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Supplementary Results 

Unified data processing for PCAWG RNA sequencing data 

For a unified transcriptome analysis, we processed all tumor samples with RNA-Seq data from 
the PCAWG consortium provided by 30 TCGA/ICGC projects. To harmonize these data across 
studies, we reanalyzed a total of 2,217 RNA-Seq libraries using a unified RNA-Seq analysis 
pipeline developed for this project (see Software Availability). Core components of this pipeline 
were spliced alignment of RNA-Seq data followed by gene expression quantification 
(Supplementary Figure 1a). We compared alternative alignment strategies using STAR1 and 
TopHat22 (Supplementary Figure 1a), which yielded highly consistent gene expression 
quantifications (gene-level counts based on HTSeq3, Supplementary Figure 2a). Thus, we 
generated consensus gene expression measurements by averaging read counts for each gene, 
normalized by gene length, followed by upper-quartile normalization (FPKM-UQ)4,5 
(Supplementary Figure 2b). FPKM-UQ quantification across the subset of TCGA samples were 
highly correlated (median correlation 0.95) with TCGA-reported gene expression using RSEM6 
(Supplementary Figure 3). Transcript isoform-specific expression levels were estimated using 
Kallisto7. 
 
After quality control filtering and merging of technical replicates, we obtained 1,359 RNA-seq 
profiles from 1,188 unique patients (Supplementary Figure 4), with between two and 154 
samples per histotype (Extended Data Figure 1a) and approximately equal numbers of male and 
female patients (Extended Data Figure 1b). For 13 out of the 27 histotypes, matched, adjacent 
normal tissue samples were available, giving rise to a total of 150 normal tissue samples 
(Extended Data Figure 1a,c).  For additional normal coverage, we processed RNA-Seq data 
from 3,274 samples from the Genotype-Tissue Expression (GTEx) Consortium (version 
phs000424.v4.p1). We used the same computational pipeline used for the PCAWG RNA-seq 
dataset and applied quantile normalization. While we observed differences between GTEx and 
PCAWG samples, likely due to differences in processing methods and batch variation, we found 
that overall the tissue dominates the expression patterns (Supplementary Figure 5, 

Supplementary Figure 5a). For eQTL analysis we generated an adjusted expression dataset 
using PEER8 to account for unknown and technical covariates). Tumor purity varied across 
samples and was considered an additional covariate of expression patterns (Supplementary 

Figure 6).  

 

Cancer-specific cis germline regulatory variants highlight changes in 

regulatory landscape 

Aside from the pan-cancer analysis we also identified germline eQTLs in individual tissues across 
the seven histotypes with 60 or more patients. We identified between 118 (Breast-AdenoCA) and 
551 eGenes (Lymph-CLL) (Supplementary Figure 7a, Supplementary Table 2). We estimated 
the fraction of shared eQTLs across histotypes (Supplementary Figure 7b,c) and assessed the 
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overlap of lead eQTL variants with Epigenetics Roadmap annotations9 (Supplementary Figure 

7b-d), identifying an enrichment of active regulatory marks.  
 
Our comparison of PCAWG-eQTL’s to GTEx eQTLs revealed interesting examples like SLAMF9, 
which is a member of the CD2 subfamily with known roles in immune response and cancer10 
(Supplementary Figure 8a). More generally, this set of genes with PCAWG-specific eQTLs was 
enriched for cancer-relevant pathways (Supplemental Figure 8b, Supplementary Table 4). 
Only a small fraction of these PCAWG-specific eQTLs were in overexpressed genes compared 
to matched normal tissues (94/422 genes with >= 2-fold increase in expression). These genes 
were enriched for immunoglobulin genes (27/94) and cancer/testis antigen encoding genes (CT 
genes; 8/94; Supplementary Figure 8c). Overall, this analysis suggests that the germline 
framework of gene expression regulation is largely conserved in cancer tissues with no notable 
difference in distance to TSS, p-Value and effect size distribution between PCAWG specific 
eQTL’s and unspecific eQTL’s (Supplementary Figure 9). 
 

Somatic cis eQTL mapping in PCAWG 

We set out to systematically characterize somatic eQTL mapping in the PCAWG dataset. There 
was a low allele frequency for individual somatic mutations (86 SNVs with a recurrence frequency 
>1%); therefore we considered aggregated burdens of somatic SNVs across different regions of 
the whole genome. While non-coding driver elements have been identified in the PCAWG cohort11 
using whole-genome sequencing data, only in a few cases these have also been associated with 
changes in expression of neighbouring genes. Therefore, we here looked at possible somatic 
DNA changes, across the whole genome, that underlie gene expression alterations. Before 
performing a more in depth functional characterization of the somatic eQTL identified, we 
compared alternative strategies to quantify local mutation burdens, assessing the number of 
somatic eQTL discoveries. We found that weighting individual SNVs by their variant allele 
frequency (VAF) yielded the largest number of discoveries (Supplementary Figure 10).  

We therefore focused only on the set of somatic eQTL (N=649) identified by associating VAF-
based burdens with gene expression. We assessed the mapping resolution of this analysis, and 
found that most somatic eQTL could be linked to a single genomic region or a small number of 
them (median resolution of 1kb; Extended Data Figure 6d). Also, mutation burdens in 
association with gene expression tended to be mutated across multiple cancers (Supplementary 

Figure 11, Supplementary Table 5). We did not find any relationship between structural variants 
(SVs) and associated burdens (Supplementary Notes; Supplementary Table 5) and only 4% 
of somatic eGenes (28/649) with at least one adjacent PCAWG non-coding driver element 11, 
suggesting that only a small fraction of somatic eQTLs can be linked to putative driver mutations. 
We also looked at the functional characterization of somatic eGenes and found that cancer-testis 
(CT) genes were marginally more frequent among genes with somatic eQTLs than expected 
(45/982, P=0.07, Fisher’s exact test).  
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Unlike the germline eQTL map, we also observed a larger number of associations distal to the 

TSS (≥20kb, 88%), which were primarily associated with rare burdens (<5% frequency, 97%; 
Supplementary Figure 12). Distances to TSS showed a weak correlation with eQTL effects 
(Spearman rho = -0.11; P = 0.006), with the strongest effects located very far from a TSS 
(>40.5kb). This is consistent with another large-scale study that also found no correlation between 
distances to a TSS and the effect size of somatic eQTLs12. Although this could point to 
mechanisms of regulation specific to somatic SNVs, this pattern is quite unexpected for cis 
associations and warrants further studies. Indeed, despite the stringent correction we performed 
by adding multiple known covariates as fixed effects in the association model, we cannot fully rule 
out further confounding effects from unpredicted factors acting on specific cancer types like, for 
example, somatic hypermutations in lymphomas13, that might have led to spurious associations. 

Finally, we determined the fraction of somatic eQTLs identified in previous studies and 
overlapping interactions detected with independent methods12,14,15. We found a small but 
significant overlap with GeneHancer16 interactions and our somatic eQTLs (33/649, P = 0.001), 
some of which were also replicated in previous studies (Supplementary Table 5).  

Overall, disentangling the causal hierarchies between gene expression changes and non-coding 
mutations remains still a great challenge in somatic eQTL analysis and further investigations will 
be required to validate our findings. 

Associations between somatic mutational signatures and gene 

expression 

We identified global trans associations between mutational signatures and gene expression levels 

and derived de novo annotations of signatures with previously unknown roles. We tested for 

association between signature prevalence in patients and total gene expression, accounting for 

total mutational burden, cancer type and other technical and biological confounders, and most 

importantly, for cancer type of the patients, which ensures that the detected associations do not 

only reflect differences between cancer types. This identified 1,176 genes associated with at least 

one signature (FDR ≤ 10%, Extended Data Figure 10, Supplementary Table 19), a markedly 

different set of genes compared to associations with total mutational burden alone 
(Supplementary Table 19). Lymphoma Signature 9 showed the largest number of associations, 
followed by the smoking-related Signature 4 (Figure 1d, Supplementary Table 19).  

To annotate signatures which were not fully characterized, we considered 18 signatures 
with 20 or more associated genes (Extended Data Figure 11) and assessed enrichment using 

GO categories17,18 and Reactome Pathways17,18. We found that 11 signatures were enriched for 

at least one category (FDR ≤ 10%, Supplementary Table 19), revealing associations consistent 

with known aetiologies (Figure 1d). For example, Lymphoma Signature 9 was associated with 
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354 genes enriched for lymphocyte/leukocyte-related processes and immune response, including 
TCL1A, LMO2 and TERT (P=1.2⋅10-10, 6.8⋅10-10, 2.0⋅10-09). The smoking Signature 4 was 
associated with 119 genes enriched for biological oxidation processes, including CYP24A1, a 
gene that is known to be down-regulated in tobacco-smoke exposed tissue19 (Supplementary 

Figure 13a). The 70 genes associated with APOBEC Signature 2 were significantly enriched for 
DNA deaminase pathways, and included the key APOBEC pathway-related genes APOBEC3B 
and APOBEC3A (Extended Data Figure 11e-f). We also found associations of signatures with 
unknown aetiology, including associations between Signature 38 and melanin processes (Figure 

1d), and between Signature 8, which has been found to be prevalent in medulloblastoma, and 25 
genes enriched for ABCA-transporter pathways. Drugs targeting these pathways are currently in 
clinical trials for treating medulloblastoma18,20.  

We then utilized germline eQTL lead variants of signature-associated genes as an anchor 
to gain directed mechanistic insight by testing for associations between these variants and the 
signature. This eQTL-based approach entails substantially fewer tests than genome-wide 
analyses21,22. Among 1,176 signature-linked genes, 197 had a germline eQTL. We found 
APOBEC3A/B eQTL rs12628403 to be associated with the corresponding Signature 2 (P=5.1⋅10-

7, Supplementary Figure 13, FDR ≤ 10%, multiple testing over 197 tests, Supplementary Table 

19), confirming it as a risk variant for Signature 2 prevalence23. Colocalisation24 and mediation25,26 
analyses confirmed the variant as a plausible genetic determinant of APOBEC3A/B expression 
and Signature 2 prevalence (Supplementary Table 19), with a remarkable 87.11% of the genetic 
effect conferred to the signature by APOBEC3B expression (Supplementary Figure 14). 

In summary, we identified global trans associations between mutational signatures and 
gene expression levels and thereby derived de novo annotations of signatures with previously 
unknown roles. 

 

Allele-specific expression captures cancer-specific dysregulation 

We quantified allele-specific expression (ASE), adapting established quality control steps to 
cancer tissues27 and pooled ASE counts across heterozygous variants within genes to maximize 
detection power. This allowed us to quantify ASE for between 588 and 7,728 genes per patient 
(median=4,112 genes with 15 or more ASE reads; considering data from 1,120 patients, 
Extended Data Figure 12).  
 

To robustly identify genes with haplotype-specific dysregulation, we considered ASE27,28 to test 

for allelic expression imbalance (AEI) (FDR ≤ 5%, binomial test, Methods). Across the cohort, we 

observed substantial differences in the fraction of genes with AEI between cancer types 

(Extended Data Figures 12), and between cancer and the corresponding normal tissues, with a 

high concordance between allelic imbalance on the DNA and RNA levels - owing to SCNAs as 
we will show in the following (Extended Data Figure 13).  
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We used a logistic regression model to identify the determinants of AEI, accounting for known 
imprinting status29, the germline eQTL genotype, SCNAs and the weighted mutational burden of 
proximal somatic SNVs stratified into functional categories (Extended Data Figure 2). We 
additionally correct for sample purity, the number of accessible ASE sites per gene and both gene-
level and sample-level read depth. While cumulatively, non-coding variants were more relevant 
than coding variants, somatic protein truncating variants (‘stop-gained’) triggering nonsense-
mediated decay28 were the most predictive individually (Figure 1e). This was confirmed by a 
quantitative model on ASE ratios (Extended Data Figure 14). SNVs within splice regions, 5’ UTR 
and promoters were also strongly associated with AEI presence and we observed a global trend 
of decreasing relevance of variants with increasing distance from the TSS (Figure 1e). 

Our model allows for attributing AEI to germline SNPs, SCNAs and somatic SNVs by computing 
average scores derived from predicting AEI individually from SNPs, SCNAs and SNVs 
(Supplementary Table 9). The average prediction score identified somatic AEI as predictive for 
genes with relevance in cancer (Supplementary Figure 15a), which consisted of mostly known 
cancer genes but also a few genes not previously associated with cancer, such as EXO1, a 
mismatch repair-related gene. EXO1 exhibited significant AEI for both a potentially deleterious 
missense and a nonsense mutation in a colorectal adenocarcinoma sample. TCGA colorectal 
adenocarcinoma patients with lower expression of EXO1 showed worse overall survival (Log rank 
P=0.022, HR=0.57, Supplementary Figure 15b), implicating EXO1 as a potential tumor 
suppressor in colorectal cancer. When calculating fraction of tumour samples with AEI for all 
candidate PCAWG driver genes11, we found that driver genes tended to exhibit higher 
percentages of AEI in the cancer types they influence (Wilcoxon Rank Sum Test, P=3.64·10-9, 
Supplementary Figure 15c), implying AEI as a common mechanism for cancer genes to exert 
their functions. However, not all mutations in a given gene exhibit the same AEI properties. For 
TP53, almost all known hotspot mutations showed uniformly high mutant allele selectivity across 
cancer indications. By contrast, for PIK3CA, the H1047R mutation exhibited strong mutant allele 
preference in breast and lung cancers, while the E545K mutation only showed mutant allele 
selectivity in melanoma (Supplementary Figure 15d). Such AEI pattern differences could 
account for some of the phenotypic variability of cancer mutations in different cancer types.  

Motivated by the observed cancer-specific germline regulation of CT genes, we also used these 
model components to investigate sources of AEI in CT genes. Notably, CT genes were depleted 
when considering the full somatic score including SCNAs (25/476 CT genes in the top 10% of 
genes, 48 expected, "# test, P=6⋅10-4), but enriched in the AEI score based on SNVs only (66/476 
CT genes in the top 10% of genes, 48 expected, "#test, P=6⋅10-3). One potential explanation is 
that repressed CT genes have to undergo somatic re-activation by SNVs before CN amplification. 
To elucidate this, we used mutation timing data30, stratifying SNVs into the categories early and 
late (SNV occurred before and after SCNA at the same locus, respectively) and found strong 
over-representation of early SNVs in 329 out of 7,525 CT gene-patient pairs (216 expected, 
"#test, P=4⋅10-14).  

In summary, we identify somatic and germline genetic variation associated with allele-specific 
dysregulation of genes across cancer types. We demonstrate the power of ASE as an integrator 
of different sources of transcriptional dysregulation in cis, and as a sensitive readout for 
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identification of novel tissue-specific candidate driver genes. In particular, our analysis suggests 
recurrent somatic reactivation of CT genes, warranting further investigation into their role in 
carcinogenesis and tumour progression. 

Promoter mutations associated with changes in promoter activity 

Estimation of transcript abundance is less robust compared to gene-level expression estimation, 
in particular, 3’ bias and sequencing depth contribute to technical variation (Extended Data 

Figure 15a-c). While there is increased uncertainty for individual promoters compared to gene 
expression, promoter activity estimates in samples from the same cancer type show high levels 
of similarity 31.  Across all samples we identified 44,586 active promoters (FPKM > 0.1 in at least 
1% of the patient cohort).  

Intronic mutations associated with splicing and exonization  

Exome-only studies are limited in identifying mutations that could affect splicing due to low read 
support deep in the intron. To further investigate the role of splicing aberrations within the context 

of whole genome variation, we identified and quantified alternative splicing using SplAdder32, 

focussing on six splicing events types. We found an increase of unannotated alternative splicing 

events in tumor samples compared to non-tumor samples; for example, there are ≈30% more 

detected cassette exon events in liver tumor samples than in matched normals or tissue matched 

GTEx samples (316,522 tumor, 279,148 normal, 234,710 GTEx; Extended Data Figure 17a). In 

total, SplAdder detected 595,041 alternative 3’ splice site, 386,734 alternative 5’ splice site, 
1,226,253 cassette exon, 755,589 intron retention/novel intron, 47,889 coordinated exon skip and 
505,515 mutually exclusive exon events in at least one sample of the cohort with Lymph-BNHL, 
Lymph-CLL, and Ovary-AdenoCA having the most novel events (Extended Data Figure 17b). 

While splicing of samples from the same histotype covaries, we observe differences between 
GTEx and PCAWG cohorts (Extended Data Figure 17c).  
 
Although it is known that trans factors that assist in branch site recognition, like SF3B1, are 
recurrently mutated in various cancer types33–36, a pan-cancer analysis of the impact of branch 
site associated mutations in cis has not been performed. Further, we measured positive selection 
for somatic mutations associated with splicing alterations at a gene-level using a permutation test. 

Our analysis recovered two known tumor suppressor genes, TP53 and FANCA (FDR ≤ 1%) 

(Supplementary Notes, Supplementary Table 12). 

 
We also implemented the SAVNet approach37 to identify rare splicing associated variants 

(SAV) that appear in only a small number of samples. In total, we could identify 1,901 SAVs (see 
Data Availability): 555/827 acceptor/donor disruptions, 155/364 acceptor/donor creations.  
 
To estimate the number of exonization events within the PCAWG cohort, we filtered all cassette 
exon events to retain only those that do not occur in the annotation, appear in matched normal 
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samples or in GTEx samples. Out of 67,254 possible novel cassette exons, we characterized 
3,941 (6%) in 2,434 distinct genes as exonization events with 47 (in 43 genes) being located 
within 25nt of a somatic mutation (Extended Data Figure 17j bottom, Supplementary Table 13 

and 14) and 20/47 were found to be scSAVs by SAVNet. Interestingly, 43/47 exonization events 
near a somatic mutation would have been missed by exome capturing probes. 
 
Using pairwise alignments of each Alu sequence overlapping an SAV against the Alu consensus 
as a reference coordinate system, we found several hotspots of newly created splicing donor and 
acceptor sites, especially at position 279 close to the poly-T stretch (Supplementary Figure 16).  
 

Patterns of gene fusions across cancers  
The availability of both RNA and whole-genome data for over a thousand cancer samples 

creates an unprecedented opportunity to study the genetic basis of gene fusions (Figure 3a). We 
found that the average number of gene fusions per histological type is highly correlated with the 
average number of SVs (Pearson correlation 0.95), supporting SVs as a major cause of gene 
fusions (Supplementary Figure 17a). By examining somatic rearrangements and fusions 
simultaneously, we found 2,618 fusion events (~82%) that could be explained by genomic 
rearrangements, with duplication as the predominant type. By contrast, of 19,144 SVs that joined 
two distinct genes, only 6.3% (1,199) could be detected on the RNA level. This may be the result 
of the fusion partners not being expressed or having a reduced RNA stability as a mechanism of 
altering tumor suppressors. Gene fusion discovery directly on RNA-seq data is clearly a more direct 
approach.  

Although most fusions involved genes engaged with only one fusion partner, 35 genes had 
more than five partners. These “promiscuous” genes tended to be selective in being either a 5’ or 3’ 
partner, and were overrepresented in cancer census genes and in PCAWG's cancer driver genes (one 

tailed Fisher's exact test, odds ratio (OR)=8.66, P≤1.1e-15 and (OR)=12.27, P≤2.2e-16, respectively). 

Network analysis of promiscuous genes and their partners revealed that most genes belonged to small 
clusters but several larger clusters emerged. Focusing on clusters with at least 10 genes (Extended 

Figure 18b), we found that they were significantly enriched in cancer-related pathways (Benjamini-

Hochberg corrected P≤0.01) and in protein-protein interactions (P≤1.0e-7). For example, the known 

oncogene BCL6 was involved in 15 different fusions, mostly as a 3' partner with the breakpoints 
conserved. All such fusions contained the intact exon 2 of BCL6 and seemed to co-opt the regulatory 
sequences of their 5' fusion partners. This pattern had been reported previously in B-cell lymphoma38. 
In general, the breakpoints and their positions (3' or 5') were often conserved in promiscuous genes 
and did not show association with other genomic features such as common fragile sites39 

(Supplementary Figure 17b), indicating that these genes tend to selectively fuse to other genes. 
Taken together the data suggests that at least some of the promiscuous fusion partners might play a 
functional role in cancer progression. 
 The comparison of gene fusions on RNA level and genome rearrangements also allowed 
us to introduce a classification of gene fusions based on the type of genome rearrangements that 
may lead to them (Extended Data Figure 19a) as well as to introduce the new concept of bridged 
fusions (Figure 3b). A large number of fusions, including known fusions, for instance ETV6-
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NTRK3, could not be associated with any single SV event. For instance, we found three separate 
SVs in the same sample: i) a translocation of ETV6 (chr12:12,099,706) to chromosome 6 
(chr6:125,106,892); ii) a translocation of NTRK3 (chr15:88,694,049) also to chromosome 6 
(chr6:125,062,387); and iii) an additional copy number loss (chr12:12,032,501 - 
chr12:12,099,705) spanning from ETV6 intron 5 to the exact SV breakpoints (chr12:12,099,706), 
jointly bringing ETV6 within 45 kb upstream of NTRK3, a distance that would allow transcriptional 
read-through40 or splicing41 to yield the ETV6-NTRK3 fusion42. The median length of bridges in 
bridged fusions was 3.7 kb.  

Aside from the bridged fusions, 344 additional fusions are linked to more than one SV in 
the same sample. These multi-SV fusions are collectively termed composite fusions. For example, 
the known ERC1-RET fusion was only supported by an inter-chromosomal translocation and an 
intra-chromosomal rearrangement, resulting in the connection of ERC1 to the exon 12 of RET 
(Extended Data Figure 19b, middle). While fusion transcripts formed by two adjacent genes are 
often thought to be derived from transcription-induced chimeras, such chimera formation could 
be facilitated by composite DNA rearrangements. For one of the tumours with the recurrent 
NUMB-HEATR4 fusion, we detected two consecutive inversions, bringing the NUMB exon 3 
within 381 bp of the HEATR4 exon 2 (Extended Data Figure 19b, bottom), down from the natural 
distance of 14 kb, arguably making fusion formation possible via splicing. Overall, we identified 
75 bridged fusions, 284 inter-composite fusions generated by a translocation linking two genes 
from different chromosomes followed by a second intra-chromosomal rearrangement, and 125 
intra-composite fusions generated by multiple intra-chromosomal rearrangements. 

While most fusions had direct or composite SV support, for the remaining 18%, including 
known fusions like RHOH-BCL6, we did not detect SV evidence. Thus, either these genes were 
fused directly at the RNA level or the underlying supporting SVs escaped detection. The latter 
was evidenced by the observation that known fusions, such as TMPRSS2-ERG, did not have 
consistent SV support in all samples where it was detected (in 4 out of 6 samples this fusion was 
supported by a deletion, while in the other two samples it did not have any SV support). On the 
other hand, the 340 SV independent, intra-chromosomal fusions had significantly closer 
breakpoints than those with SV support (Extended Data Figure 19d).  

As already noted, 105 fusion transcripts involved the UTR region of one gene and the 
complete coding sequences of another, possibly resulting from SVs in promoter regions. For 
example, in a novel fusion CTBP2-CTNNB1 in a gastric tumor, its intact oncogene CTNNB1 
coding region is connected to the upstream regulatory sequences from CTBP2. Accordingly, the 
expression of CTNNB1 is elevated at a level similar to those with CTNNB1 amplification, 
consistent with a promoter-swapping activation mechanism of oncogenes (Supplementary 

Figure 17c). 
 

Pan-cancer unified analysis reveal diverse modes of RNA-level 

alterations 

To make use of our comprehensive set of RNA alterations, we sought to characterize the 
heterogeneous mechanisms of cancer genome and transcriptome alterations. To enable joint 
analyses of RNA and DNA alterations, we created a binary gene-level table, indicating the 
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presence or absence of possibly functional events for each gene and patient. Alterations at the 
nucleotide, amino acid, exon, transcript, or gene level were all mapped onto the most likely 
affected gene, and were filtered to exclude types of events that were unlikely to cause functional 
changes, such as synonymous substitutions or short in-frame insertions or deletions. In particular, 
we only retained non-synonymous SNVs and RNA editing events as well as splicing events that 
either induce a frameshift or the alternative region contains a variant in the Human Genome 
Mutation Database43 of the category “damaging”. For quantitative alteration types (expression, 
splicing, alternative promoters, allele specific expression), the most extreme samples with outlying 
values within histotype were selected (Supplementary Figure 18a), to account for tissue-specific 
variability. The exact number of alterations for each of the alteration types does depend on filter 
parameters and those were chosen to have a low observed alteration frequency across the 
samples. The identification of an event as an outlier alone is not sufficient evidence of it being 
functionally relevant. The resulting binary gene-level table of RNA alterations enables meta-
analyses of aberrations across patients, genes, pathways and in specific histotypes 
(Supplementary Figure 18b-c). We found no significant correlation between the sample purity, 
gene length, or GC-content with the frequency of outliers (Supplementary Figure 19, 

Supplementary Figure 20).  

 

To check the quality of the gene-level tables, we tested whether each of the alteration types 
exhibits cancer specificity. We performed gene set enrichment analysis for top genes ranked by 
their recurrence within each alteration type against the union of COSMIC cancer census genes44 

and driver genes identified in the PCAWG cohort11. We found that each of the six RNA- and two 

DNA-alteration types had a significant enrichment for cancer census genes as well as PCAWG 

driver genes (FDR ≤ 5%, hypergeometric test). 
 
The gene alteration frequencies across all histotypes showed that while the overall numbers of 
gene fusions are dwarfed by other types of alterations across cancer types, breast & ovarian 
adenocarcinomas and soft tissue-leiomyosarcoma are more profoundly impacted by gene fusions 
(Wilcoxon Rank Sum Test, P < 1.2⋅10-6).  
 
In examining DNA- and RNA-level alterations in sets of genes in pathways with known roles in 
cancer (Extended Data Figure 21), we found that even for pathways typically associated with 
high non-synonymous alterations, such as the TP53 pathway, there are also a sizable proportion 
of RNA alterations. Among the 739 samples altered in the TP53 pathway, 238 (32.2%) of them 
carried only RNA alterations, indicating that neglecting transcriptomes would underestimate the 
degree of cancer pathway alterations. While TP53 is altered primarily through non-synonymous 
SNVs, other genes in the TP53 pathway such as MDM2 is more frequently altered via RNA 
alterations than DNA alterations (Extended Data Figure 22b) 

Co-occurrence of RNA and DNA alterations  

When we investigate trans-associations between different genetic and expression 
characteristics, known genetic associations, such as the co-occurring mutations of KRAS and 
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PIK3CA45, and those between LATS2 and NF246, were recapitulated in this study 
(Supplementary Figure 21a). While some of the co-occurrences could be confounded by the 
cancer subtype characteristics and their association with certain mutations, notable co-
occurrences were present in multiple cancer types. For example, B2M and EIF4G2 alterations 
were simultaneously observed in both Lymph-BNHL and Lung-SCC. We also observed that 
tumors with B2M alterations tend to have more non-synonymous mutations (Wilcoxon Rank 
Sum Test, P = 0.0028)  (Supplementary Figure 21b), albeit a weaker association, in other 
cancer types, like Kidney-RCC (Wilcoxon Rank Sum Test, P = 0.072) and breast 
adenocarcinoma (Wilcoxon Rank Sum Test, P = 0.087). This is consistent with the notion that 
B2M alterations may be associated with altered DNA repair or higher mutation tolerance. 
 
MYC was the COSMIC gene whose variants showed the most frequent co-occurrence with 
alternative splicing events, such as FLNB alternative splicing in Lymph-BNHL (Supplementary 

Figure 21c). Their simultaneous presence was also observed in a breast tumor and a Head-
SCC tumor. This is consistent with the reported role of MYC in regulating the core pre-mRNA 
splicing machinery in lymphomagenesis47. Since an alternative splicing switch in FLNB has 
been reported to promote the mesenchymal cell state in human breast cancer48, its role in 
lymphoma should also be investigated. 
 
When we examined how cancer genes could be impacted by others through detected co-
occurrence, we focused on genes involved in splicing and found HNRNPL, previously reported 

to alter the splicing of a set of RNAs in human prostate tumors and thus drive cancer growth49, 

to be linked to 9 alternative splicing events of cancer genes (FDR ≤ 5%) (Supplementary 

Figure 21d). Due to sample size of the PCAWG cohort and extent of heterogeneity between 
and within cancer types, we did not pursue a trans-analysis with germline variants. 
 

Known and novel candidate driver genes are recurrently altered at the 

RNA-level 

Known driver genes were found to have diverse RNA-level alterations with an associated cis-
acting mutation (Extended Data Figure 24); therefore, we looked for novel candidate driver 
genes that had the same feature. A gene with a somatic eQTL, a splicing associated variant, and 
a fusion event was PTGFRN, a gene currently not in the COSMIC cancer gene census (Extended 

Data Figure 24c). Interestingly, both the fusion event and splicing event preserve the frame of 
the resulting gene products. Further investigation is necessary to understand the functional impact 
of these RNA alterations. 
 
We aimed to identify genes that are both recurrently and heterogeneously altered, under the 
hypothesis that these genes have increased functional relevance, and would be driver genes. As 
a control, a comparative analysis on recurrent expression outliers was also done using GTEx 
samples, but was not found to be enriched for the union of cancer census genes44 and PCAWG-
defined driver genes (FDR < 10%) (Supplementary Figure 22, Supplementary Table 22). TP53 
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has nearly the highest proportion of DNA alterations (75.3% DNA alterations, 414/550) and GAS7 
has a high proportion of RNA alterations (96.5% RNA alterations, 299/310) (Figure 4d). 
Furthermore, when we specifically look at the two most frequent alterations for each gene, a 
majority (73.53%) of the alterations are at the RNA-level (Extended Data Figure 25b). While the 
total number of RNA alterations does depend on the selected filter parameters, the RNA 
alterations account for a significant portion of changes in all tested cases. 
 
While our analysis identified 731 genes with significant recurrent aberrations (FDR < 5%, 
Extended Data Figure 25a, permutation-based significance estimation), and is enriched for the 
union of cancer census genes44 (60/603) and PCAWG-defined driver genes (33/157, unioned: 
72/674 P=4.6⋅10-13, enrichment 2.45, Figure 4e). Our recurrence analysis of heterogeneous RNA 
alterations also identifies 659 genes that are neither known cancer census nor driver genes. This 
includes IRF550–53, ZFAT54, BCAS355,56, TLK257–59, and COL6A360,61, providing new hypotheses 
for follow-up studies. Those genes may have received less attention because they harbor only 
rare DNA alterations. The results of our study can also help to understand which parts of the 
transcripts are altered and functionally affected.  
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Supplementary code availability 

 

Analysis Software/Code Reference Source 

RNA-Seq alignment 
(STAR) 

STAR version 2.4.0i, 
2-pass; 
icgc_rnaseq_align 

1; this study https://github.com/IC
GC-TCGA-
PanCancer/pcawg3-
rnaseq-align-star 

RNA-Seq alignment  
(TopHat2) 

TopHat2 version 
2.0.12; irap for 
PCAWG 

2,62 https://hub.docker.co
m/r/nunofonseca/irap
_pcawg/ 

Gene expression 
quantification 

HTSeq v0.6.1p1 3 https://github.com/IC
GC-TCGA-
PanCancer/pcawg3-
rnaseq-align-star; 
https://hub.docker.co
m/r/nunofonseca/irap
_pcawg/ 

Transcript 
quantification 

Kallisto v0.42.1 7  

eQTL Limix v0.8.0 
PLINK v1.07 
Bedtools v2.25.0 
Vcftools v0.1.14 
Bcftools v1.2 
Samtools v0.1.18 
Tabix v0.2.6 

63–67 https://github.com/Fu
nctional-
Genomics/eQTL  

Allele-specific 
expression 

GATK 
ASEReadCounter 3.8 

27,68 https://github.com/IC
GC-TCGA-
PanCancer/pcawg3-
ase-sigqtl 

Mutational signatures 
associated with gene 
expression 

Limix v0.8.0 
Lavaan v0.5-23.1097 
Mediate v4.4.7 
 

 https://github.com/IC
GC-TCGA-
PanCancer/pcawg3-
ase-sigqtl 

Alternative promoter   https://github.com/IC
GC-TCGA-
PanCancer/pcawg3-
alternative-promoter 
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RNA splicing events SplAdder v1.1.0 32 https://github.com/rat
schlab/spladder 

Splicing causing 
mutation detection 

SAVNet 37 https://github.com/frie
nd1ws/SAVNet 

Gene fusions and  
structural variants 

Sv2gf v0.1.0  https://github.com/nu
nofonseca/sv2gf 

Generation of gene-
centric table and 
recurrence analysis. 

  https://github.com/IC
GC-TCGA-
PanCancer/pcawg3-
transcriptome-
integration 
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Supplementary Figure 1

Supplementary Figure 1 | Unified RNA-Seq analysis to identify RNA-level alterations. a, Workflow of 
RNA-Seq alignment and quantification of gene expression. b, Computational methods used to detect additional 
types of RNA alterations including RNA fusions, alternative promoters, alternative splicing, allele-specific 
expression, and RNA editing.



Supplementary Figure 2 | Consensus gene expression quantification and upper-quartile 
normalization. a, Correlation of STAR vs TopHat2 HTSeq counts  for both raw counts (left) and 
FPKM-UQ normalized counts (right). b, Boxplots of raw protein-coding gene quantification on 
autosomes (top), FPKM on protein-coding genes (second row) and upper-quartile normalized 
FPKM values on protein coding genes (FPKM-UQ, third row) as well as upper-quartile normalized 
FPKM on all genes for the same random subset of 50 samples taken from the cohort. Redline is 
the median.

Supplementary Figure 2



Supplementary Figure 3 | Comparison of TCGA RSEM and FPKM-UQ quantification. For 778 tumor 
expression profiles represented in both PCAWG and TCGA datasets, gene-level correlations (Pearson's 
using log-transformed values) between the two datasets were computed (top scatter plot). Genes 
represented in both datasets are ranked from high to low average log2 fpkm values (PCAWG dataset).

Supplementary Figure 3



Supplementary Figure 4



Supplementary Figure 4 | Quality control analysis of RNA-Seq data. a, Overview of the subset of QC 
measures that were used for whitelisting based on output of the FastQC tool. Top bar encodes sequencing 
center of the library, middle top bar encodes the study metadata as used for tracking, lower top bar labels the 
project code of a library. The lower block of 5 bars represents presence or absence of FastQC flags. From top to 
bottom: overall sequence quality, GC content, amount of overrepresented sequences, quality per base, content 
of N bases. The bottom bar indicates whether a library was filtered based on QC (black) or not (white). b-e, 
Distributions of QC statistics over all libraries shown as histograms. Libraries are colored by project code. 
Libraries excluded from the whitelist are marked in grey. b, Total read count per library. c. GC content per library. 
d, Sample degradation scores (3’->5’ bias) per library. e, Degree of sequence duplication per library.



Supplementary Figure 5  | Pan-cancer expression profiling of 1,188 PCAWG 
donors. a, t-SNE analysis of median gene expression aggregated within each project 
and each GTEx tissue. b, t-SNE plot based on gene expression from samples from 
GTEx (normal samples) and PCAWG (normal and tumor samples) coloured by tissue.

Supplementary Figure 5 (Former Fig. 1D)

a

b



Supplementary Figure 6 | t-SNE analysis of gene expression with estimated tumor purity.  t-SNE plot 
(same as in Supplementary Figure 5b) with the PCAWG samples coloured based on the estimated tumor 
purity. 

Supplementary Figure 6



Supplementary Figure 7 [EDF8_germline.ai]

Supplementary Figure 7 | Germline eGenes. a, Number of germline eGenes (genes with at least one germline 
eQTL, FDR ≤ 5%) per cancer type, sorted by sample size (in parenthesis). b, Proportion of eQTL shared (pi1 statistic) 
between different tissue types. c, Proportion of eQTL shared between different histotypes (subsampled to 20 rounds of 
100 randomly selected lead variants) d, Enrichment of lead variants of Pan-Analysis against a matched background of 
Roadmap Factors across roadmap cell lines (summarized by tissue identity).



Supplementary Figure 8 [EDF_germline_icgcspecific.ai] 

 
Supplementary Figure 8 | PCAWG specific eGenes. a, Manhattan plot of SLAMF9 as an example 
of an pan-analysis specific eQTL. as well as SLX1A b, Top 50 Reactome Pathway enrichments for 
PCAWG specific eGenes which do not replicate in any GTEx Tissue c, Median gene expression 
across the PCAWG and GTEx cohort for 422 PCAWG-specific eQTL (green: somatic eGenes, red: 
cancer testis genes). 



Supplementary Figure 9 

Supplementary Figure 9 | Quality Control of PCAWG specific eGenes. Boxplots of effect size, 
p-value and distance to TSS. Box indicates interquartile range with median shown as a line. Whiskers 
indicate 1.5 interquartile range a, Boxplot showing effect size distribution of PCAWG-specific and 
unspecific eQTLs (e.g.: PCAWG eQTL that show evidence of replication in GTEx tissues). b, Boxplot 
showing p-Value distribution of PCAWG-specific and unspecific eQTLs. c, Boxplot of distribution of 
distance to transcription start site (TSS) between specific and unspecific eQTLs. d, Distribution of 
distance to TSS presented as a histogram. e, log2 fold change of median gene expression of all ICGC 
eGenes (orange) and PCAWG specific eGenes (blue) in comparison to GTEx. Positive fold-change 
indicates higher gene expression in the PCAWG cohort. 



Supplementary Figure 10

Supplementary Figure 10 | Power of different strategies for estimating somatic mutational burden for 
eQTL analysis. a, Number of significant somatic eQTL (FDR ≤ 5%) identified with different mutational burden 
estimates using all 1,188 patients and a subset of 899 carcinomas patients. VAF = variant allele frequency.  
b-d, QQ plots of nominal and permuted p-values (generated after one random permutation of individuals) of 
the somatic eQTL analysis. Considered were mutational burden calculated as b, binary burden (presence or 
absence of at least one somatic mutation), c, total SNVs load (number of somatic mutations per element) or 
d, weighted burden (sum of VAFs over the genomic region tested, Methods). 



Supplementary Figure 11

Supplementary Figure 11 | Somatic burden prevalence in the cohort. Clustering of somatic cis eQTL (FDR ≤ 
5%) by mean burden frequency estimated in each cancer type. The heatmap shows the first top 50 associations, 
sorted by mean burden frequency of the lead element across all cancer types. Row labels describe the HGCN 
names of the eGenes associated to leading somatic burden. Multiple eGenes associated to the same genomic 
interval are joined by an underscore. Row colors indicate the genomic region of the burden (flanking, intronic or 
exonic). Column colors distinguish the two main tumor types in the cohort, namely carcinomas and other tumors 
(lymphomas, skin melanoma and glial tumors). Grey cells indicate burden frequency = 0. 



Supplementary Figure 12 |  Standardized effect size, distance to TSS and burden frequency of somatic eQTL
a, Lead interval burden frequency and b, absolute distance to the eGene TSS shown as function of the absolute value of the 
effect size for each of the 649 somatic eQTL associations identified (FDR ≤ 5%), stratified by type of interval. c, Absolute 
distance to the eGene TSS shown as function of lead burden frequency. Spearman rho correlation and P value are also shown. 

Supplementary Figure 12



Supplementary Figure 13

Supplementary Figure 13 | Mutational signature-gene expression-germline variant associations, and 
prevalence of mutational signatures across cancer types. a, Representative signature-gene association, 
depicting a negative association between CYP26A1 expression and Signature 4. b, Manhattan plots of 
associations between cis germline variants proximal to APOBEC3B (plus or minus 100kb from the gene 
boundaries) and Signature 2 (top panel) or APOBEC3B gene expression level (bottom panel). The gray region 
denotes the gene body, the orange variant the lead eQTL variant rs12628403. c, The heatmap shows the 
presence of each signature in a specific cancer type (at least one mutation of the respective signature occurs in 
at least one patient with the specific cancer type). Signatures 1 and 5 occur in all cancer types, signatures 2, 13 
and 18 are common signatures and signatures 4, 7, 12, 16, 38 and 39 occur in specific cancer types. d, The 
heatmap shows the prevalence of each signature, i.e. the mean signature count (log10(count + 1)) across all 
patients of one cancer type.



Supplementary Figure 14

Supplementary Figure 14 | Workflow of gene expression-mutational signature association studies with 
subsequent mediation analysis including germline eQTL of associated genes. Genes involved in significant 
mutational signatures and gene expression associations are queried for germline eQTL. If the germline eQTL 
lead variant is significantly associated with the mutational signature, mediation analysis is applied to each 
potential triple of germline eQTL lead variant, gene expression and associated mutational signature. Here, the 
mediating effect of the mutational signature is assessed by comparing the indirect (ind) and total effect of the 
germline variant onto gene expression (the same analysis has been conducted for gene expression as mediator). 
a, b and c denote the effect sizes of the individual associations. The boxes on the right show the numbers of 
genes and eQTL for the APOBEC3B case.
 



Supplementary Figure 15

Supplementary Figure 15 | Somatic allelic imbalance predicts cancer-relevant genes: a, Using our model for 
AEI, we ranked all measurable genes in the cohort according to their average prediction scores from somatic 
sources (SCNAs + SNVs, blue) and germline sources (SNPs, purple). For comparison, we also ranked genes 
based on the number of loss-of-function / gain-of-function mutations (red) across the cohort and based on the 
observed AEI recurrence in the cohort. The plot shows the fraction of cancer census genes (y-axis) in the set of 
ranked genes up to a specific rank (x-axis). Unsurprisingly, LoF/GoF mutations most clearly indicate cancer genes, 
followed by predicted somatic AEI. Observed total AEI as well as germline predicted AEI show a clear negative 
enrichment with only few cancer genes in the top ranked genes. b, Kaplan-Meier curves for TCGA COAD patients 
according to EXO1 gene expression. c, Boxplot comparing ASE percentages for driver genes in their functional 
cancer types and other cancer types. d, We used the positions mutated in more than 10 ICGC tumors as hotspots 
and we looked at the COSMIC genes with more than 2 hotspots. Thus we got the TP53 and the PIK3CA genes. 
The heatmap showed the variant allele frequency from RNA-seq data for each hotspot of TP53 or PIK3CA in each 
tumor type.

a b

c d



Supplementary Figure 16 

Supplementary Figure 16 | Pairwise alignment of Alu sequences with an SAV and the Alu 
reference sequence. SAVs aligned to overlapping ALUs aligned to the ALU reference, showing 
exonizations creating a novel acceptor (red), a novel donor (green) or both (blue).



Supplementary Figure 17

Supplementary Figure 17 | Structural rearrangements associated with RNA fusions. a, Number of gene 
fusions per sample and respective number of fusions, structural variants (SV), copy number alterations (CNA), 
and single nucleotide variants (SNV). The diagonal histograms shows the distribution of the number of 
alterations per sample. The upper triangle presents the Spearman correlation between two types of alterations 
per histological type (dot) and together with the overall spearman correlation (in blue). The bottom triangle 
contains scatter plots contrasting the number of alterations for each sample (dot).  B, Fusion genes with 
promiscuous gene partners overlapped with human common fragile sites do not show different number of gene 
partners. c, CTBP2-CTNNB1 as an example of “Retained ORF” fusion. A scatter plot of CTNNB1 DNA copy 
number versus mRNA expression across all ICGC gastric cancer samples



Supplementary Figure 18

Supplementary Figure 18 | Example of the gene-centric outlier table.  To unify analysis of alterations across all 
RNA phenotypes, a gene-centric binary table was created for each RNA phenotype indicating if a sample had an 
alteration in a given gene for a given sample. For quantitative RNA phenotypes (gene expression, alternative 
promoters, alternative polyadenylation, alternative splicing, and allele-specific expression), for a given gene, 
samples with extreme values, when compared to the samples in the same histotype, were considered altered. a, 
depicts the identification of outlying events for a single alteration type. b, visual representation of the gene-centric 
outlier table for the sample D051594 and gene TP53, corresponding to the first row in c. We see here that each 
gene-sample-alteration triple is a binary value, here depicted as a cube. c, depicts an example of the gene-centric 
outlier table for five genes and two samples. The first five columns denote the gene and sample information, the 
following columns denote if an alteration occurred within the gene-sample-alteration triple. It is important to note 
that gene-sample pair is included in the table only if it has at least one observed alteration. 



Supplementary Figure 19

Supplementary Figure 19 | Correlation of Purity and Alteration Frequencies 
Each point is a sample-alteration pair and colored by histotype, x-axis depicted the number of genes a specific 
alteration occurs within a sample. When estimating the relationship between purity and frequency of outliers, 
using histotype, alteration type, and ploidy as confounding variables, we find that there is no significant 
correlation (likelihood ratio test, negative binomial distribution: P=0.512).



Supplementary Figure 20

Supplementary Figure 20 | Correlation of frequency of outlier events in a gene with gene length and 
GC-content. a, comparison of  frequency of outliers in a gene with the transcript length. To test strength of 
correlation, we regress the frequency of outliers against the gene length assuming a negative binomial distribution. 
We find that while all alteration types except for copy number  have a significant correlation, but for only for 
variants is the amount of variation explained by the gene length greater than 5%. Using this information, we scaled 
the number of variants detected by the gene length. b, compares the frequency of outliers against GC content. We 
find that after length correction of variants, no alteration has more than 2% of its variance explained by GC 
content.

updated



Supplementary Figure 21

Supplementary Figure 21 | Trans-associations of RNA alterations in cancer genes. a, Heatmap 
showing the known co-occurrence between mutations of KRAS and PIK3CA, and those between LATS2 and NF2. 
Each column indicates a specific tumor with tumor types annotated to the left. Most samples without the listed 
alterations are not shown for space considerations. b, Boxplots showing the total number of non-synonymous 
mutations acquired for patients with B2M alterations versus those without. c, Heatmap showing the co-occurrence 
between the MYC variants and the FLNB alternative splicing in Lymph-BNHL. Each column indicates a specific 
tumor. Multiple samples without the listed alterations are not shown for space considerations. d, Heatmap showing 
the extent of associations between alterations of known splicing-related genes and the alternative splicing of 
COSMIC genes. Each column indicates one COSMIC gene, and the color intensity shows the significance of 
trans-association. Splicing related genes labeled to the right are ordered by the number of significant associations. 



Supplementary Figure 22

Supplementary Figure 22 | Comparison of recurrent expression outliers in GTEx and ICGC  a, represents 
three sets of significantly recurrent gene sets. The GTEx recurrent expression outliers were derived from the GTEx 
cohort (version phs000424.v4.p1), totaling 3323 samples across 31 tissues. Expression outliers were identified 
within each cohort as described in (Methods) for the ICGC expression outliers. The recurrent ICGC 
non-expression outliers contains all alterations except for expression outliers. A permutation test of ~160K, was 
done to identify a recurrence cut-off score for each of the three gene sets individually.  We also find a higher 
enrichment of ICGC recurrent expression outliers in comparison to the GTEx recurrent expression outliers with 
other ICGC alteration outliers. b, depicts the proportion of cancer census genes and PCAWG-defined driver genes 
in each of the three recurrent gene sets. We find that the ranked-list of significant ICGC expression and 
non-expression outliers are significantly enriched (FDR < 5%), but GTEx recurrent expression outliers were not 
enriched.



Supplementary Figure 23

Extended Data Figure 23 | RNA-Editing frequencies within coding regions across tumor types. The bar plot 
displays the number of rna-editing events that lead to either a synonymous or nonsynonymous mutation across 
cancer types after application of all filters. An additional filter of seeing an event in at least 30 samples is included 
in order to make this figure more comparable to the frequencies observed in the TCGA cohort in Han et al. 2018, 
supplementary figure S1, D. 

updated



Supplementary Figure 24

Extended Data Figure 24 | Comparison of the analysis of the whole cohort with cancer type-specific 
analyses. a-e, The p-values (-log10P) of cancer type-specific analyses are compared against the p-values of the 
analysis applied to the whole cohort and the Pearson correlation coefficient (r2) is calculated. Per signature, all 
cancer types are taken into account that show presence of the specific signature (see Figure S16). The 
presented signatures are a-c, cancer type-specific signatures that occur in up to 4 cancer types and d-e, 
common signatures that are not present in up to 5 cancer types. f, Correlations between cancer type-specific 
and whole-cohort p-values (r2) are plotted over the sample size of the respective cancer types.
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Supplementary Notes 
 
Analysis of gene expression confounders 
In this study we used PEER to adjust for hidden confounders to calibrate our statistical models 
and avoid false associations. This approach has been used previously across multiple studies 
and for deeper insights between the correlation of technical variation and covariates please 
refer to (Lappalainen et al. 2013; GTEx Consortium et al. 2017). These studies showed that 
using PEER factor can increase the detection of eQTLs. However there is a risk that broad 
biological effects may be removed as well. Given that we mostly focus on local associations, 
this is an acceptable side effect here. 

To analyse the effect of PEER in our cohort we applied ordinary least-square regression to 
correlate each of the 35 PEER factors with per sample covariates, including cancer project codes 
(reflecting cancer histotypes), gender, tumor purity, somatic burden and several sequencing 
metrics, to understand the proportion of variance explained by known biological and technical 
covariates. Sequencing metrics include library depth and number of unmapped reads as well as 
sample degradation levels (3’/5’ bias). Adjusted R2 was used to show the proportion of variance 
explained by each known covariate (Figure 1). This analysis showed that most of known 
covariates tested did not correlate with PEER factors (on average R2 = 0.01 per covariate across 
all factors), with the exception of few cancer histotypes showing strong correlation with the first 
top PEER factors (e.g. CLLE-ES and factors 2, with R2 = 0.59).  

 
Analysis of co-localization of structural variants and somatic burden linked to eGenes 

The analysis of co-localization of structural variants (SVs) and somatic burden was performed per 
aliquot id, looking for the closest SV to the leading genomic interval identified for each eGene, 
using the consensus WGS-based somatic structural variants (version 1.6; 
https://dcc.icgc.org/releases/PCAWG). The analysis identified 110 (17%) eGenes 
(Supplementary Table 5) with at least one SV close to the individual mutational burden (with a 
maximum distance observed between the burden and the SV of 40kb). Among the eGenes with 
SVs, we found immunoglobulin (Ig) genes to be the most prevalent class of eGenes with structural 
alterations (85/110 eGenes). 

 
Genes significantly altered through splicing 
We sought to identify genes under positive selection for somatic mutations associated with 
splicing alterations. For multi-exon genes, we reasoned that selection at the gene-level could be 
achieved through splicing alteration at different exons. Therefore, we decided to measure 
positive selection by considering all exons within a gene rather than an individual exon. To do 
this, we used a permutation based approach to compare the gene-level splicing alterations 
against background levels (Figure 2a). We utilized splicing quantification data from 1359 RNA-
seq datasets from primary tumor and matched normal tissue for samples with available data. 
From our splicing quantification, we computed a percent spliced in (PSI) derived z-score for 
each exon across all multi-exon genes for each patient. Next, we filtered for exons with proximal 
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somatic mutations (50 base pairs (bp) into the intron, 5 bp into the exon), which represent cases 
in that are likely to to have altered splicing. We then assigned an overall gene impact score by 
computing the average z-score of all exons with proximal mutations (Figure 2b). As a negative 
control, we used the same method considering mutations distal to exonic regions, which are not 
likely to have a strong effect on splicing (a 55 bp window from 295 to 250 bp into introns) 
(Figure 2b). Our results revealed two genes under strong positive selection, TP53 and FANCA 
(pval < 0.01). Both of these genes are known tumor suppressor genes, and genes of the cancer 
gene census.   
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Figure 1: Heatmap showing the proportion of variance (measured as adjusted R2) of PEER 

gene expression residuals explained by known per sample covariates.  



4 

 
Figure 2: Genes significantly altered through splicing. (a) Permutation approach to identify 
genes with mutations associated outlier splicing more than would be expected by chance. (b) 
QQ-plot comparing approach using mutations proximal to the exons (50 base pairs (bp) into the 
intron, 5 bp into the exon), or distal to the exons (a 55bp window farther into the intron). 
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