A RTl C L E W) Check for updates

DNA methylation landscapes of 1538 breast
cancers reveal a replication-linked clock,
epigenomic instability and cis-regulation
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DNA methylation is aberrant in cancer, but the dynamics, regulatory role and clinical
implications of such epigenetic changes are still poorly understood. Here, reduced repre-
sentation bisulfite sequencing (RRBS) profiles of 1538 breast tumors and 244 normal breast
tissues from the METABRIC cohort are reported, facilitating detailed analysis of DNA
methylation within a rich context of genomic, transcriptional, and clinical data. Tumor
methylation from immune and stromal signatures are deconvoluted leading to the discovery
of a tumor replication-linked clock with genome-wide methylation loss in non-CpG island
sites. Unexpectedly, methylation in most tumor CpG islands follows two replication-
independent processes of gain (MG) or loss (ML) that we term epigenomic instability.
Epigenomic instability is correlated with tumor grade and stage, TP53 mutations and poorer
prognosis. After controlling for these global trans-acting trends, as well as for X-linked
dosage compensation effects, cis-specific methylation and expression correlations are
uncovered at hundreds of promoters and over a thousand distal elements. Some of these
targeted known tumor suppressors and oncogenes. In conclusion, this study demonstrates
that global epigenetic instability can erode cancer methylomes and expose them to localized
methylation aberrations in-cis resulting in transcriptional changes seen in tumors.
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ancer cells display a combination of altered gene reg-

ulatory programs that endow them with capabilities for

growth, stromal interactions, immune evasion, and
metastasis!. The role of somatic mutations in driving carcino-
genesis is established, even though most mutations are passen-
gers. The regulatory state of cancer cells is also known to be
correlated with, and in many cases driven by, multiple additional
layers of aberrant epigenetic controls. DNA methylation is the
most extensively characterized, and the landscape of cancer
genome methylation has been analyzed in many tumor types, to
date mostly using microarrays>3. It has long been known that
globally tumors lose methylation* and also that normally
unmethylated CpG islands can become methylated in cancer
resulting in gene repression®. Despite these efforts, the forces that
drive pervasive methylation changes in tumors, and the impacts
of methylation aberration on tumorigenesis are still poorly
understood. Furthermore, how tumor epigenetics affect clinical
outcomes and response to treatment remains unclear.

The genomic landscapes of breast tumors are dominated by
copy number aberrations (CNA)® and a few genes hit by somatic
mutations in a large fraction of cases (TP53 in 35.4%, PIK3CA in
40.1%)”. This makes it challenging to understand disease pro-
gression and management based on genetic profiling alone8. On
the other hand, bulk transcriptional profiling of tumors is in
routine clinical use to assist in prognostication and treatment
optimization, indicating that breast cancers recurrently converge
onto common molecular states even when the potential drivers
(genetics and others) are diverse®. In search for non-genetic
drivers, early analysis of DNA methylation focused on hyper-
methylation of CpG islands of key driver genes, including
estrogen receptor! and BRCAI'l. The initial hypotheses that
such focused epigenetic aberrations played a driver role has been
questioned as methylation profiling scaled in coverage and
accuracy'?. Indeed CpG island hypermethylation was found in
thousands of genes in breast cancer!3, indicating that promoter
methylation may instead represent a global trend of loss of pro-
tection from methylation accumulation!4. Trends of hypo-
methylation throughout large genome territories are also
observed when analysis is extended from CpG islands toward the
entire genome!>16, further suggesting one or more global pro-
cesses are driving pervasive methylation change in cancer.

To understand the potential driver roles of mutational, tran-
scriptional, and epigenetic aberrations in breast cancer, a com-
prehensive and systematic strategy that puts each regulatory layer
in the context of other layers is needed. For analysis of DNA
methylation, the major challenge is to understand which
methylation changes are part of global epigenetic remodeling
trends, what are the processes (genetic, transcriptional, and other)
regulating such trends, and which loci are affected by methylation
changes in cis that cannot be explained by global trends and
hence may have a direct regulatory effect (i.e., being a driver
event).

The METABRIC cohort includes over 2000 breast tumor
samples that were previously characterized extensively clinically,
genetically, and transcriptionally. To this rich resource, we now
add data on DNA methylation landscapes using reduced repre-
sentation bisulfite sequencing (RRBS). This leads to several con-
clusions that we now propose in a unified model that
accommodates multiple previous lines of evidence of breast
cancer DNA methylation. The model represents 6 global trends
that affect breast DNA methylation profiles, two involving con-
tamination of immune and stromal cells, one representing
replication-linked  hypomethylation clock, one involving
X-chromosome dosage compensation, and two representing
epigenetic instability at CpG islands. Based on this model, we
demonstrate methylation in hundreds of promoters and

thousands of distal elements to be correlated with gene expression
specifically in cis, highlighting the important role of the global
methylation trends in providing the basis for numerous tran-
scriptional aberrations, including the classical BRCAI hyper-
methylation effect.

Results

Methylation profiling of the METABRIC cohort. The
METABRIC cohort allowed us to analyze methylation trends
within the clinical, genomic, and transcriptional data available for
1538 tumor samples and 244 adjacent normal tissues (Fig. la,
Extended Data Fig. la, Supplementary Data 1). We tuned the
RRBS approach to cover on average 3.3 M CpGs with over 1 read
per sample (Extended Data Fig. 1b). Overall, we used 30.4B reads
from 1782 breast tumor and normal samples to cover a broad
genomic distribution of loci and facilitate analysis of both global
methylation trends as well as local dynamics of methylation in
regulatory elements and promoters. Using our version of the
RRBS protocol 93% of the samples were covered by more than 10
reads for more than 1 M CpGs (Fig. 1b). Only 9% of the reads
mapped to bona-fide promoters (Fig. 1c), providing extensive
sampling of non-promoter loci with medium and low CpG
density, and enhancers in particular (Extended Data Fig. 1c, d).
75% of the promoters were covered with over 20 reads on average
(mean coverage 246), facilitating quantitative analysis down-
stream (Fig. 1d).

Layered modeling of breast tumor methylation. A major chal-
lenge in the understanding of tumor methylation is the con-
vergence of multiple mechanisms, dynamics, and biases onto
complex genome-wide methylation profiles. Using the compre-
hensive and multifaceted METABRIC dataset as a working
model, we developed a semi-supervised computational strategy
(Methylayer) for layered modeling of tumor methylation
dynamics (Fig. le). The principle underlying Methylayer relies on
integration of gene expression, genetics, and clinical information
for computational peeling of confounders (tumor micro-
environment [TME] effects), and then inference of global trends
that can stochastically affect all or almost all of the methylome, in
particular due to replication age and copy number aberration
effects (see “Methods” for details). Based on this top-down
approach, Methylayer can robustly screen for candidates for
epigenetic cis-regulation, and derive prognostic metrics. We
applied Methylayer to ER+ and ER— METABRIC samples
separately and compared dynamics in the two classes of tumors.
We validated the robustness of the approach using unsupervised
non-negative matrix factorization (Supplementary note 1), and by
applying the pipeline to an independent TCGA breast cancer
dataset (Supplementary note 2) with highly reproducible results
to those reported below.

As shown in Fig. 1f, integration of gene expression allows
Methylayer to identify TME effects as major data confounders
diversifying methylation landscapes acquired from tumor biop-
sies. The algorithm detected a strong immune signature in cross-
correlation of gene expression and promoter methylation data
(Extended Data Fig. 2a-c), unambiguously anchored by expres-
sion profiles of many marker genes (CD3, CD8) and checkpoints
(CTLA4, PD-1) (Supplementary Data 2). In parallel, a cancer-
associated fibroblast (CAF) signature was anchored by FAP,
CAV1, VIM, and additional genes (Supplementary Data 3). TME
signatures were correlated with tumor grade (Fig. 1g) and were
validated by independent deconvoluted expression profiles and
pathological metrics (Extended Data Fig. 2d-g). Following
inference of TME signatures, we applied a novel K-nn normal-
ization algorithm (“Methods”, Fig. 1h) that provided Methylayer
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substantially reduced TME bias when inferring tumor methyla-
tion layers downstream (Extended Data Fig. 3).

A replication-linked methylation clock process correlates with
pervasive loss of methylation in tumors. Methylayer clustering of
TME-normalized methylation next identified a highly correlated
group of CpGs (Extended Data Fig. 4a, b) that together span a range
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of reduced methylation levels (mean methylation =0.78 +0.15 in
ER+, 0.79 £ 0.13 in ER—) in tumors compared to normal controls
(Fig. 1i). This methylation layer did not correlate with tumor grade
(Fig. 1j) and was denoted as the clock layer for reasons discussed
next. Clock layer CpGs showed low CpG content and although
associated with distal localization in relation to promoters (Fig. 1k),
were under-represented at putative regulatory elements (based on
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Fig. 1 Dissecting tumor, immune, and CAF methylation in the METABRIC cohort. a Distribution of METABRIC samples used for RRBS profiling. b Number
of samples (Y axis) with a given number of CpGs (X axis) covered with at least 10, 20, 30, or 50 reads. For example, in all samples 449,710 CpGs are
covered with over 10 reads. ¢ Distribution of TSS distance (top) and CpG content (bottom) for CpGs covered by at least 5 reads in half or more samples. d
Distribution of mean promoter coverage over all METABRIC samples, considering 13,198 active promoters (“Methods"). e The Methylayer analysis pipeline.
Integration of data is marked by black arrows. Annotation of the model is marked by blue dashed arrows. f Correlation of average expression of CD3D/CAV1
and the immune/CAF methylation module. g Distribution of tumor grade stratified by five bins of Immune/CAF methylation scores (42 test: p = 0.0056 for
Immune score in ER+, p=0.3052 for Immune score in ER—, p=0.00001 for CAF score in ER+, p = 0.0031 for CAF score in ER—). *p <0.05, **p <0.01,
***p <0.001, ****p < 0.0001. h Distribution of correlations of four key gene expression profiles with raw-methylation levels of individual gene promoters (X
axis), versus the correlation derived after normalizing methylation for CAF/immune composition using a K-nn strategy (as described in “Methods").
Flattening of the post normalization correlations demonstrate the effect of the CAF/immune normalization, while maintenance of the post normalization
correlations demonstrates that the genes that are not affected by normalization. i Distribution of average (non-normalized) methylation over loss-clock loci
(correlation over 0.6 with the score) for normal breast, ER+ and ER— breast cancer samples (two-tailed Kolmogorov-Smirnoff test, p <2.2e—16). j
Distribution of tumor grade stratified by five bins of loss-clock score. k Distribution of TSS distance for loss-clock loci versus other loci (two-tailed
Kolmogorov-Smirnoff test, p < 2.2e—16). I Distribution of time-of-replication for loss-clock loci (red) versus overall distribution of non-promoter loci (gray)
(two-tailed Kolmogorov-Smirnoff test, p < 2.2e—16). m Replication time classifications for chromosome 1 (top color-coded bar). The average methylation

in non-promoter loci, computed for normal breast tissues (gray), and two ER+ breast cancer groups with high (red) and low (blue) clock scores,

respectively, is shown below.

histone modifications) (Extended Data Fig. 4c, d). Genomes repli-
cate in S-phase through a regulated process defining early and late
replication domains!”>18, Interestingly, reduction in tumor methy-
lation of the clock layer was much more intense in domains
replicating late in S (Fig. 11, m, Extended Data Fig. 4e-h). This is
consistent with previous reports suggesting loss of DNA methyla-
tion in aging and cancer can be linked with accumulation of
methylation errors (“epi-mutations”) that are correlated with the
replication process!®-2l. Screening gene expression signatures
across METABRIC did not uncover pervasive transcriptional pro-
grams linked with the methylation clock layer. The few genes that
were significantly correlated with the global clock trends were
enriched for cancer-testis antigen (CTA) (Extended Data Fig. 5a)
and were showing predisposition for infrequent de-repression in
tumors with advanced methylation loss (Extended Data Fig. 5b),
consistent with recent analysis of clonal methylation and expression
in vitro?2. No parallel replication-linked methylation gain process
was observed. Furthermore, linkage of tumor replication loss clock
and existing methylation age clocks was limited (Extended Data
Fig. 5¢c-g). In summary, these data taken together suggest pervasive
dynamics of methylation loss clock in cancers that is strongly linked
to genome replication trends, with low impact on gene expression
signatures, but with potential linkage to CTA de-repression.

The epigenomic instability signatures. Methylayer analysis
identified two further global methylation layers with remarkably
different characteristics (Fig. 2a, Extended Data Fig. 6a, b). The
first of these layers is denoted as the epigenomic instability
methylation gain (MG) layer, involving CpGs that are unme-
thylated in normal tissues (Fig. 2b), but show a spectrum of
hypermethylation in tumors. Remarkably, 45% of the sampled
intermediate-high CpG content enhancers show strong correla-
tion with the MG layer (Fig. 2c, Ext Data Fig. 6¢), as well as 2995
of the promoters in our data. A much smaller fraction of the CpG
sites is part of the epigenetic instability methylation loss (ML)
layer, which is partially methylated in normal tissues, but shows a
spectrum of reduced methylation in tumors. MG CpGs are
enriched in low CpG content enhancers. Remarkably, quantifying
MG and ML methylation layers across METABRIC (where high
scores indicate larger differences from normal tissues) showed
grade-dependent distributions in ER+ tumors (Fig. 2d, Extended
Data Fig. 6d). Furthermore, MG layer methylation was positively
correlated with the expression of a large number of genes in trans
(Fig. 2f, Supplementary Data 6). Most notably, these include
genes linked to mitotic spindle assembly and regulation, DNA
damage repair, DNA replication, several embryonic development

homeobox transcription factors (for example, the early
mesenchymal factor MsxI), calcium signaling, and sterol meta-
bolism genes (Fig. 2g, Supplementary Data 6).

We adapted our previously developed methodology'4 to
analyze epi-polymorphism at the MG and ML loci (Extended
Data Fig. 7a, b) indicating methylation heterogeneity at these loci
is as high as the global background trend, and showing that
accumulation of methylation is likely the outcome of multiple
stochastic events rather than takeover of specific epi-alleles.
Further analysis showed MG and ML scores varied extensively
across the Integrative clusters®, which stratify breast cancers into
genomic copy number driver-based subtypes. High epigenomic
instability scores were observed for IntClust 1, 2, 5, 6, and 9
(Extended Data Fig. 7c). Interestingly these are the ER+ tumor
subtypes we recently showed tend to have higher incidence of
later disease relapse®.

In summary, these analyses show that in addition to the
replication loss clock, a large number of loci are affected by a
process of methylation gain (MG) and loss (ML), and that this
process, rather than the methylation loss clock, is linked with
tumor progression, genomic subtypes, and tumor gene
expression state.

Methylation and expression are linked in cis at hundreds of
promoters and distal elements. The MG/ ML epigenomic
instability layers we defined above correlate transcriptional and
epigenetic changes for a large number of loci. Specific
methylation-expression regulatory relationships can be supported
when a promoter methylation signature correlates with its
matching gene expression signature (in cis) at significantly higher
levels than those predicted by the above epigenomic instability
effects working in trans. We screened for such scenarios by
comparing correlation between promoter methylation with its
own expression to its correlation with any of the other 9360 gene
expression profiles. Applying this strategy systematically and
comparing to shuffled controls (see “Methods”), we identified 423
promoters in ER+ and 185 in ER— (FDR <0.01; 1053 in ER+
and 448 in ER— if increasing FDR to <0.05) that are likely to
regulate expression by their in cis methylation (Fig. 3a, b, Sup-
plementary Data 8). These promoters have low, but non-zero
methylation in normal tissues (15+22%) weakly increasing
overall in tumors on average (20 +21%) (Extended Data Fig. 8a).
Overall, 34%, 50%, and 16% of these loci were located, respec-
tively, in high (>8%), intermediate (>4%), and low (<4%) CpG
content regions (Extended Data Fig. 8b). In cis methylation-
expression correlation was usually (but not exclusively) observed
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0.5 with each score) for normal breast, ER+ and ER— breast cancer samples (two-tailed Kolmogorov-Smirnoff test: MG loci, p < 2.2e—16; ML loci, p < 2.2e
—16). ¢ Fraction of enhancers (grouped by their normal methylation level) that are linked (correlation > 0.25) with each of the three Methylayer scores.
d Distribution of ER4 tumor grade stratified by five bins of MG/ML methylation scores. ****p < 0.0001 (32 test: MG loci, p = 0.000002; ML loci, p < 5.4e
—10). e Comparing ML and MG scores over ER+ and ER— samples. f Clustered correlation heat map between normalized methylation profiles (columns,
including all loci with correlation >0.3 for MG or ML) and matching gene expression (rows) in ER+ tumors. Clusters are labeled by their top correlated
gene. Complete information is available in Supplementary Data 4. g Groups of genes showing positive expression correlation with the MG score (see
Supplementary Data 6. Complete information for ML score is also available in this table).

NATURE COMMUNICATIONS | (2021)12:5406 | https://doi.org/10.1038/s41467-021-25661-w | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https.//doi.org/10.1038/s41467-021-25661-w

a b
@ Strongest correlation Second strongest correlation ]
» 10000 |
2 I
o
c -0.2 g 1000
2 S
i 5 100 :
2 -04 XXX XX] k]
3 veeesessbossrsassenserasneoctt s 10 I
06 eevee®e®®” = I
. 1 |
N O O T A N O e RO NS RO Iy 2N e PR S TIPS SaRSEs ~ N
R RN RIS SR R i o 05 00 05
S ORSFLTIZSx=9F N3 L2E8Y LA oz Difference
g 'EEI‘I;#O%<(Q<(NO§ EE FITL wgoxy g NIE 2 AU/ IS
1)
o
2
c d
100% ”rml'll]lmn[” ry | |r[ Il ’ m |U'I I 100% -,r,ﬂ """'|"1”H'"V"'”W""“ “” | I| r ||, i ,| ||..|‘
i'g 75% . Repressed g 75% . Hyper-meth
[ Q
5 s Stable 5 so% Stable
k3 k)
= 25% | . Induced = 25% . Hypo-meth
0% il | RN J“ dhhall % Jl Mil
Cis-regulated promoters Cis-regulated promoters
e
KRT7 BRCA1 NBR2
Average by r> Average
ITTNE AT ¥ OF TREETENNNNTE TRETT 1T (RONTY Methylation 1 1T ST Tt WETHT (T T Methylation
s 10 1 s 10 1 1
2 ! 0.75 2 ! ! 0.75
$_ o5 1 S_ o5 1 1
2c 2c
@2 1 g =] 1 1
Kl Kl 0.50
?‘E‘j 0.0 ‘\l 0.50 g 00 q‘r\ } '
5 1 28 1
28 o5 I» — 655 g 05 | 0.25
£ 1 kS 1 1
w40 1 -1.0 1 1
52622500 52625000 52627500 52630000 0.00 41272500 41275000 41277500 41280000 0.00
Chr12 chri/
100%
- P << 0.001 o 8%
g o075 75% (KS) E
= 2 6%
= i e . Observed
g 050 2 50% g 4
s 5 5 4% Shuffied
2 Cis-regulated © o 2
& 0.25 . €g 25% E 2%
(7]
Other o, =
0.00 L — = 0%
o A O ) TSS 100 10K 1M  100M
S s o o o o S o o ; ER+ ER-
5 8 B 6 B B B 5 8 Distance to most correlated gene (bp)
o -~ N @ < w0 © ~ ©
S 8 22 22 S S e
Promoter methylation
DNMT3A ¢ TBX] l GATA3 ¢ FGFR4 l
00 T TR TR TN TR R
chr2 (25467184-25510185) chr22 (19736225-19759740) chr10 (8088666-8120569) chr5 (176505872-176546567)
1.00
= = = =
£ 075 g S S
K K K K
2 2 2 2
@ 0.50 k5] k5] k5]
15 15 15 £ .
2025 2 2 2025 !
< < < x oo
O00=-039 ¢
0.00 0.00 .
55 6.0 65 7.0 5 6 7 8 6 7 8 9 10 11 6 8 10

Gene expression Gene expression

for genes showing both repression and induction in tumors
compared to normal, in association with their hypermethylation
(Fig. 3¢, d). To find which of these localized and specific cis-
regulated genes are part of larger co-regulated gene mod-
ules (Fig. 3e), we computed correlation of gene expression profiles
(Extended Data Fig. 8c) and confirmed most genes in the group
were not part of larger expression clusters (392 out of 423 with

Gene expression Gene expression

best correlation partner at r<0.5). These data suggest the exis-
tence of hundreds of distinct regulatory “logics” which are gen-
erally specific to individual genes and may act as drivers of inter-
tumor expression variation for these genes, independently of the
global methylation loss clock and epigenomic instability trends
we quantified above. Remarkably, analysis of epi-polymorphism
in these promoters supported significantly reduced methylation
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Fig. 3 Expression-methylation correlation in cis. a Plot of the 50 genes with strongest negative correlation (red) of expression with their own promoter
methylation profile (in cis E-M correlation) in ER+ tumors, compared to the correlation with the second strongest promotor locus in the genome (out of
9360 candidates, gray). b Distribution of the difference between in cis E-M correlation, and the top correlation of the same gene with any other promoter.
Positive values represent cases where the in cis E-M correlation is the maximum. ¢ For 612 genes with support for in cis E-M correlation, we show the
distribution of differential tumor expression relative to matched normal tissues. Repressed/induced: over twofold change. d For 612 promoters with support
for in cis E-M correlation, we show the distribution of differential methylation compared to matched normal tissues. Hyper-/hypo-methylated: over 0.2
different in average methylation. e Correlation of CpG methylation with gene expression in KRT7 locus (in ER+ tumors) and BRCAT (in ER— tumors). f
Distribution of Epi-polymorphism for promoters defined with high in cis E-M correlation. Shown are promoters that had at least one tumor sample with
average methylation above 0.05 (red, n =306). Loci are grouped by average promoter methylation and other promoter loci (gray, n =3570) are provided
for control. *p <0.05, **p < 0.01, ***p < 0.001, ****p < 0.00017 (one-sided Wilcox test). The middle line indicates the median, box limits represent quartiles,
and whiskers are 1.5x the interquartile range. g Left: Cumulative distribution of the distance between methylation loci and the promoter with highest

expression correlation to them (within the same chromosome, two-tailed Kolmogorov-Smirnoff test, p < 2.2e—16). Right: fraction of loci for which the best-
correlated promoter is located on the same chromosome. Gray line/bars represent shuffled controls (see “Methods"). h Examples for matching expression
and methylation for non-promoter genomic loci located in the proximity of their most correlated gene (DNMT3A and TBXT in ER+ tumors; GATA3 and
FGFR4 in ER— tumors). Above: Location of the non-promoter genomic loci (red arrow) relative to the TSS of the gene (blue arrow). Below: Correlation of

the matching expression of the most correlated gene (X axis) and methylation (Y axis) for the non-promoter genomic loci.

diversity specifically when methylation average is low (Fig. 3f,
P <« 0.001 for lower epi-polymorphism at these sites), suggestive
of epigenetic convergence, or even selection at these loci during
tumorigenesis.

To search for non-promoter in cis regulators, we identified for
each methylation locus its most strongly correlated gene
expression profile, and selected those loci in which this best
correlation gene partner (ie., its TSS) was located within the
immediate chromosomal domain (Fig. 3g, h, Supplementary
Data 8). This analysis identified 2680 distal cis-elements in ER+
and 1332 in ER— (best partner, FDR <0.1), out of which 67%
were located within 50 kb of the promoter, and 34% from 50 to
500 kb from the promoter. As with promoters, analysis of epi-
polymorphism in these loci supported significantly reduce
methylation diversity, again suggesting convergence/ selection
(Extended Data Fig. 8d). Motif analysis and comparison with
ChIP-seq profiles confirmed that these elements are not linked
with one dominating regulatory mechanism, further suggesting
methylation changes are driven in cis for these loci, rather than
being regulated by a common mechanism in trans.

In summary, we show that while the genome-wide methylation
loss clock and epigenomic instability affect nearly all CpGs in the
genome in a coordinated fashion, localized methylation of
promoter and distal elements correlates and perhaps regulates
specifically hundreds of genes in cis. Classical hypothesized
scenarios for epigenetic gene repression as driving tumorigenesis
can now be rationalized within a rich background model. For
example, BRCAI promoter methylation is correlated strongly and
specifically with BRCAI1 gene expression in ER— tumors and
KRT7 promoter methylation with KRT7 gene expression in ER+
tumors (Fig. 3e, Extended Data Fig. 8e). We have recently
reported differential KRT7 protein expression in luminal cell
populations associates with survival?3. While it is likely that many
cases of in cis methylation/expression correlation will have a
passenger effect, just like most somatic mutations, it is also
evident that some cis-regulated genes participate in tumorigenesis
in a way analogous to BRCAI.

X-linked dosage compensation in tumors. DNA methylation
and gene expression linkage can be further modulated in tumor
cells with copy number aberrations (CNA). The asymmetric
inactivation of the X chromosomes serves as a classical model for
such interplay?42>. We identified a cluster of X-linked promoters
whose methylation profiles show specific correlation with a gene
module including the XIST noncoding RNA and additional
X-linked genes (Extended Data Fig. 9a, b, Supplementary Data 4)
suggesting that they are involved in the maintenance of X

methylation and its re-establishment following X-chromosome
CNA. Next, we investigated localized dosage compensation
through methylation on loci within the X chromosome. In ER—
tumors we observed ~50% and ~25% X-chromosome partial loss
and gain, respectively, where in ER+ we observed ~20% partial
loss, and a low (<10%) rate of chromosome gain events (Extended
Data Fig. 9c). In ER- tumors, we observed methylation to
decrease when copy number decreased from 2 to 1 and increase
when copy number increase from 2 to 3, suggesting one copy of
active and unmethylated X per locus is maintained even after
X-chromosome aberrations (Extended Data Fig. 9d, e). A similar
observation was made for ER+ loss events (but not in the rela-
tively rare 2N to 3N gain events). Importantly, the gene expres-
sion emitted from the X-linked promoters associated with CNA
was not scaling with copy number (Extended Data Fig. 9f, i),
suggesting dosage compensation is strongly correlated with the
methylation changes we observed (however, we did observe
increased expression in ER+ 2N to 3 N gain loci, P <« 0.001, KS
test, Extended Data Fig. 9i).

Similar analysis applied to autosomes showed most loci showed
no scaling of methylation with copy number (Extended Data
Fig. 9g, h), but a small number of loci showed increase in
methylation in 3N vs 2N gain loci (279 genes in ER+, 197 genes in
ER—) or in 4N vs 2N amplification loci (521 genes in ER+, 260
genes in ER—). In addition, 26 genes in ER+ and 20 genes in ER—
showed decreased methylation in 1IN vs 2N (Supplementary
Data 9). Importantly, loci gaining or losing autosome copy
number showed a strong dosage effect (Extended Data Fig. 9i), but
this effect was almost eliminated when restricting analysis to loci
with compensated methylation differential (methylation decrease
in 2N to 1N, increase in 2N to 3N). For instance, dosage associated
increased methylation was associated with reduced PROM]I
expression in ER+ tumors with 3N copies; and with reduced
SOX1 expression in ER— tumors with 3N copies.

In summary, X inactivation constitutes a powerful dosage
compensation engine, and methylation of gained X-linked loci in
ER— tumors may be driven by the X inactivation apparatus. In
non-X-linked loci, localized dosage compensation can be
facilitated through methylation in a more restricted class of
genes such as PROM1 and SOXI.

Methylation landscapes of breast cancers are correlated with
genomic aberrations and are predictive of survival. Projection
of overall methylation landscapes in 2D across samples using
UMAP highlighted the combinations of epigenetic signatures
shaping all breast tumors and normal samples (Fig. 4a). To inte-
grate with driving genetic events, we screened the METABRIC
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genomic data for association with the five different epigenetic
scores. For each epigenetic score, we stratified tumors into five bins
and estimated within each bin the penetrance of 171 SNVs
(Fig. 4b) and Integrative clusters (Extended Data Fig. 10a). We
detected highly significant correlations with TP53, PIK3CA, CDHI,
GATA3, and CBFB SNVs (Fig. 4b), and to a lesser degree with

mutation intra-tumor heterogeneity (Extended Data Fig. 10b).
Most notably, TP53 mutations were strongly linked with increased
ML score (P<0.001, FDR corrected Wilcox test), and higher
immune signature (P <<0.001). Higher epigenetic instability was
linked with CDHI mutation (P <0.001) in ER+ tumors and
PIK3CA mutations in ER— (P <0.001). Lower ML score was
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Fig. 4 Epigenomic instability correlates with genomic features and with poor survival. a Projection of METABRIC tumor samples on a unified epigenetic
signatures space, colored by the five epigenetic scores, ER status, grade, stage, TP53, and PIK3CA mutations. b Tumors were stratified into five groups
(bars) for each of five different methylation signatures (rows). Shown are the fraction of cases with specific mutations in each stratum. *FDR < 0.05,
**FDR < 0.01, ***FDR <£0.001, ****FDR < 0.0001 (two-sided Wilcox test). € Boxplots show distribution of epigenomic signatures in ER+ (left, n=1108)
and ER— (right, n=310) cancers stratified according to estimated chromosomal instability levels (derived from CNA data). *p <0.05, **p < 0.01,
***p <0.001, ****p <0.0001 (Spearman rho). The middle line indicates the median, box limits represent quartiles, and whiskers are 1.5% the interquartile
range. d Kaplan-Meier survival plots for ER+ (top, n =1108) and ER— (bottom, n = 310) tumors grouped into high-scoring and low-scoring groups for each
epigenomic signature (top 1/3 and bottom 1/3 of the samples). 95% confidence intervals are shown. Log-rank p-values for survival difference are reported.
e Log hazard ratios (normalized by SD) calculated for each epigenomic signature using 4 distinct Cox proportional hazards regression models: (i)
Univariable (unadjusted for confounders); CP (adjusted for clinico-pathological variables—age, grade, tumor size, and lymph node status); CP + IntClust
(adjusted for clinico-pathological variables and integrative cluster subtypes). Censoring at 15 years. Mean with 95% confidence intervals are shown.
Models are stratified for ER+ (left, n=1055) and ER— (right, n=300) tumors.

associated with CBFB and GATA3 mutations (P<0.001) in
ER+ tumors. Together this analysis linked the different methyla-
tion scores with distinct somatic genomic aberrations in breast
cancers, and strongly implicated p53 somatic mutation with the
loss of methylation in CpG islands that together constitute the ML
score. Similar analysis linked higher epigenetic instability with
higher chromosomal instability (CIN) in ER+ tumors (Fig. 4c).
Significant correlations of the epigenetic signatures were also
detected with driver CNAs (Extended Data Fig. 10c). In particular,
BRCA1 loss in ER+ tumors was strongly associated with increased
ML and MG scores (P<0.01 for MG, P<0.001 for ML, FDR
corrected Wilcox test), and gain of MYC was associated with
increased MG and ML scores (P < 0.001).

To evaluate the clinical impact of the epigenetic signatures, we
analyzed patient survival stratified by epigenetic scores (Fig. 4d).
This showed that high MG epigenetic instability was predictive of
poor survival. Five-year disease-specific survival decreased from
91% (64%) to 83% (55%) for ER+ and ER— tumors, respectively
(P < 0.01 for ER+). ML epigenetic instability also correlated with
poor survival in ER+ tumors and this remained significant even
when excluding TP53 mutant tumors from the analysis (Extended
Data Fig. 10d). In contrast, the replication-linked loss clock
showed no association with survival. We next performed Cox
proportional hazard analysis, demonstrating the 15-year prog-
nostic value of the epigenetic instability scores even when
considering clinical, genetic, and transcriptional scores on the
background (Fig. 4e). Finally, we exemplified the contribution of
the new epigenetic scores to the multistate breast cancer
progression model we recently reported® (Extended Data
Fig. 10e).

In summary, we showed epigenetic signatures, and in
particular epigenetic instability are correlated with genomic
features of tumors and predictive of disease stage and progression
and that this holds true even when considering clinical, genetic,
and transcriptional metrics. We hypothesize methylation scores
provide a window into the tumor state which is not always
reflected by other metrics.

Discussion

We profiled DNA methylation across 1538 METABRIC breast
tumors and performed large-scale integrative analysis of their
methylation dynamics in transcriptional, genetic, and clinical
contexts. The breadth, scope, and multifaceted nature of the
METABRIC cohort were crucial in the delineation of the multi-
factorial processes giving rise to breast cancer DNA methylation.
This resulted in a model that can unify decades of conflicting
evidence on passenger and driver roles for epigenetic changes in
breast cancer, but also other tumor types (Fig. 5). We believe this
model is a major contribution to understanding the impact of
epigenetics on disease evaluation and management, and to

therapeutic strategies combining modulation of epigenomic
alterations with direct targeting of aberrant genes.

Cancer genomics studies reveal that tumors are frequently driven
by a few key driver mutations, but that tumor evolution involves
further adaptation and transformation that cannot be explained by
canonical and recurrent genetics, while still converging on highly
recurrent molecular and pathological outcome. Epigenetics was
argued over the years to supplement tumor evolution with an
alternative mechanism for silencing tumor suppressors (e.g.,
BRCA1), but its overall impact on tumors has remained con-
troversial. We propose that epigenetic instability is an emerging
hallmark of breast cancer, and most probably other tumor types.
Much like genomic instability, epigenetic instability is not directly
driving tumors—but its pervasive effect is predisposing tumor cells
to develop regulatory plasticity and underlie the emerging activation
of highly detrimental transcriptional programs, including de-
differentiation (de-repression of embryonic TFs) and trans-differ-
entiation (EMT genes). It was impossible to argue this before—due
to the complexity of tumors and the multiple layers of regulation
they gradually disrupt during malignant transformation.

The methylation loss-clock process can be hypothesized to
represent another aspect of the widely acknowledged methylation
ageing clock?®. However, the loss clock we defined is quantifying
methylation loss in low CpG content sites rather than the ageing
clock’s methylation gain in CpG islands, and in both tumors and
normal breast tissues, the loss signature is not correlated to
patient age and may represent tumor cell replicative age instead.
It is more difficult to understand the mechanisms underlying the
epigenetic instability trends. We can hypothesize that the pre-
disposition of tumors to lose protection against CpG islands
methylation is linked to broad induction of multiple embryonic
transcription factors and epigenetic complexes (in particular the
polycomb machinery?”). Several candidate genes are identified
showing strong gene expression correlation to epigenetic
instability across hundreds of tumors, suggesting avenues for
mechanistic follow-up. It remains to be seen how such regulation
affects tumor subtypes, or sub-clonal structure within tumors.

Each of the broad trends of methylation aberration we defined
above is likely to be initially a consequence of the carcinogenic
process. Nevertheless, we also show the cumulative effect of a very
large number of epigenetic perturbations to be correlated speci-
fically and in cis with hundreds of additional transcriptional
changes. Such correlation is observed when expression and pro-
moter/enhancer methylation changes are separated from and
linked significantly beyond the broad global in trans trends. This
may suggest epigenomic instability predisposes tumors to greater
regulatory variation and flexibility, in a way resembling the
impact of genomic instability on tumors. Breast tumors are
fundamentally driven by the convergent effect of multiple genetic
and other aberrations, few of which are appearing with very high
penetrance. The discovery that epigenomic instability is
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Fig. 5 Unified model delineating the multi-factorial processes giving rise to breast cancer DNA methylation. As the carcinogenesis process progresses
(top), epigenomes are affected by replication-dependent methylation loss in most of the genome, and by a second, uncorrelated epigenetic instability
process modulating methylation in promoters and enhancers. When cancer epigenomes are surveyed (middle), the observed profiles involve a
superposition of TME signatures, with the patient-specific replication and instability signatures, and with epigenetic dosage compensation. These processes
are each affecting a large number of genomic loci through one common mechanism (in trans effects). Additional localized patient-specific methylation
aberrations are uncorrelated with these in trans effects and may regulate gene expression in cis. Deconvolution of these multi-layered effects shows linkage
between epigenetic instability and disease stage and prognosis (bottom). Cancer epigenomic heterogeneity is also induced by cellular heterogeneity (such

as clonal structure).

pervasively observed in high-grade tumors, with prognostic
power that is synergistic to clinical and genetic markers, may
further hint toward its possible functional impact.

Methods

Patients and samples. For DNA methylation profiling, we sequenced 1782 sam-
ples: 1538 primary breast tumors and 244 adjacent normal samples. A total 1418
tumors were from the 1980 included in the original METABRIC report®. The
additional 120 tumors were part of the METABRIC cohort but these samples either
failed quality checks on the platforms used at the time, lacked corresponding gene
expression data, or were processed after the initial publication was completed. All
samples were obtained with the consent from patients and appropriate approval
from ethical committees (REC ref 07/H0308/161) at the University of Cambridge
and the British Columbia Cancer Research Centre. Only primary tumors and
adjacent normal tissues from female patients were retained. Detailed information
about tissue collection for each site can be found in the original METABRIC
publication®.

METABRIC clinical data, gene expression profiles, copy number aberration,
and point mutation information were used as previously described®’. Clinical and
histopathological data including lymph node status, stage, grade, and tumor size,
ER status, PAM50 status, and IntClust status were also obtained from these
publications. Follow-up from the original study was updated with the latest
available records.

DNA extraction. Sample processing, DNA extractions, and quality assessment
were based on the protocols described in the original METABRIC publication®. For
UK samples, DNA was extracted from 10 x 30-um sections from each tumor using
the DNeasy Blood & Tissue Kit (Qiagen, UK) on the QIAcube (Qiagen) according
to manufacturer’s instructions. For Canadian samples, DNA was extracted from 10
to 20 8-pum sections from each tumor using the MagAttract DNA M48 Kit (Qiagen)
on the BioRobot M48 (Qiagen) according to manufacturer’s instructions. DNA was
quantified with the Qubit Fluorometer (Thermo Fisher Scientific, MA, USA) and
quality assessed by gel electrophoresis.

RRBS library preparation and sequencing. DNA was quantified using Qubit
HSdsDNA assay (Life Technologies, CA) and libraries were prepared from a total
of 50-100 ng of genomic DNA. A gel-free multiplexed RRBS method was used?8

10

with modifications. Briefly, DNA was digested with the restriction endonuclease
Mspl, followed by end repair and A-tailing of the fragments. This is followed by
ligation with barcoded methylated TruSeq LT adapters (Illumina). Individual
libraries were then quantified using QPCR (KAPA low ROX Library Quantification
Kit (KAPA Biosystems) and pooled in 12-plex in equimolar ratios, to allow library
balancing. Subsequently, the DNA was bisulfite converted using the Zymo
Methylation Gold kit (Zymo Research), as recommended by the manufacturer.
RRBS libraries were then PCR-amplified using Pfu Cx DNA Polymerase (Agilent
Technologies). Finally, a purification step is conducted to size-select for fragments
between 200 and 700 base pairs (bp). The quality of the libraries was assessed using
Bioanalyser (Agilent Technologies, CA) and quantified using KAPA low ROX
Library Quantification Kits (Kapa Biosystems, MA). A list of all primers used in the
RRBS library preparation is included in Supplementary Data 10.

Sequencing was performed on the Illumina HiSeq 2500 (v4 chemistry), with
single-end reads of 125 bp length. Multiplexing was conducted at the level of
8 samples per lane. Sequencing was performed by the CRUK CI Genomics Core
and de-multiplexing by the CRUK CI Bioinformatics Core.

Alignment and methylation calling. Trimming of the 3’ ends was performed
using Trim Galore! (version 0.3.7: powered by cutadapt) to (i) remove bases with
Phred-scaled quality score <20, (ii) remove adaptor contamination, and (iii)
remove the additional unmethylated Cs introduced during the end repair step.
Reads were aligned to the Human Genome Assembly GRCh37 (UCSC release
hg19) performed using Bismark (version 0.13.1)%°. Further processing and CpG
extraction was performed using the in-house gpatterns package (version 0.2,
https://github.com/tanaylab/gpatterns). Reads with mapping quality (MAPQ)
below 30 or reads that had more than 3 non-converted C’s in non-CpG content
(CHH) were discarded. Individual CpG methylation was then called for each read,
discarding bases with base quality <20.

Quality assessment. Only samples with more than 1.5 million unique CpGs at a
minimum 5x coverage and with a bisulfite conversion level between 99.4 and
99.8% were retained. The identities of those samples with copy number array data
available were confirmed by analyzing the samples’ genotypes at loci covered by the
AffymetrixSNP6 array. Genotype calls from the sequencing data were compared
with those from the SNP6 data that was generated for the original studies. This was
to identify possible contamination and sample mix-ups, as this would affect
associations with other data sets and clinical parameters.
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Defining promoter and non-promoter methylation. Promoters were defined as
500 bp upstream and 50 bp downstream from a RefSeq TSS (release 69, hgl9). In
Fig. 1d, active promoters were defined as promoters that had log expression >7 in
at least one of the METABRIC samples used in this paper. When analyzing pro-
moter methylation, we use average methylation of all CpGs covered in the pro-
moter region. When analyzing non-promoter methylation, we average all CpGs on
one Mspl fragment. Mspl fragments that had partial overlap to a defined promoter
region or to an exon were excluded.

For annotation of non-promoter elements, we used HMEC Broad (GSM733705)
and Roadmap Breast_Luminal_Epithelial (GSM669595), and Breast_Mpyoepithelial
(GSM613870) as downloaded from the ENCODE and Roadmap browser. Putative
enhancers were defined as genomic intervals that were at the top 3% of the chip-seq
coverage distribution using encode and Roadmap H3K4mel data, excluding
intervals that were within 2 Kbp from annotated promoters. Enhancer intervals
were homogenized to 200 bp length by centering and extending to 100 bp on
each side.

We used Encode Repliseq data of MCF7 cells (GSM923442) for time-of-
replication (TOR) analysis. Loci with values below the median were considered
“late” and values that were above the median were considered “early”. In Extended
Data Fig. 5b, we divide the Repliseq data into three categories—“late”,
“intermediate”, and “early”, that are within the bottom 20%, 20-60%, and >60%
percentiles, respectively.

Epi-polymorphism quantification. For pattern distribution analysis, we have used
the approach described in refs.2%22. To reanalyze the bisulfite sequencing data at
the read-level we grouped RRBS reads by their mapped Msp1 restriction fragment
and identified the 5 most covered CpG loci within each fragment. If <5 CpGs were
present on the restriction fragment, we have filtered it from further epi-
polymorphism analysis. We then projected all RRBS reads on the high-frequency
CpGs to create homogenized methylation reads (k-mers) of length 5 for each Msp1
fragment, further filtering reads that fail to cover all selected CpGs. Then, we
down-sampled the retained homogenized reads of each restriction fragment to
generate a set of exactly 30 reads for each locus in each tumor, or defined the
relevant fragment as uncovered in case <30 homogenized reads were available. We
then compute epi-polymorphism as described in ref. 20. When stratifying epi-
polymorphism given average methylation, we always recomputed the averages
from the homogenized, subsampled dataset.

TME normalization strategy. To facilitate robust deconvolution of these tumor
microenvironment (TME) effects, Methylayer uses an unsupervised approach
relying on analysis of the cross-correlations between gene expression profiles with
promoter methylation signatures.

In broad strokes, Methylayer’s normalization strategy is to (A) Compute cross-
correlation between gene expression and promoter methylation. (B) Cluster the
cross-correlation matrix to identify TME expression signatures (i.e., groups of TME
genes that affect promoter methylation). (C) Use the Euclidean distance in the 2D
space of these signatures to identify the K-nearest neighbors of each tumor. (D)
Subtract from the raw-methylation value of each tumor the mean methylation of its
K neighbors.

(A, B) Basic cross-correlation of expression and methylation profiles. We matched
promoter methylation and gene expression profiles using Refseq annotations.
Alternative promoters were resolved by selecting the promoter with the minimal
average methylation value in the normal samples.

Cross-correlation matrices were generated (Extended Data Fig. 2a, b) by
computing Pearson correlation between log-transformed expression levels and
raw-methylation levels of promoters. We computed these values separately for ER
+/ER— and normal samples. Loci with mean methylation value lower than 0.1 or
higher than 0.9 were excluded. We used only rows (expression profiles) and
columns (methylation profiles) that had at least one correlation value greater than
0.25 or smaller than —0.25. This gave rise to a matrix on 2701 loci and 5879 genes
(3525 and 11,054 in ER—) that were clustered using hierarchical clustering on the
Euclidian distances, with agglomeration method “ward.D2”. Thirty clusters were
then extracted by cutting the tree.

(C, D) TME normalization. We used the ER+ expression-methylation cross-
correlation clusters to identify an “Immune” gene cluster (clusters CE2, including
‘CD3D’ and additional 195 genes) and a “CAF” gene cluster (CES8, including
‘CAVT and additional 207 genes). We then computed the immune and CAF
signatures of the ER+ tumors using the mean expression of the two clusters. Using
Euclidean distance in the 2D space of these signatures, we identified the K-nearest
neighbors (using K = 30) of each tumor. For normalization, we subtracted from the
raw-methylation value of each tumor the mean methylation of its 30 neighbors. For
example, gene expression associations of CAV1I, the canonical CAF gene, and
CD3D, the canonical T-cell gene have been normalized while cancer-relevant genes
such as GATA3 and TOP2A were not affected by our normalization (Fig. 1h). We
studied the impact of increasing or decreasing the total number of neighbors
(Extended Data Fig. 3e). It should be noted that using smaller K values will increase
noise (since the neighborhood mean methylation will become less stable), while

using larger K values may lead to less effective normalization of the CAF and
immune signatures (since the neighborhood becomes less homogeneous in the
Immune/ CAF space).

For normalizing ER— tumors and normal samples, we used a similar procedure
but reduced the K parameter to 15 in order to accommodate smaller number of
samples and more homogeneous CAF/immune distribution. For ER— tumors, the
immune/ CAF expression clusters were CE16 (with 345 genes) and CE18 (360
genes). For normal samples, these clusters were defined as CE3 (864 genes) and
CE11 (592 genes).

We derived the TME methylation scores by averaging the methylation of all
promoters that were negatively correlated (<—0.3) with the immune and CAF
expression scores.

More details regarding TME normalization can be found in the Methylayer R
package: https://github.com/tanaylab/methylayer.

Independently inferred estimates of immune and CAF fractions. The validity of
Methylayer Immune and CAF expression modules were assessed with deconvo-
luted gene expression profiles for the METABRIC samples (defined using the
MCP-counter with standard parameters, a gene signature-based method as
described in ref. 3. H&E Digital pathology data as well as Imaging Mass Cytometry
(IMC) based fractions for the METABRIC samples were also available for com-
parison. An additional, independent and unsupervised analysis scheme using non-
negative matrix factorization (NMF) further validated Methylayer estimates of
Immune and CAF (Supplementary note 1).

Definition of clock, MG, and ML scores. We sampled 50,000 normalized
methylation signatures of ER+ tumors (promoters and non-promoters) with mean
methylation <0.1 and removed loci that did not have at least one absolute corre-
lation value >0.25. We then clustered the correlation matrix of these signatures
with hierarchical clustering, with agglomeration method “ward.D2” and identified
three major clusters (Extended Data Fig. 4a, b). We defined the clock, MG, and ML
as the mean normalized methylation of the loci within these clusters.

In summary, five methylation scores were defined. Two of these (Immune,
CAF) were based on raw-methylation levels of loci correlated with Immune and
CAF gene expression, respectively. The other three were defining large correlation
clusters of normalized methylation in ER+ and were projected also to ER— and
normal samples. Supplementary Data 5 contains the scores for each ER+ tumors,
ER— tumors, and normal METABRIC samples, and Supplementary Data 7
contains the loci from which each score was derived. An additional, independent
and unsupervised analysis scheme using non-negative matrix factorization (NMF)
further validated all five methylation scores derived using the Methylayer pipeline
(Supplementary note 1).

Screening for cis-regulated promoters and enhancers. The approach we take for
screening for cis-regulated promoters involves three stages. First, we compute the
expression-methylation correlation for each promoter and each gene. Second, for
every gene, rank its correlations with promoters, and look at the rank of the gene’s
own promoter. Finally, we estimate the significance of the rank of the gene’s own
promoter. If the highest (negative) correlation of a gene is with its own promoter
there is a high probability that this correlation is specific (in cis) and not a part of a
large methylation effect that correlates many loci with multiple genes (in trans
effect).

Pairing of promoter methylation and gene expression profiles was defined using
Refseq coordinates, with ambiguity resolved using analysis of minimal methylation
in normal samples. This provided a potential cis-correlation value for 9360 genes
for which promoter coverage was sufficiently high, and were not part of the
immune/CAF expression modules.

Working separately on ER+ and ER— samples, we formed a 9360 x 9360 cross-
correlation matrix (Pearson) by matching all expression profiles (columns) to all
methylation profiles (rows). Correlations that were based on <50 samples were
removed. We then ranked each column (lowest to highest, rank 1 being the
strongest negative correlation), and estimated the significance of the rank values on
the diagonal (representing the putative cis-interactions). Assuming independence
between expression and methylation, the false discovery rate (FDR) for detecting
the cis-target (diagonal value) with rank value <= k was defined as k/m, where m is
the number of observed genes having cis-target (diagonal value) with rank
value <= k. Supplementary Data 8 contains the candidates when limiting the FDR
to at least 0.05 (k = 52), 0.01 (k =6) 0.005 (k = 2), and also when considering only
the promoter with the rank =1 (FDR <0.003).

To search for non-promoter cis-regulation candidates we used a modified
procedure to the promoter screen, circumventing the lack of one-to-one
correspondence between loci and regulatory targets. Since a locus can be correlated
in cis with multiple genes, we rank the correlation of every locus with all the genes,
and then examine the ranks of genes that are within 500 kb to the locus.

Specifically, we generated a matrix of correlation between 185,389 non-
promoter (at least 2 kb from an annotated promoter) loci and the 15,497 gene
expression profiles. For each expression profile, we defined a genomic coordinate
based on its Refseq annotation (note that this analysis included also some genes
without RRBS promoter coverage). We then computed the genomic distance (in
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bp) between each locus and the coordinate assigned to its most correlated
expression profile (both positive and negative correlation). We defined a locus as
paired if the TSS of its top (or k-highest) correlated gene expression profile was
within 500 kb from it. We repeated this procedure on shuffled data and estimated
the probability for observing pairing by chance. The false discovery rate of pairing
was then estimated as the ratio between pairing events in real and shuffled data.

UMARP projection of tumors epigenetic signatures. To apply UMAP projection
of epigenetic signatures (Fig. 5) for our samples we first attenuated the effect of the
CAF and Immune scores by scaling to 1/20, and then ran the UMAP algorithm
using R ‘umap’ package (https://cran.r-project.org/web/packages/umap/index.html,
version 0.2.2.0) with default parameters. For Clock, MG and ML we used raw
methylation (instead of TME-normalized methylation) in order to be able to show
normal samples and tumors in the same plot.

Associating point mutations and copy numbers with the epigenetic scores.
We used data on 171 point mutations on 1659 of our samples as described. To
assess statistical association between point mutations and epigenetic scores, we
have directly compared the distribution of epigenomic scores in tumors with
and without each point mutation using Wilcox test. To visualize linkage
between epigenomic scores and the mutations we grouped tumors according to
5 strata based on quantiles and showed the frequency of the mutation within
each group.

The same approach was used to associate 102 copy number aberration loci to
the epigenomic scores, comparing the distribution of epigenomic scores in tumors
that gained at least a copy of an oncogene to tumors that did not, and comparing
the distribution in tumors that lost a tumor suppressor to those that did not.

Genetic intra-tumor heterogeneity. To quantify genetic intra-tumor hetero-
geneity, we used the previously established mutant-allele tumor heterogeneity
(MATH) score3!, which is a tumor-specific score based on the variation in variant
allele frequency (VAF) of all mutations in the tumor. 173 genes were profiled for
mutations and used for calculation of the MATH score (obtained from ref. 7).
Chromosomal instability (CIN score) was defined as the percentage of the genome
affected by CNAs (obtained from ref. 7).

Survival and progression analysis. Univariable and multivariable Cox propor-
tional hazards models were used to examine the association between the DNA
methylation signatures and survival. Breast cancer-specific survival (BCSS) was
used as the endpoint. Patients with deaths due to other or unknown causes were
censored at the date of death, and all other patients were censored at the date of the
last follow-up. All times were further censored at 15 years. For the multivariable
models, we included confounding variables: grade, size, lymph node status, age at
diagnosis, and IntClust status.

Multistate models were fitted as described in ref. 8. Transitions between
diagnosis, loco-regional and distant relapse were considered. Patients were
stratified into ER status and effects for age, size, grade, number of lymph nodes,
and time since relapse were added to the model with different parameters for ER
status and current state. The methylation signatures were allowed to have different
parameters according to ER and the current state of the patient, but not to non-
malignant deaths.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All primary RRBS data (fastq files) and raw-methylation calls (hgl9 and hg38) are
deposited at the European Genome-phenome Archive (EGA) under study accession
number: EGAS00001004327. Data can be downloaded upon request to EGA (through the
METABRIC Data Access Committee). Processed promoter and genomic DNA
methylation values (raw and normalized) for the 1538 tumor samples and 244 adjacent
normal tissues are available at https://tanaylab.weizmann.ac.il/metabric_rrbs. The genomic
copy number, gene expression, somatic mutation, and molecular-subtype information has
been described previously®’ and is available at the European Genome-phenome Archive
(EGAS00000000083). The TCGA BRCA methylation 450k dataset is available in the
TCGA portal (https://cancergenome.nih.gov/). For annotation of non-promoter elements,
we used HMEC Broad (GSM733705) and Roadmap Breast_Luminal_Epithelial
(GSM669595) and Breast_Myoepithelial (GSM613870) as downloaded from the ENCODE
and Roadmap browser. We used Encode Repliseq data of MCF7 cells (GSM923442) for
time-of-replication (TOR) analysis. All data described within the Article are available in the
Supplementary Data files and at https://tanaylab.weizmann.ac.il/metabric_rrbs.

Code availability
All analysis code is available for academic use at https://github.com/tanaylab/
metabric_rrbs.
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