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Beer is the most popular alcoholic beverage in the world by volume consumed, and yields 26 
of its main ingredient, barley, decline sharply in periods of extreme drought and heat. Yet, 27 
despite projected increases in the frequency and severity of such extremes under future 28 
climate change, the vulnerability of beer to future climate-related disasters has never 29 
been assessed. Here, we couple five Global Climate Models (GCMs), a process-based crop 30 
model (DSSAT) and a global economic model (GTAP) to evaluate the effects of disasters 31 
(defined as concurrent drought and heat extremes) projected under a range of future 32 
climate scenarios. We find that such disasters would cause substantial decreases in barley 33 
yields worldwide, with average losses ranging from 3% to 19% depending on the severity 34 
of the conditions. In turn, these biophysical stresses would lead to similarly large 35 
decreases in global supply of barley, even larger proportional decreases in barley used to 36 
make beer, and ultimately some dramatic regional decreases in beer consumption (e.g., 37 
-37%) and increases in beer prices (e.g., +300%). Although certainly not the most 38 
concerning impact of future climate change, our findings that climate-related weather 39 
extremes may threaten the availability and economic accessibility of beer nevertheless 40 
adds insult to injury. 41 

[200 words] 42 

 43 

With few exceptions around the world, rising incomes are strongly correlated with 44 
increases in consumption of resource-intensive animal products (meat and dairy)1,2, 45 
processed foods3, and alcoholic beverages4(the trend can be seen in Fig. SI-1 and Fig. SI-2). 46 
Despite concerns that such trends are not healthy or environmentally sustainable2,5,6, global 47 
demand for these foods and beverages will continue to grow as economic development 48 
proceeds in future7. 49 

At the same time as demand for such products is increasing, climate change threatens to 50 
disrupt the supply of agricultural products8-12. A substantial and increasingly sophisticated 51 
body of research has begun to project the impacts of climate change on world food 52 
production, focusing on staple crops of wheat13,14, maize15,16, soybean17,18, and rice19,20. 53 
However, if adaptation efforts prioritize necessities, climate change may undermine the 54 
availability, stability and access to “luxury” goods before such important food crops. 55 
Although some attention has been paid to the potential impacts of climate change on luxury 56 
crops such as wine and coffee21-23, the impacts of climate change on the most popular 57 
alcoholic beverage in the world, beer, have not been carefully evaluated. 58 

Here, we assess the vulnerability of the global beer supply to disruptions by extreme 59 
drought and heat events that may occur during the 21st-century as the climate changes; 60 
these are the main mechanisms by which climate damages crop production24,25. Details of 61 
our analytical approach are in Methods and in Section 2 of SI. In summary, we develop a 62 
disaster severity index for barley based on extremes in historical data (1981–2010), and use 63 
it to characterize the frequency and severity of concurrent drought and heatwaves (i.e. 64 
disaster severity) under climate change as projected by five different global (CMIP5) climate 65 
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models. “Disaster year” is a year with concurrent extreme drought and heat (more severe 66 
than 100-year events in the historical record) during barley growing season in areas where 67 
barley is now grown that are. Among the 450 modeled years of each Representative 68 
Concentration Pathway (RCP; 2010-2099 projections in each of the five models), we identify 69 
48, 69, 68, and 98 such disaster years in RCP2.6, RCP4.5, RCP6.0, and RCP8.5. We then model 70 
the impacts of these disasters on barley yields (the primary agricultural input to most beer26) 71 
in 34 world regions (most of which are individual countries) using a process-based crop 72 
model (DSSAT). Next, we examine the effects of the resulting barley supply shocks on the 73 
supply and price of beer in each region using a global economic model (GTAP, a computable 74 
general equilibrium model). Finally, we test the sensitivity of our results to disasters of 75 
different severities and by varying parameter settings in the economic model27,28. Thus, we 76 
are not assessing future changes in barley production due to changes in incremental changes 77 
in precipitation and temperatures, but rather the sudden changes in production, economic 78 
accessibility, and consumption in different countries in a year when extreme drought and 79 
heat cause crop failures. Results for the different RCPs thus do not reflect the effect of 80 
climatological changes but are rather a proxy for more widespread and severe 81 
drought-heatwave disasters. Furthermore, because such extreme disasters could occur in 82 
any future year and it is not possible to anticipate how socio-economic and agricultural 83 
systems will evolve, we analyze impacts based on the recent geographical distribution of 84 
barley crops, recent levels of economic development and structure, recent population, and 85 
recent demands for barley and beer (i.e. as of 2011, which is the latest available year of our 86 
economic model) . 87 

Fig. 1a shows the relationship between future increases in global mean (land) surface 88 
temperatures and the index of disaster severity (i.e. the prevalence and magnitude of 89 
concurrent extreme drought and heat during barley growing season and over barley-growing 90 
regions) for each “disaster year” we identify (Fig. SI-10 shows historical trend). The positive 91 
trend is approximately linear as global mean (land) surface temperatures increase up to 92 
~3°C, above which there is a rapid increase in disaster severity up to ~6°C of warming 93 
(RCP8.5, Fig. 1a). The corresponding annual likelihoods of concurrent drought and heatwave 94 
in the pathways and models are summarized by the bars in Fig. 1b. On average, the annual 95 
likelihood of such disasters projected by the climate models over the 21st century is ~11% in 96 
RCP2.6 (i.e. an emissions pathway likely to avoid 2°C of mean temperature increase during 97 
this century), increasing to ~15% in RCP4.5 and RCP6.0 (temperature increases of 3-4°C), and 98 
up to ~22% in RCP8.5 (temperature increases >4°C). Importantly, the likelihoods of disasters 99 
in the second half of the century (top of error bars in Fig. 1b) are considerably greater, with 100 
disasters occurring roughly 1 in every 5 years in RCP6.0 (top whisker of orange bar in Fig. 1b) 101 
and roughly 1 in every 3 years in RCP8.5 (top whisker of red bar in Fig. 1b) (Fig. SI-11 and Fig. 102 
SI -12 show spatial pattern). 103 

In turn, crop modeling of each disaster year projects the average barley yield losses 104 
shown in Fig. 2 (see Fig. SI-18 for uncertainty of yield losses). The greatest losses occur in 105 
tropical and semi-tropical areas such as South Asia, central and South America and central 106 
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Africa (Fig. 2). In the same years, yields in temperate barley-growing areas such as the 107 
Europe and southeastern Australia decrease rather moderately (orange and dark yellow in 108 
Fig. 2) or even increase somewhat (light yellow and green in Fig. 2), including northern parts 109 
of the U.S. and northwest Asia. 110 

The box-and-whisker plots at the right in Fig. 2 show the global distribution of barley yield 111 
changes. Global mean barley yields decrease during disaster years, with more severe 112 
disasters and yield losses associated with higher emission pathways; average yield 113 
reductions during these years are -3%, -7%, -8%, and -19% in RCP2.6, RCP4.5, RCP6.0, and 114 
RCP8.5, respectively. Yield impacts are thus well-matched with increases in disaster severity 115 
(See correlation of yield loss and severity index in Fig. SI-17). 116 

Although we assume that the current geographical distribution and area of barley 117 
cultivation is maintained, final barley production may not decrease to the same degree as 118 
biophysical barley yields if agronomic inputs are diverted to barley production during 119 
disaster—labor, machinery, fertilizer, irrigation, etc. (same as Nelson 201427; Iglesias 201229). 120 
The contribution of these inputs is modeled in the GTAP model as the nonlinear reduction of 121 
land and other inputs. For example, under RCP8.5, increases in labor and capital factors of 122 
production mean that an 19% mean decrease of barley yields worldwide (Fig. 2a) 123 
corresponds to only a 17% reduction in the global barley production (Fig. 3, “global” panel). 124 

However, our economic modeling shows that global- and country-level barley supply 125 
declines progressively in more severe disaster years (i.e., under higher emissions pathways; 126 
solid bars in Fig. 3), with mean consumption decreasing by 25-43% under RCP8.5 in some 127 
European countries (Belgium, Germany, Czech and U.K.). Trade between countries mediates 128 
the effects of changes in local production on country-specific barley supply, with an 129 
increasing share of imported barley being consumed in some countries whose domestic 130 
production decreases (e.g., Brazil, relative area of black hatching). On the other hand, 131 
depending on the magnitude of production losses, barley-exporting countries may conserve 132 
their domestic production via reduced net export (e.g., Australia; decreasing length of red 133 
hatches in Fig. 3), or increase their exports to meet demand in other countries (e.g., the U.S.). 134 
The domestic supply of barley in countries like the U.S. and Russia (the leading barley 135 
producers) does not change substantially, even in the most severe disaster years. The largest 136 
decreases in barley consumption occur in countries which rely heavily on barley imports (e.g., 137 
China, Japan, and Belgium), as demand for such imports exceeds any increases in exports. 138 

Changes in barley supply due to disasters will affect the barley available for making beer 139 
somewhat differently in each region as the allocation of barley among livestock feed, beer 140 
brewing, and other uses will depend on region-specific prices and demand elasticities as 141 
different industries seek to maximize profits (Fig. 3, yellow bars indicate barley allocated to 142 
the beer sector). In recent years, the beer sector consumes around 17% of global barley 143 
production, but as seen in Fig. 3, this share varies drastically across major beer-producing 144 
countries, for example from 83% in Brazil to 9% in Australia. Further analyzing the relative 145 
changes in shares of barley use, we find that in most cases barley-to-beer shares shrink more 146 
than do barley-to-livestock shares, lending support to our assertion that food commodities 147 



DRAFT MANUSCRIPT – DO NOT CIRCULATE 

5 
 

(in this case, animals fed on barley) will be prioritized over luxuries such as beer during 148 
disaster years. At the global level, the most severe disasters (i.e. RCP8.5) cause the barley 149 
supply to decrease by 17% (ranging from 9-26% in our uncertainty analysis over 25-75 150 
percentiles), but the share of barley-to-beer decreases by 23% (from the initial 17% of all 151 
barley down to 13%). Among countries, we see that the reduction in barley consumption in 152 
RCP8.5 is greatest in Belgium (43% with uncertainty range of 25-64%), where the barley to 153 
beer share decreases by 53% (from initial 28% to final 13%). Therefore, future drought-heat 154 
disasters will not only lower the total availability of barley for most key countries but will 155 
also reduce the share of barley used for beer production (also see Fig. SI-21 for changes in 156 
relative percentage shares). 157 

Ultimately, our modeling suggests that increasingly widespread and severe droughts and 158 
heat under climate change will cause considerable disruption in global beer consumption 159 
and increase beer prices. During the most severe disasters (e.g., RCP8.5), our results indicate 160 
that global beer consumption would decline by 18% (9-28%) (roughly equal to the U.S.’s 161 
total annual beer consumption in recent years), and that beer prices would on average 162 
double (140-300% of recent prices). Even in less severe disasters (e.g., those occurring in the 163 
first half of the century in RCP2.6 simulations), global beer consumption drops by 4% (1-6%) 164 
and prices jump by 16%(2-20%). 165 

Fig. 4 shows, for each RCP, ten key countries according to changes in total beer 166 
consumption by volume (left column; Figs. 4a-4d), changes in the price of beer (middle 167 
column; Figs. 4e-4h), and changes in the per capita consumption of beer (right column; Figs. 168 
4i-4l). For comparison, consumption data from ten key countries in recent years is shown in 169 
Fig. 5(see Fig. SI-3 to 5 for additional details). The total beer consumption decreases most 170 
under climate change in the countries that consume the most beer by volume in recent 171 
years (Fig. 4a). For example, the volume of beer consumed in China—today the largest 172 
consuming country by volume (Fig. 5a)—decreases by more than any other country as the 173 
severity of disasters increases (Figs. 4b-d). Meanwhile, some countries with smaller total 174 
beer consumption face prodigious reductions in their beer consumption: the volume of beer 175 
consumed in Argentina, Japan, and Canada decreases by 18 % (6-29%), 8 % (1-11%), and 10 176 
% (1-15%) even in the least severe disasters (i.e. in RCP2.6; Fig. 4b), respectively, and 177 
consumption falls by 37% (32-47%) in Argentina during more severe disasters (i.e. RCP8.5; 178 
Fig. 4d). 179 

Countries where beer is currently most expensive (e.g., Australia and Japan) are not 180 
necessarily where future price shocks will be the greatest (Figs. 4e-4h). Changes in the price 181 
of beer in a country relates to consumers’ ability and willingness to pay more for beer rather 182 
than consume less, such that the largest price increases are concentrated in relatively 183 
affluent and historically beer-loving countries. For reference, the $5.95 ($1.52-9.84) increase 184 
in the price of a five-hundred-mL bottle projected for Ireland under RCP8.5 is equivalent to a 185 
price hike of $25.30 ($6.47-41.91) per 6-pack of 12-ounce beers. 186 
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At the level of individuals in each country, the greatest reductions tend to better align 187 
with those countries that consume the most beer per capita in recent years (Figs. 4i-4l). For 188 
example, the highest levels of annual per capita consumption, in the Czech Republic and 189 
Ireland, are today 274 and 276 five-hundred-mL bottles, respectively (equivalent to ~5 190 
bottles per week or a bit more than a 6-pack per week). The projected impacts of climate 191 
change would cause a decrease in these countries of 25-90 bottles per year (Figs. 4i-4l). 192 
Proportional but somewhat smaller absolute decreases occur in other countries, including 193 
Germany, Austria, and Belgium. 194 

For several reasons, the simulated disruptions in beer consumption and related price 195 
shocks during future climate disasters are likely conservative. First, we report changes in 196 
consumption and price by averaging across all years in which concurrent extreme drought 197 
and heat occur, whether such disasters are geographically narrow, occur early in the 198 
century, or whether they span multiple continents later in the century. This method 199 
averages out some of the most extreme disruptions, for example beer consumption in one 200 
RCP8.5 disaster year fell by 43% and global prices increased by a factor of 7 (see Fig. SI-23 201 
and Fig. SI-24). Second, the crop model we use (DSSAT) is known to underestimate yield 202 
damage caused by spikelet sterility and leaf senescence under drought and heatwave30,31, 203 
and neglects the possibility that pest and disease attacks could also happen concurrently32. 204 
Third, we use the future extreme weather events to predict sudden changes in beer supply 205 
and prices under current economic conditions. Shocks from these sudden disasters may be 206 
exacerbated by the impacts of changing alcohol consumption pattern in the future33.  207 

We assess disruptions to beer consumption assuming no socio-economic changes, and 208 
static demand for beer. Several studies have also followed the similar idea34,35, which has the 209 
advantage of minimizing the assumptions on future economic evolution, and particularly the 210 
details of economic structure, trade, and the evolution of beer consumption due to income, 211 
demographic, and lifestyle changes in each region. Yet the Shared Socio-economic Pathways 212 
(SSPs)36,37 project continued population and economic growth: in SSP2, global population 213 
increases by 35% in 2050 relative to 2010 and global GDP triples over the same period. In 214 
the countries with the greatest total beer consumption in recent years, such as China, Brazil 215 
and Russia, SSP2 projects GDP to increase by a factor of 3-6. Under such growth, per capita 216 
beer demand is also likely to increase. Similarly, population in the countries whose per 217 
capita beer consumption is highest in recent years, such as Ireland, Belgium and Czech, 218 
increases by 10%-40% in SSP2, which will probably also lead to an increase in the total beer 219 
demand. Although we do not explicitly model these trends, they are likely to exacerbate the 220 
beer shortages and related price increases that we model during barley crop failures. 221 

In conclusion, concurrent extremes of drought and heat can be anticipated to cause both 222 
substantial decreases in beer consumption and increases in beer price, and the frequency 223 
and severity of these disasters is correlated with future increases in mean surface 224 
temperature increases under climate change. Although the effects on beer may seem 225 
modest in comparison to many of the other—some life-threatening—impacts of climate 226 
change, there is nonetheless something fundamental in the cross-cultural appreciation of 227 
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beer. For perhaps many millennia38,39, and still today for many people, beer has been an 228 
important component of social gatherings and human celebration. Thus, although it may be 229 
argued that consuming less beer isn’t itself disastrous—and may even have health benefits, 230 
there is nevertheless little doubt that for millions of people around the world, the climate 231 
impacts on beer consumption will add insult to injury. 232 

 233 
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Methods  320 
Framework of integrated model. Our integrated model (frameworks are in Fig. SI-Fig.6 and SI-Fig.7) 321 
links global climate models (GCMs, including GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, 322 
MIROC-ESM-CHEM, NorESM1-M) with a crop model (DSSAT) and a global economic model (GTAP). 323 
The GCMs estimate the severity and frequency of disaster years under four scenarios (RCP2. 6, 324 
RCP4.5, RCP6.0, and RCP8.5). DSSAT simulates global changes in barley yield during disaster years. 325 
GTAP, which contains a detailed classification of the agricultural and food sectors, simulates the 326 
changes in global beer consumption and prices based on barley production shocks. 327 
 328 
Source of historical and future weather data. For historical data (1981-2010), daily weather data 329 
come from the AgMERRA dataset. The AgMERRA is a post-processing of the NASA Modern-Era 330 
Retrospective Analysis for Research and Applications (MERRA) suitable for agricultural modeling, 331 
featuring considerable bias adjustment and integration of additional observational datasets from situ 332 
observation network and satellites40. The data of growth duration and planting region of barley come 333 
from FAOSTAT. For future data (2011-2099), the climate scenario data was extracted from output 334 
archives of five GCMs under four Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, 335 
RCP8.5) retrieved from CMIP website (http://cmip-pcmdi.llnl.gov/cmip5). The data was interpolated 336 
into 0.5°x0.5°horizontal resolution and bias-corrected with respect to historical observation by41 to 337 
remove systematic errors. 338 
 339 
Disaster years selected using global climate model (GCM).  340 

First, precipitation anomalies (ΔP) and growing degree days 30℃+ (GDD) are calculated for each 341 

grid (‘g’) and each year (‘y’) in global barley planting region during growth period of barley (spring and 342 
winter barley) using the historical data from 1981-2010.  343 

Second, drought is classified into four levels according to the ΔP value during growing season in 344 
each grid and each year: 345 

 346 

light drought: −50 < ∆P ≤ −25; 347 
moderate drought: −70 < ∆P ≤ −50; 348 
heavy drought: −80 < ∆P ≤ −70; 349 
excessive drought: ∆P ≤ −80. 350 
 351 
The annual global barley drought index is calculated using the following equation: 352 DI୷ =෍ A୧,୷ × B୧ସ୧ୀଵ                           (1) 353 

where y is year; i is drought level (i=1,2,3,4 is light, moderate, heavy and excessive drought, 354 
respectively); A୧,୷ is the scaling factor equal to the ratio of grid amount for level i and year y in total 355 
grid amount in global barley planting region; B୧ is the drought weight coefficient for level i (the 356 
weight coefficient equals to 1,2,3,4 when i=1,2,3,4, respectively) and DI୷ is global barley drought 357 
index for year y.  358 
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For extreme heat, the annual global barley heat index (HIy) is calculated using the similar method with 359 
drought index, in which heat weight coefficients are growing degree days. 360 

Third, we fit the annual global barley drought and heat indices with Pearson-III distributions, and 361 
use the fitted curves to derive the global barley drought index DIଵ଴଴ and heat index 362 HIଵ଴଴corresponding to 1 in 100 year probability. Here, we get the global barley drought and heat 363 
disaster threshold values.  364 

Next, using the same method in step 1 and 2 to calculate the global barley drought index (DIy) and 365 
heat index (HIy) for 4 RCPs and 5 GCMs in the future (2011-2099). 366 

Finally, We select disaster years when both extreme drought (ܫܦ௬ ≥  ଵ଴଴) and extreme heat 367ܫܦ
௬ܫܪ) ≥  ଵ଴଴) concurrently strike in the same year. Then we calculate an integrated disaster severity 368ܫܪ
index (Dy) for the selected years based on the following equation: 369 

 370 D୷ = ୈ୍౯ିୈ୍భబబୈ୍భబబ + ୌ୍౯ିୌ୍భబబୌ୍భబబ                         (2) 371 

All modeled disaster years where DIy≥DI100 and HIy≥HI100 are selected to simulate global barley yield 372 

using the crop model and subsequently beer supply and price using the economic model (details in SI 373 
section 2.2). 374 
 375 
Simulation of barley yield change using crop model (DSSAT). 376 

According to the disaster years selected above, we simulate global barley yield change due to 377 
disasters on gridded level by the CSM-CERES-Barley, which is part of the Decision Support System for 378 
Agrotechnology Transfer (DSSAT) version 4.642. DSSAT is a process-oriented crop growth model that 379 
has been widely used over the global in evaluating interactions between environment, management, 380 
crop genotype, and crop growth.  381 

Before feeding into the input database, we adapted the source code of DSSAT for parallel 382 
computations at a 0.5°x0.5° grid resolution on High Performance Computers (HPC), and then gridded 383 
formatted inputs used to drive the model include daily weather data, soil parameters, crop calendar 384 
data and management information: 385 
- Weather data inputs for DSSAT include maximum and minimum temperatures, precipitation, 386 

total radiation, and humidity, derived from the sources described above. 387 
- Soil parameters (soil texture, bulk density, PH, organic carbon content, and fraction of calcium 388 

carbonate for each of five 20 cm thick soil layers) were obtained from International Soil Profile 389 
Data set (WISE)43. Soil parameters were allocated to each simulation grid cell based on the 390 
spatially dominant soil type taken from the digital Soil Map of the World (DSMW) (FAO, 1990). 391 
Soil retention and hydraulic parameters were calculated using pedotransfer functions44. Soil 392 
parameters for organic soils missing in WISE data set were adopted from Boogaart et al 393 
(1998)45. 394 

- Crop calendar data set was obtained from the Center for Sustainability and Global 395 
Environment (SAGE). This data set is the result of digitizing and georeferencing existing 396 
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observations of crop planting and harvesting dates, at a resolution of 5' 46. The data set 397 
provides ranges of crop planting and harvesting dates for different crops in each grid.  398 

- Management information requires fertilizer applications, irrigation, and other management 399 
practices. A crop-specific gridded data set (by 5') of nitrogen, phosphorus, and potash fertilizer 400 
application for the world (around the years of 1999 or 2000) was used in our simulation to 401 
setup current fertilizer application rate for barley in each grid cell. This dataset was developed 402 
by integrating national and subnational fertilizer application data from a variety of 403 
sources5,47,48. 404 

Then we first model barley yields across the world during the historical period (1981-2010). Barley 405 
yield was simulated as 0.5°x0.5° grid scale, with two main production systems (spring barley and 406 
winter barley) and two water management scenarios (fully irrigated and rainfed). Historical national 407 
barley production is aggregated from simulated gridded yield, and weighted by grid cell barley areas 408 
around 2000 from the gridded global dataset by combining two data products of Monfreda et al 409 
(2008)49 and Spatial Production Allocation Model50. Second, we tuned and calibrated model 410 
parameters related to crop genotype characteristics so that the simulated yields from 1981-2010 411 
were comparable to the statistical data (Fig. SI-13 to SI-16). Third, barley yields across the world are 412 
simulated during disaster years. Fourth, global and national yields were aggregated from gridded 413 
values. Finally, national/regional and global yield change is calculated, which is the deviation from the 414 
national/regional or global yield average of 1981-2010(details in SI section 2.3).  415 
 416 
Simulation of beer consumption and price change using global economic model (GTAP).  417 

The barley yield changes from the crop model are used to carry out simulations using GTAP for 418 
changes in barley production and the impact on beer production and price. GTAP is a well-know and 419 
widely used global general equilibrium economic model developed by the Department of Agricultural 420 
Economics at Purdue University51,52. The model assumes cost minimization by producers and utility 421 
maximization by consumers. In a competitive market setup, prices adjust until supplies and demands 422 
of all commodities equalize. The model and database have been extensively used in areas like climate 423 
change, food security policy, energy, poverty and migration, etc.  424 

Our simulations use a comparative static analysis approach to simulate the impact of climate 425 
changes on beer supply and prices under current economic conditions (e.g. as in Ciscar et al., 201134; 426 
Hsiang et al., 201735). Utilizing current economic conditions has the advantage of minimizing 427 
assumptions and model uncertainties related to future economic conditions. For using GTAP model to 428 
realize the purpose of the study: 429 

First, we improved the database by splitting barley and beer from existing sectors in the model. 430 

Barley was split out from “other grains” sector and beer from “beverage and tobacco” sector using the 431 
routines from Splitcom method53. In this procedure, the old flows of data both at national and trade 432 
level are allocated between the new flows using weights. The national weights include the division of 433 
each unsplit user's use of the original split commodity among the new commodities; the division of 434 
unsplit inputs to the original industry between the new industries; the splitting of new industry's use 435 
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of each new commodity. Barley use is mainly shared between feed, food, processing and others (seed, 436 
waste, etc.). In our process, we assume that processing is mainly covered by beer production, so we 437 
allocate all the “processing” share of barley as input to beer sector. The newly created beer sector is 438 
allocated to wholesalers/retailors, restaurants/bars and private household consumption(we got the 439 
beer consumed by “food” and other sectors from FAO. Then the proportion of beer used by “food” 440 
sector was allocated to three sectors i.e. “wholesalers/retailors, restaurants/bars and private 441 
household consumption” based on the respective share of the original “b_t” sector by these three 442 
sectors). The “own use” (defined as self-use of a sector of its own output, e.g., seed used to sow 443 
“barley” or electricity used by the “electricity” sector) of barely was taken from the “seed”; for beer 444 
the own use was kept to zero as beer doesn’t have self-use. Moreover, we have covered only 445 
barley-based beer in our “beer” sector, while the beer produced from other feedstocks (wheat, corn 446 
etc) are placed under “otherbt” sector. Trade shares allocate the original slice of the split commodity 447 
into the new commodity for all elements of basic price value, tax, and margin. Finally, we used the RAS 448 
method for balancing the newly created database. The values for the national shares matrix were 449 
obtained from FAO (SI-Table 1). The trade shares matrix was calculated based on the data from UN 450 
Comtrade Database54. 451 

Second, our sectoral aggregation scheme for GTAP ensures that all the competing and 452 
complimenting sectors for both barley and beer are present in the most disaggregated form. For 453 
example, for barley, other crops compete for inputs of production and both livestock and households 454 
(in addition to beer production) are major users of barley (see SI Appendix Table A1). Beer is 455 
consumed locally by wholesalers/retailors (covered in “Trade” sector), restaurants/bars (covered in 456 
“Recreational services” sector), and bought by private consumers (represented by the default “Private 457 
Households”). For regional aggregation, we kept the details for all the main beer producing, 458 
consuming, and trading regions, both in volumetric and per capita terms (see SI Appendix Table A2). 459 

Third, the yield shocks for barley were incorporated into GTAP model via changes in land use 460 
efficiency for the land used by barley production in each region (parameter “afe” in Eq. 3). Land use 461 
efficiency affects both price and demand for land in the following two equations. 462 

Equation of Price of primary factor composite in each sector/region( The following equations are in 463 
percentage form, same here after): 464 

pva(j,r) = sum(k,SVA(k,j,r) * [pfe(k,j,r) - afe(k,j,r)])       (3) 465 
where 466 
j = production commodity (industry) ; r = region; k = endowment commodity 467 
pva = firms' price of value added in industry j of region r 468 
pfe = firms' price for endowment commodity k in ind. j, region r 469 
SVA = share of k in total value added in j in r 470 
afe = sector/region specific average rate of primary factor k augmenting technology change 471 

In the improved model, to reflect the difficulty of substitution between land and other key 472 
agronomic inputs like labor and capital, we surveyed the existing literate in this area. The literature 473 
shows that in case of disasters, it is hard for farmers to substitute land with other key inputs for crop 474 
production and is reflected by the lower value of the elasticity of substitution between land and the 475 
other inputs. Therefore, for barely production in the disaster years, we choose a fraction of the 476 
original value. Specifically, we changed the elasticity of substitution between endowments (ESUBVA, 477 
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Eq. 4, and SI Fig. 8) for barely to a low level of original value according to previous vast literature (for 478 
details see SI section 2.4). Considering the uncertainty of the key parameter, we have further 479 
analyzed the sensitivity analysis for the key parameter (SI section 2.5 and 3.5)  480 

Endowment commodities’ input to each regions/industries: 481 
 482 

qfe(k,j,r) = - afe(k,j,r) + qva(j,r) - ESUBVA(j) * [pfe(k,j,r) - afe(k,j,r) - pva(j,r)]     (4) 483 
where 484 
qfe = demand for endowment k for use in industry j in region r 485 
qva = value added in industry j of region r 486 
ESUBVA = elasticity of substitution between capital/labor/land, in production of value added in j 487 

In the original GTAP model, capital and labor can freely move between production activities, while 488 
for land and natural resources such movement is largely restricted (Eq. 5, 6; SI Fig.9). By default, 489 
different crops can adjust their demand for land within some margin (with transformation elasticity 490 
ETRAE= -1). However, under the drought and extreme heat conditions of the real world, people may 491 
first want to ensure their food security by expanding the area for staple food crops (like wheat) rather 492 
than that of barley, resulting in reduced barley planted area. In this study, we made a less severe 493 
assumption that land shares will stay unchanged for barley and other competing crops, considering 494 
the total supply of land can hardly expand in short time. While we assume that labor, machinery and 495 
other inputs to barley (e.g., fertilizers, irrigation, etc.) can be augmented by increasing the working 496 
hours or additional investment. So, in our improved model, the acreage of land used for barley (or any 497 
other crops) in the normal year is still used for barley (or any other crops) in during disaster (ETRAE = 498 
0).  499 

Allocation of the sluggish endowments across sectors: 500 
qoes(k,j,r) = qo(k,r) + ETRAE(k) * [pm(k,r) - pmes(k,j,r)]   (5) 501 

where 502 
qoes = supply of sluggish endowment k used by j in r 503 
qo = industry output of commodity k in region r 504 
ETRAE = Elasticity of transformation for sluggish primary factor endowments (non-positive, by 505 
definition) 506 
pm = market price of commodity k in region r 507 
pmes = market price of sluggish endowment k used by j in r 508 

Composite price for sluggish endowments: 509 
pm(k,r) = sum(j,PROD_COMM, REVSHR(k,j,r) * pmes(k,j,r))   (6) 510 

where 511 
   REVSHR = share of endowment use by different industries 512 

Mobile endowments (capital and labor) were allowed to behave normally as they can be provided 513 
via higher investment under the extreme event (Eq. 7, 8).  514 

Allocation of the mobile endowments across sectors: 515 
qo(k,r) = sum(j,PROD_COMM, SHREM(k,j,r) * qfe(k,j,r))     (7) 516 

where 517 
SHREM = share of mobile endowment k used by sector j at market prices 518 

Composite price for mobile endowments: 519 
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pm(k,r) = VFM(k,j,r)/qfe(k,j,r)         (8) 520 
where 521 
VFM = Producer expenditure on endowment k by industry j in r valued at market prices 522 

We also add the changes in barley foreign trade to production for each country thereby simulating 523 
the changes in barley supply.  524 
 525 

Finally, for simulating the changes in beer consumption and price after experiencing the barley 526 
production change, we consider regional differences in allocation of barley to all users (beer, feed, 527 
food and others). In the normal year, barley shares to different uses come from FAO (see SI Table 1). 528 
In the disaster year, barley is distributed to different users according to the profit maximization 529 
principle. Final beer consumption for each country also contains net beer import. 530 
 531 
Uncertainty 532 

This study uses 5 GCMs and 4 RCPs to develop the drought and heat disasters indices and their 533 
evolution over time. There are certain limitations to each climate model, and we only assess a subset 534 
of all available models (for details see SI section 2.5 and 3.5).  535 

Our shocks to the economic model (GTAP) were implemented by changing the land use efficiency 536 
for the land used by bartley production in each region. According to the study by Nelson et al. 537 
(2014)27, ease of land use conversion and the substitution of land and other inputs are key differences 538 
between economic models used to assess climate change effects on agriculture. Since we held 539 
cropland area constant to baseline conditions, the other key parameter which affects barley output is 540 
the elasticity of substitution between endowments. Although many CGE models all have their roots in 541 
the Global Trade Analysis Project database and the CGE optimizing approach50, parameterization 542 
choices can result in very different outcomes. Therefore, we also tested our results against different 543 
values (±50%) of ESUBVA parameter adopted for the analysis. The corresponding results are discussed 544 
in Supplementary Section 3.4.  545 
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582 
Figure 1 | Disaster severity and frequency under future climate change. a, The relationship between 583 
change in global mean (land) surface temperature in year of disaster (relative to the mean of 584 
observation from 1981-2010) and the severity of concurrent drought and heat, where the curve is 585 
binomial regression curve. b, Annual likelihood of a concurrent disaster under each of the 586 
Representative Concentration Pathways as projected by five CMIP5 models. 587 
  588 
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 589 
Figure 2 | Average barley yield shocks during disaster years. Gridded average yield change with 590 
0.5°x0.5° resolution across all predictions of the disaster years (left) and global aggregated change in 591 
barley yield (right) under RCP8.5 (a), RCP6.0 (b), RCP4.5 (c) and RCP2.6 (d). Box-and-whisker plots to 592 
the right show the range of global changes, with white points indicated the mean, dark lines 593 
indicating the median, top and bottoms of the box at the 25th and 75th percentiles, and whiskers 594 

a 

b 

c 
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indicating the minimum and maximum of all data. We map all grid cells where barley harvested area 595 
exceeds 1% of grid cell area.  596 
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 597 
Figure 3 | Barley consumption by country and globally under future climate change. For each 598 
country and the global aggregate, the bars show the total consumption of barley averaged over all 599 
disaster years 2010-2099, and the share for different barley uses (also see Fig. SI-21 for changes in 600 
relative percentage shares). Whiskers indicate the 25th and 75th percentiles of all total 601 
consumption changes (See SI figure 20 for full range). Hatching indicates the fraction of consumption 602 
imported on net (black) and production exported on net (red), if any.  603 
  604 
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 605 
Figure 4 | Changes in beer consumption and price under increasingly severe drought-heat disasters. 606 
Key countries by absolute change in the volume of beer consumed (a-d), beer price (e-h), and beer 607 
consumption per capita (i-l). The severity of disasters increases from top to bottom. The length of the 608 
bars for each RCP show average changes of all modeled disaster years 2010-2099. Whiskers indicate 609 
the 25th and 75th percentiles of all changes (See SI Figure 23 and 24 for full range). 610 
  611 
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 612 
Figure 5 | Beer consumption and price in recent years. The data source of total beer consumption 613 
and population is FAOSTAT. The beer price is collected from Numbeo’s survey of cost of living 614 
(www.numbeo.com). 615 


