
Acta Informatica
https://doi.org/10.1007/s00236-019-00359-1

ORIG INAL ART ICLE

Automated formal synthesis of provably safe digital
controllers for continuous plants

Alessandro Abate2 · Iury Bessa3 · Lucas Cordeiro4 · Cristina David5 ·
Pascal Kesseli6 · Daniel Kroening2 · Elizabeth Polgreen1

Received: 1 February 2019 / Accepted: 25 November 2019
© The Author(s) 2019

Abstract
We present a sound and automated approach to synthesizing safe, digital controllers for
physical plants represented as time-invariant models. Models are linear differential equations
with inputs, evolving over a continuous state space. The synthesis precisely accounts for
the effects of finite-precision arithmetic introduced by the controller. The approach uses
counterexample-guided inductive synthesis: an inductive generalization phase produces a
controller that is known to stabilize themodel but that may not be safe for all initial conditions
of the model. Safety is then verified via boundedmodel checking: if the verification step fails,
a counterexample is provided to the inductive generalization, and the process further iterates
until a safe controller is obtained. We demonstrate the practical value of this approach by
automatically synthesizing safe controllers for physical plant models from the digital control
literature.

1 Introduction

Modern implementations of embedded control systems have proliferated with the availability
of low-cost devices that can perform highly non-trivial control tasks, with significant impact
in numerous application areas such as process and industrial engineering, high-precision
control, automotive and robotics [7,20]. However, provably correct synthesis of control soft-
ware for such platforms, needed if certification is in order, is non-trivial even in cases with
unsophisticated system dynamics.

B Elizabeth Polgreen
epolgreen@berkeley.edu

1 University of California, Berkeley, USA

2 Department of Computer Science, University of Oxford, Oxford, UK

3 Department of Electricity, Federal University of Amazonas, Manaus, Brazil

4 Department of Computer Science, University of Manchester, Manchester, UK

5 University of Cambridge, Cambridge, UK

6 DiffBlue Ltd, Oxford, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-019-00359-1&domain=pdf
http://orcid.org/0000-0002-5627-9093
http://orcid.org/0000-0002-6603-3476
http://orcid.org/0000-0002-6235-4272
http://orcid.org/0000-0002-9106-934X
http://orcid.org/0000-0003-0300-5598
http://orcid.org/0000-0002-6681-5283
http://orcid.org/0000-0001-9032-7661

A. Abate et al.

1.Synthesize

Verify

2.Safety 3.Precision 4.Complete Done

Program Search BMC-based
Verifier

Fixed-point
Arithmetic
Verifier

Completeness
Verifier

K

C-ex

T/F T/FK K K
UNSAT/
model

PASS

InputsUNSAT/
K

Increase Precision

Increase Unfolding Bound

Fig. 1 CEGIS with multi-staged verification for digital controller synthesis. We synthesise K

In this paper, we examine the case of physical systems (known as ‘plants’ in the con-
trol literature) that are mathematically described as linear time invariant (LTI) models, for
which the classical synthesis of controllers is well understood. However, the use of digi-
tal control architectures adds new challenges caused by artefacts that are specific to digital
control, such as the effects of finite-precision arithmetic and quantization errors introduced
by A/D and D/A conversion. Given an LTI model, we develop an automatic technique for
generating correct-by-design digital controllers that addresses these challenges. Specifically,
moving beyond classical literature in digital control [7,20], we automatically synthesize safe,
software-implemented embedded controllers for physical plants.

Our work addresses challenging aspects of control synthesis: we perform automated con-
trol synthesis over a model encompassing both a plant exhibiting continuous behavior and a
controller operating in discrete time and over a quantized domain. In particular, our model
evaluates the effects of the quantizers (A/D and D/A converters), as well as representation
errors introduced by the controller working in a finite-precision domain. Our model also
accounts for representation errors introduced by our modelling of the plant using finite-
precision arithmetic. We reason about specific safety requirements, which are frequently
overlooked in conventional feedback control synthesis, but which nevertheless play a key
role in safety-critical applications, of clear concern in numerous modern contexts, e.g. auton-
omy in robotics, avionics, and automotive.

We present a novel approach for the synthesis of digital controllers that makes use of
a recently investigated framework known as counterexample-guided inductive synthesis
(CEGIS) [23,43], a technique from formal methods that has recently shown much promise
andwhichwe export in thiswork to a control engineering setup. CEGIS is an iterative process,
where each iteration performs inductive generalization based on counterexamples provided
by a verification oracle (see Sect. 3.9). The inductive generalization uses information about
a limited number of inputs to compute a candidate solution for the entire range of possible
inputs.

Our approach uses a multi-staged technique, shown in Fig. 1: it starts by devising a digital
controller that stabilizes the plant model while remaining safe for a pre-selected time horizon
and a single initial state; then, it verifies an unbounded-time safety requirement by unfolding
the model dynamics, considering the full set of initial states, and checking a completeness
threshold [27]: this is the number of stages required to sufficiently unwind the closed-loop

123

Automated formal synthesis of provably safe digital…

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

k=0

k=1

k=2

k=3

k=4

k=5 k
th
=6

Continuous
Ts=1.5s

Fig. 2 Completeness threshold for multi-staged verification (quantity Ts is the time discretization step)

model such that the safety boundaries (which are assumed to be a compact set) are not violated
for any larger number of iterations, as illustrated in Fig. 2.

We provide experimental results showing that we are able to efficiently synthesize safe
controllers for a set of intricate physical plant models taken from the digital control literature.

In summary this paper, which is an extension of [3], puts forward the following contribu-
tions:

1. We automatically generate correct-by-construction digital controllers using an inductive
synthesis approach (CEGIS). The automatically computed state-feedback controllers
guarantee the validity of a given safety specification. This objective, unlike existing
methods for controller synthesis that rely on transfer function representations, requires to
consider a state-space representationof the physical system.Such a representation ensures
the validity of the specification over actual traces of the state-space model, alongside the
numerical soundness required by the effects of discretisation and finite-precision errors.

2. We present a novel multi-staged approach to synthesizing digital controllers, using
an unfolding of the dynamics up to a completeness threshold. We employ bit-precise
bounded model checking to account for fixed-point arithmetic used in the implementa-
tion of the digital control algorithm, and interval arithmetic to account for the imprecision
in the modelling of the plant.

3. A limitation of the work in [3], which this contribution extends, is its restriction to fixed-
point arithmetic, meaning that fixed-point numbers are employed for the representation
of both the plant and the controller, as well as for the operations performed by each of
them. Conversely, in the current paper we also make use of floating-point arithmetic.

123

A. Abate et al.

2 Related work

2.1 CEGIS

Program synthesis is the problem of computing correct-by-design programs from high-level
specifications. Algorithms for this task have made substantial progress over recent years, in
particular the architecture known asCEGIS,which is a recent approach to inductive synthesis.

Program synthesizers are an ideal fit for the synthesis of digital controllers, since the
semantics of programs precisely capture the effects of finite-precision arithmetic. Surpris-
ingly, the control literature has been oblivious to this relevant connection.A relevant exception
is [40], which employs CEGIS on the synthesis of switching controllers for stabilizing
continuous-time plants. This work hinges on and is limited by the capacity of the state-
of-the-art SMT solvers to reason over linear arithmetic problems. Since this contribution
employs finite switching actions for the digital controller, it avoids problems related to finite-
precision arithmetic, but potentially suffers from the state-space explosion. Moreover, in [41]
the same authors use a CEGIS-based approach for synthesizing continuous-time switching
controllers that guarantee reach-while-stay properties of closed-loop systems, i.e., properties
that specify both a set of goal states and safe states (this specification is also known as con-
strained reachability). This solution is based on synthesizing control Lyapunov functions for
switched systems that yield switching controllers with a guaranteed minimum dwell time in
each mode. However, both approaches are unsuitable for the kind of controllers that we seek
to synthesize, which are not switching in nature but rather continuous (as further detailed
later).

The work in [2] synthesizes stabilizing controllers for continuous plants given as transfer
functions, by exploiting bit-accurate verification of software-implemented digital controllers
[9].While thiswork also usesCEGIS, the approach is restricted to digital controllers for stable
closed-loop systems expressed as transfer function models: this results in a static check on
their coefficients. By contrast, in the current paper we consider a state-space representation
of the physical system, which requires ensuring the specification over actual traces of the
model, alongside the numerical soundness required by the effects of discretisation and the
errors related to finite-precision arithmetic.

Furthermore, unlike the approach in [2], this work reasons over state-space models.
A state-space model has well known advantages over the transfer function representation
[20], as it allows synthesis of controllers with guarantees on the internal dynamics, e.g.,
safety. Our work indeed focuses on the safety of internal states (which we assume to fully
observe), which is by and large overlooked in the standard (digital) control literature, by
default focussed on stability/regulation/tracking properties. Moreover, our work integrates
an abstraction-refinement (CEGAR) step inside the main CEGIS loop.

Beyond CEGIS-based architectures, there is an important line of research on provably
correct control synthesis for dynamical models, which leverages formal abstractions. The
approach underpinning tools such as Pessoa [32], related extensions [4,30] and applica-
tions [51] synthesizes correct-by-design embedded control software by formally abstracting
the model to a finite-state machine, and on the formal control synthesis over safety- and
reachability-based temporal properties thereon. Whilst in principle this formal abstraction
can account for the errors that we can deal with, it is expected to provide a controller of
different nature than the one we generate. The obtained finite controller software can then
be implemented (refined) over the concrete LTI model. However, relying on state-space
discretization, this class of approaches is likely to incur scalability limitations.

123

Automated formal synthesis of provably safe digital…

2.2 Discretization effects in control design

Recent results in digital control have focusedon separate aspects of discretization, e.g. delayed
response [17] and finite-precision arithmetic, with the goal either to verify [16] the correctness
of the implementation or to optimize [36] its design.

There are two different problems that arise from finite-precision arithmetic in digital con-
trollers. The first is the error caused by the inability to represent the exact state of the physical
system, while the second relates to rounding and saturation errors during mathematical oper-
ations. In [19], a stability measure based on the error of the digital dynamics ensures that
the deviation introduced by finite-precision arithmetic does not lead to instability. Wu et al.
[50] uses μ-calculus to synthesise directly a digital controller, so that selected parameters
result in stable model dynamics. The analyses in [42,49] rely on an invariant computation on
the discrete dynamics using semi-definite programming (SDP): while the former contribu-
tion uses a bounded-input and bounded-output (BIBO) notion of stability, the latter employs
Lyapunov-based quadratic invariants. In both cases, the SDP solver uses floating-point arith-
metic and soundness is checked by bounding the obtained error. An alternative is [37], where
the verification of given control code is performed against a known model by extracting an
LTI model of the code via symbolic execution: to account for rounding errors, upper bounds
of their values are introduced in the verification phase. The work in [38] introduces invariant
sets as a mechanism to bound the effect of quantization error on stabilization. Similarly, [29]
evaluates the quantization error dynamics and calculates upper and lower bounds for the
possible trajectory of the system, up to a finite time. Considering the problem of multi-modal
dynamics, [25] uses numerical optimization techniques to learn optimal switching logic for
hybrid systems. The last three approaches can be placed within the research area known
as “hybrid systems theory.” The present contribution distances itself from all these cognate
results.

A large body of work exists on evaluating fixed-point errors and bridging the gap between
real value and fixed-point values in synthesis in other application areas and using other algo-
rithmic techniques: Genetic programming has been used to minimise the error in synthesised
fixed-point programs [15]; Smoothed proof search reduces the problem of parameter synthe-
sis under boolean and quantitative objectives to a sequence of optimisation problems [12];
Synthesis of optimal fixed-point implementations of floating-point numerical software can be
done using testing and induction [24]. All of these works present potential future applications
for CEGIS in synthesising implementations in fixed-point arithmetic.

3 Preliminaries

3.1 State-space representation of physical systems

We consider models of physical plants expressed as ordinary differential equations, which
we assume to be controllable [5]:

ẋ(t) = Ax(t) + Bu(t), (1)

where x ∈ R
n , u ∈ R

p , A ∈ R
n×n , B ∈ R

n×p , and t ∈ R
+
0 denotes continuous time. We

denote with x(0) the model initial condition, which can be non-deterministic. We assume
full observability of the states of the model, namely the output states correspond with the
model variables, which we can thus fully access.

123

A. Abate et al.

rk -+
uk

K

DAC

ZOH

Plant

B
u(t)

++
ẋ(t) x(t)

A

ADC

xk

Fig. 3 Closed-loop digital control setup, comprising an analogue model of the underlying real system, along-
side a digital controller

Equation (1) is discretized in time [33,48] with constant sampling intervals, each of dura-
tion Ts (the sample time), into the difference equation

xk+1 =Ad xk + Bduk, (2)

where Ad = eATs and Bd = ∫ Ts
t=0 eAt dt B, and where k ∈ N is a discrete counter and

x0 = x(0) denotes the initial state. We assume that specifications concern the model in (2),
andwe plan to devise controllers uk to meet them. (Themore general problem of synthesising
controllers u(t) for (1) fall outside the scope of the present work.)

3.2 Digital control synthesis

Models (1) and (2) depend on external non-determinism in the form of input signals u(t)
and uk , respectively. Feedback architectures can be employed to manipulate properties and
behaviors of the plant: we are interested in the synthesis of digital feedback controllers uk , as
in Fig. 3, as practically implemented on field-programmable gate arrays or on digital signal
processors, and as classically studied in [7].

Recall that the states of the model are fully accessible (namely, observable). We consider
state feedback control architectures, where uk (notice we work with the discretized signal)
is uk = rk − K xk . Here K ∈ R

p×n is a state-feedback gain matrix, and rk is a reference
signal (again digital). We will assume rk = 0 (meaning that the reference signal is just a zero
signal), thus obtaining the closed-loop model xk+1 = (Ad − Bd K)xk with the origin as its
equilibrium point.

The gain matrix K can be set so that the closed-loop discrete dynamics are shaped as
desired, for instance according to a specific stability goal or around a dynamical behav-
ior of interest [7]. As argued later in this work, we will target a less standard objective,
namely a quantitative safety requirement defined over a convex set around the origin, which
opens up to more complex specifications [8,45]. This is not typical in the digital control
literature. We will further precisely account for the digital nature of the controller, which
manipulates quantised signals as discrete quantities represented with finite precision. The
new approach is fully automated and leverages an approach based on CEGIS, to be intro-
duced shortly.

3.3 Stability of closed-loopmodels

In this work we employ the notion of asymptotic stability within the CEGIS loop, as a
means for reducing the search space of possible safe controllers, where the notion of a safe

123

Automated formal synthesis of provably safe digital…

controller is defined in the following section. As discussed later, for linear models a safe
controller is necessarily asymptotically stable, although the reverse is not true. Qualitatively,
(local) asymptotic stability is a property denoting the convergence of the model executions
towards an equilibrium point, starting from any states in a neighborhood of the point. In
the case of linear systems considered with a zero reference signal (as assumed above), the
equilibrium point of interest is the origin (see Fig. 2 for the portrait of an asymptotically
stable execution, converging to the origin).

Of interest for this work, it can be shown that a discrete-time LTI model is asymptot-
ically stable if all the roots of its characteristic polynomial (i.e., the eigenvalues of the
closed-loop matrix Ad − Bd K) are inside the unit circle on the complex plane, i.e., if
their absolute values are strictly less than one [7]. Whilst this simple sufficient condi-
tion can be either generalized or strengthen to be necessary, this is not necessary in the
context of this work. What is technically key is that in this paper we shall express this
asymptotic stability as a specification φstability, and encode it in terms of a check known
as Jury’s criterion [18]: this is an easy algebraic formula to check the entries of matrix
K , so that the closed-loop dynamics are shaped as desired. We refer the interested reader
to [18] for further details about Jury’s criterion, which we omit for the sake of space and
since it is a standard result in the control literature that we just leverage for our overall
approach.

3.4 Safety of closed-loopmodels

We are not limited to the synthesis of digital stabilizing controllers—a well known task in the
literature on digital control systems—but target safety requirements with an overall approach
that is sound and automated. More specifically, we require that the closed-loop model meets
a given safety specification that is characterised by a given set around the origin. A safety
specification gives rise to a requirement on the states of the model, namely that they remain
within the safe set at all times (that is, over an infinite number of time steps). So the feedback
controller (namely the choice of the gain matrix K) must ensure that the state never violates
the requirement. Note that an asymptotically stable, closed-loop system is not necessarily a
safe system: indeed, the state values may leave the safe part of the state space while they
converge to the equilibrium, which is typical in the case of oscillatory dynamics. In this work,
the safety property is expressed as:

φsafety =
{

∀k ≥ 0,
n∧

i=1

xi ≤ xi,k ≤ xi

}

, (3)

where xi and xi are lower and upper bounds for the i th coordinate xi of state x ∈ R
n at the

kth instant, respectively. This requires that the states will always be within an n-dimensional
hyper-box.

Beyond themain requirement on safety, it is practically relevant to consider the constraints
φinput on the input signal uk and φinit on the initial states x0, which we assume have given
bounds: φinput = {∀k ≥ 0,

∧p
i=1 u ≤ ui ≤ u}, and φinit = {∧n

i=1 xi,0 ≤ xi,0 ≤ xi,0}. The
former constraint expresses that the control input, possibly shaped via state-feedback, might
saturate in view of physical constraints. Notice that we will assume that the set of initial
states lies within the safe set, since the contrary leads to dynamics that are trivially unsafe.
Furthermore, whilst the problem can handle general hyper-boxes, we will in practice work
with sets that contain the origin, particularly in view of the choice of the reference signal
rk = 0.

123

A. Abate et al.

3.5 Boundedmodel checking

We employ the bounded model checking software tool CBMC [28] to model the controller
behavior on digital signals with finite-bit precision. We express the controller semantics
as C programs, which is CBMC’s preferred input language. CBMC symbolically executes
every instruction in an input program by translating it to a Boolean satisfiability prob-
lem, which is satisfiable iff a certain property about the program holds. CBMC’s API
allows to specify these properties in the form of assertions in the input program: we set
these properties to express that our controllers generate (asymptotically stable and) safe
dynamics.

3.6 Semantics of finite-precision arithmetic

A key contribution of this work is that it precisely replicates the finite-precision arithmetic
within the digital controller it synthesizes, thus guaranteeing that controllers implemented
with finite-precision arithmetic are safe. The specific components of the model we are con-
cerned with, shown in Fig. 3, are the ADC, the digital controller and the DAC. Details of how
we model the behaviour of the finite-precision arithmetic in these components are in Sect. 5.
We must model the semantics precisely, in order to capture the full behaviour of the model.
More specifically, we encompass the following features:

– The ADC converts the analog signal x(t) into a digital signal xk , which is then fed into
the controller, converting a real value to a finite-precision value.

– The controller block performs arithmetic at finite precision. We assume the ADC repre-
sents numbers with at least the same precision as the controller, and thus focus on the
precision as limited by the controller. This is a reasonable assumption based on commonly
available hardware.

– The DAC converts finite-precision values back to real values. We assume that the input
to the DAC has the same precision as the output of the controller. It would, however, be
straightforward to account for a DAC or ADC of different precision than the controller
in our algorithm, if necessary.

3.7 Soundness of modelling

In addition to precisely replicating the finite-precision arithmetic of the digital controller, we
must consider that our model itself in (2) employs finite-precision arithmetic to represent
the behaviour of the real system. In order to guarantee soundness, we therefore encompass
the error that is due to modelling (as opposed to the nature of the digital controller): the
representations used in the plant model and its arithmetic operations are carried out at finite
precision. More specifically:

– We account for the error introduced by finite-precision arithmetic applied over the model
variables xk and uk , which are actually continuous quantities. We guarantee that the
precision we use to represent the model variables is at least as precise as the precision
used in the digital controller, and we use interval arithmetic to bound the incurred errors,
as further detailed in Sect. 5.

123

Automated formal synthesis of provably safe digital…

Synthesize Verify Done
Candidate

Counterex

Fig. 4 The general CEGIS framework

3.8 Notation for fixed- and floating-point precision

In this paper we will use F〈I ,F〉(x) to denote a real number x expressed with a fixed-point
precision, using I bits to represent the integer part of the number and F bits to represent its
decimal part. In particular, F〈Ic,Fc〉(x) denotes a real number x represented at the fixed-point
precision of the controller, and F〈Ip,Fp〉(x) denotes a real number x represented at the fixed-
point precision of the plant model. Ic and Fc are determined by the controller. We pick Ip and
Fp for our synthesis such that Ip ≥ Ic and Fp ≥ Fc, so that our controller can be represented
accurately in the model domain. Thus any mathematical operations in our modelled digital
controller will be in the range of F〈Ic,Fc〉, and all other calculations in our model will be
carried out in the range of F〈Ip,Fp〉.

We further employ F〈E,M〉(x) to denote a real number x represented in a floating-point
domain, with E bits representing the exponent part and M bits representing the mantissa part.
In particular, we use F〈Ec,Mc〉(x) to denote a real number represented at the floating-point
precision of the controller, whereas F〈E p,Mp〉(x) denotes a real number represented at the
floating-point precision of the plant model.

3.9 Counterexample-guided inductive synthesis (CEGIS)

In this section, we give a brief description of the CEGIS framework [23,43], which is illus-
trated in Fig. 4. CEGIS has been recently developed for the automated synthesis of software
programs, and its setup is naturally that of mathematical logic. We consider an input speci-
fication of the form

∃P.∀a. φ(a, P),

where P ranges over functions (where a function is represented by the program computing it),
a ranges over ground terms, andφ is a quantifier-free logical formula.We interpret the ground
terms over some domain D. This is a design problem, where the objective is to synthesise a
valid P that satisfies φ over all the a terms.

CEGIS breaks down this generally hard synthesis problem into two easier parts: an induc-
tive synthesis phase (denoted by Synthesize in Fig. 4) and a verification phase (denoted by
Verify in Fig. 4), which interacts via a finite set of tests inputs that is updated incremen-
tally. Given the specification φ, the inductive synthesis procedure tries to find an existential
witness P satisfying the specification φ(a, P) for all a in inputs (as opposed to all a ∈ D).
If the synthesis phase succeeds in finding a witness P , this witness is a candidate solution to
the full synthesis formula. We pass this candidate solution to the verification phase, which
checks whether it is a full solution (i.e., P satisfies the specification φ(a, P) for all a ∈ D).
If this is the case, then the algorithm terminates. Otherwise, additional information is pro-
vided to the inductive synthesis phase in the form of a new counterexample that is added
to the inputs set and the loop iterates again. If the solution space is finite then the CEGIS
loop is guaranteed to terminate by either finding a solution or showing that no solution
exists.

123

A. Abate et al.

In the context of the formal synthesis of safe controllers, of interest for this work, the set of
possible inputs corresponds to the set of possible initial states and the candidate program P
is a candidate controller K . The synthesis block generates a candidate controller that works
for a subset of the possible initial states, and the verifier checks whether the controller works
for all possible initial states.

4 Formal specification of stability on amodel

Since we are interested in capturing safety [as encoded in Eq. (3) in Sect. 3.4], we use
a stability specification to narrow the search space of possible controllers, as detailed in
Sect. 4.1. Essentially, we employ stability as a precursor to safety.

4.1 Jury’s stability criterion

There are a number of well known procedures to perform stability analysis of dynamical
models [5]. Here we select the classical Jury’s stability criterion [7], in view of its efficiency
and ease of integration within our implementation. This method checks the stability of a
model working over the complex domain of its characteristic polynomial S(z), considered
in its general form as

S(z) = a0zN + a1zN−1 + · · · + aN−1z + aN , a0 	= 0.

A standard result in Control theory [5] states that this polynomial can be obtained as a
function of the state-space matrices Ad , Bd , and in particular its order N corresponds to the
dimensions of the state variables (above, n). A sufficient condition for asymptotic stability
of the closed-loop LTI model [7] is when all the roots of its characteristic polynomial S(z)
(which correspond to the eigenvalues of the matrix Ad − Bd K) are inside the unit circle in
the complex plane, i.e., when the absolute values of the roots are less than one.

Skipping the full algebraic derivation for the sake of space (this can be found in [7]), the
following matrix M with dimension (2N − 2) × N and elements m(·),(·) is built from the
coefficients of S(z) as:

M =

⎛

⎜
⎜
⎜
⎝

V (0)

V (1)

...

V (N−2)

⎞

⎟
⎟
⎟
⎠

,

where V (k) = [v(k)
i j]2×N is such that:

v
(0)
i j =

{
a j−1, if i = 1

v0(1)(N− j+1), if i = 2

v
(k)
i j =

⎧
⎪⎪⎨

⎪⎪⎩

0, if j > n − k

v
(k−1)
1 j − v

(k−1)
2 j .

v
(k−1)
11

v
(k−1)
21

, if j ≤ n − k and i = 1

vk
(1)(N− j+1), if j ≤ n − k and i = 2

and where k ∈ Z is such that 0 < k < N − 2.

123

Automated formal synthesis of provably safe digital…

We have that S(z) is the characteristic polynomial of an asymptotically stable system
if and only if the following four conditions Ri , i = 1, 2, 3, 4, hold [7]: R1 : S(1) > 0;
R2 : (−1)N S(−1) > 0; R3 : |a0| < aN ; R4 : m11 > 0 ∧ m31 > 0 ∧ m51 > 0 ∧ . . . ∧
m(2N−3)(1) > 0, where mi j denotes the element in position (i, j) of the matrix M , as defined
previously.

Finally, the asymptotic stability property is finally encoded by a constraint expressed as
the following formula: φstability = {R1 ∧ R2 ∧ R3 ∧ R4}.

5 Numerical representation and soundness

As discussed in Sect. 3.6, the considered models must account for the semantics of finite-
precision arithmetic, deriving from several sources: we formally bound the numerical error
introducedby thefinite-precision representation of the plant (and its operations), and precisely
model the behaviour introduced by the ADC/DAC conversions, as well as the behaviour of
the limited-precision arithmetic used in the controller.

Technically, we employ interval arithmetic to bound the error introduced by the finite-
precision plant model, and we use bounded model checking to precisely model the semantics
of finite-precision arithmetic, as introduced by the ADC/DAC blocks and by the finite-
precision controller.

5.1 Bit-precise boundedmodel checking

As described in Sect. 3.5, we use CBMC, a bit-precise bounded model checker, to synthesise
and verify candidate controllers. CBMC manipulates precisely the fixed- or floating-point
arithmetic used in the controller, as well as the ADC/DAC conversions, according to the
IEEE standards.

5.2 Interval arithmetic for errors in numerical representations

We use finite-precision arithmetic to model the plant. This is an approximation that speeds up
each CEGIS iteration, however it necessitates a further stage where we verify that the errors
introduced by the approximation have not resulted in a controller that is unsafewhen executed
on a model expressed over real numbers. In this stage, we represent the plant model using
double-precision floating-point numbers and we use the Boost interval arithmetic library [11]
to bound the error in this representation. We employ a compositional numerical library to
model the fixed-point arithmetic for the controller1 within double-precision floating-point
numbers. We check that the controller is safe starting from each vertex of the set of initial
states, and show that this is sufficient to prove safety from any state in this set (see Theorem1).

We describe here the mathematics behind bounding the errors on the double-precision
floating-point numbers. Recall we use F〈E,M〉(x) denote a real number x represented in a
floating-point domain, with E bits representing the exponent part, and M bits representing
the mantissa. In general the representation of a real number using the floating-point domain
introduces an error, for which an upper bound can be given [10]. For each number x repre-
sented in the floating-point domain as F〈E,M〉(x), we store an interval that encompasses this

1 https://github.com/johnmcfarlane/cnl.

123

https://github.com/johnmcfarlane/cnl

A. Abate et al.

error. Further mathematical operations performed at the precision F〈E,M〉(x) will propagate
this error, leading to further errors for which bounds can be derived [10].

The fixed-point arithmetic of the digital controller is performed on the upper and lower
bound of the intervals from above independently, and the upper and lower bound of the result
is taken as the interval result. For example, consider the conversion from the model precision
to controller precision performed by the ADC on a single state value. The state value is
represented as an interval {x .high, x .low}, and the result of the conversion is an interval
where the upper bound is the conversion of x .high and the lower bound is the conversion of
x .low. Since the precision of the floating-point domain is greater than the precision of the
controller, this is guaranteed to bound the real behaviour of the controller.

5.3 Effect of finite-precision arithmetic on safety specification and on stability

In this section we will quantify how the finite-precision arithmetic in a digital controller
affects the safety and stability properties of an LTI model.

5.3.1 Safety of closed-loopmodels with finite-precision controller error

Let us first consider the effect of the quantization errors on safety. Within the controller,
state values are manipulated at low precision, by means of the vector multiplication K x . The
inputs are thus computed using the following equation:

uk = −(F〈Ic,Fc〉(K) · F〈Ic,Fc〉(xk)).

This induces two types of errors, as detailed above: first, the truncation error due to the
representation of xk as F〈Ic,Fc〉(xk); and second, the rounding error introduced by the multi-
plication operation. Recall that both these errors are modelled precisely by bounded model
checking.

An additional error is due to the representation of the plant dynamics, namely

xk+1 = F〈Ip,Fp〉(Ad)F〈Ip,Fp〉(xk) + F〈Ip,Fp〉(Bd)F〈Ip,Fp〉(uk).

We encompass this error using interval arithmetic [34] in the precision check shown in Fig. 1
and detailed in the previous section.

5.3.2 Stability of closed-loopmodels with fixed-point controller error

The validity of Jury’s criterion [18] relies on the representation of the closed-loop dynamics
xk+1 = (Ad − Bd K)xk at infinite precision. When we employ a digital controller with fixed-
point arithmetic, the operation above can be expressed as follows, where we use F〈Ic,Fc〉
preceding a variable to indicate that variable is converted into the fixed-point precision given
by F〈Ic,Fc〉:

xk+1 = Ad · xk − Bd(F〈Ic,Fc〉(K) · F〈Ic,Fc〉(xk)).

This translates to

xk+1 = (Ad − Bd K) · xk + Bd K δ,

where δ is the maximum error that can be introduced by the digital controller in one step,
i.e., by reading the states values once and multiplying by K once. We derive the closed form

123

Automated formal synthesis of provably safe digital…

expression for xn recursively, as follows:

x1 = (Ad − Bd K)x0 + Bd K δ

x2 = (Ad − Bd K)2x0 + (Ad − Bd K)Bd K δ + Bd K δ

xn = (Ad − Bd K)n x0 + (Ad − Bd K)n−1Bd K δ+
· · · + (Ad − Bd K)1Bd K δ + Bd K δ

= (Ad − Bd K)n x0 +
n−1∑

i=0

(Ad − Bd K)i Bdkδ.

Recall that a closed-loop asymptotically stable system will converge to the origin. We know
that the original system with an infinite-precision controller is stable, because we have syn-
thesized it to meet Jury’s criterion. Hence, (Ad − Bd K)n x0 must converge to zero as n ↑ ∞.
Furthermore, the power series of a square matrix T converges [22] iff the eigenvalues of the
matrix are less than 1, and the limit results in

∑∞
i=0 T i = (I − T)−1, where I is the identity

matrix. Thus, the closed-loop model converges to the value

0 + (I − Ad + Bd K)−1Bdkδ .

As a result, if the value (I − Ad + Bd K)−1Bdkδ is within the safe set of states given by the
safety specification, then the synthesized fixed-point controller results in a safe closed-loop
model. The convergence to a finite value, however, will not make it asymptotically stable.
Since in this paper we require stability only as a precursor to safety, it is thus sufficient to
check that the perturbed model converges to a neighborhood of the equilibrium within the
safe set.

A similar argument can be made for floating-point arithmetic. In conclusion, we can thus
disregard these steady-state errors (caused by finite-precision arithmetic) when stability is
ensured by synthesis, and then verify safety accounting for the finite-precision errors.

6 Synthesis of digital controllers with CEGIS

In this section we discuss the CEGIS procedure that is used to synthesise safe digital con-
trollers, accounting for the precision issues detailed in the previous sections. We employ a
multi-stage approach that unwinds the dynamics of the model up to a completeness thresh-
old, encompassing finite-precision arithmetic using bit-precise boundedmodel checking, and
then verifying soundness of the resulting controller using interval arithmetic.

An overview of the algorithm for controller synthesis is given in Fig. 1. One important
point is that we formally synthesize a controller over a finite number (k) of time steps (i.e.,
it is multi-stage). We then compute a completeness threshold k [27] for this controller, and
verify the correct behaviour for k time steps. As we will later argue, k is the number of
iterations required to sufficiently unwind the dynamics of the closed-loop state-space model,
ensuring that the safety boundaries are not violated for any other k>k.

Next, with reference to the CEGIS scheme in Fig. 4, we describe in detail the different
phases in Fig. 1 (shaded blocks 1 to 4).

123

A. Abate et al.

6.1 SYNTHESIZE block

The inductive synthesis phase (synthesize) uses BMC to compute a candidate solution
K that satisfies both the stability requirement and the safety specification, within a finite-
precision model. In order to synthesize a controller that satisfies the stability requirement, we
need the characteristic polynomial of the closed-loop model to satisfy Jury’s criterion [18]
(see Sect. 4.1).

We fix an index k, and we synthesize a safe controller by unfolding the transition system
(i.e., the closed-loop model) k steps and by selecting a controller K and a single initial state,
such that the states at each step do not violate the safety requirement (see Sect. 3.4). That is,
we ask the boundedmodel checker [14] if there exists a K that is safe for at least one x0 in our
set of all possible initial states, and a given fixed-point precision for the controller, and where
the input signal remains within the specified bounds. The bounded model checker selects the
controller K values using a satisfiability solver, i.e., by constraint solving. As such, we do
not need to consider traditional control approaches such as pole placement. This approach is
sound, i.e., the controller produced is guaranteed to be safe, if the current k is greater than the
completeness threshold (see later step). We also assume some finite precision for the model
and a given time discretisation, as described in Sect. 3.1. We use a fixed-point precision in
this description, given by 〈Ip, Fp〉, but if we are considering a floating-point controller we
will instead model the plant with a floating-point precision, 〈E p, Mp〉. The checks that these
assumptions hold are performed by the subsequent verify stages.

Algorithm 1 Safety check (safety stage in Fig. 1)
1: function safetyCheck()

2: assert(u ≤ u ≤ u)
3: set x0 to be a vertex state, e.g., [x0, x0]
4: for (c = 0; c < 2n; c++) do
5: for (i = 0; i < k; i++) do
6: u = (plant_t ypet)((controller_t ypet)K ∗ (controller_t ypet)x)

7: x = A ∗ x + B ∗ u
8: assert(x ≤ x ≤ x)
9: end for
10: set x0 to be a new vertex state
11: end for
12: end function

6.2 SAFETY block

The first verify stage, safety is shown in Algorithm 1. The algorithm checks that the
candidate solution K , which we have synthesized to be safe for at least one initial state, is
safe for all possible initial states, i.e., it does not reach the (complement) unsafe set within
k steps. After unfolding the transition system corresponding to the previously synthesized
controller k steps, we check that the safety specification holds for any initial state.

We use (controller_t ypet) to denote a cast or conversion to the controller precision, and
(plant_t ypet) to denote a cast or conversion to the model precision. A vertex state is defined
as a state where all values are either equal to the upper or lower bound of the states in the
initial set. It is sufficient to verify that the controller is safe for all vertex states, as shown
next.

123

Automated formal synthesis of provably safe digital…

Theorem 1 Assuming that the initial set is included within the safe set, if a controller is safe
for each of the corner cases of the hyper-box of allowed initial states, i.e., the vertex states,
then it is safe for any initial state in the hyper-box.

Proof Consider the set of initial states, X0, which we note is convex since it is a hyper-box.
Name vi its vertices, where i = 1, . . . , 2n . Thus any point x ∈ X0 can be expressed by
convexity as x = ∑2n

i=1 αivi , where
∑2n

i=1 αi = 1. Then if x0 = x , we obtain

xk = (Ad − Bd K)k x = (Ad − Bd K)k
2n
∑

i=1

αivi

=
2n
∑

i=1

αi (Ad − Bd K)kvi =
2n
∑

i=1

αi x i
k,

where xi
k denotes the trajectories obtained from the single vertex vi . We conclude that any

k-step trajectory is encompassed, within a convex set, by those generated from the vertices.
Recall that we have assumed that the initial set lies within the safe set, and that both are
(convex) hyper-boxes. The conclusion follows. ��
Summarising, we only need to check 2n initial states, where n is the dimension of the state
space (number of continuous variables). Whilst this full check on all vertices might not be
necessary in general (it might be simplified in special cases or under special conditions), it
does not represent the bottleneck of our overall method, so we can safely rely on its current
form.

6.3 PRECISION block

The second verify stage, precision, restores soundness with respect to the plant model
precisionbyusing interval arithmetic [34] to validate the operations performedby the previous
stage.

6.4 COMPLETE block

The third and last verify stage, complete, checks that the current k is large enough to
ensure safety for any further time steps. Here, we compute the completeness threshold k
for the current candidate controller K and check that k≥k. This is done by computing the
number of time steps required for the states to have completed a 360° circle, as illustrated in
Fig. 2.

Theorem 2 There exists a finite k such that it is sufficient to unwind the closed-loop state-
space model up to k in order to ensure that φsafety holds.

Proof An asymptotically stable model is known to have converging dynamics. Assume that
the eigenvalues of the closed-loop matrix are not repeated: this is sensible assumption to
raise, since the eigenvalues are selected by the user. The distance of the trajectory from the
reference point (which, for linear models, is the origin) decreases over time within subspaces
related to real-valued eigenvalues (say, θ < 0): this can be shown considering the exponential
eθ t x0 (x0 being the initial condition), which envelops the model dynamics within subspaces
and is monotonically decreasing. However, this monotonic decrease cannot be ensured in

123

A. Abate et al.

Fig. 5 The digital-system synthesizer (DSSynth) tool—distinct phases of the controller synthesis

general when dealingwith complex eigenvalues. In this second instance, consider the closed-
loop matrix that updates the states at each discrete time step, and select the eigenvalue ϑ with
the smallest (non-zero) imaginary part. Between any pair of consecutive time steps k Ts and
(k + 1) Ts , the dynamics projected on the corresponding eigenspace rotate of ϑTs radians.
Thus, taking k as the ceiling of 2π

ϑTs
, after k≥k steps the model trajectory has completed a

full rotation within the relevant eigenspace: this results in a point closer to the origin, as
shown in Fig. 2. The synthesized k is thus a completeness threshold: indeed, since we have
selected ϑ to be the complex eigenvalue with smallest imaginary part, any other pair of
complex eigenvalues will correspond to dynamics that rotate faster within the corresponding
eigenspace. Hence, k will again represent a global completeness threshold. ��

7 DSSynth: a software tool for automated digital controller synthesis
over physical plants

The implementation of the proposedmethodology for synthesis of digital controls for physical
plants is based on the digital-system synthesizer (DSSynth) tool [1], which can be split into
two main stages: manual and automated, as illustrated in Fig. 5 and detailed next.

The first stage comprises the following steps. In Step 1, the user selects the system rep-
resentation, which can be a transfer function or a state-space model (we focus on the latter
in this article). In Step 2, the plant [e.g., in the form of Eq. (1)] is provided [7]. Finally, in
Step 3, the numerical representation for the digital controller implementation must be set by
the user: this is the finite-precision arithmetic that defines the number of bits of integer and
fractional parts when using fixed-point arithmetic, or half- and single-precision when using
floating-point arithmetic. The user also specifies the input range.

In the second stage, the automated synthesis process starts with Step A, where the
DSSynth translates the model specification into an ANSI-C program. In Step B, the discussed
CEGIS engine is invoked, in order to synthesize the digital controller w.r.t. the specification
given on the model. Finally, in Step C, the synthesized digital controller is generated. The
output of DSSynth is the closed-loop model with the synthesized digital controller, which
is represented either as a transfer function or in state-space form (in this article we consider
the latter case). The synthesis is considered to be successful if a digital controller is correctly
synthesized with respect to the effects of finite-precision arithmetic within a time-out set to
5 h.

The CEGIS engine is implemented as an integrated module within the C bounded model
checker (CBMC) [14]. CBMC transforms the ANSI-C representation of the closed-loop
control model model into its internal representation (IR). We instrument this IR for each

123

Automated formal synthesis of provably safe digital…

synthesis or verification scenario accordingly, and use CBMC as an oracle to answer our
queries. CBMC itself relies on an underlying SAT/SMT solver to address verification checks.
Wemodel the effects of finite-precision arithmetic explicitly using CBMC’s nondeterminism
API (e.g., nondet, CPROVER_assume intrinsic functions).

8 Experimental evaluation

Our benchmark suite consists of 19 case studies extracted from the control literature [13,20,
21,21,26,35,44,46,47]. These case studies comprise control models, which we represent in
state space form as in Eq. (1). The models are time discretized, with sampling times ranging
from 1 to 0.0001 s. CEGIS initially starts with the coarsest discretisation (i.e., 1s sampling
time), and if it fails to find a controller, it reduces the sampling time. The initial states are
bounded between 0.5 and −0.5 for all states, and the safety specification requires that the
states remain between −1.5 and 1.5 (as remarked above, the initial set lies within the safe
set and contains the origin). The input bounds are selected individually for each benchmark.

8.1 Description of the control benchmarks

The bioreactor benchmark is a linear model of the cell mass concentration controlled through
the dilution rate of a bioreactor [39]. The Chen benchmark correspond to a higher-order
control system model employed as a case study for model-order reduction techniques [13].
The benchmarks Cruise 1 [20] and Cruise 2 [5] deal with automotive cruise control models,
where the control is used to maintain the speed of an automobile at a constant value (after
tracking a desired speed reference), and compensating disturbances and uncertainties. The
models cstr and cstrtmp describe the pH dynamics of a reaction of an aqueous solution of
sodium acetate with hydrochloric acid [46] and the temperature of a reaction [6] in a tank
reactor. The DC motor plant describes the velocity dynamics of a direct-current electrical
machine. The helicopter benchmark plant describes the transitional and rotational dynamics
of a coaxial helicopter. The inverted pendulum benchmark describes a model for the cart
position and for the angle of an inverted pendulum placed on the cart, which moves over a
track bymeans of aDCmotor. Themagnetic pointer benchmark describes amagnetic pointer,
whose angular position dynamics is controlled by a magnetic field. The magsuspension
describes the dynamics of a magnetic car suspension system. The pendulum plant consists of
a swinging point mass suspended from a frictionless pivot by means of a rod with negligible
mass. The Regulator consists of a linear model of a synchronous electrical machine [26].
The satellite attitude control system plant describes the dynamics of a satellite attitude, i.e.,
the orientation angles. An attitude control system must maintain the desired orientation of
a satellite with respect to an inertial frame. The springer-mass damper system plant is a
standard model for the dynamics of several mechanical systems. The steam drum benchmark
describes a linear model for the level dynamics of a boiler steam drum [31]. The suspension
models the single-wheel suspension system of a car, namely the relative motion dynamics
of a mass-spring-damper model, which connects the car to one of its wheels. The tapedriver
benchmark models a computer tape driver, that is a computer storage device used to read
and write data on magnetic tapes. The USCG cutter tampa heading angle plant describes the
heading angle dynamics of a Coast Guard cutter.

123

A. Abate et al.

8.2 Objectives

Using the state-space models described in Sect. 8.1, the evaluation study has the following
overall experimental goal:

Show that the multi-staged CEGIS approach is able to generate finite-precision digital
controllers using fixed-point and floating-point arithmetic in a reasonable amount of time.

8.3 Results

We provide the results in Table 1, where: Benchmark is the name of the corresponding
benchmark; Order is the number of continuous variables of the model; F〈Ip,Fp〉, where Ip

and Fp indicate the integer and fractional parts, and F〈E p,Mp〉, where E p and Mp indicate
the exponent and mantissa part, are the fixed- and floating-point precisions used to model
the plant, respectively; and Time is the total time required to synthesize a controller for the
given model. Time-outs are indicated by ✗, where the time-out used is 5 h. The precision for
the controller, F〈Ic,Fc〉, is chosen to be Ic = 8, Fc = 8 for fixed-point, whereas F〈Ec,Mc〉 is
chosen to be Wc = 6 and Fc = 10 for half-precision floating-point format.

We separate our evaluation into two sets of results: fixed- and floating-point. We present
a selection of case-studies that we are able to solve either for floating-point or fixed-point.
Given a time discretisation, the floating-point controllers in general take longer to synthesise
than the fixed-point ones. However, the fixed-point algorithm is often forced to try more time
discretisations, because the fixed-point controller lacks the precision to control the system at
the coarser time discretisation.

The mean run-time for the successful benchmarks is 225s for fixed-point and 125s for
floating-point implementations, respectively. The median run-time for the successful bench-
marks is 15.7 s for fixed-point and 17.8 s for floating-point implementations, respectively.
We consider these times to be short enough to be of practical use to control engineers, and
thus assert the success of the overall objective of the study that we have raised above. The
completeness threshold depends upon the controller selected, and the SAT/SMT solver picks
a controller with a low completeness threshold for all the time discretisations that we solve.
The completeness threshold is zero where the controller synthesised results in a system with
real valued eigenvalues.

A link to the full experimental environment, including scripts to reproduce the results, all
benchmarks and the tool, is provided in the footnote as an Open Virtual Appliance (OVA).2

The provided experimental environment runs multiple discretisations for each benchmark,
and lists the fastest as the resulting synthesis time.

In this article we have presented a selection of case studies for which we have been
able to automatically synthesise safe controllers. In the full experimental environment we
have included further case studies that we have been unable to synthesise controllers for.
This is in many cases due to timeouts, especially when the set completeness threshold
is too large, or when a controller simply may not exist for a benchmark at a given time
discretisation and required controller precision. Yet another source of incompleteness is
the inability of the synthesize phase to employ a large-enough precision for the plant
model.

2 https://www.cprover.org/DSSynth.

123

https://www.cprover.org/DSSynth

Automated formal synthesis of provably safe digital…

Table 1 Synthesis times for fixed- and floating-point controllers

Benchmark Order F〈Ip ,Fp〉 Time (s) k F〈E p ,Mp〉 Time (s) k

Bioreact 2 8,8 15.35 4 10,6 23.76 2

Chen 3 8,8 11.24 0 10,6 14.25 0

Cruise 1 8,8 11.03 0 10,6 11.17 0

Cruise 2 1 8,8 9.93 0 10,6 10.54 0

Cst 3 12,12 90.03 2 10,6 321.12 2

Cstrtmp 2 8,8 18.56 2 10,6 16.99 2

DC motor 2 8,8 10.34 0 10,6 12.32 0

Helicopter 3 16,16 1116.08 2 10,6 168.43 38

Inverted pendulum 2 12,12 16.01 2 10,6 18.73 0

Magnetic pointer 3 12,12 1071.02 10 10,6 207.60 9

Magnetic suspension 3 20,20 56.9 2 10,6 998.3 6

Pendulum 2 8,8 11.74 0 10,6 13.69 0

Regulator 5 ✗ 10,16 190.28 2

Satellite 2 8,8 13.91 3 10,6 16.92 7

Spring-mass-damper 2 12,12 16.09 0 10,6 23.21 4

Steam drum 3 ✗ 10,16 21.16 4

Supension 4 8,8 12.40 5 10,6 17.03 5

Tape driver 3 8,8 12.18 0 10,6 14.34 0

USCG tampa 3 12,12 1143.35 10 10,6 210.70 9

8.4 Threats to generality

We identify the following factors as potential limits to the generality of the obtained results.

Benchmark selection: We report an assessment of both our approaches over a diverse
set of real-world benchmarks. Nevertheless, this set of benchmarks is limited within the
scope of this paper and the performance may not generalize to other benchmarks.
Plant model precision and discretization heuristics: Our algorithm to select suitable
finite-precision arithmetic to model the plant behavior increases the precision by 8 bits
at each step, in order to be compliant with the CBMC type API. Similarly, for time-
discretization, we try a set of pre-defined time discretisations. This works sufficiently
well for our benchmarks, but performance may suffer in some cases, for example if the
completeness threshold is high.

9 Conclusions

We have presented an automated approach to synthesize provably-correct digital state-
feedback controllers that ensure safety over state-space models. Our approach is novel within
the digital control literature: we provide a fully automated synthesis method that is algorith-
mically and numerically sound, considering various error sources in the implementation of
the digital control algorithm and in the computational modeling of plant dynamics. Our
experimental results show that we are able to synthesize automatically safe controllers for
diverse benchmarks from the digital control literature, within a reasonable amount of time.

123

A. Abate et al.

Acknowledgements This study was financially supported by Engineering and Physical Sciences Research
Council (EP/J012564/1), European Research Council (280053), H2020 Future and Emerging Technologies
(280053) and Royal Society University Research Fellowship (UF160079).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abate, A., Bessa, I., Cattaruzza, D., Chaves, L., Cordeiro, L.C., David, C., Kesseli, P., Kroening, D.,
Polgreen, E.: DSSynth: an automated digital controller synthesis tool for physical plants. In: International
Conference on Automated Software Engineering (ASE), pp. 919–924. IEEE Computer Society (2017)

2. Abate, A., Bessa, I., Cattaruzza, D., Cordeiro, L.C., David, C., Kesseli, P., Kroening, D.: Sound and auto-
mated synthesis of digital stabilizing controllers for continuous plants. In: Hybrid Systems: Computation
and Control (HSCC), pp. 197–206. ACM (2017)

3. Abate, A., Bessa, I., Cattaruzza, D., Cordeiro, L.C., David, C., Kesseli, P., Kroening, D., Polgreen,
E.: Automated formal synthesis of digital controllers for state-space physical plants. In: Majumdar, R.,
Kunčak, V. (eds.) Computer Aided Verification (CAV). Lecture Notes in Computer Science, vol. 10426,
pp. 462–482. Springer, Cham (2017)

4. Anta, A., Majumdar, R., Saha, I., Tabuada, P.: Automatic verification of control system implementations.
In: International Conference on Embedded Software (EMSOFT), pp. 9–18. ACM (2010)

5. Astrom, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers. Princeton
University Press, Princeton (2008)

6. Åström, K.J., Hägglund, T.: Advanced PID Control. ISA-The Instrumentation, Systems, and Automation
Society, Research Triangle Park (2006)

7. Åström, K.J., Wittenmark, B.: Computer-Controlled Systems: Theory and Design. Prentice Hall Infor-
mation and System Sciences Series. Prentice Hall, Upper Saddle River (1997)

8. Belta, C., Yordanov, B., Gol, E.A.: Formal Methods for Discrete-Time Dynamical Systems. Springer,
Cham (2016)

9. Bessa, I., Ismail, H., Palhares, R., Cordeiro, L.C., Filho, J.E.C.: Formal non-fragile stability verification
of digital control systems with uncertainty. IEEE Trans. Comput. 66(3), 545–552 (2017)

10. Brain,M., Tinelli, C., Rümmer, P.,Wahl, T.: An automatable formal semantics for IEEE-754 floating-point
arithmetic. In: Symposium on Computer Arithmetic (ARITH), pp. 160–167. IEEE (2015)

11. Brönnimann, H., Melquiond, G., Pion, S.: The design of the boost interval arithmetic library. Theor.
Comput. Sci. 351(1), 111–118 (2006)

12. Chaudhuri, S., Clochard, M., Solar-Lezama, A.: Bridging boolean and quantitative synthesis using
smoothed proof search. In: POPL, pp. 207–220. ACM (2014)

13. Chen, T.C., Chang, C.Y., Han, K.W.: Reduction of transfer functions by the stability-equation method. J.
Frankl. Inst. 308(4), 389–404 (1979)

14. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K., Podelski,
A. (eds.) Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes
in Computer Science, vol. 2988, pp. 168–176. Springer, Berlin (2004)

15. Darulova, E., Kuncak, V., Majumdar, R., Saha, I.: Synthesis of fixed-point programs. In: EMSOFT, pp.
22:1–22:10. IEEE (2013)

16. de Bessa, I.V., Ismail, H., Cordeiro, L.C., Filho, J.E.C.: Verification of fixed-point digital controllers using
direct and delta forms realizations. Des. Autom. Embed. Syst. 20(2), 95–126 (2016)

17. Duggirala, P.S., Viswanathan, M.: Analyzing real time linear control systems using software verification.
In: IEEE Real-Time Systems Symposium (RTSS), pp. 216–226 (2015)

18. Fadali, S., Visioli, A.: Digital Control Engineering: Analysis and Design. Electronics & Electrical, vol.
303. Elsevier, Amsterdam (2009)

19. Fialho, I.J., Georgiou, T.T.: On stability and performance of sampled-data systems subject to wordlength
constraint. IEEE Trans. Autom. Control 39(12), 2476–2481 (1994)

123

http://creativecommons.org/licenses/by/4.0/

Automated formal synthesis of provably safe digital…

20. Franklin, G., Powell, D., Emami-Naeini, A.: Feedback Control of Dynamic Systems, 7th edn. Pearson,
London (2015)

21. Gajic, Z., Lim,M.-T., Skataric,D.,Wu-Chung, S.,Kecman,V.:OptimalControl:WeaklyCoupledSystems
and Applications. CRC Press, Boca Raton (2008)

22. Horn, R.A., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1990)
23. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based program synthesis. In:

International Conference on Software Engineering (ICSE), vol. 1 , pp. 215–224. ACM (2010)
24. Jha, S., Seshia, S.A.: SWATI: synthesizing wordlengths automatically using testing and induction. CoRR

(2013). arxiv:1302.1920
25. Jha, S., Seshia, S.A., Tiwari, A.: Synthesis of optimal switching logic for hybrid systems. In: EMSOFT,

pp. 107–116. ACM (2011)
26. Kokotovic, P.V., Allemong, J.J., Winkelman, J.R., Chow, J.H.: Singular perturbation and iterative sepa-

ration of time scales. Automatica 16(1), 23–33 (1980)
27. Kroening, D., Strichman, O.: Efficient computation of recurrence diameters. In: Zuck, L.D., Attie,

P.C., Cortesi, A., Mukhopadhyay, S. (eds.) Verification, Model Checking, and Abstract Interpretation
(VMCAI). Lecture Notes in Computer Science, vol. 2575, pp. 298–309. Springer, Berlin (2003)

28. Kroening, D., Tautschnig, M.: CBMC–C bounded model checker–(competition contribution). In:
Ábrahám, E., Havelund, K. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
Lecture Notes in Computer Science, vol. 8413, pp. 389–391. Springer, Berlin (2014)

29. Liberzon, D.: Hybrid feedback stabilization of systems with quantized signals. Automatica 39(9), 1543–
1554 (2003)

30. Liu, J., Ozay, N.: Finite abstractions with robustness margins for temporal logic-based control synthesis.
Nonlinear Anal. Hybrid Syst. 22, 1–15 (2016)

31. Luyben,W.: External versus internal open-loop unstable processes. Ind. Eng. Chem.Res. 7(3), 2713–2720
(1998)

32. Mazo Jr., M., Davitian, A., Tabuada, P.: PESSOA: a tool for embedded controller synthesis. In: Touili,
T., Cook, B., Jackson, P. (eds.) Computer Aided Verification (CAV). Lecture Notes in Computer Science,
vol. 6174, pp. 566–569. Springer, Berlin (2010)

33. Middleton, R.H., Goodwin, G.C.: Digital Control and Estimation: A Unified Approach. Prentice Hall
Professional Technical Reference. Prentice Hall, Upper Saddle River (1990)

34. Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall, Englewood Cliffs (1966)
35. Oliveira, V.A., Costa, E.F., Vargas, J.B.: Digital implementation of a magnetic suspension control system

for laboratory experiments. IEEE Trans. Educ. 42(4), 315–322 (1999)
36. Oudjida, A.K., Chaillet, N., Liacha, A., Berrandjia, M.L., Hamerlain, M.: Design of high-speed and

low-power finite-word-length PID controllers. Control Theory Technol. 12(1), 68–83 (2014)
37. Park, J., Pajic, M., Lee, I., Sokolsky, O.: Scalable verification of linear controller software. Tools and

Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes in Computer Science,
pp. 662–679. Springer, Berlin (2016)

38. Picasso, B., Bicchi, A.: Stabilization of LTI systems with quantized state-quantized input static feedback.
In: International Workshop on Hybrid Systems: Computation and Control, pp. 405–416. Springer (2003)

39. Pramod, S., Chidambaram, M.: Closed loop identification of transfer function model for unstable biore-
actors for tuning PID controllers. Bioprocess Eng. 22(2), 185–188 (2000)

40. Ravanbakhsh, H., Sankaranarayanan, S.: Counter-example guided synthesis of control Lyapunov func-
tions for switched systems. In: Conference on Decision and Control (CDC), pp. 4232–4239 (2015)

41. Ravanbakhsh,H., Sankaranarayanan, S.: Robust controller synthesis of switched systems using counterex-
ample guided framework. In: International Conference on Embedded Software (EMSOFT), pp. 8:1–8:10.
ACM (2016)

42. Roux, P., Jobredeaux, R., Garoche, P.-L.: Closed loop analysis of control command software. In: Inter-
national Conference on Hybrid Systems: Computation and Control (HSCC), pp. 108–117. ACM (2015)

43. Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S.A, Saraswat, V.A.: Combinatorial sketching for finite
programs. In: International Conference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS), pp. 404–415. ACM (2006)

44. Spong, M.W.: The swing up control problem for the Acrobot. IEEE Control Syst. 15(1), 49–55 (1995)
45. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer, New York

(2009)
46. Tadeo, F., Lopez, O.P., Alvarez, T.: Control of neutralization processes by robust loop shaping. IEEE

Trans. Control Syst. Technol. 8(2), 236–246 (2000)
47. Tan, R.H.G., Hoo, L.Y.H.: DC–DC converter modeling and simulation using state space approach. In:

Conference on Energy Conversion (CENCON), pp. 42–47. IEEE (2015)

123

http://arxiv.org/abs/1302.1920

A. Abate et al.

48. Van Loan, C.: Computing integrals involving the matrix exponential. IEEE Trans. Autom. Control 23(3),
395–404 (1978)

49. Wang, T.E., Garoche, P.-L., Roux, P., Jobredeaux, R., Feron, E.: Formal analysis of robustness at model
and code level. In: International Conference on Hybrid Systems: Computation and Control (HSCC), pp.
125–134. ACM (2016)

50. Wu, J., Li, G., Chen, S., Chu, J.: Robust finite word length controller design. Automatica 45(12), 2850–
2856 (2009)

51. Zamani, M., Mazo, M., Abate, A.: Finite abstractions of networked control systems. In: Conference on
Decision and Control (CDC), pp. 95–100. IEEE (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Automated formal synthesis of provably safe digital controllers for continuous plants
	Abstract
	1 Introduction
	2 Related work
	2.1 CEGIS
	2.2 Discretization effects in control design

	3 Preliminaries
	3.1 State-space representation of physical systems
	3.2 Digital control synthesis
	3.3 Stability of closed-loop models
	3.4 Safety of closed-loop models
	3.5 Bounded model checking
	3.6 Semantics of finite-precision arithmetic
	3.7 Soundness of modelling
	3.8 Notation for fixed- and floating-point precision
	3.9 Counterexample-guided inductive synthesis (CEGIS)

	4 Formal specification of stability on a model
	4.1 Jury's stability criterion

	5 Numerical representation and soundness
	5.1 Bit-precise bounded model checking
	5.2 Interval arithmetic for errors in numerical representations
	5.3 Effect of finite-precision arithmetic on safety specification and on stability
	5.3.1 Safety of closed-loop models with finite-precision controller error
	5.3.2 Stability of closed-loop models with fixed-point controller error

	6 Synthesis of digital controllers with CEGIS
	6.1 synthesize block
	6.2 safety block
	6.3 precision block
	6.4 complete block

	7 DSSynth: a software tool for automated digital controller synthesis over physical plants
	8 Experimental evaluation
	8.1 Description of the control benchmarks
	8.2 Objectives
	8.3 Results
	8.4 Threats to generality

	9 Conclusions
	Acknowledgements
	References

