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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The work presented in this manuscript aimed at identifying idiopathic pulmonary arterial 

hypertension blood transcriptome endotypes. The disease is rare but often fatal and clinical course 

can vary widely in this patient population. Blood transcriptomics seems well-suited to the 

identification of signatures that may be predictive of clinical severity and outcomes. 

 

A strength of the work is obviously the remarkable number of cases with 5-year outcome 

information available for this study and profiled by this team (all the more remarkable, that this 

again is a rare disease). Potential clinical/translational impact is therefore possible from such a large 

cohort and gives this work particular importance. 

 

The authors employed an unsupervised approach to tackle inter-individual variations and identify 

distinct endophenotypes based on differences in blood transcript abundance measured on a 

genome-wide scale. Three distinct blood transcriptome patterns were identified, each associated 

with distinct clinical outcomes (good, poor, intermediate). Clinical features associated with each 

blood transcriptome endophenotype were then identified and in turn used to define clinical 

endophenotypes. The corresponding clinical parameters (rather than transcriptomic ones) were 

then used to classify an independent validation set and confirm their predictive value. 

 

Here are some comments: 

 

1) The point of using blood transcriptomics seems largely lost in this particular workflow. Would it 

not have been better indicated, in order to identify clinical parameters predictive of outcome (the 

endpoint of this analysis), to simply use such clinical parameters in the training/discovery set? A 

higher level of performance would presumably thus be achieved. As it is, the blood transcriptome 

data is solely used for the purpose of identifying signatures associated with outcomes 

(pathogenesis), rather than identifying predictive biomarkers. This altogether does not appear very 

logical. But short of completely changing their approach the authors should at least clarify this point. 

Or they may consider omitting the last part of the analysis (validation of the predictive performance 

of clinical classifiers), which tends to undermine the premise of the work. 

2) It is not apparent from reading the manuscript at first, but the authors are actually re-analyzing a 

dataset that they had previously generated and published results from using a different analytical 

workflow [ref 13]. Data reuse should definitely be encouraged, and it is not per se a negative point 



here. But some good practices would also need to be adopted. One would be to be upfront about it 

and clearly state that the data is being reused. A reason for that is that there also needs to be a 

discussion of the findings that have been reported earlier, and of the motivation of the re-analysis. 

What analysis gaps are being addressed? How do these findings and conclusions differ from those 

that were drawn earlier? 

3) What compounds point #2 is that the authors had not made their data publicly available upon 

publication of their earlier work [ref 13], as is the custom and indeed a mandate in most quality 

journals. And they pass up the opportunity here once again, stating that data “are available from the 

corresponding author upon reasonable request”. Which practically is far from guaranteeing that the 

data will indeed be shared with the community for further re-use. Generating these data is obviously 

the culmination of many years of work and it is understandable that the authors wish to capitalize 

on those as much as possible. But after the publication of a secondary analysis, it seems that it 

would be indicated to make these data public and potentially further extending the impact of their 

work (and benefit to patients with this disease). 

4) An earlier study by a different group also associated the severity of IAH with high levels of 

expression of ALAS2 [ref 31]. This work would deserve to be discussed in more detail here (only one 

sentence as it is). 

5) Addressing inter-individual variation employing unsupervised clustering approaches is suitable, 

although the approach has been employed for decades. Some novelty can be claimed concerning 

implementation itself, but dozens of clustering methods could be used with relatively similar 

outcomes. This is not a major criticism; it might just be indicated to downplay the novelty of the 

analytical approach accordingly. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors propose a machine-learning-based analysis of gene expression data for idiopathic 

pulmonary arterial hypertension classification. The authors’ goal is to use a combination of 

unsupervised and supervised learning to identify subtypes of patients with different risk profiles and 

so survival rates. Identification of the appropriate patient subgroups is an important problem. A 

novel, robust, and accurate method will be invaluable. Thus this manuscript addresses a critical 

challenge. The concept of this work is interesting, but there are a number of issues that need 

clarification. 

 

 



1. How exactly an independent cohort was defined? Was it profiled in a different lab? Gene 

expression measurements are prone to batch-effect issues. I suggest the authors explore the 

performance of the selected subset of features/ signatures (clinical parameters+genes) and the 

model built on it on the completely independent dataset. GEO or ArrayExpress can be used for such 

purposes. 

2. HR and Cox regression were not adjusted to age, but the only gender. While it is seen that low-risk 

groups are somehow younger intermediate and high-risk groups and risk is growing with age. What 

was the age of healthy controls? Age is one of the important factors for survival in general. Could it 

be the case for the better survival of group II vs groups I and V? I suggest reporting sex and age-

adjusted HR. 

3. Related to the previous point, it would be interesting to see how the standard clinical features 

would perform in risk prediction in comparison to gene expression profiling. Would it be possible to 

get similar clusters of patients with K-means/ Hierarchical clustering/Spectral clustering for their 

clinical features only? 

4. Names of packages used (for SVM, RF, and other methods and algorithms used) are lacking 

5. Samples are not defied - p 458. It is also confusing what is the difference between features and 

signatures. 

How many gene expression replicas were available per one patient? 

6. It is not clear how authors moved from 25,955 genes to 1 to 20 features? What was the final set of 

genes used to trained supervised models? 

7. Figure 3 B: p-values are lacking for selected genes. Were observed differences significant? What 

was the cut-off for FC? 

8. Authors report that some of the features were imputed, but results are not reported. How many 

of the patients’ profiles had missing values? 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

The investigators use clustering analyses and machine learning to examine biological and clinical 

heterogeneity in a cohort of patients with pulmonary arterial hypertension (PAH). They define 5 

clusters on the basis of RNASeq data and move forward with describing 3 of the 5 clusters as the 

other two contain only 29 patients. They find that the 3 main clusters are associated with 

immunoglobulin levels and different gene expression patterns. The clusters are also associated with 

differences in their clinical risk as well as long-term outcomes. Focusing on clinical risk factors only, 



the clinical factors associated with each of the biological cohorts is validated in a second patient 

population. This is an interesting study of a relatively large PAH cohort. 

1. More information is needed in this paper to understand the study cohort. Were hereditary 

patients genotyped? Were data from those patients who had a final diagnosis that wasn’t PAH 

(supplementary figure 5) but did have RNASeq done taken out of all of the analyses? 

2. Taking out the transcripts that segregated patients by male sex is understandable based on data 

presented in the supplement, but since you are looking at RNA transcripts at a single point in time, it 

doesn’t discount the possibilities that these are contributors to disease or resilience. This should be 

mentioned. 

3. The paper focuses on 3 of the 5 cluster subgroups since 2 of the clusters contained only 29 

patients. This raises the question about whether or not 5 is the optimal cluster number and whether 

or not it should have been 3. The various methods and measures of distance are shown in the 

supplement, but not all of these methods are not always appropriate for this type of data. By using 

each of these methods, did k=5 for all or is your internal indexes component of Fig. 1 meant to 

indicate that you took an average of the results of the other methods? If you perform clustering with 

k=3, what happens to the patients in subgroups 3 and 4 and does it change the transcripts 

associated with each subgroup? Since you did define 5 clusters, you should report on all of them 

throughout the Results section. 

4. Use of the REVEAL 2.0 risk score is a nice way to describe the cohort. Does adding transcript 

profiles to this improve the predictive value (as the team has done in other publications)? 

5. The inclusion of hereditary and idiopathic PAH in the cohort is interesting, but begs the question 

about whether they should be analyzed separately. If you look at the idiopathic group alone, do you 

get the same results? 

6. The presence of the immunoglobulin chains is interesting and in line with prior reports about 

immune cell activation. Given that there are differences between immune and inflammatory cell 

numbers between the groups, if Ig transcripts are corrected for cell numbers, is there really still a 

difference between the groups to show actual differences? 

7. On page 9, the statement that the average time between sampling and diagnosis was 5.3 years 

with a range that extends from 0.002-21.57 years is confusing. The way that this is written suggests 

that the samples were obtained first and the diagnosis of PAH was made later. Yet the sentence 

before it states that patients were diagnosed at a median of 45 years and sampled at a median of 52 

years. Are you trying to indicate disease duration? If so, state accordingly. Also, the duration of time 

between diagnosis and sampling is vast, so please provide some more granular information on time 

from diagnosis to sampling. PAH patients with at least 22 years survival are quite different than 

patients with incident disease. 

8. Please also include age at diagnosis in Table 1 for each of the subgroups. Also, major 

characteristics should also include right heart cath data, RV function, and testing to rule out PE. PFT 

data alone are isolated descriptors. It also appears that no statistical testing took place. 



9. More information is needed to understand how the variables were chosen for supervised machine 

learning. Was this by the investigators? Based on prior publications? What was significant in the 

dataset? 

10. CRP shows up in all your groups and BMI in several. You don’t indicate if the levels are the same 

for the groups, high vs. low, etc. The levels aren’t reported. It’s well recognized that there are age, 

race/ethnicity, and sex differences in values of the factors. How did you adjust for this? 

11. How many patients were on disease-modifying drugs, steroids, or anti-inflammatory agents at 

the time of sampling? Since this is a PAH cohort, it is expected that the CTD patients at a minimum 

would fall into this category. 

12. The clinical features list should be put in table format to make it easier to understand the 

differences between the groups. 

13. The validation cohort study is perplexing since you use RNASeq to identify clinical variables to 

predict outcomes and then validate the clinical variables. One could make the argument that you 

could just use the REVEAL risk score to predict outcomes. Is the discriminatory power of the 

variables identified by your methodology better than the REVEAL risk score in the validation cohort? 

If the idea is also to identify targets for therapies (last sentence of your abstract), then how does 

validating clinical characteristics in a separate cohort help this cause? It seems that you would have 

to show that the validation cohort has relatively the same RNASeq profile. 

 



 

 

Thank you for re-reviewing our manuscript and providing thoughtful comments and suggestions. Below is a 
point-by-point response to the comments/queries raised with the reviewers’ comments in italics, our response 
in plain text and changes in the revised manuscript text in red below, and in the revised manuscript. 

Reviewer #1 
The work presented in this manuscript aimed at identifying idiopathic pulmonary arterial hypertension blood 
transcriptome endotypes. The disease is rare but often fatal and clinical course can vary widely in this 
patient population. Blood transcriptomics seems well-suited to the identification of signatures that may be 
predictive of clinical severity and outcomes. 
 
A strength of the work is obviously the remarkable number of cases with 5-year outcome information 
available for this study and profiled by this team (all the more remarkable, that this again is a rare disease). 
Potential clinical/translational impact is therefore possible from such a large cohort and gives this work 
particular importance. 
 
The authors employed an unsupervised approach to tackle inter-individual variations and identify distinct 
endophenotypes based on differences in blood transcript abundance measured on a genome-wide scale. 
Three distinct blood transcriptome patterns were identified, each associated with distinct clinical outcomes 
(good, poor, intermediate). Clinical features associated with each blood transcriptome endophenotype were 
then identified and in turn used to define clinical endophenotypes. The corresponding clinical parameters 
(rather than transcriptomic ones) were then used to classify an independent validation set and confirm their 
predictive value. 
 
We thank the reviewer for recognizing the challenges in working with rare diseases, recognising the need to 
better stratify patients and our approach. 
 
Comments 
 
1. The point of using blood transcriptomics seems largely lost in this particular workflow. Would it not 
have been better indicated, in order to identify clinical parameters predictive of outcome (the endpoint of 
this analysis), to simply use such clinical parameters in the training/discovery set? A higher level of 
performance would presumably thus be achieved. As it is, the blood transcriptome data is solely used for 
the purpose of identifying signatures associated with outcomes (pathogenesis), rather than identifying 
predictive biomarkers. This altogether does not appear very logical. But short of completely changing 
their approach the authors should at least clarify this point. Or they may consider omitting the last part of 
the analysis (validation of the predictive performance of clinical classifiers), which tends to undermine the 
premise of the work. 
 
We apologise if the aim of this research was not made sufficiently clear for the reviewer. The objective of 
this research was not to develop predictive biomarkers of outcome but rather to identify molecular 
endophenotypes within the heterogeneous group of patients with IPAH. This would result in novel biological 
insights into disease mechanisms that allow better stratification for treatment choice, and highlight potential 
new drug targets. We had edited the introduction to make these aims more obvious. 
 

“We investigated whether transcriptomic profiling of whole blood can provide more 
granular molecular ‘endophenotypes’ of H/IPAH to stratify patients better than is currently and 
whether it is permissible with the standard clinical classification. Furthermore, we hypothesised that 
these transcriptomic defined subgroups would provide novel insights into biological pathways 
driving disease, and potential novel drug targets.” 
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With regard to the last part of our analysis on an independent cohort, we included the definition of the 
clinical features that describe the transcriptomic subgroups so that other investigators could reproduce these 
subgroups based on clinical variables routinely collected in these patients, without the need to undertake 
transcriptomic analyses. This has been further strengthened by the addition of both internal and external 
validation of the relationships between the subgroups, transcripts and clinical features. We feel that our 
approach has robustly shown the existence of these subgroups. We have altered the final paragraph of the 
introduction to make this clearer.  
 

“The gene expression profile of key cluster associated genes was subsequently confirmed, 
and the correlation with key clinical variables validated in both internal and external validation 
cohorts. This validates our approach and provides an alternative method to define these subgroups 
without the need for transcriptomic data.” 

 
2. It is not apparent from reading the manuscript at first, but the authors are actually re-analyzing a 
dataset that they had previously generated and published results from using a different analytical 
workflow [ref 13]. Data reuse should definitely be encouraged, and it is not per se a negative point here. 
But some good practices would also need to be adopted. One would be to be upfront about it and clearly 
state that the data is being reused. A reason for that is that there also needs to be a discussion of the 
findings that have been reported earlier, and of the motivation of the re-analysis. What analysis gaps are 
being addressed? How do these findings and conclusions differ from those that were drawn earlier? 
 
We appreciate that this is not a criticism but we did try to make this clear by referencing the manuscript 
referred to (Rhodes CJ, et. al. Whole-Blood RNA Profiles Associated with Pulmonary Arterial Hypertension 
and Clinical Outcome. Am J Respir Crit Care Med. 2020;202:586–594) in both the introduction and the 
methodology section. We agree that this is data reuse but this is not re-analysis, as different hypotheses are 
being addressed by each study. 
 
 In our earlier paper (Rhodes et al) we investigated a diagnostic signature and its prognostic utility 
from the whole blood transcriptome, across the whole cohort using supervised learning to compare healthy 
versus disease cases. The variation in whole blood transcriptome in this cohort and how that may result in 
subgroups (heterogeneity) of patients was not explored until now. In addition we expand on the cohort used 
in the Rhodes et al manuscript with the addition of clinical and RNA data from 197 PAH patients in the 
validation cohort. We have highlighted further these additional contributions in the Abstract and in the 
Introduction sections. 
 
 
 3. What compounds point #2 is that the authors had not made their data publicly available upon 
publication of their earlier work [ref 13], as is the custom and indeed a mandate in most quality journals. 
And they pass up the opportunity here once again, stating that data “are available from the corresponding 
author upon reasonable request”. Which practically is far from guaranteeing that the data will indeed be 
shared with the community for further re-use. Generating these data is obviously the culmination of many 
years of work and it is understandable that the authors wish to capitalize on those as much as possible. 
But after the publication of a secondary analysis, it seems that it would be indicated to make these data 
public and potentially further extending the impact of their work (and benefit to patients with this 
disease). 
 
We agree with the reviewer about the requirement for data to be shared publicly and thank them for raising 
this concern. We edited our data availability section in the manuscript to include a link to a the European 
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Genome-phenome Archive (EGA) at the EMBL—European Bioinformatics Institute where the raw 
transcriptomic data can be downloaded. We are sure the reviewer appreciated the need for a controlled 
release of data to conform to the ethics under which the samples are collected given the sensitivity in human 
whole genome transcriptomics. The details on how to apply are included on both the EGA portal, the Shiny 
App, and below (via an email to cohortcoordination@medschl.cam.ac.uk).  
 
Data Availability 
The transcriptomic data from the PAH cases included in this manuscript and have been deposited in the 
European Genome-phenome Archive (EGA) at the EMBL—European Bioinformatics Institute under 
accession number EGADXXXXX. Application for access to the data from EGA can be made to the National 
Cohort of heritable and idiopathic PAH Governance committee by contacting 
cohortcoordination@medschl.cam.ac.uk. Furthermore, data used to generate statistics, plots and figures are 
accessible through our interactive portal found in https://sheffield-university.shinyapps.io/ipah-rnaseq-app/. 
Additionally, the code used to generate the results of this study is publicly available at 
https://github.com/BioSok/spectral_clustering_of_IPAH. Source data are provided with this paper. 
 
 
4. An earlier study by a different group also associated the severity of IAH with high levels of expression 
of ALAS2 [ref 31]. This work would deserve to be discussed in more detail here (only one sentence as it 
is). 
 
We thank the reviewer for pointing this out. We have expanded our description of this manuscript and 
included an edited section from the discussion below. 
 

“Previous gene expression studies across multiple forms of PH, including IPAH significantly 
increased expression of ALAS2 in both systemic sclerosis-associated PAH (SSc-PAH) and IPAH31. In that 
study, for the IPAH patients ALAS2 also demonstrated strong correlation with right atrial pressure, 
pulmonary vascular resistance, pulmonary artery saturation and cardiac index31. These data, and our own  
observations (Figure 3) are further suggestive of a role  for ALAS2,  iron32 and hepcidin33,34 in pulmonary 
vascular remodelling, and PH.” 

 
 
5. Addressing inter-individual variation employing unsupervised clustering approaches is suitable, 
although the approach has been employed for decades. Some novelty can be claimed concerning 
implementation itself, but dozens of clustering methods could be used with relatively similar outcomes. 
This is not a major criticism; it might just be indicated to downplay the novelty of the analytical approach 
accordingly. 
 
We recognise the concern of the reviewer. Indeed there are an abundance of methods in the unsupervised 
learning field that are appropriate for certain data types. Most studies employ the widely-used clustering 
methods by default (e.g. hierarchical clustering) without utilising any kind of specific selection criteria for 
the chosen method to determine the suitability or effectiveness of the chosen methodology. In this study we 
benchmark three fundamentally different methods (hierarchical, k-means and spectral) and use partitioning 
consistency to determine which method produced the most stable and reproducible signal from our data type 
(RNA-sequencing). As shown in the supplementary figure 16 below, we have used 3 different 
kernels/distance measures for each clustering method and compared the agreement of partitioning on the 
same samples. Spectral clustering showed the highest consistency in detecting differences and subsequently 
partitioning patients in similar clusters independently of the kernel. Notable is the difference in intra-
agreement of spectral (~75%) and k-means (-13%) clustering, which highlights the importance of the extra 
step of mapping data in a low dimensional space (as a similarity graph) in spectral clustering. 
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To make this distinction more clear we have included the following section in the supplementary 

material. 
 
Clustering algorithms’ partitioning consistency  
In this study we compare three fundamentally different methods (hierarchical, k-means and spectral) and use 
partitioning consistency to determine which method picks up an underlying signal from our data type (RNA-
sequencing). As shown in Supplementary figure 16, spectral clustering showed the highest consistency 
(Adjusted Rand Index) in detecting differences and subsequently partitioning patients in similar clusters 
independently of the kernel. Notable is the difference in intra-agreement of spectral (~75%) and k-means (-
13%) clustering, which highlights the importance of the extra step of mapping data in a low dimensional 
space (as a similarity graph) in spectral clustering. 
 
We also included the following text in section Clustering algorithm selection of the supplementary 
material: “There is a wealth of methods in the unsupervised learning field that are appropriate for certain data 
types. Most studies employ widely-used methods (e.g. hierarchical clustering) without utilising any kind of 
selection method that would point towards a certain effective methodology.“ 
 
Furthermore, to highlight the point above we have included the following in the main manuscript in 
Discussion: “Most studies employ widely used clustering algorithms without exploring their data suitability 
while in this study we determine spectral clustering as the most consistent in detecting differences and 
subsequently partitioning RNA sequencing samples.” 

Supplementary Figure 16: The average adjusted rand index (ARI) of three clustering methods: spectral 
(blue line), hierarchical (green line) and k-means (red line) clustering. For each method 3 different distance 
measures/kernels were used and their ARI was averaged for each method. 

 

Reviewer #2 

The authors propose a machine-learning-based analysis of gene expression data for idiopathic pulmonary 
arterial hypertension classification. The authors’ goal is to use a combination of unsupervised and 
supervised learning to identify subtypes of patients with different risk profiles and so survival rates. 
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Identification of the appropriate patient subgroups is an important problem. A novel, robust, and accurate 
method will be invaluable. Thus this manuscript addresses a critical challenge. The concept of this work is 
interesting, but there are a number of issues that need clarification. 
 
Comments 
 
1. How exactly an independent cohort was defined? Was it profiled in a different lab? Gene expression 
measurements are prone to batch-effect issues. I suggest the authors explore the performance of the 
selected subset of features/ signatures (clinical parameters+genes) and the model built on it on the 
completely independent dataset. GEO or ArrayExpress can be used for such purposes. 
 
We agree that batch-effects are an important confounding variable in gene expression profiles. The samples 
and data used arise from the UK’s National IPAH Cohort with samples collected from 8 sites across the UK 
(https://ipahcohort.com). We have included a supplementary PCA plot below to demonstrate that there are 
no obvious site specific effects. Furthermore, we have added 2 validation datasets in this revision as 
requested by the Editor and Reviews. These include validation of gene expression in an additional 197 
patients from the National IPAH Cohort, and another validation cohort of 83 patients from the USA from 
which again measured the correlation between key genes in our RNA signature and the clinical variables. We 
hope that these two validation steps and the PCA analysis below (also included in the Supplementary 
Material) appease any concerns about batch specific findings.  
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Supplementary Figure 17 Plot of the first two principal components of the RNA-seq data derived from 
the 10,000 most variable genes according to IQR in our dataset. Each dot represents a distinct sample in 
the dataset coloured according to the institute that provided that sample. No discernible effect is seen due 
to Site. 
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Supplementary Figure 18 Boxplots showing the distribution of the first eight principal components of the 
RNA-seq dataset grouped according to the Site that provided the sample. No discernible effect is seen due 
to Site. 

 

Internal validation of gene expression in clinical-feature defined subgroups  
In order to validate the gene expression differences between subgroups in our 
validation cohort, TaqMan PCR was performed for 17 of the 27 genes previously 
associated with the subgroups and / or clinical variable correlations, with GAPDH 
used as the endogenous control gene.  Nine of the 11 genes we measured 
demonstrated a fold-change between subgroup I and II in the same direction as the 
discovery cohort (Figure 6A). Differences in expression of key genes (IGHM, 
IGKV2.24, IGLV6.57 and NOG) were significant (p<0.01) between subgroups  I and 
II (Figure 6B).  
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Validation of gene and clinical feature correlations 
The correlations between gene and clinical features observed in the discovery cohort 
were also examined in our validation cohort of 91 subjects, and also in an external 
cohort of 32 subjects with RNA collected from PBMCs (Romanoski et al. 2020). We 
found that 64 of the 90 (71%) correlations measured in these two independent cohorts 
were consistent with our discovery cohort (Supplementary Table 7).  
 
 
2. HR and Cox regression were not adjusted to age, but the only gender. While it is seen that low-risk 
groups are somehow younger intermediate and high-risk groups and risk is growing with age. What was 
the age of healthy controls? Age is one of the important factors for survival in general. Could it be the 
case for the better survival of group II vs groups I and V? I suggest reporting sex and age-adjusted HR. 
 
We apologise that this was not clearer in the manuscript. Data from healthy volunteers was not used in the 
cluster analysis, the focus was to describe subgroups of IPAH, not compare IPAH to healthy volunteers. To 
make this clearer we have included the following in the main manuscript in section RNA data 
preprocessing subheading of the Methods:  
“The RNA sequencing and clinical data of healthy controls were not used in the main pipeline of this study. 
A secondary clustering with all patient and healthy samples was implemented to demonstrate the lack of pure 
patient and healthy subgroups within our cohort (Supplementary Figure 4B).” 
 
We agree that age and sex are important covariates to include in our survival analysis, therefore, we included 
the following in the main manuscript in Results section Unsupervised cluster analysis of whole-blood 
transcriptomes reveals five distinct subgroups of H/IPAH:  
“Age and sex were also included as covariates with the subgroups in a Cox regression model.  Age above 52 
years (median) was significantly associated with poor survival (HR=2.29) while gender showed no 
relationship with overall survival. Even with these covariates, the subgroup I was still significantly 
associated with survival (HR = 3.83) and was the biggest risk factor for poor outcome (Supplementary 
Figure 14).” 
 
To address the second part of this suggestion we also  included the following figure in the supplementary 
figures: 
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Supplementary Figure 14: Hazard Ratio of discovery cohort clustering adjusted for gender and age 
category of patients. Notation of (**) denotes a p-value of less than 0.01, (***) denotes a p-value of less 
than 0.001, while no stars denote non-significant p-values. Gender did not reveal any relationship with 
survival while an age over 52 was significantly associated with poor survival (HR=2.29). The most 
significant association with poor survival was found for patients participating in subgroup I (HR = 3.83). 

 
 
3. Related to the previous point, it would be interesting to see how the standard clinical features would 
perform in risk prediction in comparison to gene expression profiling. Would it be possible to get similar 
clusters of patients with K-means/ Hierarchical clustering/Spectral clustering for their clinical features 
only? 
 
We appreciate the proposition but as with previous response to Reviewer 1 we reiterate that the aim of this 
manuscript was to investigate the underlying biological heterogeneity in H/IPAH, with a view to better 
understanding the molecular mechanism and perhaps better stratify patients for specific therapies. We 
utilised the clinical variable to allow future / external identification of these specific subgroups without the 
need for whole blood transcriptomics. The clinical data also present some challenges technically for 
clustering algorithms given their different modalities and different distributions across variables. 
  
Similarly, our aim was not to predict disease risk using gene expression, this would be a supervised 
classification and covered in our previous study (Rhodes et al. AJRCCM  2020). The aim was to uncover 
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novel RNA-based subgroups using unsupervised clustering. The fact that our transcriptomic subgroups 
provide prognostic information provide further validity that the underlying biological signal is important in 
the disease process. We we also saw that the subgroups were associated with different clinical risk scores ie. 
REVEAL 2.0. We also present some evidence that patients transition between these subgroups 
(Supplementary Figure 4) over time and with treatment but this requires further investigation with a 
longitudinal study. Because we used clinical outcome and REVEAL scores to validate our novel 
transcriptomic subgroups, we did not want to make a circular argument by combining the subgroups and 
REVEAL scores to predict outcome. 
 
 
4. Names of packages used (for SVM, RF, and other methods and algorithms used) are lacking 
 
We apologise for this omission. We have added the following to the Methods section Identifying clinical 
signatures of subgroups:  
“The dataset was initially cleaned and filtered on 119 features that were identified by a domain expert from 
the original 887 features that described the dataset. Subsequently, any feature that had more than 5% missing 
data was dropped, and categorical features numerically encoded 
 
All ML tasks were carried out using Scikit-learn ML framework version 0.23.2 in a Python 3 environment. 
As machine learning classifiers, we used Logistic Regression (LR), SVM, Random Forest  (RF) and kNN. RF 
is a powerful ensemble learning technique especially for high dimensional classification tasks. LR was 
implemented using sklearn.linear_model.LogisticRegression using l2 penalty and default values used for all 
other parameters.  SVM was implemented using sklearn.svm.LinearSVC with regularisation parameter C set 
to 1, and default values used for all other parameters. RF was implemented using 
sklearn.ensemble.RandomForestClassifier with default values used for all other parameters. kNN was 
implemented using sklearn.neighbors.KNeighborsClassifier with a number of neighbours (n_neighbors) set 
to 5 and default values used for all other parameters. 

For feature selection tasks, we used ensemble feature selection based on recursive feature elimination (RFE) 
technique. RFE is a backward feature elimination technique that iteratively prunes the least informative 
feature(s) from a training dataset. A RFE based on a linear SVM starts by using all features to train an SVM 
model and ranks all features according to importance. The least ranked feature is removed from the training 
dataset and the SVM model refitted. This is iteratively done until only the required number of features 
remain. All features are also ranked according to importance. 

Ensemble feature selection aggregates several feature rankings into a single consensus feature ranking to 
ensure robustness of the feature selection process and of selected features. Feature importance measures 
used for feature ranking are based on the hyperplane weight vector of a linear support vector machine 
(SVM). The weight vector quantifies the contribution of each feature to the construction of the hyperplane, 
and is used for ranking features according to importance.” 

 

5. Samples are not defied - p 458. It is also confusing what is the difference between features and 
signatures. How many gene expression replicas were available per one patient? 
 
In this manuscript, features are individual variables whereas signatures refer to the combination of variables, 
either genes or clinical variables. If there are specific examples where this needs further clarification, please 
let us know. 
 



 

10 

The whole blood RNAsequencing was performed on each patient individually. Five patients were sequenced 
twice across two sequencing runs to check that the expression profiles are reproducible, but only one 
replicate of each was used in the analysis. These replicate samples clustered together based on the principal 
components of their expression profiles. We added a new Supplementary Figure 20 to illustrate this. 
 
 

 
Supplementary Figure 20: Principal components analysis of expression profiles from samples with a 
second replicate that was RNA sequenced (labeled as Trial2). Both replicates are clustered together 
according to the first four principal components. 
 
 
6. It is not clear how authors moved from 25,955 genes to 1 to 20 features? What was the final set of genes 
used to trained supervised models? 
 
We apologise for not making this clearer. We have added the following to the Results section to clarify this.  
Unsupervised cluster analysis of whole-blood transcriptomes reveals five distinct subgroups of 
H/IPAH:   
“Simultaneously, the 300 genes that produced the most stable expression data set (supplementary section 
Stability results) were utilised to identify unique subgroups of gene expression profiles, and describe the 
biological and clinical descriptors of these subgroups (Figure 1)”  
 
We have also altered the following in section Spectral clustering: Gene expression subgroup 
identification of Methods:  
“We performed cluster analysis to partition IPAH patients to distinct RNA based subgroups. The spectral 
clustering model (package kernlab v0.9-29) was selected as the most suitable unsupervised learning 
algorithm based on the highest partitional consistency when comparing multiple algorithms. For the spectral 
clustering method, data points (i.e. patients) are embedded and partitioned in a low dimensional space in the 
form of a similarity graph, rather than being characterised by more that 25,000 gene dimensions. High 
partitional consistency was defined as the high adjusted Rand Index (package fossil v0.3.7) and low standard 
deviation calculated between different variations of each clustering algorithm (k-means, spectral, hierarchical 
clustering), as described in Clustering algorithm selection. For the selection of the most appropriate 
clustering algorithm we utilised 25,955 genes across 359 IPAH patient samples (discovery cohort) after 
further filtering for repeated same-visit samples and non-H/IPAH diagnosis. To run the main spectral 
clustering partitioning we first selected the most relevant gene set, by ranking all genes  based on the 
variability of their expression across all 359 patient samples using the stats v3.6.0 R package (supplementary 
section Feature selection of genes). Subsequently, several candidate gene sets of increasing size were 
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generated from the top ranking gene list, and the one that generated subgroups of highest stability was 
selected (package fpc v2.2-3, supplementary section Highest stability gene set). The number of IPAH 
subgroups was estimated through ensemble learning56 utilizing 15 internal indexes calculated using the 
package dice R v0.6.0 (supplementary sections Optimal number of subgroups k and Internal Index Voting). 
The Radial Basis function kernel was used as the similarity measure with five target subgroups, identified as 
the optimal number of subgroups by an ensemble learning method. Further information on the selection of 
clustering algorithms and parameters can be found in the Supplementary Material.” 
 
We used penalised regression to identify the genes associated with the RNA subgroups, but genes were not 
used in any of the supervised classification models. Instead, clinical signatures trained on the RNA 
subgroups were used for classification, as explained in section Classification of new patients using 
signatures of Methods in the main manuscript.  
 
 
7. Figure 3 B: p-values are lacking for selected genes. Were observed differences significant? What was 
the cut-off for FC? 
 
We apologise for this omission. In addition to adding the relevant significant difference to Figure 3B we 
have also included the following table in the supplementary as Supplementary Table 8 to highlight all fold 
changes p values for genes. 
 
We have also included the following in section Gene signatures of subgroups in the Supplementary 
material:  
The p values of each gene when considering the fold change between subgroups I and II were calculated 
using a Welch Two Sample t-test on the raw values and presented in the Supplementary Table 8. The 
absolute lower cut off values of fold change (log2 scaled) is 0.28 
 
 
8. Authors report that some of the features were imputed, but results are not reported. How many of the 
patients’ profiles had missing values? 
 
The information on missingness rates, patterns and causes are detailed in the Missingness assessment and 
imputation section of the Methods and in Supplementary Figure 13. 
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Supplementary Figure 13: A) Heatmap showing missingness across important clinical variables for the 
diagnostic dataset. B) Barchart showing the proportion of missing data and chart showing the 
combinations of missing data for the classifier variables from the diagnostic dataset.  C) Heatmap showing 
missingness across important clinical variables for the cohort visit 1 dataset. D) Barchart showing the 
proportion of missing data and chart showing the combinations of missing data for the classifier variables 
from the cohort visit 1 dataset. 

Reviewer #3 

The investigators use clustering analyses and machine learning to examine biological and clinical 
heterogeneity in a cohort of patients with pulmonary arterial hypertension (PAH). They define 5 clusters on 
the basis of RNASeq data and move forward with describing 3 of the 5 clusters as the other two contain only 
29 patients. They find that the 3 main clusters are associated with immunoglobulin levels and different gene 
expression patterns. The clusters are also associated with differences in their clinical risk as well as long-
term outcomes. Focusing on clinical risk factors only, the clinical factors associated with each of the 
biological cohorts is validated in a second patient population. This is an interesting study of a relatively 
large PAH cohort. 
 
 
1. More information is needed in this paper to understand the study cohort. Were hereditary patients 
genotyped? Were data from those patients who had a final diagnosis that wasn’t PAH (supplementary 
figure 5) but did have RNASeq done taken out of all of the analyses? 
 
We apologise if the cohort description is not clear. As discussed above in response to Reviewer 1 - point 2, 
the RNAseq data from the discovery cohort are the same as previously used to derive a diagnostic and IPAH 
signature and reported in Rhodes CJ, et. al. Am J Respir Crit Care Med. 2020;202:586–594.  During the 
initial steps of this study, all patients with a non-PAH diagnosis were removed prior to any clustering 
procedure and therefore were not included in any of the subgroups or downstream analyses. The remaining 
359 retained samples (with RNASeq data) were classified as IPAH/HPAH. At a later stage, a few patients 
were reclassified as other forms of PH during clinical follow up. These are observed in Supplementary 
Figure 5 along with their subgroup membership.  
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Supplementary Figure 5: Revised diagnoses for each subgroup 

 
As those samples were part of the main spectral clustering pipeline and distributed among all subgroups (no 
significant enrichment in any subgroup) they were retained and included in the results shown in the 
manuscript. The examination of our subgroup memberships and clinical signature did not show any 
clustering of those re-diagnosed samples, indicating that they did not bias the clustering. Additionally, the 
clustering of only IPAH patients from the final diagnosis produced very similar subgroups (differing survival 
- also see point 5 below) to the ones reported in the manuscript that includes both these re-classified patients, 
and the heritable PAH patients. We added analysis of IPAH-only samples in the Supplementary sections 
Additional clustering pipeline of IPAH patients and Additional clustering pipeline of IPAH patients 
shows three survival groups: 
 
“To estimate the impact the 33 HPAH patients had on our main clustering pipeline, we examined their 
distribution across subgroups and ran an additional clustering pipeline including exclusively the 313 IPAH 
samples.  As in the main pipeline, we utilised spectral clustering with the rbfdot kernel, the 300 most variable 
genes and identical preprocessing (section Sample and gene selection preprocessing)... 
The 33 HPAH patients in our PAH cohort showed an equal distribution (~10%) among the subgroups of our initial 
clustering as demonstrated in Supplementary Table 9, indicating that they did not drive the clustering or greatly 
affected any subgroup characterisation. Furthermore, clustering the 313 IPAH samples resulted in 5 clusters whose 
survival curves are shown in Supplementary Figure 19. Similarly to the 3 major subgroups of the main clustering 
pipeline we can observe a group of patients with poorer survival over 5 years (clusters B and E, n=149), a group 
with higher survival (A and C, n=109) and a group with intermediate survival (D, n=55).” 
 
 
The majority of included Heritable and Idiopathic PAH patients previously underwent whole genome 
sequencing and analysed for both rare (Graf et al Identification of rare sequence variation underlying 
heritable pulmonary arterial hypertension. Nat Commun. 2018;9:1416) and Common variants (Rhodes CJ, et 
al. Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association 
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studies and meta-analysis. Lancet Respir Med. 2019;7:227–238). The distribution of BMPR2 mutation, and 
the Sox-17 variant among the subgroups is shown in Figure 4C.  
 
 
2. Taking out the transcripts that segregated patients by male sex is understandable based on data 
presented in the supplement, but since you are looking at RNA transcripts at a single point in time, it 
doesn’t discount the possibilities that these are contributors to disease or resilience. This should be 
mentioned. 
 
We thank the reviewer for raising an important point. To address this we altered/added the following text in 
Discussion:   
“Although we cannot reject the possibilities of the aforementioned genes contributing towards PAH or 
resiliense, we believe that their removal ensures that the clustering algorithm captures heterogeneity 
independent of sex associated expression variation. However, the interactions between gender and other 
autosomal genes in the context of PAH requires further study” 
 
 
3. The paper focuses on 3 of the 5 cluster subgroups since 2 of the clusters contained only 29 patients. 
This raises the question about whether or not 5 is the optimal cluster number and whether or not it should 
have been 3. The various methods and measures of distance are shown in the supplement, but not all of 
these methods are not always appropriate for this type of data. By using each of these methods, did k=5 
for all or is your internal indexes component of Fig. 1 meant to indicate that you took an average of the 
results of the other methods? If you perform clustering with k=3, what happens to the patients in 
subgroups 3 and 4 and does it change the transcripts associated with each subgroup? Since you did define 
5 clusters, you should report on all of them throughout the Results section. 
 
The reviewer raises an important point and one that we discussed at length at the outset of this study. To 
address this suggestion we included the following text in the supplementary section describing our approach 
for selecting k and hope that this provides enough information on the subgroup, how they were chosen, and 
their lineage.  
“Optimal number of subgroups k: Determining the optimal number of clusters (k) is an inherently difficult 
task in unsupervised machine learning as it is always an educated estimation, since we do know the actual 
number of categories within our data. Indeed some of the 14 used indexes are bound to not work on our data 
type (RNA-seq) and that is why we used an ensemble/voting method to estimate k (supplementary section 
Internal index voting) since we cannot base our estimation on any one index. The voting result 
(Supplementary Table 1) showed the clear majority of indexes to favour up to 5 clusters, with a preference 
to 2 clusters. The most important aspect in selecting the number of clusters in a data set is retaining as much 
information as possible, therefore selecting the highest supported k minimizes information lost. Following 
that notion, we retained the highest voted k = 5, where we discovered 3 distinct adequate sized clusters and 2 
small clusters that, despite their interesting gene expression profiles (Figure 2A), were unable to show any 
statistical significance in follow-up work due to their small size. In Supplementary Figure 15, we 
demonstrate the flow of patients between clusterings along with the cluster sizes and the proportion/count of 
transferring patients across k. The colored nodes represent our subgroups I, II,III, IV and V. According to the 
clustering tree, the 3 main subgroups I, II and V remain clustered together when k = 2 (in a 341 sized cluster) 
and k = 3 (in a 295 sized cluster). This indicates that for k < 5 we are missing the information that separates 
these 3 distinct subgroups. The two smaller subgroups (III and IV) mostly originate from a group of patients 
(circled in green) that dissociates early on from main subgroups I, II and V implying that these samples show 
some differences even when less subgroups are requested. The remaining samples that end up in subgroup III 
have a common parent with subgroup II.” 
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Supplementary Figure 15: Clustree visualisation of the 5 subgroups (colored) discovered by our spectral 
clustering methodology. Edges represent the transfer of patients between clusterings of different k. Their 
opaqueness indicates the amount of patients that transferred. 

We have also edited the following in section Unsupervised cluster analysis of whole-blood 
transcriptomes reveals five distinct subgroups of H/IPAH  subheading of Results: “A clustering 
algorithm for selection and majority voting of multiple internal validation indexes (Supplementary Table 1) 
allowed us to identify as statistically optimal five distinct and stable subgroups of patients’ profiles (Figure 
2A) while retaining the maximum heterogeneity information found in our data set.” 
 
 
4. Use of the REVEAL 2.0 risk score is a nice way to describe the cohort. Does adding transcript profiles 
to this improve the predictive value (as the team has done in other publications)? 
 
As highlighted in response to previous comments. Producing a better risk predictor was not an aim for this 
work. We have not therefore attempted to combine the transcriptomic or clinical features to the REVEAL 
risk score. We feel that this detracts from the main focus of this manuscript, which is to uncover novel RNA-
based subgroups using unsupervised learning. The fact that our transcriptomic subgroups provide prognostic 
information provide further validity that the underlying biological signal is important in the disease process. 
We we also saw that the subgroups were associated with different clinical risk scores ie. REVEAL 2.0. We 
also present some evidence that patients transition between these subgroups (Supplementary Figure 4) over 
time and with treatment but this requires further investigation with a longitudinal study. Because we used 
clinical outcome and REVEAL scores to validate our novel transcriptomic subgroups, we did not want to 
make a circular argument by combining the subgroups and REVEAL scores to predict outcome. 
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5. The inclusion of hereditary and idiopathic PAH in the cohort is interesting, but begs the question about 
whether they should be analyzed separately. If you look at the idiopathic group alone, do you get the same 
results? 
 
The reviewer raises an interesting point. Our approach to the study was that irrespective of genetic 
mutations, IPAH and HPAH share a common downstream biological processes but the route to these 
processes may be different within the subsets. Initially we just looked to see how patients with HPAH, or 
BMPR2 mutation, SOX-17 variant carriers were distributed across the subgroups. However to specifically 
address this comment we have performed this separate analysis as requested and include the following in the 
revised manuscript, in section Unsupervised cluster analysis of whole-blood transcriptomes reveals five 
distinct subgroups of H/IPAH  of Results: An additional clustering pipeline exclusively utilising 313 
samples frοm patients with IPAH from our dataset (Supplementary section Additional clustering pipeline 
of IPAH patients) also showed 5 subgroups, representing three significant corresponding survival profiles 
(Supplementary section Additional clustering pipeline of IPAH patients shows three survival groups), 
indicating that the inclusion of HPAH patients did not drive the partitioning procedure. 
 
Furthermore, we included the following sections in the supplementary:  
Additional clustering pipeline of IPAH patients: “To estimate the impact the 33 HPAH patients had on 
our main clustering pipeline, we examined their distribution across subgroups and ran an additional 
clustering pipeline including exclusively the 313 IPAH samples.  As in the main pipeline, we utilised 
spectral clustering with the rbfdot kernel, the 300 most variable genes and identical preprocessing (section 
Sample and gene selection preprocessing).” 
 
Additional clustering pipeline of IPAH patients shows three survival groups: “The 33 HPAH patients in 
our PAH cohort showed an equal distribution (~10%) among the subgroups of our initial clustering as 
demonstrated in Supplementary Table 9, indicating that they did not drive the clustering or greatly affected 
any subgroup characterisation. Furthermore, clustering the 313 IPAH samples resulted in 5 clusters whose 
survival curves are shown in Supplementary Figure 19. Similarly to the 3 major subgroups of the main 
clustering pipeline we can observe a group of patients with poorer survival over 5 years (clusters B and E, 
n=149), a group with higher survival (A and C, n=109) and a group with intermediate survival (D, n=55).” 
 

Supplementary Table 9 | HPAH samples distribution across the 5 subgroups and their percentages 
against each subgroup total sample size 

I II III IV V 

12(9.3%) 6(5.35%) 3(15.7%) 1(10%) 11(12.3%) 
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Supplementary Figure 19: Survival of patients in clusters(A, B, C, D, E) created by clustering only 313 
IPAH samples 

 
 
6. The presence of the immunoglobulin chains is interesting and in line with prior reports about immune 
cell activation. Given that there are differences between immune and inflammatory cell numbers between 
the groups, if Ig transcripts are corrected for cell numbers, is there really still a difference between the 
groups to show actual differences? 
 
We agree that the differential expression of the Ig genes across our novel subgroups is interesting, especially 
given the prior knowledge about immune response in PAH. Our results suggest that lymphocytes associated 
with these Ig genes were also in relative quantities across the subgroups. We have since validated the 
expression of the highly variable Ig genes (IGHV3, IGKV2, IGLV6) in two independent cohorts, including 
where RNA was extracted from peripheral blood mononuclear cells (PBMCs) instead of whole blood (new 
Figure 6 and Supplementary Table 7). This suggests that Ig transcripts may be more closely linked to 
immune cell numbers. We would also point to the strong role that the BMP antagonist Noggin plays in 
driving Subgroup II, perhaps suggesting that Noggin plays an important protective role in PAH.  
The aim of our study is to report the transcript changes associated with phenotypes, so whether we correct 
for cell numbers, or not, it does not alter that they are differentially expressed and reflect important 
differences in cell compositions. Correcting for cell numbers would not be possible at the moment as we do 
not have accurate estimates of Ig expression from each specific cell type in whole blood. Perhaps in the 
future when further data from single cell studies becomes available.   
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Figure 6 | Genes of interest with data based on our qPCR results of 91 patients (I = 53, II = 38) of the validation 

cohort. (A) Mean expression fold change (log2 scaled) of the signature genes between validation subgroup I (immune 

inactive) and II (immune active). The fold ratio was generated based on negative delta Ct values (vs GAPDH). Genes 

over-expressed in subgroup I are denoted by light blue bars while genes primarily expressed in subgroup II are 

represented by dark blue bars. (B) The Relative Quantity (RQ) of each gene of interest relative to GAPDH with 

medians and significant differences shown. Notation of (**) denotes a p-value of less than 0.01, (***) denotes a p-

value of less than 0.001. 

 
 
7. On page 9, the statement that the average time between sampling and diagnosis was 5.3 years with a 
range that extends from 0.002-21.57 years is confusing. The way that this is written suggests that the 
samples were obtained first and the diagnosis of PAH was made later. Yet the sentence before it states that 
patients were diagnosed at a median of 45 years and sampled at a median of 52 years. Are you trying to 
indicate disease duration? If so, state accordingly. Also, the duration of time between diagnosis and 
sampling is vast, so please provide some more granular information on time from diagnosis to sampling. 
PAH patients with at least 22 years survival are quite different than patients with incident disease. 
 
We apologise for the way this was written. This has now been changed to 
Patients in this cohort were diagnosed at a median age of 45 years (IQR = 35-59 years) and sampled at a 
median age of 52 years (42-64) with an average of 5.3 years time between diagnosis and sampling. 
 
The broad range in time from diagnosis to sampling reflects the nature of this cohort with a recruitment 
based on both prevalent and incident cases of H/IPAH. Below is the distribution of the time between 
diagnosis and sampling across the subgroups (https://sheffield-university.shinyapps.io/ipah-rnaseq-app/). 
 
 



 

19 

 
 
 
We completely agree that incident and prevalent patients are different, particularly those who have survived 
over 10 years. The aim of this work was to identify biologically similar subgroups of patients at the time of 
sampling regardless of how long they had been diagnosed to allow better stratification. We did also 
investigate in a small number of patients whether they would move between clusters overtime, partly to 
address the influence of disease progression and treatment on subgroup membership (Supplementary Figure 
4). 
 
 
8. Please also include age at diagnosis in Table 1 for each of the subgroups. Also, major characteristics 
should also include right heart cath data, RV function, and testing to rule out PE. PFT data alone are 
isolated descriptors. It also appears that no statistical testing took place. 
 
Table 1 and Supplementary Table 2 have been updated to include age at diagnosis and clinical characteristics 
across RNA subgroups. 
 

Table 1. Major clinical characteristics of the RNA subgroups in the discovery cohort (n = 359) at 

time of sampling.  

 

Low Risk 
 Subgroup II  

(High 
immunoglobulin) 

Intermediate Risk 
Subgroup V  

(Intermediate 
immunoglobulin) 

High Risk 
Subgroup I  

(Low 
immunoglobulin) 

All Patients 

 n 112 89 129 359 

 Age, years 46 [37-56] 52 [41-62] 57 [45-70] 52 [42-64] 

 Age at diagnosis, years 41 [31-51] 46 [37-55] 52 [42-67] 47 [35-59] 

 Gender: Female 82 (73%) 69 (78%) 80 (62%) 253 (70%) 

 Vasoresponse 10 (21.7%) 6 (13.6%) 6 (16.2%) 23 (16.4%) 

 Treatments 

   Phosphodiesterase 5 12 (15.4%) 16 (21.9%) 22 (21.8%) 53 (19.4%) 
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Inhibitors (PDE5i) 

   Endothelin Receptor 
Antagonist (ERA) 

6 (7.69%) 13 (17.8%) 8 (7.92%) 33 (12.1%) 

   PDE5i & ERA Combination 42 (53.8%) 30 (41.1%) 53 (52.5%) 134 (49.1%) 

   Prostacyclin therapy 3 (3.85%) 1 (1.37%) 3 (2.97%) 7 (2.56%) 

   Calcium Channel Blockers 15 (19.2%) 13 (17.8%) 14 (13.9%) 45 (16.5%) 

 WHO Functional class 

 I 18 (16.5%) 10 (11.2%) 6 (4.7%) 35 (9.8%) 

 II 45 (41.3%) 36 (40.4%) 44 (34.1%) 143 (40.2%) 

 III 43 (39.4%) 40 (44.9%)  65 (50.4%) 158 (44.4%) 

 IV 3 (2.8%) 3 (3.4%) 14 (10.9%) 20 (5.6%) 

 6 minute walking distance, 
m 

397 [338-500] 420 [367-464] 327 [183-390] 387 [300-449] 

 NT-proBNP, ng/l 131.7 [54.5-362.0] 185.5 [76.3-463.5] 345.0 [91.0-1556.1] 
222.5 [78.9-

1162.8] 

 Forced Expiratory Volume 
[% predicted] 

92 [82-101] 84 [72-98] 78 [66-98] 85 [68-100] 

 Forced Vital Capacity [% 
predicted] 

101 (20) 99 (24) 93 (29) 97 (24) 

 Transfer factor of lung for 
carbon monoxide [% 
predicted] 

93 [87-106] 97 [92-101] 88 [67-96] 94 [87-103] 

Diagnostic Right Heart Catheter Study 

 Mean pulmonary artery 
pressure, mmHg 

47 [39-60] 52 [37-65] 56 [41-65] 51 [39-63] 

 Mean right atrial pressure, 
mmHg 

8 [4-10] 8 [4-11] 11 [6-14] 9 [4-12] 

 Mean pulmonary Arterial 
wedge pressure, mmHg 

10 [7-12] 10 [8-13] 12 [10-14] 11 [8-13] 

 Cardiac Index, L/min/m2 2.3 [1.6-2.8] 2.2 [1.7-2.4] 1.9 [1.5-2.5] 2.2 [1.6-2.5] 

 Pulmonary vascular 
resistance, Wood Units 

8.1 [5.7-14.1] 15.0 [5.9-16.1] 8.4 [5.9-13.2] 8.9 [5.7-15.0] 

Intervals describe first and third quartiles. Parenthesis describe standard deviation (SD). 
 
 

 
9. More information is needed to understand how the variables were chosen for supervised machine 
learning. Was this by the investigators? Based on prior publications? What was significant in the dataset? 
 
We apologise that this was not clearer. We have altered the section “Identifying clinical signatures of 
subgroups” in the Methods as follows: 
  
The dataset was initially cleaned and filtered on 119 features that were identified by a domain expert from 
the original 887 features that described the dataset. Subsequently, any feature that had more than 5% missing 
data was dropped, and categorical features numerically encoded.  
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All ML tasks were carried out using Scikit-learn ML framework version 0.23.2 in a Python 3 environment. 
As machine learning classifiers, we used Logistic Regression (LR), SVM, Random Forest  (RF) and kNN. 
RF is a powerful ensemble learning technique especially for high dimensional classification tasks. LR was 
implemented using sklearn.linear_model.LogisticRegression using l2 penalty and default values used for all 
other parameters.  SVM was implemented using sklearn.svm.LinearSVC with regularisation parameter C set 
to 1, and default values used for all other parameters. RF was implemented using 
sklearn.ensemble.RandomForestClassifier with default values used for all other parameters. kNN was 
implemented using sklearn.neighbors.KNeighborsClassifier with a number of neighbours (n_neighbors) set 
to 5 and default values used for all other parameters. 

For feature selection tasks, we used ensemble feature selection based on recursive feature elimination (RFE) 
technique. RFE is a backward feature elimination technique that iteratively prunes the least informative 
feature(s) from a training dataset. A RFE based on a linear SVM starts by using all features to train an SVM 
model and ranks all features according to importance. The least ranked feature is removed from the training 
dataset and the SVM model refitted. This is iteratively done until only the required number of features 
remain. All features are also ranked according to importance. 

Ensemble feature selection aggregates several feature rankings into a single consensus feature ranking to 
ensure robustness of the feature selection process and of selected features. Feature importance measures used 
for feature ranking are based on the hyperplane weight vector of a linear support vector machine (SVM). The 
weight vector quantifies the contribution of each feature to the construction of the hyperplane, and is used for 
ranking features according to importance. 

 

10. CRP shows up in all your groups and BMI in several. You don’t indicate if the levels are the same for 
the groups, high vs. low, etc. The levels aren’t reported. It’s well recognized that there are age, 
race/ethnicity, and sex differences in values of the factors. How did you adjust for this? 
 
For the levels of various clinical variables (including CRP and BMI), we have reported their distribution of 
values across subgroups in Figure 5 (for the discovery cohort) and Supplementary Figure 10. The 
discovery cohort was clustered solely based on RNA profiles thus our algorithm remaining agnostic to any of 
the clinical variables. The subgroup classifier that was tested on the validation cohort was composed of 
clinical variables with the highest contribution towards separating the RNA subgroups. This included both 
CRP and BMI in the case of our univariate feature selection model and only BMI in the case of our 
multivariate feature selection model (Figure 5). We checked that the subgroups were independent of age and 
ethnicity differences (new Supplementary Figure 14) and our cohort was primarily caucasian. 
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Supplementary Figure 14: Hazard Ratio of discovery cohort clustering adjusted for gender and age 
category of patients. Notation of (**) denotes a p-value of less than 0.01, (***) denotes a p-value of less 
than 0.001, while no stars denote non-significant p-values. Gender did not reveal any relationship with 
survival while an age over 52 was significantly associated with poor survival (HR=2.29). The most 
significant association with poor survival was found for patients  

 
 
11. How many patients were on disease-modifying drugs, steroids, or anti-inflammatory agents at the time 
of sampling? Since this is a PAH cohort, it is expected that the CTD patients at a minimum would fall into 
this category. 
 
We have highlighted “Treatments” in Table 1 where PAH-specific therapies and calcium channel blockers 
are reported for the main 3 clusters. As described this is a cohort of heritable and idiopathic PAH, no CTD 
patients were included. 
 
 
12. The clinical features list should be put in table format to make it easier to understand the differences 
between the groups. 
 
We apologise for this omission. The data were in the Supplementary material but not referenced within the 
main text of the manuscript. To address this we have added the following text in the Results section titled 
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“Clinical signatures describe RNA-based subgroups and are associated with subgroup-specific genes:  
….and in table format in (Supplementary Figure 2).” 
 
 
13. The validation cohort study is perplexing since you use RNASeq to identify clinical variables to predict 
outcomes and then validate the clinical variables. One could make the argument that you could just use 
the REVEAL risk score to predict outcomes. Is the discriminatory power of the variables identified by your 
methodology better than the REVEAL risk score in the validation cohort? If the idea is also to identify 
targets for therapies (last sentence of your abstract), then how does validating clinical characteristics in a 
separate cohort help this cause? It seems that you would have to show that the validation cohort has 
relatively the same RNASeq profile. 
 
We thank the reviewer for this comment but again we would stress that we were not aiming to develop 
another tool for PAH risk prediction. We identified the clinical variables that defined the transcriptomic 
subgroups so that we could validate whether these could be used to replicate the subgroups in other clinical 
cohorts, which we did. This was designed to show that the subgroups we describe are robust and could be 
associated with biological mechanisms, or clinical outcomes.  
 
To address the concern raised here and emphasised by the Editor we have undertaken two additional steps to 
validate our findings. Firstly we obtained stored TEMPUS RNA samples from the national biorepository in 
Cambridge for the patients included in the the validation cohort who had not undergone RNA sequencing. 
We extracted these samples and ran targeted TaqMAN quantitative PCR analysis of key genes within the 
subgroups to demonstrate that the gene expression within these clinical variable defined subgroups was 
equivalent to the discovery subgroups defined by gene expression. We also examined the correlation 
between these genes and the clinical variables to confirm their association (new section Clinical variable 
and gene correlations). Secondly, we have obtained data from an external cohort with RNA sequencing 
through collaboration with Dr Ankit Desai at Indiana University to provide external validation for the 
relationship between these clinical variables and subgroup associated genes. 
 
We have added this data to the main manuscript including two new sections “Internal validation of gene 
expression in clinical-feature defined subgroups ” and “Validation of gene and clinical feature 
correlations” in the Results,  a new Figure 6, and Supplementary Table 7.   
 
As mentioned above we also added the new section Clinical variable and gene correlations in Methods. 
We calculated correlations between the clinical and gene signatures we generated in previous steps of this 
study. For discovery and validation cohorts we used the rcorr function of  R package Hmisc (version 4.5-0). 
For the external validation we used the values found in 64. 

 

Internal validation of gene expression in clinical-feature defined subgroups  
In order to validate the gene expression differences between subgroups in our validation cohort, TaqMan 
PCR was performed for 17 of the 27 genes previously associated with the subgroups and / or clinical variable 
correlations, with GAPDH used as the endogenous control gene.  Nine of the 11 genes we measured 
demonstrated a fold-change between subgroup I and II in the same direction as the discovery cohort (Figure 
6A). Differences in expression of key genes (IGHM, IGKV2.24, IGLV6.57 and NOG) were significant 
(p<0.01) between subgroups  I and II (Figure 6B).  

 
Validation of gene and clinical feature correlations 
The correlations between gene and clinical features observed in the discovery cohort were also examined in 
our validation cohort of 91 subjects, and also in an external cohort of 32 subjects with RNA collected from 
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PBMCs 27. We found that 64 of the 90 (71%) correlations measured in these two independent cohorts were 
consistent with our discovery cohort (Supplementary Table 7).  

 
 

 

Figure 6 | Genes of interest with data based on our qPCR results of 91 patients (I = 53, II = 38) of the validation 

cohort. (A) Mean expression fold change (log2 scaled) of the signature genes between validation subgroup I (immune 

inactive) and II (immune active). The fold ratio was generated based on negative delta Ct values (vs GAPDH). Genes 

over-expressed in subgroup I are denoted by light blue bars while genes primarily expressed in subgroup II are 

represented by dark blue bars. (B) The Relative Quantity (RQ) of each gene of interest relative to GAPDH with 

medians and significant differences shown. Notation of (**) denotes a p-value of less than 0.01, (***) denotes a p-

value of less than 0.001. 

 

Supplementary Table 7 |  Correlations between discovery, validation and external validation cohorts. In 
the discovery set Spearman correlations were calculated between RNA-req TPM values, the validation set 
between negative delta Cts values with GAPDH used as the endogenous control gene. Green cells denote 
agreement in gene-clinical variable correlation directionality between the cell’s data set and the discovery 
data set. Red cells denote disagreement/opposite correlation between the two data sets. Notation of (**) 
denotes a p-value of less than 0.01, (***) denotes a p-value of less than 0.001, while no stars denote non-
significant p-values. 

Genes 

Discovery [n= 359] Validation [n =91] External Validation [n =32] 

Age BMI SixMWD Age BMI SixMWD Age BMI SixMWD 

ALAS2 0.2*** 0.38*** -0.32*** -0.006 0.06 -0.1 -0.08 0.31 -0.35 

C4BPA 0.01 0.02 -0.07 0.14 -0.11 -0.13 0.02 -0.19 0.25 
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CRISP3 0.16* 0.14 -0.16* 0.11 0.016 -0.22 -0.07 0.14 0.05 

CTSG 0.19*** 0.14* -0.12* 0.07 0.06 -0.17 0.06 0.19 -0.12 

IFI27 0.19** 0.16* -0.22*** 0.24* 0.004 -0.28* 0.1 0.1 -0.32 

IGHM -0.29*** -0.18*** 0.2*** -0.42*** -0.21* 0.18 -0.15 0.33 -0.02 

IGHV3.48 -0.27*** -0.08 0.14* -0.31 0.34 -0.5* -0.11 0.22 0.12 

IGKV2.24 -0.25*** -0.26*** 0.24*** -0.45*** -0.17 0.11 -0.07 0.14 0.15 

IGLV6.57 -0.21*** -0.16* 0.15* -0.5*** -0.08 0.16 -0.31 0.32 0.04 

LTF 0.18** 0.19*** -0.13* 0.08 0.12 -0.23* 0.01 0.08 0.01 

NEBL 0.01 0.05 0.01 -0.09 -0.01 -0.23 0.03 0.12 -0.16 

NOG -0.44*** -0.19*** 0.2*** -0.58*** -0.2* 0.18 -0.13 0.02 0.14 

NPRL3 0.05 0.18* -0.13* -0.002 -0.09 -0.1 0.03 -0.06 -0.41 

PI3 0.15** 0.25*** -0.17** 0.1 0.04 -0.21 -0.13 -0.02 0.31 

SMIM11A -0.03 -0.2*** 0.12* -0.24* -0.13 0.06 0.1 -0.04 0.18 

 
 
Additionally, we added the section “qPCR on validation cohort” in Methods:  
 
Frozen Tempus tubes collected from patients in the validation cohort, collected under the UK National 
Cohort study were obtained,  RNA was extracted using Maxwell® 16 LEV simplyRNA Blood Kit (Cat.#  
AS1310)  as described in manufacturers instructions on the Maxwell® 16 Instrument (Cat.# AS2000) .  
Extracted RNA was transcribed using the High-Capacity-RNA-to-cDNA kit (Thermo Fisher Cat.# 437406) 
following manufacturers instructions.  Resultant cDNA was analysed using custom taqman array cards 
(Thermo Fisher Cat.#4342249 ) with Fast Advanced Mastermix  (Thermo Fisher Cat.# 4444964), Samples 
were run 8 to a card across 25 cards with 24 primer probes per sample (18S-Hs99999901_s1, ACTB-
Hs00357333_g1, ALAS2-Hs01085701_m1, BMPR2-Hs00176148_m1, C4BPA-Hs00426339_m1, CRISP3-
Hs00195988_m1, CTSG-Hs00175195_m1, GAPDH-Hs02786624_g1, HPRT1-Hs02800695_m1, IFI27-
Hs01086373_g1, IGHM-Hs00941538_g1, IGHV3-75-Hs03832008_sH, IGKV2-24-Hs06671746_g1, 
IGLV6-57-Hs01696637_s1, LINC00221-Hs01382601_m1, LTF-Hs00914334_m1, MT-RNR1-
Hs02596859_g1, NEBL-Hs01067284_m1, NOG-Hs00271352_s1, NOS2-Hs01075529_m1, NPRL3-
Hs00429221_m1, PI3-Hs00160066_m1, SMIM11A;SMIM11B-Hs00938773_m1, XIST-Hs01079824_m1. 
These assays were performed in duplicate using the Applied Biosystems 7900HT Fast real-time PCR system 
with the TaqMan Low Density Array card block following calibration using the TaqMan Low Density Array 
Calibration Kit (Thermo Fisher Cat.# 10341465).  Ct values were determined with Automatic thresholding in 
the SDS2.4 software.  GAPDH- Hs02786624_g1 was used as a control. Relative quantity was calculated 
using the ΔΔCt method.” 
 
 
 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The revisions made to the manuscript and responses from the reviewers are acceptable from my 

end. 

 

It is still somewhat disappointing that the data is not being shared openly. 

 

The number of patient RNAseq profiles openly shared in GEO reach easily in the tens if not hundreds 

of thousands. 

 

https://www.ncbi.nlm.nih.gov/gds?term=("high throughput sequencing"%5BPlatform Technology 

Type%5D) AND homo sapiens%5BOrganism%5D 

 

If there are any concerns that sequence data could be identifiable, raw counts and normalized 

counts could also be shared. This is not sensitive information. 
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Reviewer #1: 
 
The revisions made to the manuscript and responses from the reviewers are acceptable from my 
end. 
 
1. It is still somewhat disappointing that the data is not being shared openly. The number of 
patient RNAseq profiles openly shared in GEO reach easily in the tens if not hundreds of 
thousands. https://www.ncbi.nlm.nih.gov/gds?term=("high throughput 
sequencing"%5BPlatform Technology Type%5D) AND homo sapiens%5BOrganism%5D. If 
there are any concerns that sequence data could be identifiable, raw counts and normalized 
counts could also be shared. This is not sensitive information. 
 
Answer 
We have updated the data availability statement in order to include 1) a statement of the reasons 
for controlled access (eg., privacy, ethical/legal issues) 2) a detailed description of the conditions of 
access including contact details for access requests 3) timeframe for response to requests 4) 
restrictions imposed on data use via data use agreements.  Since this is a genotype-phenotype 
study, uploading RNA count data to GEO without the clinical information (which is sensitive) would 
not be useful to any researchers, and this is why we deposited it with EGA instead. Please note 
that we also provide a publicly accessible (after registration) shiny app for readers to view gene 
level expression data. 
 
2. The authors could also still chose to make explicit in the manuscript the fact that at least 
one part of the data was reused from an earlier study and explain what the differences were 
in terms of the aims & approaches. 
 
Answer 
We have further edited the introduction to make this point clear. 
 
Reviewer #2: 
 
First, I thank the authors for extensive revisions, and, to all appearances, having taken the 
comments of all reviewers seriously. The authors have substantially improved the manuscript by 
including the more comprehensive mortality analysis, describing methods more thoroughly, 
however, there are still several areas needing further attention. 
 
1. Method section requires some work on clarity to be suited to the general audience of 
Nature Communications, for example, I believe there is no need to use the notion of 
parameters used in code in the main text (ex. n_neighbors and etc). And I suggest moving 
some of the details to the Supplementary section. 
 
Answer 
We tried to provide an in depth description of methods to enable reproducibility, but have now 
moved some finer details about model training and optimisation to the Supplementary. 
 
2. Thanks for clarifying the number of replicas. To fully utilize the data produced, I believe It 
would be really interesting to see would the endophenotype classification be preserved 
across replicas. By using the trained model, authors can simply predict those classes on 
replicas that were excluded from the analysis. 
 



Answer 
The few replicas were performed on RNA extracted from the same blood sample to conduct quality 
control of our RNA sequencing. It would be interesting to take additional blood samples from the 
same patient especially since we observed some patients with multiple samples changing 
endophenotypes over time. We are planning a larger study to look at longitudinal changes.   
 
3. The figure legends seem to be omitted from the main text. 
 
Answer 
We apologise for the formatting issue and have updated the figure legends. 
 
4. The code repository does seem to contain only R code, no Python code for ML models 
was provided. As most of the models are initialization dependant, it is important to provide 
code to ensure reproducibility of the results. 
 
Answer 
Full R and python code is now provided in a public code repository at 
https://zenodo.org/badge/latestdoi/299615578. 
 
Reviewer #3: 
 
The authors have been quite responsive in their revision and this is much appreciated by this 
reviewer. 
 
Two quick points requiring clarification: 
 
1. A description of the outside validation cohort in the Methods section isn't seen. 
 
Answer 
We have now added this to the Methods. 
 
2. Since the validation cohort didn't have RNASeq data and gene expression was confirmed 
by PCR using a subset of genes (9 of 17), stating that this validated the discovery cohort is 
an overstep and should be toned down. 
 
Answer 
We have now toned down the validation section that used PCR. 


	': 	Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood


