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Abstract

Three principal approaches have been proposed for inferring the set of transcripts expressed in RNA samples using RNA-
seq. The simplest approach uses curated annotations, which assumes the transcripts in a sample are a subset of the tran-
scripts listed in a curated database. A more ambitious method involves aligning reads to a reference genome and using the
alignments to infer the transcript structures, possibly with the aid of a curated transcript database. The most challenging
approach is to assemble reads into putative transcripts de novo without the aid of reference data. We have systematically
assessed the properties of these three approaches through a simulation study. We have found that the sensitivity of compu-
tational transcript set estimation is severely limited. Computational approaches (both genome-guided and de novo assem-
bly) produce a large number of artefacts, which are assigned large expression estimates and absorb a substantial proportion
of the signal when performing expression analysis. The approach using curated annotations shows good expression correl-
ation even when the annotations are incomplete. Furthermore, any incorrect transcripts present in a curated set do not ab-
sorb much signal, so it is preferable to have a curation set with high sensitivity than high precision. Software to simulate
transcript sets, expression values and sequence reads under a wider range of parameter values and to compare sensitivity,
precision and signal-to-noise ratios of different methods is freely available online (https://github.com/boboppie/RSSS) and
can be expanded by interested parties to include methods other than the exemplars presented in this article.
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Introduction
Recent advances in sequencing technologies have enhanced
significantly our ability to profile the transcriptomic content of
cells. However, it is currently not feasible to obtain full-length
(end-to-end) sequences of RNA transcripts in a high-throughput
manner because high-throughput sequencers can only cope with
a narrow range of complementary DNA (cDNA) fragment sizes.
Thus, expression quantification is typically done via massively
parallel short-read sequencing of small fragments, also known as
RNA-seq. Although emergent long-read sequencing technologies
are capable of producing reads matching the length of a large

proportion of transcripts [1], they currently suffer from low accur-
acy and yield compared with established short-read technology.

There are two basic objectives that may be tackled with
RNA-seq. The first is to determine precisely which regions of the
genome are being transcribed in a sample. The second is to quan-
tify the expression of these transcripts. The latter objective typic-
ally relies on completion of the former: to quantify expression of
individual transcripts, a set of full-length transcript sequences is
needed. This dependency is a consequence of the limited read
length of RNA-seq. The requirement by high-throughput sequen-
cers to fragment cDNA induces uncertainty in the process of
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reconstructing transcript sequences by assembly of short reads or
alignments.

Three broad approaches have been proposed for estimating
the set of transcripts in RNA samples using RNA-seq [2, 3].
The simplest approach is to assume the transcripts in a sample
are a subset of the transcripts listed in a curated database, such
as Ensembl [4]: reads are aligned to reference genome or tran-
scriptome sequences, and statistical models are used to estimate
expression or test for differential expression. A more ambitious
strategy involves aligning reads to a reference genome and using
the alignments to infer the transcript structures. Generally, max-
imally parsimonious solutions are preferred [5] although some
methods opt for maximum sensitivity subject to constraints
imposed by the alignments [6]. The most challenging approach is
to assemble reads into putative transcripts de novo without the
aid of a reference genome. The high dynamic range of expression
values leads to difficulties in selecting the k-mer lengths for con-
structing de Bruijn graphs [7], while alternative splicing leads to
much higher complexity in the assembly graphs than in trad-
itional assembly of DNA-seq reads. Thus, de novo assembly is
most fruitfully applied in the context of large-scale discovery of
transcripts expressed in species with poorly characterized or ab-
sent reference genomes.

There has been a great deal of expectation that high-through-
put sequencing technologies would allow a global and unbiased
characterization of the transcriptome compared with micro-
arrays and, consequently, several methods have been proposed
for inferring transcript structures using sequence data. A recent
assessment of a broad range of computational tools for recon-
struction of transcripts from RNA-seq data has shown that low
sensitivity with respect to reference annotations is a common
weakness of these methods, especially as applied to eukaryotic
transcriptome data [8]. However, these approaches have not
been systematically compared with each other in the context of
a controlled simulation study in which the true set of expressed
transcripts and their expression levels are known, nor have they
been compared with annotation-based inference under a range
of assumptions about the accuracy of the annotations.

Methods

We have conceived a simulation study for comparing the three
approaches to expression analysis under a range of scenarios.
We recall that the methods fall into three categories: those that
use curated annotations to align reads and infer expression,
those that use genome-guided assembly and those relying
solely on de novo assembly of reads.

The general outline of the simulation study is illustrated in
Figure 1 and can be summarized as follows.

(i) Define a realistic set of transcripts as a ‘transcript pool’ and
define a subset of the transcript pool as the ‘truly expressed
set’.

(ii) Assign an expression value to each element of the
truly expressed set and simulate RNA-seq reads
accordingly.

(iii) Define the ‘discovered transcript set’ as one of

a. a set of simulated annotated transcripts that does not de-
pend on the read data (this is a simulation of a curated
annotation),

b. a set obtained through genome-guided assembly of the
simulated reads or

c. a set obtained through de novo assembly of the simulated
reads.

For each of the above, sensitivity and precision with respect to
the truly expressed set can be computed.

(iv) For the transcript sets found by assembly methods, compare
the discovered transcript set to the set of truly expressed
transcripts.

(v) Estimate expression values for all transcripts in the dis-
covered set.

(vi) Compare estimated and true expression values to assess the
accuracy of each approach.

Selecting the transcript pool

We select our transcript pool from the Ensembl 66 cDNA se-
quences. We use transcripts from subsets of the genomes

Figure 1. Sampling of expressed transcripts and simulated annotations from the transcript pool. We randomly designate fg of genes as active genes and leave the re-

maining 1� fg as silent genes. A fraction ft of transcripts in active genes are designated as Ne expressed transcripts, leaving the remaining 1� ft as Nu unexpressed tran-

scripts (from active genes). Transcripts from silent genes are designated as Ns silent transcripts. Expressed transcripts Ne are assigned expression values and used as

the ground truth when evaluating reconstructions. Simulated annotations of desired sensitivity s and precision p are obtained by partitioning expressed transcripts

into TP and FN transcripts to reach the desired sensitivity s, followed by random sampling of FPa transcripts from unexpressed transcripts of active genes and FPs tran-

scripts from silent genes to reach desired precision p.
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throughout our study for convenience (chromosomes 21 and 22
on human, chromosomes 2 and 3 on mouse and chromosomes
III and V on worm). For genome-assisted reconstruction, we use
the corresponding GRCh37 reference genome. We filter out du-
plicate transcripts (transcripts sharing exonic coordinates and
thus differing only in the locations of their untranslated re-
gions) and alternative haplotype/supercontig entries from the
cDNA sequences and the genome assembly.

Simulating expression values

We simulate expressed transcripts by sampling from the tran-
script pool (Figure 1). This is close to what we would expect in
reality: a large fraction of genes and transcripts are expressed
only in specific tissues, developmental stages or other biological
conditions. We partition the transcript pool as follows:

i. Label a fraction fg of genes in the transcript pool as active
and the remainder as silent.

ii. Label a fraction ft of transcripts belonging to active genes as
‘expressed’ and the remainder as ‘unexpressed from active
genes’. We denote the number of expressed transcripts as
Ne and the number of unexpressed transcripts from active
genes as Nu.

iii. We denote the number of (unexpressed) transcripts from
the 1� fg fraction of genes, which are silent as Ns.

The values of fg and ft were set as described in the
Supplementary Note. We hypothesized that transcripts that are
often found to be highly expressed are more likely to be anno-
tated than those that are lowly expressed or expressed only
under specific conditions. We tested this hypothesis by binning
transcripts by date in which they were added to the Ensembl
database and examining the proportion, which were estimated
to be moderately expressed (estimated FPKM> 1) in a randomly
chosen sample from the Illumina BodyMap data set (http://
www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513). We
found that the longer a transcript had been in the database, the

more likely it was to be highly expressed (Figure 2). This sug-
gests that a realistic simulation would incorporate different
sampling distributions for the expression values of annotated
compared with unannotated transcripts and that this difference
would depend on the quality of the annotation at a particular
point in time. Naturally, such a realistic set-up would make
transcript reconstruction a more challenging proposition.
However, we include only the results of the more conservative
analysis using a single sampling distribution, which would tend
to favour reconstruction approaches. We generate artificial ex-
pression values for all expressed transcripts by sampling from a
gamma distribution with shape a¼ 1.2 and rate b¼ 0.001, which
captures the wide range of expression values typically found in
a real sample.

Simulating RNA-seq reads

Having generated the set of expressed transcripts and the cor-
responding expression values, we simulate 75 bp paired-end
error-free reads. We sample the insert size (outer distance be-
tween the two paired reads) in base pairs from a normal distri-
bution with mean l¼ 250 and standard deviation r¼ 30.
We note that our set-up (error-free reads, a lack of sequencing
biases, a single sampling distributions for transcripts desig-
nated as annotated or unannotated) generally favours recon-
struction approaches and that any weaknesses in these
approaches are therefore despite the use of particularly favour-
able assumptions. We also prefer this relatively simple set-up
to more complicated simulators (e.g. [9, 10]), as it provides a
neutral framework for comparing widely differing methods.

Simulating imperfect transcript annotations

We simulate the set of curated, annotated transcripts after the
expression values because we want to specify its sensitivity and
precision with respect to the truly expressed transcripts. We can
then compare the expression estimates of transcript sets found
by assembly methods with the estimates obtained using a simu-
lated annotation for different levels of annotation accuracy.

We randomly partition Ne expressed transcripts into anno-
tated transcripts (true positive, TP) and unannotated transcripts
(false negative, FN) to achieve the desired sensitivity s.

s ¼ TP
TPþ FN

Ne ¼ TPþ FN

We then randomly sample FPa false positives from Nu unex-
pressed transcripts from active genes and FPs false positives
from Ns unexpressed transcripts from silent genes to obtain the
desired precision p.

p ¼ TP
TPþ FPa þ FPs

The sampling of the two different kinds of false positive (FP)
transcripts (FPa and FPs) is based on the assumption that the
fraction of annotated transcripts is the same for both active and
silent genes.

TPþ FPa

FPs
¼ fg

1� fg

This gives us four simultaneous equations, which we can
solve for the four parameters TP, FN, FPa and FPs, given the
required sensitivity s and precision p.

Figure 2. The proportion of Ensembl 70 transcripts, binned by their creation

date, estimated to be moderately expressed in the thyroid sample from the

Illumina BodyMap data set (accession ID ERR030872 only). The proportions are

significantly different between each pair of successive bins (p < 10�8 ; v2 test for

equality of proportions).
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Assessing transcript reconstruction (assembly
methods only)

We compare the reconstructed/estimated transcripts to the simu-
lated/expressed transcripts by producing a one-to-one matching
between them (we describe the matching algorithm below). We
proceed by classifying transcripts into three groups:

True positive transcripts are present in the estimated transcript
set and can be matched to an expressed transcript.
False negative transcripts are present in expressed transcripts
that cannot be matched with a transcript from the estimated tran-
script set.
False positive transcripts are present in the estimated transcript
set and cannot be matched to an expressed transcript.

We characterize the accuracy of an estimated transcript set
via sensitivity and precision. Sensitivity and precision are calcu-
lated from the labelling obtained from comparing the transcript
set to expressed transcripts and using the standard definitions
[sensitivity s¼TP/(TPþ FN), precision p¼TP/(TPþ FP)].

Matching reconstructed transcripts to expressed
transcripts

In principle, a one-to-one mapping of reconstructed transcripts
to expressed transcripts could be achieved by finding pairs of
equal transcripts between the expressed transcripts and the
assembled transcripts. However, we prefer to allow flexible
matching between the start and end coordinates of the
assembled transcripts and the true start and end coordinates as
assembly methods are known to have difficulties in recovering
these exactly [11], and yet, such approximate reconstructions
could still be informative and provide reasonably reliable ex-
pression estimates. On the other hand, as one of the main
promises of RNA-seq is the ability to study splicing patterns, we
follow [8] and require exact matching of all the exon boundaries
that are not also the 50 and 30 ends of the transcripts.

We use the following algorithm to match reconstructed tran-
scripts to expressed transcripts.

i. Create a list of ‘match candidates’ by iterating over all ex-
pressed transcripts and reconstructed transcripts. A match
candidate is a pair consisting of an expressed transcript and
a reconstructed transcript that fulfils the following criteria:
a. The length of the longest common subsequence of the

reconstructed transcript and the true transcript is at
least 80% of the length of the true transcript.

b. The longest common subsequence of the reconstruction
and the true transcript contains all inner exons of the
true transcript.

c. The total length of the reconstructed transcript does not
differ from the total length of the true transcript by
>20%.

ii. For every match candidate of expressed transcript i and re-
constructed transcript j, we calculate a mismatch score
mij ¼ d2

1 þ d2
2. Here, d1 and d2 are lengths of the mismatching

sequences at the two ends when transcripts have been
aligned such that the inner exon sequences match
(Figure 3). If several alignments are possible, we select the
alignment that minimizes the mismatch score.

iii. We then traverse the list of match candidates sorted by
increasing mismatch score. At each step, we designate the
pairing (i, j) with the smallest score as a true match and, in
order to obtain a one-to-one mapping between reconstructed
transcripts and expressed transcripts, remove all match can-
didates containing the i-th expressed transcript or the j-th re-
constructed transcript from the match candidate list.

Estimating transcript expression

Once the discovered transcript set has been established through
any of the three routes described above, expression estimates
are obtained using MMSEQ [12]. We run MMSEQ on the entire
discovered transcript set (including both TP and FP transcripts),
as that is what would occur in a real RNA-seq experiment. The
estimated expression values are compared with the known ex-
pression values using the matching procedure described above
for the computational methods and the ‘known’ values for FP
transcripts are set to zero as, by definition, FP transcripts are
not present in the sample.

Results

Here we present the results of our analysis comparing the three
approaches. We selected Cufflinks to assess genome-guided as-
sembly and Oases to assess de novo assembly. We limit our-
selves to one method within each category to simplify our
exposition and because the categories are so much more differ-
ent from each other than implementations within any given
category. Additionally, we assess a fourth approach, the
RABTþCufflinks method [13], which supplements a set of anno-
tated transcripts with reconstructed transcripts using Cufflinks.
Parameter settings are described in the Supplementary Note
and in general have been left as default or set to recommended
values based on the literature. Intricate parameter tweaking
and data post-processing are beyond the scope of this work, as
our objective is to compare the general properties of these
methods under standard use. Unless stated otherwise, we
simulate data using human transcripts as our reference.

Reconstruction methods have low sensitivity and
precision

First we consider the differences between de novo assembly and
genome-guided assembly for the reconstruction of the

Figure 3. Matching reconstructed transcripts with true transcripts. The highlighted region on the right end of the reconstructed transcript indicates a mismatching

sequence with the true transcript above it. Solid vertical lines indicate exon boundaries. A colour version of this figure is available at BIB online: http://

bib.oxfordjournals.org.
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transcript set. We assess the sensitivity and precision achieved
by these two approaches for a range of coverage values, com-
puted as twice the number of fragments times the read length
divided by the total sequence length of truly expressed tran-
scripts. As the number of sequenced fragments increases, we
observe an increase in sensitivity, which saturates at roughly
s¼ 0.36 for both Cufflinks and Oases. Saturation of the number
of reconstructed transcripts has been reported previously for
Cufflinks assembly [14]. It was thought that saturation was
reached when virtually all true transcripts had been recon-
structed but we show here that saturation can be reached at
low sensitivities in human (Figure 4A). These results suggest
that de novo and genome-guided assembly have a similar ability
to reconstruct truly expressed transcripts.

We also observe saturation for the precision of the estimated
transcript sets (Figure 4C). Cufflinks saturates at p’ 0.45,
whereas Oases saturates at p’ 0.17. This means that a signifi-
cant majority of the transcripts produced by Cufflinks and
Oases are false, even under very favourable simulation condi-
tions. We stress that the false reconstructed transcripts are not
technical or biological artefacts that may be found in real sam-
ples (e.g. partially transcribed RNA) as we only simulate reads
from bona fide transcripts in our pool. The low precision
observed is loosely supported by previous observations made
on real data. In the Cufflinks paper [5], almost half of the con-
structed transcripts were unknown isoforms of known genes. In
an application to a human RNA-seq data set, Cufflinks has been
reported to produce a significant number of transcripts not pre-
sent in Ensembl [14]. Both of these examples are based on

experimental RNA-seq data, meaning that it was not possible to
determine whether the ‘novel transcripts’ missing from existing
annotations were true or false positives. The results presented
here suggest that a large proportion of the ‘novel transcripts’
are likely to fall to the latter category.

We have repeated this analysis in mouse and worm
(Caenorhabditis elegans) to assess how reconstruction accuracy
varies with transcriptome complexity. The saturation levels of
both sensitivity and precision were similar in mouse compared
with human for both Cufflinks and Oases (Supplementary
Note). However, we see much greater accuracy in reconstructing
the low-complexity worm transcriptome using Cufflinks
(s¼ 0.68, p¼ 0.80) and Oases (s¼ 0.72, p¼ 0.67) (Figure 4B, D). The
improved accuracy is most likely a consequence of the reduced
mean number of isoforms per gene in worm compared
with human and mouse (Figure 5). Reduced paralogy in the
worm, as measured by the proportion of simulated read pairs
mapping to multiple genes, may also play a role in this im-
provement (0.050, 0.023 and 0.013 for human, mouse and worm,
respectively).

Unexpressed annotated transcripts absorb a small
proportion of the expression signal

Here we consider how the choice of annotation database affects
expression estimation for methods that use a predefined refer-
ence transcriptome. We vary the sensitivity and precision of the
simulated annotation set to assess the impact of incomplete-
ness and inaccuracy of annotations on expression estimation.

Figure 4. Transcriptome reconstruction accuracy for varying coverage values. Sensitivity (top panels, labelled A and B) and precision (bottom panels, labelled C and D)

of transcripts reconstructed using Cufflinks (triangles) and Oases (crosses) as a function of simulated read coverage for human (left panels, labelled A and C) and worm

(right panels, labelled B and D) transcriptomes. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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We use the simulated transcript sets to estimate expression lev-
els and then compare the resulting expression estimates with
the true (simulated) values. Our simulation set-up generates
both false positives (incorrect transcripts) and false negatives
(missing transcripts).

Table 1 (left) shows the correlation between the log expres-
sion estimates of TP transcripts and the true log expression val-
ues of the TP transcripts for transcript sets obtained using
annotations that have a range of sensitivities and precisions.
More sensitive annotations (those with a greater proportion of
the truly existing transcripts) clearly lead to improved esti-
mates. However, for a fixed sensitivity, the precision of the an-
notations does not have a discernible effect on the accuracy of
expression estimates. This has implications for the choice of
reference annotation set to be used for estimation: more sensi-
tive annotations, such as Ensembl, which contains 190 243 (re-
lease 66) human transcripts, should be preferred over more
specific annotations, such as RefSeq [15], which contains 50 029
human transcripts, if the aim is to obtain accurate expression
estimates. The addition of false positives (i.e. unexpressed tran-
scripts) into the annotation set does not have a significant

impact on accuracy within the range of precision that we have
considered.

We also assess the propensity of different approaches to
mis-assign expression signal to FP transcripts. For each method,
we compute the ratio between the mean expression estimate of
FP transcripts and the mean expression estimate of TP tran-
scripts (FP=TP). A value of zero implies perfect differentiation
between FP and TP expression values, whereas a ratio of 1
implies that on average FP transcripts are assigned much of the
expression signal as TP transcripts (Table 1, right). Using cura-
ted annotations, FP=TP is 0.14 on average for the lowest sensi-
tivities we have simulated and decreases with increasing
sensitivity (�0.07 for sensitivities >0.6 irrespective of precision).

Transcript reconstruction induces high expression
estimates in FP transcripts

We now consider the performance of expression estimation
using transcript sets obtained through computational recon-
struction. For the two purely computationally reconstructed
sets (Cufflinks and Oases), we use the transcript sets obtained

Figure 5. The mean number of isoforms per gene by chromosome in human, mouse and worm.

Table 1. Performance of the simulated annotations approach

Correlation of TPs FP=TP

Sensitivity

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Precision 0.40 0.82 (0.88) 0.85 (0.87) 0.89 (0.89) 0.93 (0.92) 0.96 (0.96) 0.16 (0.45) 0.10 (0.28) 0.06 (0.16) 0.04 (0.08) 0.02 (0.03)
0.35 0.78 (0.86) 0.88 (0.91) 0.89 (0.87) 0.94 (0.92) 0.96 (0.96) 0.14 (0.41) 0.10 (0.25) 0.06 (0.15) 0.03 (0.08) 0.02 (0.03)
0.30 0.82 (0.87) 0.89 (0.89) 0.90 (0.90) 0.93 (0.93) 0.96 (0.96) 0.14 (0.37) 0.09 (0.19) 0.06 (0.12) 0.03 (0.06) 0.02 (0.02)
0.25 0.81 (0.89) 0.88 (0.91) 0.90 (0.88) 0.94 (0.93) 0.96 (0.96) 0.13 (0.31) 0.09 (0.17) 0.05 (0.10) 0.03 (0.06) 0.02 (0.02)
0.20 0.79 (0.86) 0.90 (0.88) 0.89 (0.89) 0.94 (0.92) 0.96 (0.96) 0.12 (0.27) 0.08 (0.15) 0.05 (0.08) 0.03 (0.04) 0.02 (0.02)

In bold, correlation between true and estimated expression of TP transcripts (left) and FP=TP (right) for simulated annotations of varying sensitivities and precisions

(shown in the table margins). The values in brackets correspond to the correlations obtained after supplementation of transcript sets using RABT. Values shown are

the mean over three independent simulations.
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at the saturated sensitivity and precision values (Table 2). These
sets are obtained when mean coverage is equal to 100 and com-
prise the best reconstruction achievable using these methods
with standard parameter settings.

For these transcript sets, the correlation between true and
estimated expression values of TP transcripts for Cufflinks is 0.95
and for Oases is 0.85 (Table 2). A lower correlation for the de novo
set is expected, given that the corresponding transcript set con-
tains more non-existent transcripts, which absorb some of the
true expression signal. The correlation for Cufflinks is compar-
able with that of some of the simulated curated annotation sets.

The FP=TP ratio is significantly higher for computational
methods than for reference-based methods using annotations
with similar accuracy. This is because FP transcripts that are re-
constructed from the data are necessarily supported by reads,
and thus have expression signal assigned to them, whereas se-
quence in FP transcripts in a curated annotation set will in gen-
eral not coincide with read sequence in the data, and so will be
assigned low expression values. Cufflinks appears worse in this
respect, as on average it assigns the equivalent of 81% of mean
TP expression to FP transcripts, while for Oases this value is
only 41% (Table 2). This is consistent with Cufflinks assembling
fewer incorrect transcripts than Oases, which concentrates the
signal in a smaller number of FP transcripts.

The correlation of TP transcripts reconstructed by Cufflinks
is high relative to the low sensitivity (s¼ 0.36) of the method. As
the more highly expressed transcripts are more likely to be re-
constructed accurately (Figure 6) than the more lowly expressed
transcripts and as highly expressed transcripts are easier to es-
timate accurately (on the logarithmic scale), the result is a high
correlation for a small subset of the truly expressed transcripts.

We note that the sampling of TP annotated transcripts in
our simulations does not depend on the expression level,
which is favourable towards reconstruction methods. As we
have shown (Figure 2), the annotated fraction of truly expressed
transcripts tends to be more highly expressed than the unanno-
tated fraction. Thus, the TP correlations for the annotation-
based approach are conservative.

Transcriptome reference-guided reconstruction
provides modest improvements in accuracy of
expression estimates

The CufflinksþRABT approach supplements a curated annota-
tion transcript set with additional reconstructed transcripts
required to explain the data. In our simulation set-up, we con-
sider the range of annotation sets with different sensitivities
and precisions, as above. We present two aspects of the results:
firstly the effect that RABT has on the sensitivity and precision
of the final transcript set, and secondly the correlation between
true and estimated expression of the TP transcripts and the
overall FP=TP ratio.

Supplementing annotated transcripts with reconstructed tran-
scripts using CufflinksþRABT generally increases sensitivity (the
starts and ends of the arrows in Figure 7 point to the annotated
and supplemented sensitivities and precisions, respectively).
When using annotations with the lowest sensitivity of s¼ 0.2,
RABT roughly doubles sensitivity of the transcript set. The gains in
sensitivity decrease substantially as the sensitivity of the annota-
tions increases and are not noticeable beyond s¼ 0.6. Thus,
CufflinksþRABT is no better than an annotation-based approach
overall when the sensitivity of annotations is moderate to high.

Table 2. Performance of the computational transcriptome recon-
struction methods

Cufflinks Oases

Sensitivity 0.36 0.36
Precision 0.45 0.17
Correlation of TPs 0.95 0.85
FP=TP 0.81 0.41

Sensitivity, precision, correlation between true and estimated expression of TP tran-

scripts and FP=TP for the computational transcriptome reconstruction methods.

Figure 6. Estimated expression levels of reconstructed transcripts by Cufflinks.

Densities of the log expression estimates of transcripts properly reconstructed and

incorrectly reconstructed by Cufflinks (p ¼ 2:17� 10�6, Kolmogorov–Smirnov test).

A colour version of this figure is available at BIB online: http://

bib.oxfordjournals.org.

Figure 7. Log expression estimates for FP transcripts obtained using RABT.

Densities of the log expression estimates of FP transcripts reconstructed by

RABT and FP transcripts present in the simulated annotation set used by RABT

as a starting point (s ¼ 0.6, p¼0.4). A colour version of this figure is available at

BIB online: http://bib.oxfordjournals.org.
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Surprisingly, we also observe decreases in RABT sensitivity
(e.g. at s¼ 1.0 and p¼ 0.35), which is inconsistent with
the Cufflinks’ manual’s statement that the RABT assembly in-
cludes ‘all reference transcripts as well as any novel genes
and isoforms that are assembled’. We have found that some
of these transcripts are missing from RABT output completely,
whereas some are present but are missing short inner exons (and
thus cannot be matched back to their true counterparts).

Table 1 shows the expression correlation between true and
estimated expression for TP transcripts. There is little improve-
ment in TP transcript correlation using RABT over using annota-
tions alone, except at some of the lowest sensitivity values for
the reference annotations.

RABT leads to a noticeable increase in FP expression com-
pared with using only annotated transcripts (Table 1). This is
similar to what is seen in the reconstruction methods above: by
definition FP transcripts constructed by RABT are supported
by reads, and so will have higher expression estimates than the
FP transcripts in the annotation sets, which in general will not
be supported by reads. We look at two components of FP tran-
scripts constructed by RABT: the transcripts have a match
with annotation sets and the novel ones constructed by
RABT (Figure 8). Regardless of the accuracy of the reference an-
notation, the novel FP transcripts have higher expression
estimates than the FP transcripts present in the annotation
(Supplementary Note). This is consistent with the principal dif-
ference of FP transcripts coming from curated annotations and
FP transcripts created by RNA-seq based transcriptome recon-
struction methods: FP transcripts inferred by computational
methods are (wrongly) supported by the data, making them
more difficult to differentiate from TP transcripts than typical
FP transcripts from curated annotations, which were derived
from independent experiments.

Discussion

We have presented a comparison of analysis approaches for
RNA-seq data that use curated annotations, genome-guided

reconstruction or de novo reconstruction. We have shown that
curated annotations lead to more accurate gene expression esti-
mates than transcriptome reconstruction methods, even when
the annotations are of fairly low quality.

The main reason for this conclusion is the low sensitivity
and precision of purely computational reconstruction strat-
egies, even when assisted by a reference genome. For both de
novo and genome-guided read assembly, our simulations show
that the sensitivity of computational transcript set estimation
saturates at s ’ 0.36 for human RNA-seq data, meaning that
many transcripts present in a sample would be missed in recon-
struction—a finding that is consistent with the conclusions of
[8]. The correlation between simulated and estimated expres-
sion values for the correctly reconstructed transcripts is high,
but it appears that this is driven by a small number of highly ex-
pressed transcripts (see Section 3.3). Further, computational
methods introduce a large number of FP transcripts (we find a
precision of 0.45 for Cufflinks and 0.17 for Oases). When esti-
mating expression, these FP transcripts absorb a substantial
fraction of the overall expression signal. In contrast, even when
curated annotation sets contain FP transcripts, they absorb a
considerably smaller amount of the expression signal compared
with computational methods (�10% of the TP expression even at
extremely low sensitivities). Curated annotations also show good
expression correlation even at low sensitivities (>0.8 for an ex-
tremely low sensitivity of 0.2). The RABT approach, which supple-
ments a curated annotation with transcripts assembled from the
read data, improves sensitivity noticeably only for relatively low
baseline sensitivities of the annotation set. FP transcripts intro-
duced by RABT exhibit the same signal absorption properties as
FP transcripts of pure computational methods.

Studies searching for novel elements in a transcriptome that
is generally well-annotated may benefit from using a computa-
tional reconstruction or a curated annotation approach on a
locus-by-locus basis. Specifically, computational reconstruc-
tions could be used in cases that strongly contradict curated an-
notations, such as regions with high RNA-seq counts that have
no gene annotations at all and for which an approximate recon-
struction would be preferred over no reconstruction at all. A
straightforward implementation of this approach would be to
filter from RABT output all novel transcripts that overlap known
genes. Alternatively, computational predictions could be made
more conservative by using reconstructed transcripts detected
by several methods [11]. In analyses of data from an unanno-
tated species without a reference genome, the use of curated
annotations from a closely related species might be considered.
Even if a sizeable number of transcripts differ between species,
FP transcripts in the annotations would not be expected to bias
expression measurements excessively.

We have restricted our exposition to a limited number of
methods and animal species to assess each RNA-seq analysis
strategy. We note that other de novo methods, such as the popu-
lar Trinity assembler [16], are becoming increasingly refined
and widely used. Also, here we have not assessed the relative
performance of analysis strategies in plants or bacteria, for ex-
ample. We have thus made our software freely available so that
new methods and species may be assessed systematically in fu-
ture under a controlled simulation set-up.

Our results suggest that, despite valiant efforts, accurate
estimation of the transcripts sequences in RNA samples will
ultimately rely on emerging fragmentation-free sequencing tech-
nology in which read lengths can match transcript lengths.
However, as the throughput of such technologies is at present
still relatively low, this step may require removal of highly

Figure 8. Sensitivity and precision of starting and final transcript sets obtained

by RABT. Arrows start at the sensitivity and precision values of the simulated

annotations and point to the final sensitivity and precision of the RABT output.

Sensitivity decreases are sometimes observed when the starting sensitivity is

>0.8. Values shown are the mean over three independent simulations.
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expressed transcripts using custom oligonucleotide capture kits
[14] to ensure lowly expressed transcripts are sequenced. The use
of long read technology to identify the distinct set of transcripts
in a sample combined with high-throughput short read technol-
ogy to estimate expression levels may be the optimal approach
for the time being for accurate characterization of RNA samples.

Supplementary data

Supplementary data are available online at http://bib.
oxfordjournals.org/.

Key Points

• We have surveyed the three main approaches to se-
lecting transcripts for expression estimation using
RNA-seq data: reliance on database annotations, gen-
ome-guided assembly and de novo assembly.

• The sensitivity and precision of computational
approaches—both genome-guided and de novo tran-
scriptome assembly—are severely limited.

• Assembled artefactual transcripts absorb a substantial
proportion of the expression signal, whereas incorrect
transcripts appearing in a reference set do not absorb
much signal. Thus, it is preferable to use reference
sets with high sensitivity rather than with high preci-
sion. Furthermore, approaches based on annotations
show good expression correlation even when annota-
tions are incomplete.

• We have developed free software to simulate transcript
sets, expression values and sequence reads under a wider
range of parameter values and to compare sensitivity, pre-
cision and signal-to-noise ratios of different methods.

• Accurate estimation of the transcripts sequences in
RNA samples will ultimately depend on emerging
fragmentation-free long-read sequencing technology.
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