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In the SI, we first present the MLE estimator that we adapted to study
potential wells. In the second part, we summarize some properties of the
drift estimator that depends on the time step ∆t and the bin size ∆x.

1 MLE estimator for a potential well

We modified the Maximum likelihood Estimator (MLE) procedure to recon-
struct from SPTs, the geometrical parameters (center and covariance matrix)
of a well. Using a Ornstein-Ulhenbeck process, we apply the MLE procedure
to the points of the trajectories falling inside the ensemble

Γα = {X i such that ρ(x) > α}, (1)

where ρ is the steady-state probability density function of the OU process.
The advantage of the Maximum-likelihood approach is that no spatial dis-
cretization is needed. We recall that the transition probability density of an
OU process centered at µ, with diffusion coefficient D and spring constant λ

ẋ = −λ(x− µ) +
√
2Dω̇ (2)
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is

p(x, t|y, s) =

√
λ

2πD(1− e−2λ(t−s))
e
− λ

2D

(x− µ− (y − µ)e−λ(t−s))2

(1− e−2λ(t−s)) . (3)

The transition probability is

p(yi+1|yi) =

√
λ

2πD(1− e−2λ∆t)
e
− λ

2D

(yi+1 − yie
−λ∆t)2

1− e−2λ∆t , (4)

where a trajectory is discretized in y1, . . . , yM , with a fixed time step ∆t.
The log likelihood is

l(y1, . . . , yM |λ, µ,D) =
M−1∑
i=0

log p(yi+1|yi) (5)

=
M

2
log

λ

2πD(1− e−2λ∆t)
− λ

2D(1− e−2λ∆t)

M−1∑
i=0

(yi+1 − yie
−λ∆t)2.

(6)

The maximum-likelihood approach consists in estimating λ that maximizes
the log-likelihood l(y1, . . . , yM). We change variables x = e−λ∆t and v =

λ
2πD(1−e−2λ∆t)

so that

l̃(y1, . . . , yM |x, µ, v) = M

2
log

v

π
− v

M−1∑
i=1

(yi+1 − µ− (yi − µ)x)2. (7)

At the maximum,

∂l̃

∂x
=

∂l̃

∂v
=

∂l̃

∂µ
= 0, (8)

leads to the coupled equations

µ̂ =

∑M−1
0 yi+1 − x̂yi
M(1− x̂)

x̂ =

∑M−1
0 (yi+1 − µ̂)(yi − µ̂)∑M−1

0 (yi − µ̂)2
(9)

v̂ =
M

2

1∑M−1
0 ((yi+1 − µ̂)− (yi − µ̂)x̂)2

.

2



This system of equation can be solved leading to the following estimators [2]

x̂ =

1
M

M−1∑
i=0

yi+1yi − 1
M2

M−1∑
i=0

yi+1

M−1∑
i=0

yi

1
M

M−1∑
i=1

y2i − 1
M2

(
M−1∑
i=1

yi

)2 +
4

M

µ̂ =

1
M

M−1∑
i=1

(yi+1 − x̂yi)

1− x̂
. (10)

The diffusion coefficient can be found from the third equation of eq. (9):

v̂ =
1

M

M−1∑
0

(yi+1 − x̂yi − µ̂(1− x̂))2 . (11)

This procedure can be generalized in two dimensions and in addition, we
apply the estimator of eq. (9) to the ensemble Γα, defined by (1). We thus
obtain the following estimators

x̂α =

1
Mα

∑
yi∈Γα

yi+1yi − 1
M2

α

∑
yi∈Γα

yi+1

∑
yi∈Γα

yi

1
Mα

∑
yi∈Γα

y2i − 1
M2

( ∑
yi∈Γα

yi

)2 +
4

Mα

µ̂α =

1
Mα

∑
yi∈Γα

(yi+1 − x̂yi)

1− x̂
, (12)

where Mα is the number of points yi ∈ Γα. We apply this estimator to
numerical simulations in Figs. S1 and S2 and to CaV2.2 and GPI-GFP
SPTs in Figs. 7 and 8 (main text) respectively.
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2 Least Square Quadratic Estimator (LSQE)

2.1 Estimating the center and the curvature of the well

To recover the potential well from the drift distribution, we use a least square
estimator

Errb(µx, µy, λx, λy) =
N∑
i=1

∥ − ∇U(Xi)− b(Xi)∥2 (13)

=
N∑
i=1

(
bix + λx(xi − µx)

)2
+
(
biy + λy(yi − µy)

)2
,

where N is the number of points X i = (xi, yi) and the potential well is

U(X) = λx(x− µx)
2 + λy(y − µy)

2, (14)

so that

b(X) = −∇U(X) = 2

[
λx(x− µx)

λy(y − µy)

]
. (15)

The minimizers are given by

∂

∂λx

Errb =
∂

∂λy

Errb = 0 (16)

and
∂

∂µx

Errb =
∂

∂µy

Errb = 0 (17)

from which, we obtain the center

µ̃x =

N∑
i=1

bix + λxxi

Nλx

, µ̃y =

N∑
i=1

biy + λyyi

Nλy

. (18)

and the eigenvalues of the covariance matrix:

λ̃x =

N∑
i=1

bix(xi − µx)

N∑
i=1

(xi − µx)2
, λ̃y =

N∑
i=1

biy(yi − µy)

N∑
i=1

(yi − µy)2
. (19)

In practice, we computed the center µx, µy and the eigenvalues λx, λy over
the points X i falling inside the well.
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2.2 Center location and semi-axes from optimal fit

We derive here a close formula for the eigenvalues and the center associated
to the optimal estimators of the drift. For an OU process, we recall that the
eigenvalues are given by

λy =

N∑
i=1

biy(yi − µy)

N∑
i=1

(yi − µy)2
=

N∑
i=1

biyyi − µy

N∑
i=1

biy

N∑
i=1

y2i − 2µy

N∑
i=1

yi +Nµ2
y

=
Ay −Byµy

Cy − 2µyDy +Nµ2
y

, (20)

where Ay =
N∑
i=1

biyyi, By =
N∑
i=1

biy, Cy =
N∑
i=1

y2i and Dy =
N∑
i=1

yi. Using

µy =

N∑
i=1

biy + λy

N∑
i=1

yi

Nλy

=
By + λyDy

Nλy

, (21)

and eq. (20) in eq. (21), we obtained

µy =

By +
Ay −Byµy

Cy − 2µyDy +Nµ2
y

Dy

N
Ay −Byµy

Cy − 2µyDy +Nµ2
y

(22)

where µy is solution of the quadratic equation

2NByµ
2
y − (NAy + 3ByDy)µy +ByCy + AyDy = 0. (23)

With ∆y = N2A2
y − 2NAyByDy + 9B2

yD
2
y − 8NB2

yCy, we retain the positive
solution

µy =
(NAy + 3ByDy) +

√
∆y

4NBy

. (24)

Similarly, we get

µx =
(NAx + 3BxDx) +

√
∆x

4NBx

(25)

Relations (24) and (25) lead to a close expression of the eigenvalues (eq. (19)).
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2.3 Comparing MLE with density estimators

To recover the center and eigenvalues of an Ornstein-Uhlenbeck process with
the potential well given in eq. (14), we apply the MLE procedure (section
1) for various values of the parameter α. We compare the results with the
density (section 3 main text) and the LSQ (section 2) methods. We find that
the MLE and density approaches are quite robust and give similar results,
as shown in Fig. S1: Interestingly, all three estimators allow to recover the
center (µx, µy) with high accuracy for the disk and the ellipse, when 100% to
50% of the points are taken into account α ∈ [0; 0.5] (Fig. S1). However, the
estimation of the eigenvalues is acceptable for the MLE only, in the range
α ∈ [0; 0.5], because it diverges in the two other cases, except when α 0.1
(90% of the distribution is used).

When the time step δt of the numerical simulations of eq. (2) and the
sampling time ∆t are equal, the three methods lead to a good recovery of
the center µ̂x, µ̂y (Fig. S2), but differ for recovering the eigenvalues (λ̂x, λ̂y).
The least square approach is less dependent on the parameter α than the two
others. Probably because the distribution was generated with a large time
step so that the statistics are calculated on trajectories far from the equilib-
rium. This result shows that the least square approach does not require to
sample over a steady state distribution and thus recovering the parameters
from the drift is possible for a large range of the parameter α. In section 4,
we will estimate the effect of changing the time steps.

3 Influence of the time and spatial discretiza-

tions on the Least Square Estimation

In this section, we shall estimate the impact of the initial points distribution
of the trajectories on the estimation of the drift. For the stochastic equation
[7]

Ẋ = A(X) +
√
2B(X)Ẇ , (26)

the optimal estimator for the drift A at a time resolution ∆t is obtained by
the formula [8, 5],

a∆t(x) = E
[
Xn+1 −Xn

∆t
|Xn = x

]
=

1

∆t

∫
R
(y − x)p(Xn+1 = y|Xn = x)dy

= a(x) + o(1), (27)
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Figure S1: Comparing MLE vs covariance estimator. A-B estimation of
λx, λy for the case of a disk for the MLE and covariance estimator respectively.
The true value of λx = λy = 10 corresponds to the purple line. C-D same
as in A-B for the case of an ellipse with λx = 10 and λy = 40. Data were
obtained from stochastic simulations with a time step δt = 10−4s whereas
the sampling time was ∆t = 0.02s.
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Figure S2: Comparing MLE vs covariance estimator. Same as Fig.
S1 except that the simulation and sampling time steps are equal δt = ∆t =
0.02s: A-B estimation of λx, λy for the case of a disk for the MLE and co-
variance estimator respectively. The true value of λx = λy = 10 corresponds
to the purple line. C-D same as in A-B for the case of an ellipse with λx = 10
and λy = 40.

8



where Xn = X(n∆t) and E [.] in eq. (27) is the expectation. When a grid
of size ∆x is used to estimate the drift map, all points in bin k leads to
the same drift a∆t(xk), where xk is the center of the bin. For long trajecto-
ries, the stochastic process samples the steady-state distribution p(x). Such
distribution might influence the computation of the drift inside bin k. To
estimate this contribution, we normalize the steady-state distribution q(x)
of the stationary process by

q∆x(x) = Pr{X ∈ x+∆x|X has a steady state p(x)}

=
p(x)∫

∆(x)
p(x)dx

, (28)

where ∆(x) = [x−∆x/2, x+∆x/2]. Note that q∆x(x) → δ(x), when ∆x → 0.
The estimated drift a∆t(x) depends on the distribution of points falling into
the bin ∆(x) as follows

a∆t(x)∆t+ o(∆t) = lim
N→∞

N∑
k=1

E
[
Y k
n+1 − Y k

n |Y k
n ∈ ∆(x)

]
(29)

=

∫
∆k

∫
R
(y − x)p∆t(y|x)q∆x(x)dydx, (30)

where p∆t(y|x) is the pdf to find X(t) at the point y at time t+∆t when it
started at point x at time t. In the small time limit,

a∆x(x) = lim
∆t→0

E
[
Yn+1 − Yn

∆t
|Yn ∈ ∆k

]
=

∫
∆k

a(x)q(x)dx =

∫
∆k

a(x)
p(x)∫ x+∆x/2

x−∆x/2
p(x)dx

=

∫
∆(x)

p(y)a(y)dy∫
∆(x)

p(y)dy
.

We shall now obtain a further approximation by using a Taylor’s expansion
of the function F (x) =

∫ x

0
p(s)a(s)ds. We obtain that∫

∆k

p(x)a(x)dx = F (x−∆x/2)− F (x+∆x/2) = F ′(x)(∆x) +
2

6
F (3)(x)(∆x/2)3 + o((∆x)),

which leads to the approximation:

a∆x(x) =
p(x)a(x)∆x+ 1

3
(p(x)a(x))

′′
(x)(∆x/2)3

p(x)∆x+ 1
3
p′′(x)(∆x/2)3

(31)

= a(x)

(
1 +

(
a′′(x)

a(x)
+ 2

p′(x)a′(x)

a(x)p(x)

)
(∆x)2

24
+ o((∆x)2)

)
. (32)
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The formula in higher dimension is given by

a∆x(x) = a(x)

(
1 +

(
∆a(x)

a(x)
+ 2

∇p(x).∇a(x)

a(x)p(x)

)
(∆x)2

24
+ o((∆x)2)

)
. (33)

We conclude that a discretization in bins of size ∆x perturbs the drift recov-
ery by a term (∆x)2.

3.1 Influence of the time discretization ∆t on the drift
estimation

To study the consequences of a discrete sampling time on the reconstruction
of the drift from SPTs, we focus on the one-dimensional OU-process

dX = −λ(X − µ)dt+
√
2DdW. (34)

where λ, µ are fixed. A direct integration of equation (34) for s ≤ t leads to

x(t) = x(s)e−λ(t−s) + µ(1− e−λ(t−s)) + e−λ(t−s)

∫ t

s

√
2DeλudWu. (35)

and for two consecutive points x(t) and x(t+∆t), we have

x(t+∆t)− x(t) = −(x(t)− µ)(1− e−λ∆t) + e−λ∆t

∫ t+∆t

t

√
2DeλudWu. (36)

Thus, when ∆t is small, the drift at position x and resolution ∆t is

a∆t(x)∆t+ o(∆t) = E

(
x(t+∆t)− x(t)|x(t) = x

)
=

∫
R
(y − x)p(x(t+∆t) = y|x(t) = x)dy

= −(1− e−λ∆t)(x− µ). (37)

We conclude that at resolution ∆t, the approximation error is

F (t) =
1− e−λ∆t

λ∆t
= 1− λ

2
∆t+ o(∆t) (38)

suggesting that the drift of an OU process is always under-estimated using
the displacement estimator.
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3.2 Time and space discretization for Ornstein-Ulhenbeck
process

We shall now evaluate the cumulative effect of a temporal ∆t and spatial ∆x
discretization on the recovery of an OU-process. The spatial grid of size ∆x
and the drift at position x are estimated empirically using the points falling
in the bin ∆(x) = [x − ∆x/2, x + ∆x/2]. We start with the conditional
steady-state distribution q∆(x) of points falling in ∆(x), which is linked to
the pdf p(x) of the OU-stationary process by

q∆(x) =
p(x)∫

∆(x)
p(y)dy

. (39)

The drift term from eq. (37) can be approximated as

a∆t,∆x(x) = E
(
x(t+∆t)− x(t)

∆t
|x(t) ∈ ∆(x)

)
=

∫
∆

∫
R

y − x

∆t
p(x(t+∆t) = y|x(t) = x)dydx

= −1− e−λ∆t

∆t

∫
∆(x)

(x− µ)q∆(x)dx, (40)

where µ is the center of the OU-process and the stationary pdf is given by

p(x) =

√
λ

2πD
e
−

λ

2D
(x− µ)2

. (41)

To estimate eq. (40), we use eq. (31). For this computation, we set µ = 0.
In that case, we have∫

∆(x)

yq∆(x)(y)dy =

∫
∆(x)

ye−
λ
2D

y2dx∫
∆(x)

e−
λ
2D

y2dy
. (42)
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In the small ∆x approximation, we have∫
∆

yq∆(y)dy = x+

∫ ∆x/2

−∆x/2
he−

λ
2D

(x+h)2dh∫ ∆x/2

−∆x/2
e−

λ
2D

(x+h)2dh

= x+

∫ ∆x/2

−∆x/2
he−

λ
2D

h2
e−

λ
D
xhdh∫ ∆x/2

−∆x/2
e−

λ
2D

h2
e−

λ
D
xhdh

= x+
− λ

4D
x(∆x)3 + o((∆x)3)

∆x+ (λ
2x2

D2 − λ
D
)(∆x)3 + o(∆x3)

= x+
− λ

6D
x∆x2 + o((∆x)2)

1 + (λ
2x2

D2 − λ
D
)(∆x)2 + o((∆x)2)

= x(1− λ

12D
(∆x)2) + o((∆x)2). (43)

Using eqs. (40) and (43), we obtain an approximation for the drift at finite
time step ∆t and grid size ∆x

a∆t,∆x(x) = −1− e−λ∆t

∆t
(x− µ− λ

12D
(∆x)2 + o((∆x)2)). (44)

To conclude, relation (44) reveals that the empirical displacements x(t +
∆t) − x(t) collected over trajectories for an OU, can be used to recover the
drift, with an additional exponential order correction in ∆t and a second
order in ∆x.

3.3 Empirical estimations of the drift

The empirical estimator ã of the drift at position x for finite time ∆t and
spatial steps ∆x, is defined

ã∆t,∆x(x) =
1

N

N∑
i=1

∑
xi(tj)∈∆(x)

xi(tj+1)− xi(tj)

∆t
, (45)

where N is the number of points xi(tj) located in the square bin of infinites-
imal surface (∆x)2 around x. Using eq. (44), the approximation at second
order in ∆x gives that

ã(x) = −1− e−λ∆t

∆t
(xk − µ− λ

12D
∆x2) + o(∆x2). (46)
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To recover the parameter λ at various order of ∆x, we can express λ̃ using a
regular series expansion

λ̃(∆t) = λ0 + λ2(∆x)2 + λ4(∆x)4 + ... (47)

The first term is obtained by setting ∆x = 0 in eq. (46), leading for any bin
centered around xk for k = ..Nb to

ã(xk) = −1− e−λ0∆t

∆t
(xk − µ). (48)

In that case, a linear regression method can be used using the two coordinates
xk − µ and ã and to fit the distribution with a line and invert eq. (48).
If necessary, the next in the expansion can be found. Note that a formal
inversion of eq. (48) shows that for each k, we can obtain an estimation for
λ0:

λk
0(∆t) = − 1

∆t
log(1− ã(xk)∆t

xk − µ
). (49)

so that

λ̂0(∆t) = −
Nb∑
k=1

1

∆t
log(1− ã(xk)∆t

xk − µ
), (50)

showing that numerical fluctuations in ã(xk) for |xk − µ| small can drasti-
cally affect the estimation. We use this result to study the recovery of the
parameters in Fig. 5C (main text) and Fig. S3C, where we indeed observe
larger errors near the center of the well than inside. We refer to Fig. 6 (Main
text) for the estimation of the eigenvalue with and without the center bin.

3.4 Effect of the grids intersecting the boundary in the
estimation of the drift

The recovery of a truncated OU involves estimating several parameters that
depend on the accurate detection of the boundary. We focus here on the drift
estimation for the part of the square grid that intersects the boundary (green
bins in Fig. 6, main text). In that case, for the interior part that intersects
the elliptic domain, the empirical estimation recovers the local vector, while
outside, it fluctuates around zero, due to the nature of the Brownian motion

13



(no drift). Thus the error of the drift estimation at the boundary increases
with the area fraction of the bin falling outside the domain. To estimate this
error, we recall that the truncated OU-process is defined by

Ẋ = −∇U(X)dt+
√
2B(X)Ẇ , (51)

where

U(X) =

 A
[
(x−µx

a
)2 + (y−µx

b
)2
]
, if X ∈ ΓE

E otherwise
. (52)

Since the drift is zero for a diffusion process, located outside ΓE , we have

a∆x(x) = lim
∆t→0

E
[
Yn+1 − Yn

∆t
|Yn ∈ ∆(x) ∩ ΓE

]
=

∫
∆1

k(x)

a(y)q(y)dy, (53)

where ∆1(x) = ∆(x) ∩ ΓE is the part of the grid interior to the ellipse.
Indeed, the drift a diffusion process is zero. In addition, we suppose that the
sample is made according to a normalized distribution

q∆x(x) =
p(x)∫

∆(x)
p(y)dy

, (54)

where p(x) is any distribution that could be the steady-state distribution of
a truncated OU inside the well and is uniform outside. From eq. (53), we
get

a∆x(x) = a(x)

∫
∆1(x)

p(x)dx∫
∆(x)

p(x)dx
. (55)

In first approximation,

a∆x(x) = a(x)
∆1(x)

∆1(x) + ∆2(x)
, (56)

where ∆2(x) = ∆(x)∩ΓE∆(x). We shall now estimate ∆1(x). We first note
that the conservation of surfaces: ∆1(x) + ∆2(x) = (∆x)2. For a square
centered at a boundary of the ellipse (x, y)

x2

a2
+

y2

b2
= 1, (57)
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we consider the square grid with integer coordinates k = [ x
∆x

] and q = [ y
∆x

].
To compute ∆2(x), we subtract the total area of the rectangle

S(2) = [∆x][(q + 1)∆x] (58)

to the surface underneath the ellipse between the point k∆x and ∆x+ k∆x:

S(1) =

∫ (k+1)∆x

k∆x

b

√
1− (

u

a
)2du (59)

≈ b

√
1− k2(∆x)2

a2

(
1− 1

2

k∆x2

a2

)
. (60)

Thus the computations lead to

S(2) − S(1) =
1

2

k∆x2

a2
+ o(∆x2) (61)

and for x > ∆x, we get

∆2(x) = S2 − S1 = xy
2a2

(∆x)2 + o(∆x2). (62)

A similar computation leads for 0 < x ≤ ∆x to

∆2(x) = S1 − S2 = (∆x− x)y + o(∆x2). (63)

To conclude, except for the bin at the four extreme positions of the ellipse,
the error is of order O((∆x)2) for each grid bin, leading to a cumulative error
along the total length of O((∆x)). The error contribution is shown in Fig.
6E.

4 Influence of the time steps in stochastic

simulations

In the Smoluchowski’s limit of the Langevin equation, the first order stochas-
tic equation from which trajectories are generated is obtained by choosing a
time step δt. This time step should not be smaller than the reciprocal of the
friction coefficient γ so that the successive points X(δt), X(2δt), ..X(nδt), ...
should approximate the physical trajectory. When the sampling rate is such
that ∆t ≫ δt, we can compare the drift estimation in that case and also
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study the extreme case when the sampling and simulation time steps are
identical, leading to a jump process. When ∆t ≫ δt, the drift is computed
after n steps. Using the empirical estimator, in the limit of a large number
of trajectories N , we get

aest∆t(x)∆t+ o(∆t) = lim
N→∞

1

N

N∑
m=1

(xm(t+ pδt)− xm(t+ (p− 1)δt)) + ...(xm(t+ δt)− xm(x))

≈
∫ nδt

0

E[a(x(s))|x(0) = x]ds

=

∫ ∆t

0

∫
y

a(y)ps(y|x)dsdy, (64)

where ps(y|x) is the pdf of the process X(t) starting at x at time 0 and ending
at y at time s. This result is quite different from the classical estimator of eq.
(29). We note that the result of eq. (64) is very different from the estimation
from a single observation time step ∆t. Using the pdf an Onrstein-Uhlenbeck
process

ps(y|x) =

√
λ

2πD(1− e−2λs)
exp{− λ

2D

(y − xe−λs)2

1− e−2λs
}, (65)

and the change of variable u = (y−xe−λs)2√
2D
λ

(1−e−2λs)
we get

∫ ∆t

0

∫
y

a(y)ps(y|x)dsdy =

∫ ∆t

0

∫
u

a(xe−λs +

√
2D

λ
(1− e−2λs)u)

1√
π
exp{−u2}duds.(66)

Using a Taylor’s expansion in the drift term:

a(xe−λs +

√
2D

λ
(1− e−2λs)u) =

a(xe−λs) +

√
2D

λ
(1− e−2λs)ua′(xe−λs) +

1

2

2D

λ
(1− e−2λs)u2a′′(xe−λs) + o((1− e−2λs))2.
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Thus the estimator of the drift with many time steps is at first order in ∆t
given by∫ ∆t

0

∫
y

a(y)ps(y|x)dsdy =

∫ ∆t

0

(
a(xe−λs) +

1

2

D

λ
(1− e−2λs)a′′(xe−λs)

)
ds

≈ a(x)∆t+ (−λxa′(x) +Da′′(x))
(∆t)2

2
+ o((∆t)2)

≈ −λx∆t+ λ2x
(∆t)2

2
+ o((∆t)2).

We now evaluate the consequences of simulating a process with many time
steps δt = 10−4s whereas the sampling time was ∆t = 0.02s in Fig. 5 (main
text). We show in Fig. S3 how the drift field can be recovered. This situation
corresponds to large jumps of the underlying physical process. To conclude,
we find that the center and peripheral grid bins are generating most of the
error, especially for large grid sizes (∆x = 50 and 90 nm).

5 Conditional drift estimation

In this last section, we discuss the effect of estimating the drift by condi-
tioning the end points of a displacement to stay inside the potential well.
Computing the displacement ∆X by selecting only trajectories that stay in-
side the well gives a bias estimator of the drift. This situation appears when
the trajectories never reach the boundary. The drift estimator is computed
from the conditional pdf p∗ of the process that stays inside the potential well.
To find such a drift, we introduce the probability that a stochastic particle
hits a ball of radius ϵ centered on the well before escaping from the well [9],
then

p∗(x, y, t) = p(x, y, t)
q(x)

q(y)
, (67)

where p is the pdf in the entire space. q is solution of

L∗(q) = 0 (68)

q = 0 on ∂W (69)

q = 1 on ∂Bϵ, (70)
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Figure S3: Recovering the vector field with an equal simulated and sam-

pled time step δt = ∆t A Recovering the local drift field inside a circular well

for different grid sizes (10 nm, 50 nm, 90 nm) using numerical simulations with a

sampling ∆t = 20 ms, with the constraints that at least 10 points falls inside a

bin. B Error between the true and observed fields averaged over all the square bins

inside the well versus the time step ∆t. C Error between the true and observed

fields averaged over the radial angle versus the distance r to the center for various

timestep (see color code).
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L∗ is the backward Fokker-Planck equation associated the process X(t) (p.77
[9]), defined by

dx = A(x)dt+
√
2Ddw. (71)

In that case,

E

(
x(t+∆t)− x(t)

∆t
|x(t) = x

)
= A(x) +

√
2D

∇q(x)

q(x)
. (72)

To conclude, by restricting the computation of the displacements to empirical
trajectories that only remain in the well, an additional term has to be ac-
counted for, which diverges as the distance from the point x to the boundary
tends to zero (Fig. S4).

and

1

2

3

0

Distance to center (µm)
0.1 0.20

(µ
m

/s
)

Figure S4: Conditional reconstructed drift versus distance to the center.
We estimated the drift for displacements that do not exit the well (assuming the
boundary is known).
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