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ABSTRACT: Appropriate integration of cellular signals requires a
delicate balance of ligand−target binding affinities. Increasing the
level of residual structure in intrinsically disordered proteins
(IDPs), which are overrepresented in these cellular processes, has
been shown previously to enhance binding affinities and alter
cellular function. Conserved proline residues are commonly found
flanking regions of IDPs that become helical upon interacting with
a partner protein. Here, we mutate these helix-flanking prolines in p53 and MLL and find opposite effects on binding affinity
upon an increase in free IDP helicity. In both cases, changes in affinity were due to alterations in dissociation, not association, rate
constants, which is inconsistent with conformational selection mechanisms. We conclude that, contrary to previous suggestions,
helix-flanking prolines do not regulate affinity by modulating the rate of complex formation. Instead, they influence binding
affinities by controlling the lifetime of the bound complex.

I ntrinsically disordered proteins (IDPs) or intrinsically
disordered regions of proteins (IDRs) lack a well-defined

three-dimensional fold and exist as ensembles of conformations
with variable levels of transient structure.1 A subset of IDRs fold
upon binding to their partner macromolecule.2 For IDRs that
form α-helices upon coupled folding and binding, increasing
the residual helicity of the free IDR has been shown to increase
the affinity for the partner protein.3−5 Conserved proline
residues are commonly found flanking transiently helical
binding segments of IDRs6,7 (Figure 1). The abundance and
conservation of helix-flanking prolines in IDPs point toward an
important biological function. Proline residues are known helix
breakers, and these conserved helix-flanking prolines may act to
restrict the transient residual helicity of the free IDR6,7 and
consequently the affinity for the partner protein. We have
previously shown that this is the case for the disordered
transactivation domain of p53, where mutation of conserved
helix-flanking prolines increases the peak residual helicity of the
free state by approximately 40%.3 When the proline 27 to
alanine (P27A) mutation is present, this increase in residual
helicity is accompanied by a 10-fold increase in affinity for its
ordered binding partner, MDM2.
It has been suggested that observing a concomitant

enhancement in IDR residual helicity and IDR:target partner
protein affinity, will lead to an increase in the proportion of
binding competent species within the conformational ensemble
and, thus, an increase in the rate of complex formation.4,8

However, kinetic information is required to justify such

mechanistic conclusions.9,10 Here we determine the mechanism
behind the increase in the affinity of p53 for MDM2 upon
proline to alanine mutation (PtoA). We then investigate helix-
flanking prolines in the transactivation domain of MLL, another
IDR, to determine the commonality of this mechanism. We
demonstrate that the principal effect is on complex lifetime,
rather than rate of formation, but that conserved helix-flanking
prolines have more subtlety in the way that they can control
affinity than a simple model might predict.

■ MATERIALS AND METHODS
Methods for protein expression, purification and labeling,
circular dichroism, and equilibrium binding experiments are
described in the Supporting Information.

Peptides. MLL peptides were synthesized by Biomatik and
purchased as trifluoroacetate salts with a fluorescein isothio-
cyanate (FITC)-labeled or free N-terminus. Wild-type (WT)
MLL consisted of 31 amino acids: residues 2838−2869
(Uniprot entry Q03164) with residue C2841 removed to
avoid disulfide bond formation. p53 peptides were produced
recombinantly and labeled with Alexa Fluor dyes, as described
in the Supporting Information.

Biophysical Buffer. Biophysical buffer for p53 and MDM2
consisted of 50 mM sodium phosphate, 100 mM NaCl, 1 mM
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EDTA, 2 mM DTT, and 0.02% sodium azide (pH 6.8).
Biophysical buffer for MLL and KIX consisted of 100 mM
sodium phosphate and 0.05% Tween 20 (pH 7.4).
Nuclear Magnetic Resonance (NMR) Data Collection

and Analysis. NMR experiments for WT MLL and the P9/
21A mutant were performed using uniformly 15N- and 13C-
labeled samples at 160 and 155 μM, respectively, at 10 °C on a
Varian VNMRS 800 MHz spectrometer equipped with a triple-
resonance pulse field Z-axis gradient cold probe. To make the
amide 1H and 15N as well as 13Cα,

13Cβ, and
13CO resonance

assignments, sensitivity-enhanced 1H−15N HSQC and three-
dimensional HNCACB and HNCO experiments were
performed on the uniformly 15N- and 13C-labeled samples in
90% H2O/10% D2O, 50 mM phosphate buffer with 50 mM
NaCl, 1 mM EDTA, and 0.02% NaN3 (pH 6.8). For the
HNCACB experiment, data were acquired in the 1H, 13C, and
15N dimensions using 9689.9 (t3) Hz × 14074.1 (t2) Hz ×
1944.5 (t1) Hz sweep widths and 1024 (t3) × 128 (t2) × 32 (t1)
complex data points. For the HNCO, the sweep widths were
9689.9 (t3) Hz × 3770.1 (t2) Hz × 1944.5 (t1) Hz, and complex
data points were identical to those of the HNCACB.13−15 The
sweep widths and complex points of the HSQC were 9689.9
(t2) Hz × 1944.5 (t1) Hz and 1024 (t2) × 128 (t1), respectively.
For WT MLL, processing and analysis of the HNCACB data

resulted in 28 non-proline, amide 1H, 15N, 13Cα, and 26 13Cβ

resonance assignments and three proline 13Cα and 13Cβ

resonance assignments. Twenty-seven 13CO resonance assign-
ments were made using the HNCO data. For mutant MLL,
processing and analysis of the HNCACB data resulted in 30
non-proline, amide 1H, 15N, 13Cα, and 28 13Cβ resonance
assignments and one proline 13Cα and 13Cβ resonance
assignment. Twenty-nine 13CO resonance assignments were
made using the HNCO data.
All NMR spectra were processed with NVFx and analyzed

using nmrViewJ.16,17 Apodization was achieved in the 1H, 13C,
and 15N dimensions using a squared sine bell function shifted
by 70°. Apodization was followed by zero filling to double the
number of real data points, and linear prediction was used in
the 15N dimension. The 1H carrier frequency was set on 4,4-
dimethyl-4-silapentane-1-sulfonic acid (DSS was used as the
reference frequency).18 Secondary chemical shift values were
calculated by subtracting the residue specific random coil
chemical shifts in the neighbor-corrected IDP chemical shift
library (ncIDP) from the measured chemical shifts.19

Secondary structure populations were calculated with d2D
using the measured proton, nitrogen, and α, β, and carbonyl
carbon chemical shifts.20 The overall helicity was calculated as
the mean of the per residue d2D helical population estimates.

Figure 1. Position and conservation of helix-flanking prolines in IDRs. Bound structures of IDPs/IDRs that undergo coupled folding and binding to
form α-helices that are flanked by prolines. From top to bottom: p53:MDM2 [Protein Data Bank (PDB) entry 1YCR], MLL:CBP KIX (PDB entry
2LXS), c-Myb:CBP KIX (PDB entry 1SB0), CREB:CBP KIX (PDB entry 1KDX), SHP-1:SF-1 (PDB entry 1YMT), and PGC-1 α:PPARγ (PDB
entry 3CS8), respectively. Folded partner proteins are colored gray and IDPs and IDRs red. Helix-flanking prolines are represented as cyan spheres.
Cyan circles indicate helix-flanking prolines that are not present in the structure. N denotes the N-terminus of the IDP/IDR. For each IDP/IDR, the
sequences from Homo sapiens, Mus musculus, Gallus gallus, and Danio rerio were aligned using Clutsal Omega.11,12 The p53 alignment is from ref 3.
The peptide region used in the structure is highlighted in gray, with residues that form α-helices upon binding highlighted in red. Helix-flanking
prolines are highlighted. As determined with Clustal Omega, positions of full residue conservation are indicated with an asterisk, a colon indicates
conservation of strongly similar amino acid properties, and weakly similar properties are specified with a period.
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Binding Kinetics. Binding kinetics were followed using
SX18 or SX20 stopped-flow spectrometers (Applied Photo-
physics). Temperatures were maintained at 25 or 5 °C for
p53:MDM2 or MLL:KIX, respectively. The lower temperatures
were required to follow the fast observed rates of MLL:KIX.
Excitation wavelengths of 493 and 593 nm were used in
conjunction with 515 and 610 nm long pass filters, respectively.
Data within the dead time of mixing (the first 1 ms) were
removed before fitting.
Association experiments were performed under pseudo-first-

order conditions, such that the concentration of the partner
protein was at least 10-fold higher than the concentration of the
peptide. For each concentration of excess protein, 30−70 traces
for p53 were collected and averaged. Kinetic traces were fit to a
single-exponential decay function to extract observed associa-
tion rate constants (kobs). Association rate constants (kon) were
obtained from the gradient of the straight line fit of the
observed rate versus the concentration of excess protein
(Figures S1a and S3b).
For dissociation experiments, 0.25−0.5 μM labeled peptide

was pre-equilibrated with 1−2.5 μM partner protein and mixed
with various concentrations (0−50 μM) of unlabeled ligand.
Kinetic traces were fit to a single-exponential decay function to
extract kobs. p53 P27A (Alexa 594-labeled) fit poorly to a single

exponential and was instead fit to a double-exponential
function. Two dissociation rates were also observed with p53
P27A labeled with another dye, Alexa 488, suggesting dye-
specific causes were not responsible for the observed biphasic
dissociation kinetics. The most likely explanation is therefore
that p53 P27A follows a three-state reaction, as discussed in
Figure 2. We note that WT p53 may also follow this pathway,
but with rates or amplitudes that cannot be detected by
stopped-flow methods. We note that this does not affect our
conclusions. Dissociation rate constants (koff) were obtained
either from the fit of dissociation kobs, as a function of the
unlabeled ligand concentration, as described previously,21 or
from the mean of the kobs obtained at concentrations of
competing peptide at which kobs was essentially concentration-
independent, as described previously.22

Fitting MLL P9/20A and L8A Binding Kinetics. Between
60 and 120 traces were collected for each concentration of
excess partner protein/peptide. Each trace was individually fit
to a single-exponential decay function. The individual rate
constants obtained for single traces (at each concentration of
excess partner protein) were plotted as histograms and fit to a
Gaussian function (eq 1) to extract an average rate:

Figure 2. Observed rate constants for the interaction between p53 and MDM2. (A) Observed rate constants (kobs) from pseudo-first-order
association binding experiments, with MDM2 in excess. The association rate constant (kon) is given by the gradient of the straight line fit. (B)
Dissociation kobs from competition dissociation studies. Biphasic dissociation kinetics for p53 P27A may be due to either the presence of an
intermediate on the dissociation pathway or a secondary binding event. The dissociation rate constant (koff) is given by the asymptote. Error bars,
representing the error of the fit, are smaller than the data points.

Table 1. Peptide Helicities and Equilibrium and Rate Constantsa

peptide helicity (NMR) (%) helicity (CD) (%) equilibrium Kd (nM) kinetic Kd (nM) kon (×10
6 M−1 s−1) koff (s

−1)

p53 WT 3 ndb 240 ± 60 176 ± 8 25 ± 1 4.40 ± 0.03
p53 P27A 6 ndb 25 ± 3 ndb 30.7 ± 0.7 fast, 0.37 ± 0.01

slow, 0.072 ± 0.005
p53 P12/13A 3 ndb 220 ± 30 ndb 22 ± 2 ndb

p53 P12/13/27A 6 ndb 17 ± 6 ndb 32.4 ± 0.9 ndb

MLL WT 2 13 660 ± 60 530 ± 30 24 ± 1 12.4 ± 0.3
MLL P21A ndb 14 700 ± 120 560 ± 15 22.0 ± 0.6 12.22 ± 0.08
MLL P9/21A 3 16 17000 ± 2000 9000 ± 6000 20 ± 14 200 ± 16
MLL L8A ndb 12 35000 ± 4000 ndb ndb 170 ± 14

aThe percent helicity values reported in this table were calculated as described in Materials and Methods and represent the change across the entire
peptide sequence. Overall changes in helicity are predominantly due to increased helicity within the binding region (Figure 3). Errors for equilibrium
Kd measurements represent the standard error of the mean (SEM; n = 3). Errors for rate constants represent the error of the fit, except for MLL P9/
21A and MLL L8A, where the error represents the SEM (n = 7 and 5, respectively). Kinetic Kd was calculated as koff/kon, with the errors propagated
using standard methods. Data for p53 equilibrium Kd and helicity (NMR) were taken from ref 3. A recent mutational analysis of MLL showed that
the equivalent leucine to alanine mutation (L8A) was stabilizing at pH 4,23 although the authors could not measure the effects at pH 7.2 and noted
that several residues displayed different behaviors with a change in pH, which might explain the differing result. bNot determined.
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where a is a scaling constant, μ is the mean, and σ is the
standard deviation.
To assist Gaussian fitting, only individual fitted rates between

0 and 1000 s−1 were included: rates below 0 s−1 have no
physical meaning, and rates above 1000 s−1 cannot be feasibly
detected with the stopped-flow setup used to collect these data.
To uncover and minimize any potential dependence of the

extracted rate on the chosen bin size, 10 bin sizes (from 5 to 50
in increments of 5) were used to generate histograms. kobs was
determined as the mean μ over all bin sizes. kon was obtained
from the gradient of the straight line fit of kobs versus partner
protein concentration. Dissociation kobs values at each
concentration of excess peptide were determined as described
above. koff was then obtained by taking the mean of dissociation
kobs at different concentrations of out-competitor.
These described data analyses for MLL P9/20A and L8 were

performed using a bespoke script created in Mathematica
(Wolfram).

■ RESULTS AND DISCUSSION
Using stopped-flow fluorescence, we investigated the kinetic
basis for the increase in affinity of p53 for MDM2, upon
mutation of helix-flanking prolines to alanine (PtoA). If the
increased level of residual structure increased the proportion of
binding competent p53, i.e., a conformational selection
mechanism, the PtoA mutations would be expected to increase
the association rate constant (kon), yet despite increasing the
residual helicity within the region that becomes helical upon
binding by 2.5-fold,3 an only 1.23 ± 0.06-fold increase in kon
(Figure 2A) was observed for the P27A mutant. Clearly, an
enhanced rate of complex formation does not therefore explain
the 10-fold increase in affinity for p53 P27A.3 All other p53
proline to alanine (PtoA) mutants displayed similarly small
changes in kon (Table 1). Two dissociation rate constants (koff)
were observed for the P27A p53 mutant compared to one for
WT p53 (Figure 2B). An approximate 12-fold reduction in koff
was observed for the faster of the two rates, while the slower
rate was around 60-fold lower than that of the WT (Figure 2B).
Thus, the PtoA mutation increases the stability of p53:MDM2
by reducing the dissociation rate constant, suggesting that the
influence of conserved helix-flanking prolines is on the stability
of the bound complex.
To determine whether this is a common function of

conserved proline residues in IDPs, we investigated the
interaction between the disordered transactivation domain of
MLL and the folded KIX domain of CBP (Figure 1). Single
(P2858A) and double (P2846/2858A) PtoA mutants were
made for MLL (Figure S1). Hereafter, these MLL mutations
are referenced to the peptide investigated in this study (P9A
and P9/21A).
Using circular dichroism spectroscopy (CD), an increase in

helicity upon PtoA mutation was observed (Figure S2A),
consistent with both the previous p53 data3 and the idea that
helix-flanking prolines control the level of residual helical
structure.7 Such an observation might be due to a simple
extension of the helix or, as observed in p53, to an increase in
the stability of the helical region itself (Figure 3A). To confirm
and locate the changes in helicity, MLL WT and P9/21A were
investigated using NMR spectroscopy. As expected, increases in

helicity were observed at and around the site of the mutation
(Figure 3B and Figure S2B), with a 1.4-fold increase in helicity
observed within the region that becomes helical upon binding.
For MLL, mutation of the N-terminal helix-flanking proline
increased the helicity to an extent greater than that seen when
the C-terminal proline was mutated (Table 1).
Surprisingly, given the 1.4-fold increase in residual helicity,

equilibrium binding experiments demonstrated a large,
approximate 25-fold, reduction in affinity for MLL P9/21A,
compared to that of the WT or P21A (Figure 4 and Figure
S3A). MLL, therefore, does not fit the prevailing view that an
increase in the level of residual structure enhances binding
affinity.3−5 To determine the cause of these unexpected
changes, we turned again to the reaction kinetics. As for the

Figure 3. Helix-flanking prolines modulate residual structure in p53
and MLL. Change in per residue fractional helicity estimates upon
PtoA mutation for (A) p53 P27A and (B) MLL P9/21A. WT residues
that become helical upon binding are underlined. Conserved helix-
flanking prolines are highlighted. p53 NMR helicity data are from ref 3.
Individual fractional helicity plots for MLL WT and P9/21A are shown
in Figure S2B. Estimates from NMR and CD gave similar changes in
overall MLL helicity (Table 1). Note that the mean helicity within the
region that becomes helical upon binding was increased by 2.5-fold in
p53 P27A and 1.4-fold in MLL P9/21A, compared to that of the WT.
Helix-flanking prolines are shown as cyan spheres in the structures of
(A) p53:MDM2 (PDB entry 1YCR) and (B) MLL:KIX (PDB entry
2LXS). Cyan circles represent helix-flanking prolines that are not
present in the structure.

Figure 4. Fold change in thermodynamic and kinetic parameters upon
mutation. kon not determined for MLL L8A. Kd error bars represent
the standard error of the mean (SEM; n = 3). Error bars for kon and koff
represent the error of the fit, except for MLL P9/21A and MLL L8A,
where error bars represent the SEM (n = 7 and 5, respectively).
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p53:MDM2 interaction, the association rate constant was
almost unaffected in our PtoA mutants [a <1.2 ± 0.6-fold
decrease in kon was observed for both MLL mutants (Table 1,
Figure 4, and Figure S3B)]. Again, the change in affinity for
MLL P9/21A was almost entirely due to changes in koff (Table
1, Figure 4, and Figure S3C). This observation has been made
previously in mutagenesis studies of other peptides that form
simple helices upon binding,24 and is consistent with an
induced fit mechanism of binding. We note that the error in kon
is large because of the difficulty in collecting the data;a

however, determining kon by dividing koff by Kd gave a similar 2
± 0.3-fold decrease in kon for MLL P9/21A.
What causes the unexpected 25-fold reduction in affinity of

MLL for KIX upon mutation of Pro9 to Ala? Like any other
mutation, the PtoA mutation has the potential to remove
interactions of the MLL proline side chain with KIX, which
could explain the decrease in affinity. However, compared to
those of WT and P21A:KIX, we had noticed a change in the
maximal anisotropy of the MLL P9/21A:KIX complex (Figure
S3A), and CD indicated that there was an increase in helicity
within the bound complex (Figure S4A). We thus examined the
bound structure. Immediately N-terminal of P9, a leucine (L8)
of MLL packs into a hydrophobic pocket of KIX25 (Figure
S4B). Proline residues are known to influence the conformation
of preceding residues,26 so perhaps mutation of P9A could be
indirectly disrupting the interaction of L8A with KIX. To test
our hypothesis, we mutated L8, which we reasoned should lead
to similar changes in affinity. Accordingly, mutation of L8 to
Ala decreased the affinity for KIX approximately 53-fold (Table
1, Figure 4, and Figure S3A). Again, the decrease was
predominantly explained by an increase in koff (Table 1, Figure
4, and Figure S3C). We note that the 13.9 ± 0.6-fold shift in koff
for the MLL L8A mutants accounts for the majority of the 15.8
± 0.5-fold change in koff observed for MLL P9A. This indicates
that the disruption of the interaction of L8 with KIX is the
predominant reason for the decrease in affinity upon P9A
mutation, rather than a loss of proline side chain interactions.

■ CONCLUSIONS
In contrast to the suggestion that their role is to determine the
population of structures in a binding competent state,6,7 we find
that conserved IDR helix-flanking prolines control affinity by
modulating the lifetime of the bound complex. Therefore, while
helix-flanking prolines may reduce the level of residual free
IDP/IDR helical structure, any influence on affinity occurs
predominantly through effects in the bound state of the IDP/
IDR:target complex. Remarkably, mutation of helix-flanking
prolines to alanines was not always associated with an increase
in affinity, as a significant decrease was observed for MLL:KIX.
Control of IDP/IDR:target binding affinity is crucial for cellular
function.3 Clearly, evolution can result in helix-flanking prolines
being conserved to allow subtle, system specific, ways of
controlling the affinity and lifetime of important regulatory
complexes.
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