensing reconstruction level and optimise
this linear combination to best mitigate foreground-induced lensing biases while
maximising the signal-to-noise.
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The remainder of this chapter is structured as follows. In Section 4.2, we introduce
our method for combining different estimators and mitigation approaches. In 4.3,
we define bias and noise measures for the combined estimator. In 4.4 we present
the optimization formalism, followed by our results and their discussion in 4.5. We
conclude in Section 4.6.

4.2 CMB Lensing foreground biases for estimators

4.2.1 Quadratic CMB Lensing Estimators

Weak gravitational lensing of the CMB induces correlations between different modes of
the CMB, because a fixed lensing field breaks the statistical isotropy of the primordial
CMB. One can use these off-diagonal correlations to write a quadratic estimator for
the CMB lensing convergence field from the observed beam-deconvolved lensed CMB
temperature field T . This estimator has the form [130]1

κ̂(L⃗) =
∫

ℓ⃗
T (ℓ⃗)T (L⃗− ℓ⃗)g(ℓ⃗, L⃗− ℓ⃗), (4.1)

where

∫
ℓ⃗
≡
∫ d2ℓ⃗

(2π)2 , (4.2)

and g is a weight-function that satisfies the unit response condition to the true CMB
lensing convergence field, ⟨κ̂⟩CMB = κ, where ⟨· · · ⟩CMB denotes averaging over the
primordial CMB while fixing the lensing mode to be reconstructed. This, in turn
implies that ∫

ℓ⃗
f(ℓ⃗, L⃗− ℓ⃗)g(ℓ⃗, L⃗− ℓ⃗) = 1, (4.3)

where f is a response function that encodes the response of the off-diagonal CMB
temperature two-point correlation function to lensing, ⟨T (ℓ⃗)T (L⃗− ℓ⃗)⟩CMB = f(ℓ⃗, L⃗−
ℓ⃗)κ(L⃗).

4.2.2 Origin of foreground biases

The observed CMB temperature field T contains contributions from both the lensed
CMB TCMB and foregrounds Tf , so that T = TCMB + Tf , where here we ignore any
noise contribution. The foregrounds, which are non-Gaussian and also correlated with

1We focus on temperature-only reconstruction for now, and later we will discuss including
polarization.
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the lensing convergence, give rise to biases in both the auto-correlation of a CMB
lensing quadratic estimator Q̂[T, T ], and to the cross-correlation of Q̂ with an external
matter tracer gm. As discussed in [277, 202, 229], and explained in detail in Appendix
(B.1), foregrounds induce three bias terms to the reconstructed auto-spectrum: a
trispectrum term of the form T 4

f , and two bispectrum terms that involve T 2
f × κ. For

a CMB lensing cross-spectrum with an LSS tracer, the bias appears as a bispectrum
of the form ∼ T 2

f × gm . These biases can easily lead to an incorrect inference in
parameters, e.g., the amplitude of matter fluctuations, if not treated properly.

4.2.3 Current foreground mitigation methods and estimators

Several modifications to CMB lensing estimators have been proposed to extract an
unbiased CMB lensing signal; they differ both in the degree to which they mitigate
foreground biases and to which they lose signal-to-noise. In this chapter we will
consider the following foreground-mitigating CMB lensing estimators, some of which
rely on geometric mitigation of the estimator kernels, and others on multi-frequency
methods:

• The standard Quadratic Estimator [130] (QE): this estimator has the smallest
possible variance. On the other hand, it is not immune to the biases induced by
foregrounds due to the contamination of the temperature maps.

• Bias hardened estimators [196, 226], such as point source-hardening (PSH) and
profile hardening (PH), which modify the estimator weights to null a component
of known response at the cost of increasing the variance.

• The shear estimator [229] (SH), which isolates the quadrupole (shear) component
of the lensing response f , and is generally insensitive to foregrounds with
symmetric profiles about the line of sight.

• The symmetric multi-frequency cleaned estimator [169] and chapter 3 (Symm),
which allows for the nulling of some foreground effects using multi-frequency
cleaned data, but has been constructed to reduce the noise cost incurred.

In this chapter we use a tSZ-like profile for the PH estimator, identical to the one
considered in [226], i.e. the square root of a fiducial tSZ power spectrum on small
scales.

In Figure 4.1 we plot the temperature power spectra of several multi-frequency
combinations for an SO-like experiment, while in Figure 4.2 we show the lensing
reconstruction noise for different estimators, assuming ℓmax = 3500 is used in the
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Fig. 4.1 The temperature power spectra of different multi-frequency combinations
of frequency maps for a Simons Observatory-like experiment: in red is the standard
internal linear combination (ILC); in blue is the ILC with CIB deprojection; in orange
is the ILC with tSZ deprojection. In cyan we show the cross correlation between
the tSZ-deprojected and CIB-deprojected combinations. In black is the lensed CMB
theory curve. For the tSZ-deprojected curve in orange, the large power on large scales
is due to atmospheric noise.
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reconstruction, as well as the total foreground biases for a few estimators (see Appendix
(B.7), Figure B.13 for the biases of the remaining estimators).

4.3 Optimal combination of CMB lensing estima-
tors: formalism

4.3.1 Amplitude shift on the CMB lensing power

For our investigations we must be able to describe appropriately the impact of
foregrounds on the measured CMB lensing power spectrum. For simplicity we will
focus on constraints on the amplitude A of the lensing power spectrum or the cross-
correlation of the lensing convergence with a matter tracer – we expect this parameter
to be a good proxy for the most relevant applications of the lensing power spectrum,
such as measuring σ8 or the neutrino mass. Effectively we have Âα

L ∝ Ĉκα
L , with

α = κ or g, where g is a tracer of the underlying matter distribution (e.g. galaxies).
Therefore, to lowest order, a bias in the measured power spectrum leads to a bias to
the inferred amplitude, i.e. δAα

L ∝ δCκα
L . Let us define the measured lensing amplitude

per mode L⃗ with respect to a fiducial cosmology:

Â(L⃗) = Ĉκα
L /Cκα,fid

L , (4.4)

where we have suppressed the explicit dependence of Â on α. Assuming that κ and
gm are Gaussian fields, for one single mode the variance of this estimator is related to
the variance of the power spectrum estimator Ĉκα

L

σ2
L = (Cκα

L + Nκα
L )2 + (Cκκ

L + Nκκ
L )(Cαα

L + Nαα
L ), (4.5)

where Nαβ
L a noise component, equal to the lensing reconstruction noise if α = β = κ,

the Poisson shot noise if α = β = gm, and zero if α ̸= β. The bias to the estimator
Â(L⃗) is simply

B(Â(L⃗)) = δCκα
L /Cκα,fid

L . (4.6)

Given a range of modes, we can combine the measurements of A at each L⃗ to
obtain a global estimator:

Â =
∫

L⃗
w(L⃗)Â(L⃗) , (4.7)

where the weights w satisfy
∫

L⃗ w(L⃗) = 1 to ensure that the estimator Â is unbiased to
the fiducial cosmology (⟨Â⟩ = Afid = 1). When foregrounds are present, the estimator
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Fig. 4.2 CMB lensing reconstruction noise curves for the standard quadratic estimator
(QE), shear (SH), point source hardened estimator (PSH), and the profile hardened
estimator with a tSZ profile (PH), all applied to a minimum variance temperature-only
ILC map, as well as noise curves for the standard symmetric estimator with tSZ-
deprojection (Symm) and two new estimators that we introduce later in the text: point
source hardening on the symmetric estimator with tSZ-deprojection (SymmPSH),
profile hardening on the symmetric estimator with CIB-deprojection (SymmPH), and
finally the minimum variance estimator with both temperature and polarization (QE
MV). For the temperature maps we take ℓmin, ℓmax = 30, 3500 in this figure, while
for polarization we assume ℓmin = 30, ℓmax,pol = 5000. In black we show the CMB
lensing signal Cκκ

L . In the bottom panel we show the total bias to the CMB lensing
autospectrum (as a fraction of the signal power) for some of the estimators. The
relative statistical error for the standard QE is shown in grey. Note that the standard
QE is biased at most scales.
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Â acquires a bias:
b(Â) =

∫
L⃗

w(L⃗)B(Â(L⃗)). (4.8)

The variance of the estimator Â is given by

σ2(Â) = 1
4πfsky

∫
L⃗

w2
L

σ2
L

(Cκα,fid
L )2

, (4.9)

where fsky is the covered sky fraction, and wL ≡ w(L⃗). Of particular relevance is the
minimum-variance estimator, which has weights

wMV
L = (Cκα,fid

L )2

σ2
L

[∫
L⃗

(Cκα,fid
L )2

σ2
L

]−1

. (4.10)

In Figure 4.3 we plot the CMB lensing error and bias for the foreground-mitigating
estimators proposed thus far, assuming several different values for the reconstruction
lmax,TT and summing over CMB lensing modes 30 ≤ |L⃗| ≤ 1200.

In calculating the bias, we choose to replace the “true” biases Bi
L for the estimator

i, as measured from a set of simulations described in section 4.5, with a smoothed
version of the absolute value of the biases. This choice will be justified later in section
4.4.

It is clear that in most cases we are in a regime where bias is not negligible. For the
estimators which achieve b < σ we are in general paying a substantial noise penalty,
even for profile hardening (PH) at lmax,TT = 3500. Furthermore, to ensure that bias is
truly subdominant and negligible (despite uncertainties in simulations and modeling),
we would like to be in a regime where bias is well below the statistical uncertainty,
such as b ≤ σ/4 – and this cannot be realistically achieved with the currently proposed
estimators.

4.3.2 Amplitude shift on CMB lensing power from compos-
ing geometrical and multi-frequency methods

To improve upon the current situation, we first propose two new CMB lensing es-
timators; these are constructed by simultaneously applying (or “composing”) both
multi-frequency cleaning and the bias hardening operation in an estimator. In partic-
ular, first we apply the symmetric estimator (which involves multifrequency cleaning),
then we apply bias hardening on the symmetric estimator as explained in Appendix
(B.2). For the first new estimator, we consider a symmetric estimator with a tSZ-
deprojected map, and then apply point source hardening. For the second new estimator,
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Fig. 4.3 Values of measurement standard deviation σ and bias b for the CMB lensing
power spectrum amplitude A, assuming only temperature (TT ) reconstruction is used
in the lensing power spectrum measurement. Results are shown for the different
estimators with different types of foreground mitigation that have been proposed so
far; several values are assumed and plotted for the maximum CMB multipole used in
the lensing reconstruction. In this and the following plots, [QE, SH, PSH, PH, Symm]
indicate the standard quadratic estimator, shear estimator, point source hardened
estimator, profile hardened estimator, and symmetric tSZ-deprojected estimator
respectively. The colored bands represent regimes where the bias is greater than a
certain fraction of the statistical noise. We can see clearly that a trade-off between bias
and noise exists for the different estimators proposed thus far: estimators that aim
to reduce biases unfortunately incur a significant noise penalty. We would like to be
able to reduce both foreground bias and variance of lensing estimators simultaneously
(obtaining new estimators that are somewhat closer to the lower left corner of this
plot).
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Fig. 4.4 As for Figure 4.3, but with the addition of two new combined estimators: i)
SymmPSH, which stands for point source hardening applied to a symmetric estimator
with tSZ deprojected; ii) SymmPH, given by profile hardening applied to a symmetric
estimator with CIB deprojected. We can see that, for some configurations, these new
estimators allow us to obtain somewhat lower bias at the same noise in comparison
with the existing estimators shown in Figure 4.3, although potential remains for further
improvements.

we consider using a symmetric estimator with a CIB-deprojected map (see [171] for the
first implementation of CIB deprojection on real CMB data), and then apply profile
hardening. The logic behind these choices is that we employ one mitigation method
that targets the tSZ (tSZ deprojection or profile hardening) alongside another that
focuses on the CIB (CIB deprojection or point source hardening). We refer to these two
new estimators as SymmPSH (using tSZ deprojection with point source hardening),
and SymmPH (using CIB deprojection with profile hardening), respectively.

We can see from Figure 4.4 that these estimators perform well: they generally
have lower biases given the same variance as the previously proposed estimators and
have b < σ. However, further improvements are still motivated, since we have not yet
found that biases are completely negligible such that b≪ σ. For this purpose, we will
now investigate linear combinations of different estimators Q̂i.

4.3.3 Amplitude shift on CMB lensing power for combined
estimators

Using the same definitions as above, we can straightforwardly derive the bias and
variance of the lensing amplitude estimator Â when computed from a linear combination
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of different individual quadratic estimators (with different foreground mitigation
methods) Q̂i. We can define this linear combination as follows:

Q̂(L⃗) ≡
∑

i

ai(L)Q̂i(L⃗), (4.11)

where ∑i ai(L) = 1 to ensure unit response to the CMB: ⟨Q̂⟩CMB = κCMB. For the
estimator Q̂, the measured power spectrum Ĉκα

L takes the form:

Ĉκα
L =

∑
i,j

ai(L)bj(L)Ĉκα,ij
L , (4.12)

where Ĉκα,ij
L is the reconstructed power spectrum from the correlation of the individual

i, j estimators, and bj(L) = aj(L) when α = κ, or bj(L) = δK
j1 when α = g.

The estimator for the amplitude now takes the form

Â =
∫

L⃗
w(L⃗)

∑
i,j

aibjĈ
κα,ij
L /Cκα,fid

L . (4.13)

In the presence of foregrounds, this estimator obtains a bias, which can be expressed
as

b(Â) =
∫

L⃗
w(L⃗)

∑
i,j

aibj
Bij

L

Cκα,fid
L

, (4.14)

where Bij
L = δCκα,ij

L is the foreground-induced lensing bias from the cross-correlation
of the individual i, j estimators. The variance (assuming the lensing reconstruction
noise can be approximated as Gaussian) is given by

σ2(Â) = 1
4πfsky

∫
L⃗

w2
L

∑
ijmn

Θijmn
L aiajbmbn

(Cκα,fid
L )2

, (4.15)

where we have supressed the L dependence of ai and bi, and we have defined

Θijmn
L ≡ (Cκα

L + Nκα,in
L )(Cκα

L + Nκα,jm) + (Cκκ
L + Nκκ,im

L )(Cαα
L + Nαα,jn

L ). (4.16)

Again, when α ̸= β, the noise term Nαβ,ij
L = 0. When α = β = g, N gg,ij

L ≡ N gg is just
the Poisson shot noise. When α = β = κ, Nαβ,ij

L is the lensing noise associated with
the cross-correlation of the i, j estimators.

We note that while the variance σ2(Â) is guaranteed to decrease as more Ls are
summed over, the same is not true for the bias. Thus, even in the case where the bias
BL is subdominant to the noise

√
ΘL for each L, one can still have b2(Â) > σ2(Â).
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4.4 Finding the optimal combination

Now that we have introduced all the relevant definitions, we can begin to address the
key question of this chapter: what is the optimal linear combination for minimizing
both foreground bias and measurement noise? To answer this question, we define
a loss function, inspired by the mean squared error ⟨(Â − A)2⟩, which allows us to
parameterize our goals in this optimization: i.e. to what extent we prioritize bias or
variance. To this end we consider the following loss function

L[ai, w; fb] = σ2(Â) + f 2
b b2(Â) , (4.17)

where σ2(Â) and b(Â) are defined in Eqs. (4.14) and (4.15) respectively, and the fb

parameter regulates the importance of the bias in the total functional, with a higher fb

assigning a higher importance to bias reduction.2 Equation (4.17) represents a general
quartic optimization problem, which we numerically minimize by varying ai(L) and
w(L⃗) subject to the constraints

∑
i

ai(L) =
∫

L⃗
w(L⃗) = 1. (4.18)

We additionally impose the constraint ai(L) ≥ 0 on the coefficients, which make our
optimized solutions less finely-tuned to the simulated biases.3

In our optimization we choose to replace the “true” biases Bij
L , as measured from

simulations, with a smoothed version of the absolute value of the biases. That is,
when minimizing Eq. (4.17), we replace Bij

L in Eq. (4.14) with |Bij
L |s > 0, where the

subscript s denotes a smoothing operation, which is described in Appendix (B.5).
Doing so avoids potential exact cancellations in bias among different Ls in order to
be conservative (and less simulation-dependent), as seen for example in Fig. 4.2. We
discuss how this choice impacts our results in Appendix (B.5).

We note that the case fb = 0 corresponds to minimizing the variance σ2(Â). Since
the integrand in Eq. (4.15) is positive, minimizing the full variance corresponds to
minimizing the integrand for each L⃗. In other words, the ideal solution corresponds

2One can introduce an extra function r too, monotonic in the weights a and biases matrix B: this
should be chosen to act as a prior on the weights, or as a regularizer. The main reason for such a
term is to not overfit the specific set of simulations or theoretical models used for calculating the
biases, as there is an inherent modeling uncertainty in these. A regularizer will be also useful as a
smoother of the optimal solution, to have more stable, non-oscillating solutions.

3For example, if the biases of two estimators were known perfectly well, and if the coefficients
weren’t restricted to be non-negative, one could easily solve for coefficients which cancelled these
biases. This cancellation is simulation dependent, and could result in significant biases on real data
if the biases to the individual estimators are non-negligible.
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to the minimum variance combination of the individual estimators, and setting
w(L⃗) = wMV

L (i.e. Eq. (4.10) with ∑ijmn Θijmn
L aiajbmbn replacing σ2

L).

4.5 Optimisation in practice

4.5.1 Calculating foreground CMB lensing biases

In this chapter we consider a Simons Observatory-like experiment, with six observa-
tional frequency channels ([27, 39, 93, 145, 255, 280] GHz). We assume the goal noise
levels [5] for the detector and atmospheric noise contributions.4 We follow [84] when
modeling the foreground power spectra and their SEDs, as implemented in the code
LensQuEst.5

The foreground-induced CMB lensing biases that we consider here come from the
total sum of extragalactic foregrounds, namely tSZ + CIB + kSZ + radio PS, as
given by the non-Gaussian foreground simulations of [244] at 150 GHz. To create
ILC combinations from these simulations we do the following: first, we mask the sum
of extragalactic foregrounds with a mask obtained by inpainting [45] disks with a 3
arcmin radius around individual detected point sources with flux density higher than
5 mJy at 150 GHz, picking up also clusters. After masking, we Fourier transform
the simulations, rescaling them from 150 GHz to the corresponding SO frequencies
using the SEDs of [84],6 and create the ILC/cILC combinations, with a total theory
power spectrum given by lensed CMB added to experimental noise, galactic dust, and
extragalactic foreground contributions from theory spectra, as given by [84]. Then we
take the inverse Fourier transform and mask again with the same mask (equal to one
outside the inpainted disks).

We then follow the method of [229, 226] to estimate the foreground-induced non-
Gaussian CMB lensing biases and hence obtain the matrix Bij for the bias arising
from the cross of estimator i with estimator j. We describe the specific calculations in
Appendix (B.1).

4The noise curves are calculated using the noise calculator V3_calc available at a private repository
on the SO Github.

5https://github.com/EmmanuelSchaan/LensQuEst
6Note that we are implicitly assuming that CIB can be simply rescaled, but in reality there is a

dechoerence among CIB observed at different frequencies, i.e. the correlation among CIB maps at
different frequencies is not one, although quite high in the simulations.
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4.5.2 Results

In the following subsections we present our optimization results. Aside from fb = 0,
for all cases we optimize over the [SH, PSH, PH, SymmPSH, SymmPH] estimators
as explained in Appendix (B.5) (recall that these abbreviations indicate shear, point
source hardening, profile hardening, symmetric tSZ deprojection with point source
hardening, symmetric CIB deprojection with profile hardening); we also allow the
maximum multipole to vary separately for each estimator in our optimization, with
the options lmax,TT = [3000, 3500, 4000, 4500].

Lensing auto-spectrum

Temperature-only lensing reconstruction In Figure 4.5 we show our results
for combining estimators using only temperature data; here solid black dots show
the performance of our new optimal combinations (on the x-axis we again plot the
absolute value of the induced foreground bias on the amplitude of the CMB lensing
power spectrum, as described in Appendix (B.5). and on the y-axis the noise on the
lensing amplitude). For black dots from right to left, we vary fb from fb = 0, 0.1, 1, 2, 4,
progressively increasing the importance of the bias in the noise-bias trade-off. We
can see that all the combined estimators perform significantly better than the single
estimators, giving a lower bias for the same noise. Figure 4.6 shows in more detail the
composition of the these optimal combinations (each piechart in this figure describes
the corresponding solid black dot in the previous Figure 4.5).

Our reference case for TT will be QE at lmax = 3000, for which we have a bias of
5%; this estimator gives a total SNR of 80.

When fb = 0, we have the minimum-variance solution, which is just the standard
QE. The signal-to-noise of the temperature-only reconstruction in this case is close to
100 since lmax = 4500 now.

For fb = 0.1, PSH with a high lmax = 4500 gains importance, although there is
also some contribution from other estimators. In this case bias is nearly irrelevant
in our optimization, so that the non-QE estimator with the highest signal-to-noise
dominates. This combination decreases the bias by a factor of 2.2 with respect to QE
at lmax = 3000 (although the bias is still quite large, at the level of a few percent);
this reduction in bias still has a lower noise compared to the reference case of QE,
with a SNR above 90.

For fb = 1, a case where we assign minimizing bias and variance similar priority, our
solution decreases the bias by 8.6 times compared to QE at lmax = 3000. The solution
gives a bias of ≈ 0.6%, corresponding to σ/2, at a moderate noise cost similar to the
simple QE, corresponding to an SNR of 80. In Figure 4.7 we illustrate more clearly
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Fig. 4.5 As for Figures 4.3 and 4.4, but now including results from performing an
optimized linear combination of individual estimators (in this plot we only consider
lensing measurement from temperature). The solid black dots show the optimized
points, with results shown for optimization with fb = 0, 0.1, 1, 2, 4 going from dots on
the right to the left (recall that fb parametrizes the importance of bias-squared relative
to variance in the optimization). We can see that the black dots representing the linear
combinations of estimators perform significantly better than single estimators; using
these optimized linear combinations we are able to reach a regime with a negligible
bias with respect to the noise at only a modest noise cost.
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Fig. 4.6 Composition of the optimized linear combination estimators shown in the solid
black points in the previous figure. The pie charts show the fractional contribution
made by each individual estimator in the linear combination, calculated as

∫
L⃗ w(L)ai(L).

In the pie charts, colors indicate the type of estimator and shading indicates the
maximum CMB multipole used in the reconstruction. When assuming fb = 0, i.e.
optimizing for minimum variance alone, as expected the standard QE alone is dominant.
For an optimization which heavily penalizes bias using fb = 4, a combination of PH
and SymmPH is the best combination; this combination only has a 0.5% bias, although
the signal-to-noise falls below 70. We may notice that for high fb PH with a high lmax
is chosen, and not with a low one that we might expect to give lower bias. The reason
is that at the important scales for the calculation of the CMB lensing amplitude, the
PH with higher lmax is lower in bias compared to the ones with lower lmax. This is
because there are internal cancellations in the calculation of the bias, depending on
the specific lmax (and set of simulations).
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Fig. 4.7 More detailed illustration of the estimator linear combination for the case of
temperature-lensing-only power spectrum optimization with fb = 1. The top panel
shows the signal-to-noise ratio squared per mode for the lensing reconstruction, the
middle panel shows the Gaussian-smoothed absolute value of the total foreground bias
for each estimator. On the bottom, the weights per mode are shown for each estimator;
this illustrates the relative contribution of each estimator to the linear combination.
It can be seen that, for fb = 1 where bias and variance are assigned equal importance,
the optimization tries to compromise between bias and noise per mode. Most of the
constraining power for the CMB lensing amplitude derives from L ≤ 500.

the contribution from each estimator for this case (fb = 1); in particular, we plot
the signal-to-noise per mode, the total foreground-induced bias, and the contribution
of each of the estimators in the combination. The solution is dominated by profile
hardening, although it can be seen that there are contributions from SymmPSH on
large scales and shear on small scales as well.

fb = 4 is a case where minimizing bias takes on higher priority in the optimization.
In this case, again, profile hardening is one of the dominant estimators; we obtain a
solution where we mix PH at a moderate-high lmax = 4000 with SymmPH with CIB
deprojection at low lmax = 3000. Here we reduce the bias by a large factor O(16), to
nearly σ/4 or ≈ 0.3%; however, this comes at a noise cost of around 18%, resulting
in an SNR of below 70. We show the per-mode contribution from each estimator
in Figure 4.8. As indicated previously, profile hardening is the dominant estimator
over the most relevant range of scales; however, on small scales there is a significant
contribution from SymmPH. It can be seen that the optimizer selects the estimator
with the lowest bias at each scale, which is as expected since fb = 4 prioritizes bias
minimization.
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Fig. 4.8 As for Figure 4.7, but here showing results for an optimization run with fb = 4,
i.e. the bias is assigned approximately four times more importance in the optimization
than the noise. It can be seen that, as expected, this optimization effectively selects
the estimator at each L that has the lowest bias per mode.

We note that for each choice of fb we could have multiple near-optimal configura-
tions, in the sense that some configurations with different lmaxs differ by a only few
percent in the loss function. Since our per-mode plots are only for the single optimal
configuration, we check that the three best-performing configurations are composed
similarly. In Appendix (B.1) we discuss how these optimized results depend also to
some extent on the masking choice.

Minimum variance lensing reconstruction (temperature and polarization)
The situation changes significantly when including polarization data alongside temper-
ature in the lensing estimator. Our reference case for reconstruction from both temper-
ature and polarization will be QE plus polarization, at lT T,max = 3000, lpol,max = 5000,
for which we have a bias of 3%, with an SNR of 143. Note that in our analysis in
this chapter, we assume that no foregrounds are present in the polarization maps
themselves. In this case, the total foreground bias is given by

B = α⃗ ·Bα⃗ = α2
T T BT T + 2αT T

∑
XY ∈pol

αXY BT T,XY , (4.19)

where BT T is the bias per mode for the TT estimator lensing power spectrum, which
can in turn be written as a⃗ ·BT T,T T a⃗. Here BT T,T T is the Gaussian-smoothed absolute
value of the bias matrix for each temperature estimator, where we define the bias
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Fig. 4.9 Linear-combination optimization results for the lensing power spectrum as
in Figure 4.6; however, in this plot, we consider not just temperature data but are
also including polarization data. As before, the pie charts represent the contribution
from each estimator, calculated as

∫
L⃗ w(L)ai(L). We see that when bias-removal is

prioritized, at left, the optimization selects a combination of geometric and multi-
frequency cleaning, namely Shear and SymmPSH. This is different than the result for
the optimal temperature (TT ) only combination, due to the higher importance of the
primary bias term when also including polarization data as explained in the text.

matrix as a matrix with elements ij given by the bias arising from the correlation
of estimator i with estimator j; similarly, BT T,XY is the smoothed absolute value of
the bias matrix for each temperature estimator crossed with polarization, XY ̸= TT .
Finally α⃗ are minimum variance TT and polarization weights, defined in Appendix
(B.1). We note that we do not allow for cancellations between the TT contribution
and the polarization contribution when calculating the total bias when using both
temperature and polarization data: this is done by taking the absolute value of the
bias in temperature, and the absolute value of the bias with polarization data.

We find the following results for the minimum variance lensing power spectrum, as
illustrated in Figure 4.9.

We immediately see a change in which estimator dominates. For higher fb, we see
that the dominant estimator is no longer PH but instead SymmPSH (with also large
contributions from shear).

In particular, for fb = 1 we see that the SymmPSH-dominated, lmax = 3000,
combination performs very well. We find that the bias is reduced by a factor O(17)
with respect to QE MV with TT at lmax = 3000, giving a bias that is well below
percent level at around 0.18%, corresponding to just above σ/4. This bias reduction
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Fig. 4.10 Illustration of the estimator linear combination for power spectrum opti-
mization with fb = 1 – now assuming both polarization and temperature data are
used in the reconstruction. The top panel shows the signal-to-noise ratio squared per
mode for the lensing reconstruction. The middle panel shows the Gaussian-smoothed
absolute value of the total foreground bias (equation (4.19)) for each estimator and the
combination. In the bottom panel, the weights per mode are shown for each estimator.
It can be seen that, for fb = 1 where bias and variance are assigned equal importance,
the optimization tries to compromise between bias and noise per mode.

comes at a modest noise cost of only 4%, with the total SNR still reaching nearly 137.
The contributions of the different estimators are shown in Figure 4.10 for fb = 1. We
can see that SymmPSH dominates on smaller scales, although on large scales a mix of
estimators, SymmPSH, SH and PH, is chosen.

For fb = 4 the bias is reduced by nearly O(30) with respect to QE MV with TT

at lmax = 3000, giving a bias at the 0.1% level and so below σ/4. The noise cost
of roughly 12% is still only moderate. The contributions from different estimators
are shown in Figure 4.11; for fb = 4, generally the estimator with the lowest bias,
dominates, although there are some scales to which this does not apply.7

Why does the optimizer give such different results when including polarization data?
The reason for this change when considering the minimum variance estimator can
be understood as follows: when adding polarization data (assumed to be foreground-

7We note that the combined bias and the combined signal-over-noise squared in Figures 4.10 and
4.11 for the TT -plus-polarization case, are not just given by combining the contributions plotted
for each single estimator. The reason is that, for example, the combined bias in this case is α⃗ ·Bα⃗,
as described in equation (4.19), but for each estimator, the bias plotted is α⃗′ · B′α⃗′, where now
we specify that the MV weights for the single estimator are different than those for the combined
estimator. For this reason, in Figure 4.11 the bias is not always the smallest one among estimators.
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Fig. 4.11 As for Figure 4.10, but now showing results for an fb = 4 optimisation where
bias reduction is prioritized. As expected, generally, the estimator with lowest bias
gets selected in the combination.

free), the importance of different bias contributions from each estimator changes.
As explained in Appendix (B.1), in this case the primary bias ⟨κ QT T +pol[Tf , Tf ]⟩
contribution, which arises also from the temperature-polarization estimator cross-
correlation, becomes more important. This can be seen in a simple computation of
the bias, assuming that polarization-only spectra do not contribute:8

B = α⃗ ·B · α⃗
= α2

T T BT T + 2αT T

∑
XY ∈pol

αXY BT T,XY

≈ α2
T T BT T + 2αT T (αT EBT T,T E + αEEBT T,EE

+ αEBBT T,EB)

= α2
T T BT T + αT T (αEE + αEB + αT E)PT T

2

≈ α2
T T BT T + αT T (1− αT T )

2 PT T

, (4.20)

where α⃗ are minimum variance estimator (MV) weights, PT T contains only a “primary”
bias contribution (arising from one of the bispectrum terms), and where we neglect
the TB estimator on all scales. Since the inclusion of polarization further up-weights

8Actually, as we explain in Appendix (B.1), BT T,T E does arise as a secondary contraction with
the TE estimator. It is usually small on large scales, and more important on smaller scales, but
where the modes are downweighted more due to the noise. For now we ignore it, although we include
it in the numerical calculations. And we will completely ignore BT E,T E as it enters with α2

T E , and
αT E is already small.
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Fig. 4.12 The primary contribution ⟨κQT T +pol[Tf , Tf ]⟩ relative to the CMB lensing
autospectrum signal for the sum of foreground components, for lmax= 3500 for a few
estimators. This type of plot becomes important when adding polarization data, as
the estimators with the lowest primary bias contribution tend to become favoured in
this case, in comparison to the TT -only case.

the importance of the primary bias (which is dominant on large scales anyway), the
estimators with the lowest primary bias contribution become the most important ones
in the combination when polarization data is included. An example can be seen in
Figure 4.12 for lmax = 3500; this represents a different ordering compared to the total
foreground bias shown in Figure B.13 in Appendix B.

Cross-correlations

Temperature-only lensing reconstruction We now turn to optimization results
for a cross-correlation with an LSST-like galaxy sample. Our reference case for TT

will again be the QE at lmax = 3000, for which we have a bias of around 8%, with an
SNR of roughly 94. Note that since the LSST galaxies do not have the same redshift
distribution as the CMB lensing redshift kernel, different biases may take on a different
importance; in particular, we expect that the SZ effect will become somewhat more
important than CIB emission since the lower redshifts are somewhat more emphasized
in this cross-correlation. We expect that this will lead to different optimization results.
In Figure 4.13 we show the results for TT -only data.
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For fb = 1, the bias is reduced by a factor of 12.6 (giving a sub-percent bias of
around 0.6%), at a noise cost of around 2% (still giving an SNR of more than 90),
with respect to QE at lmax = 3000. We see that PH dominates the combination (there
is some tSZ deprojection at the CMB level through SymmPSH, although in a lower
contribution with respect to PH probably due to different noise levels); in part, this
may be because tSZ mitigation is of the highest importance in this cross-correlation.
Going to higher fb, PH still dominates, with some contribution from SymmPSH.
For fb = 4 we are able to reduce the bias by a factor of O(18) compared to QE at
lmax = 3000, although this comes at a price of a roughly 29% increase in noise. In the
Appendix we show an example of the per mode solution for fb = 1.

Minimum variance estimator Our reference case for TT plus polarization will
be QE plus polarization, at lT T,max = 3000, lpol,max = 5000, for which we have a bias
of 1%, with an SNR of 124.

When adding polarization data to temperature data, we see from Figure 4.14
that the optimization results are fairly similar, unlike for the autospectrum. The
reason is that for cross-correlations, assuming no foregrounds are contained in the
polarization maps, there is no contribution from the polarization estimators to the
foreground-induced bias. However, due to the resulting lower total bias, is possible
to increase the lmax of the temperature estimators, and still obtain small biases. For
fb = 4, we can see that the bias is reduced by a factor of O(22) to a negligible level of
less than 0.1%. This comes at only a modest, 3% noise cost compared to QE MV at
lmax = 3000, reaching an SNR of around 120, while remaining in a regime where the
bias is negligible.

Simplifying the estimator combinations

A question that arises is to what extent the complex estimator combinations considered
previously can be simplified without degrading their performance. Indeed, some of the
optimal estimator combinations we derived above may be burdensome to implement in
practice, as they require implementing multiple lensing quadratic estimators, applied
to temperature maps from several multi-frequency linear combinations. We therefore
investigate how much these complex estimators improve over simple two-estimator
combinations.

In particular, we omit all but the two most-contributing estimators in an optimized
linear combination, and we recalculate the weights for the two most-contributing
estimators by maintaining their relative proportion in the a(L⃗) weight, and then
recalculating w(L⃗) (note this is not equivalent to an optimization over two estimators).
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Fig. 4.13 Optimization results for the cross-correlation of lensing from temperature-
only (TT ) data with an LSST-like sample. The pie charts represent the contribution
from each estimator, calculated as

∫
L⃗ w(L)ai(L). We see that for a high deprojection

of the bias, at far left, the optimization selects a combination of geometric and
multi-frequency cleaning, namely PH and SymmPSH.

The results are summarized in Figure 4.15 for the auto-spectrum, and Figure 4.16
for the cross-spectrum. We find that in most cases, this simplification has very little
impact on the estimator performance: we typically find only small, percent-level shifts
in bias and noise on the amplitude (we also plot the performance of some individual
estimators for comparison).

For high-fb estimators, we also find that as a general rule of thumb, these are
composed from the two single estimator configurations with lowest bias. In particular,
SymmPSH and PH are favoured for cross-correlations with low-z tracers, which can be
understood as follows: PH is ideal for eliminating tSZ effects and SymmPSH, with tSZ
deprojected, performs well at eliminating both tSZ and CIB biases; both together are
sufficient to reach a regime of b < σ/2. For the auto-spectrum these two estimators
similarly form a robust combination.

4.6 Conclusions

In this chapter we have investigated which combination of different lensing foreground
mitigation methods minimizes the foreground biases while maximizing the signal-to-
noise ratio of CMB lensing power spectrum and cross-spectrum measurements.
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Fig. 4.14 Optimization results for the cross correlation of lensing from polarization and
temperature data with an LSST-like sample. The pie charts represent the contribution
from each estimator, calculated as

∫
L⃗ w(L)ai(L). As the primary cross-bias has no

contributions from (foreground-free) polarization, we can see that for high deprojection
of the bias, at far left, the results are very similar to the TT only cross-correlation
case.

We explore two different approaches to combine mitigation methods for this
purpose.

The first one is composing (i.e., simultaneously using) geometric and multi-
frequency deprojection methods, namely bias hardening applied to a symmetric
estimator in which a particular foreground has been removed via multifrequency
deprojection. In this way, we propose two new estimators: i) SymmPSH, given by
point source hardening applied to a symmetric estimator with tSZ deprojected; ii)
SymmPH, given by profile hardening applied to a symmetric estimator with CIB
deprojected.

The second approach, used to further mitigate foregrounds, is to linearly combine
different types of foreground-reducing lensing estimators, and minimize a loss function
given by the sum of the squares of the noise and bias on the lensing amplitude. We
find that when using both temperature and polarization data, assuming no intrinsic
foregrounds in the polarization, the optimal combination for a high reduction in
bias is given by a mixture containing mainly point source hardening applied to the
tSZ-deprojecting symmetric estimator; this gives a total bias that is below a half-
percent (more than an order of magnitude smaller than the QE bias), at only a
modest 11% increase in noise beyond the QE. For cross-correlating with an LSST-like
galaxy sample, we find that the best combination for a high reduction in bias is given
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by a mixture of point source hardening applied to the CIB-deprojecting symmetric
estimator combined with the profile hardened estimator on its own; this results in a
bias to the cross-correlation amplitude that is less than 0.1% (significantly smaller
than the QE bias) at a cost of only a 3% increase in noise.

While the exact combination depends on the observable considered, generally we
find that the most robust estimators that can be used for auto and cross-spectrum
analyses consist mainly of combinations of: the profile hardened estimator, point
source hardening applied to the tSZ-deprojecting symmetric estimator, and, although
it has higher noise, the shear estimator (SH).

We caution that the results of this chapter may have some dependence on the
specific set of simulations used, although we have made efforts to perform our analysis
without sensitivity to precise cancellations or other fine details. In this chapter, we
have focused on the simulations of [244], but exploring our results with other sets of
simulations, such as as Websky [268], is well motivated. Future work could also include
both extragalactic and galactic foregrounds in the polarization map simulations or –
departing from simulations altogether – a theoretical modeling of foreground biasees.
We defer such investigations to future work.
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Fig. 4.15 Can the (sometimes complex) optimal linear combinations of estimators
be easily simplified? Black dots show the optimal points for the CMB lensing auto-
spectrum shown in previous plots. The grey cross is the shift in this optimal point,
if we choose to simplify the combination by using only the two estimators which
contribute most. In the top panel we show the TT -only case, and in the bottom panel
we also include polarization data. We can see that in general we have at most percent
level shifts, going from black dot to grey cross, so that simplifying the estimator
combinations works well.
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Fig. 4.16 As for Figure 4.15, but for cross-correlations with LSST galaxies. We
again conclude that the combined estimators can be simplified without significantly
degrading their performance.



5
Density reconstruction from biased tracers and its

application to primordial non-Gaussianity

Summary

Large-scale Fourier modes of the cosmic density field are of great value for learning
about cosmology because of their well-understood relationship to fluctuations in the
early universe. However, cosmic variance generally limits the statistical precision that
can be achieved when constraining model parameters using these modes as measured
in galaxy surveys, and moreover, these modes are sometimes inaccessible due to
observational systematics or foregrounds. For some applications, both limitations can
be circumvented by reconstructing large-scale modes using the correlations they induce
between smaller-scale modes of an observed tracer (such as galaxy positions). In this
chapter, we further develop a formalism for this reconstruction, using a quadratic
estimator similar to the one used for lensing of the cosmic microwave background. We
incorporate nonlinearities from gravity, nonlinear biasing, and local-type primordial
non-Gaussianity, and verify that the estimator gives the expected results when applied
to N-body simulations. We then carry out forecasts for several upcoming surveys,
demonstrating that, when reconstructed modes are included alongside directly-observed
tracer density modes, constraints on local primordial non-Gaussianity are generically
tightened by tens of percents compared to standard single-tracer analyses. In certain
cases, these improvements arise from cosmic variance cancellation, with reconstructed
modes taking the place of modes of a separate tracer, thus enabling an effective
"multitracer" approach with single-tracer observations.
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5.1 Introduction

Our understanding of the Universe has benefited tremendously from measurements of
the cosmic microwave background (CMB), primarily because of the linear relationship
between fluctuations in the CMB and fluctuations generated in the very early universe.
This relationship allows us to connect CMB measurements to the statistics of the
initial fluctuations and their time evolution, and has led to the establishment of the
current cosmological model. Extraction of similar information from the large-scale
structure (LSS) of the universe is limited by nonlinear clustering at smaller distances
and lower redshifts, requiring more elaborate modelling to interpret observations. This
modelling burden is greatly reduced at the largest distances we can resolve with galaxy
surveys, but this regime is in turn obscured by both statistical and systematic errors.
In this chapter, we explore a method to access these large scales while bypassing both
types of errors: quadratic density reconstruction.

This idea of density reconstruction relies on the fact that a fixed long-wavelength
density fluctuation correlates two different small-scale modes due to non-linear evo-
lution and higher-order biasing, with the amount of correlation proportional to the
long-wavelength mode. This can be understood as arising from a violation of sta-
tistical homogeneity if the long-wavelength mode is considered as fixed and the
shorter-wavelength modes are averaged over in an ensemble. Writing down a quadratic
estimator that probes this induced correlation between two different modes, we can
estimate the long-wavelength modes from the statistical properties of the smaller-scale
modes.1

There is a close analogy between this procedure and the common method of
CMB lensing reconstruction, in which a quadratic estimator, making use of the
lensing-induced correlation between two different CMB temperature modes, is used
to reconstruct the lensing field (e.g. [128]). It is using this analogy that many of
the methods for density reconstruction were derived. The idea of using a standard
quadratic estimator in the CMB lensing form to perform this reconstruction was first
proposed by [91], building on earlier work ([206, 292, 293], albeit with a somewhat
modified estimator). Significant further work in this area has been presented by [155,
188, 141, 157, 156]; see further discussion in Section 5.5.

1In fact, these statements are independent of the relative wavelengths of the modes, and the
formalism we present in this chapter is not restricted to the so-called “squeezed limit” of the three
modes involved. However, for our applications, the modes we are seeking to reconstruct have longer
wavelengths than the two modes whose correlations are used for the reconstruction, so we focus on
that situation in this chapter.
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The work in this chapter broadly divides in two parts. In the first part, we present
a considerable expansion of current technology for density reconstruction. We discuss
the application of density reconstruction to biased tracers, including, for the first time,
a full non-linear bias model in such a formalism. We further validate our method on a
suite of realistic N -body simulations, demonstrating that our methods perform just as
expected from theoretical calculations for both the reconstruction and its noise level.

We note that this reconstruction has a wealth of applications. One simple applica-
tion is the following: LSS surveys are often plagued by observational systematics that
manifest at large scales, impeding the direct observation of low-k modes. Galaxy and
quasar surveys are affected, for example, by variations in the density of foreground
stars, seeing, and galactic dust extinction (e.g. [225, 119, 139]), while 21 cm surveys
cannot access modes with low line-of-sight wavenumbers that are dominated by galactic
foregrounds, and imperfect knowledge of the instrument can spread this contamina-
tion throughout a wider region of Fourier space (e.g. [204, 161, 162]). A method
of reconstructing these inaccessible modes using correlations between smaller-scale
modes will improve the constraining power of a given survey for large-scale signals such
as local non-Gaussianity, and allow cross-correlations involving 21 cm surveys that
would otherwise be impossible (e.g. [155]). In this chapter, we parameterize large-scale
systematics with a wavenumber Kmin below which the tracer modes are assumed to
be inaccessible, and explore the precision with which modes with K < Kmin can be
recovered by our estimator. We note that this assumes that the relevant systematics
can be parameterized as a large-scale additive component, rather than a possible
modulation that might also significantly affect small scales; while there is evidence
that this is a reasonable assumption for some of the currently known systematics
(e.g. [139]), it may not hold in all cases.

In contrast to this general application, the second goal of our chapter is to explore, in
detail, a much more subtle application of density reconstruction: improving constraints
on local-type primordial non-Gaussianity. We will briefly motivate the measurement
of primordial non-Gaussianity and the utility of density reconstruction for improving
these constraints in the following paragraphs.

The CMB has taught us that the two-point statistics of the primordial fluctuations
can be accurately described by a red-tilted power law in Fourier space. If the initial
conditions are completely described by this power law, they have to be Gaussian
distributed, with statistics determined by only two degrees of freedom: the amplitude
(As) and tilt (ns) of the power law. If this is the case, however, it will be difficult
to reach beyond our current understanding of the early Universe. The most widely
accepted theory is known as cosmic inflation, which postulates a short early period
of accelerated cosmic expansion. Effectively, the constraints we derive from the
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CMB tell us that inflation can be very well described by a scalar field slowly rolling
down a potential (“single-field slow roll”, or SFSR), with only (weak) gravitational
interactions. While such a model is certainly possible (it was the first to be considered
[104, 159, 160]), it will not provide us with simple opportunities to understand the
physics of inflation. If a proposed model of the early Universe has to comply with
Gaussian initial conditions, effectively the model will observationally resemble SFSR.
Any further distinction could be extracted from the details of the scale dependence
of the primordial power spectrum [259], but so far, observations do not reveal any
obvious deviations from a single-parameter power-law [12, 11].

A much more powerful model discriminator would be available if the initial condi-
tions showed a (small) deviation from Gaussianity. In the presence of non-Gaussianity,
all moments beyond the power spectrum will generically be excited (starting with the
3-point function or bispectrum). Technically, these higher-point spectra probe the
dynamics and interactions of the field(s) driving inflation. As a result, a measurement
of non-Gaussianity would reveal details of inflation that can be directly related to
the underlying fundamental physics. For example, non-Gaussianity could reveal the
presence of more fields relevant during inflation, or could provide clues to how strongly
coupled the inflation field is (see e.g. [183] and references therein). These powerful con-
straints cannot be exposed through any other measurement, making non-Gaussianities
a unique probe of the early Universe.

To lowest order, primordial non-Gaussianities modulate the gravitational potential
Φ via

Φ(k⃗) = φG(k⃗) + fX
NL

∫ d3q

(2π)3 GX
NL(q⃗, k⃗ − q⃗)φG(q⃗)φG(k⃗ − q⃗) , (5.1)

where φG is the Gaussian potential and GX
NL is a kernel that describes how the potential

is modulated. In this chapter, we are interested in local non-Gaussianities for which
Glocal

NL = 1, i.e.
Φ(x⃗) = φG(x⃗) + fNL(φ2

G(x⃗)− ⟨φ2
G⟩), (5.2)

where we have subtracted the mean to yield zero expectation value for the fluctuations
and have renamed f local

NL to fNL. Current constraints set σ(fNL) ∼ O(5) [11], while
fNL ∼ 1 has been identified as a compelling theoretical threshold [17] which provides
a strong motivation to go beyond current limits: if a measurement is made showing
fNL above this limit, it would effectively rule out SFSR inflation as a viable scenario.
Future ground-based CMB experiments [5, 64] may be able reach σ(fNL) ∼ O(1),
but poor scaling and galactic and cosmological foregrounds will likely prevent the
CMB from reaching (far) beyond this limit. Fortunately, the large scale structure
(LSS) in the universe provides access to many more modes, for which σ(fNL) ∝
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(k3
max log kmax/kmin)−1/2 [240]. While increased dimensionality will help to improve

constraints, the use of LSS will introduce many complications. For one, the scaling
argument breaks down when kmax exceeds the nonlinear scale kNL, which is of order
0.2h Mpc−1 for current galaxy surveys [70, 134]. Furthermore, line-of-sight information,
which will be crucial in obtaining a sufficient number of modes, will require a careful
treatment mainly due to redshift-space effects [99]. Obtaining cosmological constraints
from a measurement of the full LSS bispectrum will therefore be challenging, not least
because of non-Gaussian covariance [240, 243, 142] which will likely require (a large
number of) simulations to estimate [55]. Some of these difficulties can be overcome by
simplifying the full bispectrum into more compressed statistics [236, 88, 46, 68, 189,
60, 218, 102]. The advantage of these statistics is that they should capture nearly all
the information [189], but are computationally and observationally less challenging.

Unlike in the CMB, in LSS local primordial non-Gaussianity can also significantly
affect the power spectrum of biased tracers, such as galaxies. Specifically, it has
been shown [69, 176, 260, 78, 234] that tracer bias will be affected by the primordial
non-Gaussianity, with the bias acquiring a unique 1/k2 contribution, which is hard
to produce otherwise. This signature has been used to place constraints on fNL

with current surveys [98, 150, 52]. Unfortunately, although the signal should be
distinguishable from other effects, on large scales, the precision with which we can
measure the power spectrum is ultimately limited by cosmic variance from the number
of available modes. However, it was shown that this cosmic variance can be mitigated
[246, 179, 105, 237, 165] by using multiple tracers of the same underlying density
field (with different biases), which essentially allows a measurement of scale-dependent
bias via a mode-by-mode comparison of the different tracers. A combination of two
(or more, e.g. [237, 26]) tracers will allow for cosmic variance cancellation, limiting a
measurement of the scale-dependent bias from local primordial non-Gaussianity only
by the number density of these tracers. Forecasts show that these techniques enable
constraints to reach σ(fNL) ∼ 1 this decade [237, 26, 192, 5].

In this chapter, we show that this cosmic variance cancellation can also be achieved,
to some extent, using only a single tracer. In order to do this, we compare our
reconstructed density field (which provides information from higher-point functions)
with a directly-measured tracer field. In the end, the constraints on fNL will depend
on the auto-correlation of the tracer field Pgg

2, the cross correlation of the tracer
and the reconstructed field Pgr, and the auto-correlation of the reconstructed field
Prr. This idea is related to [218], where similar ideas are used to simplify a forecast

2Since we will focus on the use of galaxies as tracers in this chapter, we will use the subscript g to
refer to these tracers, although the method we describe is equally applicable to quasars, line intensity
maps, or other tracers.
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of the combined information in the power spectrum, bispectrum and trispectrum.
However, unlike in [218], we examine the reconstruction approach as a possible analysis
tool rather than a method for more easily computing complex forecasts. In addition,
whereas [218] relies on an extension of position-dependent power spectra [61, 59, 58,
6], which draw information only from the squeezed limit, here we use a quadratic
estimator formalism for the reconstructed field without imposing a squeezed-limit
constraint.

Let us briefly summarize our most important results:

• The modes of the tracer overdensity will be coupled due to nonlinearities from
gravity, nonlinear bias, and primordial non-Gaussianity. The amplitudes (param-
eterized with bias coefficients) of several of these mode-couplings are unknown a
priori. We incorporate this in our characterization of the quadratic estimator for
long-wavelength modes, and marginalize over the unknown coefficients in our
forecasts. We also highlight the important contribution of tracer shot noise to
the noise on the reconstructed modes.

• We demonstrate density reconstruction using dark matter halos in N -body
simulations, verifying that the performance agrees well with that predicted from
analytical formulas. Though additional work using simulations will be required
for a practical analysis, our results indicate that our forecasts are realistic.

• We show that the quadratic estimator is able to reconstruct long-wavelength
modes at high signal-to-noise for a wide range of upcoming surveys (see Fig. 5.8).

• The addition of the reconstructed field to forecasts using the large-scale biased
tracer field can improve constraints on fNL by tens of percents depending on
the survey configuration. The improvement arises from a combination of two
sources: sample variance cancellation of signal in the large-scale tracer field,
and additional scale-dependent signal in the reconstructed field on scales where
the tracer field may be obscured by observational systematics. The additional
information in the reconstructed modes can be viewed as a signature of non-
Gaussian signal in the three and four-point functions, and our approach can be
viewed as a simple method to obtain combined information from the three- and
four-point functions and the power spectrum.

• The performance of this approach to constraining fNL is limited by a combination
of tracer number density and maximum wavenumber of modes that can be used
for reconstruction, with the details again depending on the survey configuration.
Potential improvements using response function approaches [29, 28] could be
explored to extend the reconstruction wavenumber and gain signal-to-noise.
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Quantity Symbol Defined in
Dirac delta function in 3d δD(k⃗) —
Wavenumbers of modes used in reconstruction k⃗, q⃗, etc. —
Wavenumbers of modes used for fNL constraints K⃗, K⃗ ′, etc. —
Amplitude of local primordial non-Gaussianity fNL Eq. (5.2)
Factor relating primordial potential and δ1 M(k, z) Eqs. (5.19)-(5.20)
Linear matter overdensity δ1(k⃗, z) —
Linear matter power spectrum Plin(k, z) —
Tracer overdensity δg(k⃗, z) Eq. (5.3) [generic];

Eq. (5.37) [second-order bias model]
Second-order mode-coupling Fα(k⃗1, k⃗2) Eq. (5.3) [generic];

Eq. (5.37) [second-order bias model]
Second-order response of small-scale power spectrum to long mode fα(k⃗1, k⃗2, z) Eq. (5.10)
Coefficient of Fα in second-order bias model for δg cα Eq. (5.37)
Linear tracer bias b1 ≡ bE

10 Eq. (5.37)
Quadratic tracer bias b2 ≡ bE

20 Eq. (5.37)
Other second-order bias parameters bE

s2 , bE
01, · · · Sec. 5.2.2

Quadratic estimator for mode with wavenumber K⃗ ∆̂α(K⃗) Eqs. (5.11), (5.17)
Weight function in ∆̂α(K⃗) gα(k⃗1, k⃗2) Eq. (5.15)
Normalization and Gaussian noise of ∆̂α(K⃗) Nαβ(K⃗) Eq. (5.16)
Mode reconstructed with growth-coupling estimator ∆̂G(K⃗, z) δr(k⃗, z) —
Power spectrum of δg, ignoring shot noise contribution Pgg —
Sum of Pgg and shot noise contribution Ptot Sec. 5.2.1
Cross power spectrum between δg and δr, ignoring shot noise contribution Pgr —
Power spectrum of δr, ignoring shot noise contribution Prr —
Shot noise contribution to δg power spectrum Pgg,shot Eq. (5.50)
Shot noise contribution to δr power spectrum Prr,shot Eqs. (C.26)-(C.27)
Shot noise contribution to δg-δr cross power spectrum Pgr,shot Eqs. (C.31)-(C.32)
Lowest wavenumber within survey volume Kf Sec. 5.4.3
Wavenumber below which we assume δg cannot be measured Kmin Sec. 5.4.3
Maximum wavenumber used for fNL constraints Kmax Sec. 5.4.3
Maximum wavenumber used in quadratic estimator for reconstructed modes kmax Sec. 5.4.3

Table 5.1 Notation used for important quantities in this chapter

The outline of the chapter is as follows. In Section 5.2, we describe our methodology
for density reconstruction, including the quadratic estimator formalism and bias
expansion we use. In Section 5.3, we apply this method to halos in N -body simulations.
In Section 5.4, we present our forecasts for the expected precision on reconstructed
modes, as well as constraints on local non-Gaussianity. We compare this reconstruction
formalism to other work involving higher-point statistics in Section 5.5. Finally, we
conclude in Section 5.6. Several derivations and technical details are included in the
appendices, and a summary of our notation can be found in Table 5.1. Except for in
Sec. 5.3, we use cosmological parameters from the Planck 2015 results, given in the
“TT,TE,EE+lowP+lensing+ext” column of Table 4 of [4].
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5.2 Density reconstruction

5.2.1 Quadratic estimator: general case

In this section, we will develop the general formalism for reconstructing large-scale3

density modes using observations of a biased tracer. This is largely based on the
treatment in [91], but we have adapted their expressions to 3D wavenumbers rather
than a separate treatment of line-of-sight and transverse components of k⃗.

Suppose that the overdensity field of the tracer, δg, is well-described by a linear
bias with respect to the linear matter overdensity δ1, plus a set of quadratic terms
that couple modes of δ1 with kernels Fα and amplitudes cα:

δg(k⃗, z) ≈ b1(z)δ1(k⃗, z) +
∑

α

cα(z)
∫

q⃗
Fα(q⃗, k⃗ − q⃗; z)δ1(q⃗, z)δ1(k⃗ − q⃗, z) , (5.3)

where ∫
q⃗
≡ (2π)−3

∫
d3q⃗ . (5.4)

For example, if we took δg to be the matter overdensity rather than a biased tracer,
we would have b1 = 1 and the sum would run over the second-order mode-couplings
induced by gravitational evolution, which take the form (e.g. [252])

FG(k⃗1, k⃗2; z) ≡ 17
21 , FS(k⃗1, k⃗2; z) ≡ 1

2

(
1
k2

1
+ 1

k2
2

)
k⃗1 · k⃗2 ,

FT(k⃗1, k⃗2; z) ≡ 2
7


(
k⃗1 · k⃗2

)2

k2
1k2

2
− 1

3

 , (5.5)

with cG = cS = cT = 1 and the subscripts indicating that these functions arise from
isotropic Growth, a large-scale coordinate Shift, and a Tidal coupling. For a biased
tracer, nonlinear biasing will lead to cα ̸= 1 for the above couplings, and primordial
non-Gaussianity will introduce additional mode-couplings. In Sec. 5.2.2, we will
introduce the full set of mode-couplings that must be considered, but we note here
that many of the corresponding cα coefficients will not be known a priori, and this
must be accounted for in the density reconstruction procedure. Henceforth, we will
drop the z-dependence from the quantities defined above.

Now, we would like to use the mode-couplings in Eq. (5.3) to construct a quadratic
estimator for a given mode of δ1. We will present the logic in some detail, for readers

3We again remind the reader that the our formalism is generally applicable, without any strong
assumptions on the wavelengths of the modes.
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who may not be familiar with the relevant arguments, but a reader who is comfortable
with peak-background-split arguments or the CMB lensing formalism may wish to
skip to the final result in Eqs. (5.9)-(5.10).

The analogous procedure for CMB lensing is to first consider an ensemble average
over CMB fluctuations while keeping fluctuations in the lower-redshift matter density
fixed. In this case, the fixed modes of the lensing potential ϕ (which is a line-of-sight
projection of the lower-redshift density field – see e.g. [128]) break the statistical
isotropy of the CMB fluctuations, inducing correlations between CMB fluctuation
modes with different wavenumbers: for temperature modes on the flat sky, the specific
effect is given by

〈
T (ℓ⃗)T (L⃗− ℓ⃗)

〉
ϕ fixed

= (2π)2δD(L⃗)CL + fϕ(ℓ⃗, L⃗− ℓ⃗)ϕ(L⃗) . (5.6)

When analyzing CMB simulations or data, the temperature two-point function is
estimated by a (weighted) sum over ℓ⃗ within a given CMB realization, and this in
fact approximates the ensemble average above, with ϕ modes effectively fixed because
they do not explicitly enter the sum. Equation (5.6) is an efficient starting point for
deriving quadratic estimators for a specific mode of ϕ, and we would like to find the
analogous starting point for density reconstruction.

To proceed, we consider an ensemble average over all modes of δ1 except those
with wavenumbers in a small neighborhood around K⃗, with δ1(K⃗) being the mode
we will eventually want to reconstruct. (We must consider a neighborhood around K⃗

because we are working in the continuum limit, where we have integrals instead of
discrete sums over wavenumbers; we will return to this point below.) In this ensemble
average, which we denote by “∼ K⃗ fixed”, and using Eq. (5.3), the two-point function
of δg is at next-to-leading-order in δ1 is
〈
δg(k⃗)δg(K⃗ − k⃗)

〉
∼K⃗ fixed

= b2
1⟨δ1(k⃗)δ1(K⃗ − k⃗)⟩

+ b1

∫
q⃗

∑
α

cαFα(q⃗, k⃗ − q⃗) ⟨δ1(q⃗)δ1(k⃗ − q⃗)δ1(K⃗ − k⃗)⟩∼K⃗ fixed

+[⃗k ↔ K⃗ − k⃗] . (5.7)

In the first line, we have assumed that k⃗ is not within the chosen neighborhood of
K⃗ or the equivalent neighborhood of 0, so there is no difference between our special
ensemble average and the standard one. In the second line, the integrand evaluates to
zero if q⃗ and k⃗ − q⃗ are not within the neighborhood of K⃗, since in that case, all three
δ1 modes are averaged over, and the three-point function is zero for K⃗ ̸= 0. When
q⃗ ∼ K⃗ or k⃗ − q⃗ ∼ K⃗, where we use “∼ K⃗” to indicate a vector falling within the
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neighborhood of K⃗, then δ1(q⃗) or δ1(k⃗− q⃗) factor out of the ensemble average because
they are held fixed, and the remaining two modes are averaged over:〈

δg(k⃗)δg(K⃗ − k⃗)
〉

∼K⃗ fixed
= b2

1⟨δ1(k⃗)δ1(K⃗ − k⃗)⟩

+ 2b1

∫
q⃗ ∼ K⃗

∑
α

cαFα(q⃗, k⃗ − q⃗)δ1(q⃗) ⟨δ1(k⃗ − q⃗)δ1(K⃗ − k⃗)⟩+

+[⃗k ↔ K⃗ − k⃗].
(5.8)

From here, we simply evaluate the two-point correlators and use the resulting Dirac
delta functions to collapse the q⃗ integrals.4 The final result is
〈
δg(k⃗)δg(K⃗ − k⃗)

〉
∼K⃗ fixed

= (2π)3δD(K⃗) b2
1Plin(k) + b1

∑
α

cαfα(k⃗, K⃗− k⃗)δ1(K⃗) , (5.9)

where
fα(k⃗1, k⃗2) ≡ 2[Fα(k⃗1 + k⃗2,−k⃗1)Plin(|⃗k1|, z) + 1↔ 2] . (5.10)

In Equation (5.9), we find the same structure as in the CMB lensing case in Eq. (5.6):
the standard power spectrum term, plus a term from off-diagonal correlations induced
by the fixed background mode.

Equation (5.9) suggests we can multiply two different modes of the measured tracer
field and then simply “divide” by the coupling strength b1

∑
α cαfα(k⃗, K⃗− k⃗) to obtain

an estimate of the linear field δ1 at large scales. Unfortunately, in general we do not
know the bias coefficients b1 or cα a priori, so the best we can do is to use the galaxy
mode couplings to estimate the product b1cαδ1 for a chosen α. To reduce variance on
the estimate, we will sum over all the mode couplings that involve the same large-scale
mode. This can be achieved by writing the following general quadratic estimator

∆̂α(K⃗) ≡ b̂1cαδ1(K⃗) =
∫

q⃗
gα(q⃗, K⃗ − q⃗)δg(q⃗)δg(K⃗ − q⃗) , (5.11)

with weights gα, similar to what is done for CMB lensing [128] or “clustering fossils”
from primordial gravitational waves [173, 137, 174]. For an alternative derivation of
this estimator, based on optimizing the cross-correlation of a quadratic combination
of measured modes with the true linear mode to be reconstructed, see Appendix C.1.

4One must integrate in a neighborhood around the argument of a Dirac delta function for this
collapse to take place, and this is why we considered a neighborhood around K⃗ in the first place.
In the discrete case, where we have sums instead of integrals over wavenumbers, we could define
our ensemble average to keep a single mode δ1(K⃗) fixed, since we would then have Kronecker deltas
instead of Dirac delta functions.
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The covariance between two such estimators α and β of the biased matter density
field on large scales can be split into a Gaussian part, coming from all disconnected
contributions, and a non-Gaussian part that includes all connected contributions:

⟨∆̂α(K⃗)∆̂∗
β(K⃗ ′)⟩ − ⟨∆̂α(K⃗)⟩⟨∆̂∗

β(K⃗ ′)⟩
= (2π)3δD(K⃗ − K⃗ ′)

[
CovG(∆̂α(K⃗), ∆̂∗

β(K⃗ ′)) + CovNG(∆̂α(K⃗), ∆̂∗
β(K⃗ ′))

]
. (5.12)

We constrain the weights to provide an estimator that is optimal in the sense of
minimizing the Gaussian contributions to its variance,

VarG[∆̂α](K⃗) ≡ CovG(∆̂α(K⃗), ∆̂∗
α(K⃗ ′)) , (5.13)

while requiring that it be unbiased if there were only a single mode-coupling, i.e.∫
q⃗
gα(q⃗, K⃗ − q⃗)fα(q⃗, K⃗ − q⃗) = 1 . (5.14)

These criteria lead to the familiar quadratic estimator weights:

gα(k⃗1, k⃗2) = Nαα(k⃗1 + k⃗2)
fα(k⃗1, k⃗2)

2Ptot(k1)Ptot(k2)
, (5.15)

where Ptot is the sum of the clustering and shot noise contributions to the tracer power
spectrum. The normalization is given by

Nαβ(K⃗) =
(∫

q⃗

fα(q⃗, K⃗ − q⃗)fβ(q⃗, K⃗ − q⃗)
2Ptot(q)Ptot(|K⃗ − q⃗|)

)−1

(5.16)

which guarantees that Nαα is equal to the Gaussian part of the variance of ∆̂α. We
will refer to Nαα as the reconstruction noise, which incorporates cosmic variance in
the reconstruction and the disconnected contribution from shot noise of the tracer
field. (It should be noted that Nαβ is not equal to the noise when α ̸= β.) With the
weights in Eq. (5.15), the estimator in Eq. (5.11) becomes

∆̂α(K⃗) = Nαα(K⃗)
∫

q⃗

fα(q⃗, K⃗ − q⃗)
2Ptot(q)Ptot(|K⃗ − q⃗|)

δg(q⃗)δg(K⃗ − q⃗) . (5.17)

The non-Gaussian part of the variance includes a trispectrum contribution from
clustering of the tracers, and further contributions from tracer shot noise. We neglect
the former, because it is subdominant to the latter; our comparisons with simulations
in Sec. 5.3 show that this is a valid approximation. Importantly, the shot noise
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contributions can dominate over the Gaussian reconstruction noise in many cases,
because these contributions couple to large-scale modes with large variance, while the
Gaussian contribution only involves small-scale modes, which have smaller variance
due to the shape of the matter power spectrum. We derive the full expressions for
these contributions and discuss their hierarchy further in Appendix C.2.

The expectation value of the estimator in Eq. (5.17), for a given realization of the
linear field at wavevector K⃗, is

〈
∆̂α(K⃗)

〉
δ1(K⃗) fixed

= b1

cα +
∑
β ̸=α

cβ
Nαα(K)
Nαβ(K)

 δ1(K⃗) . (5.18)

We clearly see that there is a contamination of the estimator with respect to the
case of only a single mode-coupling, given by the product of the (Gaussian) noise for
the estimator α and a sum of bias terms divided by the cross normalization between
estimators α and β.5 If the goal is to just reconstruct the linear mode of interest,
then it is important to account for this contribution. One can attempt to construct a
so-called “bias-hardened" estimator by forming a linear combination of the original
estimators that is free of this contamination at leading order (e.g. [197, 201, 91]).
However, for the specific mode-couplings relevant in this situation, the high degree of
correlation between the original estimators implies that the noise on the new estimator
will be so high that it is no longer useful; see Appendix C.3 for details.

We claim that, for extracting non-Gaussianity, this contamination can actually be
useful. As we will see later, some of these contaminating terms induce scale-dependence
that reproduces the 1/K2 scaling created by primordial non-Gaussianity. Depending
of the signs of these terms, they can either raise or lower the signal to noise on fNL

from the reconstructed field. We will discuss this further in Sec. 5.2.3.

5.2.2 Non-Gaussianity and bias expansion

As we discussed in the introduction, primordial non-Gaussianity of the local type
introduces a quadratic contribution to the metric perturbation. The metric perturba-
tion (gravitational potential) φ is related to the linear matter overdensity through the
usual Poisson equation (dropping the subscript G)

φ(k⃗, z) = δ1(k⃗, z)
M(k, z) , (5.19)

5It can be seen from Eq. (5.16) that as the overlap integral of the two mode-couplings goes to
zero, Nαβ becomes very large and the contamination vanishes.
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where the Poisson factor M(k, z) is given by

M(k, z) = 2c2

3H2
0 Ωm

D(z)k2T (k) . (5.20)

Here, the growth factor D(z) is normalized to agree with the scale factor 1/(1 + z)
during matter domination.

Galaxies and 21 cm fluctuations of the density field are biased tracers of the
underlying, dynamically dominant matter distribution. In the presence of local
primordial non-Gaussianity, the coupling of the long and short modes leads to an
additional modulation of the abundance of collapsed objects by the long wavelength
potential fluctuations φ. To describe biased tracers we thus follow [97, 23] in performing
a double expansion of the Eulerian galaxy (or tracer) density field in the non-linear
density and linear potential6

δE
g (x⃗) =bE

10δ(x⃗) + bE
01φ(x⃗L[x⃗]) + bE

20δ
2(x⃗) + bE

11δ(x⃗)φ(x⃗L[x⃗]) + bE
02φ

2(x⃗)
+ bE

s2sij(x⃗)sij(x⃗) + ε(x⃗) + εδ(x⃗)δ(x⃗) + εφ(x⃗)φ(x⃗L[x⃗]) + · · · .
(5.21)

Here, the bE
ij are the Eulerian bias parameters7, sij is the tidal tensor

sij(x⃗) =
[∇i∇j

∇2 −
1
3δ

(K)
ij

]
δ(x⃗) , (5.22)

and ε is the stochasticity, which correlates with itself but not with the linear density
field. In the simplest case where galaxies are a Poisson sample of the underlying
matter field, the stochasticity leads to the fiducial 1/n̄ power spectrum. The higher
order stochasticity contributions εδδ and εφφ lead to stochasticity contributions in the
bispectrum [79], as we review in App. C.2. In simple local-Lagrangian bias models, the
tidal tensor bias bE

s2 can be related to the linear density bias as bE
s2 = −2/7

(
bE

10 − 1
)

[24]. Employing realistic simplifying assumptions, we will see that all of the bias
parameters bE

ij can be expressed in terms of bE
10 and bE

20. We are truncating the above
expansion at second order, since we will only consider tree level power spectra and
bispectra as well as the Gaussian disconnected trispectrum in our derivations. We can
thus also neglect higher derivative contributions, such as k2δ1(k⃗), as the contribution
of their bias parameters are equivalent to cubic contributions to the matter and galaxy

6In the peak-background split formalism, the abundance of collapsed objects is given by e−ν2/2

where ν = δc/σ with δc the collapse threshold and σ the variance. The long wavelength density
modulates the collapse threshold as δc → δc − δ, whereas the metric perturbation φ modulates the
variance σ → σ(1 + 2fNLφ).

7In the introductory discussion in Sec. 5.2.1, we employed the notation b1 ≡ bE
10 for the sake of

simplicity.
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density fields (e.g. [1]). Note that all of the δ terms in Eq. (5.21) refer to the underlying
non-linear matter density field including its quadratic couplings. The potential φ, in
turn, is linear, as the dependence of the halo abundance on long wavelength potential
fluctuations is set up in the early Universe.

There is, however, a non-linearity in the potential terms that arises from the fact
that the abundance of galaxies in the peak-background split is set up in Lagrangian
space with coordinates x⃗L. These Lagrangian positions are related to the Eulerian
coordinates by x⃗L[x⃗] = x⃗− Ψ⃗(x⃗) at leading order. The potential is thus advected by
long wavelength displacements as [274]

φ(x⃗L[x⃗]) = φ(x⃗)− Ψ⃗(x⃗) · ∇⃗φ(x⃗) + · · · . (5.23)

The Fourier transform of the linear displacement field Ψ⃗(x⃗) is related to the linear
matter overdensity by Ψ⃗(k⃗) = i(k⃗/k2)δ(k⃗).

At second order, the matter density field picks up a new quadratic contribution
from primordial non-Gaussianity according to Eq. (5.2):

δ(k⃗) = δ1(k⃗)+
∫

q⃗

 ∑
α=G,S,T

Fα(q⃗, k⃗ − q⃗)
 δ1(q⃗)δ1(k⃗− q⃗)+fNLM(k)

∫
q⃗
φ(q⃗)φ(k⃗− q⃗)+ · · · ,

(5.24)
where the growth, shift and tidal components of the gravitational coupling kernel are
given by Eq. (5.5). For biased tracers, this expression gets multiplied by bE

10. We can
rewrite the last term in terms of the density field using the Poisson equation, resulting
in a new quadratic coupling

Fφφ(k⃗1, k⃗2) = M(|⃗k1 + k⃗2|)
M(k1)M(k2)

, (5.25)

such that

δ(k⃗) = δ1(k⃗) +
∫

q⃗

 ∑
α=G,S,T,φφ

cαfNL
pαFα(q⃗, k⃗ − q⃗)

 δ1(q⃗)δ1(k⃗ − q⃗) + · · · , (5.26)

where now cα = {1, 1, 1, 1} and pα = {0, 0, 0, 1}.
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Combining this result with the Fourier transform of the other second order bias
terms in Eq. (5.21) yields

δE
g (k⃗) =

[
bE

10 + bE
01

M(k)

]
δ1(k⃗) + bE

01

∫
q⃗

1
2

 q⃗ · (k⃗ − q⃗)
q2M(|⃗k − q⃗|)

+ q⃗ · (k⃗ − q⃗)
|⃗k − q⃗|2M(q)

 δ1(q⃗)δ1(k⃗ − q⃗)

+ bE
10

∫
q⃗

 ∑
α=G,S,T,φφ

Fα(q⃗, k⃗ − q⃗)
 δ1(q⃗)δ1(k⃗ − q⃗)

+ fNLbE
10

∫
q⃗

M(k)
M(q)M(|⃗k − q⃗|)

δ1(q⃗)δ1(k⃗ − q⃗) + bE
20

∫
q⃗
δ1(q⃗)δ1(k⃗ − q⃗)

+ bE
11

∫
q⃗

1
2

(
1

M(q) + 1
M(|⃗k − q⃗|)

)
δ1(q⃗)δ1(k⃗ − q⃗)

+ bE
02

∫
q⃗

1
M(q)M(|⃗k − q⃗|)

δ1(q⃗)δ1(k⃗ − q⃗)

+ bE
s2

∫
q⃗

 [q⃗ · (k⃗ − q⃗)]2

q2|⃗k − q⃗|2
− 1

3

 δ1(q⃗)δ1(k⃗ − q⃗). (5.27)

The additional terms arising from the non-Gaussian bias can be encoded by the
new quadratic coupling kernels

F01 = 1
2 k⃗1 · k⃗2

(
1

k2
2M(k1)

+ 1
k2

1M(k2)

)
, F11 = 1

2

(
1

M(k1)
+ 1

M(k2)

)
,

F02 = 1
M(k1)M(k2)

.

(5.28)

The Eulerian bias parameters can be related to their Lagrangian counterparts
through a spherical collapse calculation [97, 23]:

bE
10 = bL

10 + 1 , (5.29)
bE

20 = 2(a1 + a2)bL
10 + a2

1b
L
20 , (5.30)

bE
01 = bL

01 , (5.31)
bE

11 = a1b
L
11 + bL

01 , (5.32)
bE

02 = bL
02 , (5.33)

where a1 = 1 and a2 = −17/21 are spherical collapse expansion factors. The non-
Gaussian Lagrangian bias parameters can be obtained using the peak background split.
They are given as the the derivatives of the mass function with respect to the long
wavelength potential fluctuations. Assuming a universal mass function, the derivatives
with respect to the potential can be related to the derivatives with respect to the long
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Mode Coupling (α) pα cα Fα(k⃗1, k⃗2)

G 0 b1 + 21
17b2

17
21

S 0 b1
1
2

[
1

k2
1

+ 1
k2

2

]
(k⃗1 · k⃗2)

T 0 b1 + 7
2bs2

2
7

[
(k⃗1 ·⃗k2)2

k2
1k2

2
− 1

3

]
φφ 1 b1

M(|⃗k1+k⃗2|,z)
M(k1)M(k2)

01 1 2δc(b1 − 1) 1
2 k⃗1 · k⃗2

(
1

k2
2M(k1) + 1

k2
1M(k2)

)
11 1 2

(
δc
[

b2−2(a1+a2)(b1−1)
a1

]
− a1 [b1 − 1]

)
+ 2δc (b1 − 1) 1

2

(
1

M(k1) + 1
M(k2)

)
02 2 4δc

(
δc
[

b2−2(a1+a2)(b1−1)
a2

1

]
− 2 [b1 − 1]

)
1

M(k1)M(k2)

Table 5.2 Mode couplings, fNL exponents, bias parameters and coupling kernels of
the quadratic interactions for Eq. (5.37).

wavelength density, and consequently the bias parameters of the potential terms can
be related to the bias parameters of the density terms:

bL
01 = 2fNLδc

(
bE

10 − 1
)

, (5.34)

bL
11 = 2fNL

δc

bE
20 − 2(a1 + a2)

(
bE

10 − 1
)

a2
1

− [bE
10 − 1

] , (5.35)

bL
02 = 4fNL

2δc

δc

bE
20 − 2(a1 + a2)

(
bE

10 − 1
)

a2
1

− 2
[
bE

10 − 1
] , (5.36)

where δc is the spherical collapse threshold. Note that small deviations from this
simple scaling of non-Gaussian bias bL

01 with Gaussian bias bE
10 have been found in

simulations [40] and seem to depend on the way halos are identified.
In summary, we can write for the galaxy density field up to second order in the

presence of local type primordial non-Gaussianity:

δg(k⃗) =
[
bE

10 + fNL
c01

M(k)

]
δ1(k⃗) +

∫
q⃗

[∑
α

cαfNL
pαFα(q⃗, k⃗ − q⃗)

]
δ1(q⃗)δ1(k⃗ − q⃗) , (5.37)

where α now runs over {G, S, T, φφ, 01, 11, 02} with the couplings given in Table 5.2.
In this table, Eq. (5.37), and throughout the rest of the chapter, we have simplified
the notation to b1 ≡ bE

10, b2 ≡ bE
20, and bs2 ≡ bE

s2 . Note that we have not included
mode-couplings due to lensing, which are expected to be a subdominant contribution
that is somewhat degenerate with the S term [91], nor have we incorporated redshift
space distortions or anisotropic selection effects (see Sec. 5.4.3 for discussion).
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5.2.3 Reconstruction noise and contamination

With this formalism in place, we can now examine the noise of the reconstructed
modes, and the contamination arising from the presence of multiple mode-couplings
in the tracer field used for reconstruction.8 We will show these quantities for a DESI-
like survey (with specifications given in Sec. 5.4.3), but we have checked that the
conclusions we draw from this case also apply to the other surveys we consider.

10 3 10 2

K [h Mpc 1]
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105

106

107

108

109

1010

N
 [h

3 M
pc

3 ]

G
S
T

c11

Fig. 5.1 Reconstruction noise power spectra for estimators that use each of the
quadratic mode-couplings discussed in Sec. 5.2.2. We omit curves for the c01 and c02
estimators, which are greater than the upper limit of the plot. The G (“growth")
estimator has the lowest noise by far. These curves are computed for a DESI-like
survey, but the hierarchy between them is unchanged for the other surveys we consider.
The signal to noise on reconstructed modes (not shown) is likewise much higher for
the G estimator than for S or T, justifying our use of the G estimator for our main
results.

Figure 5.1 shows the reconstruction noise power spectrum corresponding to esti-
mators that use each of the quadratic mode-couplings discussed in Sec. 5.2.2. We see
that the “growth” estimator has the lowest noise by far. We compare the predicted
noise for the G, S, and T estimators with results from N -body simulations in Sec. 5.3
(among other tests), finding good agreement. Thus, we use the growth estimator in
our forecasts for reconstruction9, henceforth referring to reconstructed modes as δr(K⃗)

8For producing matter power spectra for forecasts, we relied on the nbodykit code (https:
//github.com/bccp/nbodykit).

9Out of the G, S, and T estimators, the G estimator yields both the lowest noise and the highest
signal to noise on reconstructed modes. However, some of the other estimators (e.g. α = φφ) also have

https://github.com/bccp/nbodykit
https://github.com/bccp/nbodykit
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instead of ∆̂G(K⃗). However, as we discussed in Sec. 5.2.1, the output of the G estima-
tor (or any other single estimator) will be contaminated by the other mode-couplings,
with the specific contamination given by Eq. (5.18), and we must incorporate this
contamination into our forecasts.

Fig. 5.2 Left: Contamination in the expectation value of G estimator, corresponding to
separate multiplicative biases on the amplitude of a reconstructed mode, computed for
a DESI-like survey. Blue solid line is the estimator growth bias shown for comparison.
Dashed lines indicate negative values. Several of these curves inherit the k−2 scaling of
the scale-dependent bias in δg arising from nonzero fNL, implying that reconstructed
modes can be used to constrain fNL in the same way. Right: Ratio of scale-dependent
bias from fNL (for a fiducial value of fNL = 1) to total bias for δg (solid) and δr (dot-
dashed). Local primordial non-Gaussianity has roughly the same relative contribution
to the bias of δg or reconstructed modes.

We show this contamination in the left panel of Figure 5.2, in the form of each term
cβNGG/NGβ in the square brackets of Eq. (5.18). These curves each represent separate
multiplicative biases on the amplitude of a reconstructed mode. Those arising from
late-time gravitational evolution (S, T) or from advection of the primordial potential
(c01) are white in K. In contrast, those arising from couplings between δ and φ (c11) or
φ and itself (φφ, c02) scale like M(K)−1 ∝ K−2. We derive these scalings analytically
in the large-scale limit in Appendix C.4. Importantly, all terms that scale like K−2

involve fNL, such that, as for δg, low-K scale-dependent bias in the reconstructed
modes can be used as a probe of local primordial non-Gaussianity. The right panel of
Fig. 5.2 shows that the relative size of this scale-dependent bias is comparable for δg

and δr, reaching O(10%) at K ∼ 0.001h Mpc−1, assuming fNL = 1.

signal to noise approaching that of the G estimator, since the contaminating terms in Eq. (5.18) act
as “signal” in a signal-to-noise computation. This indicates that a more optimal choice of estimator
weights may be possible, although we leave this to future work.
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Figure 5.2 also shows that the contamination from other mode-couplings is sub-
dominant to the intrinsic bias on the reconstructed field (i.e. the cG term in Eq. 5.18).
Thus, using cG = b1 + (21/17)b2 from Table 5.2, we can derive the rough dependence
of Prr and Pgr on b1 and b2:

Prr ∝ b2
1(b1 + b2)2 , Pgr ∝ b2

1(b1 + b2) . (5.38)

If galaxy shot noise is negligible compared to Pgg, then the reconstruction noise NGG

satisfies NGG ∝ b4
1, implying that Prr/NGG ∝ (1 + b2/b1)2 in this regime. This scaling

will be useful to help understand the behavior of our forecasts when we change the
fiducial value of b2.

5.3 Simulations

To validate the quadratic estimator framework presented in Sec. 5.2, we use a suite
of 15 realisations of a cosmological N -body simulation [1]. The initial conditions are
generated with the second-order Lagrangian Perturbation Theory (2-LPT) code [241]
at the initial redshift zi = 99 and are subsequently evolved using Gadget-2 [266] for
fNL = 0. The simulations are performed with Np = 10243 dark matter particles in a
cubic box of length L = 1500h−1 Mpc with periodic boundary conditions. We assume
a flat ΛCDM cosmology with the cosmological parameters Ωm = 0.272, ΩΛ = 0.728,
h = 0.704, ns = 0.967, σ8 = 0.81.

We restrict our simulation comparisons to z = 0 because this is where nonlinearities
are the strongest and our quadratic bias approximation breaks down at the lowest
wavenumber; analyzing a field at z = 0 is therefore, arguably, the most rigorous test
of our methodology. Since the purpose of the simulation comparisons is to provide a
first, simple validation of our reconstruction procedure, rather than to fully explore
its simulated performance as a function of redshift in detail, we defer any detailed
explorations beyond our z = 0 validation to future work.

Dark matter halos in the final z = 0 density field are identified using a Friends-
of-Friends (FoF) algorithm with linking length l = 0.2 times the mean interparticle
distance. The halos are binned in mass, with each bin spanning a factor of three
in mass. We have checked the viability of our reconstruction method for a range of
masses, finding qualitatively similar results in all cases; however, for simplicity, we
present only the results for the lowest mass bin, the properties of which are given in
Table 5.3. Particles and halos are assigned to a regular grid using the Cloud-in-Cell
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Mass Bin Mean Halo Mass [1013h−1M⊙] n̄ [10−6h3 Mpc−3] b1 cg ct cs

I 0.77 627 1.07 0.62 1.14 1.07

Table 5.3 Properties of the halo mass bin employed in this study: the mean mass of
the sample, the number density of halos n̄, the linear bias b1, and the three relevant
cα parameters defined in Table 5.2. The measured bias parameters are taken from [1],
which is based on the same simulations and mass bin we use here.

(CIC) scheme. We Fourier transform the matter and halo density fields using the
publicly available FFTW library10.

5.3.1 Generation of quadratic estimators

We generate quadratic estimators from the halo density field δg in N -body simulations
using the convolution theorem. This means that we use a sequence of multiplications
with powers of wavenumbers in Fourier space, Fourier transforms, and subsequent
multiplication of the weighted fields in configuration space. We generate three quadratic
estimators corresponding to the growth term δ2, shift term Ψ · ∇δ, and the tidal
term s2, with associated Fourier-space kernels given in Eq. (5.5). The first step in
our procedure is to remove very small scale modes by applying a cut-off kmax in
Fourier space through multiplication of the Fourier space density field with a filtering
function. While the exact form of the cutoff is not important, we adopt a Gaussian
filter W (Rk⃗) = exp (−k2R2/2) for numerical stability. We define the smoothed
density field by δR

g (k⃗). We choose three external smoothing scales: R = 20h−1 Mpc,
R = 10h−1 Mpc, and R = 4h−1 Mpc, corresponding to maximum wavenumbers
kmax ≈ 0.05h Mpc−1, kmax ≈ 0.1h Mpc−1, and kmax ≈ 0.25h Mpc−1 respectively. The
smoothing scale removes all wavenumbers k > kmax, such that we reconstruct long
wavelength modes using modes k < kmax for three different cases.

The mode coupling functions gα(q⃗, k⃗ − q⃗) defined by Eq. (5.15) contain a Wiener
filter, which we implement by first generating the linear power spectrum on the
simulation grid, and then defining two fields:

δA(k⃗) =
δR

g (k⃗)
b2

1Plin(k⃗) + n̄−1
and δB(k⃗) =

δR
g (k⃗)Plin(k⃗)

b2
1Plin(k⃗) + n̄−1

, (5.39)

where b1 and n̄ are the linear bias and halo number density corresponding to the halo
mass bin defined in Table 5.3. Using δA and δB we generate growth, shift and tidal
estimators using multiplications of powers of wavenumbers in Fourier space, Fourier

10http://www.fftw.org

http://www.fftw.org
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Fig. 5.3 Cross correlations of estimators ∆̂α corresponding to the growth, shift, and
tidal mode-couplings with the linear density field δ1. We compare theory predictions
(lines) with simulations (points) for three different smoothing scales, R = 20h−1

Mpc, R = 10h−1 Mpc and R = 4h−1 Mpc, corresponding to maximum wavenumbers
kmax = 0.05h Mpc−1, 0.1h Mpc−1, and 0.25h Mpc−1 respectively. In this figure, we
plot ⟨∆̂αδ1⟩/Nαα (in contrast to what is defined in Eq. (5.17), in simulations we define
the estimators ∆̂α without a prefactor Nαα). We find very good agreement for the
growth estimator for all smoothing scales, and also reasonably good agreement for the
other estimators.

transforms, and multiplication of fields in configurations space. For example, we
generate the growth estimator as follows. First, we inverse Fourier transform both
fields defined in Eq. (5.39) to obtain δA(x⃗) and δB(x⃗). Next, in configuration space, we
multiply the product of both fields by 17/21 (Table 5.2) and finally Fourier transform
back to obtain the growth estimator in Fourier space. We generate shift and tidal
estimators with a similar procedure.

Note that the main computational cost in generating the quadratic estimators
comes from performing the Fourier transforms. The auto- and cross-spectrum analysis
of quadratic estimators only requires the computational cost of a power spectrum
analysis, which is quite efficient. In all our figures in this section, we estimate
the errorbars of our measurements using the standard deviation of 15 simulation
realisations.

5.3.2 Cross-correlation of quadratic estimators with the ini-
tial linear field

In this section, we describe our results for the cross-correlations of three quadratic
estimators ∆̂α(k⃗) with the initial linear field δ1(k⃗), and compare the theory predictions
with simulations. The prediction is given by (since fNL = 0 we only consider the
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Fig. 5.4 Auto-correlations of the quadratic estimators ∆̂α, for the same smoothing scales
shown in Fig. 5.3. The predictions for the growth estimator agree with simulations for
all smoothing scales. However, for other estimators predictions agree with simulations
for large smoothing scales but for the low smoothing scales, the predictions slightly
disagree with simulation results as higher-order terms become more important.

growth, shift and tidal terms)

⟨∆̂α(k⃗)δ1(k⃗′)⟩′ = b1Nαα(k⃗)
∑

β∈{G,S,T }
cβPlin(k⃗)

×
∫

q⃗

fα(q⃗, k⃗ − q⃗)fβ(q⃗, k⃗ − q⃗)
2Ptot(q⃗)Ptot(k⃗ − q⃗)

W (Rq⃗)W (R(k⃗ − q⃗)) + Pα,shot(k⃗)

= b1Plin(k⃗)
∑

β∈{G,S,T }
cβ

Nαα(k⃗)
Nαβ(k⃗)

+ Pα,shot(k⃗) ,

(5.40)

where the prime on the left-hand side denotes that the factor of (2π)3δD(k⃗ + k⃗′) has
been omitted, and cβ are bias parameters corresponding to the growth, shift and tidal
terms and can be measured from either simulations or data. In our analysis we use the
bias parameters from Table 5.3, measured in simulations in [1]. In Eq. (5.40), Pα,shot

is the bispectrum shot noise term. Since one field is the linear field, all contribution
to this shot noise comes from the stochastic bias terms in the two galaxy fields δg in
the quadratic estimator, such as ε and εδδ (see App. C.2 or [79] for more discussion
about stochastic bias terms). The expression for this shot noise contribution in this
case can also be derived from Eq. (C.31) and it takes the form

Pα,shot(k⃗) = b1

n̄
Plin(k⃗)Nαα(k⃗)

∫
q⃗

fα(q⃗, k⃗ − q⃗)
2Ptot(q⃗)Ptot(k⃗ − q⃗)

W (Rq⃗)W (R(k⃗ − q⃗)). (5.41)

In Fig. 5.3, we compare theory with simulations for three different values of kmax.
Although for the Fisher analysis in this work, we only use the growth estimator, here
we also compare results in simulations for the shift and the tidal estimators. For the
growth estimator, we find that the theory predictions agree very well with simulation
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results for up to kmax = 0.25h Mpc−1 at redshift z = 0. For the other estimators,
we also find reasonably good agreement; however, upon close inspection we can see
small disagreements which might arise from higher-order terms ignored in our theory
predictions.

Interestingly, for kmax = 0.25h Mpc−1, we can see in Fig. 5.3 that the shape of
the cross-correlation of growth estimators with the density field is very similar to the
linear power spectrum on large scales. The scale-dependent bias factor in Eq. (5.40) is
flat on large scales, indicating that the reconstruction works very well for large kmax.

5.3.3 Auto- and cross-correlations of quadratic estimators

In this section we discuss our results for the auto- and cross-correlations of three
quadratic estimators from simulations and compare the results with our linear-order
theoretical prediction, given by

⟨∆̂α(k⃗)∆̂β(k⃗′)⟩′ =

b4
1Nαα(k⃗)Nββ(k⃗)

∫
q⃗

fα(q⃗, k⃗ − q⃗)fβ(q⃗, k⃗ − q⃗)[
2Ptot(q⃗)Ptot(k⃗ − q⃗)

]2 W (Rq⃗)2W (R(k⃗ − q⃗))2Plin(q⃗)Plin(k⃗ − q⃗)

+ b2
1Plin(k⃗)

∑
i,j

cicj
Nαα(k⃗)
Nαi(k⃗)

Nββ(k⃗)
Nβj(k⃗)

+ Pαβ,shot(k⃗) . (5.42)

The first term is of order O(δ4
1), while the second and third are of order O(δ6

1). The
third term, Pαβ,shot, is the contribution arising from halo shot noise, and is given in
App. C.2.

In Fig. 5.4 we compare cross-correlation results from simulations with theory, for
the growth, shift, and tidal estimators, using the same three smoothing scales as above.
The simulations and theory agree very well up to kmax = 0.1h Mpc−1 at z = 0. For
larger kmax we see good agreement for the growth estimator and reasonable agreement
for the tidal and shift estimators. The small disagreement of linear predictions for the
tidal and shift estimators with simulations for the higher kmax show that higher-order
terms become important for these estimators. The detailed impact of these higher
order corrections from biasing or scale-dependent stochasticity will be the subject of
future inquiry. Although we appear to have excellent agreement for the growth term
at higher kmax, to be conservative, we still set the scale kmax = 0.1h Mpc−1 at redshift
z = 0 in our forecasts in Sec. 5.4. We scale this to other redshifts by making use of
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the fact that perturbation theory and the bias expansion at a given order will be valid
at higher k for higher redshifts.
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Fig. 5.5 Comparison of the auto power spectrum of the growth estimator ∆̂G, nor-
malised by NGG computed from theory (in red), with (⟨∆̂Gδ1⟩)2/Plin (in blue). We
compare simulation results (points) with theory predictions (lines) for the same smooth-
ing scales as Figs. 5.3 and 5.4. We again find excellent agreement between simulations
and theory. In the bottom right panel, we plot the cross-correlation coefficient rGδ1

between the growth estimator and the linear density field for three smoothing scales.
We see that rGδ1 > 0.9 for R = 4h−1 Mpc which is why in the bottom-left panel,
⟨∆̂G∆̂G⟩ is signal dominated.

In Fig. 5.5, we plot the auto spectra of the growth estimator, normalized with
NGG (unlike in the previous plots), in order to compare them to an approximation
of the signal power spectrum, given by the second term in Eq. (5.42) (the first and
third terms represent noise). Since the contribution of the cross-shot noise is small,
the signal part can be approximated by cross-correlating the growth estimator with
the linear density field and dividing it by the linear power spectrum to ensure the
correct normalization, i.e. (⟨∆̂Gδ1⟩)2/Plin; we show this in blue in Fig. 5.5. For the
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two larger smoothing scales, the spectra of the estimator are dominated by the noise
contribution (which is white at low k). The excellent agreement between theory (red
solid lines) and simulations (red points) for all smoothing scales serves as an additional
verification that the reconstruction procedure is working as expected for reasonable
values of kmax. In addition to the auto spectra, to check how well the reconstruction is
working, we plot the cross-correlation coefficients between the growth estimator and
the linear density field in the bottom-right panel of Fig. 5.5 for three different kmax.
The cross-correlation coefficient for low kmax is very low, rGδ1 < 0.4, explaining why
the auto spectra in the top-left panel are noise dominated. However, for the highest
kmax we consider, 0.25h Mpc−1, the cross-correlation coefficient is rGδ1 > 0.9, which
explains why the reconstruction works very well and the auto spectra for high kmax

are signal dominated.

5.3.4 Visualization of reconstructed field

To visualize how well we are reconstructing the linear density field on large-scales in
simulations, we compare 2D slices of thickness 6h−1Mpc of the linear density field and
the reconstructed field in Fig. 5.6. We perform the reconstruction using kmax = 0.25h

Mpc−1, i.e., smoothing at a scale of R = 4h−1 Mpc. In the visualization, we apply an
external smoothing of R = 20h−1 Mpc to both the linear field and the reconstructed
field, which removes all modes with k > 0.05h Mpc−1. Our comparison of the linear
and reconstructed fields in Fig. 5.6 shows that the reconstruction indeed recovers most
of the large-scale features in the linear density field. In Fig. 5.7 we show histograms,
probing the one-point probability distribution functions, of the linear density field
and the reconstructed field. We see that the reconstructed field is nearly Gaussian,
partially justifying our approximation of a Gaussian likelihood in the next section.
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Fig. 5.6 2D slices of the 3D linear density field (left panel) and the growth estimator
∆̂G (right panel). For the growth estimator we used R = 4h−1 Mpc smoothing which
corresponds to kmax = 0.25h Mpc−1. We apply an external smoothing of R = 20h−1

Mpc to both the linear and reconstructed fields. As expected, we find that the
reconstruction reproduces many of the large-scale features in the linear density field.
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kmin = 0.05h Mpc 1 linear
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Fig. 5.7 Probability distribution functions (histograms) of the linear density field and
the reconstructed field from the halo density field of mass bin I. As in Fig. 5.6, we
use kmax = 0.25h Mpc−1 for the reconstruction and apply an external smoothing scale
of R = 20h−1 Mpc to both the linear field and the reconstructed field. The PDFs of
the reconstructed field are scaled to have the same variance as the linear field, and
shifted to have mean 0. We find that the PDF of the reconstructed field is very close
to Gaussian. Note that here we have applied a low-k cutoff to the modes used for
reconstruction of kmin = 0.05h Mpc−1 in order to match the approach in our forecast
section below.
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5.4 Forecasts

5.4.1 Fisher matrix setup

To perform a Fisher forecast, we make the usual assumption that the measured tracer
overdensity δg and the reconstructed field δr obey a Gaussian likelihood. For the
matter and galaxy field, this approximation is partially justified by the fact that we
are analyzing very large scales; for the reconstruction noise, this is partially justified
by the fact that the reconstruction sums over a large number of mode pairs, so that
to some extent the central limit theorem applies (although the pairs may not all be
independent). Figure 5.7 supplies additional evidence that a simple Fisher forecast
is sufficient, in that the PDFs of the density field (smoothed to correspond with
our analysis range) do not greatly deviate from a Gaussian. This indicates that the
influence of higher moments of the density field and noise is comparatively small for
the purposes of a forecast.

Making this approximation and including the fact that δg has zero statistical mean,
the Fisher matrix per mode K⃗ and redshift z is given by (e.g. [273])

F̃ab(K⃗, z) = 1
2Tr

[
∂aC(K⃗, z)C−1(K⃗, z)∂bC(K⃗, z)C−1(K⃗, z)

]
, (5.43)

where C is the total (signal plus noise) covariance matrix for our data vector d⃗(K⃗) =(
δg(K⃗), δr(K⃗)

)T
, Tr is the trace matrix operator, ∂bC(K⃗, z) ≡ ∂

∂bC(K⃗, z), and a, b are
the parameters on which our quantities depend (in this case, fNL and bias parameters).
If the data vector is drawn from a Gaussian distribution and nothing is known about
the parameters, then the inverse of the Fisher matrix gives the covariance matrix of the
parameters, and the square root of the diagonal elements of F −1 give the errorbars on
the parameters and represent the minimum error achievable. Our goal is to calculate
this minimum error, as it will determine our best ability to constrain parameters.

In reality, we do not just measure a single mode, but we measure several modes
whose information can combined together in an integrated Fisher matrix for a specific
redshift bin, i.e.

Fab(z) = V

(2π)2

∫ Kmax

Kmin
dK

∫ 1

−1
dµ K2F̃ab(K, µ, z). (5.44)

Here V is the survey volume, Kmin and Kmax are the minimum and maximum moduli
of the modes probed, and we already integrated over the azimuthal direction, supposing
no dependence from it in the integrand.
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For our specific case, the original field δg and the reconstructed field δr will give
the total covariance matrix (which only depends on the magnitude of K⃗)

C(K, z) =
 Cgg(K, z) Cgr(K, z)

Cgr(K, z) Crr(K, z)

 , (5.45)

with elements

Cgg(K, z) =
(

b1(z) + c01fNL

M(K, z)D(z)
)2

Plin(K, z) + Pgg,shot(K, z) , (5.46)

Cgr(K, z) =
(

b1(z) + c01fNL

M(K, z)D(z)
)

br(K, z)Plin(K, z) + Pgr,shot(K, z) , (5.47)

Crr(K, z) = br(K, z)2Plin(K, z) + NGG(K, z) + Prr,shot(K, z) , (5.48)

where

br ≡ b1

cG +
∑
β ̸=G

cβ
NGG

NGβ

 , (5.49)

and the sum runs over the mode-couplings found in Table 5.2. We do not include
redshift space distortions in these expressions; see Sec. 5.4.3 for discussion.

The tracer shot noise is simply

Pgg,shot(K, z) = 1
n̄(z) , (5.50)

where n̄ is the comoving number density of observed tracers, while Prr,shot and Pgr,shot

are given in Eqs. (C.26)−(C.27) and (C.31)−(C.32) respectively. We will neglect the
dependence of the reconstruction shot noise on fNL. This is because in general these
shot noise terms include the small-scale tracer power spectrum, whose response to a
change of fNL is negligible compared to the response experienced by the large-scale
power spectrum. Moreover, even when the large-scale tracer power spectrum enters
the reconstruction shot noise, as in Prr,shot where there is a coupling between large
and small scales as we explain in Appendix C.2, a small change from fNL = 0, our
fiducial value, is barely detectable. In principle, it may be possible extract additional
information from the fNL-dependence of the shot noise contributions, but this will
likely be difficult in practice, and therefore we conservatively choose not to consider
these contributions as observables.
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Substituting Eq. (5.45) into Eq. (5.43), we can derive an explicit formula for the
Fisher matrix per mode for our case, which can then be inserted into Eq. (5.44):

F̃ab = 1
2

(
1

CrrCgg(1− r2
cc)

)2

×
[
Cgg

{
∂bCgr

(
− Cgr∂aCrr + Crr∂aCgr

)
+ ∂bCrr

(
Cgg∂aCrr − Cgr∂aCgr

)}
− Cgr

{
∂bCgg

(
− Cgr∂aCrr + Crr∂aCgr

)
+ ∂bCgr

(
Cgg∂aCrr − Cgr∂aCgr

)}
− Cgr

{
∂bCgr

(
− Cgr∂aCgr + Crr∂aCgg

)
+ ∂bCrr

(
Cgg∂aCgr − Cgr∂aCgg

)}
+ Crr

{
∂bCgg

(
− Cgr∂aCgr + Crr∂bCgg

)
+ ∂bCgr

(
Cgg∂aCgr − Cgr∂aCgg

)}]
, (5.51)

where rcc is the g-r cross-correlation coefficient:

rcc ≡
Cgr

√
CggCrr

. (5.52)

For a = b, we obtain

F̃aa = 1
2(1− r2

cc)2

(∂aCgg

Cgg − 2r2
cc

∂aCgr

Cgr

)2

+ 2r2
cc

(
1− r2

cc

)(∂aCgr

Cgr

)2

+ 2r2
cc

∂aCrr

Crr

(
∂aCgg

Cgg − 2∂aCgr

Cgr

)
+
(

∂aCrr

Crr

)2
 . (5.53)

On the other hand, if we only use δg, we get

F̃ (g only)
aa = 1

2

(
∂aCgg

Cgg

)2

. (5.54)

5.4.2 Analytical derivation of cosmic variance cancellation

Cosmic variance cancellation will occur in the limit of low noise on the measured fields
– that is, low reconstruction noise on the quadratic estimator, and low galaxy shot
noise. To investigate this case analytically, let us work in the limit of very low shot
noise, so that

Cgg(K) = bg(K)2Plin(K) ,

Cgr(K) = bg(K)br(K)Plin(K) ,

Crr(K) = br(K)2Plin(K) + NGG(K) . (5.55)
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Further, let us assume that fNL is the only unknown parameter. If we define

x(K) ≡ NGG(K)
br(K)2Plin(K) , Rp(K) ≡

(
∂fNLbr(K)

br(K)

)(
∂fNLbg(K)

bg(K)

)−1

, (5.56)

where x(K) is the inverse of the signal-to-noise per mode of the reconstructed field and
Rp(K) is a measure of similarity between the response of the bias of the reconstructed
field and the one of the original tracer field, then a short calculation gives the
unmarginalized errorbar on fNL per K-mode:

σ2
fNL

(K) = σ2
fNL, g only(K) 2x(K)

(Rp(K)− 1)2
1

1 + 2 (Rp(K)− 1)−2 x(K)
, (5.57)

where σfNL, g only = [F (g only)
aa ]−1/2.

Let us investigate the general behavior of this equation in some limiting cases. If
(Rp − 1)−2 x is small, the Rp < 0 case (when ∂fNLbr and br have opposite signs) will
result in smaller errorbars than the Rp > 0 case, because the signatures of fNL in br

and bg will be more distinguishable in that case. Expanding Eq. (5.57) in the limit of
small (Rp − 1)−2 x gives

σ2
fNL

(K) = σ2
fNL, g only(K) 2x(K)

(Rp(K)− 1)2

∞∑
n=0

[
−2 (Rp(K)− 1)−2 x(K)

]n
. (5.58)

As we show in Appendix C.4, NGG ∝ k−3
max in the low-K limit, so that we arrive at

lim
x→0

σ2
fNL

(K) ∝ 2σ2
fNL, g only(K)

[
k−3

max +O(k−6
max)

]
, (5.59)

where we assume that Rp−1 varies slowly with K. This demonstrates that constraints
on fNL that use both reconstructed modes and modes of the original tracer will improve
on a tracer-only analysis in a way that is only limited by the noise on the reconstructed
modes (if shot noise is negligible).

Cosmic variance cancellation clearly requires that δr and δg are measured at the
same wavenumber and in the same volume. To verify this, we can repeat the derivation
above with Cgr = 0, corresponding to δr and δg being measured in different volumes.
In this case, Eq. (5.57) becomes

σ2
fNL

(K) = σ2
fNL, g-only(K) [1 + x(K)]2

Rp(K)2 + [1 + x(K)]2
, (5.60)

which approaches a finite limit as x→ 0; thus, the improvement realized in Eq. (5.59)
is only possible if δr and δg can be compared mode-by-mode in the same volume.
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DESI-like MegaMapper-like PUMA-like
0.6 < z < 1.6 2 < z < 2.5 4.5 < z < 5 2 < z < 3 5 < z < 6

Survey parameters
Survey volume (Gpc3) 100 80 66 266 203
Mean galaxy density n̄ (Mpc−3) 10−4 6× 10−4 2× 10−5 2× 10−3 (6× 10−3) 1× 10−3 (2× 10−2)
Kmax for fNL constraint (h Mpc−1) 0.05 0.08 0.14 0.09 0.15
kmax for reconstruction (h Mpc−1) 0.15 0.24 0.4 0.26 0.47
Fiducial bias parameters
b1 1.6 2.9 7.0 2.1 3.7
b2 −0.30 1.1 17 0.041 2.8
bs2 −0.17 −0.54 −1.7 −0.31 −0.77
bE

11 −3.0 −2.5 37 −3.5 0.58
bE

02 −14 −21 85 −19 −16

Table 5.4 Survey characteristics used for our main forecasts. The DESI-like survey
is based on the expected DESI emission-line galaxy sample, the MegaMapper-like
survey is a next-generation survey targeting high-redshift “dropout” galaxies, and the
PUMA-like survey represents a future 21 cm intensity mapping effort over half the
sky. We marginalize over b1, b2, and bs2 in our forecasts, and determine bE

11 and bE
02

using the relationships in Sec. 5.2.2. For the PUMA-like forecast, the main n̄ values
represent effective number densities that reproduce the same noise level as the sum of
shot and instrumental noise power at k = kmax, while the expected physical number
densities are shown in parentheses. For this forecast, we also consider the effects of the
so-called “foreground wedge” that will prevent direct measurement of certain modes.
See main text for details.

5.4.3 Assumptions and experimental configurations

Scales

In each forecast, for measuring fNL, we use δg modes and reconstructed modes with
wavenumber K satisfying Kmin < K < Kmax, and we also use reconstructed modes
with Kf < K < Kmin, where Kf ≈ 0.002h Mpc−1 is the lowest measurable wavenumber
within each survey volume. In this way, Kmin accounts for possible systematic effects
that can prevent direct measurements of δg on large scales, but that do not impede
reconstruction of these large-scale modes using smaller-scale correlations; an example is
foreground contamination for intensity mapping experiments, which as been a primary
motivator for other work on reconstruction methods [292, 293, 91, 155, 141, 188]. As
input to the density-field reconstruction, we use modes with wavenumber k satisfying
Kmax < k < kmax. We consider a range of possible Kmin values in our forecasts, while
kmax and Kmax are fixed for each survey, as described below.

Surveys

In our main forecasts, we consider three galaxy surveys, with properties summarized
in Table 5.4. The first is similar to the emission-line galaxy sample expected from
DESI [7]. For this survey, following [192], we consider 14000 deg2 of sky area over
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0.6 < z < 1.6, which translates into a total comoving volume of roughly 100 Gpc3 and
a mean redshift of z̄ ≈ 1. We use a mean galaxy number density of n̄ = 10−4 Mpc−3,
obtained by dividing the expected total number of redshifts in the DESI ELG sample
(1.7 × 107, from [7]) by the survey volume, and assume a mean linear galaxy bias
of b1 = 1.6. We take Kmax = 0.05h Mpc−1, since linear bias is expected to be an
acceptable approximation for K < Kmax at z = 1, and kmax = 0.15h Mpc−1, since our
quadratic bias expansion is valid for k < kmax at z = 1 (see Sec. 5.3 for justification
based on simulations).

The second survey, which we call “MegaMapper-like”, is modelled on proposals
for a next-generation spectroscopic survey targeting high-redshift “dropout” galaxies
in the southern hemisphere [288, 90, 232]. For this, we assume a 14000 deg2 survey,
and separately consider two redshift bins, at 2 < z < 2.5 and 4.5 < z < 5, which have
volumes of 80 Gpc3 and 66 Gpc3 respectively. The mean number density and linear
bias in each bin are obtained from averages of the values at the bin edges, taken from
Table 1 of [90]; this yields n̄ = 6 × 10−4 Mpc−3 and b1 = 2.9 for the lower-redshift
bin, and n̄ = 2× 10−5 Mpc−3 and b1 = 7.0 for the higher-redshift bin. For Kmax and
kmax, we scale the DESI values using the ratio of linear growth factors between the
mean redshifts of each redshift bin, to account for the increased range of validity of
our perturbative expressions at higher redshift.11

The third survey is based on specifications for PUMA, an envisioned radio in-
terferometer designed for 21 cm intensity mapping [19, 261]. We assume a survey
over half the sky, and again consider two redshift bins, this time at 2 < z < 3 and
5 < z < 6, with volumes 266 Gpc3 and 203 Gpc3 respectively. For simplicity, we treat
this survey as observing galaxy positions directly, rather than brightness temperature
(which is just a rescaled biased tracer of the matter density). To do so, we set the
noise contribution to the tracer power spectrum Pgg to equal the sum of the shot noise
and instrumental noise power spectra computed using the PUMA noise calculator12,
evaluated at k = kmax in each redshift bin. We quote an effective number density that
would result in the same noise level in Table 5.4. When computing the shot noise
contributions to Pgr and Prr, we use the expected number densities of 21 cm emitters,
also taken from the PUMA noise calculator and quoted in parentheses in Table 5.4.
For the linear bias in each bin, we use values from Fig. 33 of [19], evaluated at the

11The argument for this kmax scaling is as follows. Nonlinear displacements are one of the physical
effects that limit the accuracy of perturbation theory, and it is natural to assume that the redshift-
dependence of kmax will scale with the rms displacement, which we compute in the Zel’dovich
approximation. Under these assumptions, kmax(z) ∝ D−1(z). In reality, the scaling of kmax with
redshift is more complicated, involving the power spectrum tilt at the relevant wavenumbers (e.g. [49]),
but the simple growth factor scaling we use here should at least be roughly indicative of the useful
scales for our forecasts.

12https://github.com/slosar/PUMANoise

https://github.com/slosar/PUMANoise
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mean redshifts. As for the MegaMapper-like survey, we scale Kmax and kmax from
DESI by the appropriate ratios of linear growth factors.

One could also consider applying our reconstruction procedure to data from
the SPHEREx satellite [82], which aims to map large-scale structure by using low-
resolution spectroscopy to determine the redshifts of over 500 million galaxies. The
total SPHEREx galaxy sample will have higher number density than DESI ELGs
by at least a factor of 5, but many of these galaxies will have significant redshift
uncertainties that will suppress the measured clustering power in a scale-dependent
way, and this would need to be included in our formalism. On the other hand, angular
variations in the mean redshift uncertainty may also imprint spurious clustering signals
on the data, and long-mode reconstruction is a promising avenue to probe or mitigate
this. We intend to explore these issues in future work.

In our derivation of stochastic contributions to the noise of the estimator and the
cross-correlation between estimator and galaxy fields in App. C.2, we assume that
the noise is Poissonian, i.e., that ⟨εε⟩ = (2π)3δD(K⃗ + K⃗ ′)/n̄. There is evidence for
halo stochasticity being sub-Poissonian for high-mass haloes and super-Poissonian for
low mass haloes [106, 25]. Since the stochasticity corrections arise from small-scale
exclusion and higher-order biases, the actual shot noise levels cannot be theoretically
predicted, implying that it may be advisable to marginalize over the stochasticity
parameter(s). This approach is indeed adopted by some for the fNL forecasting
literature (e.g. [51]) but certainly not all of it (e.g. [237, 192]). Here we decide
to fix the stochasticity parameters to their fiducial Poissonian values and defer a
more detailed investigation of the impact of noise corrections on the reconstructed
fields to future work. We do note however, that we expect the impact of shot noise
marginalization to be rather small, since we do not include the additional non-Gaussian
signal arising in combination with stochastic terms in Eqs. (5.46-5.48).

21 cm foregrounds

An additional consideration for 21 cm intensity mapping is the presence of foreground
radiation, predominantly synchrotron from our own galaxy, that is brighter than the
cosmological signal by several orders of magnitude. These foregrounds are extremely
smooth in frequency, which implies that they mainly populate Fourier modes with
low line-of-sight wavenumber k∥; these modes will therefore likely not be usable
for cosmology. Furthermore, the chromatic properties of interferometers generically
spread foreground power from the low-k∥ modes into a wedge-shaped region in the
k∥ − k⊥ plane (e.g. [204, 161, 162]), although this contamination can be removed with
sufficiently precise instrumental calibration (e.g. [251, 94]).
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For constraining fNL, the wedge will have two effects: it will reduce the number
of short-wavelength modes available for the quadratic estimator, therefore increasing
the noise NGG on the reconstructed modes, and it will also reduce the number of
long-wavelength δg modes available for measuring the scale-dependent bias induced by
primordial non-Gaussianity.

We account for both effects in our forecasts for the PUMA-like survey, assuming
a foreground wedge defined by 3 times the primary beam width, following [19]; see
Appendix C.5.1 for details of how this is implemented in our computations. In addition,
we perform forecasts that ignore the wedge, to represent the case when it can be
completely eliminated via calibration. We account for lost low-K∥ modes in two ways:
either by restricting δg to have K > K∥,min, or by approximating K∥,min as an isotropic
Kmin, matching our procedure for DESI and MegaMapper. The former approach is
more realistic, while the latter is easier to compare with the other surveys, so we
present the latter in the main text, and the former in Appendix C.5.2.

Bias parameters

For every survey, to perform forecasts, we assume a fiducial value of the quadratic
bias parameter b2 derived from the fitting formula of [148], which was fit to halo bias
in separate-universe simulations over the range 1 ≲ b1 ≲ 10:

b2(b1) = 2
(
0.412− 2.143b1 + 0.929b2

1 + 0.008b3
1

)
, (5.61)

where the extra factor of 2 arises from our different definition of b2 compared to [148].
The fiducial value of the tidal bias bs2 is found from

bs2 = −2
7 (b1 − 1) , (5.62)

which assumes that the tidal bias in Lagrangian space is zero. In our forecasts, b1,
b2, and bs2 are allowed to vary independently (i.e. are marginalized over when we
estimate uncertainties on fNL), while b11 and b02 are assumed to obey the relationships
in Eqs. (5.32)-(5.33) and (5.34)-(5.36). We take wide, flat priors on b1, b2, and bs2 ; we
have also implemented 10% Gaussian priors on b2 and bs2 , but these have a negligible
effect on our baseline results.

Redshift space distortions

The line-of-sight component of a galaxy’s position is observationally inferred from
the galaxy’s redshift, and the associated “redshift-space distortions” of δg should be
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included in a full treatment of the observed galaxy clustering. The leading-order effect
is to add a fµ2 term to the linear bias of δg, such that Eq. (5.37) is modified to

δg(k⃗) =
[
b1 + fNL

c01

M(k) + fµ2
]

δ1(k⃗) + · · · , (5.63)

where f ≡ d log D/d log a, µ ≡ k∥/k, and D is the linear growth factor [138]. Higher-
order effects will create additional mode-couplings that can be described in perturbation
theory (e.g. [207, 37]). In a real tracer catalogue, there will also be line-of-sight-
dependent selection effects that can be treated perturbatively [80].

We do not include any of these effects in our baseline forecasts, leaving them
for future work. However, as a first step in this direction, we have checked the
impact of including the Kaiser term. This raises the reconstruction noise NGG by
increasing Pgg,tot in the denominator of Eq. (5.17), while also increasing the amplitude
of Pgg and Pgr, thereby increasing the signal to noise on those quantities. For all
surveys we consider, the former effect overcomes the latter, with the result that σ(fNL)
increases by roughly 10%, and the improvement in σ(fNL) from including reconstructed
modes decreases by no more than the same amount. Additional mode-couplings from
nonlinear redshift-space effects will likely dominate over this change, and a detailed
analysis will be worthwhile to pursue, especially since some of these mode-couplings
could potentially carry additional information about fNL [51].

5.4.4 Expected precision on reconstructed modes

Aside from primordial local non-Gaussianity, there are many other applications of
reconstructing large-scale modes, including more general constraints on cosmology, tests
of predictions for the power spectrum on the largest scales, calibration of photometric
redshifts [188], cross-correlations with other tracers (such as kSZ fluctuations in the
CMB, e.g. [155]), and removing contamination from measurements of lensing of 21 cm
fluctuations [91]. To represent the general utility of reconstructed modes from different
surveys, in Fig. 5.8 we show the expected precision on the auto power spectrum of
the reconstructed modes (plotted using the fiducial bias parameters from Table 5.4),
computed in wavenumber bins with ∆K = 0.002h Mpc−1. While these errorbars are
substantial for K ≲ 0.01h Mpc−1 in DESI and the high-z bin of MegaMapper, the
precision is expected to be much better for MegaMapper at low z and across the
entire redshift range of PUMA, with most errorbars approaching the cosmic variance
limit. This will enhance many scientific applications of these surveys, particularly for
PUMA, where large-scale modes can be reconstructed at high precision even in the
presence of the foreground wedge.
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Fig. 5.8 Expected errorbars on the reconstructed power spectrum Prr for the surveys
and redshift bins we consider (blue), along with cosmic-variance-limited errorbars
(orange), computed for bandpowers with ∆K = 0.002h Mpc−1. Downward arrows
indicate errorbars whose lower limits fall outside of the y axis range. High-precision
measurements of the power spectrum of reconstructed modes will be possible in several
cases, even in the presence of a 21 cm foreground wedge for PUMA.

Reference [19] also estimates the total signal to noise in reconstructed modes from
PUMA over 1 < z < 6, following the methodology of [91], finding O(1300) in the
no-wedge case and O(500) for the same wedge model we use here. For comparison,
we find a total S/N of 135 (108) for 2 < z < 3 and 161 (134) for 5 < z < 6 in
the no-wedge (wedge) case. A direct comparison between the two sets of forecasts
is difficult, because they use several distinct approximations: [19] treats the 21 cm
brightness temperature as a linearly biased tracer of the matter density, while we
have incorporated second-order biasing; [19] neglects the shot noise contribution to
the reconstructed mode power spectrum, while we include it; [19] bias-harden their
results against mode-couplings from gravitational lensing, while we do not; and, most
importantly, [19] only consider reconstruction of modes that are purely transverse to
the line of sight (k∥ = 0), while we use a 3D reconstruction formalism. Nevertheless,
both forecasts reach the same broad conclusion that PUMA will be able to reconstruct
long-wavelength density modes with total signal to noise of several hundred, which is
strong motivation for continued studies of the density reconstruction method we have
presented in this chapter.
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5.4.5 Results: constraints on non-Gaussianity
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Fig. 5.9 Forecasts for a DESI-like survey. Left: Signal and noise power spectra
involved in the forecast. The galaxy auto spectrum is well above the shot noise, while
the auto spectrum of reconstructed modes (Prr) is roughly an order of magnitude
below both the reconstruction noise (NGG) in the quadratic estimator and the shot
noise contribution to the estimator variance. Center: Expected constraints on fNL
when only δg is used (solid), or when δr is also used (dotted). We assume that δg(K⃗)
cannot be directly measured for K < Kmin, and marginalize over the b1, b2, and bs2

bias parameters. Right: Ratio of δg + δr and δg-only cases from the center panel. We
only notice an improvement for higher values of Kmin, corresponding to using δr but
not δg at K < Kmin.

Figure 5.9 shows the results of our forecasts for the DESI-like survey. The left panel
shows the various power spectra of interest, of linear matter density, galaxy number
density, and reconstructed matter density modes, along with the cross spectrum
between galaxies and reconstructed modes. This panel also shows the shot noise on
Pgg, Pgr, and Prr, as well as the statistical noise (NGG) on reconstructed modes. For
DESI, the galaxy power spectrum is well above the shot noise, while the reconstructed
power spectrum is about an order of magnitude lower than the reconstruction noise.
Despite the fact that galaxy shot noise is below Pgg, the shot noise contributions for
both Pgr, and Prr are above the signal power spectra. As explained in Appendix C.2,
this is due to coupling between galaxy shot noise and clustering at large scales, where
the variance is larger than at small scales and therefore these shot noise spectra are
significantly boosted compared to the n̄−1 contribution.

The middle panel of Fig. 5.9 shows the expected constraints on fNL when only δg

is used, or when reconstructed modes are also incorporated. The right panel shows
the ratio of σ(fNL) in these two cases. The improvement in σ(fNL) is negligible at
the lowest Kmin we consider, which corresponds to δg being measured on all scales
resolvable within the survey volume (Kmin = Kf). However, a larger improvement
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is seen when Kmin is assumed to be higher: for Kmin = 0.02h Mpc−1, for example,
σ(fNL) improves by around 15% when reconstructed modes are used.
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Fig. 5.10 The analog of the right panel of Fig. 5.9, with a variety of (mostly artificial)
modifications to the forecasts. There is no improvement in σ(fNL) when δr is neglected
at K < Kmin, indicating that the inclusion of δr at K < Kmin drives the improvement.
Greater improvements are achieved for higher galaxy number density or if kmax can
be increased by a factor of 2, with milder changes if the fiducial b2 value is set to zero
or shot noise on Prr and Pgr is neglected.

To determine the origin of this behavior, we show several modifications of this
forecast in Fig. 5.10. In particular, when reconstructed modes with K < Kmin are
not included, there is no improvement of σ(fNL), indicating that these modes are
entirely responsible for the improvement. Therefore, DESI is not powerful enough to
allow for cosmic variance cancellation between δg and δr at the same scales; rather,
the primary use of reconstruction is to access scales (K < Kmin) where δg cannot be
directly measured. This naturally explains why the improvement of σ(fNL) grows for
higher Kmin. While the absolute values of σ(fNL) are not impressive at such high Kmin

– at Kmin = 0.02h Mpc−1, for example, σ(fNL) ≈ 50 without reconstruction and 40
with reconstruction – the improvement comes “for free”, without requiring any other
datasets.

The other curves in Fig. 5.10 illuminate other aspects of this forecast. Increasing n̄

to an unrealistically high value of 102 Mpc−3 improves the δg-only forecast by roughly
10% (not shown), and also increases the improvement on σ(fNL) from including δr,
indicating that shot noise is a limiting factor in this improvement. Simply neglecting
Prr,shot and Pgr,shot has a similar effect, clarifying that shot noise in the galaxy power
spectrum itself is comparatively less important than in these other spectra.

Also, we see the same type of change if we alter the fiducial value of b2. As mentioned
at the end of Sec. 5.2.3, if Pgg ≫ Pgg,shot (as it is here), then Prr/NGG ∝ (1 + b2/b1)2,
so increasing b2 from −0.3 to 0 boosts the signal to noise on the reconstructed modes.
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This would lead to a larger improvement if not for the large contribution of Prr,shot.
Boosting kmax by a factor of 2 leads to a better σ(fNL) improvement at low Kmin.
This change lowers the Gaussian reconstruction noise NGG, but also raises Prr,shot and
Pgr,shot by different amounts, and the combination of these changes ends up slightly
boosting the constraining power of δr.

It may seem counterintuitive that δr adds anything at all to our forecasts, since
the reconstruction noise and shot noise on Prr are much larger than Prr itself: one
would expect such large noise to lead to a low cross-correlation coefficient between δr

and δg, and also make it difficult to extract information from the auto spectrum of
δr. However, the presence of a cross shot noise contribution to Pgr alters this picture,
contributing to the δr-δg cross-correlation coefficient and altering the structure of the
covariance matrix. While it is not trivial to see in the Fisher matrix expression in
Eq. (5.53), the net effect is to enhance the information content of δr with respect to
fNL. Reference [165] reached a similar conclusion when examining cosmic variance
cancellation between different line intensity maps, noticing that lowering the cross
shot noise contribution led to worsened constraints on fNL.

MegaMapper

Our results for the MegaMapper-like survey are shown in Fig. 5.11. For the low-z
bin, the signal to reconstruction noise on the reconstructed modes is higher than
for DESI, thanks to a combination of higher n̄, higher kmax, and higher bias, and
the signal-to-shot-noise ratio is also correspondingly smaller. This leads to a greater
improvement in σ(fNL) when reconstructed modes are included. The left panel of
Fig. 5.12 shows that, like DESI, this improvement comes not from cosmic variance
cancellation, but from reconstructed modes with K < Kmin, where we assume that δg

cannot be directly measured. We see large changes if n̄ is boosted or Pgr,shot and Prr,shot

are neglected, indicating that shot noise is a limiting factor in this bin. Changing the
fiducial b2 from 1.1 to 0 reduces the usefulness of the reconstructed modes for the
same reason that changing b2 increased their usefulness for DESI.

We see rather different behavior in the high-z bin. There, we find that the
reconstruction noise is of the same order as Prr while the shot noise contribution is
much greater than the signal, and the shot noise contribution to Pgr is also greater than
the signal. Despite this, the improvement in σ(fNL) is larger than for the low-z bin,
reaching 50% at Kmin = Kf . The right panel of Fig. 5.12 shows that the improvement
is the same whether or not we include modes of δr with K < Kmin, and therefore,
cosmic variance cancellation between δg and δr is solely responsible for the change in
σ(fNL).
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Fig. 5.11 As Fig. 5.9, for low-redshift (top panels) and high-redshift (bottom panels)
bins of a MegaMapper-like survey. The former has greater signal to noise on recon-
structed modes than DESI, leading to a greater improvement in σ(fNL) when these
modes are included in the forecast. For the latter, the shot noise contributions to Prr
and Pgr are comparatively much larger, leading to a different scale-dependence for the
improvement in σ(fNL).
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Fig. 5.12 Modifications to the base MegaMapper forecasts. For the low-redshift bin
(left panel), as for DESI, the improvement in σ(fNL) is driven mostly by modes of δr
with K < Kmin, with further improvement possible for higher galaxy number density.
For the high-redshift bin (right panel), neglecting δr at K < Kmin makes no difference,
indicating that for lower Kmin values, cosmic variance cancellation between δg and δr
at the same K is driving the improvement in σ(fNL). There are several ways to obtain
greater improvements, as discussed in the main text.
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We also see from Fig. 5.12 that the low number density (n̄ = 2× 10−5 Mpc−3) in
the high-z bin is not a huge limiting factor, with only a modest change if we use a much
larger number density. This is because the reconstruction noise remains comparable
to Prr even for a much denser survey, while further improvements are possible for
a higher kmax but the same number density. If Prr,shot and Pgr,shot are ignored, the
results revert to the same situation as the low-z bin, with only slight gains in σ(fNL)
possible for low Kmin. Finally, if b2 is changed from 17 to 0, there is significantly more
improvement in σ(fNL): the amplitudes of Prr and Pgr are reduced, but the relative
uncertainty on fNL from marginalizing over b2 is also reduced, and the latter effect
wins.
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Fig. 5.13 As Fig. 5.9, for low-redshift (top panels) and high-redshift (bottom panels)
bins of a PUMA-like survey, treating the 21 cm brightness temperature in the same
way as δg in our other forecasts, and translating thermal noise on the brightness
temperature into an effective tracer number density for computing shot noise. We
show σ(fNL) either neglecting or incorporating the effects of the 21 cm foreground
wedge; at high z, the benefit to σ(fNL) from including reconstructed modes is greater
in the presence of the wedge, since there are fewer δg modes that can be directly
measured in that case. The results for the low-redshift bin are similar to those for
MegaMapper, while larger improvements in σ(fNL) are possible at higher redshift.

We show results for the PUMA-like survey in Fig. 5.13, either neglecting or including
the effects of the foreground wedge. Note that the left panels in Fig. 5.13 only show
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noise curves corresponding to the no-wedge case. As for the other surveys, we assume
an isotropic Kmin for δg in Fig. 5.13; we show results for a cutoff on K∥, which are
qualitatively similar to those in Fig. 5.13, in Appendix C.5.2.

For both redshift bins, the shot noise in Cgg, Crr, and Cgr is below the signal.
However, the reconstruction noise is high enough in the low-redshift bin that the effect
of reconstructed modes on σ(fNL) is similar to DESI and the low-z MegaMapper bin,
with the vast majority of the extra constraining power coming from reconstructed
modes with K < Kmin (see the left panel of Fig. 5.14). The impacts of taking a higher
kmax or tracer number density (equivalent to thermal noise in the interferometer)
would only be mild.
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Fig. 5.14 Modifications to the base PUMA forecasts, neglecting the foreground
wedge. In the low-z bin, modes of δr with K < Kmin are entirely responsible for the
improvement in σ(fNL), with most other modifications having little effect. In the
high-z bin, the blue dotted curve demonstrates that the σ(fNL) improvement comes
from a combination of low-K modes of δr and cosmic variance cancellation at higher
K. The improvement would get better if the thermal noise could be reduced (which
maps onto a higher n̄ in these forecasts).

Meanwhile, in the high-z bin, the improvement in σ(fNL) arises from a combination
of low-K reconstructed modes and cosmic variance cancellation between δg and δr.
There is greater improvement in the presence of the wedge, as reconstruction helps to
recover modes that would otherwise be lost. This improvement is around 20% at the
lowest Kmin, and increases as more δg modes are lost, implying that reconstruction will
be extremely useful for single-tracer constraints on fNL from PUMA or other high-z
intensity mapping. The right panel of Fig. 5.14 shows that lower thermal noise would
lead to further improvements, while a lower value of b2 would worsen the results due
to a lowering of the signal to noise on Prr.
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...and beyond

To demonstrate how the constraints on fNL scale for surveys with extremely low shot
noise and reconstruction noise, we also examine forecasts for the PUMA high-redshift
bin where kmax is artificially increased, assuming that our quadratic bias model is
valid to arbitrarily high k.13 We take the galaxy number density to infinity in these
forecasts, to prevent shot noise from becoming the limiting factor. In this case, we
expect the uncertainty on fNL to scale like the inverse of the signal to noise on the
reconstructed modes (see Sec. 5.4.2). In turn, in this limit, the signal to noise scales
like k3/2

max because the reconstruction noise spectrum NGG becomes proportional to the
number of modes with kmin < k < kmax (see Eq. C.63).

In Fig. 5.15, we show the ratio of σ(fNL) from g+r or g-only forecasts as a function
of kmax for two representative values of Kmin. We indeed find that as the signal to noise
on reconstructed modes is increased, the improvement on σ(fNL) also increases, with
the unmarginalized forecasts quickly satisfying the expected scaling. (Marginalization
over bias parameters causes small deviations from this scaling.) This demonstrates
the huge increases in constraining power that are possible in principle for a survey
with high galaxy number density and many small-scale modes whose correlations
can be used in reconstruction. We have also numerically verified that the σ(fNL)
ratio stays flat with increasing kmax if the noise in Pgg is taken very high, or if zero
cross-correlation between δg and δr is assumed, further demonstrating that the scaling
seen in Fig. 5.15 arises from the joint constraining power between δg and δr measured
from the same volume.

13In practice the quadratic bias model will break down at sufficiently high k, but a theoretical
framework such as the response function formalism (e.g. [29, 28]) may allow the use of higher kmax,
with suitable modifications of the reconstruction procedure. We leave this topic to future work.
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Fig. 5.15 The ratio of σ(fNL) for the δg +δr and δg-only forecasts for the high-z PUMA
bin, where n̄ is taken to infinity and kmax is artificially increased, assuming that our
quadratic bias model is valid to arbitrarily high k. The left and right panels correspond
to two representatives values of Kmin. We show forecasts after marginalizing over bias
parameters (black points) and without any marginalization (red points), along with
the expected k−3/2

max scaling (dashed lines, each normalized to the highest-kmax point
plotted). We find the unmarginalized curves quickly approach the ideal scaling, while
the marginalized forecasts show small deviations from this scaling. This shows that
large increases in constraining power are possible in principle for surveys with very
high number density and a large allowed value of kmax.

5.5 Discussion

The results presented here can be compared to other methods either utilizing recon-
struction and/or combining a tower of n-point correlation functions. Compared to
most methods proposed in the literature, this work presents an optimal quadratic
estimator to reconstruct the large-scale mode. As explained in Sec. 5.4.4, in principle
this reconstructed mode can be used for several (cosmological) applications, and here
we only explored fNL as an application of interest. When comparing this work with
previous works, the main question is if the amount of information captured in the
statistics of the tracer field is fully exploited. While it will be hard to compare meth-
ods directly, here we propose some heuristic arguments where we think our methods
overlap and where they differ.

As mentioned in the introduction, some publications have aimed to simplify the
search for primordial non-Gaussianities by proposing more compressed versions of
the full bispectrum [236, 88, 46, 68, 189, 60, 218, 102]. Common to these works is
the fact that the information accessed is captured by the 2- and 3-point functions.
In this work, besides the 3-point function, the 4-point function is also used and is
important in obtaining cosmic variance cancellation. In other words, as shown in
Fig. 5.15, significant improvements are possible when some conditions are met that
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would not be possible when considering the compressed statistics proposed in these
earlier works.

Even if cosmic variance cancellation is not achieved, we generally observe improve-
ments between 20–50%. These numbers are similar to those projected in for example
[68] for compressed statistics, but direct comparisons between our method and others
are generally difficult. In the method presented in this chapter, the improvement can
roughly be attributed to being able to access larger scales through the reconstruction,
or, when both the linear and reconstructed mode are combined, cosmic variance
cancellation. The projected improvement on the amplitude fNL from compressed
statistics is the result of adding the bispectrum information on top of the power
spectrum. For a detailed comparison we would need to carefully associate every mode
with improved signal-to-noise side by side for the two different methods. Although
this would be interesting by itself, as it would help us understand to what extent these
methods are overlapping or how they complement one another, we will leave this to
future work.

The paper which our work has most in common with is [218], which discusses the
information content of a joint analysis of the two point function and squeezed three-
and four-point functions. This work has several commonalities with our analysis. To
perform forecasts, [218] uses the squeezed-limit position-dependent power spectrum as
a field, in an approach that is quite similar to our long-wavelength mode reconstruction.
The author also makes similar arguments for how sample variance cancellation can
significantly influence and improve constraints.

However, there are also many important differences to our approach. Most impor-
tantly, the specific squeezed-limit power spectrum picture in [218] is discussed as a tool
to enable better forecasting of joint 2, 3 and 4-point analyses of local non-Gaussianity,
rather than a practical data analysis method. In contrast, our method has been
proposed as an analysis method and estimator to rapidly jointly analyze 2, 3 and 4-
point functions, that is not only computationally tractable, but has been tested (to
some extent) on simulations.

There are also significant differences in the details of the methodology. Our
reconstruction quadratic estimator can infer the long-wavelength mode from mode-
pairs that are not much smaller than the mode to be reconstructed; in contrast,
[218] always operates in the squeezed limit when analyzing the position-dependent
power spectrum. While it is expected that the majority of information about local
non-Gaussianity in the 3 and 4-point functions is contained in very squeezed shapes,
it is not clear that non-squeezed shapes do not contribute to long-wavelength mode
reconstruction and hence sample variance cancellation. On the other hand, we note
that in our analysis method we combine all quadratic estimator mode pairs into
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one long-wavelength mode estimate; in contrast, [218] shows that additional sample
variance cancellation can be obtained when treating each mode pair (or position-
dependent power spectrum bin) as a separate tracer. Although this suggests that
further improvements to our method might be possible, the results of [218] suggest
that this would only give significant improvements for very high k and very low noise,
beyond the capabilities of next-generation surveys.

Finally, shortly before the completion of this work, in a follow-up to [157], [156]
presented results relating to reconstruction of large-scale density modes using biased
tracers, although without discussing the application to constraining non-Gaussianity.
While the core of this work is similar (using a quadratic estimator as proposed by [91]),
here we explicitly account for the mode-coupling from higher-order biasing (which is
non-negligible) in our estimator and compare theoretical estimates of the reconstruction
noise, including bi- and trispectrum shot noise with additional contributions from
primordial non-Gaussianity, to simulations. Reference [156] include observations on the
light-cone in their formalism, and also include the effect of redshift space distortions
up to second order in the linear density, which we neglect in this work (although see
Sec. 5.4.3 for a discussion of the impact of the Kaiser term).

5.6 Conclusions

In this chapter, we have further developed a method for reconstructing modes of the
cosmic density field using a quadratic estimator. This estimator extracts information
about (typically) large-scale modes from correlations between smaller-scale modes,
similar to standard methods for CMB lensing reconstruction. We have improved upon
the estimator introduced in [91] by incorporating nonlinear biasing and local-type
primordial non-Gaussianity, up to second order in the linear density field. At this
order, there are several distinct sources of couplings between small-scale modes of the
tracer density field, with amplitudes (i.e. bias coefficients) that are unknown a priori.
We have found that an estimator based on the mode-coupling due to isotropic growth
of the perturbations results in the lowest noise on reconstructed modes, and have
enumerated the various multiplicative biases that will accompany the output of this
estimator. We have also applied this estimator (along with those based on large-scale
bulk flows and tidal interactions) to halos in N -body simulations, verifying that the
results agree with analytical predictions.

In the course of this study, we have identified that it is crucial to include the
shot noise contribution to the covariance between directly-observed tracer modes
and reconstructed modes when performing an analysis. The shot noise not only
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adds a white noise contribution to the tracer power spectrum itself (in the case
that the tracers Poisson-sample the density field, which we assume here), but also
adds noise to the reconstructed-mode power spectrum and the cross-spectrum with
the tracer modes. For sufficiently low tracer number density, this contribution can
actually overwhelm the reconstruction noise from the quadratic estimator, and the
cross spectrum alters the correlation coefficient between the tracer and reconstructed
modes. We self-consistently include these features in our forecasts.

We have carried out forecasts that apply this formalism to several upcoming
large-scale structure surveys: the emission-line galaxy survey from DESI [7], the
high-z dropout survey envisioned in the MegaMapper proposal [90, 232], and the
21 cm line-intensity survey from the PUMA proposal [19, 261], treated like a galaxy
survey with effective number density derived from PUMA’s thermal noise model.
Examining the expected errorbars on the power spectrum of the reconstructed modes
for K < 0.02h Mpc−1, we find that these errorbars are several times larger than the
signal for DESI and a high-redshift bin of MegaMapper. The latter is limited by
the low number density of tracers, leading to a high shot noise contribution to the
reconstruction noise, while the former’s high reconstruction noise is sourced both by
shot noise and a low number of modes used in the reconstruction (i.e. low kmax). In
the other forecasts, we find that high-S/N reconstructions of the large-scale density
power spectrum can be obtained, with the caveat that this spectrum comes with
multiplicative biases with known shapes but unknown amplitudes.

We have also computed the expected improvement in constraints on the ampli-
tude of local-type primordial non-Gaussianity, fNL, arising from analyzing recon-
structed modes along with directly-observed tracer modes. For DESI and low-z bins
of MegaMapper and PUMA, the improvement arises solely from being able to access
reconstructed modes with K < Kmin, where Kmin denotes the minimum wavenumber
at which we assume tracer modes can be measured (for systematics obscuring tracer
modes with K < Kmin but not affecting the modes used for reconstruction). On the
other hand, for a high-z bin of MegaMapper, the improvement in fNL constraints arises
solely from cosmic variance cancellation between tracer and reconstructed modes at
the same wavenumbers, similar to what can happen with different tracer populations
or tracer-lensing cross-correlations [246, 179, 237, 165]. For a high-z bin of PUMA, the
σ(fNL) improvement comes from a combination of cosmic variance cancellation and
reconstructed modes alone. Generally, cosmic variance cancellation depends on having
a sufficiently high cross-correlation coefficient between the tracer and reconstructed
modes, but this depends on shot noise in a somewhat complicated way, due to the
aforementioned cross shot noise contribution.
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The improvement in σ(fNL) also depends on the assumed value of Kmin, so we
have plotted the expected constraints as a function of Kmin. In general, reconstructed
modes improve σ(fNL) by tens of percents: for example, at Kmin = 0.01h Mpc−1,
σ(fNL) improves by a few percent for DESI, 15% and 40% for the low-z and high-z
MegaMapper bins we consider, and at least 20% for both z-bins of PUMA, depending
on what is assumed for the 21 cm foreground wedge. We have also shown that in
the limit of zero shot noise, and if our quadratic bias model were valid to arbitrarily
high k, σ(fNL) scales like k−3/2

max , reflective of the number of small-scale modes used for
reconstruction.

There are several possible ways that this work could be extended. For example,
we have neglected redshift-space distortions, but they should clearly be incorporated
in advance of applying this technique to data. One could also consider applying
reconstruction to photometric surveys, after an assessment of the impact of photometric
redshift errors on the results. It would be interesting to see how things change if
one were to consider the bias model from [238], based on shifted versions of bias
operators designed to more fully incorporate large-scale displacements. Given that
shot noise can be a limiting factor, the application of weighting schemes (such as [247])
could potentially further lower the shot noise level and improve the reconstruction
performance, although these schemes can be difficult to implement in practice; along
similar lines, one could apply a different weighting to better extract the scale dependent
signal given by fNL (see, e.g., [218]). Finally, one could consider investigating nonlinear
response functions [29, 28] as a way to increase the number of small-scale modes
that could be used in the quadratic estimator. Overall, we expect there to be many
applications for reconstructed modes beyond constraints on local-type non-Gaussianity,
and we therefore advocate for this reconstruction procedure as a useful tool to increase
the scientific returns of upcoming large-scale structure surveys.



6
Conclusions and Outlook

6.1 Conclusions

For many years we have been exploiting only power spectra of cosmological observables
to constrain our cosmological concordance model. Recently, we have started exploring
the universe by probing non-Gaussian statistics. The main focus of this thesis was to
study methods for a more robust use of such non-Gaussian statistics.

In the first part of the thesis, Chapters 3 and 4, we focused on CMB lensing
analyses. Indeed, in recent years, combined analyses of CMB lensing and galaxy
clustering have proven powerful for constraining cosmology. They will gain even more
importance in the future, due to recent theoretical and computational development for
enhanced modelling and analysis, as well as huge datasets from upcoming CMB and
large-scale structure surveys. A primary goal is to test our cosmological concordance
model. To this end, we will have to be careful about systematic effects.

In Chapter 3 we presented the latest ACT lensing maps, using data from seasons
2014−2015, cross-correlated with CMASS-BOSS galaxies. In addition, we developed a
new method for creating foreground-free CMB lensing maps with minimal impact on
signal-to-noise, the symmetric estimator. This is important especially for ground-based
experiments like ACT, as standard methods usually significantly increase the noise in
the CMB lensing estimator. We then demonstrated this technique by applying it to
combined multifrequency tSZ-cleaned data from ACT+Planck to create foreground-free
CMB lensing maps.

Several other methods exist for dealing with foregrounds in CMB lensing. In
Chapter 4 we explored how we can combine these to obtain more robust estimators
for CMB lensing analyses. First, we created new estimators by composing geometric
and multifrequency data. In particular, we applied the bias hardening technique to
the symmetric estimator. Then, we linearly combined these with other CMB lensing
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estimators to obtain the best combination of estimators that minimizes the bias, with
only a modest noise penalty. We finally applied our methods to simulations for an
SO-like experiment, finding that we can reach regimes where the bias on the CMB
lensing amplitude is negligible with respect to the noise. This will be useful for percent
and sub-percent level real CMB lensing analyses with current and upcoming data.

The first two thirds of the thesis dealt only with two dimensional non-Gaussian
information, as encoded in the observed CMB. The last part of this thesis tackled
the topic of studying the non-Gaussian statistics of galaxy tracers, a notoriously
computationally intensive task. Non-Gaussian statistics in the large-scale structure,
for example, could come from non-linear gravitational evolution, and from local
primordial non-Gaussianity. Understanding the latter is of key importance, as a
detection of fNL ≥ 1 would rule out single-field slow-roll inflation. Local primordial
non-Gaussianity shows up in the observed galaxy field through a scale-dependent bias
on large-scales, and a modulation of the power at small scales.

By using quadratic methods, similar to the ones of CMB lensing, we can reconstruct
an estimate of the matter field on large scales from a galaxy field, in the same volume.
By combining the reconstructed field with the galaxy field for a power spectrum
analysis, we can indirectly use three and four-point function information. Indeed,
the reconstructed field is a two-point function in the input galaxy field; therefore,
the reconstructed-galaxy, and reconstructed-reconstructed power spectra are three
and four-point functions in the galaxy field, respectively. This method relies on
relatively fast algorithms for the reconstruction of the linear field and calculation of
power spectra, as opposed to dealing directly with bispectra and trispectra (though
this is true only for the squeezed limits). From the combination of the galaxy and
reconstructed fields, we showed forecasts on the error bars for local non-Gaussianity.
In some cases we are able to tighten constraints significantly, with respect to some
galaxy power-spectrum-only analysis. This shows that the method is promising for
future searches for primordial non-Gaussianity.

6.2 Outlook

Applying the foreground combined cleaning methods of Chapters 3, 4 to current and
future data analyses will be interesting. In particular, rerunning the optimization
for the ACT survey specifications will be important for understanding how much the
best combination depends on the particular settings. Foreground combined cleaning
methods will be relevant also for polarization-dominated surveys such as CMB-S4:
even if in general foregrounds are less of a problem, in cross-correlation temperature
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is still important for smaller scales, and so the methods developed in this thesis will
be relevant. Exploring the use of alternative simulations or theoretical modelling of
foregrounds (e.g. through the halo model), will be an important topic to explore
too, to test the robustness of the results. Finally, an interesting question is whether
we can develop a more general foreground-free estimator that does not rely on the
combination or composition of known estimators.

The large-scale matter density field reconstruction method seems promising. But,
to apply it to data (e.g. from the SPHEREx satellite), we will have to understand
how redshift-space distortions and, for some surveys, photometric redshift errors will
affect reconstruction. Next steps could include applications to N−body simulations,
and the addition of more realism, e.g. stellar contamination that might be present in
observed data or masking. Finally, it would be interesting to explore the method for
other cosmological parameters aside from fNL.



A
Appendices of Chapter 3

A.1 CMB map pre-processing for lensing recon-
struction

In this appendix, we describe in more detail the preprocessing of the ACT CMB maps
which are used in the lensing reconstruction process.

The ACT raw maps are made available as four map splits DA,f,j, j ∈ {1, 2, 3, 4}
with the same signal but independent instrumental noise contributions through the
time-interleaved splitting scheme described in [10] and [62], for each frequency f and
instrumental array A. For the D56 region, data are from seasons 2014 and 2015 and
observations of the sky are made from the following combinations of array-frequency
(A, f): (PA1-2014, 150), (PA2-2014, 150), (PA1-2015, 150), (PA2-2015, 150), (PA3-
2015, 150), (PA3-2015,98), where only the dichroic PA3 array includes observations at
both 98 GHz and 150 GHz. For the BN region, the data are from season 2015 only,
for the combinations (A, f): (PA1-2015, 150), (PA2-2015, 150), (PA3-2015, 150) and
(PA3-2015,98). Here, (PA3-2015,150), for example, corresponds to a map made using
measurements from the 150 GHz channel of the PA3 detector array collected during
the 2015 observing season.

The temperature maps that enter the ACT+Planck tSZ-free lensing maps are
pre-processed and coadded (with appropriate tSZ deprojection) as described in [170].
All other maps (i.e. temperature maps for the ACT-only lensing maps and the
polarization maps) are pre-processed and co-added as follows:

1. To reduce noise and bias from radio sources and to make subsequent Fourier
transforms well-behaved, we use source-subtracted maps (see [62, 10]). Some
residuals are left in these at the locations of bright compact sources; these are
in-painted within each split using the catalog and maximum-likelihood method
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described in [170], i.e., we fill holes around compact sources with a constrained
Gaussian realization. These holes of 6 arcminute radius are inpainted jointly for
T , Q, U . The algorithm used follows the brute-force approach presented in [44].
We then use these splits to obtain a co-added map DA,f using maps of the inverse
white-noise variance in each pixel as well as two sub-splits DA,f,1 = ∑

j=1,2 DA,f,j

and DA,f,2 = ∑
j=3,4 DA,f,j with independent noise. We use these two sub-splits

to obtain an estimate of the 2D Fourier-space noise power spectrum NA,f (⃗l), by
taking the difference between the mean auto-spectrum of each sub-split and the
mean cross-spectrum between the sub-splits, and subsequently smoothing it.

2. We apply an apodized mask to each map which restricts our analysis to the
well-crosslinked region used for power spectrum measurements in [62, 10]. To
account for pixelization effects, we deconvolve the pixel window function from
each map in 2D Fourier space.

3. We next combine the various maps DA,f into a single CMB map M on which the
lensing reconstruction is performed, for each of T , Q and U . Unlike in previous
work where a real-space coaddition was used [256], we now co-add the maps
in 2D Fourier space (since this is more optimal for multifrequency data with
different beams) as follows: M (⃗l) = BAc,fc(l)

∑
(A,f) wA,f (⃗l)DA,f (⃗l)B−1

A,f (ℓ) where

wA,f =
N−1

A,f (⃗l)B2
A,f (ℓ)∑

(A,f) N−1
A,f (⃗l)B2

A,f (ℓ)
, (A.1)

are normalized inverse-variance weights. We note that here a deconvolution of
the harmonic-space beam BA,f (ℓ) is performed for each array, and finally a con-
volution to a common map beam BAc,fc(l) is reapplied; the choice of this beam
does not matter since it is deconvolved later. This weighting scheme ignores
correlations of the noise between arrays. Only the dichroic arrays (PA3,150
GHz) and (PA3, 98 GHz) have substantial (≈ 40%) noise correlations on the
scales considered in this work. While this choice of weighting is sub-optimal,
on scales where the (98–150) GHz correlation is important, our measurements
are dominated by the CMB signal in the 98 GHz frequency and thus neglecting
these correlations will not substantially increase the lensing reconstruction noise.

This procedure, performed separately for each of intensity T and the Q and
U polarization Stokes components, results in coadded CMB maps MX with
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X ∈ {T, Q, U}. We repeat the same operations above on the sub-splits DA,f,i, i ∈
{1, 2} to obtain the corresponding maps MX,i, X ∈ {T, Q, U} from which we
obtain an estimate of the experimental noise 2D power NX , X ∈ {T, Q, U} in
the same way as described previously. These noise estimates of the co-added
maps are used for optimal weighting in the lensing reconstruction.

4. While the previously described inpainting procedure removes a large amount
of radio source contamination, bright galaxy clusters show up in these maps
as decrements due to the thermal Sunyaev-Zel’dovich effect. These add both
noise and bias to the lensing estimation, and so we next in-paint a catalog
of SZ clusters that have been internally detected. For this catalog, we use
confirmed cluster locations inferred from co-add maps that include data up to
the 2018 season. From this catalog, we select and inpaint all the clusters with
a signal-to-noise ratio greater than 5. The inpainting is performed (only in
temperature) within circular holes of 5-arcmin radii using the same method as
for the compact sources. A small number of clusters near the edge of the mask
that caused problems due to the discontinuous boundary were not inpainted.
This is expected to have a negligible impact on our analysis as the number of
such clusters is very small, with no particularly bright ones among them. After
inpainting, we deconvolve by the common map beam chosen above.

The CMB temperature and polarization maps that result from these steps are used
(following filtering and E −B decomposition) as inputs to our lensing reconstruction
pipeline, described in detail in Section 3.

A.2 Noise properties of the symmetric foreground-
cleaned estimator

The goal of this appendix is to illustrate the noise properties of the different lensing
estimators used in this work, with particular emphasis on the noise of the new
symmetric cleaned estimator that is free of tSZ contamination.

Indeed as explained in the main text, if left untreated, the tSZ induced contamina-
tion can bias the results of a low-z galaxy - CMB lensing cross-correlation measurement,
by 10%. In combination with cleaned multifrequency data, the lensing estimator we
propose below can mitigate these biases, leading to a more robust cross-correlation
analysis.
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Fig. A.1 The noise power per mode for the temperature-only estimator for different
cases in the D56 region. This plot shows how the symmetric cleaned estimator presented
in this work lowers the noise compared to the asymmetric estimator. The green curve
shows the cross-noise between the two different asymmetric estimators, with negative
values in dashed. The anti-correlation of the noise on large scales between the two
different asymmetric estimators leads to a cancellation in the optimal co-add of these
that results in the red noise curve for our new symmetric cleaned estimator, which
recovers the forecast performance in MH18.

The estimated lensing convegence map in real space from a fixed polarization
combination XY for CMB maps is [e.g., 124]:

κ̂XY (n̂) =
∫ d2L⃗

(2π)2 eiL⃗·n̂κ̂XY (L⃗) , (A.2)

with

κ̂XY (L⃗) = −AXY
L

∫
d2n̂e−in̂·⃗lRe{∇ · [G⃗XY (n̂)LY ∗(n̂)]} , (A.3)

where XY ∈ {TiTj, TiEj, EiEj, EiBj} + i↔ j with the indices characterizing maps
with different data content (e.g. from different experiments or with different component
separation techniques), AXY

L is a normalization to ensure that we recover an unbiased
estimate of the convergence field, and G⃗XY (n̂) and LY ∗(n̂) are filtered versions of
CMB maps. The details of these filtered maps can be found in [124].

The normalization is

AXY
L = L2

2

∫ d2l⃗

(2π)2 (L⃗ · l⃗)W XY
l W Y

|L⃗−l⃗|f
XY (⃗l, L⃗− l⃗)

−1

, (A.4)
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Fig. A.2 The noise power per mode in our maps for different patches for the minimum
variance (temperature + polarization) co-add of the CMB lensing maps from this
work. Solid colored lines represent D56, dashed lines represent BN and dashed and
dotted represent Planck 2018. The theory expectation for the signal is shown in black.
Our maps are signal dominated for L < 100 in BN and L < 200 in D56.

where W XY
l is used to obtain GXY in (A.3), W Y

l to obtain LY , with details for these
and fXY (⃗l, L⃗− l⃗) that can be found again in [124]. The lensing convergence estimator
expands to

κ̂XY (L⃗) = AXY
L

∫ d2l⃗

(2π)2 (L⃗ · l⃗)W XY
l X (⃗l)W Y

|L⃗−l⃗|Y (L⃗− l⃗) . (A.5)

The covariance of this estimator, NXY,W Z(L⃗) is

⟨κ̂XY (L⃗)κ̂W Z(L⃗′)⟩CMB − ⟨κ̂XY (L⃗)⟩CMB⟨κ̂W Z(L⃗′)⟩CMB =

= (2π)2δ
(2)
D (L⃗− L⃗′)AXY

L AW Z∗
L

∫ d2l⃗

(2π)2 (L⃗ · l⃗)W XY
l W Y

|L⃗−l⃗|

×[(L⃗ · l⃗)W W Z
l W Z

|L⃗−l⃗|C
X̄W̄
l C Ȳ Z̄

|L⃗−l⃗|

+(L⃗ · (L⃗− l⃗))W W Z
|L⃗−l⃗|W

Z
l CX̄Z̄

l C Ȳ W̄
|L⃗−l⃗|] .

(A.6)

When the maps involved are identical (X = Y , e.g. for TT and EE estimators
where both fields have the same data), the minimum-variance filters have a simple form
as shown in [124] and the estimator can be written in a separable manner (i.e., can be
written using sums of products of a function of l⃗1 times a function of l⃗2) that allows for
fast evaluation with FFTs. Moreover, the estimator variance (X = Y = W = Z above)
has a simple relation to the normalization NL ∝ ALL2. This no longer holds when X ̸=
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Y . In particular, for our case of interest where we mix maps with different component
separation techniques, X = Tno−fg and Y = Twith−fg, the minimum variance estimator
does not have a simple separable form. MH18 used an approximation to the minimum-
variance estimator that consisted of the two different maps being independently
Wiener filtered. When the weights in the estimator are not minimum-variance, the
relation (assumed in the forecast of that paper) that NL ∝ ALL2 no longer holds.
The true performance is the orange curve in Figure A.1. However, a simple heuristic
extension of the MH18 estimator recovers performance close to what was forecast
there: the two asymmetric estimators κ̂(Tno−fg, Twith−fg), κ̂(Twith−fg, Tno−fg) combined
in a minimum-variance combination κ̂T T

symm,fgfree = ∑
wα(L⃗)κ̂α(L⃗) with weights given

by Eq. (3.10), where α ∈ {(Tno−fgTwith−fg), (Twith−fgTno−fg)} and N−1 the inverse of
the 2× 2 covariance matrix taking into account the cross-correlation between the two
estimators.

In Figure A.1 we show the noise curves for this TT symmetric cleaned estimator, as
well as the asymmetric estimators. In Figure A.2 we show lensing minimum-variance
noise curves, which include polarization lensing measurements. These are shown for
three different cases that differ in how the TT estimator is calculated: (a) using the
tSZ-free symmetric cleaned estimator with both Planck and ACT data combined
with ILC (our baseline, in purple); (b) using only ACT data with the 1/N co-adding
scheme, and no deprojection of foregrounds (red); and (c) using the tSZ-free symmetric
cleaned estimator with only ACT data combined with ILC (blue).

A.3 Data Availability

The maps and masks used for this analysis are available at https://lambda.gsfc.nasa.
gov/product/act/actpol_prod_table.cfm.

https://lambda.gsfc.nasa.gov/product/act/actpol_prod_table.cfm
https://lambda.gsfc.nasa.gov/product/act/actpol_prod_table.cfm


B
Appendices of Chapter 4

B.1 CMB lensing biases for a combination of esti-
mators

Combination of estimators

Suppose we observe the lensed CMB at several frequencies νi, i ∈ {1, ..., Nf}. We
can exploit the frequency and scale dependence of foregrounds to build a quadratic
estimator Q(L⃗) = κ̂(L⃗) for extracting the CMB lensing signal by minimizing the
impact of such foregrounds

Q(L⃗) =
∑
νν′

∫
ℓ⃗1

∫
ℓ⃗2

gνν′(ℓ⃗1, ℓ⃗2)Tν(ℓ⃗1)Tν′(ℓ⃗2)|ℓ⃗1+ℓ⃗2=L⃗ (B.1)

where we sum over pair of frequencies, as we perform the quadratic reconstruction on
a pair of CMB temperature maps observed at such frequencies, and we weight with
some weighting function g (that in principle might not be symmetric in ℓ⃗1, ℓ⃗2 and
ν, ν ′). This weight function depends not only on the observables, but also on choices
like the maximum mode used in reconstruction ℓmax.

We can then impose the usual requirement of obtaining an unbiased estimate of
the CMB lensing signal ⟨Q(L⃗)⟩CMB = κ(L⃗) (with the quadratic estimator applied only
on CMB maps) and the minimization of a function L that depends monotonically on
the variance and on the induced foreground biases. What is then the optimal form of
g in this case?
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This is a difficult constrained optimization problem that could be simplified as
follows. First, we further decompose the sum over frequencies and filters as

Q(L⃗) =
∑
iνν′

∫
ℓ⃗1

∫
ℓ⃗2

gi(ℓ⃗1, ℓ⃗2)aiνν′(ℓ⃗1, ℓ⃗2)Tν(ℓ⃗1)Tν′(ℓ⃗2)|ℓ⃗1+ℓ⃗2=L⃗ (B.2)

where now we are summing over weighting functions gi, independent from frequencies,
and we absorb the frequency dependence in coefficients aiνν′ that mix the frequency
space and the CMB temperature multipoles with the CMB lensing space. Then, we
make aiνν′ seperable to obtain

Q(L⃗) =
∑
iνν′

∫
ℓ⃗1

∫
ℓ⃗2

ai(L⃗)gi(ℓ⃗1, ℓ⃗2)ai
ν(ℓ⃗1)ai

ν′(ℓ⃗2)Tν(ℓ⃗1)Tν′(ℓ⃗2)|ℓ⃗1+ℓ⃗2=L⃗ . (B.3)

In this paper we will focus on the case where we fix the CMB temperature multipole
weights ai

ν(ℓ⃗) and focus only on varying the lensing weights. Therefore, our optimization
problem is to look for optimal coefficients that give an unbiased lensing estimator Q

that minimizes the impact of foreground biases without strong degradation in the
signal over noise with the following form

Q(L⃗) =
∑

i

∫
ℓ⃗1

∫
ℓ⃗2

ai(L⃗)gi(ℓ⃗1, ℓ⃗2)TA(ℓ⃗1)TB(ℓ⃗2)|ℓ⃗1+ℓ⃗2=L⃗ (B.4)

where TA, TB are two (possibly different) linear combinations of the individual temper-
ature maps at each frequency. The problem of optimizing the estimator in Eq. (B.1)
has therefore been decomposed into two steps:

• Choose best combination of frequency CMB temperature data, with respect to
some optimisation request.

• Choose best combination of geometric CMB lensing methods, with respect to a
similar optimisation request.

In this paper we will focus on the second problem, while [227] focuses on the first.

Temperature data

We will refer to a generic quadratic estimator i that takes two temperature maps Ti1, Ti2,
with Qi[Ti1, Ti2](L⃗). Note, a priori that the estimator is not symmetric with respect
to its arguments. We now expand each Tik (k ∈ {1, 2}) as Tik = TCMB + Tf,ik + Tn,ik,
where the first term is the lensed CMB (equal for each frequency and method of
combination), the second is the foreground f for the map i in the leg k, and the last one
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is the noise map for the map i in the leg k. From now on, we will ignore this last term
in the next calculations, keeping in mind that the experimental noise contribution
(and large-scale galactic dust too) will only enter the CMB lensing filters used for
reconstruction.

We now consider a set S of estimators. They could represent even the same
estimator with different input maps (e.g. QE appearing once with maps at one
frequency, and then at another frequency). From now on, any sum over the index i

will implicitly assume that i ∈ S.
Our goal is to determine the different foreground-bias-induced contributions to a

total estimator given by the combination of other estimators

QT (L⃗) =
∑

i

ai(L⃗)Qi[Ti1, Ti2](L⃗) (B.5)

Using the bi-linearity of the quadratic estimators in their arguments

QT (L⃗) =
∑

i

ai(L⃗)
[
Qi[TCMB, TCMB] +Qi[Tf,i1, TCMB] +Qi[TCMB, Tf,i2] +Qi[Tf,i1, Tf,i2]

]
(B.6)

Let’s now calculate the autospectrum of QT , given by:

⟨QT (L⃗)Q∗
T (L⃗)⟩−⟨QT (L⃗)⟩⟨Q∗

T (L⃗)⟩ =
∑
ij

ai(L⃗)a∗
j(L⃗)⟨Qi(L⃗)Q∗

j(L⃗)⟩ −⟨QT (L⃗)⟩⟨Q∗
T (L⃗)⟩.

(B.7)
To obtain this, we have to consider the spectrum obtained from crossing the CMB
lensing estimator i with j:1

⟨Qi[Ti1, Ti2]Qj[Tj1, Tj2]⟩ = ⟨Qi[TCMB, TCMB]Qj[TCMB, TCMB]⟩
+ ⟨Qi[TCMB, TCMB](Qj[Tf,j1, TCMB] +Qj[TCMB, Tf,j2])⟩
+ ⟨Qj[TCMB, TCMB](Qi[Tf,i1, TCMB] +Qi[TCMB, Tf,i2])⟩
+ ⟨Qj[TCMB, TCMB]Qi[Tf,i1, Tf,i2]⟩+ ⟨Qi[TCMB, TCMB]Qj[Tf,j1, Tf,j2]⟩
+ ⟨

(
Qi[Tf,i1, TCMB] +Qi[TCMB, Tf,i2]

)(
Qj[Tf,j1, TCMB] +Qj[TCMB, Tf,j2]

)
⟩

+ ⟨Qi[Tf,i1, Tf,i2]Qj[Tf,j1, Tf,j2]⟩.
(B.8)

1Note that we have dropped all terms of the form ⟨Qi[Tf,i1, TCMB]Qj [Tf,j1, Tf,j2]⟩, which in-
deed vanish. To see this, consider taylor expanding the lensed CMB field in powers of the
convergence, schematically we have TCMB ∼ T 0

CMB + κCMBT 0
CMB + · · · , where T 0

CMB is the un-
lensed CMB. Since the unlensed CMB is uncorrelated with the convergence and the foregrounds,
⟨Qi[Tf,i1, TCMB]Qj [Tf,j1, Tf,j2]⟩ ∝ ⟨T 0

CMB⟩ = 0. Likewise, all terms with three TCMB’s will vanish,
since the unlensed CMB has a null bispectrum.
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Recalling that Qi[TCMB, TCMB] = κCMB + noise, the above simplifies to:

⟨Qi[Ti1, Ti2]Qj[Tj1, Tj2]⟩ = ⟨κCMBκCMB⟩
+ ⟨κCMB(Qi[Tf,i1, Tf,i2] +Qj[Tf,j1, Tf,j2])⟩
+ ⟨

(
Qi[Tf,i1, TCMB] +Qi[TCMB, Tf,i2]

)(
Qj[Tf,j1, TCMB] +Qj[TCMB, Tf,j2]

)
⟩

+ ⟨Qi[Tf,i1, Tf,i2]Qj[Tf,j1, Tf,j2]⟩,
(B.9)

where we have neglected the Gaussian contribution from the noise, or the N0 compo-
nent. On the first row we have the CMB lensing signal, and on the others the foreground
biases. These can be deconstructed in the following way, useful for calculation:

• the second row can be viewed as a cross correlation between the CMB lensing
convergence field and the map coming from applying the estimators to the
foreground maps. Following [202, 278, 229], we call this Primary Bispectrum
term Pij.

• the third row constitutes a secondary contraction (i.e. an integral) over the
primary term, also known as Secondary Bispectrum. Following [229] we
will calculate the secondary bias as a cross correlation, by expanding TCMB =
TCMB,0 + TCMB,1 +O(κ2), and calculate it as

Sij = ⟨(Qi[Tf,i1, TCMB,0] +Qi[TCMB,0, Tf,i2])(Qj[Tf,j1, TCMB,1] +Qj[TCMB,1, Tf,j2])⟩
+ ⟨(Qi[Tf,i1, TCMB,1] +Qi[TCMB,1, Tf,i2])(Qj[Tf,j1, TCMB,0] +Qj[TCMB,0, Tf,j2])⟩

(B.10)

• the last row comes from the autospectrum of the foregrounds only. This includes
a signal part plus a Gaussian one. We subtract the latter by creating randomizing
the phases in the foreground map,2 with the same power spectrum as the non
Gaussian ones. The difference is the Trispectrum term Tij.

In the end, for a combination of estimators the total foreground induced CMB lensing
bias is

BT T = a⃗ · (T + P + S) · a⃗ (B.11)

Including polarization data

A practical lensing analysis will ideally extract all the signal-to-noise available from
observations, and this will include the use of polarization data to extract the lensing

2Note, this is not equivalent to "Gaussianize" a field. Homogeneity and gaussianity of a field imply
that real and imaginary parts of the field are independent, and the phases are randomly drawn from
a uniform distribution on [0, 2π[. The converse is in general not true [149].
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signal [130]
κ̂ ≡ QMV =

∑
XY ∈E

αXYQXY [X, Y ] (B.12)

such that ∑
XY ∈E αXY = 1 to obtain an unbiased estimator, and XY ∈ E =

{TT, TE, TB, EE, EB}. The combined power spectrum using temperature and po-
larization data is

C = α⃗T Cα⃗ =
∑

XY,W Z

αXY αW ZCXY,W Z
L

=
∑

XY,W Z

αXY αW ZCκκ
L +

∑
XY,W Z

αXY αW ZNXY,W Z
L + · · ·

= Cκκ
L +

∑
XY,W Z

αXY αW ZNXY,W Z
L + · · ·

(B.13)

If we want to minimize the Gaussian disconnected noise NL = ∑
XY,W Z αXY αW ZNXY,W Z

L

subject to the constraint of having an unbiased estimator, then we have that

α⃗ = N−1e⃗

e⃗T N−1e⃗
(B.14)

where e⃗ is a vector of only ones, and N−1 is the inverse, per mode, of the spectrum
matrix NXY,W Z for XY, WZ ∈ E . Correlations among estimators are negligible (e.g.
for QE at most at the 10% percent level, see [130]), so we neglect them when calculating
the weights, and set the matrix N to be diagonal. As in the main text, we have that
the variance on the estimated amplitude per mode

σ2(Â(L⃗)) = σ2
MV

(Cκκ
L )2 , (B.15)

and the bias on the estimated amplitude per mode becomes

b(Â(L⃗)) =
∑

XY,W Z∈S

αXY αW ZBXY,W Z
L

Cκκ
L

= α⃗T Bα⃗

Cκκ
L

(B.16)

Our goal is to again calculate the total function

L = σ2(Â) + f 2
b b(Â)2 (B.17)
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The calculations are very similar to the temperature only case. The results are

L =
∫

L⃗
w2(L⃗)×

∑
XY,W Z,AB,CD

ΘXY,W Z,AB,CD(L⃗)
(Cκκ

L )2 αXY (L⃗)αW Z(L⃗)αAB(L⃗)αCD(L⃗)+

+ f 2
b w(L⃗)αXY (L⃗)αW Z(L⃗)BXY,W Z(L⃗)

Cκκ
L

×
∫

L⃗′
w(L⃗′)αAB(L⃗)αCD(L⃗)BAB,CD(L⃗′)

Cκκ
L′


(B.18)

Any TT part will be given by the combination of temperature estimators (e.g.
Bcomb,T T = a⃗ · BT T a⃗). The polarization contributions will be from a single esti-
mator, and we will use the standard quadratic estimator on any polarization pair
XY ∈ {TE, EE, EB, TB}.3 4

We now calculate the total bias per mode, as given from equation B.13

B = α⃗ ·B · α⃗ = α2
T T BT T + 2αT T

∑
XY ∈pol

αXY BT T,XY + · · · , (B.19)

as BXY,W Z = BW Z,XY , and we therefore need BXY,W Z(L⃗). To this end, we assume
each map to be composed of a CMB contribution and an astrophysical foreground
contribution, X = CMB + fg (ignoring the experimental noise component, or any
large-scale galactic foreground contribution). We can then write the contributions to
the combined temperature and polarization power spectrum as (ignoring correlations
of the type ⟨XCMBff⟩).

CXY,W Z →⟨QI [XI1, YI2]QJ [WJ1, ZJ2]⟩
= ⟨QI [XCMB, YCMB]QJ [WCMB, ZCMB]⟩
+ ⟨QI [XCMB, YCMB](QJ [Wf,J1, ZCMB] +QJ [WCMB, Zf,J2])⟩
+ ⟨QJ [WCMB, ZCMB](QI [Xf,I1, YCMB] +QI [XCMB, Yf,I2])⟩
+ ⟨QJ [WCMB, ZCMB]Qi[Xf,I1, Yf,I2]⟩
+ ⟨QI [XCMB, YCMB]QJ [Wf,J1, Zf,J2]⟩
+ ⟨

(
QI [Xf,I1, YCMB] +QI [XCMB, Yf,I2]

)(
QJ [Wf,J1, ZCMB] +QJ [WCMB, Zf,J2]

)
⟩

+ ⟨QI [Xf,I1, Yf,I2]QJ [Wf,J1, Zf,J2]⟩
(B.20)

3It should be possible to generalize the other non QE estimators, for example bias hardening, to
the polarization. For simplicity we will just suppose to have QE to retain maximum signal over noise,
as we assume no foregrounds for CMB polarization maps.

4We ignore ET .
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where I, J are shorthands to indicate an estimator for the combinations XY, WZ

respectively. Furthermore, we assume that the polarization data is immune from
foregrounds, under the assumption that a point source mask is enough to remove
effects from polarized point sources. We want to focus on the part of the CMB lensing
estimator that includes polarization data and gives foregrounds bia contributions,
under the previous assumption. Let’s set X ∈ {T}, Y ∈ {T, E, B} W ∈ {T, E, B},
Z ∈ {E, B}

CT Y,W Z = CW Z,T Y →⟨QI [TI1, YI2]QJ [WJ1, ZJ2]⟩
= ⟨QI [TCMB, YCMB]QJ [WCMB, ZCMB]⟩+
+ ⟨QI [TCMB, YCMB](QJ [Wf,J1, ZCMB])⟩
+ ⟨QJ [WCMB, ZCMB](QI [Tf,I1, YCMB] +QI [TCMB, Yf,I2])⟩
+ ⟨QJ [WCMB, ZCMB]QI [Tf,I1, Yf,I2]⟩
+ ⟨

(
QI [Tf,I1, YCMB] +QI [TCMB, Yf,I2]

)
×QJ [Wf,J1, ZCMB]⟩

(B.21)
These correlations give the following

⟨κCMBκCMB⟩+⟨κCMBQI [Tf,I1, Yf,I2]⟩+⟨
(
QI [Tf,I1, YCMB]+QI [TCMB, Yf,I2]

)
×QJ [Wf,J1, ZCMB]⟩

(B.22)
Now, the only way to have a primary bispectrum term is if Y ∈ {T}, given our
assumptions, and for our case this is simply

1
2PT T,I = 1

2
∑

i

aiQi[Tf,i1, Tf,i2] = 1
2
∑

i

aiPii (B.23)

where Pii is the primary that we have already calculated from TT data for the
temperature i estimator.

For the secondary bispectrum part, W ∈ {T}, as we assume no foregrounds in
polarization maps. If Y ∈ {T}, then we have ST T,T E, ST T,T B, and this is (we consider
only TE)5

ST T,T E = ⟨
(
QI [Tf,I1, TCMB] +QI [TCMB, Tf,I2]

)
×QJ [Tf,J1, ECMB]⟩ (B.24)

5If Y ∈ {E, B}, ST E,T E , ST B,T B , ST E,T B , ST B,T E we still have contributions, that we here ignore,
as the polarization weight for TB is practically negligible, and for TE becomes not too important
when squared.
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and we use again the trick to calculate the secondary by decomposing XCMB =
X0

CMB + X1
CMB, X ∈ {T, E} in powers of κ. To recap, we obtain a symmetric bias

matrix BXY,W Z whose components are6

BT T,T T = a⃗ ·BT T,T T −data · a⃗ (B.25)

BT T,EB = BT T,EE = 1
2
∑

i

aiPii (B.26)

BT T,T E = 1
2
∑

i

aiPii + ST T,T E (B.27)

BT T,T B = 1
2
∑

i

aiPii (B.28)

For the optimization, we then take its absolute value and smooth it with a Gaussian
as with the TT case, and calculate

BT T +pol = α⃗ ·B · α⃗ (B.29)

where B has components BXY,W Z . In Figure B.1 we show how an example of how
minimum variance weights when combining temperature and polarization data change
when including bias contributions.7 Finally, given our assumptions, for the cross-
correlation we do not expect to have a significant foreground bias arising from the
polarization estimator contributions.

B.2 Composition of CMB lensing estimators

In this section we discuss how we compose, i.e. simultaneously apply, the symmetric
estimator and the bias hardening operation. First, we will review the symmetric
estimator. Then, we review the bias hardening operation.

B.2.1 The symmetric estimator

The symmetric estimator is built on a foundation of the gradient cleaning method
[169]. The idea behind the gradient cleaned estimator is the following. The standard
quadratic estimator for CMB lensing estimation can be obtained from the divergence

6We ignore the secondary contraction for TETE as it enters with a small weight of α2
T E . We

do not consider a secondary for TB. Even setting BT T,T B = 0 should be fine, given the negligible
weight for TB in the MV combination.

7To calculate the Gaussian lensing noise from polarization data, we use a minimum variance noise
from the SO polarization noise frequencies.
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Fig. B.1 Polarization weights change when accounting for the presence of biases. The
solid line represents the minimum variance weights for each polarization estimator
when including the presence of biases in the optimization, with fb = 4. The dashed
line is the minimum variance weight when we do not consider the presence of biases.
We can see that the combined TT estimator becomes less important when including
biases, and the EB one is favored.

of Tfilt,1∇⃗Tfilt,2. Tfilt,1 is an inverse variance weighted CMB map. On the other hand,
Tfilt,2 is a Wiener filtered CMB map useful for the estimation of the gradient of the
unlensed CMB map. Because of diffusion damping, the information coming from the
latter saturates after CMB scales at l ∼ 2000 [124]. The intuition behind the gradient
cleaned estimator is then to use a noisier foreground-free cleaned CMB map Tdepr,2 in
the gradient leg, Tfilt,1∇⃗Tdepr,2. This results in cleaned cross-correlations with matter
tracers, or auto-correlations without trispectrum or primary bispectrum terms [169].

Now, let’s write the temperature maps as the superposition of two sets of modes
T = Tlow + Thigh, where low indicates modes below some scale lc, and high otherwise.
The problem of the gradient cleaned estimator is that it misses the high− high CMB
lensed multipole correlations. This results in a high noise on large scales in the
reconstructed CMB lensing map. The symmetric estimator in [72] recovers these
modes, by creating a linear combination of gradient cleaned estimators, by taking
the divergence of aTfilt,1∇⃗Tdepr,2 + bTdepr,2∇⃗Tfilt,1. This can also be written in Fourier
space as κ̂symm =

∫⃗
l gsymmT1(⃗l)Tdepr,2(L⃗− l⃗), with formulae that can be found in [72].

The result is a much lower noise-cost in the symmetrised CMB lensing map gaussian
noise, compared to gradient cleaning.
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B.2.2 Bias Hardening

Bias hardening [196] methods have already been explored in detail; see for example
[226]. Here, we briefly summarize the idea.

If the total temperature map is T = TCMB + s, where s is a foreground source, we
have that

⟨T (⃗l)T (L⃗− l⃗)⟩ = fκ(⃗l, L⃗− l⃗)κ(L⃗) + f s(⃗l, L⃗− l⃗)f(L⃗) (B.30)

for a statistical average with the CMB lensing convergence field and foreground fixed
at some mode L⃗.

Therefore, the estimator for the CMB lensing convergence field, say with TA, TB

temperature maps

κ̂(L⃗) =
∫

ℓ⃗
TA(ℓ⃗)TB(L⃗− ℓ⃗)gAB(ℓ⃗, L⃗− ℓ⃗), (B.31)

picks up some foreground contribution [196].
The idea behind bias hardening is to write an unbiased estimator for the foreground

source

ŝ(L⃗) =
∫

ℓ⃗
TA(ℓ⃗)TA(L⃗− ℓ⃗)gs(ℓ⃗, L⃗− ℓ⃗) . (B.32)

One can then write (we omit the argument L⃗)
⟨κ̂⟩
⟨ŝ⟩

 =
 1 Rsκ

Rκs 1

κ

s

 , (B.33)

where Rab is the response of the estimator a on the field b, Rab =
∫⃗

l ga(⃗l, L⃗− l⃗)fb(⃗l, L⃗− l⃗).
Inverting this system it then possible to write a weighting function for the bias hardened
estimator8

gBH,AB = 1
1−RsκRκs

(gAB −Rsκgs) . (B.34)

For composing bias hardening with the symmetric estimator, we just then set
gAB ≡ gsymm, applying it on TA, TB = T, Tdepr, a map with the foreground, and another
without it respectively.9

8Another way to write the estimator, to easier reconnect to the CMB lensing literature, is the
following. Set gAB = AκFκ, with some normalisation Aκ, and gs = AsFs, with some normalisation As.
Then, FBH = Fκ−FsAs/Aκf , where Aκs =

[∫
l⃗
Fκfs

]−1. The normalization is ABH =
[∫

l⃗
FBHfκ

]−1.
9Note that gs was built to act on TA, TA only, and not on the deprojected map too. Therefore,

when gs is applied on TA, TB TA ≠ TB , it is a slighlty suboptimal estimator in terms of variance for
the foreground source, although it is still capable of detecting it for removal.
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B.3 Optimization explorations

In this section we present a few details about the optimization results presented in
the main text.

Per mode results

Fig. B.2 Per mode plot for the case of fb = 1 for the cross power TT only data
optimization. On the top plot we have the signal over noise squared per mode from
TT , then a filtered version, with a Gaussian filter, of the absolute value of the total
foreground bias for each estimator. On the bottom, the weights per mode for each
estimator.
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Fig. B.3 Per mode plot for the case of fb = 4 for the cross power TT only data with an
LSST like sample optimization. On the top plot we have the signal over noise squared
per mode from TT , then a filtered version, with a Gaussian filter, of the absolute
value of the total foreground bias for each estimator. On the bottom, the weights per
mode for each estimator.

Fig. B.4 As for Figure 4.10, but now showing the case of fb = 1 for the cross power
TT plus polarization data optimization. It can be seen that, for fb = 1 where bias
and variance are assigned equal importance, the optimization tries to compromise
between bias and noise per mode.
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Fig. B.5 As for Figure 4.10, but now showing the case of fb = 4 for the cross power
TT plus polarization data optimization. It can be seen that, for fb = 4 generally, the
estimator with lowest bias gets selected in the combination.

Dependence of biases and optimization on the point source mask

We may run our pipeline with a more aggressive masking approach by running the
matched filter for point sources at all the SO frequencies, and not just a single one
as in the main text and keeping as our source catalog all the objects found at any
frequency. The results of the aggressive masking optimization are in Figure B.6b, to
be compared to the standard ones, that for convenience are in Figure B.6a. During the
optimization of the more aggressive masking, that covers 8% of the observed sky, we
do not consider the change in the available sky fraction, with respect to the standard
mask, with 3% masking are. The sky fraction is fixed to the SO one, to fsky = 0.4.
We can see that the noise penalty for high fb is lower in the aggressive mask case,
compared to the standard one. This can be explained by a change in the biases for
each estimator, where now the PH has smaller biases, but has a good signal over
noise compared to other estimators.

B.4 Lensing validation

We verified our pipeline with two checks. In Figure B.7a we show the lensing validation
results, from the mean of the cross-spectrum of 80 Gaussian lensed simulations with
the corresponding κ map (note that this is on a small area 20× 20 deg2 of cut sky so
exact agreement with 1 is not expected). While in Figure B.7b we show the analytical
Gaussian noise of the CMB lensing power spectrum vs the measured power spectrum
of a few estimators when applied to mock Gaussian CMB maps with a total power
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(a) Optimization results for the auto correlation for TT data.
The pie charts represent the contribution from each estimator,
calculated as

∫
L⃗ w(L)ai(L). We can see that for high deprojection,

on the extreme left, we need a combination of geometric and
multi-frequency deprojection methods.

80

90

100

SN
R

10 2 10 1

abs(b(A))

0.010

0.012

(A
)

b >b > /2b > /4

Shear
PSH
PBH
SymmPSH

SymmPBH
QE
3000

3500
4000
4500

(b) Optimization results for the auto correlation for TT data
with aggressive mask. The pie charts represent the contribution
from each estimator, calculated as

∫
L⃗ w(L)ai(L). When using

the aggressive mask, we fix the ILC weights to the ones of the
baseline mask, and maintain the same fraction of sky. We can
see that for high deprojection, the results change compared to
the baseline mask. The SymmPH has no trispectrum or primary
term, just secondary. While the PH has all of them. The
aggressive mask impacts more the trispectrum term, reducing it.
The optimization process then prefers to use more PH, compared
to the baseline mask, for high deprojection.

Fig. B.6 On the left, optimization results for our baseline mask used in the main
text. On the right, optimization results for a more agressive mask, with respect to the
baseline one. We can see how the results are sensitive to the used mask.
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spectrum equal to the total power of the filter used in the estimators (lensed CMB +
detector noise + foregrounds).

B.5 Optimization details

B.5.1 Choosing among different loss functions

When performing the optimization in practice the variance part will include only the
total variance for power spectra, namely cosmic variance and (reconstruction) noise,
without the bias contribution. The bias enters separately explicitly in another term,
as seen in equation 4.17.

We do not know the real true foreground biases in nature. The biases that we use
to calculate the optimal combination in general will arise: from some theory model
(e.g. halo model), or from simulations, as in this paper. In both cases, care is required
when deciding what to include as a bias in the loss function. Here we list a few
possibilities.

1 Taking as bias the sum over foregrounds of the absolute values of the different
parts of the bias, i.e. the trispectrum, primary and secondary contributions∑

f (|T |+ |P |+ |S|).

2 Taking as the bias the sum over foregrounds ∑f (T + P + S).

3 Taking as the bias the absolute value of the sum of biases over foregrounds.
|∑f (T + P + S) |.

4 Taking as the bias the total bias arising from the sum of the foreground maps
(T + P + S)total, where total = tSZ + kSZ + CIB + radio.

5 Taking as the bias the absolute value of the sum of the foreground maps
| (T + P + S)total |.

6 Taking as the bias (|T |+ |P |+ |S|)total.

Among these choices, 2, 3, 4, and 5 allow for cancellations among the trispectrum,
primary and secondary contribution that lead to zero crossing. In particular, 2 and 4
allow for cancellations among estimator biases at the same L⃗ or among different L⃗’s
in the integral of 4.17. The zero crossing effect and any type of cancellation can lead
to very misleading conclusions, as these are highly simulation/model dependent, and
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(a) All the estimators have practically unit response. The large
red bar on the right comes from the shear estimator, that becomes
sub-optimal at small scales.

(b) In solid, the Gaussian reconstruction noise from the theory
expression, vs the measured power spectrum in dot of some
lensing estimators when applied to a sim map with no lensing
(Gaussian random field with power spectrum equal to the total
power spectrum). We can see that the dotted points agree with
the theory curves.

Fig. B.7 Validation of the pipeline for generating maps, lensing maps, and reconstruct-
ing lensing for QE, Shear, SymmPSH, SymmPH, PSH, Symm, evaluated on 80 mock
maps, 20× 20 deg2 each.
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depend on the experimental configuration and the lmax’s of reconstruction. Therefore,
using 2 or 4 in equation 4.17 is not a wise choice.10

To overcome this, one might want to use one of the other choices, where there
are absolute values that do not allow proper zero crossing. In 1 and 6, zero crossings
are by construction not allowed, although in 3 and 5 they might be allowed, as there
could be cancellations among T, P, S inside the absolute value. On the other hand,
we checked that 1 and 6 will make the optimization process prefer configurations with
low lmax-es (of around 2500-3000) as the bias contribution becomes too dominant, and
the statistical significance of the measurement decreases greatly. Therefore, 3 and 5
are the only choices that remains. Between these the more realistic one is 5, as biases
are calculated from the map of the sum of the foregrounds: this is what we usually
have in a data analysis.

Now, how do we solve for the possible zero crossing problem of 5? One way is to
use a regularizer gr (⃗a, Bij, ....): indeed the idea is that we want to not mathematically
achieve the best possible solution for a fixed configuration. Ways to regularize are:

1. Smooth the input bias with some kernel, so that a bias at some bin is weighted
with neighbouring biases.

2. Ignore the zero crossing. Optimise regardless, and choose by hand configurations
that do not have the smallest total function equation 4.17 above, i.e. noise
squared plus bias squared.

3. Introduce priors on the weights, such that the cost function increases if weight is
given to estimators with zero crossing. It should not change the optimal solution
much, but allows for better behaved solutions.

In this work we opt for the simple choice of option 1 for regularization. To summarize,
we take | (T + P + S)total | and we smooth it with some function K, such that the
input bias is11

Binput = K(| (T + P + S)total |) (B.35)
10Another important point to be made is that with zero crossing sometimes, an estimator that

is practically not used, will enter the combination only in one mode, just because its bias in that
mode is much smaller than the one of other estimators because of zero crossing. One then gets spikes
in the weighting combination, that do not carry big physical meaning, as the zero crossing might
depend on the simulation fidelity, on the experimental configuration and analysis choices. This might
not give general results. This effect can be mitigated with a regularizer.

11We take K to be a Gaussian, K(L) = 1
Z exp

(
− (L−L0)2

2σ2

)
, with Z a normalization constant, and

we take σ = 1.5∆/
√

8 log 2, with ∆ the width of the bin edges whose center is L0. Then the smoothed
version of the bias at L0 is just

∑
bins B(Lbin)K(Lbin).
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In practice we take K to be a Gaussian with σ = 1.5 in band-powers. This choice of
the input bias should be a realistic non-optimistic one.12

B.5.2 Optimization algorithm

For the optimization algorithm we use Differential Evolution (DE), a gradient free
global optimization algorithm. DE is based on mutation and crossover steps that
look for solutions, and a selection step that drives in the right direction of global
optimization.13 We use the implementation of the mystic library [181, 180].14

B.5.3 Estimators over which to optimize

Given Ne lensing estimators, each calculated for Nlmax,i
lmaxes, supposing a fixed

lmin, we have a total of ∏i Nlmax,i
configurations over which to optimize to choose the

best ones for a given fb. In particular, for a fixed Nlmax number of lmaxes for each
estimator, the number of configurations is Ne ×Nlmax . For a fixed configuration of
estimators, we then have nbins × (Ne + 1) parameters. As we show in Appendix B.6
this can be reduced to nbins ×Ne.

For a simple case of seven estimators and eight bins this is 8 × 7 = 56 total
parameters over to optimize.

To optimize in a reasonable time (for a fixed configuration a couple of hours), we
employ a heuristic rule: we optimize for several lmax’s for each estimator, as show in
Figure B.8 for the TT only case. Then we choose the estimators with configurations
nearer the origin in order to conduct further optimization. The idea is that an
estimator very far from the origin will have a higher noise or higher bias, or both.
Therefore, if for example we intend to minimize the bias, then we will discard the
estimators with very high bias and far from the origin, as they will not be useful for
the combined optimal estimator. Hence, unless fb = 0, we choose to optimize over
[Shear, PSH, PH, SymmPSH, SymmPH], with possible lmaxes for each estimator
of 3000 + i500, i = 0, 1, 2, 3: this gives 1024 total configurations per fb, which is
numerically tractable.

12Note, that another way to include uncertainty in foreground biases is by producing a range of
simulations, or even better, using some theory foreground model in function of some parameters (e.g.
given by halo model) to calculate the variation in the optimization in the weights, and check for the
robustness of the optimization in function of varying bias deprojection request.

13We check the stability of the optimization procedure by optimizing the same configuration for
several O(10) times, and we find the final total functional is the same, although some times the
optimizer finds different solution with sub-percent differences in the total functional.

14https://github.com/uqfoundation/mystic.

https://github.com/uqfoundation/mystic
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Fig. B.8 Biases and noises on the CMB lensing amplitude A for the auto spectrum,
with TT only data at different lmaxes of reconstruction. The bands bands represent
regimes where the bias is greater than a fraction of the noise. We can see in action the
bias-noise trade off: as we increase the noise, the biases get reduced, and vice versa.

120

140

160

SN
R

10 2

abs(b(A))

0.006

0.007

0.008

(A
)

b >b > /2b > /4

Shear
PSH
PH
SymmPSH
SymmPH
QE

Symm
3000
3500
4000
4500

Fig. B.9 Biases and noises on the CMB lensing amplitude A for the auto spectrum,
with TT plus (foreground free) polarization data, for the estimators presented in the
main text, at different lmaxes of reconstruction. Thanks to how clean the polarization
is, we are easily able to reduce the bias without a high cost in SNR.
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Fig. B.10 Same as Figure B.8 for TT with a more aggressive masking. In general, the
aggressive masking will have more impact on the trispectrum term of the foreground
induced CMB lensing bias. This will lead to a change in hierarchy among the biases
at different lmax,TT for the same estimator, e.g. for PH going to lmax,TT = 4000 leads
to a lower bias with respect to lmax,TT = 3000,

80

100

SN
R

10 2 10 1

abs(b(A))

0.010

0.012

0.014

(A
)

b >b > /2b > /4

Shear
PSH
PH
SymmPSH
SymmPH
QE

Symm
3000
3500
4000
4500

Fig. B.11 Biases and noises on the CMB lensing amplitude A for the cross spectrum
with an LSST-like sample, with TT only data, for the estimators presented in the main
text, at different lmaxes of reconstruction. Here, the bias barely reaches the regime of
b < σ/2. Therefore, for this case an optimization is needed to reach a subdominant
bias with respect to the noise.
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Fig. B.12 Same as Figure B.11 for the cross spectrum with an LSST-like sample, for
TT plus (foreground free) polarization. Thanks to how clean the polarization is, we
are easily able to reach a regime where the bias is subdominant compared to the noise
for several estimators at several lmax,T T−es, as the cross-primary term goes as αT T 2.

B.6 Understanding the weights

In this appendix we want to understand the optimal weights analytically for some
specific case. Let’s write again

L =
∫

L⃗
w2(L⃗) 1

4πfsky

∑
ijmn

Θijmn(L⃗)
(Cκκ

L )2 ai(L⃗)aj(L⃗)am(L⃗)an(L⃗)

+ f 2
b w(L⃗)ai(L⃗)aj(L⃗)Bij(L⃗)

Cκκ
L

∫
L⃗′

w(L⃗′)an(L⃗′)am(L⃗′)Bmn(L⃗′)
Cκκ

L′
(B.36)

Solving this analytically is a very difficult problem.15 In the case of positive only
integrands, e.g. only positive input biases in the optimizer, to minimize f we need to
minimize the integrand at each point, as we do not have cancellations among different
Ls. Therefore, if we have the optimal configuration for each bin, then we could imagine
to minimize over a⃗, then over w. Let’s then fix the weights combination per mode,
and just vary w. We will use the Lagrange multipliers method. The constraints are

15For the case fb = 0 it is possible to write the minimum variance problem in a matrix form, where
the tensor is written as a matrix (e.g. [282]). Or, it is possible to just notice that everything is
positive. When fb ̸= 0 the same trick becomes difficult to reapply, and one in general might want to
introduce extra constraints.
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∫
L⃗ w(L⃗) = 1, and w(L⃗) > 0,∀L⃗.

L =
∫

L⃗
w2(L⃗)Θ(L⃗)+f 2

b

(∫
L⃗

w(L⃗)B(L⃗)
)2

+λ(1−
∫

L⃗
w(L⃗))+µ(L⃗)(s2(L⃗)−w(L⃗)) (B.37)

where Θ is the combined variance per mode divided by the theory squared, B is the
combined bias per mode divided by the theory, λ is a Lagrange multiplier, and µ is
a Lagrange multiplier function, and s is a slack variable for the inequality part of
the problem. For simplicity, from now on we will call w(L⃗) = w(L⃗), and omit the
arguments of Θ and B. We note that 4πfsky can be absorbed into the definition
of f 2

b , so it can be ignored when obtaining the solution, and substituted again as
f 2

b → 4πfskyf 2
b . Basically, a lower fsky gives larger noise as there are less modes,

effectively making the deprojection harder.
When the inequality constraint is not active anywhere

w(L⃗) = C2
L

σ2
L

1∫
L⃗

C2
L

σ2
L

+ 4πfskyf 2
b



∫
L⃗

BLCL
σ2

L∫
L⃗

C2
L

σ2
L

1 + 4πfskyf 2
b

∫
L⃗

B2
L

σ2
L
− 4πfskyf 2

b

∫
L⃗

BLCL
σ2

L∫
L⃗

C2
L

σ2
L

∫
L⃗

BLCL

σ2
L


×

C2
L

σ2
L

1∫
L⃗

C2
L

σ2
L

∫
L⃗

BLCL

σ2
L

− BLCL

σ2
L

 (B.38)

where the quantity in the first big round brackets is the total integrated bias

b =



∫
L⃗

BLCL
σ2

L∫
L⃗

C2
L

σ2
L

1 + 4πfskyf 2
b

∫
L⃗

B2
L

σ2
L
− 4πfskyf 2

b

∫
L⃗

BLCL
σ2

L∫
L⃗

C2
L

σ2
L

∫
L⃗

BLCL

σ2
L

 (B.39)

We can see that this is just the minimum variance solution, with a correction
depending on the bias:

w(L⃗) = wMV
L (1 + 4πfskyf 2

b b
∫

L⃗

BLCL

σ2
L

)− 4πfskyf 2
b b

BLCL

σ2
L

(B.40)

When the constraint is active somewhere, then we have to substitute the expression
for w(L⃗) there, and basically µ enforces that w(L⃗) = 0, for the specific L⃗. We verify
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Fig. B.13 Total relative foreground-induced auto-spectrum CMB lensing bias per
mode for each estimator considered in this work, for lmax = 3500. In the top panel
is shown the contribution arising when using the point source mask constructed on
148 GHz data; in the bottom panel, when using the point source mask constructed
from the product of point source masks on the SO frequencies. When calculating the
ILC combinations we fix the weights to theory ones, without considering the change
in mask. We can see how the aggressive masking reduces the biases, with particular
emphasis on the QE, meaning that the trispectrum-foreground-induced bias term is
the most affected by the masking operation.

that using this expression leads to the same results as not leaving w(L⃗) free for some
particular cases of fb.

B.7 CMB lensing biases from quadratic estimators

B.7.1 Biases from simulations

In Figures B.13, B.14 we show foreground biases at ILC for a configuration where
CMB modes used in lensing reconstruction come from lmin = 30 and lmax = 3500,
and the amplitude is calculated from CMB lensing scales between Lmin = 30 and
Lmax = 1000.
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Fig. B.14 Same as Figure B.13 but for the cross-spectrum of CMB lensing with an
LSST-like sample. We can see how the aggressive masking reduces the biases, with
particular emphasis on the QE.



C
Appendices of Chapter 5

C.1 Derivation of density reconstruction from the
bispectrum

We will here consider how we can reconstruct an unknown field X given the knowledge
of i) its bispectrum B with two other fields Y , Z, and ii) a measurement of these two
other fields. While we write our argument exploiting the connection between bispectra
and quadratic estimators in a form that is generally valid, for this paper we will assume
that X = δ1, the linear density field, and both Y, Z are the observed non-linear density
field Y, Z = δg; given that we can calculate the δ1δgδg bispectrum, we can easily write
an estimator for δ1 given an observed δg. We will assume statistical homogeneity and
isotropy of the fields and the bispectrum, which is a good approximation for large-scale
structure surveys (although it may be broken for other applications).

We begin by defining the bispectrum of the unknown field with two observed fields:

⟨X(k⃗1)Y (k⃗2)Z(k⃗3)⟩ = (2π)3δD(k⃗1 + k⃗2 + k⃗3)BXY Z(k1, k2, k3) . (C.1)

We will now write an ansatz for recovering the unknown field X from a quadratic
estimator involving Y, Z:

X̂(K⃗) =
∫

q⃗
g(q⃗, K⃗ − q⃗)Y (q⃗)Z(K⃗ − q⃗) , (C.2)

where we have introduced a function g which weights these pairs of modes. As we
will see, the arguments of Y, Z assumed here are a consequence of the delta function
momentum constraint in the bispectrum.

We now derive this function g. The function must obviously give an unbiased
estimator. In a situation where one may not wish to average over Y, Z at fixed X (e.g.
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because they are the same fields), we will define unbiasedness by the condition that

⟨X(K⃗ ′)X̂(K⃗)⟩ = (2π)3δD(K⃗ ′ + K⃗)PXX(K) . (C.3)

For the estimator, this implies that since

⟨X(K⃗ ′)X̂(K⃗)⟩ =
∫

q⃗
g(q⃗, K⃗ − q⃗)⟨X(K⃗ ′)Y (q⃗)Z(K⃗ − q⃗)⟩

= (2π)3δD(K⃗ ′ + K⃗)
∫

q⃗
g(q⃗, K⃗ − q⃗)BXY Z(K, q, |K⃗ − q⃗|) ,

we have a normalization condition on g

I[g] ≡
∫

q⃗
g(q⃗, K⃗ − q⃗)BXY Z(K, q, |K⃗ − q⃗|)

PXX(K) = 1 . (C.4)

We would also like the estimator X̂ to have as little variance per mode as possible.
We will assume that, for the purposes of variance calculation, the fields can be
approximated as Gaussian and statistically isotropic. Under these assumptions, the
variance V [f ](K⃗) is given by:

X̂(K⃗)X̂(K⃗ ′) = (2π)3 V [g](K⃗) δD(K⃗ + K⃗ ′)

=
∫

q⃗,q⃗′
g(q⃗, K⃗ − q⃗)g(q⃗′, K⃗ ′ − q⃗) Y (q⃗)Z(K⃗ − q⃗)Y (q⃗′)Z(K⃗ ′ − q⃗′)

=
∫

q⃗,q⃗′
g(q⃗, K⃗ − q⃗)g(q⃗′, K⃗ ′ − q⃗′)[Y (q⃗)Y (q⃗′)Z(K⃗ − q⃗)Z(K⃗ ′ − q⃗′)

+ Y (q⃗)Z(K⃗ ′ − q⃗′)Z(K⃗ − q⃗)Y (q⃗′)]

=
∫

q⃗,q⃗′
g(q⃗, K⃗−q⃗)g(q⃗′, K⃗ ′−q⃗′)[(2π)3PY Y (q)δD(q⃗+q⃗′)(2π)3PZZ(K⃗ − q⃗)δD(K⃗+K⃗ ′−q⃗−q⃗′)

+ (2π)3PY Z(q)δD(q⃗ + K⃗ ′ − q⃗′)(2π)3PY Z(K⃗ − q⃗)δD(K⃗ − q⃗ + q⃗′)]

= (2π)3δD(K⃗ + K⃗ ′)
∫

q⃗

[
g(q⃗, K⃗ − q⃗)(−q⃗,−K⃗ + q⃗)PY Y (q)PZZ(K⃗ − q⃗)

g(q⃗, K⃗ − q⃗)g(q⃗ − K⃗,−q⃗)PY Z(q)PY Z(K⃗ − q⃗)
]

, (C.5)

where we have used Wick’s Theorem. In the following we will specialize to the case
of Y = Z (which is the relevant case for our application) and can thus consider g

to be symmetric under exchange of its arguments. With the requirement for the
reconstructed field to be real, this implies the following expression for the variance as
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a functional of g:

V [g](K⃗) = 2
∫

q⃗
g2(q⃗, K⃗ − q⃗)PY Y (q)PY Y (K⃗ − q⃗) . (C.6)

We can thus solve for g by minimizing the variance V [g](K⃗) subject to the constraint
I[g] = 1. We can do this by introducing a Lagrange multiplier Nαα and minimizing

V [g]−Nαα × I[g] , (C.7)

with respect to g. Minimizing this expression, we obtain

g(q⃗, K⃗ − q⃗) = Nαα(K) 1
4PY Y (q)PY Y (K⃗ − q⃗)

BXY Y (K, q, |K⃗ − q⃗|)
PXX(K) , (C.8)

where from the constraint equation I = 1 we find

Nαα(K) =

∫
q⃗

1
4PY Y (q)PY Y (K⃗ − q⃗)

BXY Y (K, q, |K⃗ − q⃗|)
PXX(K)

2


−1

. (C.9)

Applying this to our choice of fields, i.e., evaluating the ⟨δ1δgδg⟩ bispectrum, we
note that we recover a function g which gives the same expression for the quadratic
estimator as used in the main part of our paper. With Eq. (5.15) we have for
the bispectrum of a linear mode X = δ1 and two galaxy modes (ignoring biases)
Y = Z = δg

Bδ1,δg,δg(k1, k2, k3) = 2
[
Fα(k⃗1, k⃗3)Plin(k1)Plin(k3) + Fα(k⃗1, k⃗2)Plin(k1)Plin(k2)

]
.

(C.10)
Plugging this into Eq. (C.9) we get

g(q⃗, K⃗ − q⃗) = Nαα(K)Fα(K⃗,−q⃗)Plin(q) + Fα(K⃗,−K⃗ + q⃗)Plin(|K⃗ − q⃗|)
2Ptot(q)Ptot(K⃗ − q⃗)

, (C.11)

which agrees with Eq. (5.15) in the main text.

C.2 Noise expressions for quadratic estimator

In this appendix, we derive expressions for the noise power spectrum corresponding to
the auto-correlation of the reconstructed field ∆̂α(K⃗) and its cross-correlation with the
original input tracer field δg(K⃗). We will see that the noise comes from a combination
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of shot noise, due to discrete sampling of the underlying matter field, and cosmic
variance.

C.2.1 Noise for the auto correlation of the reconstructed field

In this appendix, we calculate the covariance of our quadratic estimators, which is
defined as

〈
∆̂α(K⃗)∆̂β(K⃗ ′)

〉
−
〈
∆̂α(K⃗)

〉〈
∆̂β(K⃗ ′)

〉
=∫

q⃗

∫
q⃗′

gα(q⃗, K⃗ − q⃗)gβ(q⃗′, K⃗ ′ − q⃗′)
(〈

δg(q⃗)δg(K⃗ − q⃗)δg(q⃗′)δg(K⃗ ′ − q⃗′)
〉

−
〈
δg(q⃗)δg(K⃗ − q⃗)

〉〈
δg(q⃗′)δg(K⃗ ′ − q⃗′)

〉)
. (C.12)

To compute this expression we have to first derive the four point function for the input
tracer field. It is possible to derive the shot noise formulae directly in Fourier space,
with a discretized version of the tracer field. Alternative derivations of bispectrum
shot noise can be found in [136] following [87]. We cross-checked our results with [271,
55].

Let us start by rederiving the stochasticity contributions to the power spectrum,
bispectrum and trispectrum. Let us consider a finite number N of point-like tracers,
such as galaxies, at positions x⃗i in a finite volume V .1 Their Fourier space density
field is then given as a sum of plane waves

δg(k⃗) = 1
n̄

∑
i

exp
[
i⃗kx⃗i

]
, (C.13)

where n̄ = N/V . The power spectrum of the discrete tracers in the finite volume can
then be computed as

Pg(k) = 1
V

〈
δg(k⃗)δg(−k⃗)

〉
= V

N2

∑
i=j

〈
exp

[
i⃗k(x⃗i − x⃗j)

]〉
+ V

N2

∑
i ̸=j

〈
exp

[
i⃗k(x⃗i − x⃗j)

]〉
= 1

n̄
+ Pg,cont(k) .

(C.14)

Here, the constant 1/n̄ is denoted the shot noise term and we have identified the
non-zero lag expectation value with the continuous part of the discrete tracer power

1It is useful to recall that all wave vectors in a finite volume are integer multiples of the fundamental
wavenumber. The Dirac delta distribution thus becomes a Kronecker delta (2π)2δD(k⃗1 + k⃗2) →
V δK(k⃗1, k⃗2).
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spectrum Pg,cont(k). In the local bias model at linear order we have Pg,cont(k) =
b2

1Plin(k), which becomes Pg,cont(k) = [b10 + b01/M(k)]2Plin(k) in the presence of
primordial non-Gaussianities of the local kind. Let us now consider the bispectrum.
Following the same steps that led to the power spectrum above, we have to consider
the case where all three positions coincide, the case where two positions coincide but
are different from the third, and finally the case where all three positions are distinct:

Bg(k⃗1, k⃗2) = 1
V

〈
δg(k⃗1)δg(k⃗2)δg(−k⃗1 − k⃗2)

〉
= V 2

N3

∑
i=j=l

〈
exp

[
i⃗k1(x⃗i − x⃗l) + i⃗k2(x⃗j − x⃗l)

]〉

+ V 2

N3

∑
i=l ̸=j

〈
exp

[
i⃗k1(x⃗i − x⃗l) + i⃗k2(x⃗j − x⃗l)

]〉
+ 2 perm.

+ V 2

N3

∑
i ̸=j,j ̸=l,i̸=l

〈
exp

[
i⃗k1(x⃗i − x⃗l) + i⃗k2(x⃗j − x⃗l)

]〉
= 1

n̄2 + 1
n̄

[Pg,cont(k1) + 2 perm.] + Bg,cont(k⃗1, k⃗2) .

(C.15)

Again, the non-zero lag correlators are identified with the continuous power spectrum
and bispectrum of the tracer field. We see that two different stochasticity corrections
arise: a 1/n̄2 constant shot noise term and a product of the shot noise and the
continuous power spectrum. As above for the power spectrum, in the presence of
primoridal non-Gaussianity, both of these continuous statistics contain the respective
non-Gaussian bias corrections. Note that there is now a coupling between stochasticity
and clustering which is enhanced with respect to the pure noise term on large scales.

Let us connect this result to the noise terms introduced in Eq. (5.21), where the
relevant contributions are given by

δg ⊃ ϵ + ϵδδ + ϵφφ . (C.16)

The three-point correlator of the noise fields ϵ can be associated with the white-noise
term in Eq. (C.15)

〈
ϵ(k⃗1)ϵ(k⃗2)ϵ(k⃗3)

〉
= (2π)3δD(k⃗1 + k⃗2 + k⃗3)

1
n̄2 . (C.17)
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The contributions from ϵδδ and ϵφφ arise by correlating with the linear δ and φ fields
and the linear noise term ϵ〈

ϵ(k⃗1)([ϵδ ⋆ δ] + [ϵφ ⋆ φ])(k⃗2)(b10δ + b01φ)(k⃗3)
〉

=
∫

q⃗

[〈
ϵ(k⃗1)ϵδ(q⃗)

〉 (
b10

〈
δ(k⃗2 − q⃗)δ(k⃗3)

〉
+ b01

〈
φ(k⃗2 − q⃗)δ(k⃗3)

〉)
+
〈
ϵ(k⃗1)ϵφ(q⃗)

〉 (
b10

〈
φ(k⃗2 − q⃗)δ(k⃗3)

〉
+ b01

〈
φ(k⃗2 − q⃗)φ(k⃗3)

〉)]
.

(C.18)

Using [233, 79] we have for the noise correlators

⟨ϵϵδ⟩ = (2π)3δD(k⃗ + k⃗′)b10

n̄
, ⟨ϵϵφ⟩ = b01

b10
⟨ϵϵδ⟩ = (2π)3δD(k⃗ + k⃗′)b01

n̄
. (C.19)

We finally obtain for the mixed contribution to the three-point correlator

⟨ϵ(ϵδδ + ϵφφ)(b10δ + b01φ)⟩ = (2π)3δD(k⃗1 + k⃗2 + k⃗3)
Plin(k3)

n̄

×
[
b10

(
b10 + b01

M(k3)

)
+ b01

M(k3)

(
b10 + b01

M(k3)

)]
.

(C.20)

In summary, we have

Bg(k1, k2, k3) = 1
n̄2 + 1

n̄

(b10 + b01

M(k1)

)2

Plin(k1) + 2 perm.
+ Bg,cont(k1, k2, k3) .

(C.21)
This is equivalent to Eq. (C.15), as long as the galaxy power spectrum Pg,cont in
that equation is taken to be the one with the scale dependent non-Gaussian bias
b10 + b01/M(k).

For the connected trispectrum, we have four positions, which allow for five different
configurations: all positions equal, three positions equal but different from the fourth
one, two pairs of positions equal but different from the other pair, one pair of positions
equal but different from all other positions and finally, all four positions distinct. The



C.2 Noise expressions for quadratic estimator 212

trispectrum can then be written as

Tg,conn(k⃗1, k⃗2, k⃗3) = 1
V

〈
δg(k⃗1)δg(k⃗2)δg(k⃗3)δg(−k⃗1 − k⃗2 − k⃗3)

〉
= V 3

N3
1
N

∑
i,j,s,t

〈
exp

[
i⃗k1(x⃗i − x⃗t) + i⃗k2(x⃗j − x⃗t) + i⃗k3(x⃗s − x⃗t)

]〉

= V 3

N3
1
N

∑
i=j=s=t

〈
exp

[
i⃗k1(x⃗i − x⃗t) + i⃗k2(x⃗j − x⃗t) + i⃗k3(x⃗s − x⃗t)

]〉

+ V 2

N2
V

N2

∑
i=j=s ̸=t

〈
exp

[
−i⃗k4(x⃗i − x⃗t)

]〉
+ 3 perm.

+ V 2

N2
V

N2

∑
i=j ̸=s=t

〈
exp

[
i(k⃗1 + k⃗2)(x⃗i − x⃗t)

]〉
+ 2 perm.

+ V

N

V 2

N3

∑
i=j ̸=s ̸=t,j ̸=t

〈
exp

[
i(k⃗1 + k⃗2)(x⃗i − x⃗t) + i⃗k3(x⃗s − x⃗t)

]〉
+ 5 perm.

+ V 3

N4

∑
i ̸=j ̸=s ̸=t,i ̸=t,i ̸=s,j ̸=t

〈
exp

[
i⃗k1(x⃗i − x⃗t) + i⃗k2(x⃗j − x⃗t) + i⃗k3(x⃗s − x⃗t)

]〉
= 1

n̄3 + 1
n̄2 [Pg,cont(k⃗4) + 3 perm.] + 1

n̄2 [Pg,cont(k⃗1 + k⃗2) + 2 perm.]

+ 1
n̄

[
Bg,cont(k⃗1 + k⃗2, k⃗3) + 5 perm.

]
+ Tg,cont(k⃗1, k⃗2, k⃗3).

(C.22)

Furthermore, there is a disconnected cosmic variance contribution for counter-
aligned pairs of momenta

Tg,disconn(k⃗1,−k⃗1, k⃗3) = 1
V

〈
δg(k⃗1)δg(−k⃗1)δg(k⃗3)δg(−k⃗3)

〉
= V 3

N3
1
N

∑
i,j,s,t

〈
exp

[
i⃗k1(x⃗i − x⃗j) + i⃗k3(x⃗s − x⃗t)

]〉
=V

V

N2

∑
i,j

〈
exp

[
i⃗k1(x⃗i − x⃗j)

]〉 V

N2

∑
s,t

〈
exp

[
i⃗k3(x⃗s − x⃗t)

]〉
.

(C.23)

In the continuous case this disconnected contribution to the four-point function
becomes

〈
δg(k⃗1)δg(k⃗2)δg(k⃗3)δg(k⃗4)

〉
⊃ (2π)6δD

(
k⃗1 + k⃗2

)
δD
(
k⃗3 + k⃗4

) [
Pg,cont(k1) + 1

n̄

] [
Pg,cont(k3) + 1

n̄

]
+ 2 perm. (C.24)

This will give the Gaussian contribution to the covariance of the estimator.
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Thus, the total covariance for the auto-spectrum of the reconstructed field is
〈
∆̂α(K⃗)∆̂β(K⃗ ′)

〉
−
〈
∆̂α(K⃗)

〉〈
∆̂β(K⃗ ′)

〉
=
∫

q⃗

∫
q⃗′

gα(q⃗, K⃗ − q⃗)gβ(q⃗′, K⃗ ′ − q⃗′)

×
[〈

δg(q⃗)δg(K⃗ − q⃗)δg(q⃗′)δg(K⃗ ′ − q⃗′)
〉

−
〈
δg(q⃗)δg(K⃗ − q⃗)

〉〈
δg(q⃗′)δg(K⃗ ′ − q⃗′)

〉]

=(2π)3δD(K⃗ + K⃗ ′)
Nαα(K⃗)Nββ(K⃗)

Nαβ(K⃗)
+ Nαβ,shot(K⃗)

 ,

(C.25)

where

NT
αβ,shot(K⃗) ≡

∫
q⃗

∫
q⃗′

gα(q⃗, K⃗ − q⃗)gβ(q⃗′,−K⃗ − q⃗′)Tg,conn(q⃗, K⃗ − q⃗, q⃗′,−K⃗ − q⃗′)

=
∫

q⃗

∫
q⃗′

gα(q⃗, K⃗ − q⃗)gβ(q⃗′,−K⃗ − q⃗′)

×

 1
n̄3 + 1

n̄2

[
Pg,cont(q⃗) + Pg,cont(K⃗ − q⃗) + Pg,cont(q⃗′) + Pg,cont(K⃗ + q⃗′)

]

+ 1
n̄2

[
Pg,cont(K⃗) + Pg,cont(q⃗ − K⃗ − q⃗′) + Pg,cont(q⃗ + q⃗′)

]

+ 1
n̄

[
Bg,cont(K⃗, q⃗′,−K⃗ − q⃗′) + Bg,cont(q⃗ + q⃗′, K⃗ − q⃗,−K⃗ − q⃗′)

+ Bg,cont(q⃗ − K⃗ − q⃗′, K⃗ − q⃗, q⃗′) + Bg,cont(K⃗ − q⃗ + q⃗′, q⃗,−K⃗ − q⃗′)

+ Bg,cont(K⃗ − q⃗ − K⃗ − q⃗′, q⃗, q⃗′) + Bg,cont(q⃗′ − K⃗ − q⃗′, q⃗, K⃗ − q⃗)
] .

(C.26)

For our forecasts, we use the “growth" estimator, and therefore the conversion to the
notation of the main text is

Prr,shot(K) = NT
GG,shot(K) . (C.27)

Note an important feature of Eq. (C.26): the shot noise contribution to the quadratic
estimator’s noise power spectrum depends on the tracer power spectrum and bispec-
trum at the same scale K as the mode being reconstructed. This is to be contrasted
with the Gaussian estimator noise in Eq. (5.16), which is mainly determined by the
tracer power spectrum at the smallest scale kmax used in the estimator. Since the
tracer power spectrum and bispectrum both increase at smaller wavenumbers (down
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to the matter-radiation equality scale), Eq. (C.26)’s sensitivity to large scales can
cause it to dominate over the Gaussian estimator noise if n̄ is sufficiently low. In our
forecasts in the main text, this condition is met for DESI (Fig. 5.9) and MegaMapper
(Fig. 5.11).

We can simplify the above expression by noticing that changes of variables can
make some terms of the integrand equivalent. For example, we can simplify the final
3 lines of Eq. (C.26) into

∫
q⃗

∫
q⃗′

gα(q⃗, K⃗ − q⃗)gβ(q⃗′,−K⃗ − q⃗′) 1
n̄

(
Bg,cont(K⃗, q⃗′,−K⃗ − q⃗′) + 4Bg,cont(−q⃗ − q⃗′, q⃗, q⃗′)

+ Bg,cont(−K⃗, q⃗, K⃗ − q⃗)
)

. (C.28)

In our calculations, we take the tree-level expression for the bispectrum, obtainable
from Eq. (5.37) as (see also [23, 274])

Bg,cont(k⃗1, k⃗2, k⃗3) = 2
(

b10 + fNL
c01

M(k⃗1)

)(
b10 + fNL

c01

M(k⃗2)

)∑
α

cαFα(k⃗1, k⃗2)Plin(k⃗1)Plin(k⃗2)+

+ 2 perms. (C.29)

C.2.2 Noise for the cross correlation of the reconstructed
field with the tracer field

The noise calculation for the cross-correlation of the reconstructed field with the tracer
field is very similar to the one above. The variance of the cross-correlation of the
reconstructed field with the tracer field depends on the bispectrum of the tracer field
derived above in Eq. (C.15) (see also [136]):

〈
∆̂α(K⃗)δg(K⃗ ′)

〉
−
〈

∆̂α(K⃗)
〉〈

δg(K⃗ ′)
〉

=〈
∆̂α(K⃗)δg(K⃗ ′)

〉
=∫

q⃗
gα(q⃗, K⃗ − q⃗)

〈
δg(q⃗)δg(K⃗ − q⃗)δg(K⃗ ′)

〉

= (2π)3δD(K⃗ + K⃗ ′)
∫

q⃗
gα(q⃗, K⃗ − q⃗)

Bg,cont(q⃗, K⃗ − q⃗,−K⃗)+

+ 1
n̄

(
Pg,cont(q⃗) + Pg,cont(K⃗ − q⃗) + Pg,cont(−K⃗)

)
+ 1

n̄2

 . (C.30)
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Then, the shot noise power is given by

NB
α,shot(K⃗) ≡ 1

n̄

∫
q⃗
gα(q⃗, K⃗− q⃗)

Pg,cont(q⃗)+Pg,cont(K⃗− q⃗)+Pg,cont(−K⃗)+ 1
n̄

 . (C.31)

For the growth estimator we use in our forecasts we thus have

Pgr,shot(K) = NB
G,shot(K) . (C.32)

C.3 Bias-hardening

In Sec. 5.2.1, we saw that a quadratic estimator designed to have unit response to
a specific form of mode-coupling will generically acquire a mean-field contamination
from other forms of mode coupling that are not incorporated in the estimator’s weights
(see Eq. 5.18). Our main approach in this paper is to include that contamination in
our model for the estimator’s output, marginalizing over the associated free (bias)
parameters where necessary. Alternatively, one can attempt to define an estimator
that is orthogonal to those extra mode-couplings; such a “bias-hardening" procedure
has been applied to weak lensing of the CMB (e.g. [197, 201]) and line intensity maps
[91]. In this appendix, we explore this approach and explain why we did not find it to
be useful for this study.

C.3.1 General derivation

First, we derive a form of bias-hardening that is a light generalization of the standard
form (e.g. [197]). Recall that a quadratic estimator with weights gα is given by

∆̂α(K⃗) =
∫

q⃗
gα(q⃗, K⃗ − q⃗)δg(q⃗)δg(K⃗ − q⃗) , (C.33)

with expectation value
〈
∆̂α(K⃗)

〉
δ1(K⃗) fixed

=
∑

β

[
cβ

∫
q⃗
gα(q⃗, K⃗ − q⃗)fβ(q⃗, K⃗ − q⃗)

]
b1δ1(K⃗) . (C.34)

The estimator will be unbiased with respect to the α mode-coupling if∫
q⃗
gα(q⃗, K⃗ − q⃗)fα(q⃗, K⃗ − q⃗) = 1 . (C.35)
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The β ̸= α terms in the sum in Eq. (C.34) could be subtracted if we knew the values
of the cβ coefficients ahead of time, but this will generally not be true. Instead, we
can attempt to set the weights gα such that∫

q⃗
gα(q⃗, K⃗ − q⃗)fβ(q⃗, K⃗ − q⃗) = 0 , (C.36)

for all β ̸= α.
We begin by assuming that there is only one additional mode-coupling β that we

are concerned with, and requiring that the estimator’s response to it is not necessarily
zero, but a chosen constant c instead:∫

q⃗
gα(q⃗, K⃗ − q⃗)fβ(q⃗, K⃗ − q⃗) = c , (C.37)

while also imposing Eq. (C.35) and minimizing the Gaussian contribution to the
variance of ∆̂α(K⃗), given by

VarG
[
∆̂α(K⃗)

]
= 2

∫
q⃗
gα(q⃗, K⃗ − q⃗)g∗

α(q⃗, K⃗ − q⃗)Ptot(q)Ptot(|K⃗ − q⃗|) . (C.38)

We find gα that satisfies these conditions by the method of Lagrange multipliers,
starting with the following function:

L[gα, λ, λ∗] = 2
∫

q⃗
gα(q⃗, K⃗ − q⃗)g∗

α(q⃗, K⃗ − q⃗)Ptot(q⃗)Ptot(K⃗ − q⃗)

− λ
[∫

q⃗
gα(q⃗, K⃗ − q⃗)fα(q⃗, K⃗ − q⃗)− 1

]
− λ∗

[∫
q⃗
gα(q⃗, K⃗ − q⃗)fβ∗(q⃗, K⃗ − q⃗)− c

]
.

(C.39)

If we wanted to control the effect of other mode-couplings in Eq. (C.34), we would
simply add other terms with similar constraints to this equation. We demand that
the functional derivative of L with respect to gα(q⃗′, K⃗ − q⃗′) vanishes:

0 != δL[gα, λ, λ∗]
δgα(q⃗′, K⃗ − q⃗′)

= 2
∫

q⃗

[
δD(q⃗ − q⃗′)g∗

α(q⃗, K⃗ − q⃗) + gα(q⃗, K⃗ − q⃗)δD(q⃗ − q⃗′)
]

Ptot(q⃗)Ptot(K⃗ − q⃗)

− λ
∫

q⃗
δD(q⃗ − q⃗′)fα(q⃗, K⃗ − q⃗)− λ∗

∫
q⃗
δD(q⃗ − q⃗′)fβ(q⃗, K⃗ − q⃗)

= 4gα(q⃗′, K⃗ − q⃗′)Ptot(q⃗′)Ptot(K⃗ − q⃗′)− λfα(q⃗′, K⃗ − q⃗′)− λ∗fβ(q⃗′, K⃗ − q⃗′) ,

(C.40)
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where in the last line, we took gα to be real. This implies that (relabelling q⃗′ → q⃗)

gα(q⃗, K⃗ − q⃗) = λfα(q⃗, K⃗ − q⃗) + λ∗fβ(q⃗, K⃗ − q⃗)
4Ptot(q⃗)Ptot(K⃗ − q⃗)

, (C.41)

and plugging this into Eq. (C.35) gives

λ = 2Nαα − λ∗
Nαα

Nαβ

, (C.42)

using the definition of Nαβ from Eq. (5.16). (Note that we obtain the original filter if
λ∗ = 0.) Inserting Eqs. (C.41) and (C.42) into (C.37), we get2

λ∗ = 2 1
1− r2

αβ

Nββ(K⃗)
c(K⃗)− Nαα(K⃗)

Nαβ(K⃗)

 , (C.43)

where
r2

αβ ≡
NααNββ

N2
αβ

. (C.44)

Thus, the final form of the weight function is

gα(q⃗, K⃗ − q⃗) = Nαα(K⃗)fα(q⃗, K⃗ − q⃗)
2Ptot(q⃗)Ptot(K⃗ − q⃗)

+
fβ∗(q⃗, K⃗ − q⃗)Nββ(K⃗)− Nαα(K⃗)Nββ(K⃗)

Nαβ(K⃗) fα(q⃗, K⃗ − q⃗)

2Ptot(q⃗)Ptot(K⃗ − q⃗)

× 1
1− r2

αβ

c(K⃗)− Nαα(K⃗)
Nαβ∗(K⃗)

 . (C.45)

This is the standard filter for mode-coupling α, plus some additional terms related to
the response to mode-coupling β. For the case c = NααN−1

αβ , one obtains the standard
estimator and contamination term.

2To generalise to several mode-couplings, the coefficients λi∗ are obtained from λ⃗∗ = −2A−1c⃗,
where A has elements Aij = (N−1

βiβj
−NααN−1

αβj
N−1

αβi
) and c⃗ has elements NααN−1

αβi
.
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C.3.2 Application to long-mode reconstruction

To relate the bias-hardened estimator derived above to the specific application we
consider in this paper, let us examine the variance of the estimator:

Var
[
∆̂H

α (K⃗)
]

= Nαα(K⃗) + Nββ(K⃗)

[
c(K⃗)− Nαα(K⃗)

Nαβ(K⃗)

]2

1− r2
αβ(K⃗)

. (C.46)

If |c(K⃗)| < |Nαα(K⃗)Nαβ∗(K⃗)−1|, then the increase in the estimator’s variance scales
with (1 − r2

αβ)−1, where rαβ is the correlation coefficient between the un-hardened
estimator ∆̂α and the analogous estimator for the other mode-coupling, ∆̂β. In
Fig. C.1, we show rαβ(K) for the growth, shift, and tidal mode-couplings introduced
in Sec. 5.2.1. It is clear that the corresponding estimators are highly correlated,
so that any bias-hardened estimator will have a much larger variance than without
bias-hardening. In our numerical tests (with c = 0), when one of these three estimators
was bias-hardened with respect to the other two, we found that the variance increased
enough to eliminate any advantages of removing the mean-field contamination, and
therefore we did not implement any bias-hardening in our final forecasts.
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Fig. C.1 Cross-correlation coefficients between G, S, and T estimators, as given by
Eq. (C.44), for our DESI-like survey forecast (the other surveys give similar results)
We see that all three estimators are highly correlated, implying, through Eq. (C.46),
that applying bias-hardening will strongly increase the noise of the resulting estimator.

In the course of this investigation, we derived a compact form for a bias-hardened
quadratic estimator in the case of three mode-couplings, and we reproduce this
derivation here in case it may be useful in other contexts. Considering only G, S, and
T, the expectation values of the corresponding quadratic estimators (see Eq. 5.18) can
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be written in matrix form:
⟨∆̂G⟩
⟨∆̂S⟩
⟨∆̂T⟩

 = b1


1 NGGN−1

GS NGGN−1
GT

NSSN−1
SG 1 NSSN−1

TS

NTTN−1
TG NTTN−1

TS 1




cG

cS

cT

 δ1 . (C.47)

We can derive bias-hardened estimators (in the c(K⃗) = 0 case) by inverting this system,
solving for each b1cαδ1. After some lengthy algebra, the results can be written in terms
of the original variances plus certain combinations of the original cross-correlation
coefficients:

Var
[
∆̂H

G

]
= NGG ×

1− r2
ST

det M
,

Var
[
∆̂H

S

]
= NSS ×

1− r2
GT

det M
,

Var
[
∆̂H

T

]
= NTT ×

1− r2
GS

det M
, (C.48)

where M denotes the matrix in Eq. (C.47), and

det M = 1− r2
GS − r2

GT − r2
ST + 2rGSrGTrST . (C.49)

There can be nontrivial cancellations within the above determinant, and in our case,
these lead to large increases in the variances of the bias-hardened estimators.

Finally, we mention a few other possible solutions to the problem of mean-field
contamination. Instead of fixing the contamination to some value, as in Eq. (C.37), one
could require it to be smaller than some fixed value, or one could minimise some total
function that depends on the contamination and the (Gaussian) variance. For example
it is possible to define a “bouncing estimator" by solving the following minimization
problem:

L[gα, λ, K⃗] = 2
∫

q⃗
|gα(q⃗, K⃗ − q⃗)|2Ptot(q⃗)Ptot(K⃗ − q⃗) + A

[∫
q⃗
gα(q⃗, K⃗ − q⃗)fβ(q⃗, K⃗ − q⃗)

]2

− λ
[∫

q⃗
gα(q⃗, K⃗ − q⃗)fα(q⃗, K⃗ − q⃗)− 1

]
. (C.50)

The intuition behind this is that we want to minimize the variance of the α estimator,
trying also to take into account the contamination from the other mode-coupling.
The square is to ensure that the modulus of the contamination is minimized in the
combination that makes L the smallest. If we go to the standard minimum variance
solution, the solution here will “bounce" from it, because it would increase L, if we
take into account the square of the contamination. We also want to decrease the
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contamination, but without it taking a large negative value. The last term enforces
the standard unbiasedness condition.

We reiterate, however, that for some applications, such as the fNL constraints we
consider in this paper, a mean-field contamination can actually be advantageous. We
leave the problem of finding a fully optimal estimator for long-wavelength reconstruc-
tion to future work.

C.4 Contamination of quadratic estimator by fNL

terms: analytical expressions

The overdensity of a biased tracer has second order contributions in the linear field
coming from the presence of primordial non-Gaussianity. In this appendix, we show
that when reconstructing the new field on large scales, we get an fNL term proportional
to 1

M(K⃗) . We will show this for the low-|K⃗| limit, which is the relevant regime for the
reconstructed modes we are concerned with.

C.4.1 Expansion of basic quantities

We need to expand a few quantities first. Expanding the linear power spectrum around
q⃗ gives

lim
|K⃗|→0

Plin(|K⃗ − q⃗|) = Plin(|q⃗|)− ∇⃗q⃗Plin · K⃗ + O(|K⃗|2)

= Plin(|q⃗|)− ∂Plin

∂|q⃗|
∇⃗q⃗|q⃗| · K⃗ + O(|K⃗|2)

= Plin(q⃗)
1− |K⃗|µ

|q⃗|
∂lnPlin

∂ln|q⃗|

+ O(|K⃗|2)

≡ Plin(q⃗) (1 + ∆P ) + O(|K⃗|2) ,

(C.51)
where the last expression is useful because we can see the expansion in powers of |K⃗|

|q⃗| ,
and where µ is the cosine of the angle between K⃗ and q⃗. In the same way, we can also
expand for

lim
|K⃗|→0

PNL(|K⃗−q⃗|) = PNL(q⃗)
1− |K⃗|µ

|q⃗|
∂lnPNL

∂ln|q⃗|

+O(|K⃗|2) ≡ PNL(q⃗) (1 + ∆NL)+O(|K⃗|2) ,

(C.52)
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and

lim
|K⃗|→0

M |K⃗ − q⃗|) = M(q⃗)
1− |K⃗|µ

|q⃗|
∂lnM

∂ln|q⃗|

+ O(|K⃗|2) ≡M(q⃗) (1 + ∆M) . (C.53)

We can also write

lim
|K⃗|→0

|K⃗ − q⃗| = lim
|K⃗|→0

√
|K⃗|2 + |q⃗|2 − 2|K⃗||q⃗|µ ≈ |q⃗|

1− |K⃗|
|q⃗|

µ

 , (C.54)

and the expression for the cosine of the angle between K⃗ and K⃗ − q⃗ as

µ′ = lim
|K⃗|→0

≈ −µ + (1− µ2) |K⃗|
|q⃗|

+ |K⃗|
2

|q⃗|2
µ ≈ −µ + (1− µ2) |K⃗|

|q⃗|
. (C.55)

C.4.2 Expansion of mode coupling expressions

As |K⃗| → 0 for the next calculations we will assume |K⃗|
|q⃗| ≪ 1 so that we keep terms

linear in this variable. If the linear terms completely cancel, we include terms at the
next order.

Recall the definition of fβ(q⃗, K⃗ − q⃗) from Eq. (5.10):

fβ(q⃗, K⃗ − q⃗) = 2
[
Fα

(
K⃗,−q⃗

)
Plin(|q⃗|) + Fα

(
K⃗,−K⃗ + q⃗

)
Plin

(
|K⃗ − q⃗|

)]
. (C.56)

Starting from Eq. (C.56), we have that for the φφ term

fφφ(q⃗, K⃗ − q⃗) = 2
M(K⃗)

M(K⃗ − q⃗)
M(−q⃗) Plin(q⃗) + q⃗ → K⃗ − q⃗


= 2Plin(q⃗)

M(K⃗)

[
M(q⃗)(1 + ∆M(q⃗))

M(q⃗) + M(q⃗)
M(q⃗)(1 + ∆M(q⃗))(1 + ∆P (q⃗))

]

≈ 2Plin(q⃗)
M(K⃗)

[2 + ∆P (q⃗)] ,

(C.57)
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and for the b01 term

f01(q⃗, K⃗ − q⃗) = 2
M(K⃗)

1
2

(K⃗ · (−q⃗))( 1
| − q⃗|2

+ M(K⃗)
|K⃗|2M(−q⃗)

)Plin(−q⃗) + q⃗ → K⃗ − q⃗


= 1

2
2Plin(q⃗)
M(K⃗)

[
K⃗ · (−q⃗)

 1
|q⃗|2

+ M(K⃗)
|K⃗|2M(q⃗)

+ K⃗ · (−1)(K⃗ − q⃗)

×
( 1
|q⃗|2

(1 + |K⃗|
|q⃗|

µ) + M(K⃗)
K2M(q⃗)(1−∆M(q⃗))

)
×
(
1 + ∆P (q⃗)

)]

≈ 1
2

2Plin(q⃗)
M(K⃗)

−|K⃗|2
|q⃗|2
− |K⃗|

3

|q⃗|3
µ− M(K⃗)

M(q⃗) (1 + ∆P (q⃗)−∆M(q⃗)) + |K⃗|
2

|q⃗|2
µ2

+ qµM(K⃗)
|K⃗|M(q⃗)

(∆P (q⃗)−∆M(q⃗))

≈ 1
2

2Plin(q⃗)
M(q⃗)

−1−∆P (q⃗)−∆M(q⃗)− (1− µ2) |K⃗|
2

|q⃗|2

 , (C.58)

where we remember that M(q⃗) ∝ |q⃗|−2. For the b11 term,

f11(q⃗, K⃗ − q⃗) = 2
M(K⃗)

1
2

1 + M(K⃗)
M(−q⃗)

Plin(−q⃗) + q⃗ → K⃗ − q⃗


= Plin(q⃗)

M(K⃗)

[
1 + M(K⃗)

M(q⃗) + 1 + M(K⃗)
M(q⃗) (1−∆M(q⃗))(1 + ∆P (q⃗))

]

≈ Plin(q⃗)
M(K⃗)

2 + M(K⃗)
M(q⃗) (1 + ∆P (q⃗)−∆M(q⃗))

 ,

(C.59)

and finally for the b02 term

f02(q⃗, K⃗ − q⃗) = 2
M(K⃗)

[
Plin(−q⃗)
M(−q⃗) + q⃗ → K⃗ − q⃗

]

= 2Plin(q⃗)
M(K⃗)

[
1

M(q⃗) + 1
M(q⃗)(1−∆M(q⃗) + ∆P (q⃗))

]

≈ 2Plin(q⃗)
M(K⃗)

1
M(q⃗)

[
2−∆M(q⃗) + ∆P (q⃗)

]
.

(C.60)
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We wrote all of them in such a way that, when possible, we can factor out a 1
M(K⃗) .

Finally the growth term can be written as

fG(q⃗, K⃗ − q⃗) = 2
[17
21P (q⃗) + 17

21Plin(K⃗ − q⃗)
]

= 217
21P (q⃗)

[
2 + ∆P (q⃗)

]
. (C.61)

C.4.3 Writing the large scale contamination terms

Recall that the terms that contaminate the expectation value of the quadratic estimator
are of the form cα

NGG
NGα

(see Eq. 5.18). Therefore, for the large scale limit, we need to
consider

lim
|K⃗|→0

N−1
Gα(K⃗) = lim

|K⃗|→0

2π

(2π)3

∫ 1

−1
dµ
∫ qmax

qmin
dqq2 fα(q⃗, K⃗ − q⃗)

2Ptot(q⃗)Ptot(K⃗ − q⃗)
fg(q⃗, K⃗ − q⃗)

= lim
|K⃗|→0

1
b4

1

2π

(2π)3

∫ 1

−1
dµ
∫ qmax

qmin
dqq2 fα(q⃗, K⃗ − q⃗)

2P 2
NL(q⃗) 217

21Plin(q⃗) [2 + ∆P(q⃗)] (1−∆PN) ,

(C.62)
where we assume no shot noise in the total galaxy power spectrum. Dropping any
non-zero power of |K⃗|

|q⃗| , for small K⃗ (with respect to reconstruction modes q⃗), we obtain

NGG(K⃗) ≈
[

1
b4

1

2π

(2π)3

(
217

21

)2
4
∫ qmax

qmin
dqq2 P 2

lin(q⃗)
P 2

NL(q⃗) [1 + ∆P(q⃗)−∆PN(q⃗)]
]−1

≈
[

1
b4

1

4π

(2π)3 8
(17

21

)2 ∫ qmax

qmin
dqq2 P 2

lin(q⃗)
P 2

NL(q⃗)

]−1

,

(C.63)

and we can see that if we approximate Plin ≈ PNL for the small scales of reconstruction,
then the Gaussian reconstruction noise is roughly proportional to the volume shell
between qmin and qmax. Thus, we can take the noise as roughly proportional to q3

max,
although in practice this relation is not exactly correct.

At this point, we can start listing the NGα terms where α is a mode-coupling
involving fNL. We begin with α = φφ:

N−1
Gφφ(K⃗) ≈ 1

b4
1

1
2π2

(136
21

) 1
M(K⃗)

∫ qmax

qmin
dqq2 P 2

lin(q⃗)
P 2

NL(q⃗) , (C.64)

such that multiplying by Eq. (C.63), we have a scaling for the α = φφ term in the
bias of the reconstructed field:

NGG(K⃗)N−1
Gφφ(K⃗) ≈

(21
17

) 1
M(K⃗)

. (C.65)
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Similarly we can calculate an approximate expression for the α = 01 term:

N−1
G01(K⃗) ≈ (−1) 1

b4
1

1
2π2

1
2

68
21

∫ qmax

qmin
dqq2 P 2

lin(q⃗)
P 2

NL(q⃗)
1

M(q⃗) . (C.66)

Multiplying this by the approximate NGG expression, we obtain

NGG(K⃗)N−1
G01(K⃗) ∝ −42

17 , (C.67)

implying that on large scales for the α = 01 term we do not have a 1
K2 behaviour, but

a negative constant bias.
Turning to the α = 02 and 11 terms, we find

N−1
G02(K⃗) ≈ 1

b4
1

2π2

(136
21

) 1
M(K⃗)

∫ qmax

qmin
dqq2 P 2

lin(q⃗)
P 2

NL(q⃗)
1

M(q⃗) , (C.68)

and

N−1
G11(K⃗) ≈ 1

b4
1

2π2

(68
21

) 1
M(K⃗)

∫ qmax

qmin
dqq2 P 2

lin(q⃗)
P 2

NL(q⃗)

1 + M(K⃗)
2M(q⃗)

 . (C.69)

In both cases we end up with a 1/K2 behavior:

NGG(K⃗)N−1
G02(K⃗) = 21/17 1

M(K⃗)

∫ qmax

qmin
dqq2 P 2

lin(q⃗)
P 2

NL(q⃗)
1

M(q⃗)/
∫ qmax

qmin
dqq2 P 2

lin(q⃗)
P 2

NL(q⃗)

 ,

(C.70)
NGG(K⃗)N−1

G11(K⃗) = 1
2

21
17

1
M(K⃗)

. (C.71)

To summarise, we have found an induced contamination on the G estimator of the
following form:

∑
α∈{φφ,01,11,02}

∫
q⃗
cαgG(q⃗, K⃗− q⃗)fα(q⃗, K⃗− q⃗) = 1

M(|K⃗|)

[
fNLA(K⃗)+f 2

NLB(K⃗)
]

, (C.72)

where A, B are some functions that can be calculated from the definitions or numerically.
In Fig. C.2, we show that the analytical approximations are in excellent agreement
with the full numerical computations for the contamination curves.
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Fig. C.2 We plot the contamination curves from numerical and analytic approx-
imation. It can be seen that for the φφ, b11 and b02 terms we have a 1

K2 be-
haviour. For the analytical calculation of the b02 term we use an approximation∫ qmax

qmin
dqq2 P 2

lin(q⃗)
P 2

NL(q⃗)
1

M(q⃗)/
∫ qmax

qmin
dqq2 P 2

lin(q⃗)
P 2

NL(q⃗)

 ≈ 1
2M(qmin) . We also show the absolute value

of the numerical b01 curve, with an approximate constant value on large scales.

C.5 Foregrounds for 21 cm intensity mapping

C.5.1 Implementation in forecasts

As discussed in Sec. 5.4.3, the presence of foregrounds in 21 cm intensity mapping
limits the modes of δg that can be directly observed. Specifically, foregrounds impose
a minimum k∥ value for these modes, and also obscure modes within a wedge-shaped
region in the k∥ − k⊥ plane. The modes within this wedge satisfy (e.g. [19])

k∥ < β(z)k⊥ , (C.73)

where
β(z) ≡ χ(z)H(z)

c(1 + z) sin(θw) , (C.74)

χ(z) is the comoving distance to redshift z, and θw is the maximum angle from the
beam center at which the power of a spectrally-smooth source will leak into other
regions of Fourier space. The angle θw is typically related to the width of the primary
beam; following [19], we take it to be 3 times the primary beam width of PUMA, or
θw ≈ 3 × 1.22λ(z)/Deff , where λ(z) = 21(1 + z) cm and Deff ≈ 5 m is the effective
dish diameter (η1/2

a × 6 m with aperture efficiency factor ηa = 0.7). Using the mean
redshifts of the low-z and high-z bins we use in our forecasts, this yields β ≈ 0.38 and
1.3 for each bin respectively.
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The wedge will restrict the small-scale modes that can be used for reconstructing
the longer modes via the quadratic estimator in Eq. (5.17), and we can account for
this by restricting the reconstruction noise integral in Eq. (5.16) to modes outside
the wedge. This means that, when reconstructing a mode with wavevector K⃗, the
integration variable q⃗ must satisfy

|q∥| > βq⊥ , |K∥ − q∥| > β
(
K⃗ − q⃗

)
⊥

. (C.75)

Rather than implementing these restrictions directly in the integral for Nαβ, which
would cause the result to depend on the full vector K⃗ instead of just the norm K,
we use an approximation based on the fact that in the q ≫ K limit, Nαβ scales like
the inverse of the number of modes that contribute to the reconstruction.3 Thus, the
effect of the wedge is mostly to rescale Nαβ by the inverse of the fraction of modes
that are outside of the wedge, i.e. the fraction of the integration domain that satisfies
Eq. (C.75). This fraction will depend slightly on the direction of K⃗, and we account for
this dependence by averaging the fraction over µK ≡ K∥/K, although the dependence
is only mind.

10 3 10 2 10 1

K [h Mpc 1]

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n 

of
 m

od
es

 o
ut

sid
e 

we
dg

e

2 < z < 3 bin
5 < z < 6 bin

Fig. C.3 The fraction of small-scale modes lying outside the foreground wedge, for
the low-z (solid) and high-z (dashed) PUMA redshift bins we use in our forecasts. To
a good approximation, the reconstruction noise integrals Nαβ will simply be scaled by
the inverse of these fractions in the presence of the wedge.

We plot this angle-averaged fraction in Fig. C.3 for both redshift bins we use for
our PUMA forecast. In the 2 < z < 3 bin, we find that around 60% of the small-scale
modes are untouched by the wedge, while for the 5 < z < 6 bin, only 20% of the
modes remain, corresponding to a factor of 5 increase in the reconstruction noise
compared to the no-wedge case.

3This is identical to what happens to the noise on the standard quadratic estimator for CMB
lensing in the ℓ≫ L limit (e.g. [110]).
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For the shot noise contributions to the δr auto spectrum and δr-δg cross spectrum
(Eqs. C.26-C.27 and C.31-C.32, respectively), we directly implement the wedge in the
angular limits of the integrals, but we find that it has a negligible effect, since these
integrals are normalized with Nαβ and the fractional change in the integrals and Nαβ

is very similar.
We also need to incorporate the wedge when we integrate the Fisher matrix

in Eq. (5.43) over long-wavelength modes used for the fNL constraint (Eq. 5.44).
Within the wedge, we will not have access to δg, but we will have access to modes
δr reconstructed with the quadratic estimator. Thus, as in our baseline forecasts
with an isotropic Kmin, we sum the outside-wedge and inside-wedge Fisher matrices,
each restricted to the appropriate integration domain, with the latter Fisher matrix
determined solely by the covariance of the reconstructed modes.

In the next subsection, where we consider a K∥,min instead of an isotropic Kmin, we
likewise implement the restriction K > K∥,min in Eq. (5.44), and add the contribution
from reconstructed modes with K < K∥,min.
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C.5.2 PUMA forecasts with K∥,min
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Fig. C.4 Forecasts for a PUMA-like survey, analogous to Fig. 5.13 except for using a
cutoff on the line-of-sight component of accessible δg modes instead of an isotropic
K cutoff. This is motivated by the fact that 21 cm foregrounds will preferentially
obscure modes with low wavenumber components along the line of sight. The absolute
values of σ(fNL) are slightly higher when using K∥,min instead of Kmin, since more
modes are eliminated with a K∥ cut, but the improvement in σ(fNL) from including
reconstructed modes is qualitatively similar to the case with Kmin.

In Sec. 5.4.5, we showed forecasts assuming an isotropic Kmin for δg. In Fig. C.4, we
repeat those forecasts, but with a K∥,min, assuming that all values of K⊥ within the
survey volume can be accessed. The absolute values we find for σ(fNL) are slightly
higher, due to the number of inaccessible modes being larger with a K∥,min cutoff, but
the results for the improvement in σ(fNL) due to the inclusion of reconstructed modes
are qualitatively similar to those in Sec. 5.4.5.
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