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Homologous recombination (HR) is central to the repair of double-strand 

DNA breaks that occur in S/G2 phases of the cell cycle. HR relies on the 

CtIP protein (Ctp1 in fission yeast, Sae2 in budding yeast) for resection 

of DNA ends, a key step in generating the 3'-DNA overhangs that are 

required for the HR strand-exchange reaction. Although much has been 

learned about the biological importance of CtIP in DNA repair, our 

mechanistic insight into its molecular functions remains incomplete. It 

has been recently discovered that CtIP and Ctp1 share a conserved 

tetrameric architecture that is mediated by their N-terminal domains and 

is critical for their function in HR. The specific arrangement of protein 

chains in the CtIP/Ctp1 tetramer indicates that an ability to bridge DNA 

ends might be an important feature of CtIP/Ctp1 function, establishing 

an intriguing similarity with the known ability of the MRE11-RAD50-

NBS1 complex to link DNA ends. Although the exact mechanism of 

action remains to be elucidated, the remarkable evolutionary 

conservation of CtIP/Ctp1 tetramerisation clearly points to its crucial 

role in HR. 

 

 

 

 

 



Introduction 

The appropriate choice of DNA double-strand break (DSB) repair mechanism 

is critical for maintenance of genomic stability1. During the S and G2 phases 

of the cell cycle, when sister chromatids become available due to ongoing or 

completed DNA replication, cells can repair DSBs by HR. Extensive resection 

of DNA ends commits cells to HR, by generating 3'-DNA overhangs that are 

the required substrate for the strand-exchange reaction promoted by the 

RAD51 recombinase2. 

CtIP (CtBP-interacting protein), also known as RBBP8 (Retinoblastoma-

binding protein 8), is an evolutionarily conserved DNA-repair factor with a 

critical role in HR3. It is now well established that a shared function of CtIP 

and its orthologues in HR-mediated DSB repair is to promote DNA-end 

resection4,5 in a cell-cycle dependent fashion6,7. Accumulating evidence from 

studies in budding yeast supports a model where the CtIP orthologue, Sae2, 

is required for effective resection of DNA ends that are blocked by a lesion or 

the presence of bound proteins8,9. The critical function of CtIP/Ctp1/Sae2 at 

DNA ends is carried out in close functional and physical cooperation with the 

DNA damage sensor and repair complex MRE11-RAD50-NBS1 (MRN, where 

NBS1 is Xrs2 in budding yeast)10-15. The central role of CtIP/Ctp1/Sae2 in 

DSB repair is further highlighted by its complex regulation, mediated by an 

array of post-translational modifications that include phosphorylation by cyclin-

dependent and DNA-damage activated kinases, acetylation, ubiquitylation, 

NEDDylation and proline isomerisation3. 



Despite its importance to DSB repair, our mechanistic understanding of how 

CtIP promotes resection remains incomplete. Inspection of its amino acid 

sequence offers little insight into the molecular details of its possible function, 

as regions of high sequence conservation are limited to its N- and C-terminal 

ends and display no similarity to known protein domains. The CtIP sequence 

has diverged radically in evolution relative to its orthologues in lower 

eukaryotes; this is highlighted by its increased size in metazoans, a 

phenomenon shared with other mediators of DNA repair such as BRCA2. 

These observations suggest that CtIP might function to promote repair via 

multiple, regulated protein-protein interactions. However, nuclease activity has 

also been reported for Sae2 and CtIP16-18, indicating that CtIP might have 

both catalytic and non-catalytic roles in processing of DNA ends. The 

complexity of the available evidence highlights the need for additional work to 

further define the biochemical roles of CtIP in DNA repair. 

Here, we comment on two recent structure-function studies that have 

provided fresh insight into CtIP function19,20. The new evidence uncovers a 

remarkable oligomerisation mechanism that is shared by human CtIP and its 

fission-yeast orthologue Ctp1: juxtaposition of their conserved N-terminal 

regions results in a specific tetrameric structure that is necessary for effective 

DSB repair by HR. 

Structural basis of CtIP/Ctp1 tetramerisation 

Although published reports had already provided evidence that CtIP could 

self-associate21-23, the precise oligomeric state of CtIP and orthologues had 

remained undefined. Our own new data19, together with the work by Andres 



and colleagues20, has now solved this issue for human CtIP and fission yeast 

Ctp1, respectively. Both reports provide biophysical and structural evidence 

that CtIP and Ctp1 exist as constitutive tetramers and share a mode of self-

association that has remained remarkably conserved over a billion years of 

evolutionary history. Furthermore, the crystallographic analyses reveal that 

tetramerisation is mediated by short sequence motifs present at the start of 

parallel coiled-coil segments located in the amino-terminal regions of both 

CtIP and Ctp1. The splayed ends of two coiled-coil dimers come together in 

an interlocking interaction, generating a tetrameric arrangement of protein 

chains that is best described as a dimer-of-dimers architecture (Fig. 1A). 

Superposition of the crystal structures of tetrameric CtIP and Ctp1 reveals the 

common molecular determinants for self-association. Tetramerisation is 

mediated by an amphipatic two-turn helix (tetramerisation helix) spanning the 

CtIP sequence 20-FKDLWTKL-27 (12-WSIVYRQL-19 in Ctp1) (Fig. 1B). 

Aromatic and hydrophobic residues F20, L23, W24 and L27 (W12, V15, Y16 

and L19 in Ctp1) generate a stable hydrophobic core by intermeshing 

interactions that result from the antiparallel packing of the tetramerisation 

helices in the four CtIP chains (Fig. 1C). In Ctp1, the tetramerisation domain is 

extended by one additional helical turn spanning leucine residues 22 and 23. 

The transition from coiled-coil structure to the splayed helices of the 

tetramerisation domain is promoted by a bulky aromatic residue in position ‘d’ 

of the heptad repeat, H31 for CtIP and Y26 for Ctp1. 

The biophysical evidence coming from size-exclusion chromatography - multi-

angle laser scattering (SEC-MALS) measurements shows that, rather than 



forming heterogeneous oligomeric mixtures, both CtIP18-145 and full-length 

Ctp1 exist predominantly as tetrameric species in solution, in agreement with 

their extensive tetramerisation interfaces revealed by the crystallographic 

analysis. This tetrameric architecture must therefore be considered as the 

constitutive oligomeric state for both CtIP and Ctp1. However, it remains 

possible that their tetrameric arrangement may be altered by the regulated 

intervention of other proteins, and/or by post-translational modifications of the 

CtIP/Ctp1 N-terminal region. The striking similarity between the tetrameric 

architectures of CtIP and Ctp1 strongly implies that their presence must be 

widespread among their eukaryotic counterparts. Indeed, the functional 

orthologue of CtIP in budding yeast, Sae2, has been reported to exist in 

multimeric form16,24 and a single-point mutant in its N-terminal region, L25P, 

abolishes its ability to self-associate25. 

Although the crystallographic analysis of the CtIP N-terminus was limited to 

the first 52 amino acid residues, secondary structure prediction of the CtIP 

sequence shows that its parallel coiled-coil structure extends to include the 

first ~150 residues. Intriguingly, the coiled-coil region is interrupted in its 

middle by a zinc-binding motif comprising conserved cysteines 89 and 9219. 

The tetrahedral coordination of zinc is presumably satisfied by shared 

coordination of one metal atom between two CtIP polypeptides. The likely 

structural alterations induced by zinc binding on the regular coiled-coil 

structure, as well as the functional role of the zinc-binding motif, are currently 

not understood. Zinc binding by the N-terminal domain appears to be an 

exclusive feature of vertebrate CtIP sequences, as the cysteines that serve as 

ligands for the metal are absent in CtIP orthologues from simpler eukaryotes. 



Functional implications of CtIP tetramerisation 

The best-characterized cellular phenotype of human CtIP deficiency is a 

profound defect in DNA-end resection, resulting in impaired DNA repair for all 

pathways that require generation of single-stranded DNA overhangs at a DSB 

site. These include HR by gene conversion5 or single-strand annealing26, as 

well as microhomology-mediated end-joining (MMEJ; also known as 

alternative end-joining26). In yeast, Ctp1 or Sae2 mutants are also 

hypersensitive to DNA-damaging agents27,28 and show defective resolution of 

meiotic recombination intermediates29,30. 

We exploited our structural insight into CtIP oligomerisation to design a single-

residue substitution, replacing leucine at position 27 with glutamate, which 

prevented tetramer formation whilst preserving CtIP’s ability to dimerise. 

Remarkably, we found that the L27E CtIP mutant phenocopies CtIP 

deficiency in terms of defective resection and gene conversion19, highlighting 

the critical role of the tetrameric CtIP architecture for recombinational DNA 

repair. Interestingly, the L27E CtIP mutant also shows a strong defect in 

accumulating at DNA-damage sites19, providing a molecular explanation to 

the functionally-null phenotype observed in the complementation assays. 

Why would CtIP’s accrual at DNA-damage sites depend on its tetrameric 

state? CtIP localization to DSBs is thought to occur in two different ways: 

through recruitment by the NBS1 component of the MRN complex31,32 and by 

direct interaction with the Fanconi Anemia related protein FANCD233,34. 

However, L27E CtIP shows no defect in its interaction with either NBS119 or 

FANCD2 (our unpublished data). We note that the conserved C-terminal 



domain (CTD) of CtIP and Ctp1 can bind DNA19,20 and that mutation of Ctp1 

residues critical for DNA binding causes hypersensitivity to DNA-damaging 

agents20. The tetrameric architecture adopted by CtIP/Ctp1 thus appears well 

suited to simultaneously position multiple CTDs on distinct DNA molecules. 

Although a CtIP tetramer could in principle locate its CTDs on four different 

DNA molecules, we favour the possibility that a 'dimer of dimers' CtIP could 

locate pairs of CTDs at the two ends of a DNA DSB20, in preparation for 

simultaneous processing of DNA ends (Fig. 2). Thus, tetrameric CtIP would 

help link DNA ends while at the same time providing two copies of its CTD to 

promote end-resection, a task shared with the MRN complex, which also 

contains dimeric versions of its core components MRE11 and RAD5035. 

Failure to connect CtIP dimers, as in the case of the L27E CtIP mutant, could 

result in weaker DNA binding and improper retention of CtIP at DNA-damage 

sites. Interestingly, a requirement for CtIP tetramerisation does not seem to 

be equally important to all forms of CtIP-dependent DNA repair, as CtIP 

dimers appear to retain some functionality in MMEJ19. This opens the 

possibility of functional regulation of CtIP oligomeric states, a feature already 

described for budding yeast Sae224, even though tetrameric oligomerisation 

seems to be CtIP’s natural state in unperturbed cells19. 

The newly uncovered architectural parallelism between CtIP and the MRN 

complex is functionally intriguing, although the similarity breaks down in one 

important respect: the size of CtIP, unlike that of RAD50 (the architectural 

component of the MRN complex), is not evolutionary conserved. Thus, human 

CtIP is about three times larger than Ctp1 (Fig. 1A), and in general a direct 

correlation is observed between organismal complexity and size of the CtIP 



orthologue. In addition, the coiled-coil region of CtIP comprises only one sixth 

of its length, whereas most of its remaining sequence shows no clear signs of 

structural conservation. Consequently, although the ability of CtIP to operate 

concomitantly at the two ends of a DNA break is clearly important as 

suggested by its 'dimer-of-dimers' structure, it is unlikely that CtIP will have 

the principal mechanical role in bridging DNA ends. Important aspects of the 

biochemical function of the tetramerisation region might also differ between 

human CtIP and its orthologues, as highlighted by the observation that the N-

terminal domain of fission yeast Ctp1 possesses DNA-binding abilities20 that 

have not so far been observed for the NTD of human CtIP19. 

Figure Legends 

Figure 1. Tetrameric architecture of human CtIP and fission yeast Ctp1. (A) 

Comparison of the crystal structures of the tetramerisation domains of CtIP 

and Ctp1. The structures are shown as ribbons, with the tetramerisation 

region of the structure coloured in purple and the coiled-coil region in yellow. 

The N- and C-termini of one chain are marked in each tetrameric structure. 

The position and extent of the structure is mapped onto a drawing of the CtIP 

and Ctp1 sequences, colour-coded as the structural ribbons. An asterisk 

marks the position of the zinc-binding motif in the coiled-coil region of CtIP. 

The position of the conserved C-terminal CtIP/Ctp1/Sae2 homology region is 

indicated in green. (B) Structure-based sequence alignment of CtIP and Ctp1 

N-terminal regions. Sequences are colour-coded as in A. Residues forming 

the tetramerisation motif shared between CtIP and Ctp1 are highlighted in 

white. (C) Details of tetramerisation interactions in human CtIP and fission 



yeast Ctp1. The left-side panel shows a superposition of the crystal structures, 

highlighting side chains of their shared tetramerisation motifs. The right-side 

panel shows a conserved mode of interaction of the aromatic side chains of 

W24 in CtIP and Y16 in Ctp1, involved in the antiparallel association between 

tetramerisation motifs. 

Figure 2. A model for bridging DNA ends by CtIP and the MRN complex at a 

DSB site. The dimer-of-dimers architecture of a CtIP tetramer might serve to 

position a pair of its conserved CTDs at each end of a DNA DSB, where it 

would cooperate with the MRN complex to promote the initial DNA-end 

resection event. The structural elements responsible for oligomerisation of the 

MRN complex (RAD50's zinc hook36) and CtIP (N-terminal tetramerisation 

domain19) are shown as helical ribbons. The zinc-binding motifs in the N-

terminus of each CtIP dimer are also shown. 
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