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Abstract

Acylindrical and strong accessibility
Michael Edward Hill

Abstract

Weidmann has produced a bound on the number of edges of a graph of groups splitting
for when a finitely generated group acts on a tree (𝑘,𝐶)-acylindrically [25]. In the same
paper Weidmann conjectures a common generalisation between their result and a theorem
of Bestvina and Feighn [2]; which provides a similar bound for finitely generated groups
acting on a tree with small edge stabilisers. We will produce an example which shows this
conjecture is false. We then extend Weidmann’s result to actions which are 𝑘-acylindrical
except on some set of subgroups with finite height. We then apply this result to a couple
of specific cases. The first gives us a bound for actions of hyperbolic groups which are
𝑘-acylindrical on non virtually-cyclic subgroups. The second give a bound for a RAAG
acting 𝑘-acylindrically on non-abelian subgroups. We also provide a sharp bound for finitely
generated groups acting 𝑘-acylindrically.

We also touch on the subject of strong accessibility. In particular we give an account of a
theorem by Louder and Touikan [19] which shows that many hierarchies consisting of slen-
der JSJ-decompositions are finite; in particular JSJ-hierarchies of 2-torsion-free hyperbolic
groups are always finite.
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Chapter 1

Introduction

Remark 1.0.1. Throughout mathematical literature there is a split on the exact meaning of
the symbol ‘<’ when applied to groups. Throughout this thesis we use the notation 𝐻 < 𝐺 to
indicate that 𝐻 is a proper subgroup of 𝐺. If we wish to include the possibility that 𝐻 = 𝐺

we will instead use the notation 𝐻 ⩽ 𝐺.

Suppose we are given a pair of groups and wish to combine them to create a new larger
group. A natural way to do this is to take a subgroup which is common to both of them and
“glue” the two groups together along this subgroup to create an amalgamated free product.
Similarly we can extend a group by taking two isomorphic subgroups and “attaching a
cylinder along these subgroups” to create a HNN-extension. We can combine combinations
of these operations and represent them by a graph, called a graph of groups.

Graphs of groups have a natural correspondence with the actions of groups on trees.
More explicitly the quotient of a group action on a tree (which doesn’t invert any edges) can
naturally be turned into a graph of groups. Conversely for any graph of groups there is a
corresponding tree, called the Bass-Serre tree, together with a group action of the fundamen-
tal group of the graph of groups. This correspondence forms the basis of Bass-Serre theory.
Basic facts about Bass-Serre theory will henceforth be assumed; which can be found in [21].
Also unless otherwise specified all group actions will be on trees.

Given that we now have this useful way of combining groups it’s natural to ask to what
extent we can do the converse. In other words we would like to know how a given group
𝐺 can be decomposed as a graph of groups. For example we can ask if there is a limit on
how complex these decompositions of our group can become; typically with some extra
restriction such as the permissible edge groups. It’s these sorts of accessibility questions that
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we will be focused on here.

The earliest example of an accessibility result is Grushko’s theorem [13]. This implies
that a free decomposition of a finitely generated group 𝐺 has at most rank(𝐺) vertices with
non-trivial label. (The rank of a finitely generated group is the size of its smallest generating
set.) Further examples include a result by Dunwoody [11] which gives a bound for the
number of edges of a (reduced) splitting over finite edge groups for a given finitely presented
group. Later Bestvina and Feighn [2] would extend this to any decomposition with small
edge groups. (A group is small if it doesn’t act hyperbolically on any tree. An action on
a tree is hyperbolic if it doesn’t fix a point of the tree, a point on the boundary of the tree
or a line of the tree.) These results do not extend to finitely generated groups; for instance
Dunwoody [10] gives an example of a finitely generated group which has splittings over
finite edge groups with an arbitrary number of edges.

It’s also possible to obtain bounds by imposing restrictions other than restricting the class
of edge groups. We call an action 𝑘–acylindrical if the fixed point set of any non-trivial
element of the acting group has diameter at most 𝑘 . Sela [20] showed that there is a bound
for the size of a (minimal) splitting where the action on the corresponding Bass-Serre tree is
𝑘–acylindrical, assuming that 𝐺 is freely indecomposable and finitely generated. Weidmann
[26] later reproved this and gave a nice bound of at most 2𝑘 (rank𝐺−1) edges for the splitting.
Afterwards Delzant [8] showed that a bound for (𝑘,𝐶)–acylindrical actions exists provided
that the acting group is finitely presented. (An action of a group 𝐺 is (𝑘,𝐶)–acylindrical if
the fixed point set of any subgroup of 𝐺 with cardinality greater than 𝐶 has diameter at most
𝑘 .) Weidmann [25] then extended this to finitely generated groups and suggested that there
should be a common generalisation between this and Bestvina and Feighn’s aforementioned
result on actions with small edge stabilisers. We formalise this question into the following
conjecture.

Conjecture 2.4.4. [25, pg.213] Given a finitely presented group 𝐺 and 𝑘 > 0 there some
𝐶 (𝐺, 𝑘) such that any reduced action of 𝐺 which is 𝑘–acylindrical on large subgroups has
at most 𝐶 (𝐺, 𝑘) orbits of edges. (A group is large if it’s not small. Note that this definition is
different to the standard one of mapping onto a non-abelian free group.)

In Chapter 2 we will give an overview of the proofs of the above results of Dunwoody,
Bestvina—Feighn and Weidmann with emphasis on ideas which will be useful moving
forward. We will also construct original examples which give a negative answer to Con-
jecture 2.4.4. These examples also give significant restrictions on what partial versions of
Conjecture 2.4.4 could hold.



3

Theorem 2.4.5. There is a finitely presented group 𝐺 which for any 𝑁 > 0 acts on a reduced
tree which is 1–acylindrical on infinite subgroups and has 𝑁 orbits of edges.

Theorem 2.4.6. For any 𝑁 > 0 there is an action of 𝐹2 on a reduced tree which is 1–
acylindrical on non-cyclic subgroups and has 𝑁 orbits of edges.

These constructions use the fact that the set of subgroups on which the acylindrical
condition applies (finite subgroups in the case of Theorem 2.4.5 and infinite cyclic groups in
the case of Theorem 2.4.6) can have chains of subgroups 𝐻1 < 𝐻2 < · · · < 𝐻𝑛 with arbitrary
length. We say a set of subgroups P has height equal to the supremum of the length of these
chains for groups in P. (See Definition 3.1.8 for a full definition of the height of P.) We also
say an action of a group𝐺 on a tree 𝑇 is P-closed if whenever a subgroup 𝐾 ≤ 𝐺 is contained
in a member of P and fixes an edge 𝑒 of 𝑇 there is some 𝐻 ∈ P with 𝐾 ⩽ 𝐻 ⩽ Stab𝑒. In light
of the constructions in Theorem 2.4.5 and Theorem 2.4.6 we now recast Conjecture 2.4.4
into the following.

Question 1.0.2. Let 𝐺 be a finitely generated group and let P be a conjugation invariant set
of subgroups of 𝐺 with finite height. Is there a constant 𝐶 (𝐺, 𝑘,P) such that any reduced
action of 𝐺 on a tree which is 𝑃-closed and 𝑘–acylindrical on groups larger than P has
at most 𝐶 (𝐺, 𝑘,P) orbits of edges? (A group is larger than P if it’s not contained in any
member of P.)

In Chapter 3 we will prove Theorem 3.1.12 which gives a positive answer to the above in
many cases. As the exact statement is somewhat technical we will skip it for now. Instead
we will give a couple of interesting applications of this result in specific cases. In the first we
consider hyperbolic groups which act 𝑘-acylindrically on subgroups which aren’t virtually
cyclic. In the second we consider right-angled Artin groups which act 𝑘-acylindrically on
non-abelian subgroups.

Definition 3.1.3. Suppose P is a class of subgroups of 𝐺 which is closed under conjugation.
A minimal action is said to be partially-reduced over P if either

• 𝑇/𝐺 is a circle consisting of a single vertex and edge; or

• whenever a vertex 𝑣 of 𝑇 has stabiliser equal to that of an edge and which is contained
in a subgroup of a member of P then 𝑣/𝐺 has valence at least 3 in 𝑇/𝐺.

Definition 3.1.15. Let 𝐺 be a hyperbolic group. We say a virtually Z subgroup 𝐻 ⩽ 𝐺 is 𝑚-
almost maximal if whenever we have a virtually cyclic 𝐾 ⩽ 𝐺 with 𝐻 ⩽ 𝐾 then [𝐻 : 𝐾] ≤ 𝑚.
Let P𝑚 be the collection of subgroups of 𝐺 which are either finite or 𝑚-almost maximal.
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Corollary 3.1.16. Suppose 𝐺 acts on a tree 𝑇 which is partially reduced on P𝑚 and 𝑘–
acylindrical on groups larger than P𝑚. Suppose also that 𝑇 is P𝑚-closed. Then the number
of edges of 𝑇/𝐺 is bounded above by (2𝑘 +1)𝐶′(𝐺) (where 𝐶′(𝐺) is a constant determined
by 𝐺).

Corollary 3.1.18. Let 𝐺 = 𝐴(Γ) be a RAAG. An abelian subgroup 𝐻 ⩽ 𝐺 is said to be rank
maximal if whenever we have an abelian subgroup 𝐾 ⩽ 𝐺 which contains 𝐻 with finite index
we have 𝐾 = 𝐻. Let P be the collection of rank maximal abelian subgroups of 𝐺. Suppose
𝐺 acts on a tree 𝑇 which is partially reduced on abelian subgroups and 𝑘–acylindrical
on non-abelian subgroups. Suppose also that 𝑇 is P-closed. Then the number of edges
of 𝑇/𝐺 is bounded above by (2𝑘 + 1)2𝑛𝐶 (𝐺) (where 𝑛 is the size of the largest complete
subgraph of Γ and 𝐶 (𝐺) is the same constant determined by Dunwoody’s Resolution Lemma
(Theorem 2.1.12)).

We also give some attention to the original 𝑘–acylindrical case where the condition
applies to all non-trivial subgroups. We have already mentioned Weidmann’s result from
[26], which gives a good bound of 2𝑘 (rank𝐺 −1) edges for the splitting. Theorem 3.1.12
recovers this bound immediately in this case. We will show that it is possible to tighten
this bound further to

⌊(
2rank𝐺 − 5

2

)
𝑘

⌋
edges and even further to ⌊(2rank𝐺 −3) 𝑘⌋ if the

underlying group is torsion-free. Moreover we construct examples to show that these new
bounds are sharp.

Theorem 3.5.1. Let 𝐺 be a (non-cyclic) finitely generated group acting 𝑘–acylindrically
on a minimal tree 𝑇 (where 𝑘 ≥ 1.) Suppose that each edge of 𝑇 has non-trivial stabiliser.
Then 𝑇/𝐺 has at most

⌊(
2rank𝐺 − 5

2

)
𝑘

⌋
edges. If 𝐺 is torsion-free then this bound can be

improved to (2rank𝐺 −3) 𝑘 .

Theorem 3.5.2. For any 𝑘 > 0 and 𝑟 ≥ 2 there is a finitely presented group 𝐺 with rank𝐺 = 𝑟

which acts 𝑘–acylindrically on a minimal tree 𝑇 where each edge of 𝑇 has non-trivial
stabiliser and 𝑇/𝐺 has exactly

⌊(
2rank𝐺 − 5

2

)
𝑘

⌋
edges.

Similarly 𝐹𝑟 admits a 𝑘–acylindrical action on a minimal tree 𝑇 where each edge of 𝑇
has non-trivial stabiliser and 𝑇/𝐹𝑟 has exactly (2𝑟 −3) 𝑘 edges.

A natural extension of our original question about the properties of a single splitting is
to ask what happens if we allow ourselves to recursively consider splittings of the vertex
groups. We naturally get the notion of a hierarchy as a rooted tree with a group associated to
each vertex, where the immediate descendants of a vertex correspond to the vertex stabilisers
of a splitting of its group. We would like to know if our group has finite hierarchies with
terminal vertices which have indecomposable groups and so is strongly accessible in some
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sense. Over finite edge groups this question immediately reduces to the regular accessi-
bility question as finite subgroup always fixes a point of a tree [21]; however we run into
problems as soon as we begin looking at infinite groups. For example since 𝐹2 � (𝐹2)∗Z
(as 𝐹2 �

〈
𝑎, 𝑏, 𝑐 | 𝑐𝑎𝑐−1 = 𝑏

〉
) we can easily build an infinite hierarchy for free groups over

cyclic edge groups. As such we instead try and show that some particular hierarchy with
indecomposable terminal vertices is finite. For example the Haken hierarchy of a 3–manifold
is finite [16].

Delzant and Potyagailo [9] attempted to show that such a finite hierarchy always exists
for finitely presented 2–torsion-free groups over any elementary family of subgroups. Unfor-
tunately their paper contains a fatal error which has been pointed out by Louder and Touikan
[19]. In the same paper Louder and Touikan prove a weaker version of this result where
an ascending chain condition is required to hold as well as showing that many hierarchies
of JSJ-decompositions over slender edge groups are finite. (Recall that a group is slender
if all its subgroups are finitely generated.) In Chapter 4 we give full detailed account of
Louder and Touikan’s theorem on the finiteness of JSJ-hierarchies for virtually 2-torsion free
hyperbolic groups.

Theorem 4.2.1. (Louder, Touikan [19, Corollary 2.7]) Let 𝐺 be a hyperbolic group which is
virtually 2–torsion-free. Then any JSJ-hierarchy for 𝐺 is finite.





Chapter 2

Background

The purpose of this chapter is to give an overview of the existing literature on accessibility.
As such almost all of the material presented here is the work of others with citations given
as appropriate. The exceptions are Theorem 2.4.5 and Theorem 2.4.6 which give original
counterexamples to a previously open conjecture.

2.1 Splittings over finite edge groups

Firstly note that we can trivially make arbitrarily complicated splittings by adding additional
“hanging” edges to a tree which our group acts on. For example the splitting 𝐺 � 𝐺 ∗𝐻 𝐻
where 𝐻 ⩽ 𝐺 tells us nothing about the structure of the group 𝐺. The following definition
prevents these sorts of trivialities.

Definition 2.1.1. An action of a group 𝐺 on a tree 𝑇 is said to be minimal if 𝑇 has no
𝐺-invariant proper subtrees.

Our starting point will be Stallings theorem about ends of groups.

Theorem 2.1.2 (Stallings [23]). A finitely generated group 𝐺 admits a (minimal) splitting
𝐺 � 𝐴 ∗𝐶 𝐵 or 𝐺 � 𝐴∗𝐶 over a finite edge group if and only if 𝐺 has multiple ends.

This naturally leads to the following question. Suppose we have a finitely generated
group 𝐺. If 𝐺 is multi-ended then Theorem 2.1.2 says that 𝐺 admits a non-trivial splitting
over a finite edge group. For each of the vertex group of this splitting we can ask if it’s
multi-ended and if so we can split it over a finite group as well. We want to know if we keep
iterating this procedure whether there must eventually come a point where all of the vertex
groups have either zero or one end. If this is the case then we can refine our initial splitting
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to get a new splitting for 𝐺 where all of the edge groups are finite and the vertex groups have
either zero or one end. This leads us nicely to the following definition.

Definition 2.1.3. A group 𝐺 is said to be accessible if it has a finite graph of groups
decomposition where the edge groups are finite and the vertex groups all have zero or one
end.

The previous question can now be neatly expressed as the following.

Question 2.1.4. Are all finitely generated groups accessible?

Now another trivial way of creating arbitrarily complicated splittings is by repeatedly
subdividing an edge of an existing one. For example if 𝐺 � 𝐴 ∗𝐶 𝐵 then we also have
𝐺 � 𝐴 ∗𝐶 𝐶 ∗𝐶 · · · ∗𝐶 𝐵 which gives no new information about the structure of the group. We
introduce a new restriction to prevent these sorts of pathologies.

Definition 2.1.5. A minimal action of a group 𝐺 on a tree 𝑇 is said to be reduced if either:

• 𝑇/𝐺 is a circle consisting of a single edge and vertex; or

• whenever a vertex 𝑣 has the same stabiliser as that of an edge 𝑒 the image of 𝑣 in 𝑇/𝐺
has valence of at least 3.

The following easy fact gives a useful criterion for a group to be accessible.

Proposition 2.1.6. A finitely generated group 𝐺 is accessible if there is a constant 𝐶 (𝐺)
such that any reduced graph of groups decomposition for 𝐺 with finite edge groups has at
most 𝐶 (𝐺) edges.

In [18] Linnell gives a partial answer to Question 2.1.4. They show that a finitely
generated group is accessible if its finite subgroups have bounded order. This includes many
important classes of groups such as finitely generated linear groups (in characteristic 0),
hyperbolic groups and any finitely generated torsion-free group. More precisely they prove
the following.

Theorem 2.1.7 (Linnell Accessibility [18]). Let 𝐺 be a finitely generated group and 𝑛 ∈ N.
Then there is a constant 𝐶𝑛 (𝐺) such that any reduced graph of groups decomposition for 𝐺
where the edge groups have order bounded above by 𝑛 has at most 𝐶𝑛 (𝐺) edges.

Later Dunwoody [10] showed that Question 2.1.4 is false in its full generality. They
produce an example of a finitely generated group which admits splittings over finite edge
groups with an arbitrary number of edges.
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Theorem 2.1.8 (Dunwoody [10]). There’s a finitely generated group which isn’t accessible.

In a separate paper Dunwoody also showed that all finitely presented groups are accessible
[11]. In fact they showed this is true for a slightly larger class of groups.

Definition 2.1.9. A finitely generated group 𝐺 is said to be almost finitely presented if it acts
freely and cocompactly on a simplicial complex with 𝐻1(𝑋) = 0.

Theorem 2.1.10 (Dunwoody [11]). Let 𝐺 be an almost finitely presented group. There is a
constant 𝐶 (𝐺) such that any reduced graph of groups decomposition for 𝐺 where the edge
groups have finite order has at most 𝐶 (𝐺) edges.

Dunwoody’s proof of Theorem 2.1.10 introduced a few important ideas. In particular
they give us a very useful result showing the existence of certain resolutions.

Definition 2.1.11. A combinatorial map Ψ : 𝑆→ 𝑇 is a 𝐺–equivariant map between trees
where each vertex gets sent to a vertex and each edge 𝑒 = [𝑢, 𝑣] gets sent to the reduced edge
path from Ψ(𝑢) to Ψ(𝑣).

Theorem 2.1.12 (Dunwoody’s resolution lemma). For any almost finitely presented group
𝐺 there’s a constant 𝐶 (𝐺) so that the following holds. Suppose 𝐺 acts on a minimal tree
𝑇 . Then 𝐺 acts on another minimal tree 𝑇 ′ with at most 𝐶 (𝐺) orbits of edges and there’s a
combinatorial map 𝛼 : 𝑇 ′ → 𝑇 . (Without loss of generality we can assume that no edge gets
mapped to a point.)

Remark 2.1.13. Strictly speaking Theorem 2.1.12 doesn’t appear in Dunwoody’s paper
[11]. However it’s more or less an immediate consequence of the arguments it contains.

We will now give an account of the proof of Dunwoody’s resolution lemma (Theo-
rem 2.1.12). We begin by introducing the notion of a track, which can be thought of as a
generalisation of a 1-dimensional sub-manifold of a surface.

Definition 2.1.14. Let 𝑋 be a connected 2-dimensional simplicial complex. A track 𝑅 ⊂ 𝑋 is
a connected subset with the following intersection properties.

• 𝑅 doesn’t contain any vertex of 𝑋 .

• For each 2-simplex 𝜎 of 𝑋 the intersection 𝜎∩𝑅 is the union of finitely many intervals
joining distinct edges of 𝜎.

• For each edge 𝑒 of 𝑋 which is not a face of any 2-simplex the intersection 𝑒∩ 𝑅 is
either empty or consists of a single point in the interior of 𝑒.
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Definition 2.1.15. Let 𝑋 be a connected 2-dimensional simplicial complex. A band 𝐵 ⊂ 𝑋 is
a closed connected subset with the following intersection properties.

• 𝐵 doesn’t contain any vertex of 𝑋 .

• For each 2-simplex 𝜎 of 𝑋 the intersection 𝜎∩𝐵 is the union of finitely many compo-
nents consisting of quadrilaterals where two of the edges are closed subsets of distinct
edges of 𝜎. (See Figure 2.1.)

• For each edge 𝑒 of 𝑋 which is not a face of any 2-simplex the intersection 𝑒∩ 𝐵 is
either empty or consists of a non-trivial closed interval in the interior of 𝑒.

Fig. 2.1 An example of the intersection of a band with a triangle. The shaded area represents
the band and the dashed line represents its midtrack.

Observe that a band is essentially just the product of a track with an interval.

Definition 2.1.16. For 𝐵 a band we define its midtrack to be the track obtained by taking
the midpoints of each component of 𝑒∩ 𝐵 for each edge 𝑒 in 𝑋 and joining them by lines
corresponding to the components of 𝜎∩𝐵 for each 2-simplex 𝜎 in 𝑋 . (See Figure 2.1.)

Definition 2.1.17. A band 𝐵 is said to be twisted if its boundary 𝜕𝐵 is connected. Otherwise
𝜕𝐵 consists of two disjoint tracks and we say that 𝐵 is untwisted. A track is (un)twisted if it’s
the midtrack of an (un)twisted band. Two disjoint tracks 𝑅1 and 𝑅2 are said to be parallel if
there’s an (untwisted) band 𝐵 with 𝜕𝐵 = 𝑅1 ∪𝑅2.

We will now show that a complex with lots of tracks on it must split into many distinct
pieces.

Lemma 2.1.18. [11, Theorem 2.1] Let 𝑋 be a connected simplicial complex and suppose
𝛽 = 𝑑𝑖𝑚(𝐻1(𝑋,Z2)) is finite. Let {𝑇1, · · · ,𝑇𝑛} be a set of disjoint tracks on 𝑋 . Then at most
𝛽 of the 𝑇𝑖 are twisted and 𝑋 \ (∐𝑇𝑖) contains at least 𝑛− 𝛽 connected components.
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Proof. Suppose 𝑇 is a track on 𝑋 . We define 𝑧𝑇 ∈ 𝐻1(𝑋,Z2) to be the class containing the
cocycle which sends an edge 𝑒 to |𝑇 ∩ 𝑒 | (mod 2). Observe that 𝑧𝑇 is the class containing
the zero cocycle if and only if 𝑇 separates 𝑋; thus 𝑧𝑇 = 0 implies that 𝑇 is an untwisted track.
Moreover any finite collection of twisted tracks cannot separate 𝑋; so the twisted tracks give
rise to a linearly independent set in 𝐻1(𝑋,Z2). In particular there are at most 𝛽 twisted tracks.

Consider the map 𝜎 : Z2𝑧𝑇1 ⊕ · · · ⊕Z2𝑧𝑇𝑛 → 𝐻1(𝑋,Z2). Suppose 𝑋 \ (∐𝑇𝑖) has 𝑘 con-
nected components. For each component of 𝑋 \ (∐𝑇𝑖) we get an element of ker𝜎 defined as
the sum of its boundary tracks; call these elements {𝑧1, · · · , 𝑧𝑘 }. Observe that any member
of ker𝜎 can be represented as a collection of the tracks 𝑇𝑖 which separate 𝑋; hence can be
represented by a sum of the 𝑧 𝑗 . So {𝑧1, · · · , 𝑧𝑘 } is a spanning set for ker𝜎 and hence by
rank-nullity we see that 𝑘 ≥ 𝑛− 𝛽. □

If a complex has many disjoint tracks it seems likely that many pairs of these tracks will
be parallel. As such if we split this complex into lots of components along these tracks many
of resulting components will just be untwisted bands. These bands tell us nothing about the
topology of the complex and so we can ignore them. We formalise this into the following
theorem.

Lemma 2.1.19. [11, Theorem 2.2] Let 𝑋 be a finite simplicial complex and 𝛽 = 𝑑𝑖𝑚(𝐻1(𝑋)).
Let 𝐶 (𝑋) = 2𝛽+𝑁𝑉 +𝑁𝑇 where 𝑁𝑉 is the number of vertices of 𝑋 and 𝑁𝐿 is the number of
2-simplices. Suppose 𝑇1, · · · ,𝑇𝐶 (𝑋)+1 is a collection of pairwise disjoint tracks on 𝑋 . Then
there are distinct 𝑖 and 𝑗 such that 𝑇𝑖 and 𝑇𝑗 are parallel.

Proof. We will consider the structure of the connected components of 𝑋 \ (∐𝑇𝑖) and show
that there must be many bands. First let 𝜎 be any 2-simplex of 𝑋 and observe that a
connected component 𝑌 of 𝜎 \ (𝜎∩ (∐𝑇𝑖)) must be of one of the following three forms.
(See Figure 2.2.)

• 𝑌 contains one of the vertices of 𝜌. (There are at most 3 of these.)

• 𝑌 is a quadrilateral where two of the sides are parts of tracks and the other two sides
are disjoint parts of different edges of 𝜎.

• 𝑌 is a hexagon where three of the sides are parts of tracks and the other three sides are
disjoint parts each of the edges of 𝜎. Call such a component bad and note that at most
a single component can be of this form.

Now we look at the components of 𝑋 \ (∐𝑇𝑖). Lemma 2.1.18 implies that there must be at
least 𝐶 (𝑋) +1− 𝛽 such components. Now at most 𝑁𝑉 of these components contain a vertex
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Fig. 2.2 An example of the intersection of 𝜎 with a triangle 𝑇 . Observe that there is always
exactly one component of 𝜎\𝑇 which intersects each edge. (The “central” component.)

and at most 𝑁𝑇 of them contain a ‘bad’ piece. The rest of the components are bands and
so we have a collection of at least (𝐶 (𝑋) + 1) − (𝛽 +𝑁𝑉 +𝑁𝑇 ) = 𝛽 + 1 bands with disjoint
interiors and boundaries consisting of the tracks 𝑇𝑖. Applying Lemma 2.1.18 to the midtracks
of these bands we see that at least one of them is untwisted; which exactly says that two of
the 𝑇𝑖 are parallel. □

We are now ready to prove Dunwoody’s resolution lemma. (Theorem 2.1.12)

Proof of Theorem 2.1.12. Let 𝑋 be any simplicial complex of dimension 2 with 𝐻1(𝑋,Z2) =
0 which 𝐺 acts on freely and cocompactly by simplicial automorphisms. Pick any represen-
tative set of vertices 𝑉0 for 𝑋 (under the action of 𝐺) and pick any map 𝜌 : 𝑉0 → 𝑇 which
maps into the vertices of 𝑇 . First extend this map equivariantly to every vertex of 𝑋 , then to
each edge of 𝑋 by mapping to 𝑇 linearly. It remains to extend 𝜌 to each triangle of 𝑋 . Pick a
triangle Δ in 𝑋 with vertices 𝑣1, 𝑣2 and 𝑣3. If the 𝑣𝑖 all get mapped to the same vertex then
map all of Δ to this vertex. Now suppose that the 𝑣𝑖 all get mapped to different vertices in 𝑇 .
We will define 𝜌 on Δ by determining 𝜌−1(𝑦) for each 𝑦 in the image of 𝜕Δ. Set 𝜌−1(𝑦) to
be the polygon in Δ where the vertices are the points on 𝜕Δ which map to 𝑦. (This polygon
will be an interval for all choices of 𝑦 except possibly for a single point 𝑥 which may be a
triangle and the images of the 𝑣𝑖 which may be a single point. See Figure 2.3.) Each point of
Δ lies in exactly one these polygons and so 𝜌 is well defined. The case where exactly two of
the 𝑣𝑖 gets sent to the same point is essentially the same. (See Figure 2.4.)

Let 𝑚𝑒 be the midpoint of an edge 𝑒 of 𝑇 . Observe that 𝜌−1(𝑚𝑒) consists of a disjoint
collection of tracks on 𝑋 . Let 𝜆 be one of the tracks of 𝜌−1(𝑚𝑒). By considering 𝜌 we see
that a neighbourhood of 𝜆 ⊂ 𝑋 is isomorphic to 𝜆× 𝐼 where 𝐼 is an interval representing the
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𝜌−1(𝑥)
𝜌−1(𝑦)

𝑣1

𝜌

𝜌(𝑣1)

𝑦

𝑥

𝑣3𝑣2 𝜌(𝑣2) 𝜌(𝑣3)

Fig. 2.3 An example of extending 𝜌 over a triangle where its vertices get sent to different
points in 𝑇 .

𝜌−1(𝑥)

𝜌−1(𝑦)

𝑣1

𝜌

𝜌(𝑣1)

𝑦

𝑣3𝑣2
𝑥 = 𝜌(𝑣2) = 𝜌(𝑣3)

Fig. 2.4 An example of extending 𝜌 over a triangle where exactly 2 vertices get sent to the
same vertex in 𝑇 .

middle third of 𝑒. In particular we see that 𝜆 is untwisted. Let Λ :=
∐
𝑒
𝜌−1(𝑚𝑒) and let Λ∗ ⊆ Λ

be a maximal 𝐺-invariant subset of non-parallel tracks for 𝑋 . Define a graph 𝑇 ′ where the
vertices correspond to the connected components of 𝑋 \Λ∗ and the edges correspond to the
tracks in Λ∗. (The edges connect to the vertices in the obvious way.) Since 𝐻1(𝑋,Z2) = 0
each track in Λ∗ splits 𝑋 and so 𝑇 ′ is a tree. Also the map 𝜌 induces a combinatorial map
𝛼 : 𝑇 ′ → 𝑇 .

It remains to check that 𝑇 ′ has boundedly many orbits of edges. Observe that Λ∗ induces
a finite non-parallel collection of tracks on 𝑋/𝐺. Hence by Lemma 2.1.19 we see that Λ∗

consists of at most 𝐶 (𝑋) orbits of tracks, which correspond to orbits of edges in 𝑇 ′. □

2.2 Stallings folds

The idea of a fold will be of vital importance. Recall the following.

Definition 2.2.1. [2] Let 𝐺 act on a tree 𝑇 . Let 𝑒1 = [𝑥, 𝑦1], 𝑒2 = [𝑥, 𝑦2] be distinct edges
with a common endpoint 𝑥 and let 𝜙 : 𝑒1 → 𝑒2 be the linear map which leaves 𝑥 fixed. Let ∼
be the minimal equivalence relation on 𝑇 such that 𝑧 ∼ 𝜙(𝑧) for each 𝑧 ∈ 𝑒1 and such that
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𝑇/∼ is naturally a tree on which 𝐺 acts. Equivalently ∼ is the minimal equivalence relation
such that 𝑔 · 𝑧 ∼ 𝑔 · 𝜙(𝑧) for each 𝑧 ∈ 𝑒1 and 𝑔 ∈ 𝐺. A fold is the map 𝑇 → 𝑇/∼.

Folds were introduced by Stallings in [22]. In particular they showed that maps between
trees with finitely generated edge stabilisers can be decomposed into a finite sequence of
folds. We will need something similar for trees whose edge groups need not be finitely
generated. Fortunately we can “add in” generators of each edge group one at a time, then
take a limit to see that our maps are a composition of (potentially infinitely many) folds. This
is formalised into the following theorem, the proof of which is largely the same as the one
given in [2, p.455] with the aforementioned limiting process to deal with the fact that the
edge stabilisers aren’t necessarily finitely generated.

Theorem 2.2.2 (Stallings folding theorem). Let 𝐺 be a countable group. Suppose Ψ : 𝑆→ 𝑇

is a surjective simplical equivariant map between trees which 𝐺 acts on with 𝑆/𝐺 finite and
where no edge of 𝑆 gets mapped to a point by Ψ. Then Ψ can be viewed as a (possibly infinite)
composition of folds. i.e. 𝛼 = · · ·𝛼2𝛼1 where each 𝛼𝑖 is a fold (without edge inversions).
Moreover if each edge group of 𝑇 is finitely generated then this composition consists of only
finitely many folds.

Remark 2.2.3. The codomain of · · ·𝛼2𝛼1 is 𝑆/∼ where ∼ is the equivalence relation gener-
ated by all the 𝛼𝑖. This is a tree which 𝐺 acts on in the obvious way with vertex and edge
stabilisers equal to the natural direct limit of their preimages.

Proof. Throughout we’ll let 𝛼𝑖 fold the tree 𝑆𝑖−1 into the tree 𝑆𝑖. Also we let 𝛽𝑖 := 𝛼𝑖 ◦ · · · ◦𝛼1

and 𝛾𝑖 be the map such that Ψ = 𝛾𝑖 ◦ 𝛽𝑖.

First suppose that we have a surjective simplical map 𝑚 : 𝐴→ 𝐵 between finite trees
where no edge gets mapped to a point. Claim that 𝑚 can be considered to be a finite series
of folds; a fact we shall refer to as (★). If 𝑚 is injective then as 𝑇 is minimal we see that 𝑚
is an isomorphism and so the result is trivial. Otherwise we have distinct vertices 𝑢, 𝑣 ∈ 𝐴
with 𝑚(𝑢) = 𝑚(𝑣). Let 𝑝 be the reduced edge path from 𝑢 to 𝑣. Since every edge of 𝐴
is mapped to an edge in 𝐵 and 𝐵 is a tree we see that there must be a vertex 𝑧 ∈ 𝑝 such
that 𝑚 |𝑝 is not locally injective at 𝑧. Let 𝑒1 and 𝑒2 be the edges in 𝑝 which contain 𝑧 as an
endpoint and observe that 𝑚(𝑒1) = 𝑚(𝑒2). Thus 𝑚 factors though the fold with edges 𝑒1

and 𝑒2. Repeat this process until the map is injective, which must happen as the number of
edges is finite and decreasing at each stage. This completes the decomposition of𝑚 into folds.

Now suppose we have an equivariant simplical map 𝛿 : 𝑅→ 𝑅′. Let 𝐴 be a finite subtree
of 𝑅. We can apply (★) to 𝛿 |𝐴 to obtain a finite series of folds 𝛿′ : 𝑅→ 𝑅′′ which factors
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through 𝛿 and where the corresponding 𝛿′′ : 𝑅′′ → 𝑅′ is injective on 𝛿′(𝐴). This is how we
will apply (★) in practice.

Our initial folds of Ψ will be to set 𝑆𝑖/𝐺 isomorphic as a graph to 𝑇/𝐺 for all sufficiently
large 𝑖. Let 𝐹 be the closure of a fundamental domain of 𝑆 = 𝑆0. We now use (★) to find a
series of folds 𝛼1, · · · , 𝛼𝑁 such that 𝛾 |𝛽𝑁 (𝐹) is a homeomorphism onto its image. Thus 𝛾𝑁/𝐺
is a homeomorphism of graphs.

Let 𝐾 = Ψ(𝐹). Let 𝑣 be a vertex in 𝐾 and 𝑔 ∈ Stab(𝑣). Let 𝑣𝑖 be a preimage of 𝑣 in 𝐹𝑖
and let 𝑝𝑖 be the reduced edge path from 𝑣𝑖 to 𝑔𝑣𝑖. Now we apply (★) to 𝑝𝑖 in order to get
folds 𝛼𝑖, · · · , 𝛼 𝑗 which get 𝑔 in the relevant vertex group in 𝑆 𝑗/𝐺. Now repeat this process
for each vertex 𝑣 ∈ 𝐾 and 𝑔 ∈ Stab(𝑣). (One can use a diagonalization process to give an
order which insures no combination of 𝑣 and 𝑔 is missed.) This potentially gives an infinite
sequence of folds as 𝐾 has finitely many vertices and each Stab(𝑣) is countable.

Now let 𝛾̃ be the map such that Ψ = 𝛾̃ ◦ (· · · ◦𝛼2 ◦𝛼1). Claim that 𝛾̃ is a homeomorphism.
Indeed by construction we see that 𝛾̃ induces a bijection between the orbits of vertices;
moreover the stabiliser of each vertex is the same as that of its image. Hence 𝛾̃ induces a
bijection between the vertices and hence is a homeomorphism between trees. Thus · · ·◦𝛼2◦𝛼1

is a decomposition of Ψ into folds. □

Remark 2.2.4. It should be straightforward to extend this result to the case where 𝐺 is
uncountable and where 𝑆/𝐺 is not necessarily finite using the well ordering principle. We do
not do this here because it is unnecessary to prove our main results.

Remark 2.2.5. The condition that no edge of 𝑇 gets collapsed is not a restrictive one in
practice. In particular if Ψ maps an edge of 𝑆 to a point then let 𝜋 be the map which collapses
each edge of 𝑆 which is sent to a point by Ψ. Then there is a natural composition Ψ = Ψ′ ◦ 𝜋
where no edge in the domain of Ψ′ is sent to a point in 𝑇 .

Remark 2.2.6. Theorem 2.2.2 also works for combinatorial maps instead of just simplicial
ones. By subdividing the edges of 𝑆 we can turn a combinatorial map into a simplicial one.

Remark 2.2.7. We can extend the notion of a fold in the following way. Pick some 𝐻 ⩽ Stab𝑥.
We define a generalised fold the same way as a regular fold except we now identify 𝑒1 with
ℎ𝑒2 for every ℎ ∈ 𝐻. The advantage of this is that we get a version of Stallings folding
theorem which only needs finitely many generalised folds. We forgo this notion here as the
present author believes there is value in both approaches being represented in the literature.
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Depending on which of the vertices and edges are in common 𝐺–orbits there are a few
different cases that can arise from a fold. The following classification of folds is the same as
the one found in [2].

We make the distinction between whether 𝑥 is in the same 𝐺 orbit as one of the 𝑦𝑖. If
𝑥 is not in the same 𝐺–orbit as either of the 𝑦𝑖 we say that the fold is of type A. Otherwise
WLOG we have 𝑔𝑥 = 𝑦1 for some 𝑔 ∈ 𝐺 and we say that the fold is of type B. Note that such
a 𝑔 must act hyperbolically on 𝑇 , (with translation length 1), as it moves a vertex an odd
distance.

Additionally we split each of these cases into three additional categories. We say the fold
is of type I if 𝑦1 and 𝑦2 are in distinct orbits of 𝐺. We say the fold is of type II if 𝑒1 and
𝑒2 are in a common orbit of 𝐺. Finally we say the fold is of type III if 𝑦1 and 𝑦2 are in a
common 𝐺–orbit, but 𝑒1 and 𝑒2 are not. We will now go into the specifics of each type of
fold. Throughout we let 𝑒𝑖 be the vertex between the vertices 𝑥 and 𝑦𝑖 and use capital letters
to denote the group associated to the corresponding vertex or edge.

Remark 2.2.8. The following diagrams represent what happens to the relevant subgraph
of a particular graph of groups decomposition. Crucially the pictures for type I and III
folds only give the correct groups if both 𝑒1 and 𝑒2 are in the fundamental domain for this
decomposition. In general we need to conjugate certain groups in the decomposition before
these pictures become accurate.

Type I We have 𝑦1 and 𝑦2 in distinct orbits of 𝐺. In this case the number of vertices and the
number of edges of the graph of groups decomposition both decrease by one so the
Euler characteristic of the underlying graph stays the same.

Type II We have 𝑒1 and 𝑒2 in a common orbit of 𝐺, suppose that ℎ𝑒1 = 𝑒2. Observe that if
ℎ acts hyperbolically on 𝑇 then the action of 𝐺 after the fold inverts an edge and so
we will ignore this case. Thus we can assume that ℎ ∈ 𝑋 . In this case the underlying
graph of the graph of groups decomposition doesn’t change. Instead the element ℎ
gets “pulled” along the edge in the graph of groups decomposition.

Type III We have 𝑦1 and 𝑦2 in a common orbit, but 𝑒1 and 𝑒2 are not. Suppose that ℎ𝑦1 = 𝑦2.
Observe that ℎ has to act hyperbolically on 𝑇 with translation length 2. After the fold
this ℎ now fixes the image of 𝑦1 and 𝑦2 thus no longer acts hyperbolically. This type
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Type IA

𝑌2

𝑋

𝑌1𝐸1

𝐸2
⟨𝐸1, 𝐸2⟩

𝑋 ⟨𝑌1,𝑌2⟩

Type IB

𝑌2

𝐸1

𝑋

𝑔

𝐸2

⟨𝐸1, 𝐸2⟩

⟨𝑋,𝑔−1𝑌2𝑔⟩

𝑔

Fig. 2.5 A typical example of the effects of a type I fold on a graph of groups. The vertices
𝑦1 and 𝑦2 are inequivalent so the fold reduces the number of vertices by 1. Likewise for the
edges 𝑒1 and 𝑒2.

Type IIA

⟨𝐸1, ℎ⟩
𝑋 ⟨𝑌1, ℎ⟩

𝐸1

𝑋 𝑌1
ℎ ∈ 𝑋

Type IIB

𝐸1

𝑋

𝑔

⟨𝐸1, ℎ⟩

⟨𝑋,𝑔−1ℎ𝑔⟩

𝑔

ℎ ∈ 𝑋

Fig. 2.6 A typical example of the effects of a type II fold on a graph of groups. The vertices
𝑦1 and 𝑦2 are equivalent so the fold keeps the number of vertices the same. Likewise for the
edges 𝑒1 and 𝑒2.

of fold reduces the number of edges of the graph of groups by one while keeping
the number of vertices fixed. Thus the Euler characteristic of the underlying graph
increases by one.

Folds can also be used to construct interesting examples of splittings. For example the
following appears in a paper of Bestvina and Feighn [2].

Theorem 2.2.9. [2, pg.450] For any 𝑁 ∈ N there is a reduced graph of groups decomposition
for 𝐹2 with 𝑁 edges.

Proof. Consider the one edge splitting corresponding to 𝐹2 � Z ∗Z � ⟨𝑎⟩ ∗ ⟨𝑏⟩. First we
subdivide this edge into 𝑁 subedges. (In the diagrams we take 𝑁 = 4.)

⟨𝑎⟩ 1 1 1 ⟨𝑏⟩
1111
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Type IIIA
𝑋 𝑌1

𝐸1

𝐸2
⟨𝐸1, 𝐸2⟩

𝑋 ⟨𝑌1, ℎ⟩ℎ

Type IIIB
𝐸1

𝑋𝑔
𝐸2

⟨𝐸1, 𝐸2⟩

⟨𝑋, ℎ⟩

𝑔ℎ𝑔−1

Fig. 2.7 A typical example of the effects of a type III fold on a graph of groups. The vertices
𝑦1 and 𝑦2 are equivalent so the fold keeps the number of vertices the same. However the
edges 𝑒1 and 𝑒2 are inequivalent so the fold reduces the number of edges by 1.

Now we apply 𝑁 −1 folds of type II. The first “pulls” 𝑎2 across the first edge, the second
“pulls” 𝑎4 across the second edge and so on, so that the 𝑖th fold “pulls” 𝑎2𝑖 across the 𝑖th edge.

⟨𝑎⟩ ⟨𝑎2⟩ ⟨𝑎4⟩ ⟨𝑎8⟩ ⟨𝑏⟩
1⟨𝑎8⟩⟨𝑎4⟩⟨𝑎2⟩

We now apply 𝑁 −1 folds in the opposite direction. The first “pulls” 𝑏2 across the first
edge, the second “pulls” 𝑏4 across the second edge and so on, so that the 𝑖th fold “pulls” 𝑏2𝑖

across the 𝑖th edge.

⟨𝑎⟩ ⟨𝑎2, 𝑏8⟩ ⟨𝑎4, 𝑏4⟩ ⟨𝑎8, 𝑏2⟩ ⟨𝑏⟩
⟨𝑏2⟩⟨𝑎8, 𝑏4⟩⟨𝑎4, 𝑏8⟩⟨𝑎2⟩

It’s clear that this is a reduced decomposition of 𝐹2 with 𝑁 edges. □

2.3 Splittings over small edge groups

In light of Theorem 2.2.9 we see that it’s impossible to extend Theorem 2.1.10 to arbitrary
edge groups. In this section we will give a partial account of a theorem by Bestvina and
Feighn [2], which gives a bound on the number of edges of a (reduced) splitting of an (almost)
finitely presented group with “small” edge groups. We will only consider the case where
the edge groups act elliptically on any tree as the core principles remain the same as the full
theorem but with fewer technical details. Even this is still a generalisation of Dunwoody’s
result (Theorem 2.1.10) as finite groups always fix a vertex of a tree they act on [21].

We will begin by recalling the different actions a finitely generated subgroup 𝐾 ⩽ 𝐺 can
have on a tree 𝑇 . A group element 𝑔 ∈ 𝐺 either acts trivially on some subtree of 𝑇 or has an
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invariant axis consisting of the points which are moved a minimal amount by 𝑔 [21]. In the
former case we call 𝑔 elliptic and in the latter case we say 𝑔 is hyperbolic. This leads to the
following well known classification of actions, which is similar to the one given in [2] except
with a distinction between linear and parabolic actions.

• If every element of 𝐾 is elliptic then there is some point in 𝑇 which is fixed by all of 𝐾
[21]. We call such an action elliptic.

• Suppose every hyperbolic element of 𝐾 has a common axis. We call this action linear
if the ends of this axis are fixed and dihedral if they are not. A linearly acting group
can be written in the form 𝐾 � 𝐸∗𝐸 where 𝐸 is a subgroup of an edge group of 𝑇
and the inclusion maps are isomorphic. Meanwhile a dihedral group can be written in
the form 𝐾 � 𝐴 ∗𝐸 𝐵 where 𝐸 is a subgroup of an edge group of 𝑇 and both 𝐴 and 𝐵
contain 𝐸 as an index 2 subgroup.

• Suppose that the axes of any two hyperbolic elements of 𝐾 have infinite intersection,
but that no line is fixed by 𝐾 . We call such a 𝐾 parabolic. Such a group fixes a single
point of 𝜕𝑇 and is a strictly ascending HNN-extension 𝐾 � 𝐸∗𝐸 where 𝐸 is a subgroup
of an edge group of 𝑇 . Observe that 𝐾 has an infinitely generated subgroup which is
generated by

{
𝑎𝑡

𝑛 | 𝑛 ∈ Z
}

where 𝑡 is the stable letter of the HNN-extension and 𝑎 ∈ 𝐸
is not contained in the non surjective end of the HNN-extension.

• Suppose that 𝐾 contains two hyperbolic elements whose axes have compact (possibly
empty) intersection. We call this action of 𝐾 hyperbolic.

Definition 2.3.1. A group 𝐺 is large if it acts on some tree 𝑇 hyperbolicly. A group is small
if it’s not large. A group has Serre’s property (FA) if all its actions are elliptic.

Remark 2.3.2. The ping-pong lemma implies that any large group must contain 𝐹2 as a
subgroup. The converse is not true; for example 𝑆𝐿3(Z) contains many subgroups isomorphic
to 𝐹2 and has Serre’s property (FA) [21].

Now that we have the definition of a small and large group we are ready to state the main
result of this section.

Theorem 2.3.3. (Bestvina, Feighn [2, Main theorem]) Let 𝐺 be an almost finitely presented
group. There is a constant 𝐶′(𝐺) such that any reduced graph of groups decomposition for
𝐺 where the edge groups are small has at most 𝐶′(𝐺) edges.

As mentioned in the introduction to this section we will restrict our attention to the
case where the edge stabilisers have Serre’s property (FA). As such we will only prove the
following weaker statement here.
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Theorem 2.3.4. (Bestvina, Feighn [2, Section 4]) Let 𝐺 be an almost finitely presented group.
There is a constant 𝐶′(𝐺) such that any reduced graph of groups decomposition for 𝐺 where
the edge groups have Serre’s property (FA) has at most 𝐶′(𝐺) edges.

The main idea behind the proof of this theorem is to use Dunwoody’s resolution lemma
(Theorem 2.1.12) and Stallings’ folding theorem (Theorem 2.2.2) to determine a set of
vertices of the splitting which essentially gives us all the information about possible vertex
groups. (The so called “live” vertices.) We will then show that there can’t be too long of a
gap between these “live” vertices, thus bounding total number of vertices in the splitting.

Definition 2.3.5. Let 𝐺 act on trees 𝑇 and 𝑇 ′ where there’s a surjective combinatorial map
𝛼 : 𝑇 ′ → 𝑇 where no edge gets mapped to a point. Subdivide the edges of 𝑇 ′ so that 𝛼
becomes a simplicial map and decompose 𝛼 into folds 𝛼 = 𝛼𝑛 ◦ · · · ◦𝛼2 ◦𝛼1. A vertex 𝑣 of 𝑇
is said to be live (with respect to our chosen decomposition of 𝛼) if either:

• there’s a vertex 𝑣′ of 𝑇 ′ before subdivision with 𝛼(𝑣′) = 𝑣; or

• there’s some fold 𝛼𝑖 of type III which folds together [𝑥, 𝑦1] and [𝑥, 𝑦2] to get [𝑥′, 𝑦′]
where 𝛼𝑛 ◦ · · · ◦𝛼𝑖+1(𝑦′) = 𝑣.

A vertex of 𝑇 is said to be dead if it’s not live.

The following simple results are rather useful.

Proposition 2.3.6. Let 𝐺 act on a tree 𝑇 and suppose 𝑇/𝐺 is finite with 𝑣1 vertices of valence
1. Then 𝑇/𝐺 has at most 2(𝛽1(𝑇/𝐺) −1) + 𝑣1 vertices of valence at least 3.

Proof. Suppose 𝑇/𝐺 has 𝑣𝑖 vertices of valence 𝑖. By summing the valency of each vertex we
see that

∑
𝑖

𝑖𝑣𝑖 is equal to twice the number of edges of 𝑇/𝐺. Hence by the definition of the

Euler characteristic we see that

𝜒(𝑇/𝐺) = 1− 𝛽1(𝑇/𝐺) =
∑︁
𝑖

(
1− 𝑖

2

)
𝑣𝑖

≤ 1
2

(
𝑣1 −

∑︁
𝑖≥3

𝑣𝑖

)
Elementary rearrangement of terms now gives the result. □

Proposition 2.3.7. [2, Lemma 4 (i)] Let 𝐺 act on a minimal tree 𝑇 . Suppose𝑊 ⊆ 𝐺 is a set
of elements which act elliptically on 𝑇 and 𝑊 ∪ {𝑔1, · · · , 𝑔𝑚} normally generates 𝐺. Then
𝑚 ≥ 𝛽1(𝑇/𝐺). In particular by taking {𝑔1, · · · , 𝑔𝑚} to be a minimal generating set for 𝐺 we
get that 𝛽1(𝑇/𝐺) ≤ rank𝐺.
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Proof. Consider a graph of groups decomposition corresponding to 𝑇/𝐺. By replacing
each vertex and edge group with the trivial group we get a surjective group homomorphism
𝜎 : 𝐺→ 𝐹𝛽1 (𝑇/𝐺) . Consider the map Ab(𝜎) : Ab(𝐺) → Z𝛽1 (𝑇/𝐺) obtained by abelianization.
Let 𝐻 = ⟨𝑔1, · · · , 𝑔𝑚⟩. Then since 𝑊 ∪𝐻 normally generates 𝐺 and 𝑊 ⊆ ker𝜎 we see that
Ab(𝜎) |Ab(𝐻) is also surjective. Hence {Ab(𝜎) (𝑔1), · · · ,Ab(𝜎) (𝑔𝑚)} is a generating set for

Z𝛽1 (𝑇/𝐺); which implies that 𝑚 ≥ 𝛽1(𝑇/𝐺) as rank
(
Z𝛽1 (𝑇/𝐺)

)
= 𝛽1(𝑇/𝐺). □

Remark 2.3.8. Proposition 2.3.7 implies that there’s a bound on the number of live vertices
of 𝑇 . More precisely the number of folds of type III in a folding decomposition of 𝑇 ′ → 𝑇 is
bounded above 𝛽1(𝑇 ′/𝐺) ≤ rank𝐺. (This is easily seen by looking at the effect that each type
of fold has on the Euler characteristic of the graph of groups.) Hence if 𝑇 ′ is given to us by
Dunwoody’s resolution lemma (Theorem 2.1.12) we see that 𝑇 has at most 𝐶′(𝐺) + rank𝐺
(orbits of) live vertices, (where 𝐶′(𝐺) is the constant determined by Theorem 2.1.12). Thus
in order to prove Theorem 2.3.3 we just need to bound the number of dead vertices.

The following lemma justifies our previous assertion that the stabilisers of the live vertices
contain all the useful information.

Lemma 2.3.9. [2, Dead vertex lemma] Let 𝑣 be a dead vertex in 𝑇 (with respect to some
decomposition of 𝛼 : 𝑇 ′ → 𝑇).

(a) The stabiliser Stab(𝑣) is generated by the stabilisers of the edges containing 𝑣. So the
vertex label for the corresponding vertex in the graph of groups is normally generated
by the corresponding edge labels.

(b) Whenever a finitely generated subgroup𝑊 ⩽ Stab(𝑣) acts elliptically on 𝑇 ′ we have
𝑊 contained in the edge stabiliser of an edge containing 𝑣.

Proof. We will prove (a) by induction on the number of folds in the decomposition of 𝛼;
say 𝛼 = 𝛼𝑛 ◦ · · · ◦𝛼2 ◦𝛼1. First observe that a vertex of 𝑇 ′ which is obtained by subdivision
has the same stabiliser as its two edges. Now assume the result holds for 𝛼𝑛−1 ◦ · · · ◦𝛼2 ◦𝛼1.
Suppose 𝛼𝑛 :𝑇 ′′ →𝑇 is a fold of type I or II. Then from our prior discussion on the properties
of different folds from page 19 we see that the stabiliser of every vertex of 𝑇 is generated by
the union of the stabilisers of its edges and its preimages in 𝑇 ′′. The result now follows as the
preimage of a dead vertex is also a dead vertex. Instead suppose 𝛼𝑛 is a type III fold which
identifies the edges 𝑒1 = [𝑥, 𝑦1] and 𝑒2 = [𝑥, 𝑦2] to 𝑒′ = [𝑥′, 𝑦′]. The above discussion still
applies to every vertex in 𝑇 except vertices in the same orbit as 𝑦′. However by definition the
vertex 𝑦′ is live and so the result follows as before.
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For (b) simply note that any finitely generated group acting elliptically on 𝑇 ′ fixes a
vertex of it; thus fixes a live vertex in 𝑇 . So if𝑊 ⩽ Stab(𝑣) acts elliptically on 𝑇 ′ then it fixes
a non-empty edge path from 𝑣 to a live vertex of 𝑇 . □

We will need to examine how the stabilisers of dead vertices act on 𝑇 ′. The following will
give us a very controlled structure in this case when combined with the dead vertex lemma.

Lemma 2.3.10. [2, Lemma 4 (ii)] Suppose 𝐺 is a finitely generated group which acts with
a reduced action on a tree 𝑆. Let 𝔙 := {𝑣1, · · · , 𝑣𝑛} be a set of inequivalent vertices for 𝑆
and let 𝑉𝑖 ⩽ Stab𝑣𝑖. Suppose that every vertex stabiliser of 𝑆 is conjugate into one of the 𝑉𝑖.
Then there are subsets 𝔙1,𝔙2 ⊆ 𝔙 which are sets of representatives for the valence 1 and
valence 2 vertices of 𝑆/𝐺 respectively. Moreover 𝑉𝑖 = Stab𝑣𝑖 whenever 𝑣𝑖 ∈𝔙1 ∪𝔙2.

Proof. Observe that for any 𝑤 in 𝑇 we have a path from 𝑤 to a vertex in the orbit of some 𝑣𝑖
which is stabilised by Stab𝑤. If the image of 𝑤 has valence 1 in 𝑆/𝐺 then this path must be
trivial as 𝑇 is minimal, hence 𝑤 is in the same orbit as a 𝑣𝑖 and hence there’s a subset 𝔙1 ⊆𝔙

which is a set of representatives for the valence 1 vertices of 𝑆/𝐺.

Now if 𝑣𝑖 is in 𝔙1 then observe that there is some 𝑣 𝑗 ∈𝔙 and 𝑔 ∈𝐺 such that Stab𝑣𝑖 ⩽𝑉𝑔𝑗 .
The same argument as before implies that 𝑖 = 𝑗 and 𝑔 ∈ 𝑉𝑖. Hence we have 𝑉𝑖 ⩽ Stab𝑣𝑖 ⩽ 𝑉𝑖
and hence Stab𝑣𝑖 =𝑉𝑖.

An essentially identical argument works for the existence and properties of 𝔙2. □

Proof of Theorem 2.3.4. Let 𝑇 be a tree which 𝐺 acts on where all the edges are stabilised
by a group with property (FA). Dunwoody’s resolution theorem (Theorem 2.1.12) says there
is a tree 𝑇 ′ with at most 𝐶 (𝐺) orbits of edges together with a combinatorial map 𝛼 : 𝑇 ′ → 𝑇 .
Using Stallings’ folding theorem (Theorem 2.2.2) we fix some decomposition of 𝛼 into folds
𝛼𝑁 ◦ · · · ◦𝛼1. We use this decomposition to label the vertices of 𝑇 either dead or alive.

Recall that Remark 2.3.8 says that we have a bound on the number of live vertices and so
we only need to bound the number of dead ones. Moreover Proposition 2.3.6 says that we
get a bound on the number of vertices of valence 3 or greater as long as there is bound on
the number of vertices of valence 1. In particular it’s enough to bound the number of dead
vertices of valence 1 or 2.

First we wish to show that any vertex 𝑣 ∈ 𝑇 of valence 1 in 𝑇/𝐺 is live. Suppose instead
that 𝑣 is dead. Let 𝑒 be a representative edge with endpoint 𝑣. Let 𝑉 = Stab𝑣 and 𝐸 = Stab𝑒.
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By Lemma 2.3.9 (a) we see that𝑉 is normally generated by 𝐸 . Let 𝑇 ′
𝑉

be a (reduced) minimal
subtree of 𝑇 ′ which is fixed by 𝑉 . By Lemma 2.3.9 (b) we see that every vertex stabiliser of
𝑇 ′
𝑉

is conjugate into 𝐸 . As 𝐸 acts elliptically on 𝑇 ′ we use Lemma 2.3.10 to see that 𝑇 ′
𝑉

has
at most a single vertex of valence 1 and 𝛽1(𝑇 ′

𝑉
/𝑉) = 0. Thus 𝑇 ′

𝑉
is a single vertex and 𝐸 =𝑉 ,

contradicting the fact that 𝑇 is reduced.

Now we examine a dead vertex 𝑣 ∈ 𝑇 with valence 2 in 𝑇/𝐺. As before let 𝑒1 and 𝑒2

be inequivalent representative edges with endpoint 𝑣. Let 𝑉 = Stab𝑣 and 𝐸𝑖 = Stab𝑒𝑖. By
Lemma 2.3.9 (a) we see that 𝑉 is normally generated by 𝐸1 ∪ 𝐸2. Let 𝑇 ′

𝑉
be a (reduced)

minimal subtree of 𝑇 ′ which is fixed by 𝑉 . By Lemma 2.3.9 (b) we see that every vertex
stabiliser of 𝑇 ′

𝑉
is conjugate into either 𝐸1 or 𝐸2. As the 𝐸𝑖 act elliptically on 𝑇 ′ we use

Lemma 2.3.10 to see that 𝑇 ′
𝑉
/𝑉 has at most two vertices of valence 1 and these have labels

conjugate to the 𝐸𝑖. Moreover 𝑇 ′
𝑉
/𝑉 contains no vertices of valence greater than 1 and

𝛽1(𝑇 ′
𝑉
/𝑉) = 0. If 𝑇 ′

𝑉
is a point then we get a contradiction as in the valence 1 case. Hence

𝑇 ′
𝑉
/𝑉 corresponds to the non-trivial splitting 𝑉 = 𝐸1 ∗𝐸1∩𝐸𝑔

2
𝐸
𝑔

2 for some 𝑔 ∈ 𝑉 .

We now wish to show that there cannot be two adjacent dead vertices of valence 2 in 𝑇/𝐺.
Once we have shown this Theorem 2.3.4 will follow immediately. Indeed our argument so
far gives us gives us a bound on the number of edges of a modified version of 𝑇/𝐺 where
we “ignore” the dead valence 2 vertices by “combining” its two edges. If dead vertices of
valence 2 cannot be adjacent then the actual number of edges of 𝑇/𝐺 will be at most twice
the number of this modified graph.

Suppose 𝑣1 ∈𝑇 and 𝑣2 ∈𝑇 are adjacent dead vertices both with valence 2 in𝑇/𝐺. Suppose
𝑒 is the edge connecting the 𝑣𝑖 and let 𝑒𝑖 be a representative edge with endpoint 𝑣𝑖 which is
not in the same orbit as 𝑒. Let 𝑉𝑖 = Stab𝑣𝑖, 𝐸𝑖 = Stab𝑒𝑖 and 𝐸 = Stab𝑒. Now as in the proof
of Lemma 2.3.9 (b) there is a path from a live vertex of 𝑇 to either 𝑣1 or 𝑣2, (without loss
of generality it contains 𝑣1 and this path doesn’t include 𝑒), which is fixed by 𝐸 . Let 𝑒′ be
the final edge of this path. If 𝑒′ is equivalent to 𝑒1 then 𝐸 is conjugate into 𝐸1 and so by
Lemma 2.3.10 we see that 𝑉1 = 𝐸1, which cannot happen as 𝑇 is reduced. Instead suppose
𝑒′ = 𝑔𝑒 where 𝑔 ∈ 𝑉1. By the previous paragraph recall the tree 𝑇𝑉1 corresponding to the
non-trivial splitting 𝑉1 = 𝐸1 ∗𝐸1∩𝐸 𝐸 . Now if 𝑔 ∉ 𝐸 we see that 𝐸 is contained in a conjugate
of 𝐸1 and so fixes an edge in 𝑇𝑉 ; which cannot happen as 𝑇𝑉 is reduced. Hence 𝑔 ∈ 𝐸 and so
𝑒′ = 𝑒; but we already assumed this wasn’t the case. □

Remark 2.3.11. In order to extend the argument to Theorem 2.3.3 we consider each class
of edges in turn. This is done by collapsing each edge which doesn’t fit into the relevant



24 Background

class. We have shown the elliptically acting case already. The parabolically acting case
(which includes linear actions) is similar to the elliptic case with a moderate amount of extra
steps. The dihedral case by contrast is significantly harder. It is curious that dihedral actions
pose a challenge both here as well as for strong accessibility (see Chapter 4), but there is no
apparent reason as to why this is the case.

2.4 Acylindrical actions

So far we’ve obtained bounds on the number of edges given a restriction on the class of
allowed edge groups. We will now turn our attention to acylindrical actions, where there is
no restriction on the class of edge groups and instead there is a bound on the diameter of the
fixed point set of subgroups. More precisely we have the following definition.

Definition 2.4.1. (Sela) Let 𝐺 be a group and 𝑘 be a non-negative integer. An action of 𝐺 on
a tree 𝑇 is 𝑘–acylindrical if whenever some non-trivial 𝐻 ⩽ 𝐺 fixes every edge in a reduced
edge path 𝑝 we have 𝑝 containing at most 𝑘 edges. Likewise an action is (𝑘,𝐶)–acylindrical
(for some positive integer 𝐶) if whenever some 𝐻 ⩽ 𝐺 fixes every edge in a reduced edge
path 𝑝 containing more than 𝑘 edges we have |𝐻 | ≤ 𝐶.

The first example of a bound for acylindrical actions is due to Sela [20], who showed that
there is a bound for the size of a (minimal) splitting where the action on the corresponding
Bass-Serre tree is 𝑘–acylindrical, assuming that 𝐺 is freely indecomposable and finitely
generated. Later Delzant [8] showed that a bound for (𝑘,𝐶)–acylindrical actions exists
provided that the acting group is finitely presented. Weidmann [25] then extended this to
finitely generated groups and gives a nice bound in the process.

Theorem 2.4.2. (Weidmann [25]) Let 𝐺 be a finitely generated group and suppose 𝐺 acts
(𝑘,𝐶)–acylindrically (where 𝑘 ≥ 1) on a tree 𝑇 and that this action is reduced. Then there is
some 𝐶 (𝐺) (which depends only on 𝐺) such the that number of edges of 𝑇/𝐺 is bounded
above by (2𝑘 +1)2⌊log2𝐶⌋𝐶 (𝐺).

Remark 2.4.3. Observe that Theorem 2.4.2 is a generalisation of Linnell accessibility
(Theorem 2.1.7) by setting 𝑘 = 1.

The methods used in Chapter 3 are essentially a refined version of Weidmann’s arguments
and so will not be stated in detail here. However it involves using Stallings folding theorem
(Theorem 2.2.2) in a way which is reminiscent of Bestvina and Feighn’s result for actions
with small edge stabilisers (Theorem 2.3.3). As a result Weidmann suggested that some
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sort of common generalisation between Theorem 2.4.2 and Theorem 2.3.3 should exist. We
formalise this into the following conjecture.

Conjecture 2.4.4. [25, pg.213] Given a finitely presented group 𝐺 and 𝑘 > 0 there some
𝐶 (𝐺, 𝑘) such that any reduced action of 𝐺 which is 𝑘–acylindrical on large subgroups (see
Definition 3.1.1 for a precise definition) has at most 𝐶 (𝐺, 𝑘) orbits of edges.

The rest of this section is dedicated to constructing counterexamples to the above conjec-
ture. In contrast to the rest of this chapter these constructions are original.

Theorem 2.4.5. There is a finitely presented group 𝐺 which for any 𝑁 > 0 acts on a reduced
tree which is 1–acylindrical on infinite subgroups and has 𝑁 orbits of edges.

Proof. Let 𝐷 :=
〈
𝑎1, 𝑎2, · · · | 𝑎2

1 = 1, 𝑎2
𝑖+1 = 𝑎𝑖 ∀𝑖 ≥ 1

〉
� Z

[ 1
2
]
/Z; the additive group of dyadic

rationals modulo Z or the Prüfer 2-group. Let 𝐴 be any finitely presented group into which
𝐷 embeds; for example we can take 𝐴 to be Thompson’s group 𝑇 [3]. Let 𝐵 := ⟨𝑏⟩ � Z.
Take 𝐺 := 𝐴 ∗𝐵 and pick any 𝑁 > 0. Start by taking the one edge splitting corresponding to
𝐺 � 𝐴 ∗𝐵 and subdividing this edge into 𝑁 subedges. (In the diagrams we take 𝑁 = 4.)

𝐴 1 1 1 𝐵

1111

Now we apply 𝑁 folds of type II. The first “pulls” 𝑎𝑁 across the first edge, the second
“pulls” 𝑎𝑁−1 across the second edge and so on, so that the 𝑖th fold “pulls” 𝑎𝑁+1−𝑖 across the
𝑖th edge.

𝐴 ⟨𝑎4⟩ ⟨𝑎3⟩ ⟨𝑎2⟩ ⟨𝑎1, 𝑏⟩
⟨𝑎1⟩⟨𝑎2⟩⟨𝑎3⟩⟨𝑎4⟩

Let 𝑏0 := 𝑏 and for 1 ≤ 𝑖 ≤ 𝑁 we define 𝑏𝑖 := 𝑏𝑖−1𝑎𝑖𝑏
2
𝑖−1. We now apply 𝑁 −1 folds in

the opposite direction. The first “pulls” 𝑏1 across the first edge, the second “pulls” 𝑏2 across
the second edge and so on, so that the 𝑖th fold “pulls” 𝑏𝑖 across the 𝑖th edge.

𝐴 ⟨𝑎4, 𝑏3⟩ ⟨𝑎3, 𝑏2⟩ ⟨𝑎2, 𝑏1⟩ ⟨𝑎1, 𝑏0⟩
⟨𝑎1, 𝑏1⟩⟨𝑎2, 𝑏2⟩⟨𝑎3, 𝑏3⟩⟨𝑎4⟩

It’s clear that this is a reduced decomposition. It remains to show that the action on
the corresponding Bass-Serre tree is 1–acylindrical on infinite subgroups. In other words
it suffices to show that the intersection of the stabilisers of any two distinct edges with a
common end vertex are finite. Observe that a generic vertex of this decomposition has label〈
𝑎′, 𝑏′ | 𝑎′2𝑟

〉
� Z∗ (Z/2𝑟Z) with two edges with labels

〈
𝑎′2, 𝑏′

〉
and

〈
𝑎′, 𝑏′𝑎′𝑏′2

〉
respectively.

⟨𝑎′, 𝑏′ | 𝑎′2𝑟 ⟩
⟨𝑎′2, 𝑏′⟩⟨𝑎′, 𝑏′𝑎′𝑏′2⟩
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So there are three different pairs of edges we need to consider.

Case 1 The intersection of
〈
𝑎′2, 𝑏′

〉
and

〈
𝑎′2, 𝑏′

〉𝑔 for 𝑔 ∈ ⟨𝑎′, 𝑏′⟩ \
〈
𝑎′2, 𝑏′

〉
.

Let 𝑤̃ = 𝛼1𝛼2 · · ·𝛼𝑛 and 𝑤̃ℎ be cyclicly reduced words in
{
𝑎′±2, 𝑏′±1} for some ℎ ∈

⟨𝑎′, 𝑏′⟩. Observe by cycling letters in
{
𝑎′±1, 𝑏′±1} that either ℎ ∈

〈
𝑎′2, 𝑏′

〉
or 𝛼𝑖 = 𝑎′±2

for all 𝑖 and ℎ is an (odd) power of 𝑎′. It follows that every element in the inter-
section is conjugate to a power of 𝑎′. Moreover we see that 𝑤 ∈

〈
𝑎′2, 𝑏′

〉
∩

〈
𝑎′2, 𝑏′

〉𝑔
if and only if there are 𝑔1, 𝑔2 ∈

〈
𝑎′2, 𝑏′

〉
and 𝑛 ∈ Z such that 𝑔 = 𝑔1𝑎

′𝑔2 and 𝑤 = (𝑎′2𝑛)𝑔2 .

If we can show that 𝑔 can only be expressed in the form 𝑔1𝑎
′𝑔2 in an “essentially

unique” way then it follows that the intersection is cyclic and hence finite as 𝑎′2

has finite order. More precisely it suffices to show that whenever 𝑔1𝑎
′𝑔2 = 𝑔′1𝑎

′𝑔′2
(where 𝑔1, 𝑔

′
1, 𝑔2, 𝑔

′
2 ∈

〈
𝑎′2, 𝑏′

〉
) then 𝑎′𝑔2 = 𝑎′𝑔

′
2 . By the rigidity of reduced words in〈

𝑎′, 𝑏′ | 𝑎′2𝑟
〉

observe that this equality only happens if 𝑔′1 = 𝑔1𝑎
′−2𝑟 and 𝑔′2 = 𝑎

′2𝑟𝑔2 for
some 𝑟 ∈ Z. Thus

𝑎′𝑔
′
2 = 𝑎′(𝑎′2𝑟𝑔2) =

(
𝑎′𝑎

′2𝑟
)𝑔2

= 𝑎′𝑔2

As required.

Case 2 The intersection of
〈
𝑎′, 𝑏′𝑎′𝑏′2

〉
and

〈
𝑎′, 𝑏′𝑎′𝑏′2

〉𝑔 for 𝑔 ∈ ⟨𝑎′, 𝑏′⟩ \
〈
𝑎′, 𝑏′𝑎′𝑏′2

〉
.

Let 𝑤̃ = 𝛼1𝛼2 · · ·𝛼𝑛 and 𝑤̃ℎ be cyclicly reduced words in
{
𝑎′±1, (𝑏′𝑎′𝑏′2)±1} for

some ℎ ∈ ⟨𝑎′, 𝑏′⟩. Observe by cycling letters in
{
𝑎′±1, 𝑏′±1} that we must have

ℎ ∈
〈
𝑎′, 𝑏′𝑎′𝑏′2

〉
. It follows that every element in the intersection is trivial unless

𝑔 ∈
〈
𝑎′, 𝑏′𝑎′𝑏′2

〉
.

Case 3 The intersection of
〈
𝑎′2, 𝑏′

〉
and

〈
𝑎′, 𝑏′𝑎′𝑏′2

〉𝑔 for 𝑔 ∈ ⟨𝑎′, 𝑏′⟩.

Let 𝑤̃1 = 𝛼1𝛼2 · · ·𝛼𝑛 be a cyclicly reduced word in
{
𝑎′±2, 𝑏′±1}and let 𝑤̃2 = 𝛽1𝛽2 · · · 𝛽𝑚

be a cyclicly reduced word in
{
𝑎′±1, (𝑏′𝑎′𝑏′2)±1}. Suppose that 𝑤̃1 and 𝑤̃2 are con-

jugate to each other. Observe that (𝑏′𝑎′𝑏′2)± can’t be a subword of any cyclic
permutation (in

{
𝑎′±1, 𝑏′±1}) of 𝑤̃1 and so 𝛽 𝑗 ≠ (𝑏′𝑎′𝑏′2)± for any 𝑗 . Hence 𝑤̃1

and 𝑤̃2 are (even) powers of 𝑎′. Essentially the same argument also shows that〈
𝑎′2, 𝑏′

〉
∩

〈
𝑎′, 𝑏′𝑎′𝑏′2

〉
=

〈
𝑎′2

〉
.
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The previous paragraph implies that if 𝑤 ∈
〈
𝑎′2, 𝑏′

〉
∩

〈
𝑎′, 𝑏′𝑎′𝑏′2

〉𝑔 then we must have
𝑤 = (𝑎′2𝑛)ℎ for some ℎ ∈ ⟨𝑎′, 𝑏′⟩. Now arguments from case 1 imply that either ℎ or
𝑎′ℎ must be in

〈
𝑎′2, 𝑏′

〉
as 𝑤 ∈

〈
𝑎′2, 𝑏′

〉
. Likewise arguments from case 2 implies that

𝑘−1 := ℎ𝑔−1 ∈
〈
𝑎′, 𝑏′𝑎′𝑏′2

〉
as 𝑤𝑔

−1 ∈
〈
𝑎′2, 𝑏′

〉
. So 𝑔 = 𝑘ℎ and without loss of generality

we have ℎ ∈
〈
𝑎′2, 𝑏′

〉
; as if 𝑎′ℎ ∈

〈
𝑎′2, 𝑏′

〉
we can just replace ℎ with 𝑎′−1ℎ and 𝑘 with

𝑘𝑎′.

We wish to show that if 𝑘ℎ = 𝑘′ℎ′ (where 𝑘, 𝑘′ ∈
〈
𝑎′, 𝑏′𝑎′𝑏′2

〉
and ℎ, ℎ′ ∈

〈
𝑎′2, 𝑏′

〉
)

then 𝑎′ℎ = 𝑎′ℎ
′
. Once we show this it follows that the intersection is cyclic and hence

finite as 𝑎′2 has finite order. Since
〈
𝑎′2, 𝑏′

〉
∩

〈
𝑎′, 𝑏′𝑎′𝑏′2

〉
=

〈
𝑎′2

〉
and by the rigidity

of reduced words in
〈
𝑎′, 𝑏′ | 𝑎′2𝑟

〉
we see that this only happens if 𝑘′ = 𝑘𝑎′−2𝑟 and

ℎ′ = 𝑎′2𝑟ℎ for some 𝑟 ∈ Z. Once again we get 𝑎′ℎ = 𝑎′ℎ
′

in the same way as in case 1.

□

Note that a hyperbolic group 𝐺 cannot satisfy Theorem 2.4.5. This is because there are
only finitely many conjugacy classes of finite subgroups of a hyperbolic group [6]; thus
there is some bound on the order of finite subgroups. We can then apply (𝑘,𝐶)-acylindrical
accessibility (Theorem 2.4.2) to get a bound here. One may then wonder if Conjecture 2.4.4
holds for hyperbolic groups; however a slight tweak to our example shows that this isn’t true
either, even for free groups.

Theorem 2.4.6. For any 𝑁 > 0 there is an action of 𝐹2 on a reduced tree which is 1–
acylindrical on non-cyclic subgroups and has 𝑁 orbits of edges.

Proof. The construction is mostly the same as Theorem 2.4.5 and so we will only detail
the changes. This time we define 𝐴 := ⟨𝑎⟩ � Z so that 𝐺 = ⟨𝑎, 𝑏⟩ � 𝐹2. Pick any 𝑁 > 0 and
define 𝑎𝑖 = 𝑎2𝑖 . We now define the tree and see that it satisfies the necessary conditions in the
same way as before. □





Chapter 3

Partially acylindrical actions

In the constructions in Theorem 2.4.5 and Theorem 2.4.6 we exploit chains of subgroups with
arbitrary length. More precisely we have the chain of subgroups ⟨𝑎0⟩ > ⟨𝑎1⟩ > · · · > ⟨𝑎𝑁⟩
and build the tree in such a way that each group in this chain fixes a vertex which isn’t fixed
by any of the larger ones. In this chapter we extend Theorem 2.4.2 from accessible except
on subgroups of bounded size to accessible except on a set of subgroups without long chains.

3.1 Statement of main theorems

Before stating the results of this section we need a series of basic definitions.

Definition 3.1.1. Let 𝐺 be a group and 𝑘 be a non-negative integer. Let Q be a class of
subgroups of 𝐺 which is closed under conjugation. An action of 𝐺 on a tree 𝑇 is (partially)
𝑘–acylindrical on (or over) Q if whenever some 𝐻 ∈ Q fixes every edge in a reduced edge
path 𝑝 then 𝑝 contains at most 𝑘 edges.

Remark 3.1.2. If Q isn’t specified then we will assume it contains all the non-trivial
subgroups of 𝐺; matching our previous definition of a 𝑘–acylindrical action. Observe
that an action is (𝑘,𝐶)–acylindrical if it’s 𝑘–acylindrical on the subgroups of 𝐺 with size
strictly greater than 𝐶.

Observe that an action being (partially) 𝑘–acylindrical prevents the unlimited subdivision
of edges which motived the definition of a reduced action. As such we can replace it with the
following weaker notion.

Definition 3.1.3. Suppose P is a class of subgroups of 𝐺 which is closed under conjugation.
A minimal action is said to be partially-reduced over P if either
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• 𝑇/𝐺 is a circle consisting of a single vertex and edge; or

• whenever a vertex 𝑣 of 𝑇 has stabiliser equal to that of an edge and which is contained
in a subgroup of a member of P then 𝑣/𝐺 has valence at least 3 in 𝑇/𝐺.

Remark 3.1.4. Observe that an action is reduced if it’s partially-reduced over the class of
all subgroups of 𝐺. We say an action is 𝐶–partially-reduced if it’s partially-reduced over the
class of all subgroups of size at most 𝐶.

The following gives us a way of measuring how “large” a given group is relative to P.

Definition 3.1.5. Let P be a conjugation invariant set of subgroups of 𝐺. For a subgroup
𝐾 ⩽ 𝐺 suppose there is some maximal integer 𝑛 such that there are 𝐻1, · · · , 𝐻𝑛 ∈ P with

𝐾 ⩽ 𝐻1 < 𝐻2 < · · · < 𝐻𝑛

We define the P–weight of 𝐾 to be 2𝑛 and we denote this quantity by 𝑊P,𝐾 . If chains of
arbitrary length exist we say the P–weight is equal to ∞. Finally if 𝐾 is not a subgroup of a
member of P we say that 𝐾 ⩽ 𝐺 is larger than P and define𝑊P,𝐾 = 1.

If 𝐺 acts on 𝑇 then we define the P–weight of each edge to be the P–weight of its
stabiliser. We say that P has height 𝑀 if the maximal weight of any 𝐾 ⩽𝐺 is 2𝑀; equivalently
if𝑊P,1 = 2𝑀 .

Remark 3.1.6. Since we insist that P is conjugation invariant we see that the P-weight of a
subgroup is conjugation invariant. As such we define the P-weight of a conjugacy class of
subgroups to be the P-weight of any representative of that class.

We now state an easier version of our main results. We will prove this before moving on
to the full theorems as it will demonstrate the important ideas of the argument without being
obscured by as many technical details.

Theorem 3.1.7. Let 𝐺 be a finitely presented group and let P be a set of subgroups for 𝐺
with height 𝑀 and which is closed under conjugation and taking subgroups. Suppose 𝐺 acts
on a tree 𝑇 and that this action is both 𝑘–acylindrical on groups larger than P and partially
reduced on groups in P. Then there is some 𝐶 (𝐺) (which depends only on 𝐺) such the that
number of edges of 𝑇/𝐺 is bounded above by (2𝑘 +1)2𝑀𝐶 (𝐺).

Our main results are two different generalisations of the above. In the first we extend the
result to certain cases where P isn’t closed under taking subgroups, which is necessary for
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including infinite subgroups in P. In the second we extend the result to groups which are
merely finitely generated instead of just those which are finitely presented. In order to state
the former we first need to make the following definitions.

Definition 3.1.8. Let P be a set of subgroups for 𝐺. Let 𝐾 be a subgroup of 𝐺. We say
𝐻 ∈ P is a minimal extension of 𝐾 (to P) if 𝐾 ⩽ 𝐻 and whenever 𝐻̃ ∈ P with 𝐾 ⩽ 𝐻̃ ⩽ 𝐻
then 𝐻̃ = 𝐻. We say that 𝐾 is P–closed if any subgroup of 𝐾 has a minimal extension which
is contained in 𝐾. We say an action of 𝐺 on a tree 𝑇 is P–closed if all its edge stabilisers
are P–closed.

Remark 3.1.9. If P has finite height then minimal extensions always exist for any group
which isn’t larger than P.

Definition 3.1.10. We say that P satisfies condition (†) if the following conditions hold.

• P has finite height.

• Suppose𝐺 acts on a tree 𝑇 and let 𝑒 be an edge of 𝑇 . Then for any subgroup 𝐾 ⩽ Stab𝑒
which is not larger than P there is a vertex 𝑣 of 𝑇 which is fixed by some minimal
extension of 𝐾 to P. In particular this always holds if each minimal extension is of
finite index as a finite index extension of an elliptically acting group also fixes a point
[21].

• If 𝐻1 and 𝐻2 are in P then so is 𝐻1 ∩𝐻2. An equivalent condition is that minimal
extensions to P are unique.

Example 3.1.11. Suppose that 𝐺 is a torsion-free hyperbolic group. Take P to be the set
of cyclic subgroups of 𝐺 which are root-closed. Equivalently P is the set of maximal cyclic
subgroups of 𝐺. This P satisfies (†) since every cyclic subgroup is contained (with finite
index) in a unique maximal cyclic subgroup. Moreover a tree which 𝐺 acts on is P–closed if
and only if all its edge stabilisers are root-closed.

We are now ready to state our main result, which as mentioned before is a pair of
extensions of Theorem 3.1.7.

Theorem 3.1.12. Let 𝐺 be a finitely generated group and let P be a set of subgroups for 𝐺
which is closed under conjugation and has height 𝑀. Suppose 𝐺 acts on a tree 𝑇 and that
this action is both 𝑘–acylindrical on groups larger than P and partially reduced on P. Then
the following statements hold.
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(a) Suppose 𝐺 is finitely presented, P satisfies (†) and 𝑇 is P–closed. Then there is
some integer 𝐶 (𝐺) such that the number of edges of 𝑇/𝐺 is bounded above by (2𝑘 +
1)2𝑀𝐶 (𝐺).

(b) If P is closed under taking subgroups then the number of edges of 𝑇/𝐺 is bounded
above by

(
2𝑘+1

2

)
2𝑀 (rank𝐺 −1). Moreover suppose either of the following conditions

hold

• the action on 𝑇 is reduced and 𝑘 > 1; or

• every edge stabiliser of 𝑇 is not in P;

then if𝐺 isn’t cyclic the number of edges of 𝑇/𝐺 is bounded above by 2𝑀 𝑘 (rank𝐺 −1).

Remark 3.1.13. In Theorem 3.1.7 and Theorem 3.1.12 (a) the bound 𝐶 (𝐺) is given by
Dunwoody’s resolution lemma (Theorem 2.1.12). Dunwoody’s resolution lemma holds
for so called almost finitely presented groups and this extends to both Theorem 3.1.7 and
Theorem 3.1.12 (a). (A group is almost finitely presented if it’s both finitely generated and
acts freely, simplicially and cocompactly on a simplicial complex 𝑋 with 𝐻1(𝑋,Z2) = 0.)

The following is an immediate consequence of Theorem 3.1.12 (b) and is an extension
of Weidmann’s result on (𝑘,𝐶)–acylindrical actions [25]. In particular this shows that the
number of prime factors is the limiting factor, not the absolute size of the group.

Corollary 3.1.14. Let 𝐺 be a finitely generated group and 𝑀 ∈ N. Suppose 𝐺 acts on a tree
𝑇 and that this action is both 𝑘–acylindrical on groups which are infinite or have at least 𝑀
prime factors and partially reduced on subgroups with at most 𝑀 −1 prime factors. (Where
the number of prime factors is counted without multiplicity.) Then the number of edges of
𝑇/𝐺 is bounded above by

(
2𝑘+1

2

)
2𝑀 (rank𝐺 −1). Moreover if either 𝑇 is reduced and 𝑘 > 1

or every edge stabiliser of 𝑇 is either infinite or has at least 𝑀 prime factors then the number
of edges of 𝑇/𝐺 is bounded above by 2𝑀 𝑘 (rank𝐺 −1).

Proof. Let P be the set of finite subgroups of 𝐺 whose order has at most 𝑀 −1 prime factors.
Observe that P has height of at most 𝑀 and is closed under taking subgroups. The result
now immediately follows from Theorem 3.1.12 (b). □

We also apply Theorem 3.1.12 (a) to a couple of specific cases to get some interesting
results. The first case is a generalisation of Example 3.1.11; where a torsion-free hyperbolic
group acts on a tree with root-closed edge stabilisers. We now allow the group to have finite
order elements and the root closed condition is replaced by one which says that the maximal
virtually Z subgroups of edge stabilisers should be “almost” maximal in 𝐺. In the second we
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consider splittings of RAAGs which are 𝑘–acylindrical on its non-abelian subgroups and the
maximal abelian subgroups of edge stabilisers should be maximal for their rank.

Definition 3.1.15. Let 𝐺 be a hyperbolic group. We say a virtually Z subgroup 𝐻 ⩽ 𝐺 is 𝑚-
almost maximal if whenever we have a virtually cyclic 𝐾 ⩽ 𝐺 with 𝐻 ⩽ 𝐾 then [𝐻 : 𝐾] ≤ 𝑚.
Let P𝑚 be the collection of subgroups of 𝐺 which are either finite or 𝑚-almost maximal.

Corollary 3.1.16. Suppose 𝐺 acts on a tree 𝑇 with an action which is partially reduced
on P𝑚 and 𝑘–acylindrical on groups larger than P𝑚. Suppose also that the action on 𝑇 is
P𝑚-closed. Then the number of edges of 𝑇/𝐺 is bounded above by (2𝑘 +1)𝐶′(𝐺). (Where
𝐶′(𝐺) = 2𝑛𝐶 (𝐺) for some 𝑛 ∈ N.)

Proof. Observe that P𝑚 is not closed under intersections and so doesn’t satisfy condition
(†). Instead define P′

𝑚 to be the set of subgroups which are a (finite) intersection of groups
in P𝑚. It’s clear that if P′

𝑚 has finite height then it satisfies (†). As a hyperbolic group has
only finitely many conjugacy classes of finite subgroups [4] we just need to show that chains
of infinite subgroups in P′

𝑚 have bounded length. It therefore suffices to show that given
any index in N there is a uniform bound on the number of subgroups of that index for any
virtually cyclic subgroup of 𝐺.

Recall that every virtually cyclic 𝐻 ⩽ 𝐺 is either of the form 𝐻 � 𝐾∗𝐾 where 𝐾 is finite
or 𝐻 � 𝐴 ∗𝐶 𝐵 where 𝐴, 𝐵,𝐶 are finite and 𝐶 is an index 2 subgroup of both 𝐴 and 𝐵 [17].
The general description of a subgroup of the fundamental group of a graph of groups [21]
now tells us there’s a bound on the number of subgroups of 𝐻 of a given index which depends
only on the index and the size of either 𝐾 or 𝐶 respectively. Again a hyperbolic group has
finitely many conjugacy classes of finite subgroups, which uniformly bounds the order of 𝐾
and 𝐶. This implies the result. □

Before stating the other application we briefly recall the definition of a RAAG.

Definition 3.1.17. Let Γ be a finite graph. Let 𝑣1, · · · , 𝑣𝑛 be the vertices of Γ. The right-angled
Artin group (RAAG) associated to Γ is the group 𝐴(Γ) where

𝐴(Γ) :=
〈
𝑣1, · · · , 𝑣𝑛 | [𝑣𝑖, 𝑣 𝑗 ] wherever there’s an edge between 𝑣𝑖 and 𝑣 𝑗 in Γ.

〉
Corollary 3.1.18. Let 𝐺 = 𝐴(Γ) be a RAAG. An abelian subgroup 𝐻 ⩽ 𝐺 is said to be rank
maximal if the following condition holds. Whenever an abelian subgroup 𝐾 ⩽ 𝐺 which
contains 𝐻 with finite index then we have 𝐾 = 𝐻. Let P be the collection of rank maximal
abelian subgroups of 𝐺. Suppose 𝐺 acts on a tree 𝑇 which is partially reduced on abelian
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subgroups and 𝑘–acylindrical on non-abelian subgroups. Suppose also that 𝑇 is P-closed.
Then the number of edges of 𝑇/𝐺 is bounded above by (2𝑘 +1)2𝑛𝐶 (𝐺) (where 𝑛 is the size
of the largest complete subgraph of Γ).

Proof. Recall that a RAAG acts freely and cocompactly on a simply connected CAT(0)-cube
complex 𝑋Γ whose dimension is equal to the size of the largest complete subgraph of Γ.
The flat torus theorem [7, Theorem II.7.1] says that an abelian subgroup 𝐻 ⩽ 𝐴(Γ) must act
properly and cocompactly by isometries on a Euclidean hyperplane of 𝑋Γ. In particular 𝐻
must have rank at most equal to the size of the largest complete subgraph of Γ. Hence P has
finite height.

Now every rank 2 subgroup ⟨𝑢, 𝑣⟩ ⩽ 𝐴(Γ) is either free abelian or free [1, Theorem 1.2].
Suppose 𝐻 ⩽ 𝐴(Γ) is an abelian subgroup, 𝑢 is a root of an element of 𝐻 and pick any 𝑣 ∈ 𝐻.
Since a power of 𝑢 is in 𝐻 and 𝐻 is abelian we see that ⟨𝑢, 𝑣⟩ cannot be non-abelian free and
so 𝑢 and 𝑣 must commute. Hence every member of P is root closed.

It remains to check that P satisfies condition (†), then we can apply Theorem 3.1.12 (a)
to get the result. Pick any 𝐻 ∈ P and 𝐾 ⩽ 𝐻 and let 𝑀 ∈ P be a minimal extension of 𝐾.
We must have 𝑀 ⩽ 𝐻 as 𝐻 is root closed and 𝐾 is a finite index subgroup of 𝑀 . Hence P is
P-closed and hence satisfies (†). □

Remark 3.1.19. For a general group 𝐺 it need not be the case that P as defined in Corol-
lary 3.1.18 satisfies (†). For example if 𝐺 � Z∗2ZZ then 𝐺 acts freely and cocompactly on
a CAT(0) space; but contains two rank maximal copies of Z whose intersection is another
copy of Z which is not rank maximal.

3.2 Forests of influence

We’ll now give an extremely rough outline of the core ideas of the argument. Suppose that 𝐺
acts on a minimal tree 𝑇 which is 𝑘–acylindrical on groups larger than P. Use Dunwoody’s
resolution lemma to obtain a tree 𝑇 ′ which has a bound on the number of edges and a map
Ψ : 𝑇 ′ → 𝑇 . If some edge of 𝑇 ′ (before subdividing) has a stabiliser larger than P then its
image in 𝑇 cannot have more than 𝑘 edges because of the acylindrical condition. Thus we
can collapse this edge in 𝑇 ′ and only collapse at most 𝑘 edges of 𝑇 .

Now subdivide 𝑇 ′ to make Ψ simplicial, but note that the initial vertices are ‘more impor-
tant’ in the sense that every vertex stabiliser is contained in one of these. So we can build
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a collection of disjoint subtrees for 𝑇 ′ by starting with this set of initial vertices and then
iteratively expanding to include vertices whose stabiliser is contained in the stabiliser of the
corresponding initial vertex.

Now we subdivide Ψ into folds using Stallings’ folding theorem (Theorem 2.2.2) and
apply the first fold. If every vertex stabilizer is still contained in a stabilizer for one of the
initial vertices then we have still have a collection of subtrees with the same properties as
before. Otherwise some vertex stabiliser isn’t contained in one of the initial ones. This only
happens if two of our subtrees gets folded together in some way which is unavoidable. We
then add this vertex to our set of “initial” ones and then rebuild our collection of subtrees
with the same properties as before. However we will see that the intersections of the sta-
bilisers between one of the original initial vertices and this “new initial vertex” is strictly
larger than the intersection of the original initial vertices. (See Figure 3.1 for an example
or Lemma 3.2.14 for a more precise statement.) If P has finite height this means that this
can only happen boundedly often before one of these intersections is larger than P and so
can collapse down a path of length at most 𝑘 . So either we can keep doing this until we
are left with a single point or we get a set of “initial” vertices for 𝑇 . In the latter case if 𝑇
is P–partially reduced we can find a bound for the number of edges using our set “initial”
vertices. (See Lemma 3.3.1.)

Type IIA
folds

𝑋1 𝑋2
𝐸

𝑋1 𝑋2
𝐸1 𝐸2

⟨𝐸1, 𝐸2⟩

Fig. 3.1 After applying a series of type II folds to an edge (with subdivisions) there may be a
vertex whose stabiliser isn’t contained in the stabiliser of either of the initial vertices. If this
happens we see that the intersection of stabilisers between this vertex and either of the initial
vertices must contain the original edge group as a proper subgroup.

In order to make the above precise we introduce the following notions.

Definition 3.2.1. Suppose 𝐺 acts on a tree 𝑇 . We call a subset of vertices 𝑆 a set of seed
vertices if it’s 𝐺–invariant and for every vertex 𝑣 (with non-trivial stabiliser) there is some
𝑢 ∈ 𝑆 with Stab𝑣 ⩽ Stab𝑢. In particular if the action on 𝑇 is free we also allow the empty set
to be a set of seed vertices, otherwise 𝑆 is necessarily non-empty.

Definition 3.2.2. Suppose 𝐺 acts on a tree 𝑇 . A 𝐺–invariant subgraph Γ ⊆ 𝑇 is a forest of
influence if the following conditions hold.
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• Γ deformation retracts to a non-empty set of seed vertices 𝑆, equivalently every
component of Γ contains exactly one member of 𝑆. We say that Γ is grown from 𝑆.

• If vertices 𝑢 and 𝑣 are in the same connected component of Γ with 𝑢 ∈ 𝑆 then Stab𝑣 ⩽
Stab𝑢. We call such a component the tree of influence of 𝑢, say that 𝑣 is influenced by
𝑢 and call the reduced edge path from 𝑣 to 𝑢 the branch of 𝑣.

• Every vertex of 𝑇 is contained in Γ.

Remark 3.2.3. The branch of any vertex 𝑣 is stabilised by Stab𝑣. As such the first edge on
the branch of 𝑣 must have the same stabiliser as 𝑣 as any edge cannot be fixed by more than
either of its endpoints.

Definition 3.2.4. Suppose 𝐺 acts on a tree 𝑇 and that Γ ⊆ 𝑇 is a forest of influence. We call
the edges of 𝑇 \Γ the connecting edges of Γ. Fix a representative set of connecting edges.
The connecting groups are the conjugacy classes of the stabilisers of this (any) representative
set of connecting edges, counted with multiplicity.

Remark 3.2.5. Observe that a connecting group is a conjugacy class and not a group.
However we will often abuse this notation by saying that a representative of a connecting
group (i.e. the stabiliser of a connecting edge) is the connecting group. The reason for this
strange definition and abuse of notation is that we want a finite collection of objects which
are uniquely determined, but also find it easier to work with groups directly.

The following simple observation allows to better visualise forests of influence.

Proposition 3.2.6. Suppose 𝐺 acts on a tree 𝑇 and that Γ ⊆ 𝑇 is a forest of influence grown
from the set of seed vertices 𝑆. Let 𝑣 be a vertex of 𝑇 and suppose it’s influenced by 𝑢 ∈ 𝑆
and let 𝑔 ∈ 𝐺. Then 𝑣 and 𝑔𝑣 are in the same tree of influence if and only if 𝑔 ∈ Stab𝑢.

Proof. If 𝑔 ∈ Stab𝑢 then the reduced edge paths [𝑢, 𝑣] and [𝑢,𝑔𝑣] are both contained in Γ;
so 𝑣 and 𝑔𝑣 are in the same tree of influence. Now suppose 𝑔 ∉ Stab𝑢 and that 𝑣 and 𝑔𝑣 are
in the same tree of influence. Observe that 𝑢 and 𝑔𝑢 are distinct seed vertices of 𝑆 and that Γ
contains the reduced edge paths [𝑢, 𝑣], [𝑔𝑢,𝑔𝑣] and [𝑣, 𝑔𝑣]. In particular 𝑢 and 𝑔𝑢 are in the
same component of Γ; contradicting the fact that each component of Γ contains exactly one
member of 𝑆. Hence if 𝑔 ∉ Stab𝑢 then 𝑣 and 𝑔𝑣 are in different trees of influence. □

Corollary 3.2.7. Suppose 𝐺 acts on a tree 𝑇 and that Γ ⊆ 𝑇 is a forest of influence. Then
Γ/𝐺 is a forest contained in 𝑇/𝐺.
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Proof. If Γ/𝐺 contains a non-trivial loop then this corresponds to a path in Γ between
vertices 𝑣 and ℎ𝑣 where ℎ acts hyperbolically on 𝑇 . But this is impossible because of
Proposition 3.2.6. □

In general there is not a distinguished choice for a forest of influence. However the
following proposition says there is something canonical lurking underneath. This will allow
us to move between different choices with minimal complications.

Proposition 3.2.8. Suppose that 𝑇 has finitely many orbits of vertices. Suppose also that Γ1

and Γ2 are forests of influence which are both grown from the same set of seed vertices 𝑆.
Then Γ1 and Γ2 have the same connecting groups. In other words the connecting groups are
determined by 𝑆.

Before proving this we’ll first we’ll define an elementary transformation of a forest of
influence. Take a forest of influence Γ and pick a vertex 𝑣 ∈ Γ\𝑆. Suppose that 𝑣 is contained
in the tree of influence of 𝑢 and let 𝑒1 be the first edge on the branch of 𝑣. Observe that
Stab𝑒1 = Stab𝑣 and let 𝑒2 be a connecting edge with endpoint 𝑣 and with Stab𝑒2 = Stab𝑣.
(If no such 𝑒2 exists then we cannot apply an elementary transformation at the vertex 𝑣.) We
now define Γ′ := (Γ \𝐺 {𝑒1}) ∪𝐺 {𝑒2}. In other words we replace the orbit of 𝑒1 in Γ with
the orbit of 𝑒2 in Γ′. (See Figure 3.2.) Since Stab𝑒1 = Stab𝑒2 = Stab𝑣 we see that Γ′ is also a
forest of influence grown from 𝑆 and that both Γ and Γ′ have the same connecting groups.

𝑢1

𝑣
𝑒1 𝑒2

𝑢2

Γ

𝑢1

𝑣
𝑒1 𝑒2

𝑢2

Γ′

Fig. 3.2 An example of an elementary transformation. The edge 𝑒1 is removed and replaced
with 𝑒2. For Γ′ to be a forest of influence we must have Stab𝑒1 = Stab𝑒2 = Stab𝑣.

Proposition 3.2.8 is now an immediate consequence of the following.

Lemma 3.2.9. Suppose that 𝑇 has finitely many orbits of vertices and that Γ1 and Γ2 are
forests of influence which are both grown from the same set of seed vertices 𝑆. Then we can
apply a finite series of elementary transformations to Γ1 to obtain Γ2.
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Proof. Let 𝑑 (Γ1,Γ2) be the number of (orbits of) vertices which are in trees of influence of
different seed vertices in Γ1 and Γ2. If 𝑑 (Γ1,Γ2) = 0 then Γ1 = Γ2 and there is nothing to show.

If 𝑑 (Γ1,Γ2) > 0 pick a vertex 𝑣 which is in the tree of influence of 𝑢1 in Γ1 and of
𝑢2 ≠ 𝑢1 in Γ2. Let 𝑒′2 be the final edge in the branch of 𝑣 (in Γ2) which is not contained
in Γ1 and so is a connecting edge of Γ1. Let 𝑣′ be the endpoint of 𝑒′2 which is not in the
tree of influence of 𝑢2 in Γ1. Observe that 𝑣′ is in the tree of influence of 𝑢2 in Γ2 as 𝑣
is. Suppose that 𝑣′ is in the tree of influence of 𝑢′1 in Γ1 and let 𝑒′1 be the first edge on the
branch of 𝑣′ (in Γ1). Since Stab𝑣′ = Stab𝑒′1 = Stab𝑒′2 we can apply an elementary transfor-
mation to Γ1 by removing the orbit of 𝑒′1 and adding the orbit of 𝑒′2 to get Γ′1. (See Figure 3.3.)

𝑣

𝑢2𝑢1

𝑣′

𝑢′1

𝑒1 𝑒2

Γ1

𝑒′1
𝑒′2

Γ2

Fig. 3.3 An example of a situation where 𝑑 (Γ1,Γ2) > 0. By replacing 𝑒′1 with 𝑒′2 in Γ1 we
can make it “more similar” to Γ2. This idea of how similar two forests of influence are is
formalised by the metric 𝑑.

If we can show that 𝑑 (Γ′1,Γ2) < 𝑑 (Γ1,Γ2) then we are done by induction. Observe that
𝑣′ is in the tree of influence of 𝑢2 in Γ′1 and Γ2 but not in Γ1. Thus we just need to show that
any vertex which is influenced by the same seed vertex in Γ1 and Γ2 is also influenced by
the same one in Γ′1. This holds because the only vertices whose influencing vertex changed
under the elementary transformation were those in (the orbit of) the tree of influence of 𝑢′1 in
Γ1 at and beyond 𝑣′. These can’t be influenced by 𝑢′1 in Γ2 as 𝑣′ is influenced by 𝑢2 in Γ2

and so the tree of influence of 𝑢′1 in Γ2 cannot contain them. □

Recall the definition of the P–weight of a subgroup 𝐾 ⩽ 𝐺 from Definition 3.1.5 as
𝑊P,𝐾 ≤ 2𝑁 where 𝑁 is the length of the longest chain of groups in P which contain 𝐾 . From
this definition we note that the following properties are all obvious.

Proposition 3.2.10. Let P be a conjugation invariant set of subgroups of 𝐺.

(a) If P has height 𝑀 then𝑊P,𝐾 ≤ 2𝑀 for any 𝐾 ⩽ 𝐺.
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(b) 𝐾 ⩽ 𝐺 has P–weight 1 if and only if it’s larger than P.

(c) If 𝐻 ∈ P and 𝐾 < 𝐻 ≤ 𝐺 then𝑊P,𝐻 ≤ 1
2𝑊P,𝐾 .

We will now extend our definition of P–weight to sets of seed vertices. Proposition 3.2.8
ensures this is well defined.

Definition 3.2.11. If 𝐺 acts on a tree 𝑇 and 𝑆 is a non-empty set of seed vertices for 𝑇 then
we define its P–weight𝑊P,𝑆 to be the sum of the P–weights of the corresponding connecting
groups (and ∞ if any of the connecting groups have infinite P–weight). If 𝑆 is empty then we
instead define𝑊P,𝑆 := (𝛽1(𝑇/𝐺) −1)𝑊P,1.

Remark 3.2.12. The case of a free action is special because the stabiliser of each vertex is
trivial. As there are no “interesting” stabilisers we aren’t really missing anything by just
forgoing seed vertices entirely. If the action is free and 𝑆 is non empty then we see that

𝑊P,𝑆 := (𝛽1(𝑇/𝐺) + |𝑆/𝐺 | −1)𝑊P,1.

This justifies the definition of𝑊P,𝑆 for empty 𝑆 by setting |𝑆/𝐺 | = 0 in the above equation.
On a more practical level we allow the empty set to be a set of seed vertices for a free action
to prevent an otherwise guaranteed drop in P–weight if a fold causes a free action to become
non-free. (See Lemma 3.2.15.)

With this in hand we are ready to state the key lemma. From this Theorem 3.1.7 will
follow quickly.

Lemma 3.2.13. Suppose𝐺 is a non-cyclic countable group. Let P be a conjugation invariant
set of subgroups of 𝐺 which is closed under taking subgroups. Let 𝐺 act on a tree 𝑇 where
this action is both P–partially-reduced and 𝑘–acylindrical on a subgroups larger than P.
Let 𝐺 act on another tree 𝑇 ′ and suppose that there is a 𝐺-equivariant combinatorial map
Ψ : 𝑇 ′ → 𝑇 . Suppose also that 𝑇 ′ has a set of seed vertices 𝑆′ with finite P–weight 𝑊P,𝑆′.
Then 𝑇/𝐺 has at most

(
2𝑘+1

2

)
𝑊P,𝑆′ edges.

The remainder of this section as well as the entirety of Section 3.3 will be dedicated to
providing the necessary tools to prove this.

Recall that our plan involves decomposing Ψ into folds. The following says that we can
recursively find a nice set of seed vertices for each intermediate step.

Lemma 3.2.14. Suppose that 𝛼 : 𝑅→ 𝑅̃ is a folding map between trees acted on by some
group 𝐺. Suppose that 𝑆 is a non-empty set of seed vertices for 𝑅 where all of the connecting
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groups are in P. Then there is a set of seed vertices 𝑆 for 𝑅̃ with 𝛼(𝑆) ⊆ 𝑆 and𝑊P,𝑆 ≤𝑊P,𝑆.
Moreover if𝑊P,𝑆 =𝑊P,𝑆 then 𝛼 |𝑆 is injective.

Proof. Suppose that 𝛼 folds together the edges 𝑒1 = [𝑥, 𝑦1] and 𝑒2 = [𝑥, 𝑦2]. Suppose
𝛼(𝑒1) = 𝛼(𝑒2) = 𝑒′ and 𝛼(𝑦1) = 𝛼(𝑦2) = 𝑦′. Let 𝑦𝑖 be in the tree of influence of 𝑢𝑖 and if
𝑦𝑖 ≠ 𝑢𝑖 we also let 𝑓𝑖 be the first edge in the branch of 𝑦𝑖. We will split into cases depending
on if there is a forest of influence containing 𝑒1 and/or 𝑒2. In the first two cases, (as well as
for 𝑖 = 2 in the third and final case), we will assume that 𝑦𝑖 ≠ 𝑢𝑖 and so 𝑓𝑖 exists. The cases
where 𝑦𝑖 = 𝑢𝑖 turn out to be essentially the same except the lack of 𝑓𝑖 sometimes causes𝑊P,𝑆
to be smaller.

Case 1 There is a forest of influence Γ containing both 𝑒1 and 𝑒2.

𝑦1

𝑦2

𝑒1

𝑒2𝑢1

𝑥

𝑢1

𝑥 𝑦′

𝑒′𝛼

𝑓1

𝑓1

𝑥

𝑦′ 𝑢1

𝑒′
𝛼

𝑦1
𝑢1

𝑦2

𝑥

𝑒1

𝑒2

𝑓1
𝑓1

Fig. 3.4 The two pictures that can arise when Γ contains both 𝑒1 and 𝑒2. In either case Stab𝑢1
contains Stab𝑥, Stab 𝑦1 and Stab 𝑦2 and hence also contains Stab 𝑦′.

The fold cannot be of type III as otherwise 𝑦1 and 𝑦2 = ℎ𝑦1 would be in the same tree
of influence, contradicting Proposition 3.2.6. So 𝛼(Γ) is a forest of influence for 𝑅̃
which is grown from 𝛼(𝑆). The connecting edges of Γ are untouched by 𝛼 and so 𝑆
and 𝛼(𝑆) have the same connecting groups.

Case 2 There is no forest of influence containing either 𝑒1 or 𝑒2.

Pick any forest of influence Γ. Observe that 𝑆 = 𝛼(𝑆) ∪𝐺 {𝑦′} is a set of seed ver-
tices which grows into 𝛼(Γ) \𝐺 { 𝑓1, 𝑓2}. If Stab𝑒𝑖 = Stab 𝑓𝑖 then we could apply an
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𝛼

𝑦1
𝑢1

𝑦2

𝑥

𝑒1

𝑒2
𝑢2

𝑓1

𝑓2

𝑢1

𝑢2

𝑦′

𝑥

𝑒′

𝑓1

𝑓2

Fig. 3.5 The picture that arises when Γ cannot possibly contain either 𝑒1 or 𝑒2. Observe that
Stab𝑒𝑖 < Stab𝑢𝑖. After applying the fold we remove the edges 𝑓𝑖 (if they exist) from the
forest of influence. Separate arguments depending on the type of fold are now required to
show that this doesn’t increase the P-weight. (In this diagram and the ones which follow the
dashed lines indicate a connecting edge.)

elementary transformation to get a new forest of influence which includes 𝑒𝑖 instead of
𝑓𝑖. However this contradicts our assumption that 𝑒𝑖 is not contained in any forest of
influence. Hence Stab𝑒𝑖 < Stab 𝑓𝑖 and so𝑊 𝑓𝑖 ,P ≤ 1

2𝑊𝑒𝑖 ,P by Proposition 3.2.10 (c).

If 𝛼 is a fold of type I then 𝑒1, 𝑒2, 𝑓1 and 𝑓2 are pairwise inequivalent. Moreover 𝑒′

contains the image of both 𝑒1 and 𝑒2, so𝑊𝑒′,P ≤ min(𝑊𝑒1,P ,𝑊𝑒2,P) and hence

𝑊𝑆,P −𝑊𝑆,P = 𝑊𝑒1,P +𝑊𝑒2,P −𝑊 𝑓1,P −𝑊 𝑓2,P −𝑊𝑒′,P

≥ 1
2
𝑊𝑒1,P + 1

2
𝑊𝑒2,P −min(𝑊𝑒1,P ,𝑊𝑒2,P)

≥ 0

If 𝛼 is a fold of type II then 𝑒1 is equivalent to 𝑒2 and 𝑓1 is equivalent to 𝑓2. Additionally
Stab𝑒′ > Stab𝑒1. So by Proposition 3.2.10 (c) we have

𝑊𝑆,P −𝑊𝑆,P = 𝑊𝑒1,P −𝑊 𝑓1,P −𝑊𝑒′,P

≥ 𝑊𝑒1,P − 1
2
𝑊𝑒1,P − 1

2
𝑊𝑒1,P

= 0
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Now assume 𝛼 is a fold of type III. We see that 𝑓1 and 𝑓2 are equivalent, while 𝑒1 and
𝑒2 are inequivalent. Thus

𝑊𝑆,P −𝑊𝑆,P = 𝑊𝑒1,P +𝑊𝑒2,P −𝑊 𝑓1,P −𝑊𝑒′,P

≥ 𝑊𝑒1,P −𝑊 𝑓1,P

≥ 𝑊𝑒1,P − 1
2
𝑊𝑒1,P

> 0

Case 3 There is a forest of influence Γ containing 𝑒1 but not 𝑒2; also there isn’t one which
contains both of them.

Note that 𝛼 cannot be a fold of type II (as then the 𝑒𝑖 are equivalent) or type IIIB (as
then both 𝑒𝑖 are connecting edges by Corollary 3.2.7). We will split into five subcases;
corresponding to combinations of whether or not 𝑓1 is equal to 𝑒1 (if it exists at all)
and whether or not Stab 𝑦1 is a subgroup of Stab 𝑦2.

Case 3ai 𝑦1 ≠ 𝑢1, 𝑒1 = 𝑓1 and Stab 𝑦1 ⩽ Stab 𝑦2.

𝑦1
𝑦2

𝑒1 = 𝑓1 𝑒2

𝑢1

𝑥

𝑢1

𝑥 𝑦′𝑒′

𝛼

𝑢2

𝑓2 𝑓2

𝑢2

Fig. 3.6 The picture that arises when Γ contains 𝑒1 but not 𝑒2, the branch of 𝑦1 contains 𝑥,
Stab 𝑦2 contains Stab 𝑦1 and the fold is of type I. Here we take the image of each connecting
edge to still be a connecting edge.

If the fold is of type I then observe that 𝑆 := 𝛼(𝑆) is a set of seed vertices for 𝑅̃. Observe
that the image of the connecting edges of Γ are the connecting edges of a forest of
influence grown from 𝑆; hence the P–weight can’t increase. If instead the fold is of
type IIIA then 𝑆 := 𝛼(𝑆) ∪𝐺 {𝑦′} is a set of seed vertices. In this case we have a forest
of influence Γ̃ := 𝛼(Γ) \𝐺 { 𝑓2}. Since the fold is of type III the 𝑦𝑖 are in the same orbit
and hence the 𝑓𝑖 are as well. Hence the connecting edges of Γ̃ are the image of the
connecting edges of Γ with the orbit of 𝑒2 removed and the orbit of 𝛼( 𝑓1) added. (This
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gives the same picture as the one seen in Figure 3.7.) Since Stab𝑒2 ⩽ Stab 𝑓2 we see
that the P–weight can’t increase in this case either.

Case 3aii 𝑦1 ≠ 𝑢1, 𝑒1 = 𝑓1 and Stab 𝑦1 is not contained in Stab 𝑦2.

𝑦1
𝑦2

𝑒1 = 𝑓1 𝑒2

𝑢1

𝑥

𝑢1

𝑥 𝑦′𝑒′

𝛼

𝑢2

𝑓2 𝑓2

𝑢2

Fig. 3.7 The picture that arises when Γ contains 𝑒1 but not 𝑒2, the branch of 𝑦1 contains 𝑥
and Stab 𝑦2 doesn’t contain Stab 𝑦1. Here we take the new connecting edges to be the image
of the old connecting edges together with 𝑓2 (if it exists).

If the fold is of type IIIA then proceed as in case 3ai. Otherwise observe 𝑆 = 𝛼(𝑆) ∪
𝐺 {𝑦′} is a set of seed vertices for 𝑅̃ and that Γ̃ = 𝛼(Γ) \𝐺 {𝑒′, 𝑓2} is a forest of influence
grown from 𝑆. Since Stab 𝑦1 is not contained in Stab 𝑦2 and Stab 𝑦1 = Stab𝑒1 we have
Stab𝑒2 < Stab𝑒′. We also have Stab𝑒2 < Stab 𝑓2 because otherwise we could apply
an elementary transformation to Γ to get a new forest of influence which is in case 1.
Hence by Proposition 3.2.10 (c)

𝑊𝑆,P −𝑊𝑆,P = 𝑊𝑒2,P −𝑊 𝑓2,P −𝑊𝑒′,P

≥ 𝑊𝑒2,P − 1
2
𝑊𝑒2,P − 1

2
𝑊𝑒2,P

= 0

Case 3bi 𝑦1 ≠ 𝑢1, 𝑒1 ≠ 𝑓1 and Stab 𝑦1 ⩽ Stab 𝑦2.

If the fold is of type I then 𝑆 := 𝛼(𝑆) is a set of seed vertices for 𝑅̃. If instead the fold
is of type IIIA then 𝑆 := 𝛼(𝑆) ∪𝐺 {𝑦′} is a set of seed vertices instead. In either case
observe that 𝛼(Γ) \𝐺 { 𝑓1} is a forest of influence grown from 𝑆. (Note that if the fold
is of type IIIA then 𝑓1 and 𝑓2 are in a common orbit, so 𝑓2 also becomes a connecting
edge.) Since Stab𝑒2 ⩽ Stab𝑥 ⩽ Stab 𝑓1 we have𝑊𝑆,𝐶 ≤𝑊𝑆,𝐶 .

Case 3bii 𝑦1 ≠ 𝑢1, 𝑒1 ≠ 𝑓1 and Stab 𝑦1 is not contained in Stab 𝑦2.
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𝛼
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Fig. 3.8 The picture that arises when Γ contains 𝑒1 but not 𝑒2, the branch of 𝑦1 doesn’t
contain 𝑥 and Stab 𝑦2 contains Stab 𝑦1. Here we take the new forest of influence to be the
image of the old one with 𝑓1 removed.

𝛼
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𝑢1

𝑦2

𝑥

𝑒1

𝑒2
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𝑥
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Fig. 3.9 The picture that arises when Γ contains 𝑒1 but not 𝑒2, the branch of 𝑦1 doesn’t
contain 𝑥 and Stab 𝑦1 doesn’t contain Stab 𝑦2. Here we take the new forest of influence to be
the image of the old one with both 𝑓1 and (if it exists) 𝑓2 removed.

If the fold is of type IIIA then proceed as in case 3bi. Otherwise observe that 𝑆 =
𝛼(𝑆) ∪𝐺 {𝑦′} is a set of seed vertices which grows into a forest of influence Γ̃ =

𝛼(Γ) \𝐺 { 𝑓1, 𝑓2}. If Stab𝑒2 = Stab 𝑓2 then we could apply an elementary transformation
to get both 𝑒1 and 𝑒2 in the same forest of influence and so we are in case 1; hence
Stab 𝑓2 < Stab𝑒2. Also since Stab 𝑦1 is not contained in Stab 𝑦2 and Stab𝑥 ⩽ Stab 𝑦1

we have

Stab𝑒2 = Stab 𝑦1 ∩Stab 𝑦2

< Stab 𝑦1

= Stab 𝑓1.
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Hence by Proposition 3.2.10 (c)

𝑊𝑆,P −𝑊𝑆,P = 𝑊𝑒2,P −𝑊 𝑓1,P −𝑊 𝑓2,P

≥ 𝑊𝑒2,P − 1
2
𝑊𝑒2,P − 1

2
𝑊𝑒2,P

= 0

Case 3c 𝑦1 = 𝑢1 and so 𝑓1 doesn’t exist.

𝛼

𝑦1 = 𝑢1

𝑦2

𝑥

𝑒1

𝑒2
𝑢2

𝑓2 𝑢2

𝑦′

𝑥

𝑒′
𝑓2

Fig. 3.10 The picture that arises when 𝑦1 = 𝑢1. Here we take the new forest of influence to be
the image of the old one with 𝑓2 removed (if it exists).

Observe that 𝑆 = 𝛼(𝑆) is a set of seed vertices which grows into a forest of influence
Γ̃ = 𝛼(Γ) \𝐺 { 𝑓2}. Since Stab𝑒2 ⩽ Stab 𝑦2 = Stab 𝑓2 we have𝑊𝑒2,P ≥𝑊 𝑓2,P and so the
P–weight can’t increase.

□

Recall that a free action is a special case as we allow the set of seed vertices to be empty.
Thus we must deal with this case separately.

Lemma 3.2.15. Suppose that 𝛼 : 𝑅 → 𝑅̃ is a fold and 𝑆 is a set of seed vertices for 𝑅.
Suppose also that P has finite height. If 𝐺 acts freely on 𝑅 but not on 𝑅̃ then there is a set of
seed vertices 𝑆 for 𝑅̃ such that𝑊P,𝑆 ≤𝑊P,𝑆.

Proof. Recall from Definition 3.1.5 that we must have𝑊P,𝑆 ≥ (𝛽1(𝑅/𝐺) −1)𝑊P,1. As the
action on 𝑅̃ is non-free and 𝛼 is a fold it follows that 𝛼 is a fold of type III. Moreover all
the edge stabilisers of 𝑅̃ are trivial and there is a single vertex 𝑢 (up to equivalence) with a
non-trivial stabiliser. We define 𝑆 :=𝐺 {𝑢}. Since all the connecting groups of 𝑆 are trivial we
get that𝑊P,𝑆 = 𝛽1(𝑅̃/𝐺)𝑊P,1. Since 𝛼 is a fold of type III we have 𝛽1(𝑅̃/𝐺) = 𝛽1(𝑅/𝐺) −1
and so the result follows. □

Now suppose that we have a map Ψ : 𝑇 → 𝑇 ′ where 𝑇 has a set of seed vertices 𝑆 and the
action on 𝑇 ′ is 𝑘-acylindrical on groups larger than P. If a connecting group in 𝑆 is larger
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than P then there are a pair of seed vertices, say 𝑢1 and 𝑢2, whose images in 𝑇 ′ are separated
by distance at most 𝑘 . Since we have control of the length of the path between these images
we wish to collapse it to avoid unnecessary extra counting. However in general the image of
the path between 𝑢1 and 𝑢2 need not lie in the path between Ψ(𝑢1) and Ψ(𝑢2). For our core
argument to work we require this containment and the following says we can do this with
some extra folds.

Lemma 3.2.16. Let Ψ : 𝑇 → 𝑇 ′ be a simplical map where the action on 𝑇 ′ is 𝑘-acylindrical
on groups larger than P. Let 𝑆 be a set of seed vertices for 𝑇 where at least one of the
connecting groups are larger than P. Then there are 𝑇 , 𝑇 ′ and a simplical Ψ : 𝑇 → 𝑇 ′ such
that the action on 𝑇 ′ is 𝑘-acylindrical on groups larger than P, there’s a set of seed vertices
𝑆 for 𝑇 with𝑊P,𝑆 ≤𝑊P,𝑆′ −1 and 𝑇 ′ has at most 𝑘 more edges than 𝑇 ′.

Proof. Let 𝑒 be a connecting edge of P–weight 1, (in some forest of influence Γ), which
connects the trees of influence of 𝑢1 and 𝑢2. Let 𝛾 be the reduced edge path between 𝑢1 and
𝑢2. Recall statement (★) from the proof of Stallings folding theorem (Theorem 2.2.2) and
apply it to 𝛾 to get a composition of folds 𝜌 : 𝑇 → 𝑇 so that the induced map Ψ̃ : 𝑇 → 𝑇 ′

is locally injective on 𝜌(𝛾). The intersection of the stabilisers for 𝑢1 and 𝑢2 is larger than
P since 𝑒 has P–weight 1. So since the action on 𝑇 ′ is 𝑘–acylindrical on groups larger
than P the distance between the 𝜌(𝑢𝑖) is at most 𝑘 . Hence we can collapse at most 𝑘 edges
of 𝑇 ′ to get a new tree 𝑇 ′ and an induced simplicial map Ψ : 𝑇 → 𝑇 ′. (The action on 𝑇 ′ is
𝑘–acylindrical on groups larger than P as it is formed by collapsing edges of 𝑇 ′, a process
which cannot increase the diameter of a fixed point set.) Let 𝑆 be the image of 𝑆 in 𝑇 . By
construction we see that the stabiliser of every edge in 𝑇 is either conjugate into either a
stabiliser of a member of 𝑆 or ⟨Stab𝑢1,Stab𝑢2⟩. Hence 𝑆 is a set of seed vertices with
𝑊P,𝑆 ≤𝑊P,𝑆 −1 as the image of the connecting edges of Γ except the orbit of 𝑒 is a set of
connecting edges for 𝑆. □

3.3 Building partially reduced trees

It remains to bound the number of edges of a 𝑘–acylindrical action on a tree given a set of
seed vertices.

Lemma 3.3.1. Let P be a class of subgroups for a group𝐺 which is closed under conjugation.
Suppose 𝐺 acts on a tree 𝑇 and that this action is both partially-reduced on P and 𝑘–
acylindrical on groups larger than P. Suppose that 𝑆 is a non-empty set of seed vertices for
𝑇 with 𝑛 orbits of connecting edges. Then 𝑇/𝐺 has at most (2𝑘 +1)𝑛 edges. Furthermore if
𝑇 is reduced and 𝑘 > 1 then 𝑇/𝐺 has at most 2𝑘𝑛 edges.
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Proof. First observe that we can assume that each connecting group is a subgroup of a group
in P. Indeed suppose that there are 𝑟 > 0 connecting groups which are larger than P. For
each of the corresponding connecting edges we see that path consisting of it together with
the branches of both its endpoints must be fixed by the connecting group, which is larger
than P. Since the action is 𝑘–acylindrical on groups larger than P each of these paths have
length at most 𝑘 . Thus we can collapse these paths to get a new tree with at most 𝑘𝑟 fewer
edges and a set of seed vertices with 𝑟 fewer connecting groups.

Let 𝐹 ⊂ 𝑇 be the forest consisting of 𝑆 together with every edge and vertex whose sta-
biliser is larger than P. Since all of the connecting groups are contained in a member of P we
see that 𝐹 must deformation retract to 𝑆. Let 𝑅 ⊆ 𝑇 be a maximal subtree where every edge
stabiliser is contained in a member of P. Let 𝐴 = 𝑅∩𝐹, the vertices with stabiliser larger
than P and seed vertices which are in 𝑅. We define 𝑅̃ as the union of 𝑅 and the branches of
each 𝑣 ∈ 𝐴.

𝐹 𝑅

𝐴

𝑆

Fig. 3.11 An example of what this construction may look like in the graph of groups. Here
we see that 𝑝 := |𝐴| = 3, 𝜒(𝑅/𝐺) = 0 and that 𝑅 contains three orbits of connecting edges;
the bottom right one and any two of the other three in 𝑅/𝐺. Note the leftmost member of
𝐴 has valence 1 in 𝑅/𝐺 and isn’t in 𝑆, so if the tree is reduced 𝐹 must extend beyond it.
Because of this the length of the branch of this vertex is actually bounded above by 𝑘 −1
instead of just the usual 𝑘 .

Let |𝐴/𝐺 | = 𝑝 and suppose 𝑅 contains 𝑞 connecting edges (up to equivalence) of some
forest of influence Γ grown from 𝑆. Now the branch of each vertex of 𝑅 must contain a vertex
in 𝐴. Moreover this is unique as two distinct members of 𝐴 are influenced by different seed
vertices and so must lie in different components of Γ. Therefore 𝑅∩Γ deformation retracts
to 𝐴 and so 𝜒(𝑅/𝐺) = 𝑝− 𝑞.

Recall from Remark 3.2.3 that every non-seed vertex has an edge with equal stabiliser to
it and hence every vertex of 𝑅/𝐺 with valence 1 or 2 (in 𝑅/𝐺) must be in 𝐴 as 𝑇 is partially
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reduced on P. Suppose that 𝑅/𝐺 has 𝑛𝑖 vertices of valence 𝑖 and observe that 𝑝 ≥ 𝑛1 +𝑛2.
Observe that 𝜒(𝑅/𝐺) = 1

2 (𝑛1 −𝑛3 −2𝑛4 − · · · ) and hence
∑
𝑖≥3
𝑛𝑖 ≤ 𝑛1 −2𝜒(𝑅/𝐺). So

#(edges of 𝑅/𝐺) = #(vertices of 𝑅/𝐺) − 𝜒(𝑅/𝐺)
≤ 2𝑛1 +𝑛2 −3𝜒(𝑅/𝐺)

Now the length of the branch of each 𝑣 ∈ 𝐴 is at most 𝑘 as the action is 𝑘–acylindrical on P.
(If 𝑣 ∈ 𝐴 \ 𝑆 then Stab𝑣 is lager than P and fixes its branch.) Hence we see that

#(edges of 𝑅̃/𝐺) ≤ #(edges of 𝑅/𝐺) + 𝑘 𝑝
≤ 2𝑛1 +𝑛2 + 𝑘 𝑝−3𝜒(𝑅/𝐺)
≤ (𝑘 +2)𝑝−3𝜒(𝑅/𝐺)

We now split into cases depending on the value of 𝜒(𝑅/𝐺). First suppose that 𝜒(𝑅/𝐺) ≤ 0.
Then 𝑞 ≥ 𝑝 and so

#(edges of 𝑅̃/𝐺) ≤ (𝑘 +2)𝑝−3𝜒(𝑅/𝐺)
= (𝑘 −1)𝑝 +3(𝑝− 𝜒(𝑅/𝐺))
≤ (𝑘 −1)𝑞 +3𝑞

= (𝑘 +2)𝑞

Otherwise 𝜒(𝑅/𝐺) = 1 and we have 𝑞 = 𝑝−1 and so

#(edges of 𝑅̃/𝐺) ≤ (𝑘 +2)𝑝−3𝜒(𝑅/𝐺)
≤ (𝑘 +2) (𝑞 +1) −3

= (𝑘 +2)𝑞 + (𝑘 −1)
≤ (𝑘 +2)𝑞 + (𝑘 −1)𝑞
= (2𝑘 +1)𝑞

Let 𝑇 be the tree obtained by collapsing each edge of 𝐺𝑅̃ and let 𝜋 : 𝑇 → 𝑇 . Observe
that 𝑆 := 𝜋(𝑆) is a set of seed vertices for 𝑇 and that the number of connecting edges of 𝑆 is
𝑛− 𝑞. Hence by induction 𝑇/𝐺 has at most (2𝑘 +1) (𝑛− 𝑞) edges. Combining this with the
above we see that 𝑇/𝐺 has at most (2𝑘 +1)𝑛 edges as required.

It remains to show the improved bound if 𝑇 is reduced and 𝑘 > 1. In this case any 𝑣 ∈ 𝐴\𝑆
where 𝑣/𝐺 has valence 1 in 𝑅/𝐺 must be the endpoint of at least 2 edges not contained in
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𝑅/𝐺. This means that the path from 𝑣 to the corresponding 𝑢 ∈ 𝑆 actually has length at most
𝑘 −1. Hence in this case

#(edges of 𝑅̃/𝐺) ≤ #(edges of 𝑅/𝐺) + 𝑘 (𝑝−𝑛1) + (𝑘 −1)𝑛1

≤ (𝑘 +1)𝑛1 +𝑛2 + 𝑘 (𝑝−𝑛1) −3𝜒(𝑅/𝐺)
≤ (𝑘 +1)𝑝−3𝜒(𝑅/𝐺)

The rest of the calculations are essentially the same as before and so are omitted for the
sake of brevity. We will note however that we only actually obtain the improved bound if
𝑘 > 1. (In the case where 𝜒(𝑅̃/𝐺) = 1 we need (𝑘 − 2) ≤ (𝑘 − 2)𝑞. Since 𝑞 ≥ 1 we need
𝑘 ≥ 2.) □

We now have all the pieces we need to prove Lemma 3.2.13 and hence Theorem 3.1.7.

Proof of Lemma 3.2.13. We will proceed by induction on𝑊P,𝑆′. If𝑊P,𝑆′ = 0 then since 𝐺
isn’t isomorphic to Z the action isn’t free and so there is a single seed vertex in 𝑇 ′, which
must be fixed by 𝐺. The image of this vertex in 𝑇 is fixed by 𝐺 and so as 𝑇 is minimal it
must just consist of a single vertex.

So without loss of generality𝑊P,𝑆′ > 0. Start by using Stallings folding theorem (Theo-
rem 2.2.2) to decompose 𝛼 into folds 𝛼𝑖 : 𝑇𝑖−1 → 𝑇𝑖 and let 𝑆0 := 𝑆′. Recursively for each
𝑖 > 0 if 𝑆𝑖−1 is defined and has connecting edge groups contained in P we obtain a set of
seed vertices 𝑆𝑖 for 𝑇𝑖 at each step using either Lemma 3.2.14 or Lemma 3.2.15 (depending
on if the action on 𝑇𝑖−1 is free). If the P–weight at any step decreases then we are done by
induction on𝑊P,𝑆′.

If instead 𝑆𝑖−1 has a connecting edge which is larger than P we apply Lemma 3.2.16. We
obtain Ψ : 𝑇 𝑖−1 → 𝑇 where the action on 𝑇 is 𝑘-acylindrical on groups larger than P. There’s
a set of seed vertices 𝑆𝑖−1 for 𝑇 𝑖−1 with𝑊P,𝑆𝑖−1

≤𝑊P,𝑆′ −1 and 𝑇 has at most 𝑘 more edges
than 𝑇 . Hence by induction on𝑊P,𝑆′ we see that 𝑇/𝐺 has at most (𝑊P,𝑆′ −1)𝑘 edges, hence
𝑇/𝐺 has at most𝑊P,𝑆′𝑘 edges as desired.

So without loss of generality we can assume that 𝑆𝑖 is always defined and that both the
P–weight is constant and that we never have a connecting edge of P–weight 1. Recall that
Lemma 3.2.14 says that 𝛼𝑖 (𝑆𝑖−1) ⊆ 𝑆𝑖 and since the number of connecting edges is bounded
above by 1

2𝑊P,𝑆′ we must have 𝑆𝑖 = 𝛼𝑖 (𝑆𝑖−1) for all sufficiently large 𝑖. Thus by taking limits
we see that there is a set of seed vertices 𝑆 for 𝑇 with 𝑊P,𝑆 =𝑊P,𝑆′. Now Lemma 3.3.1



50 Partially acylindrical actions

implies that the number of edges of 𝑇/𝐺 is bounded above by
(

2𝑘+1
2

)
𝑊P,𝑆′. (Since each

connecting edge has weight of at least 2.)
□

Proof of Theorem 3.1.7. First we use Dunwoody’s resolution lemma (Theorem 2.1.12) to get
𝐺 acting on a tree 𝑇 ′ which has at most 𝐶 (𝐺) orbits of edges together with a combinatorial
map Ψ : 𝑇 ′ → 𝑇 . Let 𝑆 be the set of vertices of 𝑇 ′ before subdividing. Observe that 𝑆 is a set
of seed vertices for 𝑇 ′ and that it has P–weight of at most 2𝑀𝐶 (𝐺) since P has height 𝑀.
Hence by Lemma 3.2.13 we see that 𝑇/𝐺 has as most (2𝑘 +1)2𝑀−1𝐶 (𝐺) edges. □

3.4 Extending to the main results

Now that we have finished proving our simplified result it’s time to extend it to get our main
theorems. The first way we’re going to do this is to show that we don’t require P to be closed
under taking subgroups; although it still must satisfy condition (†). (See Definition 3.1.10
for the statement of (†).) The following is the analogue to Lemma 3.2.13 in this context.

Lemma 3.4.1. Let 𝐺 be a non-cyclic group and let P be a conjugation invariant set of
subgroups of 𝐺 which satisfies (†). Let 𝐺 act on a tree 𝑇 and suppose this action is P–
partially-reduced and 𝑘–acylindrical on subgroups larger than P. Let 𝐺 act on another tree
𝑇 ′ and let there be a 𝐺–equivariant combinatorial map Ψ : 𝑇 ′ → 𝑇 . Suppose that 𝑇 ′ has a
set of seed vertices 𝑆 with finite P–weight𝑊P,𝑆 and 𝑇 is P–closed. Then 𝑇/𝐺 has at most(

2𝑘+1
2

)
𝑊P,𝑆 edges.

The added difficulty is that Lemma 3.2.14 requires every connecting group to be in P.
Previously this was not an issue as every subgroup of 𝐺 was either in P or larger than it. We
will solve this problem by adding extra folds at each step which forces the connecting groups
to be in P.

Lemma 3.4.2. Suppose Ψ : 𝑇 ′ → 𝑇 and 𝛽 : 𝑇 ′ → 𝑅 are 𝐺-equivariant combinatorial maps
where 𝛽 factors through Ψ. Let 𝑆 be a set of seed vertices for 𝑅 with finite P–weight𝑊P,𝑆

and where none of the connecting groups are larger than P. Suppose that P satisfies (†)
and 𝑇 is P–closed. Then there is a simplicial map 𝜌 : 𝑅→ 𝑅′ which factors through Ψ such
that 𝑅′ has a set of seed vertices 𝑆′ := 𝜌(𝑆) with𝑊P,𝑆′ ≤𝑊P,𝑆 and all its connecting groups
are in P.

Proof. Let Γ be any forest of influence which is grown from 𝑆. If each connecting group
of 𝑆 is in P then we are done; so without loss of generality there is some connecting edge
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group Stab𝑒 which is not in P. Since P satisfies (†) we have 𝐻 ∈ P which is a minimal
extension of Stab𝑒 to P and acts elliptically on 𝑅. Suppose 𝐻 fixes the vertex 𝑣 in 𝑅. Let
𝑝 be the reduced edge path which starts at 𝑣 and has final edge 𝑒. Let 𝑝 be the union of 𝑝
together with the branch of each vertex on 𝑝. (See Figure 3.12.) Since 𝑇 is P–closed and the
stabiliser of each edge 𝑓 in 𝑝 contains Stab𝑒 we see that image of 𝑓 in 𝑇 must be stabilised
by 𝐻. Let 𝜌 be the (possibly infinite) composition of type II folds which “pulls” 𝐻 onto
each edge of 𝑝 and observe that this factors through Ψ since 𝑇 is P–closed. Hence if 𝑒′ is
a connecting edge of Γ with stabiliser in P then either Stab𝑒′ = Stab 𝜌(𝑒′) or𝑊P,𝑒′ <𝑊P,𝑒.
Moreover 𝜌(Γ) is a forest of influence grown from the seed vertices 𝜌(𝑆) with𝑊P,𝑆′ ≤𝑊P,𝑆.
Hence we can apply this process finitely many times until we get the result.

𝑒

𝑆

𝑣

Fig. 3.12 An example of the domain we need to apply extra folds to. The reduced path from
𝑣 to 𝑒 is 𝑝 while the entire diagram is 𝑝. We need to apply folds to get 𝐻 fixing this whole
region and not just 𝑝 as otherwise we would need additional seed vertices.

□

Proof of Lemma 3.4.1. As before we will proceed by induction on 𝑊P,𝑆. If 𝑊P,𝑆 = 0 then
there is some vertex of 𝑇 ′ which is fixed by 𝐺. So the image of this vertex in 𝑇 is fixed by 𝐺
and so as 𝑇 is minimal it must just consist of just this single vertex.

Use Stallings folding theorem (Theorem 2.2.2) to decompose 𝛼 into folds 𝛼(0)
𝑖

: 𝑇 (0)
𝑖−1 → 𝑇

(0)
𝑖

.
We will iteratively define trees 𝑇 ( 𝑗)

𝑖
(for 𝑖 ≥ 𝑗 −1) and sets of seed vertices 𝑆( 𝑗)

𝑖
for 𝑇 ( 𝑗)

𝑖
(for

𝑖 = 𝑗 and 𝑖 = 𝑗 +1) together with maps 𝛼( 𝑗)
𝑖

: 𝑇 ( 𝑗)
𝑖−1 → 𝑇

( 𝑗)
𝑖

and 𝜌( 𝑗)
𝑖

: 𝑇 ( 𝑗)
𝑖

→ 𝑇
( 𝑗+1)
𝑖

as follows
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for each 𝑗 > 0.

𝑇
(0)
0 𝑇

(0)
1 𝑇

(0)
2 · · ·

𝑇
(1)
0 𝑇

(1)
1 𝑇

(1)
2 · · ·

𝑇
(2)
1 𝑇

(2)
2 · · ·

...
. . .

𝛼
(0)
1

𝜌
(0)
0

𝛼
(0)
2

𝜌
(0)
1

𝛼
(0)
3

𝜌
(0)
2

𝛼
(1)
1 𝛼

(1)
2

𝜌
(1)
1

𝛼
(1)
3

𝜌
(1)
2

𝛼
(2)
2 𝛼

(2)
3

𝜌
(2)
2

First define 𝛽 𝑗 := 𝛼( 𝑗−1)
𝑗−1 ◦ 𝜌( 𝑗−2)

𝑗−2 ◦ · · · ◦ 𝜌(1)1 ◦𝛼(1)
1 ◦ 𝜌(0)0 . (Part of the red path along the bottom

of the diagram which ends with a right facing arrow.) Applying Lemma 3.4.2 to 𝛽 𝑗 we obtain
a map 𝜌( 𝑗)

𝑗
: 𝑇 ( 𝑗−1)

𝑗−1 → 𝑇
( 𝑗−1)
𝑗−1 where 𝑆( 𝑗)

𝑗−1 := 𝜌( 𝑗) (𝑆( 𝑗−1)
𝑗−1 ) is a set of seed vertices where the

connecting groups are in P and𝑊P,𝑆 ( 𝑗)
𝑗−1

≤𝑊P,𝑆 ( 𝑗−1)
𝑗−1

. If 𝛼( 𝑗)
𝑖

folds together the edges 𝑒1 and

𝑒2 we define 𝛼( 𝑗+1)
𝑖

(for 𝑖 > 𝑗) to be the fold (or identity) obtained by identifying the 𝜌( 𝑗)
𝑖+1

images of the 𝑒𝑖. Finally define 𝜌( 𝑗+1)
𝑖

(for 𝑖 > 𝑗 +1) to make the above diagram commute.
Finally Lemma 3.2.14 says that the fold 𝛼( 𝑗)

𝑗
induces a set of seed vertices 𝑆( 𝑗)

𝑗
on 𝑇 ( 𝑗)

𝑗
with

𝑊P,𝑆 ( 𝑗)
𝑗

≤𝑊P,𝑆 ( 𝑗)
𝑗−1

. (If a separating edge is larger than P then we can reduce the P–weight by

collapsing at most 𝑘 edges using Lemma 3.2.16 and then proceeding by induction on𝑊P,𝑆.)

As 𝛼 = · · ·𝛼(0)
2 ◦𝛼(0)

1 we see that 𝛼 = · · ·𝛼(2)
2 ◦ 𝜌(1) ◦𝛼(1)

1 ◦ 𝜌(0) by the definitions of 𝛼( 𝑗)
𝑖

and 𝜌( 𝑗) . Moreover at each step we have a set of seed vertices with non-increasing P–weight,
the number of orbits of connecting edges are non-decreasing and hence all but finitely many
of the sets of seed vertices are the image of the seed vertices at the previous level. At this
point the proof is exactly the same as the proof of Lemma 3.2.13. □

Proof of Theorem 3.1.12 (a). First we use Dunwoody’s resolution lemma (Theorem 2.1.12)
to get 𝐺 acting on a tree 𝑇 ′ which has at most 𝛼(𝐺) orbits of edges together with a combina-
torial map Ψ : 𝑇 ′ → 𝑇 . Let 𝑆 be the set of vertices of 𝑇 ′ before subdividing. Observe that
𝑆 is a set of seed vertices for 𝑇 ′ and that it has P–weight of at most 2𝑀𝐶 (𝐺) since P has
height 𝑀 . Hence by Lemma 3.2.13 we see that 𝑇 has as most (2𝑘 −1)2𝑀−1𝐶 (𝐺) edges. □

It remains to extend Theorem 3.1.7 to finitely generated groups. An immediate hurdle
for this is the lack of Dunwoody’s resolution lemma (Theorem 2.1.12), as this only holds for
(almost) finitely presented groups. Instead take a finite generating set 𝑋 for 𝐺 and consider
the free group 𝐹 (𝑋) acting freely on a tree 𝑇 ′. Whenever 𝐺 acts on a tree 𝑇 we see that
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there is an 𝐹 (𝑋)–equivariant combinatorial map 𝑇 ′ → 𝑇 . It’s this map which we intend to
decompose into folds and apply our prior methods to.

Before stating the analogue to Lemma 3.2.13 we first need to extend the definition of
P–weights.

Definition 3.4.3. Let 𝜙 : 𝐻→ 𝐺 be a surjective homomorphism of groups. Let P be a set
of subgroups for 𝐺 which is closed under conjugation. We define the P–weight of 𝐾 ≤ 𝐻,
(denoted 𝑊P,𝜙,𝐾 or 𝑊P,𝐾 if 𝜙 is understood,) to be equal to 𝑊P,𝜙(𝐾) . If 𝐻 acts on a tree
with a non-empty set of seed vertices 𝑆 then we define its P–weight𝑊P,𝜙,𝑆 (or𝑊P,𝑆 if 𝜙 is
understood) to be equal to the sum of the P–weights of the connecting groups.

Lemma 3.4.4. Let P be a conjugation invariant set of subgroups of 𝐺 which is closed under
taking subgroups. Let 𝐺 act on a tree 𝑇 and suppose this action is P–partially-reduced
and 𝑘–acylindrical on subgroups larger than P. Suppose also that 𝐺′ is a countable group
acting on a tree 𝑇 ′ and that the following conditions hold.

• There is a surjective homomorphism 𝜙 : 𝐺′ → 𝐺.

• The kernel of 𝜙 has trivial intersection with every edge stabiliser of 𝑇 ′.

• There is a 𝐺′-equivariant combinatorial map Ψ : 𝑇 ′ → 𝑇 . (Where the action of 𝐺′ on
𝑇 is the natural one given by 𝜙.)

• 𝑇 ′ has a set of seed vertices 𝑆′ with P–weight𝑊P,𝑆′.

Then 𝑇/𝐺 has at most
(

2𝑘+1
2

)
𝑊P,𝑆′ edges. Furthermore if either 𝑇 is reduced and 𝑘 > 1 or

all of the edges of 𝑇 have stabiliser of size greater than P then 𝑇/𝐺 has at most 𝑘𝑊P,𝑆′

edges.

First observe that the following variation of Lemma 3.2.14 and Lemma 3.2.15 holds with
the exact same proof as before.

Lemma 3.4.5. Let 𝜙 : 𝐻 → 𝐺 be a surjective homomorphism and P is a conjugation
invariant set of subgroups for 𝐺. Suppose that there is a 𝐻–equivariant map 𝛼 : 𝑅→ 𝑅̃

which is a fold. Suppose that the kernel of 𝜙 has trivial intersection with each vertex stabiliser
of 𝑅. Suppose that 𝑆 is a set of seed vertices for 𝑅 where the image of each connecting
group is in P. Then there is a set of seed vertices 𝑆 for 𝑅̃ with𝑊P,𝜙,𝑆 ≤𝑊P,𝜙,𝑆. Moreover if
𝑊P,𝜙,𝑆 =𝑊P,𝜙,𝑆 then 𝛼 |𝑆 is injective.
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Observe from our discussion of different fold types on page 19 that the new edge
stabilisers will always be contained in an old vertex group. The same is not true of the vertex
groups however. In particular after applying Lemma 3.4.5 it may be the case that elements
in the kernel of 𝜙 may end up acting elliptically on the intermediate tree, although they
will only fix a single vertex. As such we need a way of modifying a group 𝐺𝑖 and tree 𝑇𝑖
which essentially keeps the action and map Ψ𝑖 : 𝑇𝑖 → 𝑇 but removes elliptically acting group
elements found in the kernel of 𝜙 : 𝐺𝑖 → 𝐺.

Lemma 3.4.6. Let 𝜙 :𝐺′→𝐺 be a surjective group homomorphism and suppose that𝐺′ acts
on a tree 𝑇 ′ where no element in the kernel of 𝜙 fixes an edge. Then there’s a group 𝐺′′ acting
on a tree 𝑇 ′′ together with surjective homomorphisms 𝜙′ : 𝐺′′ → 𝐺 and 𝜎 : 𝐺′ → 𝐺′′ with
𝜙 = 𝜙′ ◦𝜎 and a 𝐺′–equivariant simplical map 𝜌 : 𝑇 ′ → 𝑇 ′′ where the following conditions
hold. (The action of 𝐺′ on 𝑇 ′′ is given by 𝜎.)

• The map 𝜌/𝐺 : 𝑇 ′/𝐺→ 𝑇 ′′/𝐺 is a homeomorphism of graphs.

• For each edge 𝑒 of 𝑇 ′ we have 𝜎(Stab𝑒) = 𝜎(Stab 𝜌(𝑒)).

• The kernel of 𝜙′ has trivial intersection with every vertex (and edge) stabiliser of 𝑇 ′′.

In particular if 𝑇 ′ has a set of seed vertices 𝑆′ then 𝑆′′ := 𝜌(𝑆′) is a set of seed vertices for
𝑇 ′′ with𝑊P,𝜙′,𝑆′′ =𝑊P,𝜙,𝑆′.

Proof. We define 𝐺′′ as the fundamental group of a graph of groups decomposition corre-
sponding to 𝑇 ′ but with each vertex label replaced with its image under 𝜙. Let 𝑇 ′′ be the
Bass-Serre tree corresponding to this modified graph of groups. This naturally induces maps
𝜙′ : 𝐺′′ → 𝐺 and 𝜙 : 𝐺′ → 𝐺′′ and 𝜎 : 𝑇 ′′ → 𝑇 with all the desired properties. □

Proof of Lemma 3.4.4. As before we will proceed by induction on 𝑊P,𝑆. If 𝑊P,𝑆 = 0 then
there is some vertex of 𝑇 ′ which is fixed by 𝐺. So the image of this vertex in 𝑇 is fixed by 𝐺
and so as 𝑇 is minimal it must just consist of this single vertex.

Use Stallings folding theorem (Theorem 2.2.2) to decompose 𝛼 into folds 𝛼(0)
𝑖

: 𝑇 (0)
𝑖−1 → 𝑇

(0)
𝑖

and let 𝐺 (0) := 𝐺′. We will iteratively define groups 𝐺 ( 𝑗) which act on trees 𝑇 ( 𝑗)
𝑖

with sets of
seed vertices 𝑆( 𝑗)

𝑖
for𝑇 ( 𝑗)

𝑖
. Also we will define maps 𝜎 ( 𝑗) :𝐺 ( 𝑗) →𝐺 ( 𝑗+1) and 𝜙( 𝑗) :𝐺 ( 𝑗) →𝐺
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together with 𝛼( 𝑗)
𝑖

: 𝑇 ( 𝑗)
𝑖−1 → 𝑇

( 𝑗)
𝑖

and 𝜌( 𝑗)
𝑖

: 𝑇 ( 𝑗)
𝑖

→ 𝑇
( 𝑗+1)
𝑖

(for 𝑖 ≥ 𝑗 −1).

𝑇
(0)
0 𝑇

(0)
1 𝑇

(0)
2 · · ·

𝑇
(1)
0 𝑇

(1)
1 𝑇

(1)
2 · · ·

𝑇
(2)
1 𝑇

(2)
2 · · ·

...
. . .

𝛼
(0)
1

𝜌
(0)
0

𝛼
(0)
2

𝜌
(0)
1

𝛼
(0)
3

𝜌
(0)
2

𝛼
(1)
1 𝛼

(1)
2

𝜌
(1)
1

𝛼
(1)
3

𝜌
(1)
2

𝛼
(2)
2 𝛼

(2)
3

𝜌
(2)
2

First we define 𝛽 𝑗 := 𝛼( 𝑗)
𝑗

◦𝜌( 𝑗−1)
𝑗−1 ◦· · ·◦𝜌(1)1 ◦𝛼(1)

1 ◦𝜌(0)0 . (Part of the red path along the bottom
of the diagram which ends with a right facing arrow.) First use Lemma 3.4.6 on 𝛽 𝑗 and 𝜙( 𝑗) to
obtain a map 𝜌( 𝑗) : 𝑇 ( 𝑗)

𝑗
→ 𝑇

( 𝑗+1)
𝑗

together with group homomorphisms 𝜎 ( 𝑗) : 𝐺 ( 𝑗) → 𝐺 ( 𝑗+1)

and 𝜙( 𝑗+1) : 𝐺 ( 𝑗+1) → 𝐺. Also 𝑆( 𝑗+1)
𝑗

:= 𝜌( 𝑗) (𝑆( 𝑗)
𝑗
) is a set of seed vertices where the images

of the connecting groups are in P and 𝑊P,𝑆 ( 𝑗)
𝑗−1

≤𝑊P,𝑆 ( 𝑗−1)
𝑗−1

. If 𝛼( 𝑗)
𝑖

folds together the edges

𝑒1 and 𝑒2 we define 𝛼( 𝑗+1)
𝑖

(for 𝑖 > 𝑗) to be the fold (or identity) obtained by identifying the
𝜌
( 𝑗)
𝑖+1 images of the 𝑒𝑖. Finally define 𝜌( 𝑗+1)

𝑖
(for 𝑖 > 𝑗 +1) to make the above diagram commute.

Finally Lemma 3.4.5 says that the fold 𝛼( 𝑗)
𝑗

induces a set of seed vertices 𝑆( 𝑗)
𝑗

on 𝑇 ( 𝑗)
𝑗

with 𝑊P,𝑆 ( 𝑗)
𝑗

≤ 𝑊P,𝑆 ( 𝑗)
𝑗−1

. (If a separating edge is larger than P then we can reduce the P–

weight by collapsing at most 𝑘 edges using Lemma 3.2.16 and then proceeding by induction.)

As 𝛼 = · · ·𝛼(0)
2 ◦𝛼(0)

1 we see that 𝛼 = · · ·𝛼(2)
2 ◦ 𝜌(1)1 ◦𝛼(1)

1 ◦ 𝜌(0)0 by the definitions of 𝛼( 𝑗)
𝑖

and 𝜌( 𝑗)
𝑖

. Moreover at each step we have a set of seed vertices with non-increasing P–weight,
the number of orbits of connecting edges are non-decreasing and hence all but finitely many
of the sets of seed vertices are the image of the seed vertices at the previous level. At this
point the proof is exactly the same as the proof of Lemma 3.2.13. □

Proof of Theorem 3.1.12 (b). Pick a minimal generating set 𝑋 for 𝐺 and let 𝐺′ := 𝐹 (𝑋).
Let 𝜙 : 𝐺′ → 𝐺 be the natural projection and let 𝑇 ′ be the tree corresponding to the rose
with rank𝐺 petals labelled by the elements of 𝑋 . Let Ψ : 𝑇 ′ → 𝑇 be any 𝐺′–equivariant
combinatorial map. If 𝐺 acts freely on 𝑇 then the action is reduced and so every vertex in
𝑇/𝐺 has valence at least 3. Now Proposition 2.3.7 says that 𝛽1(𝑇/𝐺) ≤ rank𝐺 and thus
Proposition 2.3.6 implies that 𝑇/𝐺 has at most 3(rank𝐺 −1) edges. Now suppose the action
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on 𝑇 is not free and let 𝑆 be the set of vertices of 𝑇 ′ before subdividing. Observe that 𝑆 is a
set of seed vertices for 𝑇 ′ and that it has P–weight of at most 2𝑀 rank(𝐺) since P has height
𝑀 . Hence by Lemma 3.4.4 𝑇/𝐺 has as most (2𝑘 +1)2𝑀−1(rank(𝐺) −1) edges. If all of the
edges of 𝑇 have stabiliser larger than P or 𝑇 is reduced with 𝑘 > 1 then the number of edges
is in fact bounded by 𝑘2𝑀 (rank(𝐺) −1). □

3.5 Sharpness of bounds

We will now restrict our attention to the case where P = 1, the collection which only contains
the trivial subgroup. In other words we are to consider actions which are 𝑘–acylindrical.
In [26] Weidmann showed that a finitely generated group acting 𝑘–acylindrically on a tree
where all the edges have non-trivial stabiliser has at most 2𝑘 (rank𝐺 − 1) orbits of edges.
Theorem 3.1.12 (b) immediately implies this by setting 𝑘 = 1. The purpose of this section is
to improve this bound to one which is the best possible.

Theorem 3.5.1. Let 𝐺 be a (non-cyclic) finitely generated group acting 𝑘–acylindrically
on a minimal tree 𝑇 (where 𝑘 ≥ 1.) Suppose that each edge of 𝑇 has non-trivial stabiliser.
Then 𝑇/𝐺 has at most

⌊(
2rank𝐺 − 5

2

)
𝑘

⌋
edges. If 𝐺 is torsion-free then this bound can be

improved to (2rank𝐺 −3) 𝑘 .

Theorem 3.5.2. For any 𝑘 > 0 and 𝑟 ≥ 2 there is a finitely presented group 𝐺 with rank𝐺 = 𝑟

which acts 𝑘–acylindrically on a minimal tree 𝑇 where each edge of 𝑇 has non-trivial sta-
biliser and 𝑇/𝐺 has exactly

⌊(
2rank𝐺 − 5

2

)
𝑘

⌋
edges.

Similarly 𝐹𝑟 admits a 𝑘–acylindrical action on a minimal tree 𝑇 where each edge of 𝑇
has non-trivial stabiliser and 𝑇/𝐹𝑟 has exactly (2𝑟 −3) 𝑘 edges.

Remark 3.5.3. Unlike in the previous results there is no requirement that 𝑇 needs to be
reduced. Instead the conditions that 𝑇 is 𝑘–acylindrical and has no edges with trivial
stabiliser are enough to completely prevent the unrestricted edge subdivision which motivated
the definition of a reduced action.

We will start by constructing the examples with many edges as this will motivate the
argument for the sharp bound.

Proof of Theorem 3.5.2. We need to show that for any integers 𝑘 ≥ 1 and 𝑟 ≥ 2 that there is
a group of rank 𝑟 acting 𝑘-acylindrically on a tree with

⌊
2𝑘

(
rank𝐺 − 5

4

)⌋
orbits of edges,

none of which have trivial stabilisers. Pick distinct primes 𝑝 and 𝑞 such that (𝑝−1) (𝑞−1) ≥
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2(𝑟 − 2). Let 𝐺 := ⟨𝑎, ℎ1, · · · , ℎ𝑟−1 | 𝑎𝑝𝑞 = 1⟩ �
(
Z
𝑝𝑞Z

)
∗ 𝐹𝑟−1 and note that rank𝐺 = 𝑟. We

will now construct a tree 𝑇 for 𝐺 to act on. Start with the graph of groups decomposition
consisting of the rose with 𝑟 −1 petals representing the ℎ𝑖 and with a single vertex on the
loop representing ℎ1 with label ⟨𝑎⟩. (In the diagrams we take 𝑘 = 4 and 𝑟 = 3.)

⟨𝑎⟩
1

ℎ1 ℎ2 1

Subdivide the loop representing ℎ1 so that it consists of
⌈
𝑘
2
⌉
+2 edges. Apply folds of

type II to “pull” 𝑎 onto each vertex on the loop except the central one.

⟨𝑎⟩
1

ℎ1

⟨𝑎⟩

⟨𝑎⟩

ℎ2 1

Next subdivide the edges on the loop representing ℎ1 which are adjacent to the central
vertex into

⌊
𝑘
2
⌋

sub-edges. Apply folds of type II which “pull” 𝑎𝑝 along one of these
series of edges and “pull” 𝑎𝑞 along the other. We see that the central vertex has stabiliser
𝐻 := ⟨𝑏, 𝑐 | 𝑏𝑞 = 𝑐𝑝 = 1⟩ �

(
Z
𝑝Z

)
∗
(
Z
𝑞Z

)
where 𝑏 = 𝑎𝑝 and 𝑐 = (𝑎𝑞)ℎ1 .

⟨𝑎⟩
⟨𝑏, 𝑐⟩

ℎ1

⟨𝑎⟩

⟨𝑎⟩

⟨𝑎𝑝⟩

⟨𝑎𝑞⟩

ℎ2 1

For 𝑖 ≤ 2(𝑟 −2) we define 𝑔𝑖 = 𝑏𝑥+1𝑐𝑦+1 where 𝑖 = (𝑝−1)𝑥 + 𝑦 for 𝑥, 𝑦 ∈ Z with 0 ≤ 𝑦 ≤
𝑝−2. Since (𝑝−1) (𝑞−1) ≥ 2(𝑟 −2) we see that these 𝑔𝑖 represent pairwise non-conjugate
elements of 𝐻. Subdivide the loop representing each ℎ 𝑗 (for 2 ≤ 𝑗 ≤ 𝑟 −1) into 2𝑘 sub-edges,
then apply folds of type II which “pulls” 𝑔2 𝑗−3 along 𝑘 edges starting at one end and “pulls”
𝑔2 𝑗−2 along 𝑘 edges starting at the other.

⟨𝑎⟩
⟨𝑏, 𝑐⟩

ℎ1

⟨𝑎⟩

⟨𝑎⟩

⟨𝑎𝑝⟩

⟨𝑎𝑞⟩

ℎ2 ⟨𝑔1, 𝑔2⟩

⟨𝑔1⟩⟨𝑔1⟩
⟨𝑔1⟩

⟨𝑔2⟩ ⟨𝑔2⟩ ⟨𝑔2⟩

Observe that this decomposition has
⌊
(2𝑟 − 5

2 )𝑘
⌋

edges. (It’s not reduced in general, but
recall that this isn’t a condition for this result.) It remains to check that the corresponding
Bass-Serre tree is 𝑘–acylindrical. The elements of 𝐺 which act elliptically (upto conjugacy)
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are powers of 𝑎 and elements of 𝐻; so these are the ones we need to check that they fix a
region of bounded diameter.

First consider elements of 𝐻. The elements which fix an edge of our tree are (powers of)
the 𝑔𝑖, 𝑏 and 𝑐 (upto conjugacy). As 𝑏 and 𝑐 are conjugate to powers of 𝑎 we’ll leave these
for now. Now observe that each 𝑔𝑖 has a different image in the abelianization of 𝐻; hence
distinct 𝑔𝑖 are in different conjugacy classes. Moreover each cyclic root-closed subgroup of
𝐻 is malnormal in it. Hence each (power of) 𝑔𝑖 only fixes 𝑘 edges.

⟨𝑎⟩ ⟨𝑎𝑞⟩

⟨𝑎𝑞⟩

⟨𝑎𝑞⟩⟨𝑎𝑝⟩

⟨𝑎𝑝⟩

⟨𝑎𝑝⟩

Fig. 3.13 The region of the Bass-Serre tree which is fixed by some power of 𝑎, together with
their stabilisers. The central arc with stabiliser ⟨𝑎⟩ has length

⌈
𝑘
2
⌉

while each “offshoot” with
stabiliser either ⟨𝑎𝑝⟩ or ⟨𝑎𝑞⟩ has length

⌊
𝑘
2
⌋
.

We now need to consider powers of 𝑎. Let 1 ≤ 𝑚 < 𝑝𝑞 and look at the fixator of 𝑎𝑚. If
𝑝 |𝑚 then the fixator of 𝑎𝑚 consists of a central vertex with 𝑞 +1 “offshoots”, one of length⌈
𝑘
2
⌉

and the rest of length
⌊
𝑘
2
⌋
. In other words the fixator consists of the left and the centre

parts of Figure 3.13. This region has diameter 𝑘 and so we are fine. Likewise for the case
where 𝑞 |𝑚. We cannot have 𝑝𝑞 |𝑚 as 𝑚 < 𝑝𝑞. Finally if 𝑚 is coprime to 𝑝𝑞 then 𝑝𝑚 just
fixes a path of length

⌈
𝑘
2
⌉
; the middle section of Figure 3.13.

Building an example which is maximal for torsion-free groups is similar. First we need 𝑎
to have infinite order and so 𝐺 � 𝐹𝑟 . The initial splitting is defined in the same way as before.
Next we subdivide the loop representing ℎ1 into 𝑘 subedges and apply folds of type II so
that each edge in this loop has label ⟨𝑎⟩. (If 𝑘 = 1 then we collapse either of the initial edges
of the loop instead.) The label of the central vertex is now isomorphic to the free group of
rank 2 which is generated by 𝑏 := 𝑎 and 𝑐 := 𝑎ℎ1 . We now subdivide and fold onto the loops
representing the rest of the ℎ 𝑗 as before.

⟨𝑎⟩
⟨𝑏, 𝑐⟩

ℎ1

⟨𝑎⟩

⟨𝑎⟩

ℎ2 ⟨𝑔1, 𝑔2⟩

⟨𝑔1⟩⟨𝑔1⟩
⟨𝑔1⟩

⟨𝑔2⟩ ⟨𝑔2⟩ ⟨𝑔2⟩
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□

Before proving Theorem 3.5.1, which will show the above examples are the best possible,
it’s useful to compare their constructions to the proof of Lemma 3.4.4. We start with a
single orbit of seed vertices with representative stabiliser ⟨𝑎⟩. Our initial folds induce a new
orbit of seed vertices on the central vertex. Moreover the two connecting edges on the loop
representing ℎ1 are now non-trivial and so we collapse it. In doing this we’ll reduce the
1–weight by two but only collapse either

⌊ 3𝑘
2
⌋

or 𝑘 edges, depending on which construction
we’re talking about. This is less than the 2𝑘 edges theoretically allowed by the lemma.
Continuing we then successively collapse each loop; getting rid of the maximally possible
2𝑘 edges each time.

With this comparison in mind we will now show that such an inefficiency must occur at a
particular point in Lemma 3.4.4. Specifically whenever a vertex first obtains a non-cyclic
stabiliser.

Lemma 3.5.4. Let 𝛼 : 𝑅→ 𝑅̃ be a fold which factors through Ψ : 𝑇 ′ → 𝑇 and let 𝑆 be a set
of seed vertices for 𝑅. Suppose that the action on 𝑇 is 𝑘–acylindrical. Suppose also that both
every vertex stabiliser of 𝑅 is cyclic and every connecting group of 𝑆 is trivial. Then one of
the following holds

• Every vertex stabiliser of 𝑅 is cyclic and we can find a set of seed vertices 𝑆 for 𝑅̃ such
that every connecting group of 𝑆 is trivial and𝑊

1,𝑆 ≤𝑊1,𝑆.

• There is a simplicial map 𝜌 : 𝑅̃→ 𝑅̃′ which factors through Ψ and we can collapse at
most

⌊ 3𝑘
2
⌋

orbits of edges of 𝑇 to get a new tree 𝑇 such that the following holds. Let 𝑅
be the tree obtained by collapsing the edges of 𝑅̃′ corresponding to 𝑇 → 𝑇 . There is a
set of seed vertices 𝑆 for 𝑅 with𝑊

1,𝑆
≤𝑊1,𝑆 −2. Moreover if 𝐺 is torsion-free then we

can obtain 𝑇 by collapsing at most 𝑘 edges of 𝑇 .

Proof. Suppose that 𝛼 folds together the edges 𝑒1 = [𝑥, 𝑦1] and 𝑒2 = [𝑥, 𝑦2] to an edge
𝑒′ = [𝑥′, 𝑦′]. If there’s a forest of influence containing both 𝑒1 and 𝑒2 then we can just take
𝑆 := 𝛼(𝑆) and we end up in the first outcome listed in the statement. The same applies if
the fold is of type I or II and either of the 𝑦𝑖 have trivial stabiliser. Similarly we can take
𝑆 := 𝛼(𝑆) ∪𝐺 {𝑦′} if 𝛼 is a fold of type III and the 𝑦𝑖 have trivial stabilisers.

Consider the case where 𝛼 is a fold of type III, the stabiliser of the 𝑦𝑖 are non-trivial and
ℎ𝑦1 = 𝑦2. Suppose that 𝑦1 is influenced by 𝑢 and 𝑢′ := 𝛼(𝑢). Both 𝑢′ and 𝑦′ are fixed by
the stabiliser of 𝑦1; hence as in the proof of Theorem 3.1.7 we can apply a series of folds
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𝜌 : 𝑅̃→ 𝑅̃′ which factors through Ψ such that the reduced edge path 𝑓 ′ from 𝑢′ to 𝑦′ consists
of at most 𝑘 edges and is injective under 𝛿 : 𝑅̃′ → 𝑇 . Now we define 𝑇 by collapsing the
image of 𝑓 ′ in 𝑇 and 𝑅 as in the statement. Note that the image of 𝑆 in 𝑇 is a set of seed
vertices with𝑊

1,𝑆
≤𝑊1,𝑆 −2 as every connecting edge is trivial and 𝜒(𝑅/𝐺) = 𝜒(𝑅/𝐺) +2.

𝜌 ◦𝛼
type III

𝑥

𝑦1𝑢

𝑓

𝑥′

𝑦′𝑢′

𝑓 ′

Fig. 3.14 The case where the fold 𝛼 is of type III. The edge path labelled 𝑓 is fixed by some
non-trivial member of 𝐺, hence its image in 𝑅̃ has diameter at most 𝑘 . In particular if we
replace 𝑓 with its image in 𝑅̃ we see that the path 𝑓 ′ has length at most 𝑘 .

So now we can assume that the fold is of type I or II where the stabiliser of both 𝑦1 and 𝑦2

are non-trivial. If 𝛼 is a fold of type I we say that 𝑦𝑖 is influenced by 𝑢𝑖 and 𝑓𝑖 be the branch
of 𝑦𝑖. If instead 𝛼 is a fold of type II we say that 𝑥 is influenced by 𝑢1 and 𝑦2 is influenced by
𝑢2. We also let 𝑓1 be the union of the branch of 𝑥 together with 𝑒1 and let 𝑓2 be the branch of
𝑦2.

First consider the case where 𝑢1 is inequivalent to 𝑢2. Let 𝜌 : 𝑅̃→ 𝑅̃′ be the composition
of folds on 𝑓1 and 𝑓2 (separately) which causes 𝛾 : 𝑅′ → 𝑇 to be locally injective on 𝑓1 and
𝑓2. Let 𝑢′

𝑖
be the vertex closest to 𝑦′′ := 𝜌(𝑦′) with stabiliser equal to Stab 𝑦𝑖 and let 𝑓 ′

𝑖
be the

reduced edge path from 𝑢′
𝑖

to 𝑦′′. We now define 𝑇 by collapsing the (orbits of the) images of
𝑓 ′1 and 𝑓 ′2 in 𝑇 and 𝑅 as in the statement. Observe that we have a set of seed vertices 𝑆 for 𝑅
defined to be the union of the image of 𝑆 \𝐺 {𝑢1, 𝑢2} together with the image of 𝐺 {𝑦′′} and
observe that𝑊

1,𝑆
≤𝑊1,𝑆 −2. It remains to bound the number of edges we’ve collapsed. If 𝑓 ′

𝑖

consists of more than a single vertex let 𝑔𝑖 be a group element which fixes 𝑢′
𝑖

but no edge
of 𝑓 ′

𝑖
. Then since Stab𝑢′

𝑖
= Stab𝑢𝑖 is cyclic we see that Stab 𝑦𝑖 fixes the reduced edge path

𝑓 ′
𝑖
∪𝑔𝑖 𝑓 ′𝑖 . So since the action on 𝑇 is 𝑘–acylindrical we see that 𝑓 ′1 and 𝑓 ′2 each consist of at

most 𝑘2 edges each and so we have collapsed at most 𝑘 edges in total.

Now consider the case 𝑢2 = ℎ𝑢1 for some ℎ ∈ 𝐺. Define 𝜌 : 𝑅̃→ 𝑅̃′, 𝑢′
𝑖
, 𝑦′′ and 𝑓 ′

𝑖
as

before. Let 𝑓 be the path from 𝑢′1 to ℎ−1𝑢′2. Define 𝑇 by collapsing the images of 𝑓 ′1, 𝑓 ′2
and 𝑓 in 𝑇 . We have a set of seed vertices 𝑆 for 𝑅 defined to be the union of the image of
𝑆 \𝐺 {𝑢1} together with the image of 𝐺 {𝑦′′} and again we have 𝑊

1,𝑆
≤ 𝑊1,𝑆 − 2. It now
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𝑢1

𝑥

𝑦1
𝑦2

𝑢2

𝑓1

𝑓2

𝑓 ′1

𝑥′

𝑦′

𝑢′2

𝑢′1

𝑓 ′2

𝜌 ◦𝛼
type I

𝜌 ◦𝛼
type II

𝑢1

𝑢2

𝑥

𝑦1

𝑓1
𝑓2

𝑢′1

𝑢′2

𝑥′

𝑦′

𝑓 ′1
𝑓 ′2

Fig. 3.15 The graph of groups in the cases where the 𝑢𝑖 aren’t equivalent.

remains to bound the number of edges collapsed. As before the paths 𝑓 ′
𝑖

have at most 𝑘
2

edges. If 𝑓 consists of just a single vertex 𝑢′1 then we are done as before. If not then observe
that 𝑓 ′1 ∪ 𝑓 ∪ ℎ−1 𝑓 ′2 is a reduced edge path from 𝑦′′ to ℎ−1𝑦′′. If 𝐺 is torsion-free then as
Stab𝑢1 is cyclic then there is some non-trivial subgroup which fixes 𝑓 ′1 ∪ 𝑓 ∪ ℎ−1 𝑓 ′2 and so
we’ve collapsed at most 𝑘 edges. If 𝐺 isn’t torsion-free then we are only guaranteed to have
a non-trivial subgroup which fixes 𝑓 ′1 ∪ 𝑓 . Thus 𝑓 ′1 ∪ 𝑓 ∪ ℎ−1 𝑓 ′2 has at most 𝑘 + 𝑘

2 = 3𝑘
2 edges.

𝜌 ◦𝛼
type I

𝑥

𝑦1
𝑦2

𝑢1𝑓1

𝑓2
𝑥′

𝑦′

𝜌(𝑢1)𝑓 ′1

𝑓 ′2

𝑓

𝑢′2

𝑢′1

𝜌 ◦𝛼
type II

𝑥

𝑦1

𝑢1
𝑓1

𝑓2

𝑥′

𝑦′

𝜌(𝑢1)
𝑓 ′1

𝑓 ′2

𝑓

𝑢′2

𝑢′1

Fig. 3.16 The graph of groups in the cases where 𝑢1 and 𝑢2 are equivalent.

□

Proof of Theorem 3.5.1. Proceed as in the proof of Theorem 3.1.12 (b). We have a homo-
morphism 𝜙 : 𝐹 (𝑋) → 𝐺 where 𝑋 is a minimal generating set for 𝐺 and combinatorial map
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Ψ : 𝑇 ′ → 𝑇 . As in the proof of Lemma 3.4.4 we now decompose Ψ into folds 𝛼𝑖 : 𝑇𝑖−1 → 𝑇𝑖.
We then apply Lemma 3.5.4 to each 𝛼𝑖 in turn until one of them causes us to collapse edges.
(This must happen eventually as all the edges of 𝑇 have non-trivial stabiliser.) Then apply
Theorem 3.1.12 (b) to the collapsed tree to get the desired bound. □



Chapter 4

Strong accessibility

So far we have analysed the conditions required to give a bound on the complexity of a single
splitting. Now consider the vertex group of a maximal splitting over some class of edge
groups. It is possible that such a vertex also admits a splitting over the same class of groups.
It is therefore natural to ask if such a process can go on indefinitely. In this chapter we give
an account of a theorem of Louder and Touikan [19]

4.1 Preliminaries

Before we give the statement of the main theorem we need several new definitions.

Definition 4.1.1. A group is said to be slender if all its subgroups are finitely generated.

Remark 4.1.2. Note a slender group can only act elliptically, linearly or dihedrally on a tree.
The analysis on page 19 shows that parabolic and hyperbolic actions always have infinitely
generated subgroups.

We will use the definition of a JSJ-decomposition given by Guirardel and Levitt. [14]
First recall the definition of a minimal and reduced tree.

Definition 4.1.3. The action of a group 𝐺 on a tree 𝑇 is minimal if there are no 𝐺–invariant
proper subtrees. Such an action is said to be reduced if either 𝑇/𝐺 is a circle consisting of a
single vertex and edge or the label of every vertex of valence 2 in 𝑇/𝐺 properly contains its
edge groups.

Definition 4.1.4. Given a group 𝐺 and sets of subgroups A and B we let SA,B be the set
of reduced trees which 𝐺 acts on with edge groups in A and where each group in B acts
elliptically. We will assume that A is closed under conjugation and taking subgroups. If B
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is empty then we shorten SA,B to SA .

A tree 𝑇 ∈ SA,B is universally elliptic if every edge group of 𝑇 is elliptic in any given tree
in SA,B .

A 𝐺-tree 𝑇1 dominates another 𝑇2 if there is a 𝐺-map 𝑇1 → 𝑇2. Equivalently every vertex
group of 𝑇1 is elliptic in 𝑇2.

A tree 𝑇 ∈ SA,B is a JSJ-tree (over the class A relative to B) if it’s universally elliptic and
dominates all other universally elliptic trees in SA,B . The graph of groups corresponding to
a JSJ-tree is called a JSJ-splitting or a JSJ-decomposition (over the class A relative to B).

Roughly speaking, we restrict our attention to splittings which do not “exclude” any other,
then choose a maximal one amongst these. A priori it need not be the case that a JSJ-splitting
exists and in complete generality they do not. However in many important cases they do in
fact exist. In particular the following is true.

Lemma 4.1.5. [14, Theorems 2.16 & 2.20] Let 𝐺 be finitely presented (relative to some
finite set of subgroups B). Then for any class A there exists some JSJ-splitting for 𝐺 over A
(relative to B) with finitely generated edge groups.

Uniqueness of JSJ-trees does not hold in general, although one can often find a canonical
choice for one-ended groups. However all of the JSJ-trees in a class live in a common
deformation space. (See [14].) From this it follows that the stabilisers of the vertices (which
aren’t in A) do not depend on the choice of JSJ-tree. Further the vertices of a JSJ-tree can be
split into two classes.

Definition 4.1.6. A vertex of a JSJ-tree is called rigid if it is elliptic in every tree in SA,B .
Otherwise it is called flexible.

The flexible vertices should be thought of as analogous to the Seifert-fibred components
of a JSJ-decomposition of a 3–manifold. The following result demonstrates this.

Lemma 4.1.7. [14, Theorem 6.2] Let 𝑣 be a flexible vertex of a slender JSJ-tree (relative to
a finite set of finitely generated subgroups B.) Then the stabiliser 𝐺𝑣 of 𝑣 is either slender or
QH (quadratically hanging) with slender fibre. In other words, if 𝐺𝑣 is not slender there is a
short exact sequence

0 → 𝐴 → 𝐺𝑣 → 𝜋1(Σ) → 0

where 𝐴 is slender and Σ is a 2–dimensional orbifold with a non-trivial boundary.
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Such groups have very controlled JSJ-decompositions.

Lemma 4.1.8. Let 𝐺 be a non-slender group which is QH with slender fibre. The vertices of
a slender JSJ-decomposition of 𝐺 have slender stabiliser.

Proof. First suppose that the fibre is trivial, so that 𝐺 = 𝜋1(Σ) where Σ is a 2–dimensional
orbifold with a non-trivial boundary. Observe that we can decompose 𝐺 as 𝐺1 ∗ · · · ∗𝐺𝑘 ∗𝐹𝑟
where 𝐺1, · · · ,𝐺𝑘 are the finite groups associated to the orbifold points of Σ and 𝐹𝑟 is the
free group of rank 𝑟. Hence 𝐺 has Grushko decompositions over trivial edge groups with
finite vertex stabilisers. Such decompositions are exactly the slender JSJ-splittings of 𝐺.

Now suppose the fibre 𝐴 is non-trivial. Let 𝐺 act on a (reduced) tree 𝑇 with slender edge
stabilisers. If 𝐴 acts trivially on such a 𝑇 then we get an action of 𝐺

𝐴
� 𝜋1(Σ) on 𝑇 . So if 𝐴

acts trivially on 𝑇 we can lift from 𝜋1(Σ) to see that the slender JSJ-trees of 𝐺 have slender
vertex groups, containing 𝐴 with finite index. Now fix 𝑇 . If 𝐴 acts elliptically on 𝑇 then
since 𝐴 is normal in 𝐺 we have some vertex 𝑣 ∈ 𝑇 such that 𝐴 ⩽ 𝐺𝑔𝑣 for any 𝑔 ∈ 𝐺. Since 𝑇
is reduced for any vertex 𝑢 ∈ 𝑇 there is 𝑔 ∈ 𝐺 such that 𝑢 ∈ [𝑣, 𝑔𝑣] and so 𝐴 ⩽ 𝐺𝑢. Hence 𝐴
acts trivially on 𝑇 . If 𝐴 doesn’t act elliptically on 𝑇 it must fix a line as it’s slender. As 𝐴 is
normal in 𝐺 we see that 𝑇 must be exactly this line. However this implies that 𝐺 is slender
which contradicts our assumption on 𝐺. □

We will define a hierarchy using Bass-Serre trees instead of the standard method using
graphs of groups. While there are advantages to both approaches the present author believes
this to be better one for this argument, particularly for Section 4.5.

Definition 4.1.9. A hierarchy H for a group 𝐺 (over a class A) is a rooted tree where for
each vertex 𝑣 of H we assign a subgroup 𝐺𝑣 ⩽ 𝐺 with a minimal action on a tree 𝑇𝑣 (with
edge groups in A and) where the following conditions are satisfied.

• The initial vertex of H is assigned 𝐺 as its group.

• If 𝑇𝑣 is a point for some 𝑣 ∈ H then 𝑣 is a terminal vertex of H .

• Otherwise there is a natural one-to-one correspondence between the immediate de-
scendants of a vertex 𝑣 ∈ H and the vertices of the tree 𝑇𝑣. Natural in this context
means that the associated groups do not change under the correspondence. Henceforth
we will often abuse notation and treat the vertices related under this correspondence
as the same object.
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• H is ‘conjugation invariant’. More precisely if 𝑤 and 𝑔𝑤 are vertices of some 𝑇𝑣 (with
𝑔 ∈ 𝐺𝑣), then the corresponding sub-hierarchies starting at 𝑤 and 𝑔𝑤 are identical
except that all the groups and labels for the vertices are conjugated by 𝑔. Equivalently
𝐺 acts naturally on H and the stabiliser of any vertex is its associated group.

It is clear that one reobtains the traditional definition of a hierarchy by quotienting
everything by 𝐺.

Definition 4.1.10. The depth of a vertex 𝑣 in a hierarchy H , denoted by depth(𝑣), is its
distance from the initial vertex. The depth of a hierarchy H , denoted by depth(H), is the
supremum of the depths of its vertices.

The 𝑛th–level of H , denoted by H 𝑛, is the set of all the vertices of H with depth 𝑛.

We say that H is finite if depth(H) is finite and the graph of groups associated to each
action is finite. Equivalently H has finitely many 𝐺–orbits of vertices.

Definition 4.1.11. A JSJ-hierarchy (over A relative to B) is a hierarchy where the action
associated to every vertex is on a JSJ-tree (over A relative to B.) If the group associated to
a vertex is in A then we insist that it is terminal.

Unless mentioned otherwise all JSJ-hierarchies will be non-relative and over the class of
slender subgroups. Also note that the JSJ-trees don’t need be canonical (such the Bowditch
JSJ-tree [5]) and can instead be any maximal splitting.

In general the vertex groups of a splitting need not be finitely presented even if the
original group was. However for hyperbolic groups we have the following.

Proposition 4.1.12. [5, Proposition 1.2] If 𝐺 is a hyperbolic group, then any graph of groups
decomposition of 𝐺 with quasiconvex edge groups also has quasiconvex vertex groups.

Theorem 4.1.13 (Tits alternative). [12, Theorem 37] Every subgroup of a hyperbolic group
𝐺 is either virtually cyclic or contains 𝐹2 as a subgroup.

In particular every slender subgroup of a hyperbolic group is virtually cyclic and hence
quasi-isometrically embeds into it. Thus since every virtually cyclic subgroup of a hyperbolic
group embeds quasiconvexly we see that every vertex group of a slender splitting for a
hyperbolic group is also hyperbolic. So JSJ-hierarchies always exist for hyperbolic groups.

Subgroups which are elliptic on each level of the hierarchy will play an important role.
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Definition 4.1.14. A subgroup of 𝐻 ⩽ 𝐺 is H–elliptic if it’s either contained in a terminal
vertex of H or there is an infinite sequence of vertices {𝑣𝑛} with 𝐻 ⩽ 𝐺𝑣𝑛 for all 𝑛 and where
each 𝑣𝑛+1 is an immediate descendent of 𝑣𝑛.

Suppose that 𝐻 ⩽ 𝐺 is non-slender. Suppose that 𝐻 ⩽ 𝐺𝑣 for some 𝑣 ∈ H . Since 𝑇𝑣 is a
slender tree 𝐻 can be contained in at most one vertex group of 𝑇𝑣. Thus by iterating we see
that 𝐻 is contained in at most one vertex at each level of H . So if 𝐻 is also H -elliptic then it
is contained in exactly one vertex at each level of H and so if 𝐻 ⩽ 𝐺𝑣 then it acts elliptically
on 𝑇𝑣.

Lemma 4.1.15. Suppose that H is a JSJ-hierarchy over slender edge groups (relative to B)
for a group 𝐺 and that K is a finite slender hierarchy also for 𝐺 which has terminal vertex
groups which are either slender or H -elliptic. Then H is also finite and moreover

depthH ≤ depthK +1

We’ll save the proof of this for Section 4.4 as it fits in naturally with what we are doing
there.

The bulk of this chapter will be spent trying to massage hierarchies until they satisfy the
conditions of Theorem 4.2.1. As a way of measuring how far away from doing this we are
we introduce the following notions.

Definition 4.1.16. A H–complex 𝑋 is a 2–dimensional connected simplical complex with
𝐻1(𝑋,Z2) = 0 and which some 𝐾 ⩽ 𝐺 acts on with cell stabilisers which are either slender
or H–elliptic.

The covolume of a H–complex 𝑋 is the number of orbits of triangles under the action.
Denote this quantity as covol(𝑋).

A H -structure K is a finite slender hierarchy for a group 𝐾 ⩽ 𝐺 together with a H–
complex 𝑋𝑤 acted upon by 𝐺𝑤 for each terminal vertex 𝑤 ∈ K.

The covolume of a H–structure K is the sum of the covolumes of the complexes associated
to its terminal vertices (modulo equivalence.) Denote this quantity as covol(K).

In many important cases (such as for hyperbolic groups) we will be able to take all of
the cell stabilisers of our H–complexes to be slender. This will streamline a few parts of the
argument. Adding H–elliptic cell stabilisers is necessary if we wish to consider certain other
applications such as relatively hyperbolic groups.
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4.2 Main results

The focus of this chapter shall be proving the machinery necessary for showing the following
fact to be true.

Theorem 4.2.1. [19, Corollary 2.7] Let 𝐺 be a hyperbolic group which is virtually 2–torsion-
free. Then any JSJ-hierarchy for 𝐺 is finite.

Note in particular that this implies that residually finite hyperbolic groups are strongly
accessible. We will do this by proving the main result of Louder and Touikan [19] in full
generality, keeping the above goal in mind so as to keep us from getting too lost in the details.
Before we can state this result we need a few technical definitions.

Definition 4.2.2. Let 𝐺 be a finitely generated group and let H be a slender hierarchy of 𝐺.
We say that 𝐺 is H–almost finitely presented if it has a H–structure with finite covolume.

Note that 𝐺 being (almost) finitely presented means that it acts freely and cocompactly on
some 2–dimensional simplicial complex 𝑋 with 𝐻1(𝑋,Z2) = 0. Thus this notion genuinely
extends the notion of being (almost) finitely presented.

The following restriction is rather technical and is essentially defined to be the exact
condition which causes a step deep in the argument to work.

Definition 4.2.3. H satisfies the ascending chain condition (henceforth abbreviated to ACC)
if every ascending chain of subgroups

𝑆1 ⩽ 𝑆2 ⩽ 𝑆3 ⩽ · · · ,

where the following conditions are satisfied, eventually stabilises. (i.e. there exists 𝑁 such
that 𝑆𝑁 = 𝑆𝑖 for all 𝑖 ≥ 𝑁 .)

• 𝑆𝑖 ⩽ 𝐺𝑣𝑖 for some vertex 𝑣𝑖 of H . Moreover 𝑆𝑖 is a subgroup of a non H -elliptic edge
group in the action on 𝑇𝑣𝑖 .

• Each 𝑣𝑖+1 is a descendent (although not necessarily an immediate one) of 𝑣𝑖.

• 𝑆𝑖 is H -elliptic.

This abstract condition is satisfied if an ACC on the slender subgroups of 𝐺 holds. i.e.
it is enough to say that every ascending chain of slender groups of 𝐺 must stabilise. This
is a more restrictive condition, however is much easier to internalise and is satisfied for
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hyperbolic groups. Indeed, given an ascending chain of slender subgroups {𝑆𝑖}, the Tits
alternative (Theorem 4.1.13) implies that 𝑆∞ =

⋃
𝑖 𝑆𝑖 is either finite or virtually Z. Thus every

infinite 𝑆𝑖 has finite index in 𝑆∞ and so the ACC follows for free in this case.

For the argument to work we can only consider elliptic and linear actions. Hyperbolic
and parabolic actions are excluded by the fact we are working with slender groups, however
we still need to prohibit dihedral actions. The following definition allows us to classify when
we can do this.

Definition 4.2.4. A slender hierarchy H is said to be linear if whenever 𝐸 is an edge group of
some 𝑇𝑣 with 𝑣 ∈H we have 𝐸∩𝐺𝑤 acting either elliptically or linearly on 𝑇𝑤 for any 𝑤 ∈H .

A group 𝐺 is said to admit a 𝐷∞–quotient (over the class A) if there exists a subgroup
𝐻 ⩽ 𝐺 which surjects onto 𝐷∞ (with a kernel in A.) Observe that if a group admits no
𝐷∞–quotients over slender groups then all its slender hierarchies are linear.

Suppose we have subgroup 𝐷 � 𝐴 ∗𝐶 𝐵 of a hyperbolic group 𝐺 which surjects 𝐷∞ with
slender kernel 𝐶. Observe that 𝐷 is slender, so the Tits alternative (Theorem 4.1.13) now
implies that 𝐷 is virtually cyclic. Thus we see that 𝐴, 𝐵 and 𝐶 are all finite and in particular
both 𝐴 and 𝐵 must contain group elements of order 2. Thus a 2–torsion-free hyperbolic
group doesn’t admit any 𝐷∞–quotients over its slender subgroups.

We are finally ready to state the main result in full. Note that H doesn’t need to be a
JSJ-hierarchy for the following to hold.

Theorem 4.2.5. [19, Theorem 2.5] Let 𝐺 be a group and let H be a linear slender hierarchy
for 𝐺. Suppose that 𝐺 is finitely presented (relative to B) and that H satisfies the ACC. Then
there exist 𝑁 and 𝐶 such that for every vertex 𝑣 in H with depth at least 𝑁 there exists a
finite hierarchy K𝑣 for 𝐺𝑣 with depth(K𝑣) ≤ 𝐶.

Once we prove this our goal follows swiftly.

Proof of Theorem 4.2.1. First consider the case where 𝐺 is 2–torsion-free. Our prior dis-
cussions show that in this case the conditions for Theorem 4.2.5 are satisfied and so its
conclusions follow. Now Lemma 4.1.15 tells us that H is finite with depth(H) ≤ 𝑁 +𝐶 +1.

Now suppose 𝐺 is virtually 2–torsion-free. Claim that if 𝐺0 is a finite index subgroup
of 𝐺 then non-slender vertex groups of a JSJ-tree of 𝐺 are finite index supergroups of the
non-slender vertex groups of a JSJ-tree of 𝐺0. From this we see that a JSJ-hierarchy for
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𝐺 has a non-slender group at level 𝑛 if and only if the same holds for a JSJ-hierarchy of
𝐺0; at which point the 2–torsion-free case implies that we are done. It remains to prove the
claim. Guirardel and Levitt [14, Proposition 4.16] tell us that we can obtain a JSJ-splitting
for 𝐺 by taking a maximal splitting over finite edge groups and replacing each vertex with a
JSJ-splitting for each of the (one-ended) vertex groups. In particular we can take the JSJ-
splittings for the one-ended groups to be the canonical Bowditch JSJ-splitting. [5] Now since
𝐺0 ⩽f.i. 𝐺 they act freely and cocompactly on a common geodesic metric space; meaning that
if 𝑇 is a maximal tree over finite edge groups for 𝐺 then 𝑇𝐺0 is the same for 𝐺0. (Possibly
after reducing away some slender vertices.) Likewise the Bowditch JSJ depends only on
the topology of boundary of the underlying group, hence is invariant under quasi-isometries.
Thus we can build a JSJ-tree for 𝐺 whose restriction to 𝐺0 (after reducing) is also a JSJ-tree.
The claim now follows. □

The same argument as the above proof of Theorem 4.2.1 can also be used to prove the
following more general statement.

Theorem 4.2.6. [19, Corollary 2.6] Let 𝐺 be a group and let H be a slender JSJ-hierarchy
(relative to a class B) for 𝐺. Suppose that 𝐺 is H–almost finitely presented and doesn’t
admit any 𝐷∞–quotients. Suppose also that H satisfies the ACC. Then H is finite.

Remark 4.2.7. There is a separate notion of a subgroup 𝐾 ⩽ 𝐺 being slender relative to a
set of subgroups B; satisfied if 𝐾 fixes a point or a line on any tree 𝑇 which 𝐺 acts on where
each group in B fixes a vertex of 𝑇 . We do not consider such subgroups here and bring them
up only to clear up any confusion between them and the notion of a slender JSJ relative to B.

Remark 4.2.8. While it is possible to extract an explicit value for 𝐶 in terms of 𝐺 from
the upcoming proof of Theorem 4.2.5, (assuming that H is a JSJ-hierarchy,) there is no
immediately obvious way to do the same for 𝑁 . Thus this argument does not give an explicit
bound on the height of H .

4.3 A note on canonicalness of JSJ-hierarchies

JSJ-trees are not in general unique, however they share a common deformation space. Thus
every vertex group of a JSJ-tree is either slender or is a vertex group in any other JSJ-tree for
the same group [14, pg.6]. Thus we see that most of the resulting hierarchy is identical re-
gardless of our choices of JSJ-trees. In particular this shows that the depth of a JSJ-hierarchy
is constant for a given group.
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If one still feels the need to consider a more canonical object then we can define one as
follows. For one ended hyperbolic groups there is a canonical JSJ-tree, called the Bowditch
JSJ-tree, which is invariant under outer automorphisms. (See [5] or [15] for details.) More-
over we can use Dunwoody accessibility [11] (which are exactly JSJ-splittings over finite
groups) to split multi-ended groups into one-ended ones and the resulting vertex groups
to not depend on the exact choice of tree. Alternating between these we can thus get a
hierarchy which is defined in an essentially canonical way; meaning that the vertices and
their associated groups of the hierarchy are always the same. One can trivially modify the
previous proof of Theorem 4.2.1 to work for such hierarchies, to see that these hierarchies
are also finite given that the underlying group is virtually without 2–torsion.

4.4 Passing hierarchies to subgroups

The key to proving Theorem 4.2.5 will be to successively pass some ‘bad’ auxiliary hier-
archies from one level of H to the next until eventually they become ‘good’. We will thus
begin by detailing a method for splitting a hierarchy over an unrelated tree.

Lemma 4.4.1. Let 𝑇 be a tree which a group 𝐺 acts on with slender edge stabilisers and
let K be a finite slender hierarchy for 𝐺. Then for each vertex 𝑣 ∈ 𝑇 there is a finite slender
hierarchy K𝑣 for the vertex group 𝐺𝑣 with the following properties.

1. depth(K𝑣) ≤ depth(K) for any 𝑣 ∈ 𝑇 .

2. For each vertex 𝑤 ∈ K𝑣 the group 𝐺𝑤 is a subgroup of some 𝐺𝑢 where 𝑢 ∈ K and
depth(𝑤) ≤ depth(𝑢).

3. If K is non-trivial and 𝑇 is a JSJ-tree then depth(K𝑣) < depth(K) whenever 𝑣 is a
rigid vertex of 𝑇 .

4. Suppose that the terminal vertices of K have associated groups which are either
slender or act elliptically in 𝑇 . Then the terminal vertices of K𝑣 have associated
groups which are either slender or equal to a terminal group of K.

Later we will take 𝑇 to be a tree in the hierarchy H and K to be one of the aforementioned
auxiliary hierarchies. Louder and Touikan use the symmetric core of a product of trees to
produce the K𝑣; however this is not necessary as a more direct approach also works.

Proof. For each 𝑣 ∈ 𝑇 we define K𝑣 with property 2 listed above one level at a time. By
definition the initial vertex of K𝑣 has associated group𝐺𝑣 which trivially satisfies the required
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property. So we just need a procedure to generate the action on a tree for a given vertex of K𝑣 .

Take a vertex 𝑤 ∈ K𝑣 with associated group 𝐺𝑤 . We are given that 𝐺𝑤 ⩽ 𝐺𝑢 where 𝑢 ∈ K
and depth(𝑤) ≤ depth(𝑢). If 𝑢 is a terminal vertex then we take 𝑇𝑤 to be a point and so 𝑤 is
also terminal. Otherwise without loss of generality we may assume that 𝐺𝑤 is non-elliptic in
𝑇𝑢 by passing to vertex groups. We now just take 𝑇𝑤 to be the unique minimal subtree of 𝑇𝑢
which is invariant under 𝐺𝑤 . (This exists because the action of 𝐺𝑤 on 𝑇𝑢 doesn’t contain any
global fixed points.) By definition the edge groups of 𝑇𝑤 are slender and the vertex groups of
𝑇𝑤 are subgroups of the vertex groups of 𝑇𝐺 . The latter implies property 2 by induction, thus
completing the construction.

We now prove the remaining properties. Property 1 is just a weaker version of property 2
and so is immediately satisfied. Property 3 holds because each rigid vertex of 𝑇 is by def-
inition elliptic in the top level of K and so in fact for every 𝑤 ∈ K𝑣 we have 𝑢 ∈ K with
𝐺𝑤 ⩽ 𝐺𝑢 and depth(𝑤) < depth(𝑢).

For property 4 consider a terminal vertex 𝑤 ∈ K𝑣 where 𝐺𝑤 is not slender. As usual
consider a vertex 𝑢 ∈ K with 𝐺𝑤 ⩽ 𝐺𝑢 and observe that we can take 𝑢 to be a terminal
vertex of K. Suppose that 𝐺𝑢 fixes a line of 𝑇 . Then 𝐺𝑢 ∪𝐺𝑣 either is or has an index 2
subgroup which is contained in an edge stabiliser of 𝑇 . Hence𝐺𝑤 ⩽ 𝐺𝑢∩𝐺𝑣 is slender which
contradicts our assumption. Thus 𝐺𝑢 fixes some vertex 𝑣′ ∈ 𝑇 and so we have 𝐺𝑢 ⩽ 𝐺𝑣′.
Since the edges of 𝑇 have slender stabiliser, 𝐺𝑤 ⩽ 𝐺𝑣 ∩𝐺𝑣′ and 𝐺𝑤 is not slender we must
have 𝑣 = 𝑣′. Since 𝐺𝑢 is K–elliptic and 𝐺𝑢 ⩽ 𝐺𝑣 we see that 𝐺𝑢 is also K𝑣–elliptic from the
construction of K𝑣. Recall that since neither 𝐺𝑢 nor 𝐺𝑤 are slender they are both contained
in exactly one vertex for each level of K𝑣. Moreover since 𝐺𝑤 ⩽ 𝐺𝑢 they must both be
contained in the same vertices. Hence 𝐺𝑢 ⩽ 𝐺𝑤 by the definition of 𝐺𝑤 and so 𝐺𝑢 =𝐺𝑤 . □

Remark 4.4.2. Essentially the same argument as the last part shows that if {𝑤𝑖} is a
collection of distinct terminal vertices of

∐
𝑣K𝑣 with 𝐺𝑤𝑖

⩽ 𝐺𝑢 where 𝑢 ∈ K is a terminal
vertex; then at most one of the 𝑤𝑖 can be non-slender and 𝐺𝑤𝑖

= 𝐺𝑢 for this 𝑖. This will be
important shortly when extending the construction to H–structures.

We now have all the tools needed to prove Lemma 4.1.15.

Proof of Lemma 4.1.15. We prove by induction on depthK. If depthK = 0 then K is trivial
and so 𝐺 is either slender or H–elliptic; hence it cannot split in H and so H is trivial.
Otherwise consider each vertex 𝑣 ∈ H1 in turn. Let H𝑣 be the subhierarchy of H with initial
vertex 𝑣. If 𝐺𝑣 is a rigid group in the action on the tree corresponding to the initial vertex of
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H then Lemma 4.4.1 implies that we have another hierarchy K𝑣 for 𝐺𝑣 with depth(K𝑣) <
depth(K) and with terminal vertices which have associated groups that are either slender or
H–elliptic. Thus depth(H𝑣) ≤ depthK by induction. If 𝐺𝑣 is a flexible group in the action
of top level of H then Lemma 4.1.7 implies that 𝐺𝑣 is slender by orbifold; which implies
that depth(H𝑣) ≤ 1 ≤ depth(K). Thus in any case we have depth(H𝑣) ≤ depth(K) for all
𝑣 ∈ H1 and hence depth(H) ≤ depth(K) +1. □

We will measure how ‘bad’ our auxiliary hierarchies are by introducing some actions on
some complexes. The following lemma shows us that these actions pass down nicely if the
terminal vertices of our initial auxiliary hierarchy are elliptic in our tree.

Lemma 4.4.3. Let K be a H–structure for 𝐾 ⩽ 𝐺. Suppose 𝐾 acts on a tree 𝑇 with slender
edge stabilisers. Suppose that the terminal vertices of K are either slender or elliptic in 𝑇 .
Then for each vertex 𝑣 ∈ 𝑇 we get that K𝑣 (as defined in Lemma 4.4.1) naturally inherits a
H–structure from K and moreover we have∑︁

𝑖

covol(K𝑣𝑖 ) = covol(K)

where {𝑣𝑖} is a set of representatives for the orbits of vertices in 𝑇 .

Proof. Recall from Lemma 4.4.1 that for every terminal vertex 𝑤 ∈ K𝑣 that 𝐾𝑤 is either slen-
der or equal to 𝐾𝑢 for some terminal vertex 𝑢 ∈ K . Thus K𝑣 naturally inherits a H–structure
by letting 𝐾𝑤 act trivially on a point if it’s slender or on the same complex as 𝐾𝑢 otherwise.

It remains to prove the equality of covolumes. Let 𝑢 be a terminal vertex of K and
let

{
𝑤 𝑗

}
be a set of representatives for the terminal vertices of

∐
𝑖K𝑣𝑖 which have 𝐾𝑤 𝑗

conjugating into 𝐾𝑢. Observe that for each 𝑤 𝑗 ∈ K𝑣𝑖 ( 𝑗) we have a corresponding 𝑤′
𝑗
∈ K𝑔 𝑗𝑣 𝑗 (𝑖)

with (𝐾𝑤 𝑗
)𝑔 𝑗 = 𝐾𝑤′

𝑗
⩽ 𝐾𝑢. These 𝑤′

𝑗
are distinct as the 𝑤 𝑗 are in distinct orbits. Hence by

Remark 4.4.2 at most one of the 𝐾𝑤 𝑗
can be non slender and 𝐾𝑤′

𝑗
= 𝐾𝑢 for this 𝑗 . Such a 𝑗

must exist as 𝐾𝑢 is contained in some vertex group 𝐺𝑣′ ≤ 𝐺 and moreover is K𝑣′–elliptic.
Thus there is a natural 𝐺–equivariant one to one correspondence between the non-slender
terminal vertices of K and

∐
𝑣∈𝑇K𝑣 which implies the result. □

Of course in general it won’t be the case that the terminal vertices of K will be elliptic in
𝑇 . So our next goal shall now be to add additional layers to K so this becomes true while
not increasing the covolume. We thus require some sort of resolution in order to nicely split
up our complexes. If every cell stabiliser of 𝑋 acted elliptically on 𝑇 then we could get this
from an equivariant map 𝑋 → 𝑇 . Since the cell stabilisers can also act linearly on 𝑇 such a
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map needn’t exist and so we need to be more careful. We will modify 𝑋 in order to isolate
these bad points.

After making modifications to the complexes we may find that they fail to be simplical.
For example if we collapse one edge of a triangle we are left with a bigon. We will get
around this by reducing complexes as follows. Let 𝑋 be a 2–dimensional cell complex where
all the 2–cells are either triangles or bigons. Start defining a simplical complex 𝑋′ by letting
the vertex set be the same as 𝑋 . Let [𝑢, 𝑣] be an edge of 𝑋′ if there is an edge between 𝑢 and
𝑣 in 𝑋 and similarly let [𝑢, 𝑣,𝑤] be a triangle in 𝑋′ if there is a triangle in 𝑋 with vertices 𝑢,
𝑣 and 𝑤. This 𝑋′ is the reduction of 𝑋 . Note that if 𝑋 is connected with 𝐻1(𝑋,Z2) = 0 then
the same holds for 𝑋′.

In order to split the complex we will make use of the following Dunwoody-Delzant-
Potyagailo resolution.

Lemma 4.4.4. [19, Lemma 3.5] Let 𝐺 be a group acting on a triangle complex 𝑋 and a tree
𝑇 . Suppose that

• the cell stabilisers of 𝑋 fix a point of 𝑇 := 𝑇 ∪ 𝜕𝑇 . (Where 𝜕𝑇 is the Gromov boundary
of 𝑇 .) i.e. they all act elliptically, linearly or parabolically on 𝑇 .

• if𝑊 ⊂ 𝑋1 is a connected subcomplex where the stabiliser of each edge acts linearly or
parabolically on 𝑇 then the stabiliser of𝑊 fixes a point on 𝜕𝑇 .

Then there is a resolution 𝜌 : 𝑋 → 𝑇 .

Before constructing 𝜌 we will show that the second condition is always satisfied for our
purposes.

Lemma 4.4.5. Let 𝐺 be a group acting on a tree 𝑇 and let 𝐾 ≤ 𝐺 act on a H–complex
𝑋 . Let 𝑊 ⊂ 𝑋1 be a connected subcomplex such that the stabiliser of every cell in 𝑊 acts
linearly or dihedrally on 𝑇 . Then Stab(𝑊) also acts linearly or dihedrally on 𝑇 . Moreover if
𝐺 doesn’t admit any 𝐷∞-quotients then the action of Stab(𝑊) on 𝑇 is linear.

Proof. Suppose that 𝐸 ≤ 𝑉 are subgroups of 𝐺 which both act linearly or dihedrally on 𝑇 .
Then 𝑉 must fix the same line as 𝐸 as otherwise 𝑉 would contain hyperbolic group elements
with different axes, contradicting the fact that 𝑉 fixes a line of 𝑇 . It follows that every cell in
𝑊 fixes a common line in 𝑇 which implies the result. □
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Proof of Lemma 4.4.4. First for each maximal subcomplex𝑊 as in the second condition of
the statement we (equivariantily) choose a point in 𝜕𝑇 which it fixes.

Next we need to (equivariantily) map each vertex 𝑣 of 𝑋 to either a vertex of 𝑇 or a point
on 𝜕𝑇 . If a vertex is contained in a subcomplex𝑊 as above we define 𝜌(𝑣) to be equal to the
point on 𝜕𝑇 corresponding to𝑊 . Otherwise we just define 𝜌(𝑣) to be any vertex of 𝑇 which
Stab(𝑣) fixes.

Now let 𝑒 = [𝑢, 𝑣] be an edge of 𝑋 . If 𝜌(𝑢) = 𝜌(𝑣) then we can just take 𝜌 to be constant
on 𝑒. Otherwise we want 𝜌(𝑒) to be the reduced edge path from 𝜌(𝑢) to 𝜌(𝑣); however
we need to be careful with the parametrisation if Stab(𝑒) ≠ Stab+(𝑒). If 𝜌(𝑢) and 𝜌(𝑣) are
in 𝑇 we can just take the parametrisation to be linear as the midpoint of [𝜌(𝑢), 𝜌(𝑣)] is
fixed by Stab(𝑒). If 𝜌(𝑢) is in 𝑇 but 𝜌(𝑣) isn’t then 𝑢 and 𝑣 are in different orbits and so
Stab(𝑒) = Stab+(𝑒). Finally suppose 𝜌(𝑢) and 𝜌(𝑣) are in 𝜕𝑇 . By assumption Stab(𝑒) fixes
a vertex 𝑣 ∈ 𝑇 . Let 𝑦 ∈ [𝜌(𝑢), 𝜌(𝑣)] be the closest vertex to 𝑥. Since Stab(𝑒) fixes 𝑥 and
preserves [𝜌(𝑢), 𝜌(𝑣)] it must also fix 𝑦. Now map the midpoint of 𝑒 to 𝑦 and map the rest
in any way which is symmetric through 𝑦.

Extending the map affinely over triangles works for similar reasons. □

There are two different cases we will consider, depending on if an edge gets mapped to
𝜕𝑇 or not. If 𝜌−1(𝜕𝑇) doesn’t contain any edges then we say that this is a resolution of type
I or a splitting resolution. Otherwise 𝜌−1(𝜕𝑇) contains an edge and we call this a type II or a
contracting resolution. The splitting resolutions will allow us to modify the hierarchy so that
its terminal vertices are elliptic in 𝑇 . The contracting resolutions are an issue but we will
modify them so that they become splitting resolutions.

First we will describe what to do in the case of a splitting resolution. Let 𝜌 : 𝑋 → 𝑇 be as
above. Let Λ ⊂ 𝑋 be the inverse images of the midpoints of the edges in 𝑇 and observe that
this is a collection of tracks (in the sense of Dunwoody [11]). Let Λ∗ ⊂ Λ be the tracks which
partition 𝑋 into two infinite parts and let 𝑋∗ := 𝑋\𝜌−1(𝜕𝑇). Observe that 𝑋∗/Λ∗ (obtained
by collapsing each track in Λ∗ to a point) is a 2-dimensional cell complex where all the
2–cells are either bigons or triangles. Finally 𝑋𝑇 is defined to be the reduction of 𝑋∗/Λ∗.
Observe that the image of each triangle of 𝑋 in 𝑋𝑇 contains at most one triangle and so
covol(𝑋𝑇 ) ≤ covol(𝑋). (See Figure 4.1)

Remark 4.4.6. Unlike with triangles, the image of an edge of 𝑋 in 𝑋𝑇 need not be a single
edge and is in general a (potentially infinite) sequence of edges. However suppose we are
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Λ∗

Fig. 4.1 An example of the effects a splitting resolution has on a triangle.

given a triangle in 𝑋 whose image in 𝑋𝑇 contains a triangle. Then the edges of this new
triangle in 𝑋𝑇 will be a single edge in the image of a corresponding edge of the original
triangle.

Lemma 4.4.7. Suppose that 𝑋 is connected, has 𝐻1(𝑋,Z2) = 0 and 𝜌 : 𝑋 → 𝑇 is a splitting
resolution. Suppose also that every cutpoint of 𝑋 has a stabiliser which fixes a point of 𝑇 .
Then 𝑋𝑇 is connected with 𝐻1(𝑋𝑇 ,Z2) = 0.

Proof. Since every cutpoint of 𝑋 acts elliptically on 𝑇 we see that 𝑋∗ is connected and
therefore 𝑋𝑇 is as well. Since each track is connected it now suffices to show that each cycle
in 𝐻1(𝑋∗,Z2) is a boundary when mapped into 𝑋𝑇 .

Let 𝐵 be the second barycentric subdivision of 𝑋 . Let 𝐶 ⊂ 𝐵 be the union of simplices
which are disjoint from 𝜌−1(𝜕𝑇) and 𝐴 ⊂ 𝐵 be the union of the simplices (and their subsim-
plices) which intersect non-trivially with 𝜌−1(𝜕𝑇). Also let 𝐿 = 𝐴∩𝐶.

Consider the Mayer-Vietoris sequence for 𝐴 and 𝐶;

· · · → 𝐻1(𝑋,Z2) → 𝐻1(𝐴,Z2) ⊕𝐻1(𝐶,Z2) → 𝐻1(𝐿,Z2) → · · ·

Since 𝐵 is the second barycentric subdivision of 𝑋 we see that the stars of two distinct
vertices which are in 𝜌−1(𝜕𝑇) are disjoint. Hence each component of 𝐴 is the star of a point
and so 𝐻1(𝐴,Z2) � 0. Similarly we see that 𝐶 ⊂ 𝑋∗ is a deformation retract. Hence the
sequence becomes

0 → 𝐻1(𝑋∗,Z2) → 𝐻1(𝐿,Z2) → · · ·

In particular it suffices to show that each loop of 𝐿 dies when we pass to 𝑋𝑇 .
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𝑣

𝜆

𝑡𝑖

𝑤𝑖−1

𝑤𝑖

𝑒𝑖−1

𝑒𝑖

𝑝𝑖

𝑑

Let 𝑑 be a reduced edge path of 𝐿. There is 𝑣 ∈ 𝜌−1(𝜕𝑇) with 𝑑 homotopic to an edge
path 𝑝1 · · · 𝑝𝑛 in the link of 𝑣. Let 𝑤𝑖 be the vertex common to both 𝑝𝑖 and 𝑝𝑖+1 (where the
indices are taken modulo 𝑛). Also let 𝑒𝑖 be the edge connecting 𝑤𝑖 to 𝑣 and 𝑡𝑖 be the triangle
with edges 𝑤𝑖−1, 𝑤𝑖 and 𝑣. Since 𝜌(𝑤𝑖) ≠ 𝜌(𝑣) for any 𝑖 and 𝜌(𝑣) ∈ 𝜕𝑇 we can choose an
edge 𝑓 ∈ 𝑇 such that 𝑓 ∈ [𝜌(𝑤𝑖), 𝜌(𝑣)] and 𝑓 ∩ 𝜌(𝑝𝑖) = ∅ for all 𝑖. Thus there is a track 𝜆
(which maps to the midpoint of 𝑓 ) whose intersection with 𝑡1 ∪ · · · ∪ 𝑡𝑛 is homotopic to 𝑑.
This implies that 𝑑 is null-homotopic in 𝑋𝑇 which implies the result. □

We will now detail what to do in the case of a contracting resolution. Recall that this is
the case where 𝜌−1(𝜕𝑇) contains an edge of 𝑋 . Define 𝑋𝐶 to be the complex obtained by
collapsing each component of 𝜌−1(𝜕𝑇) ⊂ 𝑋 to a point. We summarise the properties of 𝑋𝐶
in the following lemma.

Lemma 4.4.8. Notation as before. Suppose that the cell stabilisers of 𝑋 are all either slender
or elliptic in 𝑇 . Then every vertex stabiliser of 𝑋𝐶 is either equal to a vertex stabiliser of 𝑋
or fixes a line of 𝑇 and hence is slender. Moreover 𝜌 descends to a map 𝑋𝐶 → 𝑇 where the
midpoint of each edge of 𝑋𝐶 gets sent to a point in 𝑇 and covol(𝑋𝐶) ≤ covol(𝑋).

Proof. These properties are all obvious from the definition of 𝑋𝐶 together with Lemma 4.4.5.
□

This concludes our discussion on contracting resolutions. We also need a general method
for splitting a complex over its cutpoints. Suppose 𝑋 is a H–complex for a subgroup 𝐾 ⩽ 𝐺.
Construct a bipartite tree 𝐵𝑋 , called the cutpoint tree, with vertices which correspond to the
cutpoint-free components of 𝑋 and the cut vertices of 𝑋 and with the edges of 𝐵𝑋 defined in
the obvious way by inclusion. Note that 𝐾 acts on 𝐵𝑋 with vertex stabilisers which are equal
to the corresponding stabilisers in 𝑋 and edge stabilisers which are equal to the stabiliser of
a connected component of a link.

The above is fine if every cell of 𝑋 has slender stabiliser, such as in the case of hyperbolic
groups; however in general it may be the case that 𝐵𝑋 has edge groups which are 𝐻–elliptic
but not slender. To counteract this we introduce a reduced cutpoint tree 𝐵′

𝑋
by collapsing the
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edges of 𝐵𝑋 which have non-slender stabiliser. Observe that 𝐵′
𝑋

can naturally be thought of
as a H–structure (of depth 1) with the properties summarised in the following lemma.

Lemma 4.4.9. Let 𝐵′
𝑋

be the cutpoint tree defined above.

(a) covol(𝐵′
𝑋
) ≤ covol(𝑋)

(b) If 𝑋𝑇 is the splitting resolution of some complex 𝑋 where the cutpoints of 𝑋 have
non-slender stabilisers then the vertex groups of 𝐵′

𝑋𝑇
are either slender or elliptic in 𝑇 .

Proof. For part (a) we first observe that each triangle of 𝑋 sits in at most one subcomplex
corresponding to a non-slender vertex of 𝐵′

𝑋
. Thus we just need to know if two triangles

𝑡 and 𝑡′ = 𝑔𝑡 (with 𝑔 ∈ 𝐾) live in the same subcomplex 𝑋𝑣 ⊆ 𝑋 corresponding to a vertex
𝑣 ∈ 𝐵′

𝑋
then they still lie in the same orbit when restricted to the vertex group 𝐾𝑣. This

follows because if 𝑔 ∈ 𝐾 sends a triangle of 𝑋𝑣 to another in 𝑋𝑣 then it must preserve 𝑋𝑣 , so
𝑔 ∈ 𝐾𝑣.

For part (b) we first observe that the stabiliser of each connected component 𝑌 ⊆ 𝑋∗\Λ∗

is elliptic in 𝑇 by construction. The image of 𝑌 in 𝑋𝑇 is a maximal subcomplex 𝑌 ′ which
doesn’t contain any cutpoints with slender stabiliser. Moreover the stabiliser of 𝑌 is the same
as the stabiliser of 𝑌 ′. A subcomplex of 𝑋𝑇 corresponding to a non-slender vertex of 𝐵′

𝑋𝑇
is

contained in such a 𝑌 ′. Hence the non-slender vertices of 𝐵′
𝑋𝑇

are elliptic in 𝑇 . □

Putting all of this together we obtain the following.

Lemma 4.4.10. [19, Lemma 7.2] Suppose 𝐺 does not admit any 𝐷∞–quotients. Let 𝑇 be a
tree which 𝐾 ⩽ 𝐺 acts on with slender edge stabilisers and let K be a H–structure for 𝐾.
Then for each vertex 𝑣 ∈ 𝑇 there is a H–structure K𝑣 with∑︁

𝑖

covol(K𝑣𝑖 ) ≤ covol(K)

where {𝑣𝑖} is a set of representatives for the orbits of vertices of 𝑇 .

Proof. In light of Lemma 4.4.3 it suffices to show that there is another H–structure K̃ with
terminal vertices which are elliptic in 𝑇 and with covol(K̃) ≤ covol(K).

Begin by considering the resolution of each complex associated to the terminal vertices
of K. We define K′ to be the same as K except whenever a complex 𝑋 associated to a
terminal vertex has an edge mapped into 𝜕𝑇 we replace it with 𝑋𝐶 defined above. Recall
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from Lemma 4.4.8 that 𝑋𝐶 is a H–complex and covol(𝑋𝐶) ≤ covol(𝑋). Thus K′ is a H–
structure with covol(K′) ≤ covol(K). Moreover the resolutions from each complex are now
all splitting resolutions.

Before collapsing tracks it is first necessary to split the complexes over cutpoints. (Oth-
erwise our 𝑋𝑇 may not be connected.) Following the procedure from Lemma 4.4.9 for
each complex of K′ containing cutpoints we construct a new H–structure K′′ where all the
cutpoints in the complexes have H–elliptic stabilisers. Moreover the resolutions still map
each edge of the complexes to a point of 𝑇 and covol(K′′) ≤ covol(K′).

Finally for each complex 𝑋 of K′′ we consider 𝑋𝑇 as defined above. Recall from
Lemma 4.4.9 that each non-slender vertex of 𝐵′

𝑋𝑇
acts elliptically on 𝑇 . Thus we get a new

H–structure K̃ by replacing each terminal vertex of K′′ with the corresponding 𝐵′
𝑋𝑇

. This
K̃ has all the properties we require. □

Remark 4.4.11. Note that there is a natural partial map from the set of triangles in the
complexes of K and those in

∐
𝑣∈𝑇K𝑣 . Moreover this map is 𝐺–equivariant and is both total

and bijective if
∑
𝑖 covol(K𝑣𝑖 ) = covol(K) where {𝑣𝑖} is a set of representatives for the orbits

of vertices of 𝑇 . An understanding of this map will be crucial for Section 4.5.

4.5 Extracting trees from complexes

Now with Lemma 4.4.10 in hand we are ready to start the proof of Theorem 4.2.5. Let 𝑣0 be
the initial vertex of H . Start by letting K𝑣0 be any H–structure for 𝐺 with finite covolume.
(Recall that for a finitely presented group we can take K𝑣0 to have trivial tree structure and
have 𝐺 act freely on a cocompct (2–dimensional) simply connected simplical complex.)
Now we recursively define K𝑤 for each vertex 𝑤 ∈ H . Suppose 𝑤′ is the immediate ancestor
of 𝑤 and K𝑤′ is already defined. We now define K𝑤 from Lemma 4.4.10 by setting K to be
K𝑤′ and 𝑇 to be 𝑇𝑤′.

Let T 𝑛 be the set of all the triangles in all the complexes acted on by the terminal vertices
of K𝑤 where 𝑤 ∈ H 𝑛. Note that 𝐺 naturally acts on T 𝑛 with finitely many orbits of triangles;
call this number covol(T 𝑛). Moreover the inequality of covolumes in Lemma 4.4.10 extends
to an inequality covol(T 𝑛+1) ≤ covol(T 𝑛) for all 𝑛. Thus covol(T 𝑛) must eventually reach
some minimum. Pick 𝑁Δ so that covol(T 𝑁Δ) = covol(T 𝑛) for any 𝑛 ≥ 𝑁Δ.
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Recall from Remark 4.4.11 that for 𝑛 ≥ 𝑁Δ we can always pass a triangle to the next level
of H . More precisely our construction above actually induces a 𝐺–equivariant bijective map
𝜏𝑛,𝑛+1 : T 𝑛 →T 𝑛+1. Moreover let 𝜏𝑛,𝑚 : T 𝑛 →T𝑚 be the composition 𝜏𝑚−1,𝑚 ◦ · · · ◦ 𝜏𝑛,𝑛+1.

A pair in T 𝑛 is an element (𝑡, 𝑡′) ∈ T 𝑛 ×T 𝑛 where 𝑡 and 𝑡′ are distinct triangles in the
same complex and which share a common edge 𝑒. A pair is called stable if it descends to a
pair under any 𝜏𝑛,𝑚 where 𝑚 > 𝑛. Let 𝑃(T 𝑛) be the set of stable pairs in T 𝑛.

We now define an equivalence relation ∼𝑛 on T 𝑛 to be the one generated by its stable
pairs. Note that for each equivalence class of ∼𝑛 we naturally get a connected subcomplex (of
some H–complex which is associated to a terminal vertex of K𝑣 for some 𝑣 ∈ H 𝑛) consisting
of all the triangles in the class together with all their subsimplices.

We now restrict our attention to a single complex 𝑋𝑤 associated to a terminal vertex
𝑤 ∈ K𝑣 for some 𝑣 ∈ H 𝑛 with 𝑛 ≥ 𝑁Δ. We define a bipartite graph 𝐵𝑤 for each 𝑋𝑤 as follows.
One set of vertices will be the set of subcomplexes associated to the equivalence classes of
∼𝑛 which are contained in 𝑋𝑤; the other will be the edges of 𝑋𝑤 which are contained in more
than one of said subcomplexes. The edges of 𝐵𝑤 are defined by inclusion in the obvious way.

Observe that 𝐺𝑤 acts naturally on 𝐵𝑤 . By definition the stabilisers for the subcomplexes
associated to the equivalence classes of ∼𝑛 are H–elliptic. If every edge of 𝑋𝑤 has slender
stabiliser (such as in the case for hyperbolic groups) then the stabilisers of each edge of 𝐵𝑤
are slender. So if 𝐵𝑤 is a tree for all large enough 𝑛 then this proves Theorem 4.2.5 by adding
the 𝐵𝑤 to the bottom layers of the K𝑣. (Where 𝑁 in the statement of Theorem 4.2.5 is the
first level where this occurs and the corresponding 𝐶 is the maximal depth of one of the K𝑣

where 𝑣 has depth 𝑁 in H .) If some edge of 𝑋𝑤 has a non-slender (H–elliptic) stabiliser
then we instead first have to collapse each edge of 𝐵𝑤 with non-slender stabilser to get a new
graph 𝐵′𝑤. Theorem 4.2.5 will then follow as before.

We shall now work backwards finding a series of sufficient conditions for 𝐵𝑤 to be a tree
until we arrive at one which we can show is true for large 𝑛. First observe that this is true if
we can show that, for far enough down the hierarchy, whenever (𝑡, 𝑡′) is an unstable pair with
common edge 𝑒 that 𝑡 and 𝑡′ lie in different connected components of 𝑋𝑤\𝑒. We now need a
definition.
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Definition 4.5.1. Let 𝐷 be a triangulated disk with exactly one interior vertex. A cone 𝐶 ⊆ 𝑋
is the image of some simplicial map 𝛼 : 𝐷→ 𝑋 which sends triangles to triangles. A cone is
said to be simple if the image of 𝜕𝛼 : 𝜕𝑆1 → 𝑋 is a simple loop; equivalently 𝛼 is injective.

Lemma 4.5.2. [19, Lemma 8.5] If every simple cone of 𝑋𝑤 is contained in an equivalence
class, then 𝐵𝑤 is a tree.

Before proving this we require a simple proposition.

Proposition 4.5.3. Let 𝛾 be the boundary of some cone 𝐶. Suppose 𝑒 = [𝑢, 𝑣] and 𝑒′ = [𝑣,𝑤]
are consecutive edges of 𝛾. If 𝑢 ≠ 𝑤 (so 𝛾 is locally injective at vertex 𝑣) then there a simple
subcone 𝐶′ ⊆ 𝐶 containing both 𝑒 and 𝑒′.

Proof. Suppose 𝛾 : 𝑆1 → 𝐶 is not simple. Then there are distinct 𝑥1, 𝑥2 ∈ 𝑆1 which map to
some common vertex 𝑥 ∈ 𝐶. Let 𝐴 be an arc of 𝑆1 which starts at 𝑥1, finishes at 𝑥2 and which
contains 𝑒 and 𝑒′ as consecutive edges. Let 𝐴′ be the circle formed by taking 𝐴 and gluing
its endpoints together. Then 𝛾 |𝐴′ is the boundary for a proper subcone of 𝐶 which contains 𝑒
and 𝑒′ as consecutive edges. Repeat this process until the resulting cone is simple, which
must happen eventually as the area of the cone decreases at each step. □

Proof of Lemma 4.5.2. Let (𝑡, 𝑡′) be pair in 𝑋𝑤 with common edge 𝑒. In order to prove the
result it suffices to show that if 𝑡 and 𝑡′ are in the same connected component of 𝑋𝑤\𝑒 then
𝑡 ∼ 𝑡′. In this case 𝑒 = [𝑢, 𝑣] is not a cut edge of 𝑋𝑤. Let 𝑎 and 𝑏 be the vertices of 𝑡 and
𝑡′ respectively that are not a part of 𝑒. Since 𝑒 is not a cut edge there is an edge path 𝛾
(which we’ll not assume is injective) from 𝑎 to 𝑏 which doesn’t intersect 𝑒. Let 𝑙 be the
loop consisting of 𝛾 composed with 𝑝 = [𝑎,𝑢] ∪ [𝑢, 𝑏]. Since 𝑋 is simply connected there
is a simply connected simplical complex 𝐷 ⊂ R2 together with a simplical map 𝜌 : 𝐷→ 𝑋

with boundary 𝜕𝜌 : 𝜕𝐷→ 𝑙. Note that 𝜌 is not required to be an embedding, even locally so.
We will now assume that 𝛾, 𝐷 and 𝜌 as above are chosen to lexicographically optimise the
following quantities for which 𝐷 is homeomorphic to a disc. (𝐷 is always homeomorphic to
a disc if 𝛾 is injective; but this needn’t be the case in general.)

• Minimises the number of triangles in 𝐷.

• Maximises the length of 𝜕𝐷.

Note the length of 𝜕𝐷 is bounded above by three times the number of triangles of 𝐷. Thus
we have a well ordering and so an optimal choice must exist.

For such optimal choices we get the following properties.
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• Since 𝜌 is a homeomorphism on each simplex we see that two disjoint components
of 𝜌−1(𝑒) must be separated by an edge path 𝜆 in 𝐷. Hence 𝜌−1(𝑒) is connected in
an optimal choice as otherwise we can ‘cut across’ 𝜆 to get a new loop which bounds
strictly less area.

𝜌−1(𝑒)
𝜌−1(𝑒)

𝜆

• Every edge 𝑓 ∈ 𝜕𝐷 must be in the link of a preimage of either 𝑢 or 𝑣. Otherwise we
could remove 𝑓 and the unique triangle which contains 𝑓 to obtain a new loop which
bounds strictly less area.

Delete this
triangle

𝑓

• The only non-boundary vertices in the link of a vertex 𝑤′ of 𝜕𝐷 are preimages of 𝑢
and 𝑣. Otherwise we could make 𝜕𝐷 longer by adding two copies of an interior edge
of 𝐷 to 𝜕𝐷.

Combining all of the above we see that 𝐷 must look like the following picture.
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𝜌−1(𝑒)

𝜕𝐷
𝜌−1(𝑝0) = 𝜌−1(𝑎)

𝜌−1(𝑝𝑛) = 𝜌−1(𝑏)

𝜌−1(𝑢)

𝜌−1(𝑝1)

It follows that 𝛾 can be decomposed into locally injective subpaths 𝛾𝑖 between 𝑝𝑖−1 and
𝑝𝑖 with the following properties. (1 ≤ 𝑖 ≤ 𝑛)

• Each 𝛾𝑖 is contained in the link of either 𝑢 or 𝑣.

• For each 𝑖 there is a triangle 𝑡𝑖 with vertices 𝑝𝑖, 𝑢 and 𝑣.

Thus for each 𝑖 there is a cone with central point either 𝑢 or 𝑣 containing both 𝑡𝑖−1 and 𝑡𝑖. Thus
by Proposition 4.5.3 either 𝑡𝑖−1 = 𝑡𝑖 or there is a simple cone containing both 𝑡𝑖−1 and 𝑡𝑖. Thus
by the assumption in the statement case we get 𝑡𝑖−1 ∼ 𝑡𝑖 for all 𝑖 and so 𝑡 = 𝑡0 ∼ 𝑡𝑛 = 𝑡′. □

Let 𝜎𝑛,𝑚 be the surjective map induced by 𝜏𝑛,𝑚 on the equivalence classes of ∼𝑛 and ∼𝑚.
Our goal shall be to show that, far enough down the hierarchy, this 𝜎𝑛,𝑚 is always a bijection.
Then we will show that the corresponding subcomplexes are themselves rigid which will
allow us to prove Theorem 4.2.5.

Proposition 4.5.4. For 𝑛 > 𝑁Δ every pair which is contained in the subcomplex associated
to ∼𝑛 is a stable pair.

Proof. First note that a subcomplex 𝑌 corresponding to an equivalence class must be cutpoint
free as any two triangles it contains must be joined by a sequence of stable pairs. This means
that the intersection of 𝑌 and any track from the resolution 𝜌 is either trivial or parallel to a
vertex of 𝑌 .

□

Lemma 4.5.5. There exists 𝑁′ ≥ 𝑁Δ such that 𝜎𝑛,𝑚 is a bijection whenever 𝑛,𝑚 ≥ 𝑁′.
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Proof. We shall proceed by proving the following three claims about the structure of the
classes of ∼𝑛.

Claim 1 There is some 𝑁1 ≥ 𝑁Δ such that number of orbits of equivalence classes of ∼𝑛 and
∼𝑚 are equal whenever 𝑛,𝑚 ≥ 𝑁1.

Proof of Claim 1. Since 𝜏𝑛,𝑚 induces a surjective equivariant map on the equivalence
classes we see that the number of 𝐺-orbits of 𝐺 classes is non-increasing, hence must
be eventually constant. □

Let 𝑌1
𝑛 , · · · ,𝑌 𝐽𝑛 be the associated subcomplexes to a set of representatives for the orbits

of ∼𝑛 and without loss of generality we can assume that 𝑌 𝑗𝑛 maps into 𝑌 𝑗
𝑛+1.

Claim 2 There is some 𝑁2 ≥ 𝑁1 such that the number of orbits of edges in each 𝑌 𝑗𝑛 is
constant for 𝑛 ≥ 𝑁2.

Proof of Claim 2. Recall from Remark 4.4.6 that for any given triangle there is a
natural correspondence between its edges at any given level. Thus the only way to
increase the number of edges is if two triangles are adjacent on one level but then not
on a later one. This contradicts Proposition 4.5.4. □

The proof of Claim 2 also means we can meaningfully talk about the image of an edge
under 𝜏𝑛,𝑚 as long as we restrict our attention to a single equivalence class.

Claim 3 [19, Lemma 8.2] For 𝑛 > 𝑁2 if 𝜎𝑛,𝑛+1 isn’t a bijection then there is some 𝑗 and an
edge 𝑒 ⊂ 𝑌 𝑗𝑛 such that

Stab+
𝑌

𝑗
𝑛

(𝑒) < Stab+
𝑌

𝑗

𝑛+1
(𝜏𝑛,𝑛+1(𝑒))

Proof of Claim 3. Claim 1 implies that 𝑌 𝑗𝑛 must join onto a conjugate of itself under
𝜏𝑛,𝑛+1. Claim 2 implies that we have an edge 𝑒 ⊂ 𝑌 𝑗𝑛 and a 𝑔 ∈ 𝐺 \ Stab(𝑌 𝑗

𝑛+1) such that
𝜏(𝑒) = 𝜏(𝑔𝑒). We thus have 𝑔 ∈ Stab+

𝑌
𝑗

𝑛+1
(𝜏𝑛,𝑛+1(𝑒)) \ Stab+

𝑌
𝑗
𝑛

(𝑒). □

We are now ready to show that 𝜎𝑛,𝑛+1 is a bijection for all sufficiently large 𝑛. Suppose
this isn’t the case; then since there are only finitely many orbits of edges in each 𝑌 𝑗𝑛 Claim 3
now implies that there is some 𝑗 and some subsequence

{
𝑛𝑖𝑘

}
of {𝑛𝑖} and some edge 𝑒 ∈ 𝑌 𝑗

𝑁2

such that
Stab+

𝑌
𝑗
𝑛𝑖1

(𝑒𝑛𝑖1 ) < Stab+
𝑌

𝑗
𝑛𝑖2

(𝑒𝑛𝑖2 ) < Stab+
𝑌

𝑗
𝑛𝑖3

(𝑒𝑛𝑖3 ) < · · ·

where 𝑒𝑛 = 𝜏𝑁2,𝑛 (𝑒) ∈ 𝑌
𝑗
𝑛 . However this is exactly the situation the ACC says cannot happen.

□



4.5 Extracting trees from complexes 85

Before proving Theorem 4.2.5 we need one final statement about the rigidity of the 𝑌 𝑗𝑛 .
This essentially says that eventually these complexes look identical at every level.

Lemma 4.5.6. There is some 𝑁′′ ≥ 𝑁′ with the following property. Suppose 𝑛,𝑚 ≥ 𝑁′′ and
𝑡, 𝑡′ are triangles at depth 𝑛 where (𝜏𝑛,𝑚 (𝑡), 𝜏𝑛,𝑚 (𝑡′)) is a stable pair at depth 𝑚. Then (𝑡, 𝑡′)
is also a (stable) pair at depth 𝑛. In other words 𝜏𝑛,𝑚 induces a bijection on the set of stable
pairs for 𝑛,𝑚 ≥ 𝑁′′.

Proof. Let 𝑒, 𝑒′ be the respective edges of 𝑡, 𝑡′ (at level 𝑛 > 𝑁′) which get mapped to the
common edge of the pair (𝜏𝑛,𝑚 (𝑡), 𝜏𝑛,𝑚 (𝑡′)). Since 𝑛 ≥ 𝑁′ we must have 𝑡 and 𝑡′ in the same
equivalence class of ∼𝑛; call the corresponding subcomplex 𝑌 . We also must have 𝑒′ = 𝑔𝑒 for
some 𝑔 which stabilises 𝑌 as 𝑁′ > 𝑁2. The same argument as the proof of Claim 3 in the
proof of Lemma 4.5.5 implies that either 𝑒′ = 𝑒 or Stab+𝑌 (𝑒) < Stab+

𝜏𝑛,𝑚 (𝑌 ) (𝜏𝑛,𝑚 (𝑒)). As in the
proof of Lemma 4.5.5 the ACC says this latter case can only occur finitely many times. □

Proof of Theorem 4.2.5. In light of Lemma 4.5.2 and Remark 4.4.11 it suffices to show that
every simple cone in a complex of depth at least 𝑁′′ is contained in an equivalence class. We
define the push-forward of a cone as follows. Let 𝑐 be the central vertex of a cone 𝐶. If the
resolution 𝜌 induces track(s) on 𝑋 whose intersection with 𝐶 is homeomorphic to a circle
enclosing 𝑐 then we let 𝑠 be the outermost such track. Otherwise set 𝑠 = 𝑐. We now define
the push-forward of 𝐶 to be the union of the image of the triangles in 𝐶 which are in the
same component as the image of 𝑠.

𝑐
𝑠

𝜕𝐷 𝜕𝐷′

𝑠

Let 𝐶 be a simple cone at depth 𝑛 ≥ 𝑁′′. Apply push-forwards to 𝐶 until we reach a cone
with minimal circumference; call this new cone 𝐶′. Observe that 𝐶′ is made of consecutive
stable pairs and so is contained in an equivalence class. If 𝐶′ has the same circumference as
𝐶 then we are done, so assume that the circumference of 𝐶′ is strictly smaller than that of 𝐶.
In this case we see 𝐶′ must contain a (stable) pair of adjacent triangles that weren’t adjacent
in 𝐶; however this contradicts Lemma 4.5.6. □
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