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Exploitation	of	synthetic	lethality	by	small-molecule	targeting	of	molecular	pathways	that	maintain	

genomic	stability	has	attracted	much	interest	as	a	chemotherapeutic	tool.	The	Ctf4/AND-1	protein	

factor,	an	evolutionarily	 conserved	hub	 that	 links	DNA	replication,	DNA	repair	and	chromosome	

segregation,	 represents	 in	principle	an	attractive	 target	 for	 the	synthetic	 lethality	approach.	The	

recent	elucidation	of	the	recruitment	mechanism	to	yeast	Ctf4	of	its	protein	partners	has	provided	

a	structural	basis	for	proof-of-principle	development	of	molecular	agents	that	interfere	with	its	hub	

function.	Here	we	report	the	design,	optimization,	biochemical	and	structural	validation	of	double-

click	stapled	peptides	encoding	the	Ctf4-interacting	peptide	(CIP)	motif	of	the	replicative	helicase	

subunit	 GINS	 Sld5.	 By	 screening	 stapling	 positions	 in	 the	 Sld5	 CIP	 sequence,	 we	 identified	 an	

unorthodox	 i,i+6	 stapled	peptide	with	 improved,	 sub-micromolar	 binding	 to	 Ctf4	 relative	 to	 the	

wild-type	CIP.	The	mode	of	interaction	with	Ctf4	was	confirmed	by	a	crystal	structure	of	the	stapled	

Sld5	peptide	bound	to	the	C-terminal	domain	of	Ctf4	(Ctf4CTD).	The	stapled	Sld5	peptide	was	able	to	

displace	the	Ctf4-partner	DNA	polymerase	a	from	the	replisome	in	yeast	extracts.	These	findings	

provide	 experimental	 evidence	 in	 support	 of	 development	 of	 small-molecule	 inhibitors	 of	 the	

human-CTF4	orthologue	AND-1.		

	 	



Introduction	

Targeting	 cancer	 cells	 with	 DNA-damaging	 agents	 such	 as	 cis-platin	 is	 a	 mainstay	 of	 traditional	

chemotherapy,	and	its	effectiveness	might	reflect	the	underlying	fragility	of	cancer	cells	in	maintaining	

their	genomic	stability1.	More	recently,	the	concept	of	synthetic	lethality	as	the	Achilles	heel	of	cancer	

cells	 with	 defective	 pathways	 of	 genome	 stability	 maintenance	 has	 taken	 firm	 hold,	 since	 the	

pioneering	 observations	 that	 breast	 cancer	 susceptibility	 protein	 2	 (BRCA2)-null	 cancer	 cells	 are	

exquisitely	sensitive	to	inhibitors	of	poly(ADP-ribose)	polymerase	(PARP)2,3.	Alongside	DNA-damaging	

agents,	small-molecule	inhibitors	of	proteins	with	essential	roles	in	DNA	synthesis,	such	as	the	DNA	

polymerase	inhibitor	fludarabine4,5	and	topoisomerase	inhibitors	camptothecin	and	etoposide6,7,	are	

currently	 used	 in	 clinical	 practice.	 As	DNA	 replication	 and	 repair	 processes	 cooperate	 to	 preserve	

genomic	 integrity,	 synthetic	 lethality	 effects	 might	 exist,	 and	 should	 be	 searched	 for,	 among	 all	

chromosome	instability	(CIN)	genes.		

A	distinctive	feature	of	metabolic	processes	such	as	DNA	replication,	repair	and	transcription	is	the	

high	degree	of	 conservation	of	 their	protein	 components	among	eukaryotes.	 This	observation	has	

recently	 been	 exploited	 to	 screen	 CIN	 genes	 in	 yeast,	 as	 a	 quick	 way	 of	 identifying	 potentially	

druggable	candidates	displaying	synthetic	lethality	with	DNA	repair	genes	that	are	often	mutated	in	

human	cancers8,9.	Such	analysis	highlighted	Ctf4	(Chromosome	Transmission	Fidelity	4)10,11	as	a	highly	

promising	 candidate,	 at	 a	 centre	 of	 a	web	 of	 negative	 genetic	 interactions	with	 other	 CIN	 genes.	

Moreover,	the	same	appears	to	be	true	for	the	human	orthologue	of	yeast	Ctf4,12.	The	high	level	of	

genetic	connections	involving	Ctf4	is	likely	to	reflect	its	known	role	as	a	protein	hub	linking	different	

processes	 pertaining	 to	 chromosome	 stability,	 such	 as	 DNA	 replication	 and	 sister	 chromatid	

cohesion13,14	(Figure	1).		

Ctf4	does	not	possess	intrinsic	enzymatic	activity	and	therefore	lacks	an	active	site,	making	it	harder	

to	target	with	traditional	small-molecule	screening	strategies.		Our	recent	work	has	elucidated	a	key	

mechanism	of	recruitment	to	Ctf4	of	its	protein	partners:	binding	is	mediated	by	a	short	linear	motif	

(SLIM)15,16,	known	as	the	Ctf4-interacting	peptide	(CIP),	which	docks	in	a-helical	form	onto	an	exposed	

site	 on	 the	 helical	 domain	 of	 Ctf4,	 fused	 to	 Ctf4’s	 second	 b-propeller	 domain	 (Figure	 1)13,14.	 The	

interaction	 is	 of	 moderate,	 micromolar	 affinity	 and	 represents	 an	 example	 of	 the	 SLIM-protein	

interactions	that	characterise	the	dynamic	architecture	of	the	replisome17.	The	determination	of	the	

structural	 basis	 for	 the	 interaction	 of	 Ctf4	with	 its	 client	 proteins	 has	 afforded	 an	 opportunity	 to	

develop	a	strategy	for	targeting	Ctf4,	by	interfering	with	its	function	as	a	protein	hub.	



Targeting	 protein-protein	 interfaces	 (PPIs)	 as	 a	 means	 of	 specifically	 disrupting	 the	 association	

between	macromolecules	would	increase	greatly	the	range	of	druggable	protein	targets,	and	a	lot	of	

effort	 has	 gone	 into	 developing	 effective	 PPI	 inhibitors18-20.	 Traditional	 small	 molecule	 library	

approaches	are	often	not	suitable	for	inhibiting	PPIs	though,	as	such	interfaces	consist	usually	of	large	

and	relatively	 flat	 surfaces.	A	promising	approach	to	generate	a-helical	PPI	 inhibitors	 is	 the	use	of	

conformationally-constrained	 peptides,	 often	 referred	 to	 as	 ‘stapled	 peptides’,	 especially	 when	

referring	to	a	peptide	constrained	 into	an	a-helical	conformation21-23.	 In	addition	to	their	potential	

value	as	 inhibitors,	stapled	peptides	represent	useful	proof-of-principle	tools	 to	 identify	 targetable	

interactions	 of	 interesting	 proteins	 with	 their	 physiological	 partners,	 and	 to	 dissect	 biological	

pathways.		

Peptide	stapling	is	a	macrocyclisation	approach	in	which	helical	peptides	are	covalently	modified	by	

the	formation	of	a	chemical	linkage	(staple)	between	side	chains	of	two	amino	acids24.	The	residues	

to	be	linked	together	are	usually	located	on	the	same	face	of	the	peptide	helix,	and	separated	by	one,	

two	or	three	helical	turns,	so	that	one	amino	acid	at	position	 i	 is	linked	to	position	 i+4,	 i+7	or	 i+11,	

respectively.	Stapling	can	constrain	a-helical	peptides	 into	their	bioactive	conformation,	 improving	

target	affinity	and	overall	pharmacokinetics25.	When	optimised,	peptide	stapling	can	generate	potent	

in	vivo	inhibitors	of	intracellular	PPI	targets26-28.	We	have	recently	pioneered	a	two	component	double-

click	stapling	technique	that	makes	use	of	double	Cu(I)-catalysed	azide-alkyne	cycloaddition	(CuAAC)	

between	diazido	peptides	with	dialkynyl	staple	linkages29,30.	This	approach	enables	a	range	of	different	

stapled	peptides	to	be	efficiently	generated	by	reacting	a	single	linear	diazido	peptide	with	a	collection	

of	different	dialkynyl	stapling	linkages	(Figure	2A).	

In	this	paper,	we	describe	the	design	of	a	stapled	peptide	targeting	the	 interaction	of	Ctf4	with	 its	

client	 proteins	 (Figure	 2B),	 based	 on	 the	 CIP	 sequence	 present	 in	 the	 GINS	 Sld5	 subunit	 of	 the	

replicative	helicase	complex	Cdc45-MCM-GINS	(CMG)13.	The	most-effective	stapled	peptide	bound	to	

Ctf4	in	the	same	fashion	as	the	wild-type	sequence,	as	determined	by	X-ray	crystallography	of	the	Sld5	

CIP	bound	to	Ctf4	C-terminal	domain	(Ctf4CTD),	but	with	about	10-fold	increased	affinity.	Interestingly,	

the	a-helix	of	the	stapled	peptide	was	conformationally	constrained	by	an	unorthodox	i,i+6	spacing;	

to	the	best	of	our	knowledge,	this	is	the	first	time	that	the	i,i+6	constraint	has	been	used	to	improve	

helical	content	and	target	binding.	Furthermore,	the	stapled	CIP	was	able	to	disrupt	the	biochemical	

interaction	between	Ctf4CTD	and	GINS	in	vitro	and	to	detach	the	Ctf4-client	DNA	polymerase	a	from	

the	 replisome	 in	 yeast	 extracts.	 Our	 study	 provides	 the	 first	 proof-of-principle	 evidence	 that	 it	 is	

possible	to	develop	chemical	tools	to	target	the	Ctf4	hub	in	the	eukaryotic	replisome.	



RESULTS	

Rationale	for	chemical	synthesis	of	stapled	peptides	

We	had	previously	 found	 that	 the	GINS	subunit	Sld5	 is	 responsible	 for	anchoring	Ctf4	 to	 the	CMG	

helicase,	and	showed	that	binding	is	mediated	by	the	interaction	of	a	short	sequence	motif	of	Sld5	

(Ctf4-interacting	 peptide	 or	 CIP;	 1-MDINIDDILAELDKETTAV-19)	 with	 an	 exposed	 site	 in	 the	 helical	

domain	of	 the	Ctf4CTD	 structure13	 (Figure	3A).	Alanine-scanning	mutagenesis	had	 revealed	 that	 the	

hydrophobic	amino	acids	I5,	I8	and	L9	at	the	binding	interface	were	critical	for	interaction	with	Ctf413.	

Keeping	 the	 key	 residues	 in	 place,	 four	 different	 stapling	 positions	 were	 designed	 into	 the	 Sld5	

sequence	by	inspection	of	the	Ctf4CTD-Sld5	complex	structure	(PDB	id:	4c95),	including	two	sequences	

with	conventional	stapling	at	i,i+7	and	two	unorthodox	i,i+6	and	i,i+8	staplings	(Figure	3B).	The	diazido-

peptides	 CF-A,	 CF-B,	 CF-C,	 CF-D	 (Figure	 3B),	 where	 ‘CF’	 represents	 N-terminal	 capping	 with	 5(6)-

carboxyfluorescein,	 were	 synthesised	 on	 Rink	 amide	 resin	 using	 automated	 solid-phase	 peptide	

synthesis.	Copper-catalysed	double-click	macrocyclisations	were	subsequently	performed	with	1,3-

diethynylbenzene	(staple	1	in	Figure	2A)	to	generate	the	corresponding	bis-triazole	stapled	peptides	

CF-A1,	CF-B1,	CF-C1	and	CF-D1.		

Fluorescence	anisotropy	of	stapled-peptide	interactions	with	the	Ctf4CTD	

The	 Sld5-based	 stapled	 peptides	 were	 first	 evaluated	 for	 their	 ability	 to	 bind	 Ctf4CTD	 in	 vitro	 in	 a	

fluorescence	anisotropy	(FP)	assay,	using	peptides	that	had	been	N-terminally	labelled	with	carboxy-

fluorescein	(CF).	The	i,i+6	stapled	peptide	A1	displayed	a	stronger	binding	affinity	for	Ctf4CTD	(Kd	=	0.84	

±	0.19	μM)	compared	to	the	wild-type	peptide	Sld51-19	(Kd	=	3.5	±	0.2	μM),	whereas	the	i,i+7	stapled	

peptides	B1	and	C1	(Kd	=	18	±	1	and	6.4	±0.6	µM	respectively)	and	the	i,i+8	peptide,	D1,	showed	weaker	

binding	to	Ctf4	(Kd	=	15	±	1	µM)	(Figure	4A	and	Table	1).	

As	 the	Sld5	peptide	A1,	stapled	at	positions	 i,	 i+6,	 showed	 the	 strongest	binding	 to	Ctf4CTD,	 it	was	

further	 investigated	 using	 our	 divergent	 double-click	 stapling	 strategy	 to	 explore	 different	 staple	

scaffolds.	The	stapled	peptide	A2,	which	bears	a	linear	aliphatic	staple	linkage	(staple	2	in	Figure	2A),	

was	able	to	bind	to	Ctf4CTD	with	a	Kd	of	0.32	±	0.02	µM	(Figure	4B,	Table	1	and	Supplementary	figure	

1).	Alternative	aliphatic	staples	3	and	4	(Figure	2A)	were	also	investigated:	the	corresponding	stapled	

peptides	A3	and	A4	bound	to	Ctf4	with	comparable	Kd	values	of	1.3	µM,	better	than	the	wild-type	

peptide	but	not	as	tight	as	A2	(Figure	4B).	However,	the	linkers	in	A3	and	A4	provide	attachment	points	

for	 chemical	 derivatisation	 of	 the	 staple	 which	 could	 be	 exploited	 for	 instance	 to	 improve	 cell	



permeabilization26,28,	while	 still	 retaining	dissociation	constants	 that	are	2.7-fold	 stronger	 than	 the	

wild-type	peptide.		

FP	analysis	of	A2	showed	that	 its	binding	to	Ctf4CTD	was	one	order	of	magnitude	stronger	than	the	

wild-type	 peptide	 (Sld51-19).	 To	 confirm	 this	 improvement	 in	 the	 binding	 strength	 to	 Ctf4,	 we	

performed	a	competition	experiment	using	CF-A2	peptide	bound	to	Ctf4CTD,	and	competed	off	 the	

fluorescently-labelled	peptide	with	unlabelled	Sld51-19	or	A2	peptides	 (Figure	4C).	 The	 competition	

experiment	showed	that	A2	peptide	is	a	better	competitor	for	Ctf4	binding	(apparent	Kd	=	0.18	µM)	

than	the	wild-type	Sld51-19	peptide	(apparent	Kd	=	7.7	µM).	

Stapling	of	the	Sld5	CIP	increases	its	intrinsic	a-helical	nature	

In	the	crystal	structure	of	Ctf4CTD	bound	to	the	Sld5	CIP,	the	peptide	adopts	a	two-turn	a-helical	fold13	

(Figure	3A).	We	set	out	to	investigate	whether	the	Sld5	CIP	is	intrinsically	unfolded	in	solution,	and	

whether	stapling	might	promote	a-helical	structure	 in	the	A2	peptide	that	could	explain	 its	higher	

affinity	for	Ctf4.	Circular	dichroism	(CD)	analysis	of	Sld51-19	and	A2	peptides	 indicated	that	they	are	

largely	 unfolded	 in	 aqueous	buffer	 (Figure	5),	 and	 that	 addition	of	 tri-fluoroethanol	 (TFE)	 induced	

partial	a-helix	 formation	 in	 both	 peptides,	 as	 expected	 (inset	 in	 Figure	 5).	 In	 the	 absence	 of	 TFE	

however,	we	noticed	a	significant	difference	in	a-helical	content	between	the	two	peptides:	whereas	

the	wild-type	Sld5	peptide	is	only	7%	helical,	the	a-helix	content	of	A2	is	21%,	three	times	higher	than	

wild-type.	Conversely,	the	CD	analysis	of	the	diazido-peptide	A,	the	modified	peptide	prior	to	double-

click	chemistry,	suggests	that	its	helical	content	is	only	3%.	Thus,	it	is	reasonable	to	assume	that	the	

physical	linkage	between	i	and	i+6	residues	in	the	A2	peptide	is	responsible	for	its	higher	intrinsic	α-

helical	content,	which	would	account	for	its	stronger	binding	to	Ctf4.		

Crystal	structure	of	the	stapled	Sld5	CIP	bound	to	Ctf4CTD	

To	determine	whether	the	mode	of	binding	of	A2	to	Ctf4CTD	was	as	originally	observed	in	the	Ctf4CTD	-	

Sld5	CIP	structure13	and	to	elucidate	the	conformation	of	the	stapled	Sld5	peptide	bound	to	Ctf4CTD,	

we	determined	the	X-ray	crystal	structure	of	the	Ctf4CTD	-	A2	complex,	by	soaking	the	stapled	peptide	

in	crystals	of	Ctf4CTD	(Figure	6).	The	experiment	showed	that	the	A2	CIP	binds	Ctf4CTD	in	an	identical	

way	to	the	wild-type	Sld5	CIP,	with	no	significant	difference	in	peptide	conformation.	Interestingly,	a	

reproducible	improvement	in	diffraction	properties	of	the	Ctf4CTD	crystals	was	observed	upon	soaking	

of	the	A2	peptide,	which	provides	further,	indirect	evidence	that	A2	has	a	stronger	affinity	for	Ctf4CTD	

than	the	wild-type	Sld5	CIP.	In	the	structure,	the	linear	aliphatic	bis-triazole	linker	is	located	on	the	

opposite	 side	 of	 the	 A2	 peptide	 relative	 to	 the	 Sld5	 CIP	 -	 Ctf4CTD	 interface,	 thus	 achieving	 the	



conformation	that	had	originally	been	planned.	As	such,	the	linker	is	fully	exposed	to	solvent	and	must	

therefore	attain	its	higher	affinity	by	facilitating	the	adoption	of	the	correct	helical	conformation	for	

Ctf4CTD	binding	via	 its	stapling	effect.	The	structure	further	shows	that	the	triazole	ring	proximal	to	

stapling	 position	 i	 packs	 against	 the	 salt	 link	 between	 Sld5	 D7	 and	 Ctf4	 R904,	 providing	 further	

stabilisation	of	the	Sld5	CIP	-	Ctf4CTD	interface.		

The	Sld5	CIP	achieves	a	partial	disruption	of	the	GINS	-	Ctf4CTD	complex	

We	next	investigated	the	ability	of	the	wild-type	Sld5	CIP	and	its	stapled	version	A2	to	interfere	with	

the	interaction	between	GINS	and	Ctf4CTD.	For	this	experiment,	increasing	amounts	of	peptide	were	

incubated	with	reconstituted	Ctf4CTD	-	GINS	complex	and	the	samples	were	analysed	by	analytical	gel	

filtration	 (Figure	 7).	 The	 chromatographs	 were	 normalised	 and	 the	 relative	 ratios	 in	 peak	 height	

between	GINS	and	the	GINS	-	Ctf4CTD	complex	were	calculated	as	described	in	the	methods	(Figure	7A	

and	7B,	inset).	Addition	of	both	wild-type	Sld5	and	stapled	A2	peptide	caused	a	partial	disruption	of	

the	Ctf4CTD	-	GINS	complex	in	a	concentration-dependent	manner,	as	demonstrated	by	the	reduction	

in	peak	size	for	the	Ctf4CTD	-	GINS	complex	and	increase	in	the	amount	of	free	GINS.	The	disruptive	

effect	of	the	Sld5	CIP	peptides	was	noticeable	but	limited;	the	incomplete	dissociation	of	the	complex	

is	 in	 agreement	with	 previous	 evidence	 indicating	 that	 the	 interaction	 surface	 between	GINS	 and	

Ctf4CTD	extends	beyond	the	Sld5-CIP	binding	site13.	Nevertheless,	at	the	highest	concentration	tested	

in	the	assay,	the	stapled	peptide	A2	was	nearly	twice	more	efficient	than	the	wild-type	Sld5	CIP.		

The	Sld5	CIP	displaces	a	Ctf4	client	from	the	replisome	in	yeast	cell	extracts	

Our	previous	work	showed	that	the	CIP	of	Pol1,	the	catalytic	subunit	of	yeast	DNA	polymerase	a	(Pol	

a), is	required	for	Pol1	to	associate	with	Ctf4	in	vitro13.	Moreover,	mutations	in	the	Pol1	CIP	lead	to	

displacement	of	Pol	a	from	the	replisome	in	yeast	cells13.	To	explore	whether	it	is	possible	to	develop	

inhibitors	of	the	interaction	of	Ctf4	with	clients	such	as	Pol1,	we	assayed	the	ability	of	the	stapled	or	

natural	versions	of	the	Sld5	CIP	to	disrupt	the	association	of	Pol	a	with	the	replisome	 in	yeast	cell	

extracts.		After	synchronising	budding	yeast	cells	in	S-phase	(Figure	8A),	cell	extracts	were	generated	

and	 incubated	with	 or	 without	 Sld5-CIP	 or	 control	 peptides,	 before	 isolation	 of	 the	 replisome	 by	

immunoprecipitation	of	a	tagged	version	of	the	Sld5	subunit	of	the	CMG	helicase	(Figure	8B).		Whereas	

none	of	the	peptides	disrupted	the	CMG	helicase	or	its	interactions	with	partners	such	as	Csm3,	the	

Sld5	CIP	peptides	specifically	displaced	Pol	a	from	the	replisome.		Notably,	stapled	A2	version	of	the	

Sld5	 CIP	 was	more	 effective	 at	 lower	 concentrations	 than	 the	 wild-type	 Sld5	 CIP	 (Figure	 8B).	 	 In	

contrast	 to	 the	 complete	disruption	 achieved	 for	 the	 association	of	 Pol	a	with	 the	 replisome,	 the	

stapled	version	of	the	Sld5	CIP	had	a	more	modest	effect	on	the	association	of	Ctf4	with	the	CMG	



helicase	(Figure	8B).		This	is	consistent	with	our	past	data	showing	that	mutation	of	the	Sld5	CIP	does	

not	displace	Ctf4	 from	CMG13,	presumably	 reflecting	 the	more	extensive	nature	of	 the	 interaction	

between	Ctf4	and	CMG.		Correspondingly,	the	Sld5	CIP	was	only	partially	able	to	displace	Ctf4	from	

the	GINS	component	of	the	CMG	helicase	in	vitro	(Figure	5),	though	the	stapled	A2	peptide	showed	

two-fold	greater	efficacy	than	the	natural	Sld5	CIP.		Nevertheless,	these	data	indicate	that	the	stapled	

Sld5	CIP	can	efficiently	inhibit	the	association	of	replisome-bound	Ctf4	with	client	proteins	such	as	Pol	

a.	

Discussion	

The	experiments	described	here	provide	proof-of-principle	evidence	that	it	is	possible	to	disrupt	Ctf4’s	

function	in	the	replisome,	by	interfering	with	its	ability	to	associate	with	CIP-box	containing	partner	

proteins	 such	 as	 Pol	a.	 This	 has	 been	 achieved	 by	 the	 structure-based	 design	 of	 Ctf4-interacting	

peptides	that	include	a	staple	linker	for	stabilisation	and	improved	affinity.	We	have	shown	the	design	

and	biochemical	validation	of	one	such	stapled	peptide,	A2,	which	contains	the	CIP	sequence	of	the	

helicase	subunit	GINS	Sld5,	modified	with	a	linear,	aliphatic	bis-triazole	staple	linking	positions	N4	and	

A10	of	the	wild-type	Sld5	sequence.	The	stapled	A2	peptide	displays	a	higher	affinity	towards	Ctf4CTD	

than	the	wild-type	sequence	by	about	one	order	of	magnitude,	and	is	more	effective	at	interfering	

with	Ctf4	function,	as	determined	by	biochemical	experiments	with	purified	protein	components	and	

in	yeast	extracts.		

The	 A2	 peptide	 displayed	 limited	 take-up	 in	 yeast	 cells	 (F.V.	 and	 K.L.,	 unpublished	 data	 with	

fluorescent	versions	of	A2	generated	by	Y.W.	and	D.R.S.),	which	prevented	us	from	assessing	its	ability	

to	interfere	with	Ctf4	function	in	vivo.	However,	the	method	allows	for	a	simple	approach	to	garner	

cell	permeability	by	modification	of	the	staple26,28.	Future	work	will	be	required	to	fully	explore	the	

potential	 of	 stapled	 peptides	 to	 inhibit	 Ctf4	 function	 in	 cells	 and	 tissues,	 perhaps	 by	 systematic	

derivatisation	of	the	stapling	group,	which	is	facilitated	by	our	two-component	double-click	stapling	

technique.	Furthermore,	our	proof-of-concept	work	with	 stapled	peptides	will	 serve	 to	 inspire	 the	

development	of	small-molecule	inhibitors	with	different	pharmacological	properties.		

The	role	of	Ctf4	as	a	hub	in	the	replisome,	coupling	DNA	synthesis	to	diverse	molecular	processes	that	

pertain	 to	chromosome	replication	and	segregation,	 is	 likely	 to	be	conserved	 in	diverse	eukaryotic	

species.	 For	 example,	 the	 human	 orthologue	 of	 Ctf4	 (also	 known	 as	 AND-1	 or	 WDHD1)	 shares	

sequence	conservation,	domain	structure,	oligomerisation	status	and	physiological	roles	with	its	yeast	

orthologue.	It	is	therefore	likely	that	human	CTF4	will	represent	an	attractive	therapeutic	target	in	the	

treatment	of	cancers	carrying	defects	in	CIN	genes,	and	our	work	raises	the	prospect	that	it	will	be	



possible	to	design	inhibitors	of	the	interaction	of	human	CTF4	with	its	client	proteins.	Future	efforts	

will	 be	 devoted	 to	 developing	 appropriate	 strategies,	 including	 the	 stapled-peptide	 approach	

demonstrated	here,	to	target	the	biochemical	function	of	CTF4	in	human	cells.	As	the	type	of	peptide-

protein	 interaction	 involving	Ctf4	and	 its	partner	proteins	 is	 likely	 to	 represent	a	paradigm	for	 the	

dynamic	functional	architecture	of	the	replisome,	such	an	approach	might	also	be	applicable	to	other	

instances	of	PPI	between	components	of	the	human	replisome.	
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	Accession	numbers	

The	coordinates	and	structure	factors	for	the	crystal	structure	of	Ctf4CTD	bound	to	the	A2	peptide	have	

been	deposited	in	the	Protein	Data	Bank	under	accession	number	5NXQ.	

Figure	Legend	

Figure	1.	The	drawing	summarises	our	current	understanding	of	Ctf4	function	in	the	eukaryotic	

replisome,	as	a	protein	hub	connecting	replisome	components	such	as	the	DNA	helicase	CMG	and	

DNA	polymerase	a,	as	well	as	other	factors	such	as	the	Dna2	helicase-nuclease	and	the	Chl1	

helicase.	The	oval	inset	shows	a	ribbon	representation	of	the	Ctf4CTD	trimer	in	purple,	with	bound	

CIPs	as	yellow	cylinders.	

Figure	2.	A	Double-click	peptide	stapling.	The	diazido-peptide	is	combined	with	different	dialkynyl	

staples	under	CuI	catalysis	to	obtain	several	bis-triazole	stapled	peptides.	B	Drawing	illustrating	the	

mechanism	of	targeting	with	stapled	CIPs	the	interface	of	the	Ctf4	trimer	with	its	client	proteins.		

	



Figure	3.	A	Two	views	of	the	Ctf4CTD	-	Sld5	CIP	interface	(PDB	ID	4c95).	B	Sequence	of	the	wild-type	

Sld5	CIP	and	of	the	A,	B,	C	and	D	peptides.	The	stapling	positions	in	each	peptide	are	marked	as	X	(all	

X	=	Orn(N3)).	The	stapling	positions	of	the	A,	B,	C	and	D	peptides	are	also	shown	mapped	onto	the	

the	structure	of	the	Sld5	CIP	bound	to	Ctf4CTD,	in	four	separate	panels.	

Figure	4.	Fluorescence	polarisation	(FP)	measurements	of	the	affinity	of	stapled	Sld5	CIPs	towards	

Ctf4CTD.	A	FP	binding	curves	for	stapled	peptide	A1	to	B1,	differing	in	stapling	position.	B	FP	binding	

curves	for	Sld5	CIPs	stapled	at	i,	i+6,	in	order	to	test	different	staple	scaffolds.	C	FP	competition	

experiment	between	wild-type	Sld5	CIP	and	the	stapled	A2	peptide.		

Figure	5.	Circular	dichroism	(CD)	analysis	of	wild-type	Sld5	and	stapled	A2	CIPs.	The	CD	spectra	were	

recorded	in	the	presence	of	0,	15	and	30%	tri-fluoroethanol	(TFE).	

Figure	6.	X-ray	crystal	structure	of	Ctf4CTD	bound	to	the	A2	peptide.	A	Close-up	view	of	the	A2	

peptide	structure,	highlighting	the	position	of	the	linear	aliphatic	bis-triazole	linker.	The	stapling	

positions	i	and	i+6	are	indicated	by	arrows.	The	final	2Fo	–	Fc	electron	density	map	contoured	at	1s	

for	the	refined	crystallographic	model	is	shown	as	a	transparent	surface,	superimposed	on	the	

structure.	B	Superposition	of	the	structure	of	Ctf4CTD	bound	to	the	stapled	A2	peptide	and	the	wild-

type	Sld5	CIP	(PDB	id	4c95).	Ctf4CTD	is	shown	as	a	light-brown	ribbon,	and	the	CIP	peptides	are	drawn	

as	sticks,	in	cyan	(A2	peptide)	and	light	sea	green	(Sld5	peptide).	

Figure	7.	Gel	filtration	assays	measuring	the	ability	of	wild-type	Sld5	and	A2	CIPs	to	disrupt	the	

Ctf4CTD	-	GINS	complex.	The	data	was	normalised	relative	to	the	total	area	under	the	combined	peaks	

and	expressed	as	the	ratio	of	the	GINS	complex	peak	height	to	Ctf4CTD	-	GINS	complex	peak	height	

(insets).	A	Experiments	performed	in	the	presence	of	wild-type	Sld5	CIP.	B	Experiments	performed	in	

the	presence	of	the	A2	peptide.	

Figure	8.	The	Sld5	CIP	displaces	Pol	a	from	the	replisome	in	yeast	cell	extracts.	A	TAP-SLD5	budding	

yeast	cells	(YSS47)	were	grown	at	30 °C,	arrested	in	G1	phase	with	mating	pheromone,	and	then	

released	into	S	phase	for	20 minutes.	DNA	content	was	measured	by	flow	cytometry.		B	The	TAP-

tagged	Sld5	subunit	of	the	CMG	helicase	was	then	isolated	from	cell	extracts	by	

immunoprecipitation	in	presence	of	the	indicated	stapled	peptides	or	controls	(the	peptides	were	all	

dissolved	in	DMSO),	and	the	indicated	proteins	were	detected	by	immunoblotting	with	the	

corresponding	antibodies.	

	



Supplementary	Figure	Legend	

Supplementary	figure	1.	Fluorescence	polarisation	(FP)	measurements	of	the	affinity	of	stapled	Sld5	

CIPs	CF-A1	and	CF-A2	towards	Ctf4CTD.		
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Table	1.	Binding	affinities	of	Sld5	peptides	for	Ctf4CTD	

	 Peptide		 Kd	(μM)	

	

CF-Sld51-19	

	

3.5	±	0.2	

	 	

CF-A1	 0.75	±	0.03	

CF-B1	 18	±	1	

CF-C1	 6.4	±	0.6	

CF-D1	 15	±	1	

	 	

CF-A2	 0.37	±	0.01	

CF-A3	 1.3	±	0.2	

CF-A4	 1.3	±	0.1	



 

 

Table	2.		Data	collection	and	refinement	statistics	

Wavelength	 	
Resolution	range	 49.21		-	2.413	(2.499		-	2.413)	
Space	group	 P	2	21	21	
Unit	cell	 88.679	100.287	219.749	90	90	90	
Total	reflections	 1003177	(90575)	
Unique	reflections	 76177	(7499)	
Multiplicity	 13.2	(12.1)	
Completeness	(%)	 99.96	(99.83)	
Mean	I/sigma(I)	 14.80	(1.03)	
Wilson	B-factor	 58.96	
R-merge	 0.1424	(2.453)	
R-meas	 0.1482	(2.563)	
R-pim	 0.04074	(0.7354)	
CC1/2	 0.999	(0.329)	
CC*	 1	(0.703)	
Reflections	used	in	refinement	 76170	(7499)	
Reflections	used	for	R-free	 3805	(365)	
R-work	 0.1804	(0.3461)	
R-free	 0.2108	(0.3733)	
CC(work)	 0.969	(0.644)	
CC(free)	 0.968	(0.565)	
Number	of	non-hydrogen	atoms	 9971	
		macromolecules	 9552	
		ligands	 60	
		solvent	 359	
Protein	residues	 1181	
RMS(bonds)	 0.003	
RMS(angles)	 0.59	
Ramachandran	favored	(%)	 96.26	
Ramachandran	allowed	(%)	 3.30	
Ramachandran	outliers	(%)	 0.43	
Rotamer	outliers	(%)	 0.19	
Clashscore	 2.11	
Average	B-factor	 67.98	
		macromolecules	 68.08	
		ligands	 97.55	
		solvent	 60.43	

Statistics	for	the	highest-resolution	shell	are	shown	in	parentheses.	
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