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The Index of Elliptic Units. 

The e lliptic units are a natura lly arising s ubgroup of units 

_fly given abe lia n extension of an imaginary quadra tic fi e ld Ki 

the~r definition is motivat ed by the desir e to find units which 
, ' -

play the same role as cyclotomic -units in abe lic;l,h extensions o f 

the rationals. The definition outline d in the thesis u ses division 
. -t 

values of elliptic function s , and provides a sin<pler starting point 

o f the theory tha n Robert' s or ig ina l - exposition ~. : The p r operties of 

thes e unit s are established using the theory of good reductio n of 

ellipt ic curves rather than the classical bas i s 6f Robert'sproofs. 

The index of the elliptic units is calculated for various 

abelian extensions of K, particularly for r ay class field s modulo 

an idea l h of K, and fields of divis ion points ~n an elliptic curve 

defined over K. Here i t _ is a ssumed tha-t K has class numb er one 

and that h is prime to 6- the relaxation of these assmnpt ions 

introduces ine ~3 sen -tial t echnica l complicat ions into the result 

There i s a furt:her restr ict.ion on h I which seems essential fo r the 

method of proof: h is not divisible by a ny ra tiona l prime which 

splits in K. Thus these results' inc lude the earlier res ults of 

Rob er t for p.c:lme power conducto:rs h. These ray class fi e ld resu l ·ts 

are subsequently us ed to calculate the p-adic value o f the ind ex 

for a fi e ld -K ( E
g

) of g-division points on an e llip -tic curve E 

(over K ) Ttlh i c h has good r eduction at. al l primes. dividing g. Here 

p i s any rationa l prime not in ·t he finite set of pri..rne s dividing 6 

or the d egiee of ray class fi e ld modulo th e c onductor of E, and 

E itse lf has complex multiplication by the ring of integers 

of K. A similar p-adic re s ult for the elliptic units of an 

arbitrary finite abe lia n extension of K is prove d. 

~['he specia l case wi·th · 9 a prime pO\>ler i s important for current: 

~vork on the ar ithmetic of elliptic curves. The p -adi_c result above 

is u sed to prove a new res ult rela -ting the ran.1<: o f the g r oup of 

points on E over the fi e l.d K (Ep ) (p ' a split prime of K) to ·the 

invariants o f the Iwasawa module attached to the p-adic L-f unctions . 
... -~-:' 
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Introduction. 

The elliptic units are a natural subgroup of units of any 

given abelian extension H of an imaginary field K. Their 

definition is motivated by the desire to find units which play 

the same role as cyclotomic units in abelian extensions of the 

rational field. In particular, the index of such a subgroup 

(in the global units of H) should be essentially the class 

number of H, and should provide analog~es of Kummer's criteria . 

The first successful such definition was provided by 

Robert [18J, who crucially improved ear lier work of Ramachandra 

and Siegeli the units arise from specia l values of certain 

modular functions. The definition we outline provides a simpler 

starting point of the theory - it uses division values of 

elliptic functions, and is closely related to Robert's original 

definition ~ The properties of these units are established rather 

differently, for we use the theory of good reduction of elliptic 

curves in an intrinsic way, whereas Robert relies upon earlier 

classical results about the discriminant function and theta 

functions. I 

The index of the elliptic units is calculated for various 

abelian extensions of K, particularly for ray class fields 

(chapter 2) and fields of division points on an elliptic curve 

defined over K (chapter 3). The index for other abelian extensions 

is also described in chapter 3. For technical simplicity, we 

assume t hat K has class number one, but it is apparent that our 

methods extend to fields K of arbitrary class number . Robert 

computed the index only for extensions H/K of prime power 

conductor, which is included in our result . Our method was 
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inspired by the work of Sinnott [25J on the index of circular 

units in cyclotomic extensions of arbitrary conductor. 

The elliptic units in fields of division pOints on an elliptic 

curve defined over K are very important in current research on 

elliptic curves, as evidenced by the work of Coates and Wiles [7J, 

[8J. This underlines the importance of the result of chapter three 

and in chapter four we use it to pr ove a new result about the 

arithmetic of elliptic curves . 

A more precise description of the contents of each chapter is 

given in the introduction to each . 
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Notation 

Let ~, ~, ~, ~ denote respectively the rational integers, 

the real field, and the complex field. The letter p will be 

reserved for rational primes, ~ aQd Q will denote the p~adic 
p p 

integers and the p-adic field. 

Throughout, K will denote an imaginary quadratic ' field, 

with ring of integers 0, the letters a,b, ••• ,fi,g,h •••• will denote 

ideals of 0i P and q will be reserved for prime ideals of K. In 

chapter one" the notation 0c will be used for an order in K with 

conductor Ci the letters a,b, ••• ,fi,g, ••. will also be used to 

denote ideals of 0c. 

Throughout p(z) will denote the Weierstrass p-functioni since 

the variable z will usually be included, no confusion should arise 

with the prime ideal p. 

The group of roots of unity in a field F will be denoted ~F' 

and its order, if finite, by e F . If~ is a prime of F, let Ft be 

the completion of F at~ ; in this case~ will also be used for the 

maximal ideal lying in the ring of integers of F
f

. In particular, 

Kp denotes the completion of K at Pi its ring of integers will be 

denoted 0p 

Let H be a (finite or infinite) Galois extension of Fi its 

Galois group will be denoted G(H/F). If it is finite, the degree 

of the extension will be denoted by [H:FJ and the norm map by 

NB/ K. For any finite abelian extension B/K of conductor fi, and 

any ideal a of K prime to fi, let [a,H/KJ be the element of G(H/K) 

corresponding to a under the Artin reciprocity map: when the 

extension H/K is unambiguous, this will be more briefly denoted 

and if a is principal with generator a, also by a. 
a 

If H is 
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Notation 

Let Zl, (;1, :ffi, ([ denote respectively the rational integers, 

the real field, and the complex field. The letter p will be 

reserved for rational primes, Zlp a~d Qp will denote the p~adic 

integers and the p-adic field. 

Throughout, K will denote an imaginary quadratic field, 

with ring of integers 0, the letters a,b, .•• ,6,g,h .... will denote 

ideals of 0; p and q will be reserved for prime ideals of K. In 

chapter one" the notation 0c will be used for an order in K with 

conductor C; the letters a,b, ••• ,6,g, •.• will also be used to 

denote ideals of 0c. 

Throughout p(z) will denote the Weierstrass p-function; since 

the variable z will usually be included, no confusion should arise 

with the prime ideal p. 

The group of roots of unity in a field F will be denoted ~F' 

and its order, if finite, by e F · Ifr is a prime of F, let Ft be 

the completion of F atf ; in this case f will also be used for the 

maximal ideal lying in the ring of integers of F
1

. In particular, 

Kp denotes the completion of K at p; its ring of integers will be 

denoted ° p 

Let H be a (finite or infinite) Galois extension of Fi its 

Galois group will be denoted G(H/F). If it is finite, the degree 

of the extension will be denoted by [H:F] and the norm map by 

NH/ K. For any finite abelian extension H/K of conductor 6, and 

any ideal a of K prime to 6, let [a,H/K] be the element of G(H/K) 

corresponding to a under the Artin reciprocity map: when the 

extension H/K is unambiguous, this will be more briefly denoted 

°a' and if a is principal with generator a, also by 0. If H is 
a 
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the maximal abelian extension of K, and x is an idele of K, let 

[x,KJ denote the element of G(H/K) associated to x by global class 

field theory. 

The letter E will always denote an elliptic curve; if it is 

defined over a field F, let E(F) be the F-rational points on E . 

The units of a commutative ring R with identity will be 

denoted R
X

, and in particular, F
X 

for the nonzero elements of the 

x x 
field F, 0c for the units of the order 0c' and (oc/a) for the 

units of the quotient ring of 0c bI an 0c - ideal a . For any a - ideal 

x 
a, let ~(a) pe the order of (a/a) . The order of any finite group 

G will be denoted iGi. 

I 
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Chapter 1 . Elliptic units. 

This chapter presents the definition of the elliptic units 

for arbitrary abelian extensions of an imaginary quadratic ground 

field K. The first two sections review the concept of an order 0 

of a lattice Land explan how to construct the abelian extensions 

of the imaginary quadratic field K in which 0 lies i.e. global 

class field theory for K is made explicit. In §3, the function, 8, 

from which the elliptic units arise, is defined; its values at division 

points of L are shown to be in appropriate abelian extensions of K. 

The prime factorization of these values is obtained in §4. The 

method is quite different from Robert's [18J which relies upon 

earlier work of Ramachandra [17J and Siegel [24J using classical 

results about the discriminant function and theta functions 

associated to L. Here we use intrinsic properties of the elliptic 

curve E attached to L. We choose an elliptic curve isomorphic 

to E having certain good reduction properties; by considering an 

appropriate prime~ and the kernel of the reduction map mod;F 

(which is a formal group), we obtain the~-adic values of the 

8-function values. This allows us to define, i~ §5, the elliptic 

units for an arbitrary abelian extension of K with respect to the 

order o. 

Two groups of elliptic units are defined (the larger being 

called the full group of elliptic units); their relationship to 

RObert's elliptic units - which are defined only for the maximal 

order of K - is discussed. The larger group's definition is 

motivated by Sinnott's definition of the circular units of 

cyclotomic fields ([25J), his method of computing their index, 

when modified suitably, applies to this last group. 
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The values of the 8-function at division points play an 

analogous role to that of the numbers l-exp(2nin/m) (n = 1, ... ,m-l) 

th in the field of m roots of unity. Their prime factorization is 

similar (see lemma 1.12), and they provide generators for the 

ramified primes of the appropriate abelian extension (see lemmas 

1.12 and 1.15) . 

I 
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§ 1. Elliptic curves with complex multiplication. 

Let L be a lattice in the complex plane ~, that is, a subgr~up 

of ~ which is free of rank 2 over the rational integers ~ , and 

which generates ~ over the real numbers. Let p(z,L) be the 

associated Weierstrass p-function: it satisfies the differential 

equation 

\ w- 4 \ w-6 
where g2 = g2(L) = I.. and g3 = g3(L) = I.. ,the sums being 

w~o w~o 

taken over all nonzero points w of L. It is well known. that the 

discriminant of L, ~(L), which is equal to g5 27g~, is nonzero, 

so that the equation 

curve 
defines a nonsingular/E (over ()2(g2,g3 1l with points (x,y): E is 

an elliptic curve. 

The group E(~) of ~-rational points on E is isomorphic to the 

quotient group ~/L under the correspondence I 

z mod L t--> l; (z) = (p (z) ,p I (z) ) . 

Every endomorphism of E corresponds to a complex analytic 

homomorphism of ~/L into itself, and vice versa. Any such homo-

morphism is induced by the linear map of ~ 

z t--> az 

with a complex number a which maps L into itself: aL c L. The 

endomorphism corresponding to such an element a is the mapping 
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which sends s (z) to s (az): 

s (z) ~> s (az) . 

The set A = {a E ~ I aL c L} is called the order associated with L. 

Clearly A contains ~ ; we say that E has complex multiplication 

if A is strictly larger than ~. Throughout this thesis we will 

deal exclusively with elliptic curves E which have complex multi -

plication. 

Assuming this, let [w l ' w2 J be a basis for L: L = ~ wl ID ~ w2 . 

Then it is ~asy to show (see [2 3J section 4.4) that K = ~(wl/w2L 

is an imaginary quadratic field (independent of choice of basisl 

and that the order of L is an order in K, that is, a subring of K 

which contains ~ , and is a free ~ -module of rank 2. Further, 

for any such order A, there exists a unique positive rational 

integer c such that A = ~ + co, where '0 is the ring of integers 

of K. This integer is called the conductor of A, and henceforth 

A will be denoted by 0c. Note that 01 = 0 is the maximal order 

of K. 

I 
By a proper fractional ideal of 0 , we shall mean a free c 

~ -submodule a in K of rank 2, with order 0c (a is a lattice in ~1; 

in the case that a is contained in 0 , we shall refer to a more c 

simply as a proper 0 c-ideal. The properties of orders and proper 

fractional ideals are outlined in [23J section 4.4 and ~4 J chapter 

8: the following facts are pertinent to this chapter. 

First, the product of two proper fractional ideals a and b 

is defined to be the ~ -module generated by the elements xy with 

X E a and y E b. With this multiplication, the set of all proper 
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fractional ° -ideals forms a group: the inverse of a member a of c 

this group will be denoted a-I. 

Secondly, an ideal a of 0c prime to c is a proper Qc-ideal. 

(a is prime to c precisely if the ideal of 0c generated by a and c 

is equal to Qc). In this case, a is equal to the intersection with 

0c of an ideal in 01(= 0) which is prime to c. In particular, if 

p is a prime ideal of K, not dividing c, then p n D-c is a prime 

ideal of Qc. 

Lastly, there exists a nonzero complex number ~ such that 

~-lL = d ,is a proper ° c -ideal. 

° -ideal). c 

(For wi L is a proper fractional 

For any 0c-ideal 9 , let E 9 be the group of 

g- division points on E, that is, Eg = {~(u) I au E L for all 

a E 9 }. An element ~(u) of E 
9 

is primitive if u is a primitive 

9 -division point of L, in which case the set {a E KI au E L} is 

precisely equal to g. 

I 

§2. Class Field Theory. 

This section outlines the class field theory for the imaginary 

quadratic field K introduced in the last section: recall that the 

endomorphism ring of the elliptic curve E attached to the lattice L 

is an order 0c in K. Of course given such a field K and an order 
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A in K, such a curve exists - it suffices to take ,for a lattlce 

the order itself, and construct the curve E as in section 1. The 

precise field of definition for E, ~(g2(L) ,g3(L)), is of some 

interest - more will be said later about this. 

To begin, it is necessary to define the multiplication by an 

ideHe of K of two objects: a proper fractional ° c -ideal, and a 

division point of L. Let il2A and KA denote the .adele gro·up of ~ 

and K respectively, and ~~, K~ denote the corresponding (nultipli­

cative) idele groups. Then KA = K ~~ ~A as a tensor product. For 

each rational prime p, let Kp = K ®~ ~pi given an adele s of K, 

there corresponds the p-component sp lying in Kp' Identifying 

Kp with its image under the canonical injection of Kp into KA , 

KA itself is a subgroup of the (unrestricted) direct product 

K IT K , where K is the subgroup of KA corresponding to the 
oop p 00 

archimedean valuation of K. (In fact Koo is isomorphic to cL. 

Now suppose a is a proper fractional ideal of 0c' and g belongs 

x 
to KA. For each rational prime p, let a p = a ~Z'l Z'lp Then a 

p 

a :?lp -lattice in Kp ' that is, a free Z'lp -module in Kp of rank 2. 
I 

Also there is a Z'l -lattice b. in K such that b = b ®r:n Z'l = s Cl 
P LLJ P P P 

for every p. This Z'l -lattice b is a proper fractional a -ideal 
c 

and is defined to be the product of sand a. This multiplication 

induces an isomorphism between K~ and K~.a, as follows. K;la is 

canonically isomorphic to the direct sum of the groups K ~ over 
p p 

all p. Multiplication by s induces an isomorphism between K la 
p p p 

and Kp/B a , and combining these isomorphisms for each p gives the p p 

required isomorphism. The situation is summarized by the following 

cOmmutative diagram 
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s Kf 12 > K IS a p p f.l p p 

1 i 
K/a > 

K/s.a 

(the vertical maps are canonical injections). 

Consider now a division point u of a, that is, an element of 

K/a. The product of sand u (denoted s.u) is defined to be the 

division point v of s.a such that 

v - spu modulo s a p p 

for every rational prime p. 

When the order of L is the full ring of integers of K, the 

foregoing definitions simplify. K;la is canonically isomorphic to 

the direct sum of the modules Kp/tp for all primes p of K, where 

Kp denotes the completion of K at p, and a p the ideal generated 

by a in the ring of integers 0p of Kp. Corresponding to each prime 

p of K, there is a component s of the idele s, and there is a 
p 

fractional ideal b of K such that bp = s 0 for all p. Then 
p p I 

s.a = b.a and the isomorphism K~ + K;ls.a may be defined by 

the commutative diagram 

K la 
pi' p 

1 
Kja. 

> 

> 

K /s a p p p 

i 
K/s.a. 

The following lemma, which establishes explicitly the connection 

between abelian extensions of K and subgroups of the idele group 
x 

RA' is p r oved on p122 of [23 J. Recall that L = st d . ,and d is 

a proper 0 -ideal; let j(L) and T (z,L) respectively denote the 
c 

Usual modular invariant a nd the Weber function of L . 
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Lenuna 1.J. Let u be a division point o£ d and 

W := {s E K~I s d = d , s.u = u}. Then KXW is a subgroup of K~ 
x x 

containing K Koo ' and it corresponds via the Artin reciprocity 

map to the abelian extension K(j(L), 1 (nu,L» of K. 

(K: is the idEHe subgroup whose elements have (component 1 at all 

fini te places) . 

If u is a primitive g -division point o£ d ( .9 a proper 0 -c 

ideal), let W( g ) denote the idele subgroup 

{s E K~ Is. d = d, s. u = u}. 

Clearly W ( g depends merely on 9 and not on a particular choice 

of u. We explicitly calculate W( g ) in the next lemma. For each 

rational prime p, let U ( .9 ) denote the invertible elements of 
p 

0c,p = 0c ®?l?lp when p and .9 are coprime; when p and 9 are not 

coprime, let Up ( .9 ) denote the invertible elements of (1+ g ) ~?l?lp. 

Here 1+ 9 denotes the multiplicative subset of elements of 0 c 

congruent to 1 modulo 9 • 
x 

Up( g ) canonically injects into KA . 

Lemma 1.2 W(g ) = K: IT Up( g ), 
p 

I 

the product being taken over all rational primes p. 

Proof. Fix a rational prime p, and let 

S ={>.. E K I >.. d p p 
exists an idele s 

S = {>.. E K I>.. 0 p c,p 

= d pL 

such that 

= o L c,p 

Since d is a proper Dc-ideal, there 

d = s. O (see p122 of [23J1. Hence c 

Since 1 belongs to 0 (ZZ injects c,p p 
into 0 ) c,p , 

x 
it follows that S = a c,p Also let 

where u is a primitive 9 - division point of d, regarded now as 
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On the other hand, given A E T, there exists an element ~ of K 

such that 

(~ 0 11 - A E 9 
p 

for all rational primes q ~ p. (For K
X 

is dense in 

the f i nite par t of K~ v i a the di agona l emb edd i ng .) 

Hence (~ ® l)u E d for all rational primes q, including Pi q 

consequently ~ E 9 and A E 9 , so that T = 9 • 
p p 

. {A E Kp I Adp = d p and AU = u mod 9 p} 

is equal to U (g). 
p 

The lemma is now completely proved. 

Thus the set 

Henceforth the unique abelian e x tension associated with the 
I 

subgroup K: W ( g) of K~ will be denoted by R ( 9 ) • 

Remark. If the rational prime p does not divide c, 0 = 0 c,p l ,p · 

Hence if P is an arbitrary prime of K, prime to c and to go 

(the ideal generated by 9 in 0l)' then p is unramified in R( 9 ) : 

for in this case, supposing that p lies above the rational prime p, 

Up( g ) contains the p- adic units of the completion of K at p. 

In particular, R(o ) is unramified at all primes of K not dividing c 

c. 

Shimura's treatment of complex multiplication enables us to 

determine the action of the idele group on the j -invariant and on 
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division points of E. For any idele s of K, let s.L denote the 

lattice Q(s.d ) ; if p is a division point of L, so that Q- lp is 

a division point of d , let s.p denote the division point Q(s.Q-lp) 

of L. 

Lemma 1 . 3. Let [s ,KJ denote the element of the Galois group for 

the maximal abelian extension of K over K, which corresponds to 

the idele s under the Artin map. 

(1) j (L) E R( o ), and jeLl [s,KJ = j{S-lL). 
c 

(2) Let 9 be an ~-ideal, and p a 9 -division point of L. Then 

T(p,L) E R(g ). 
-1 

Moreover, s p is a g - division point of S- lL, 

and 

T(P,L)[s,KJ = -1 -1 
T (s p, s L). 

Proof. The first part is proved in [2 3 J p122. As for the second 

part, leITlIlla 1.1 shows that T (p ,L) E R ( g ). Let a be an automorphism 

of the complex numbers whose restriction to the max imal abelian 

extension of K equals [s,KJ. There is an isomorphism 

n ~/ d - > E (<Cl 
I 

given by n(z mod d ) = ~ (Qz,L). 

a a a 
Let E denote the elliptic curve with invariants g2' g3' By 

h 23 * -1 a t eorem 5.4 of [ J there is an isomorphism n :<c / s d-->E (<C) with 

n(z)o = n* (s-lz) for all z E KI d In particular, the period 

lattice of Ea is of the form llS-l d for some nonzero complex 11, 

and thus 

a - 1 
g2 (L) = g2 ( E: S L), 

a a - I 
g3(L) = g3( E: S L) 
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where E = ~ /JL. Now there ex ists an isomorphism 

given by <p (z mod s -1 d) = ~ (~z, ~ s -1 d) • * - 1 Thus n 0 <p is an auto-

morphism of Ea, and so there is a root of unity s in ° such that 
c 

* - 1 n (z) = l; ( s ~z, ~s b). 

Now let z = s-lp/ Jl, Then 

-1 - 1 
= 1'(8 p, s L), 

upon noting that T( a p,aL) = T(p,L) for any nonzero complex a . This 

concludes the proof of the lemma. 

Lemma 1 . 2 can now be used to find canonical sets of representatives 

for the Galois groups of the extensions R(9 ). 

I 

Lemmal. 4 (1) G(R(oc)/K) is isomorphic to the group of the classes 

.of proper 0c-ideals modulo principal 0c-ideals. 

(2) Let 9 be a proper ° c - ideal. Let W denote the image 
x x 

of ° in (0 1 9 ) under the natural map of reduction modulo 9 . c c 
x 

(In most cases, W is isomorphic to ° : for example, if 9 is prime c 

to 6). 
x 

Then G(R(g )/R(oc)) is isomorphic to (oc l 9 ) IW. 

(3) Let B 9 be a complete set of representatives in ° c for 
x 

the cosets of (oc / g ) lW, and let p be a primitive 9 - division point 

of L. The conjugates of T(p,L) over R(Oc) are the (distinct) elements 

T (a p ,L), for all a belonging to B 9 
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Proof. The first is proved in [23J, p123. As for the second part, 

lemma 1 . 2 shows 

x 
There is an isomorphism between W (o'c) IW (g ) and (0 cl g) as follows. 

Let u be a primitive 9 -division point of L. For each s E W(oc)' 

s.u is also a primitive 9 -division point, because sL = L. Hence 

there exists an element as of 0c such that s.u = as.u. This number 

as is well defined modulo 9 , and since u is primitive, it is a 

uni t mod ulo 9 • 
x 

The map W(oc) --> (oclg ) is a surjective homo-

morphism with kernel W(g ). 
x 

Further if s E W(oc)' then s E K W(g 

precisely if 
x S = sS for some root of unity s E ° and some 1 c 

sl E W(g ). 
x x x 

Thus K W(oc)/K W(g ) ~ (oclg ) lW, and the second part 

of the lemma is proved. The third part follows immediately from the 

preceding lemma. 

In later work, we will assume for simplicity that 9 is coprime 

x 
to 6, so that 0 may be identified with W. In this case, let B 

c 9 

be a complete set of representatives in 0 for the cosets of c 
x 

(0 cl g) IWi 

polynomial 

let u be a primitive g-division ~oint. Define the 

T (x, 9 , L) = IT (x - T (a u, L)) 

aEB 9 

if 9 ~ Qc' and to be the constant 1 if 9 = 0c. By lemmas 3 and 4, 

T (x, g, L) = IT (x - T (u, L) (j ) 
(j 

where the product is taken over all elements (j of G(R(g )/R(oc)). 

Hence T(x, U, L) is independent of the choice of u, and a polynomial 

with coefficients in R(o ). c 
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§3 . Tlie 8-function . 

In this section we define the function 8(z,a,L): it depends 

upon a complex variable 'z and an 0 c -ideal a. It is an elliptic 

function on L, and its values at fi-division pOints of L lie 

inside R(fi), provided a is prime to 6fic. These values will be 

calculated in the next section, and used in the following 

section to define the elliptic units for R(fi) . 

Let a(z,L) = z IT (1~z/w)exp(z/w+z2/2w2) be the Weirstrass 
WEL 
wto 

a-function of L. The function 

is holomorphic at s = 0 (see [13 ])i let s2(L) be its value at 

s = o. Define the functions 

1)J(z,L) 2 = exp(-s2(L)Z /2)a(z,L) 

and 8(z,L) = L'I(L)1)J(z,L)12 . 

Let a be a 0c-ideal prime to 6c. Then a i proper: there 

exists an a-ideal, which will be denoted a K , such that 

a :Kno c = a. Define Na to be the number of elements of 0c/a. 

Since 0c/a ~ 0 /aKno ~ (0 +~J/aK as abelian groups, and because c . cc . . 

0C+aK contain the a-module cO+~K = 0, we conclude that 0c/a ~ o/a K. 

Thus Na equals the usual norm of the a-ideal a~. For such an 

o -ideal a, define the functions c 

and 8(z,a,L) = 8(Z,L)Na/8 (z,a-1L) L'I(L)Na W( L)12 
= -1 T Z, a, 

L'I (a L) 
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Here a-1L denotes the lattice ~(a-ld). Explicit expressions for 

the functions in terms of the elliptic functions p(z,L) and 

T(z,L) are given in the next lemma. 

Lemma 1.5. G(z,a,L) and '¥(z,a,L) are elliptic functions for the 

lattice L, for which the following formulae hold. 

(1) Let S be a complete set of inequivalent representatives of 

-1 a L modulo L, excluding that of L, and let SI be a subset of 

1 
2(Na-l) elements of S such that 

-1 
is a complete set of inequivalent representatives of a L modulo L, 

I 

excluding that of L. 

Then '¥ (z,a,L) = IT 
. -1 

(p (z)-p (,(1,)) 

arid G(z,a,L) 

(2) Define P(x) to be the polynomial x 2 (x-1 728)3/2303 24 if 0* has 
c 

two elements, otherwise to be the constants 1 or - 27 according as 
I 

* o has four or six elements. c 

Then G( L) = 6(L) P('(L))Na-l IT T( ' ( L) L)-12 - z, a , -1 . J 0g ::la 1: Z, , 9 , 
6 (CL L) 

where the product is taken over all 0c-ideals 9 containing a. 

lThe polynomial T(x,g,L) was defined in the previous section). 

Proof. Let 00 be a period of L, and let E = 1, or - 1, according 

as 00/2 does, or does not, lie in L . Then 

O(z+oo,L) = Eo(z,L) ex p(n(oo) (z+oo/2)), 
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I 
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I 
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where n(w) is the Weirstrass n - function (see [14 J p24l). 

Thus l)J(z+w,L)/l)J(z,L) = E.exp((z+w/2) (n ( w)-ws 2 (L))). 

Let a(L) denote the area of the fundamental parallelogram of L. 

Then (see [~3J appendix), 

n (w) - wS 2 (L) = 7Tw/a (L) • 

upon noting that a(a-1L) = a(L)/Na, and that Na-l is even, we see 

Na-l . 
~(z+w,a,L) = E ~(z,a,L) = ~(z,a,L); 

hence ~ is periodic on L, and so is 8 . 

To prove the first formula for ~, we first note that the 

right and left hand sides are elliptic functions for L. We show 

they have the same zeros and poles. 

The poles of ~(z,a,L) are simple and occur at the elements 

of a - 1L which do not lie in L . The zeros of ~(z,a,L) occur, with 

multiplicity (Na - l), at the elements of L. On the other hand, 

the zeros of p(z) - p( 1 ) occur at the points z ~ 1 and z ~ -1 

modulo L, (where 1 ES) and are simple. (1 ~ - 1 m? dulo L because 

a is prime to 6). The poles of p(z)-p(1) are double poles and 

occur at the points of L . Since the functions 

~ ( z , a ,L) and IT (p (z ) - p ( 1 ) ) -1 
1 ES' 

have the same zeros and poles, their ratio is a constant C, which 

may be evaluated by letting z -- > 0 . Since 

~(z,a,L)/ZNa -l ---> 1 

2 and z p(z) --> 1 as z --> 0, we obtain C = 1 . This proves the 

first formula for~. The first formula for 8 immediately follows 



I 
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u~on noting that for any ~ES', p(-~) = p(~). 

The second formula for 0 is easily derived from the first. 

-2 First note that if s is a root of ' unity in DC' then p(sz) = s p(z), 

so given ~ES, . 

, t() t )2 IT* (p (z) -p (s~» = (p z -p (n 
SEDC 

where 2t is the number of roots of unity in Dc. Let 9 be any 

Dc-ideal containing a. (so that 9 is prime to 6c, and is proper), 

and let ~ vary over all elements of S which are primitive g-division 

points of Li let 1l(9) be the number of these primitive division 

points. Then by the definition of T(x,g,L), 

-6 ' ll(9) -12 
IT(p(z) -p(~» ' = Cl . T(T(Z,L),g,L) 
~ 

where Cl = 623 2 
(6.(L)/g2(L)g3(L» ,or (6.(L)/g2(L» , or (6.(L)/g3(L» 

according as t = 1, 2 or 3. 

Thus 

since 

Since j (L) = 

g2 = 0 if t = 

0(z,a.,L) = c1Na.-l) IT T(r(z,L) '9'L)-1~(6.(L~:a.) 
g=.a. 6.(a. L) 

L II (g) = Na.-l. 
g=.a. 

1728 

6. 

3) , 

3 3 2 g2 , and 6. = g2 - 27g 3 

we obtain 

-1 
Cl = P(j(L»6.(L) , 

I 

(with g3 = 0 if t = 

and the second formula immediately follows. 

2, 

The ,formulae derived above immediately imply the following 

results . 
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Lemma 1.6. Let p be a 6-division point of L. Then for all 

Gc-ideals a which are prime to 6c6, 8(p,a,L) belongs to R(6). 

Further, if s is an idele of K, 

8(p,a,L) [S,KJ (-1 -1 ) = 8 s p,a,s L . 

Proof. By the classical theory of complex multiplication, both 

j(L) and 6(L)1 belong to R(O ) = R(j(Oc)). The second formula 
6(a- L) c 

for 8 in the previous lemma makes it obvious that 8(p,a,L)ER(6). 

Since 

(
6 (L~ ) [s,KJ =6(S=~L~1 ' 
6(a lL) 6(a s L) 

(see [14J, p159), we conclude, using lemma 1.3 that, 

[s KJ -1 -1 8(p,a,L) , = 8(s p,a,s L). 

Corollary. Let p vary over a complete set S of inequivalent 

primitive 6-division points of L, which are distinct up to a 

factor of a root of unity in Gc (i.e . if p is in S, the ~p is not 

in S for every root of unity ~ in Qc' other than 1) . Then 
I 

{8(p;a,L); pES} is a complete set of conjugates over R(G c ) . 

The following result - under the restriction that (6,6c) = 1 -

will be used in §5 to compute norms of the values 8(p,a,L). 

Lemma 1.7. Let 6 and a be Gc-ideals, prime to 6c and to each other. 

Then for all ZEC, 

IT 8(z+p~a,L) 
p 

-1 = 8(z,a,6 L) 

where the product is taken over a complete set of inequivalent 

-1 representatives of 6 L modulo L. In particular, 



IT 8( p ,a,L) = 

pi o 
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.. 

Proof. We begin by proving a similar result for ~(z,a,L) and derive 

the lemma from this . The function 

f(z) = IT ~(z+ p ,a,L) 
p 

is an elliptic function for the lattice L, whose poles and zeros 

(counting multiplicities) are identical to those for the function 

-1 
~(z,a,6 L) . Thus, there is a constant c= C( 6 ,a,L) (depending 

. . . - 1 
on 6 , a, and L) such that f(z) = C . ~(z , a,6 L) . The constant may 

be evaluated by considering limits as z --> O. 

Since lim 
z-+o 

~(z,a,L) 
- 1 

~(z,a,6 L) 
= 1 

C = IT '¥(p,a,L) . 
pio 

This constant will be computed by considering the value of 

C(26,a,L) in two different ways . On the one hand, 

C(26,a,L) = IT' ~(n+ ~ ,a,L) 
~ ,n 

I 

where n and ~ vary over a complete set of representatives for the 

cosets of 6-1L modulo Land (26) - lL modulo 6-1L respectively, 

subject to the condition that not both ~ and n lie in the zero 

cosets. Thus 

C(26,a,L) = - 1 
IT ~(n,a,L) IT C( 6 ,a,L)'¥( ~ ,a,6 L) 

nio ' ~io 

4 - 1 = C(6,a,L) C(2,a, 6 L) . 

On the other hand 

J 



C(2il,a,L) IT' 'l'(s'+n',a,L) 
s ' , n ' 
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where n' and s' vary over a complete set of representatives for 

-1 -1 -1 
the cosets of (2n) L modu10 2 L, and 2 L modu10 L, subject to 

the condition that not both n' and s lie in the zero cosets. 

Then 

Thus 

Now 

C(2n,a,L) = IT' 'l'(s',a,L) IT 
-1 

C(2,a,L)'l'(n' ,a,2 L) 
s'fo n'fo 

Nn -1 = C(2,a,L) C(n,a,2 L). 

4 
C(u,a;L) 

-1 
C(n,a,2 L) 

= 

-1 
C(n,a,2 L) = 

C(2 ,a,L') Nn 
-1 

C(2,a,n L) 

2
- (Na-1) (Nn-1 ) C(il,a,L) 

-1 
(because p(z,2 L) = 4p(2z,L), and a,n are prime to 6). We now 

compute C(2,a,L). First suppose that L is normalized with basis 

of form [1',1 J with lm ,I[' > o. Fo11Qwing Lang [14 J p250 and 251, 

we have 

Il(L) 

where a and n denote the Weirstrass a-and n-functions attached 

to L. Thus 

= 24 exp {n (1) + (T+ 1) n (T ) - (1 +'(+ '(2 ) . s 2 (L) } 
Il(L) 

The identities n(1)-s2(L) = TI/a(L) 

proved in [13J (see also Lemma 5) give 

,j,4 (!2,L),j,4 (.!.2'· ,L),j,4 (1+
2
'(,L) = 24 (TI (1 - -))} ( ) 

'I' 'I' 'I' exp a(L) +'(+'('( L • 
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- 1 
A similar computation for the lattice a L shows that 

,,)4 (1:2,n - 1L) ,,,4 (!.2,~/ -1L)"14 (1+2't,~/-1L) 24 (1T (1 - - ) ) IA( -1L) ~ VI. 'I' VI. 'I' VI. = exp - 1 +'t+'t T jUU\. • 
a(cL L) 

N · h 1 T l+T 2 d' . , . t f -lL b otlce t at 2' 2' --2- are - lV1Slon pOln s or a ut not 

-1 necessarily located in the usual fundamental parallelogram for a L. 

The derivation of p250 of [14J is still valid. 

Thus for the normalized lattice L and h~nce for any lattice L 

C(2,a,L)4 = 24 (Na-l). ( 'fj ' (L~Na )-1 
. fj(a lL) 

- 1 The same is true for fi L: hence, because 

C (fi , a , L) 3. 2 (N CL - 1) (N fi -1) = C (2 , a, L ~ : fi , 

C(2 , a,fi L) 

we obtain 

Recalling that 

8(z,a,L) 

we deduce that 

= (fj (L~: a ) • If' ( z , a , L ) 12 
fj(a L) 

IT 8 ( z+ p, a , L) 
p 

-1 = 8(z,a,fi L). 

I 
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§4. Factorization of values of 8-furtct~ons. 

The prime factorization of the numbers 8(p,a,L) is now 

considered. The technique depends upon expressing these values 

in terms of the discriminant and division points of an elliptic 

curve El, which is isomorphic to E and which has certain good 

reduction properties described below . The existence of such a 

curve El is guaranteed for all but the following "special type" 

of order the orders of ~(/-l) and of ~(!=3) whose conductor is 

a power of a single prime . Henceforth, the order 0c will be 

assumed to be not of "special type"; in particular, Qc may be the 

full ring of integers of K. 

Throughout, let a and 6 denote 0c - ideals prime to c: they 

are proper, so let a
K 

and 6K denote the o - ideals such that 

a = aKno c and 6 = 6KnoC ' Furthermore a will be supposed prime to 

66; p will denote a fixed n- division point of L, and for brevity 

H will denote the field K(jE) ' 

The principal result of this section (Lemma 1 . 12 ) is that 

8(p,a,L) is an integer of R ( 6 ) ; it is a unit if 6K is not a prime 

power; if 6K is a power of a prime p, it is a unit at all places 

of R (6) except those above p, and here its value is described. 

As mentioned earlier the method of establishing this result 

is different from Robertls; the main steps in the argument are 

the following. First, it is noted that E can be taken as defined 

over H = K(jE)' Nex t, a prime p of K is fixed, and a curve El, 

which is isomorphic to E, is defined over H, and has good reduction 

at all primes of H dividing nKaKP, is found; the ex clusion of the 

special type of order is needed for this step. 8(p,a,L) is then 

expressed in terms of the discriminant, the n- division and the 
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a-division pOints on El. Let f be a prime above p in the field 

of definition of such division points; El has good reduction atlF ' 

and the ~ -adic value of these division points is found by 

considering the formal group which is the kernel of the reduction 

map modulo l. From this the f -adic .value of G(p,a,L) quickly 

follows. 

So we begin by considering the field of definition of E, 

namely ~(g2(L) ,g3(L)). It is not necessarily algebraic (over ~), 

but since the j-invariant of E, jE' generates over K the finite 

algebraic ext~nsion R(Oc)' there is an elliptic curve El which is 

defined over H = K(jE) and is isomorphic to E over the complex 

field. It has a Weier stras s model y2 

(see Shimura [23], p97-98); the isomorphism connecting points (x,y) 

of E to points (Xl,yl) of El is given by 

234 6 
Xl = U x, yl = U y, g2 = u g2' g3 = u g3' 

for some UE~*. The lattice associated to El is u-1L; hence 

t(-Li-
1

:e: ,L I
) = t(z,L) and 1I(L I )/1I(a-1L I

) = 1I(L)/1I(a-1L). Thus in 

considering the value of G(p,a,L), we may suppos~ that E is defined 

over H, that is, g2,g3 and 1I lie in H. We shall use El to denote 

the model y2 = X3-G 2X-G 3 which is related to E by the equations 

El has discriminant equal to lI(L). 

Now suppose El is another curve, which is defined over H 

and is isomorphic to El. Let f: El --> El denote the isomorphism 

carrying the origin of El to that of El; we denote the coordinates 
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of a point P of E' by (x'(P),y'(P)) and those of the image point 

f(P) on El by (X(f(P)),Y(f(P))) or more simply (X(P),Y(P)). This 

isomorphism must be defined over a field extension M/H of degree 

dividing e K; there ex ist constants r,s,u,w in M with u ~ 0 such 

that 

X(P) =u2x
, (p)+r 

(* ) 

Y (P) = u 3 Y I (P) + s u 2 x I (P) +w , 

and the discriminant 6. I of E I satisfies 6. I = u - 12 6. (L) (see [28], 

p37) • 

We may write 8(p,a,L) in terms of the a-division and n- division 

points on E'. 
·11 

Let PI = (p(p) '2P' (p)) and P = f- (PI) be corres-
I 

ponding n-division points on El and E'; let El and E denote ,a a 
I 

the corresponding a-division points on these curves (Ea = 

Then Lemma 1.5 shows that 

8(p,a,L) = 

= (6. I )Na - l (x I (P) -x I (Q) ) - 6 

I 

We emphasize this expression is valid for any such model E', 

(1 ) 

including those for which E' has certain good reduction properties. · 

For the remainder of this section, let p be a fixed prime 

of K. Since the special type of order has been excluded, the work 

of Serre and Tate ([22 ], theorem 9 and corollary) shows that there 

exists an H-form for El which has good reduction at all primes 

of H dividing aKnKP. We will denote this form by E': it is defined 

over H, it has the same j - invariant as El' it is isomorphic to El 

as described, it has a defining equation 
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with coefficients a. which belong to H and are integral at each 
1-

prime of H dividing aKnKP, and, finally, its discriminant 6 1 is 

a unit at each such prime. 
I I 

Let N = K(jE,En,Ea ) be the extension of H obtained by adjoining 

the coordinates of the n-division and a-division pOints on El. Fix 

a prime f 1 of N lying above Pi let f = fl nH and (p) = pn~ 
be the primes of Hand Q above which it lies. To compute the 

!fl-adic value of 8(p,a,L), we consider the one pa+ameter formal 

group ~ which is the kernel of the reduction map modulo ~ on the 

curve El (see [28J p42) . Let t(P) = - x(P)/y(P) for each point P 

on El: t is a local parameter for the pOint at infinity on the 

curve; as shown in [28J, there are expansions 

. -3 
y(t) = -t a(t) 

where a(t) is a power series in t, leading coefficient 1, and the 

remaining coefficients lie in the ring R of integers of the 

completion H!F of H at f 
Let A be the ring of integers of a finite ext~nsion B of H 

1\ 
and m its maximal ideal. We write E(m) for the set m endowed with 

1\ 
the group law given by E. The map 

t ~> (x(t) ,y(t)) 

1\ 

defines an isomorphism from E(m) onto the kernel of reduction 

modulo m of the points on El with coordinates in B. If v denotes 

the valuation on B (for which the value of a generator of m is +1), 

n I 

the subgroup m corresponds to the subgroup E (B) of points (x,y) n . 

on El with 
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v(x) ~ -2n, v(y) ~ -3n 

(and including the zero of El) . 

11 
Let a be the completion of ac in Kn: we show that E is an 

c, P I~ 
I 

a -module, as follows. c,p Let P lie in El(B) and a in a c,p 
11 

Define the map [ a J of E(m) by 

[a Jt(P) = t( a P) . 

We claim this is a power series in t with coefficients in R, i.e. 
11 

integral coefficients, and so is an endomorphism of E. By m- adic 

continuity, it suffices to prove this for any dense subset of 

a ,in particular for any a in ac' c,p 

If p is an unramified prime of degree 1, it even suffices to 

prove this when a is a rational integer; this is well known (see 

[14J p305). The result i n general can be derived from a much 
11 

deeper result of Tate [ 28J . Since multiplication by p in E is an 

2 11 
isogeny of degree p , E is a divisible formal group (see ~ 8 J p162) . 

Let 

I 

be the Tate- modul e , where the inverse limit is taken with respect 
I I 

to the maps p: E n+l --> E n of multiplication by p. Now the map 
p p 

[ aJ is an endomorphism of Tp(E') which commutes with the action 

of G(H
f IH, ) (- here H~ denotes the algebraic closure of 

H~ - ) ; for if (P n) is a sequence in Tp (E I) , we have p Pn+l = Pn 

and PPl = 0, and (a P n) is a similar such sequence . Now every 
11 

endomorphism of E clearly gives rise to a G(H
f 

IH
f 

) endomorphism 

of Tp(E'); Tate's deep result asserts that every G(H
f 

IH, ) 
11 

endomorphism of T (El) is induced b y an endomorphism of E (see 
p 

corollary 1 of theor em 4 . 1 in [ 28 J ; c . f the e x ampl es on p161, and 
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A 
p170). In particular, [aJ is an endomorphism of E . This proves 

our claim. 

The following lemma is an easy consequence of the preceding 

discussion. Recall that P is a primitive 6- division point (on El). 

Lemma 1.8. Suppose that p does not divide 6K. Then P is integral 

at f l' and so I x I (P) '" :0; 1. 

Proof. Suppose P were not integral at ~ 1: then it 

I A ::z 
E6nE{~ 1)· Choose an element a in 6, but npt in p . 

invertible in 0 ,we have · c,p 

-1 . . 
P = [ a J ([ a JP) = 0, 

a contradiction. Thus P is integral at ~ l' q . e.d . 

lies in 

Since a is 

We now compute the f l-adic value of x I (P) when 6
K 

is a 

I · n+l power of the fixed prime p: say uK = p • Note that in this 

case p does not divide c because 6 is prime to c . 

Choose an 0 - ideal d, and an analytic parametrization c 

l; I: er / d - > El. (Indeed, l;' may be taken to be the composition 

of the Weierstrass parametrization of §l, and the / transformation 

laws (*) giving good reduction on El). Let ~ be the Grossen 

character of the curve El: ~ maps the ideles of H to elements of 

K* (see [ 23 J, p2l2.). 

Because E I has good reduction at f l' ~ is unramified at '1 
We define ~(~ ) to be the value of ~ at an idele whose local compo -

nents except at f ' equal one; the f -component is taken to be any 

local parameter for ~ (see [ 23J, theorem 7.42) . Further, the 

reduction of the endomorphism [ ~(i ) J modulo f is the Frobenus 

endomorphism of the reduction of El modulo ~ . If f is the degree 



of the residue field crH, over the residue field 

principal, and is generated by ~(!f). Setting q 

means that 

[~ (~ ) ] (t) = t q mod f . 
(Note that because p does not divide c, lies in 0 c,p 
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this 

Let n be a local parameter for p; since p is unramified in 

H/K, n is a local parameter for ~. There exists a unit u in 

0p such that 

~ (f ) . = unf. 

We claim that [ n ] has the following properties . 

(i) [n](t) - nt mod degree 2. 

(ii) [n](t) = tNPU(t) + nV(t) 

where U(t) is a unit power series, and V(t) is a power series. 

(Both, of course, have coefficients in the ring R of integers of 

H~ ) • 

To prove the first property, consider an element a of 0 • 
I c n 

Since [a](p(z),pl(z)) = (p(az),pl(az)), for all z, the t - ordinate 

for the model El' T = X/Y satisfies [a]T = aT mod degree 2. 

Under the transformation relating El and El, t transforms 
00 

t = uT(l+ L ~kTk) with coefficients ~k lying in M. Thus 
k=l 

[a]t = at mod degree 2. By continuity, the same is true for all a 

in 0 = 0 • in particular, this holds for n. c,p pi 

To prove the second property, suppose [n](t) has the form 

00 

Suppose a r is the first coefficient I a t n with coefficients in R. 
n=l n 
not lying in ~ , so that it is a unit. Then the f~rst coefficient 

f ~ r . of [n] (t) not lying in 1 is the coefficient of t ; thus the 

I 

I 
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first coefficient of [~(]r) J(t) = [ uJ[nJf(t) not lying in~ 
r is the coefficient of t (because [uJ(t) = ut mod degree 2). 

Hence r = Np, and our assertions (i), (ii) are proven. We conclude: 

Lemma 1.9. Suppose that OK n+l = p Then 

n+l 
= In~2/<P(P ). 

Proof. We first observe that P belongs to ~(~l). For otherwise, 

t = t(P) is not in ~ l' nor are the "conjugates over H. But 

[~ (~ ) J (t) ~s congruent mod f to one such conjugate, and since 

this is zero, we have a contradiction . 

Suppose n = O. Then t satisfies [nJ(t) = O. The assertions 

(i) and (ii) above show that 

I t IN p -1 = 1nL, 
~ -~ 

Since x' (t) = t- 2a(t), the result follows . Now suppose the result 

o f 0 0 d od " 0 0 0 n+2 1S true or some 1nteger n ~ , an conS1 er a pr1m1t1ve p 

division pOint P. Then [nJp is a primitive pn+l-division pOint, 

and I 

l[nJt~ 

The assertions (i), (ii) again show that 

so that 

IX'(t)~ 

The lemma follows by induction. 
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Finally, we calculate the ll-adic value of x'(P) in the 

cases not considered in the previous two lemmas, namely that bK 

is divisible by p and also by another prime of K. 

Lemma 1.10. Suppose bK is divisible by at least two primes of K, 

including p. Then P is integral at 1F l' and so Ix'(p) ~ ~ 1. 

Proof . n+l Suppose b
K 

= p 9 for some non - trivial o-ideal g, and 

let 61 = gnoc be the corresponding proper 0c-ideal. Since P is 

a primitive b-division point, there exist a primitive pn+l-division 

pOint Ql and a primitive bl - division pOint Q2 such that P = Ql+Q2. 

Now suppose that P were not integral at ~ l' so that 

PEE~n~( fl)· Now Ql E ~(fl) . (see previous lemma), so that Q2 = P-Ql 

must lie in ~( ~l). This contradicts lemma 1.8i thus P is integral 

at ~ l' q.e.d. 

Lemma 1.11. Let P and Q be primitive b-division and a-division 

points of E'. Suppose neither bK nor aK are powers of the prime p. 

Then 

I x ' (P) - x ' (Q) ~t = 1 . I 

Proof. The preceding lemmas show that lx' (P)-x ' (Q) I~ ~ 1 . 

Suppose that strict inequality holdsi thus denoting reduction 

mod I I by a tilde, this means that x' (P) = x' (6) t and therefore 
~ ~ ~ ~ 

P = ±.o. Since (b ,a) = 1, we conclude that P = Q = 0 (the point 

infinity under reduction). Thus both P and Q lie in ~(~l)' 

contradicting lemmas 1.8 and 1.10. This proves the lemma. 

We may now evaluate 8(p,a,L) l l-adicallY• 

at 
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n+l 
Lenuna 1.12. Suppose that fi'K is a power of the prime p: fiK = p 

12 (Na-l)/<jl ( n+l) 
Then 18(p,a,L) 11 = 1nl p. Otherwise, if fiK is not 

~I J. 
a power of the prime p, 8(p,a,L) is a unit at ~1. 

Proof. We use the expression (1) to calculate the ~l-adic values. 

First, no·te that because E I has good reduction at ~ l' t:, I is a 

unit at ~l. Second, if pr is the exact power of p dividing a, 

I -1 1_ = In L:,.12r t:,(L)/t:,(a L) ~ f, 

[This follows from [14J, p165, where it is shown that if q is an 

unramified prime of degree 1, prime to c, and qc = gnoc then 

t:,(q~lL)/t:,(L) generates the ideal q12 in the ring of integers of H. 

From this a similar result for ramified primes holds (see proof of 

corollary); the result is trivial for unramified primes of degree 2, 

for they are principalJ. 

Considering first the case when fiK = pn+l, we note that p does 

not divide a
K

, and so in the earlier notation 

18(p,a,L) ~ = 11 I I x I (P) -x I (Q) [" ~ 
QEE ,. 

a 

Lenunas 1.8, 1.9 show that I x I (P) -x I (Q) I 
. ~ 

and so prove the result. 

Now suppose that fiK is not a power of p. If P divides fi, p 

does not divide a
K

, and so 

18(p,a,L) I~ 11 I x I (P) -x I (Q) I - 6 

QEE~ ~ 
= 

Lenuna 1.11 then shows that the right hand side equals 1, so that 

8(p,a,L) is a unit at ~1. On the other hand, if p divides a, 
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r let p be the exact power of p dividing a; we have 

18(p,a'L}~. = 1'Tf1-12r IT lx' (P} - x' (Q) 1-6 

~ ' Q E E~ . ~ 

Lemma 1.11 shows that lx' (P}-x' (Q) 1. = 1 unless Q is a primitive 

pS-division point (for some l ~ S ~r), in which case 

' $ 
I x' (P) - x' (Q) ~t = I x ' (Q) If., = I 71 ~ 2 

/ <I> (p >. 

The number of primitive pS-division points is <I>(pS), so 8(p,a,L} 

is a unit at l. Finally, if P does not divide bK or aK, 

I 8 ( p , a , L) If, , - IT I x ' (P) - x ' (Q) 'I; 6 = 1 
Q E' ~, 

E a 

by lemma 1.11. This completes the proof of lemma 1 . 12. 

The following corollary is immediate: 

Corollary. n+l 
Suppose that bK = p 

prime to 6c, let Pl, ... ,Pr be primitive b-division points of L, 

and nl, ... ,nr be rational integers. The product 

r n. 
1 

IT 8(p.,a.,L} I 
. 1 1 1 1= 

r 
is a unit (in R(b)} precisely if I n. (Na. - l) = o . 

. 1 1 1 1= 
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§s. Definition of the Elliptic Units. 

We can now define the elliptic units with respect to the 

order 0c for arbitrary finite abelian extensions of K. As in the 

last section, the special orders in ~(/-l) and @(!=3) are 

excluded. 

Consider first the field R(o ). c 

principal fractional 0c-ideal with generator ~ in K*. Then (see 

lemma 1.12), 

is a unit in R(Oc). We define the elliptic units of R(Oc) (with 

respect to the order Qc) to be the group D(Oc) of values generated 

by these units and the roots ~R(Oc) of unity in R(Oc). [Note this 

definition is applicable for any order of K, including the special 

ones] . 

Lemma 1.13. D(Oc) is stable under the action of G(R(Oc)/K); it 

is independent of the choice of lattice L of def1 nition, and depends 

solely upon Qc. 

be 
Proof. Let a,n/proper 0c-ideals prime to c. 

= 6(a- l L) 

6(a-1 6-l L) 
= 

Since 

it follows that D(Oc) is stable under G(R(Oc)/K). If L' is another 

lattice with order Qc' there is .an idele s of K such that L' = s-lL 

(see [23] p122.). 
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Now 
( 

.t-, . (L) . ) [ s ,K J 
-1 ; hence 

t-,(fi L) 

D(OC) is independent of the choice of defining lattice, q.e.d. 

When the conductor c equals 1, it is possible to define a 

larger group of units in H = R(o). For in this case, every 

element of the form described above is, apart from a factor of 

a root of unity in R(Oc)' an eK-th power. It is sufficient to 

prove this assertion for the numbers t-,(L)/t-,(p-lL), where p is a 

prime of K. Consider for a primitive p-division pOint p of Land 

a nontrivial principal ideal a = (a) prime to 6p, the number 

NR(p)/R(O) 8(p,a,L) . 

(1-"'~ 

By lemma 1 . 7, it equals (t-,(L)/~(p-lL)) ~ ) but by lemma 1.5 it 

also equals 

(*) 12 (Np-l) /eK p ( . (L) ) (Np-l) (Na-l) /eK N In ( ( L) _ (~ L)) -12) 
a . . J . R ( p ) /R (0 )\~ T p, T , 

(the notation is as explained there). The numbers Na-l, as a 

varies over all such principal ideals, generate the ideal eH~ 

choose integers nI' ... ,nr and principal ideals aI' ... ,ar such 

r I 
that L n. (Na.-l) = eH. 

. III 1= 

Then 

Since eH divides 12 (see [18J lemma 7), numbers of the form (*) 

-1 
are eH-th powers; thus t-,(L)/t-,(p L) is, apart from a factor in 

]JH' an e -th K power in H. 

We define CH' the full grouE of elliEtic units in H, to be 

the largest subgroup of the units in H such that 
eK ]JHD (0) • ]JHCH = 

I 
I 
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It is obvious that CH is stable under G(H/K); its definition is 

independent of the defining lattice L - it depends solely on 0. 

This group is defined by Robert ([18J, section 3; see theorem 5 

for the equivalence); he calculates its index in the units of H. 

Henceforth, let C(oc) denote the group ,D(Oc)' if c =I 1, or the 

group CH' if c = 1. 

Let us now consider the field R(6), where 6 is an 0c-ideal prime 

to c. For every divisor b =I (1) of 6, let p(b) denote the group 

generated by the values 8(p,a,L), where p varies over all primitive 

b-division points of L, and a varies over all 0c-ideals prime to 
n. 

6bc; let W(b) denote the subgroup of products IT 8 ( p . , a . , L) l in 
. l l 
l 

p(b) satisfying In. (Na.-l)= O. Lemma 1.12 shows that W(b) lies 
. l l 
l 

inside the units of R(6). We define th~ group of elliptic units 

of R(6) (with respect to Qc) to be the group generated by these 

groups W(b), by l1 R (6) and C(oc), that is, the group 

l1R (6) . IT W (b). C (0 c); we define theful~roup of elliptic 
bI6,6=1(1) 

units of R(6) (with respect to Qc) to be the units (of R(6)) 

contained in the group 
I 

l1 R (6). IT p(b). C(oc). 
bI6,b=l(1) 

More generally, given a finite abelian extension F of K with 

0c-conductor 6, prime to c, (i.e. 6 is the largest 0c-ideal 9 

such that F c R(g)), we define the group of elliptic units of F 

(with respect to Qc) to be the group generated by l1H and the 

norm groups NR(b)/R(b)nF(W(b) ) (for b dividing 6,b =1(1)) 

and NR(o )/R(O )nF(C(oc))· Similarly, we define the full 
c c 
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group of elliptic units of F (with respect to Qc) to be the units 

(in F) in the group generated by ~H' and the norm groups 

NR(b)/R(b)nF(P(b)) and NR(o )/R(O )nF(C(oc))· 
c c 

Note that if nK is a power of a single prime, the group of 

elliptic units of F equals the full group . 

Lerruna .1.14. Both the group and the full group of elliptic units 

of F are stable under the action of G(F/K). The groups are 

independent of the choice of L, and depend solely upon 0c and F. 

Proof. It suffices to show that the groups W(b) and p(b) are 

stable under the action of a idele s of K. Let p be a primitive 

b-division point of L, and aan ideal of K prime to 6cb. Then 

Now s-lL is a lattice with order 0c' so there is an 0c-ideal 9 

-1 -1 prime to 6bc and a complex number A such that s L = \g Li hence 

8( L) [S,KJ - 8(,-1 -1 -lL) p,a, - - A S p,a,g . 

But \-ls-lp is a primitive b-division point of g-}L, and 

-1 ' Na 8( T ,a,g L) = 8(T,ag,L)/8(T,g,L) . 

It is therefore clear that p(b) is stable under [s,KJ. The action 

of s on a product 

n. 
1 IT 8(p.,a.,L) 

1 1 
i 

of p(b) satisfying L ni(Nai-l) = 0 gives an element 
i 

with T . 
1 

n. . n.Na. 
111 IT 8( T .,a.g,L) /8( T .,g,L) 

111 
i 

-1 -1 = A S Pi; this lies in W(b) because the sum 
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L n. (Na.g-l)-n.Na. (Ng-l) = L n. (Na.-l) 
ill 1 1 ill 

is zero, so that W(b) "is stable under [s,KJ. 

-1 
Also, if L' is another lattice with order Qc' then L' = s L 

for some idele s of K. If p' is an b-division point of L', sp' 

isa b-division of L, and therefore 81"p',a,L') = 8(sp',a,L)[S,KJ 

lies in p(b). Thus p(b), and similarly W(b), is independent of 

the choice of L: that is, the group of elliptic units and the 

full group of elliptic units of F depend solely upon 0c (and F) . 

Remark. The group IT p (b) defined above 1.S, modulo roots of unity, 
bI6,b~(l) 

generated by the values 8(p,a,L) where p varies over all primitive 

or imprimitive division points of L, and a varies over all 0c-ideals 

prime to 66c. For, if p is primitive b-division, and a is not 

prime to 6, choose an ° -ideal 9 prime to 6 and lying in the same c 

class mod7~b. Then using the function cjJ(z,L) (see chap,2, p,46) 
Na -] Na-Ng -] -] 

8(p,a,L) = ~(p,L) /~(p,a L) = 8(p,g,L)~(p,L) ~(p,9 L)/~(p;aL) 

Choose integers a, S :: ] mod b such that aa = S9 = c.. Then 
-] -] -] -] -] -] -] -] 

~(p,g L)/~(p,a ~) = ~(S p,c. L)/~( a p,c. L). Nowa p and S p 

b 
-] -] -] -] 

are -division points for c. L and a p:: p :: S p mod c. L, Lemma 2.6 

shows this ratio 1.S a root of unity. Since Na-Ng 1.S divisib Ye 

by eR(b) ' we may choose 0c-ideals 

principal class mod*b such that n 

n. 

g], ... ,gr pr1.me to 66c in the 
r 

= I n.(Ng.-]) = Na-Ng; hence 
] 1. 1. 

r 
cjJ( p , L) n = IT 8(p ,g.,L) 1. and our assertion follows, 

1. 

Robert [18J defines the group of elliptic units for arbitrary 

abelian extensions F of K with respect to the order which is the 

full ring of integers of K (c = 1) . When the conductor 6 is prime 

to e K, the group of elliptic units (not the full group) is 

precisely that defined in [18 J (§4.4, §4.5 and §5i see theorem 7 
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for the equivalence) . In the case that (6 ,e ) t 1, Robert 
K 

obtains a slightly larger group by extracting a square root (and 

third or fourth roots in ~(1=3) or ~(/-l)) in some of the sub-

groups W (b) as follows . For each divisor b, let eb be the number 

of elements in II congruent to 1 modulo b; then each element of 
K 

W(b) is an eb-th power, and set W' (b) to be the largest subgroup 

of units such that (W' (b)) eb c W(b) [ This is non- trivial only if 

b divides 2 ( K t ~(1=3)) or b divides 2/- 3 (K = rt2(H)) J. Robert 

takes the elliptic units to be as defined above with W(b) replaced 

by W' (b); in §6 of [18J, he calculates the index of this group 

for those extensions F with the conductor 6 a power of a single 

prime p of K (in this, case the full group equals the group of 

elliptic units) . 

We will calculate the index of the full group of units for 

a much wider class of conductors 6 which includes all prime powers. 

For simplicity the conductor 6 will be taken to be prime to 6, and 

the class number of K will be assumed to be 1 . These assumptions 

seem inessential to the method used, and we hope to publish the 

refinements soon . I 

The following result will be used in chapters 2 and 3. 

Lemma 1.15. Suppose K has class number one. 

(1) Let 6 be an integral ideal of K prime to 6 and p a prime divisor 

of 6. Then for all positive integers n, 

(2 ) Let p be a prime of K, not dividing 6, and f be the unique 

prime of R(pn) above p . Then f 12 is principal, and is 

generated by an element of p( pn) . 
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Proof. It suffices to prove the first assertion for n = 1. Let 

p be a primitive fip - division pOint . The conjugates of G(p,a,L) 

over R(fi) are 

G (p+n,a,L) , 

, . 
where n runs over all p ~division pOints of L. 

Lemma 1.5 shows that 

IT G(p+n,a,L) = G(p,a,p-1L); 
n 

I 

the result follows upon noting that p is a primitive fi - division 

-1 point of p L. 

As for the second, choose ideals al, ... ,ar 
r 

that L n. (Na.-l) = eKe 
j=l J J 

prime to 6p and 

Let p be a 

primitive pn-division pOint of L . Then lemma 1.12 shows that the 

element 

r n. 
J IT G( p ,a.,L) 

j=l J 

n '% 12 which lies in P(p ) generates f . 

Also in this case, when K has class number 1, and we consider 

the order with conductor 1, the following more gen~ral version 

of lemma 1.7 holds. 

that 
Lemma 1.16 . Lemma 1 . 7 holds for a-ideals a and fi such/(a,6fi) = 1 

(So fi is not necessarily prime to 6) . 

Proof. As shown in the proof of lemma 1 . 7, there is a constant 

C = C(fi,a,L) such that 

IT G(z+p,a,L) 
p 

12 - 1 = C G(z,a,fi L), 

where p runs over all fi-division points of L; the constant C lies 

in K. Lemma 1.12 shows that C is a unit; hence c12 = 1 . g . e . d. 



I 
I' 

\ 
I 
I 
I 
'I 
I 
I 

I 
I 

I 
I 
I 
I 
I 
I , 
I 
! 
I 
I 
I , 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

\\ 

I 
I 
I 

37 

Chapter 2 . The index of elliptic units for ray class fields. 

This chapter presents the calculation of the index of the 

elliptic units in the global units for ray class fields over 

the quadratic imaginary base field K. The technique is guided 

by the work of Sinnott [25J on the index of cyclotomic units 

for fields of roots of unity . Throughout, we assume that K has 

class number one; this is made for technical convenience only, 

and we hope to e x tend these methods to arbitrary fields K. Also 

the conductor h of the ray class field is assumed prime to 6; 

but it is appare nt that the present method can be refined to 

remove this restriction . This is related to the need to define 

a slightly larger subgroup of units than that given in §5 (c.f. 

remarks there) . 

Let h be a nontrivial integral ideal of K prime to 6, with 

a fixed generator h; let H = R(h) denote the r ay class field 

modulo h . The ideal 

and suppose that h = 

h will remain fixed throughout this chapter, 
e l e r , 

PI . . . Pr lS its factorization into primes 
each 

PI' ···,Pr (with positive integers e l , .. . ,er ); for/i let TIi denote 

a fixed generator of p, . Let P be the group IT ~ (b) defined 
l blh , -

b1' (1) 

in the last chapter (c . f . remark on p34); let Sand C denote the 

global units and the full group of elliptic units of H, so that 

C = Sn)1HP. 

We suppose that h satisfies the following condition: if any 

prime P, dividing h is unramified and of degree 1, then its 
l 

conjugate Pi does not divide h. This somewhat strange condition 

is needed to establish a property (lemma 2 . 15) of the logarithm 

map defined below; the present method of calculating the index 

relies on this prope rty . 
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Let S be the subset of 2r-l divisors of h obtained from the 
e l er 

products of the ideals PI , ... ,Pr ' but omitting (1). Define 

TI eR(b); note w = eH/eK ifh is a prime power. 
bES 

Throughout 

let hH and RH denote the class number and regulator of H. Our main 

result is 

Theorem 1. The group C is of finite index in S, equal to 
r-2 

12[H:KJ-lhH (if r = 1) or 12[H:KJ-lhHe~ -r .wl(eH/eK)-l (if r ~ 2), 

where wl divides w. 

Robert [18J proved this result for the case of a prime power 

conductor h (i.e. r = 1); by using the cohomological arguments 

of Sinnott [25J, we are able to prove our result for more genera l 

conductors h. 

The method of proof analyses the classical class number 

formula relating hH,RH, and the values of the L-function for the 

characters of G(H/K) at s = 1: these values can be expressed in 

terms of elliptic units. The formula is quoted in section 2. 

Throughout this chapter, it will be necessary to view H as 

a subfield of a field of h-division points as an elliptic curveE, 
I 

which we now specify. As explained in chapter 1, §3, there is an 

elliptic curve E defined over K (which is equal to its own maximal 

abelian unramified extension) whose ring of endomorphisms is 

isomorphic to the integers 0 of K; by the work of Serre and Tate 

([22 J, theorem 9), it is possible to suppose that E has good 

reduction at each prime dividing 6hh: that is, E is specified by 

an equation 

where the coefficients a i are elements of K, integral at all primes 
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dividing 6hh, and the discriminant 6 is a unit at each such prime. 

Under the transformation 

1 n = y + 2(al x +a3 ) 

1 2 
~ = x + 12 (al+ 4 a 2) 

231 
this equation takes the form El: n = ~ - ~2~ 

1 
~3 for some 

constants g2,g3 in K. Let p(z) be the associated Weierstrass 

p - function satisfying 

Since K has class number one, there is a complex constant Q such 

that L = Qo is the period lattice of p(Z)i the discriminant, 

6(L), of L equals 6. Combin i ng these maps (~/L --> El and El --> E) 

we obtain an analytic parametrization ~: ~/L --> Ei we conclude 

that K(Eh ) is generated over K by the values {p(p),pl (P)i P is 

h-division of L}, and that H, which is generated by the values 

{1 ( p ,L)i P is h - division}, is a subfield of K(Eh ). We also note 

that E has integral j - invariant (see [23 J , §4.6). 

Let ~ be the Grossen character for E and ~ its conductor 

(see [ 23 J , theorems 7.40 and 7 . 42); 6 is divisible by precisely 

those primes of K where E has bad reductioni in particular, h is 

prime to 666 . 

Throughout this chapter, G will denote the Galois group 

G(H/K), and R = 2'l [GJ its group ringi Gl will denote G(K(Eh)/K), 

and RI = 2'l [ Gl J its group ring . The letters X and ~ will be 

reserved for characte.rs of G and Gl respectivelYi PX and ~ will 

denote the ring homomorphisms p : CC [ GJ --> ~ and p : CC[GIJ --> CC 
X ~ 

induced by X and ~ respectively . Given a set of complex numbers 

a x for characters X of G, there is a unique a in ~ [G J such that 
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p (a) = a for each X; explicitly a = L a e 
X' 

where 
X X X X 

1 
L x(a)a 

-1 is the idempotent associated 2 
e = TGf to x(e = e ). 

X a EG X X ' 

for any two distinct characters Xl,X2 of G, e e = O. A similar 
Xl X2 

result holds for the homomorphisms p~ . attached to Gl ; we will 

d h d C by £ (-_ 1_ \ C() -1) enote the idempotent attac e to s ~ I L s TT. 
~ IGl TEG 

1 

For a character X of G, denote its conductor by oX; Ox is the 

conductor (in the sense of class field theory) of the extension 

K /K, where K is the fixed field of the kernel of X. X therefore 
X X 

induces a character, denoted always by X', of G(R(O )/K); X' is the 
X 

associated primitive character of X, and its kernel fixes K . 
X 

The conductor ° divides h, and so is prime to 6; hence 
X 

G(R(O X)/K) is isomorphic, via the Artin map, to (o/ OX }*/~K. 

following diagram is commutative: 

(o/h)* > G(R(h)/K) 

1 1 
(0/0 ) * > G(R(OX)/K) 

X 
I 

The 

The vertical map on the left is the natural surjection; that on 

the right is the restriction map. 

We regard X as a function on the ideals a of K by defining 

x (a) to be x (Ca,H/KJ) if (a,h) = 1, and to be zero otherwise; 

similarly we define X ' (a) to be X' (Ca,R(fiX)/KJ) if (a,fi
X

) = 1, 

and to be zero otherwise. Note that if p is a prime dividing h, 

but not fi , then X ' (p) f O. For any integer of K, we set 
- X 

X (t) = X (to) . 

A similar notation will be used for characters ~ of G1 ; 

these will be regarded as characters of G(R(fih)/K) whose kernels 
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fix K(Eh). The conductor 6~ is the conductor of the fixed field 

K~ of the kernel of ~ , and ~ induces an associated primitive 

character ~'of G(R(6~ )/K) (whose kernel fixes K~ ). 

For brevity, B(g) will denote the group(o/g)*/~K for any 

ideal 9 prime to 6. 

Throughout ~ = ~H will denote the logarithmic embedding 

into JR [G J, def ined by 

JR [G ] 

x t---> ° -1 L - loglx 1o . 
0EG 

Note that ~ is an R- module map: 0~(X) = ~(x0) for each 0 EG. If 

xEHx lies in the kernel of ~, Ix01 = 1 for each 0 EG; thus if x 

is integral, x lies in ~H. In particular, the kernel of ~ in S 

is ~H' and since ~H c c, SiC ~ ~(S)/~ (C). 

Finally, for any R- module A, let Ao denote the submodule 

annihilated by s(G) = L o; let AG denote the submodule fixed 
0 EG 

by G. 

x 
The condition on h implies that if x lies in PnK , and ~(x) = 0, 

the x is a root of unity in K. This property ~f ~ will be used in 

lemma 2~15 to show that ~(P)o = ~(C). 
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§l . Fields of division pOints. 

In this section, we gather together some results about 

fields of division points on E. Recall that h f (1), and is prime 

to 666. 

Lemma 2.1. E has good reduction everywhere over K(Eh ). 

Proof: Let p be a prime dividing hi we use the criterion of 

Neron-Ogg-Shafarevich to show that E has good reduction everywhere 

over K(E ) c K(Eh). If p is unramified of degree 1, this is P -
proven in [ 7 J (theorem 2), so suppose that p is inert or ramified 

and lies above the rational prime p. Let Fo = K(Ep ) and q be a 

prime of Fo not lying above Pi let Fo be the algebraic closure 

of Fo' Pick a prime of Fo lying above q, and let I i be q the 

corresponding inertia group. Let T 
P = t im E. n+l be the 

p 
Tate module 

f d f h n+l d' " , t E l't' G(F- IF) d 1 orme rom t e p - lVlSlon pOln s on i lS a mo u e, o 0 

and its automorphism group is o~. The image of G(Fo/Fo) is 

contained in the units congruent to 1 mod Pi in particular, the 

image of Iq in the automorphism group of Tp is either trivial 

or infinite. Now E has integral j-invariant, a rld it is known 

(c.f. [22J p496) that the image of I must be finitei thus I acts q q 

trivially on T. Theorem 1 of [22J shows that E has good reduction 
p 

at q. This is true for all primes q of Fo not above Pi by 

hypothesis the same is true for all primes above p, and the proof 

of the lemma is complete. 

Lemma 2.2. The ray class field mod 6 equals K(E
6
) i 

the ray class field mod 6h equals K(E
6h

) 0 

The conductor of K(Eh ) is 6 h • 

s 
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Proof: We use the notation and results of [23J to prove this in 

a manner similar to that of Coates-Wiles [ 7J. 

Let 9 be an ideal of K divisible by 6. Let U(g) denote the 

subgroup of the idele group as defined on pl16 of [23J, and x be 

any element of U(g) with Xoo = 1. Sinc~ the conductor 6 of 1jJ 

divides g, Shimura' s :r:eciprdc.:i;tylaw shows that the Artin symbol 

[x,KJ fixes Eh (see [ 7J, lemma 3). Thus K(E ) c R(g). 
9 - But the 

classical theory of complex multiplication shows that R(g) ~ K(E ). 
9 

Hence K(E ) = R(g) and the first two statements of the lemma follow. 
9 

For the last part, let b denote the conductor of K(E h ) over K. 

We first show that b divides 6h. Again Shimura's reciprocity law 

shows that, for any idele x in U(6h) with Xoo = 1, the Artin symbol 

[x,KJ "fixes Eh (see [7 J, Lemma 4). Thus b divides 6h. 

On the other hand, because E "has good reduction everywhere 

over K(Eh ), the Grossen character ~ of E over K(E h ) must be 1 

(see [23J, theorem 7.42). But ~ is the composition of 1jJ and the 

norm map from K(Eh) to K; so the conductor of 1jJ divides the 

conductor b of K(Eh)/K. Furthermore, because K(E h ) contains 

R(h), h must divide b. Since (6,h) = 1, 6h divi~es 9; we conclude 

that 9 = 6h , q.e.d. 

2 3 h . f' n, h = nn+l Lemma. . Suppose 1S a power 0 a pr1me I~ I~ 

Then K(Eh ) is an extension of K of degree ~(pn+l), which is 

totally ramified at p. 

Proof: This is proved in [7 J, p228 for the case of an unramified 

prime of degree 1. More generally, since E has good reduction at 
/\ 

p over K, we may consider as in §3, chapter 1, the formal group E 

which is the kernel of reduction modulo p . K has class number one 
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so ~(p) = n is a generator for p, and the endomorphism [~(p) J of 
1\ 

the formal group E induced by it satisfies 

( i) [nJ(t) - nt mod degree 2 

(ii) [nJ(t) - t Np mod p. 
1\ 

Thus E is a Lubin-Tate formal group over Ope By [16J, there is a 

unique formal group E defined over 0p such that the endomorphism 

[nJ of E is given by the power series [nJw = wNP+nw; E is isomorphic 
1\ 

to E over Ope We conclude that Kp(E n+l) 
p 

is a totally ramified 

extension of n Kp of degree (Np) (Np-l) . 

Now the action of G(K(Eh)/K) on Eh defines an injection 

G(K(Eh)/K) L--> (o/h)x, so that [K(Eh ) :KJ is at most 

~(h) = (Np)n(Np-l); we conclude that K(Eh)/K has degree ~(h) and 

is totally ramified at p. 

Lemma 2.4 . . Suppose hl and h2 are coprime ideals of K, prime to 

666. Then K(Eh )nK(Eh ) = K and the composition 
1 2 

K(Eh )K(Eh ) = K(Eh h ). 
1 2 1 2 

Proof: The conductor of the extension K(Eh )nK(Eh ) divides 6hl 
1 I 2 

and 6h2, and so divides 6. But R(6) = K(E
6

) is unramified at any 

primes dividing hl h 2 , so K(Eh )nK(Eh ) = K. Because Eh h = Eh ~Eh 
1 2 1 2 1 2 

is the direct sum of Eh and Eh on the curve E, K(E h h ) is 
1 2 12 · 

contained in K(Eh ) .K(Eh ); equality follows upon computing degrees. 
1 2 

Lemma 2.5. The ray class field mod 6h equals the composition 

K(E
6

) .K(Eh ), and 

K(E
6

)nK(Eh ) = K. 

The degree [K(Eh ) : R (h) J equals eKe 



45 

Proof: Since K(E
6

) is unramified at all primes dividing h, 

K(E 6)nK(Eh) = K. Clearly 

equality follows by computing degrees ~ Finally, 

Remark. The results of this section are in fact valid for any 

conductor 6 and any ideal h prime to66i we do not need the 

conditions imposed on 6 and h in the introduction. 

I 
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§2. The Class Number Formula. 

The proof of theorem 1 relies upon the classical class number 

formula, which relates the class number h
H, the regulator RH' 

and the values L(l, X) of the L-functions attached to the nontrivial 

characters X of G. These values L(l, X) can be expressed in terms 

of a function ~ defined below (see U4 ],Ua] ); this function 

~(z,L) takes values at h - division points z of L which are closely 

related to generators of the elliptic units of H. 

We recall that the function 8(z,L) was defined in the last 

chapter (§3), and that a(L) denotes the area of the fundamental 

parallelogram of L = ~o. Define 

~(z,L) = 8(z,L)exp(-6rrlzI 2/a(L)) 

and u(z) = logl~(z~,L) I. Notice that for an ideal a of K, 

we will be considering values of ~(p,L) and u(p/~,L) at h-division 

points p of L. The following lemma summarises the basic properties , 

of ~ and u. 
I 

Lemma 2.6. Let b be an integral ideal of K. 

(1) Suppose that b is the smallest positive rational integer in b; 

let p be a b-division point of L . Then ~( p ,Lf is independent 

of the choice of p modulo L. 

(2) Let a be a nonintegral element of K. For any integer a and any 

root of unity E in K, u(a+a ) = u( Ea) = u(a) . 

(3) Let S be a generator of b . Then 

I u(a~t) = u(a), 
t mod b ~ 

the sum being taken over a complete set of ineq~ivalent 

representatives for 0 mod b . 
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Proof: For arbitrary wEL, 

cp (p+w, L) 
<p (p,L) 

= e (p+w,L) (6n (zz- (z+w) (z+w))) 
e(p,L) exp a(L) 
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Bu t e (p+w, L) 
e (p,L) 

l2nw 1 
eXP(a(L) (p + 2w )) (see the proof of lemma 1.5) ~ 

so that 

CP(p+w,L) _ 6n - -
<P(p,L) - eXP(a(L) (wp - pw)) 

Now (wp - pw)/2i in the area of the parallelogram formed by the 

pOints wand p in the complex plane, so that this ratio is a 

b th root of unity . This proves part (1) . 

Now consider a nonintegral element a of K. The result just 

proved shows that u(a+a ) = u(a) for every integer a. For the rest, 

suppose that a has denominator 9 (so that ag ~ 0); choose a 

nontrivial ideal a prime to~b and in the principal ray class 

mod gb. Then (Na - l)u(a,L) = 10gI8(a~,a,L) I; from this, it is clear 

that u(Ea,L) = u(a,L) for any E in ~K . Also by lemma 1 . 16, 

(Na-l) L u(a+!) 
t mod b S 

= logl IT 8(a;t ~,a,L) 
t mod b 

I 

= 10gI8(a~,a,L) 1 = (Na-l)u(a) . 

This completes the proof of parts (2) and (3) . 

The connection between u and the elliptic units of H may be 

summarized as follows . Let V(h) be the additive subgroup of 

~ CGJ generated by the elements 

\ at -1 n(a) = L u(ll)Ct,H/KJ, 
t EB(h) 

where a ranges over all integers of K not divisible by h . v(h) 

is an R- module (C t ,H/KJn(a) = n (a t )) and i s i n f act gene r a t ed as 

an R-:-module by the elements n '(b ), where b ranges over all integers 
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of K which divide h (excluding (b) = h). For given an i~teger 

a f h, we may choose an integer t, prime to 6h, such that b = at 

is a divisor of hi then n(a) = [t,H/K]-ln(b). Since n(€b) = n(b) 

for any € in 'ilK' we use the notation n(b) for n(b), where b is any 

generator of b. 

For any ideal a of K, prime to 6h, 

a 
(N a - [ a , H /K ] ) n (a) = £ (0 (11' a , L) ) • 

Thus, denoting by I(h) the R-ideal generated by the elements 

Na-[a,H/K] as above, we have 

I(h).v(h) = £(P). 

For brevity, V(h) and I(h) will be denoted by V and I (resp.) in 

the rest of this chapter. 

The function u may be used to form sums depending upon 

characters X 6f G. For such a character, let f be a generator 
X 

of the conductor 0 of Xi recall that Xl denotes the associated 
X 

primitive character of G(R(oX)/K). 

Define 
I 

(Note it is independent of choice of 

generator f ). The next lemma shows in particular that 
X 

" 

p (n(l» = 
X 

the product being taken over all primes p dividing h. 

Lemma 2.7. Let b = (b) be an integral ideal of K, prime to 6, and 

divisible by OX' Then 

.. 



u (X I ) IT (l -X I (p) ) 
plb 

the product being taken over all primes p dividing b . 

49 

Proof: For any such ideal b divisible by OX' let ub( X' ) denote 

the sum on the left hand side . We show that for any prime p 

(with generator n) 

and ubp( X' ) = (l-X'(p))ub( X' ) otherwise . 

Consider first the case when p divides b; we have 

.. t 
L X'(t)u(bn) · 

t mod bp 
(t,bp)=l 

In this case, an integer of the form x+yb is prime to b precisely 

if x is prime to b. Thus 

x+ b 
L mLod ~X '(X+Yb)U(~). 

x mod b y I~ 
(x,b)=l 

Now Xl (x+yb) = Xl (x) because Ox divides b, and t emma 2.6 shows that 

Hence 

L u(x~;b) = 
y mod p 

-1 = e 
K 

L X I (x) u (I;) = 
x mod b 
(x,b)=l 

u, (X I), as desired . o 

Turning to the case where ptb, an integer of the form 

x n+yb is prime to bp precisely if (x ,b) = (y,p) = 1 . Thus 

~ ~ xn+yb 
L L X l (xn+yb)u( nb ) 

x mod b y mod p 
(x,b)=l (y,p)=l 



Again X' (xn+yb) = X' (xn) i also 

L u(x~~Yb) = u(x;) - u(E) • 
y mod p 
(y,p)=l 
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Thus ubp(X') = (l-X'(TI))ub(X'), which proves the second part. 

We deduce from the formulae that 

IT (I-X' (p) ). u 6 (X'), 
plb X 
pt6 

where the product is taken over all primes dividing b, but not 6 . 
X 

Since X has conductor 6
X

' X' (p) = 0 if pl6 x, furthermore, 

u 6x (X') = ,u(X'). The lemma is now proven. 

formula can be stated in terms of the u(X'): 

I u (X') I 
6 

The class number 

the product being taken over all nontrivial characters X of G. 

[See Robert [18 J p20i in his notation, u(X') = S(X')/f
X

' where fX 

denotes the smallest positive rational integer in 6 , the conductor 
X 

of Xi the modulus of p(X') is 1, and e = 1 because (h,6) = lJ. 6x I 
The techniques of computing the index uses, the general notion 

of lattice index outlined in Sinnott[25 Ji we briefly describe it 

here. If X is a subspace of the group ring JR [G J, we say that M 

is a lattice in X if M is a subgroup of X which is discrete (in 

the induced topology from JR) and which spans X. We note that a 

subgroup M of JR [G J is discrete if and only if it is free over 2Z 

with a basis of elements linearly independent over JR • 

Let Ml and M2 be lattices in X: then there is a nonsingular 

linear transformation A: X --> X such that A(Ml ) = M2 . In this 

case, we define the symbol (Ml :M2 ) to be Idet AI (the modulus of 
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the determinant of the transformation): it does not depend upon 

the choice of A. The following lemma is stated in Sinnott [25J 

(lemma 1.1) and is restated here for convenience. 

Lemma 2.8. (a) If Ml and M2 are discrete subgroups of JR [GJ with 

M2 ~ Ml , then (Ml :M2 ) is defined if a'nd only if M2 is of finite 

index in Ml ; in this case (Ml :M2) = [Ml :M2 J, the index . 

(b) If Ml , M2 and M3 are discrete subgroups of JR [GJ, then 

(Ml :M3 ) = (Ml :M2 ) (M2 :M3 ) i . e. whenever two of these symbols are 

defined, so is the third, and this relation holds . 

This terminology and notation is applied to subgroups of 

~[GJ, simply by viewing qJ[GJas a subring of JR [GJ. A subgroup M 

of ~[GJ is discrete precisely if M is finitely generated over ~ ; 

given two discrete subgroups Ml and M2 of Q[GJ, the index (Ml :M2 ) 

is defined precisely if Ml and M2 generate over qJ the same subspace 

of qJ[GJ. The following lemma which is proved in [25 J (lemma 6.1) 

is quite useful. 

Lemma 2.9. Let A and B be discrete subgroups of qJ[GJ, and suppose 

that (A:B) is defined . Let a be an element of ~[GJ . 

Let A denote the set of elements a EA such that a a = 0, a 

a nd define Ba similarly. Then (Aa:Ba) and (aA:aB) are both defined, 

and (A:B) = (Aa:Ba) (aA:aB). 

The remainder of this section relates V to an R- module U which 

is independent of U; we will show that U is a free ~ -module of 

rank [H:KJ. The basic step in the proof of theorem 1 is to 

express the index [S:CJ = [£(S) :£(C) 1 = (£(S) :£(C)) in the form 

(Here R ,U denote the submodules of R, U respectively annihilated 
00 · 
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by s(G) = L 0). Each of the indices will be shown to be defined, 
OEG 

and the value calculated. 

We now discuss the module U. For any prime p, let 

Op = L Xl (p)e , the sum being taken over all characters X of G. 
X X 

Note that 0 actually lies in Q[G). For any divisor b of h, let 
p 

Bb = G(R(h)/R(b)) be the subgroup of G fixing R(b); let 

S(Hb ) = L 0 (an element of 2Z [G)). Finally, let 
O E H b 

w = w(u) = L u(xl)e , the sum being taken over all nontrivial 
X~l X 

characters of G. We define U(h) to be the R-module generated by 

the elements ab = S(H b ) IT (1-0 ), the product being taken over all 
plb p 

primes p dividing b , and b varying over all integral divisors 

of h. For brevity U(h) will be denoted by U in this chapter. 

Lemma 2.10. 

Proof: V is generated as an R-module by the elements n(b), where 

b is an integral divisor of h (bth) . For such a divisor b = (b), 

let a = hb-l . We claim that 

(l-el)n(b) = wct ' ; a.-
I 

it suffices to show that for any nontrivial character X of G, 

p (n (b )) = p (wa ). 
X X a 

We first observe that PX(n(b)) = 0 if the conductor fiX of X 

does not divide a. For, in this case, there exists an integer t 

prime to h and congruent to 1 mod a such that X(t) ~ 1; then 

[t,H/K)n(b) = n(bt) = n(b) since bt = b mod h . 

last equation shows that p (n(b)) = o. 
X 

Applying p to this 
X 



On the other hand, if 6 divides ' ~, 
X 

p (n(b)) = I x (t)u(!.), 
X tEB(h) a 
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where a is a generator of ' a . The term under summation depends only 

upon t mod a, and since a ~ (1) 

p x (n(b)) 
<j)(h) \' -= <j)(a) L X(t)u(t/a) 

t EB(a) 

= <j) (h) u eX I ) ,IT ( I-X I (p) ) 
<j)(a) pia 

by lemma 2.7. 

We now compute PX(wa a ) . First, PX(w) = U( X l) and 

p (0 ) = X l (p) for all primes 
X p 

p dividing a . Also 

Px (S(Ha )) = I x(o) equals ° if X is nontrivial on Ha (in which 
OEHa 

case 6xla ), or equals IGI/IHal = <j)(h)/<j)(a) if X is trivial on Ha 

(in which Case 6 la). It is now clear that 
X 

px (n(b)) = P (wa ) 
X a 

for all nontrivial characters X of G. 

Upon noting that wa l = ws(G) = 0, it follo~s that (l-el)V = w. U, 

q.e.d. 

Lemma 2.11. U is contained in ~ [ GJ, and is isomorphic as an 

abelian group to 2Z 'I G I (i. e . is free on IGI generators) . 

-Proof: Since 0p and S(Ha ) (any a dividing h) both lie in ~[GJ, 

so do all the elements of U. Also U is finitely generated over 

2Z [G J, so it is free over 2Z . It remains to determine its rank 

as an abelian group. 
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Let I be the subspace spanned by Ui since U is a ~ [GJ-module, 

I is an ideal of ~[GJ. To prove the lemma, it suffices to show 

that I = ~[GJ. If this were not the case, there would exist a 

character X of G such that p (I) = 0 (since I is an ideal). Let 
X 

X be a character of G, with conductor a ,. Then, if a =f (1), 

But Xl (p) = 0 for any prime pia, so px(aa) =f O. If, alternatively, 

a = (1), then Px (aa) 

is proven. 

=f O. Hence I = ~[GJ, and the lemma 

.I 
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§3 . Properties of elliptic units of H. 

In this section, we discuss some properties of the elliptic 

units C of H. This will enable us to compute four of the five 

indices mentioned in §2i the remaining one (R :U ) will be o 0 

calculated in the next section. 

Lemma 2.12. Let a EP. Then as(G)E~K if and only if a EC. 

Proof: If aEC, as(G) is a unit of K, that is, a root of unity 

in K. On the other hand, suppose afC. Since aa-1 EC for each a 

belonging to G, a lG1 = as(G) mod C. Since a is not a unit, neither 

. s(G) 
1S a ,q.e.d. 

Lemma 2.13. Let a EP. a-l Suppose that a E~H for every a EG. Then 

£(a) lies in the group 

r 
L 12 log I TI • I 2Z s (G) . 

. 1 1 1= 

(Recall that (TI i ) = Pi is a prime divisor of h). 

Proof: 
eH 

If a is a unit, a is fixed by G and so is a unit of Ki 

thus aE~H and £(a) = o. So suppose that a is not/ a unit , By 

lemma 1.5, a is of the form 

for some b in K(Eh)i thus b a - l is a root of unity in K(Eh ) for 

every a in G(K(Eh)/K) , Furthermore b is not a unit, for b 12 has 

the same ~ -adic value as a for every prime 1 of K (Eh) not 

dividing 6 (because at such primes 6(L) is a unit) . Let m be 

h 1 .,. . f' bnE KX • t e east pos1t1ve 1nteger n sat1s y1ng ~ve claim that 

because K(~ ,b) is abelian over K, and b is not a unit, m must m 

divide e K, (This will be proved in the following lemma) . Thus 

b a - l lies in ~K for every aEG(K(Eh)/K) . 



56 

Consider a prime p. (i = l, .. • ,r) dividing h . Recall that 
1 e. -e. 

Pi
1 is the exact power of Pi dividing h; let 9i = hP i 1. The 

extension K(Eh)/K(E ) is totally ramified at all primes~ of 
9i 1 

K(E ) which divide Pi. Thus for any prime~l of K(Eh ) above Pi 
9i 1'" 

and any 0 EG(K(Eh )/K(E )), we have 
9i 

0 - 1 - ;:f? 
b = 1 mod~l . 

S inc e (fl' e K) = 1, and 

b EK(E ). Thus b lies 
9i 

0-1 0 1 
b E ~K' we conclude that b -

r 
in r\ K ( E ) = K. 

i=l 9 i 

= 1 and 

Hence a lies in K. For any prime Pi dividing h, its Pi-adic 

value is the 12-th power of that of b, and it is a unit at all 

other primes not dividing h . Thus the fractional ideal (a) 

factorizes 
r n. 12 

in the form ( IT p.1) for some integers n l' ; hence 
. 1 1 1= 

r 
~ (a) E L 12 

i=l 
logln. I~ s(G); this completes the proof of lemma 2 . 13 . 

1 

We now prove the result quoted in the proof of the preceding 

lemma. 

Lemma 2.14. Let m be the least positive integer y satisfying 

If the extension K(~ , S )/K is abelian, and if S is not a 
m 

root of unity, then ~ c K. m -

Proof : Let ~ = G(K(~m)/K); ~ acts on ~m and defines an injection 

X: ~ '--) (~/m~ )x. On the other hand, ~ acts on G(K(~m,S)/K(~m)' 

via inner automorphisms, and it is clear from Kummer theory, and 

the fact that a = Srn lies in K, that ~ acts on G(K(~m,S)/K(~m)) 

via the character X· But as K(~ , S)/K is abe l ian, thi s a cti o n i s m 

trivial, so X = 1 and ~ = 1, q . e.d. 
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The next lemma establishes the connection between ~(P) and 

~(C). Its proof uses the condition imposed on h at the beginning 

of this chapter, namely that h is not divisible by both an 

unramified split prime p and its conjugate p. For brevity we 

denote ~(P) by T. Recall that for an R-module A, Ao denotes the 

submodule of A annihilated by s(G), and' AG the submodule fix ed 

by G. 

Lemma 2.15. ~(C) = To . 

Proof: s(G) . 
By lemma 2.12, s(G)~(C) = ~ (C ) = 0, so that ~ (C) ~ To. 

For the reverse inclusion, consider an a in P with ~ (a) in To . 

Then ~ (as(G)) = 0, and so las(G) I = 1 . Let b = as(G); it lies in 

KX and satisfies bb = 1 . The fractional ideal (b) factorizes as 

a product of unramified split prime ideals Ql' . .. ,Qs of K and 

their conjugates ql, . . . ,qs in the form 

for some integers nl, . .. ,ns . Because a lies in P, for each i, 

either the ideal Qi and its conjugate qi must di/ ide h, or n i = 0. 

But since h is not divisible by pp for any unramified split prime p 

of K, we conclude that b lies in ~K; by lemma 2.12, a must lie 

in C. This proves the lemma . 

The nex t lemma computes one of the indices (described in §2) 

to be used in the proof of theorem 1 . 

Lemma 2.16 . To = Tn(l - el)T . Furthermore, To has finite index in 

r 
(l-el)T, equal to ~ (h)/eK ' 

Proof : Since s(G) (l - el)T = 0, To contains Tn(l - el)T . Conversely, 

if XE To ' (l - el) x = x, so that To ~ (l - el)T. Hence To= Tn(l - el) T. 

11 



since (l-e l ) T+T = 

may be explicitly 

First, elT = 

~ (l-el)T+T/T 

G 
~ elT/T , 

elT+T and elTnT 

computed. 

s(G) 9,(P) 
e K 

JGT = cp (fi) 

Lemma 1.12 shows that 
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= TG. The groups elT and TG 

9,(ps (G)). 

Now consider TG. Let aEP: then 9,(a)ETG if and only if 

(o-l)9,(a) = 9,(ao - l ) = 0 for every OEG ~ 'Fix OEG. Then a o - l is 

a unit in H (an elliptic unit!), and lies in the kernel of 9,: hence 

it is a root of unity. By lemma 2 . 13, 9,(a) lies in the group 

r 
L 12 log 11T. 12Z s (G). We now show that TG is precisely the group 

i=l l 

L12 logl1T. 12Z s(G); for each i, we produce an element a EP such 
i l Pi 

that 9,(a ) = 12 logl1T. IS(G). Choose ideals aI' ... ,a s of K prime 
Pi l 

S 

to 6h and integers n l " ... , ns such that L n. (Na . -V = e K. Let 
j=l J J 

and a p. 
l 

'd 1 12 l ea p. 
l 

s S1 n. 
IT 8(- ,a.,L) J 

. 1 1T. J J= l 

Lemma 1.12 shows that a generates the 
Pi 

in K, as required. 

It is now clear that (l-el)T/To is finite, and has order 
r e. 
IT CP(P i

l
) = CP(h) This concludes the proof of lemma 2.16. 

i=l 

The next lemma computes another index required for the proof 

of theorem 1, namely [(l-el)V: (l-el)TJ . Recall that the set S 

is the collection of 2r -l divisors of h generated by products of 
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e e 
the ideals Pll' •.. ,Pr

r , omitting (1); the element w was defined 

in the introduction to be -r e
K 

Lemma 2.17. The index wl divides W; if h is a prime power, 

wl :z:: w = eH/eK. 

Proof: Let 9 t (1) be a divisor of h with generator g; let 

b = (b) be the largest divisor of h divisible 6nly by those primes 

dividing g. Consider a nontrivial ideal a of K, prime to 6h, in 

the principal ray class mod h. Then by lemma 1.7 (or lemma 1.15), 

-1 -1 n n(hg ) = (Na-l) ~(0(g,a,L» 

-1 . n 
= (Na-l) ~(NR(b)/R( )0(b,a,L»; . 9 

this last item is equal to the sum of the distinct elements in the 

set {on(hb-l ); OEG(H/R(g)}. · Thus V is generated as an R-module 

by the set {n(hb-l ); bES}. Furthermore, if t is an integer prime 

to 6h, 

so that 

-1 -1 
Nt.n(hb ) - [t,H/KJn(hb )ET, 

V z T + L n(hb-l)~ . 
bES 

I 

The group Vi = L n(hb-l)~ is, in fact, a direct sum. For 
bES 

suppose there are integers ab such that L abn(hb- l ) = o. We show 
bES 

by induction on the number s of distinct prime factors of hb-l , 

that each ab = O. Consider the case s = O. Choose a character 

-1 
X of G with conductor Ox = h, and apply Px to the sum tabn(hb ). 

-1 
The proof of lemma 2.7 showed that PX(n(hb » equals 0 unless 

r-
I1 

i 
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b = h, in which case it equals u(X') (which is not 0). Thus 

ah = O. Now suppose inductively that ab = 0 for all divisors bES 

such that hb-l has at most s distinct prime factors. Consider a 

divisor blES such that hb~l has s+l distinct prime factors. 

Choose a character X of G with conductor fi = b l . The proof of . X 
. -1 

lemma 2.7 shows that for each bES, p (n(hb )) = 0 if fi does not 
X X 

divide b, and otherwise equals :~g~ u(X') IT (l-X'(p)). 
plb 

~(h) u(X') because X' (p) = 0 for each prime p 
<P~) 

dividing b l = fiX; it is not zero (by the class number formula!) . 

The inductive hypothesis implies that 

because bl is the unique divisor b in S which is divisible by bl 

and that hb-l has s+l distinct prime factors . We deduce that 

ab = 0; by induction ab = 0 for all bES, and we obtain a direct 
1 

sum 
I 

V' = 

Thus V/T ~ V'/V'nT has order dividing 

since is the least 
-1 

integer nb such that nbn(hb ) lies in T; 

in that case that h is a prime power, S = {h}, and V/T has order 

precisely eH ' 
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Thus the index (V:T) is defined; lemma 2.9 shows that 

((l-el)V: (l-el)T) is defined and equals (V:T) (VG:TG)-l (since 

elVnv = vG, elTnT = TG) . The preceding lemma showed that 

TG = 
r 

TG G G 
ffi 12 log In . I 2Z s (G) ; we claim that = eKV • If XEV , 

i=l 1 
choose 

ideals a prime to 6h, and integers na ~uch that Lna(Na-l) = eKe 
a 

Then 

Lna(Na-~,H/K]) x lies in T; 
a 

since x = elx, this sum equals eKelx = eKx and lies in elT; we 

conclude that eKxETnelT = TG, so that eKvG 
c TG. Conversely, 

choosing an ideal a in the principal ray class mod h, we have 

L u(~) 
tEB(p.) n i 

1 

-1 . ~ 
= (Na-l) £(NR(p.)/K8(TI. ,a,L)) 

1 1 

12/eK = £(n. ) = 
1 

r e K, and the lemma follows immediately. 

We have calculated most of the indices to be used in the proof 

of theorem 1; we gather together these results now. 

Theorem 1. C has finite index in 8, equal to I 

where wl is the divisor of w defined above. 

Proof: As noted earlier, SiC ~ £(8)/£(C). Both £(8) and £(C) lie 

I 1
-1 s(G) 

in the subspace X = (l-el)lR[G] (For if aES, el£(a)= G £(a ) = 0). 

Thus formally at least, 
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where we recall that To = ~(C). In fact, each of the groups 

appearing is a lattice in X; in the course of the proof this will 

be demonstrated for each index separately. The last two indices 

have already been calculated in the preceding two lemmas; also 

lemma 2.11 shows that (R :U ) is defined, for the span of each of o 0 . 

Ro and Uo is X, they are discrete, lie inside ~[GJ, and are 

finitely generated over ~. It remains to consider the first and 

third indices. 

Let m = [H:KJ-l. The dimension of X over mis equal to m; 

the ~ -rank of ~(S) ~ S/~H is also equal to m (for H is an extension 

of an imaginary quadratic field, of degree m+l). The elements 

-(a-l-l), where a varies over the nontrivial elements of G, form 

a basis for Ro over ~ (if x = la a- l 
lies in Ro' then laa = 0, so 

a a a 

that x = la
a 

(a -1_1) ); hence they form a basis for X over m . 
a 

Let nl , ... ,nm be a system of fundamental units of H. Then 

for each i, 

I 
in terms of the specified basis of X. Label the nontrivial 

elements of G as a l , ... ,am . Now the absolute value of the 

determinant of the mxm matrix, whose entry in the ith row and jth 

column is 

a. 
log 1 n .11, 

J 

is 2-m times the absolute value of the regulator RH of H. 

Since RH t 0, ~(S) is a lattice in X and 

so that 

(RO:~(S)) = 2-m IRHI 

(~(S):Ro) = 2mIR~11. 
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We now turn to the third index (Uo : (l-el)V). Clearly 

(l-el)V ~ X, and it has been shown in lemma 2.10 that (l-el)V = w .U. 

We first prove that (l-el)U = Uo. Let a be any divisor of h, 

and let 

be a typical generator of U. For any character X of G, 

e
X

0 p = Xl (p)e
X

; in particular, e 1 0 p = e l . Hence elaa = ° if 

a t (1); also elal = s(G). Let 

a = L 9 a 
aTh a a 

be a typical element of U (ga ER). Then a lies in Uo precisely if 

s(G)glal = 0, or equivalently if glal = 0. Furthermore, 

gls(G)E~ s(G). Then Uo is the R-module generated by the elements 

aa with a t (1), and U = Uo+s(G)~. Hence (l-el)U = Uo' as was 

to be shown. Let A be the linear transformation on X induced by 

multiplication with W: 

Ax = wx for each XEX. 
I 

Then, by lemma 2.10, A(Uo ) = (l-el)V . Let AC be the ~-linear 

extension of A to (l-el)~CGJ. Since the idempotents eX' for 

nontrivial characters X of G, form a basis for (l-el)CCGJ, and 

A (e ) = w"e = u (X I ) e , 
~ X X X 

we conclude that det A = det A = IT u(X l ) . By the class number 
C Xtl 

formula, det A ¥ 0. Hence (l-el)V is a lattice in X, and 

(U : (l-el)V) = I IT u(X I )1. 
o Xtl 
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Combining these calculations gives 

by the class number formula. This completes the present 

calculations. The calculation of (R :U ) will be performed in o 0 

the nex t section . 

Remark. If the restriction (h,6) = 1 is removed, extra factors 

divisible by 2 or 3 enter the formula, but these come entirely 

from the index (Uo : (l ~el)V) and can be compensated for by using the 

slightly larger group of elliptic units mentioned on page 35, and 

modifying the definition of V. In particular, the calculation of 

the next section is unaffected by the removal of this restriction . 

I 
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§4. The calculation of (Ro.:!!oL:. 

In this section we calculate the index (Ro:Uo ) by computing 

various indices in subspaces of ~[G1J, where we recall that 

Gl = G(K(Eh)/K). Throughout, let J denote the subgroup of Gl 

fixing H (J = G(K(Eh)/H)) i it is cyclic of order e K, and let j be 

a generator of J. Let s(J) denote the group norm L a in Rl , and 
O'EJ 

e J = s(J)/eKi the natural surjection Gl --> G induces two iso-

morphisms eJRl ~ R and eJ~[G1J ~ ~[GJ. Let s be a character of 

Gl , and consider the idempotent ES in ~[G1J associated to S. We 

note that eJE~ = 0 if s is nontrivial on Ji otherwise s induces a 

character X of G, and eJEs = eX is the idempotent in ~[GJ attached 

to X. 

For any divisor a of h, let La = G(K(Eh)/K(Ea )) and let 

L a be its group norm in Rl . 
O'ELa 

For any prime P dividing h, 

-
L: =LS'(P)E

S
' 

P s 

the sum being taken over all characters s of Gl • 

Rl-module generated by the elements 

Let W be the 

/ 

where P varies over all prime divisors of a, and a varies over all 

divisors of h. It is easily seen that eJW ~ Ui the index (Ro:Uo ) 

will be evaluated by considering the index (Rl:W). 

For a given Rl-module A, denote by Ao (resp . AJ ) the submodule 
Gl J 

of A annihilated by s(Gl ) (resp . S(J))i denote by A (resp . A ) 

the submodule of A fixed by Gl (resp . J) . We will see that 

l-------------------
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and (eJRl :eJW) = (R :U ). 
,0 0 0 0 

(Here RI denotes (RI) ). 
,0 0 

The following lemma shows that the index (Rl:W) is defined. 

Lemma 2.18. W is contained in ~[GIJ and · is isomorphic, as an 
I Gll 

abelian group, to ~ 

Proof: It is easy to check that Lp lies in ~[GIJ (any prime p)i 

hence so does W. Also W is finitely generated over RI' and so is 

free over ~. It remains to determine its rank as an abelian group. 

To prove the lemma it suffices to show that the subspace I of 

~[GIJ spanned by W is, in fact, ~[GIJ itself. If this were not 

the case, since I is an ideal, there would exist a character ~ of 

Gl such that P~(I) = O. Let a be the greatest common divisor of 

its conductor 6~ (which divides 6h) and h . Then 

p~(Sa) = ILa l IT (l-~' (p))i since ~'(p) = 0 for any prime p dividing 
pia 

a, p~(Sa) t O. Thus I = ~[GIJ, q.e.d . 

For any prime p which divides h, let T be p the inertia group 

of p in Gl : so for i = 1 , ••• , r, T fixES K (E h - e . ) I. Further let p. p. l 
l l 

W = RIS(Tp)+Rl(l-E p ) , and let W' be the RI-module generated by p 
r 

products IT w where w eW • 
i=l Pi Pi Pi 

We claim that W = W'. 

Proof: Gl is the internal direct product of its inertia groups 

Tp' where p varies over all prime divisors of h . W' is generated 

by the elements 

s (T) IT (l-E ), 
p plh P 

PfS 
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as S varies over all subsets of the set of primes P dividing 

Given such a subset S, let 9 be the largest divisor of h not 

divisible by any prime of S . K(Eg ) 

K(Eh ) unramified at the prime of S, 

of the subgroup IT T of GI.Hence 
p ES P 

L = IT T , 
9 p ES P 

is 

so 

so that s (L ) = IT s (T ) in RI' 
9 p ES P 

the largest 

that it is 

Therefore BS = SjLg) IT (l-~ ), and hence W" c W. 
pig P 

subfield 

the fixed 

h . 

of 

field 

On the other hand, let 9 be a divisor of h, and we now show 

that 

B = s(L) IT (1-~ V1) EW' . 
9 9 pig IV 

Let S be the set of primes dividing 'h but not g . 

unramified at each P ES, IT T cL . Hence 
P ES P 9 

Since K(E ) is 
9 

s (L ) = B. s ( IT T ) = B IT s(T ) for some BERI . 
p ES P 

Thus 
9 P ES P 

I 
Ba = B. IT s(T ) IT (l - ~ ) = B. BS 

v PES P plh P 
ptS 

lies in ut. This concludes the proof of the claim. 

We can describe the element ~ more explicitly . For any 
P 

i = l, ... ,r, let e = s(T )/IT I; then e is idempotent in 
Pi Pi Pi Pi 

Q[GIJ. Choose an integer t prime to 6h such that 

e . 
t _ I mod p.l 

1 

- e. 
t = n. mod 6hp. 1 

1 1 
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let ~ be the restriction of [ t , R ( b h ) /K J to K(E h ) • We claim 
Pi 

that E -1 this, consider a character = ~ e To see ~ of Gl · p. p. Pi 1 1 

If ~ is nontrivial on T (equivalently if Plo divides be )' 
Pi S 

- e. 
p ~ (ep.) = 0; otherwise, Pi does not divide b ~ ' b ~ divides bhPi 1 

1 

- 1 -
and p ~ (e ) = 1, so that P e ( ~ e ) = ~ (t) = ~ '(n.) . Since 

Pi S Pi Pi 1 

- -1 
P ~ ( E p.) = ~ '(Pi)' in either case we obtain p ~ (~p.ep.) = 
111 

and so prove the claim. 

We introduce some notational conventions which will remain in 

force throughout this section . Let hI be the product of the primes 

dividing h. The symbols 9 and g' will be reserved for divisors 

of hI; such divisors correspond in an obvious way to subsets of 

the set of primes dividing h. The symbol P will always denote a 

divisor of h. 

For any g, let Wg denote the RI - module generated by the 

products IT x where each x p lies in Wp; let Tg denote the product 
pig P 

IT T ; we have 
pig P 

Th = Gl and, by convention Wl = RI' Tl = {I}. 
1 

It is clear that each Wg is contained in ~[GlJ, a ryP furthermore 

is free, of rank IGll over ~. [For it suffices to show, as in 

lemma 2.18, that for each character ~ of Gl , p ~ (Wg) t O. Let 

The element x = IT s(T ) IT (I-f ) lies in Wg and 
pig P pia P 
p+a 

p ~ (x) = IT IT I t 0, so that Pe (Wg ) t OJ. 
pig P S 

pta 

We view W as being formed from Wl = RI by multiplying 

successively with the modules Wp for each p: most of what we 

prove arises by comparing the module Wand W , where pt g. 9 pg 



69 

Wpg is generated by the products XpXg where Xp EWp' Xg EWg . The 

main tool for comparison is a pair of exact sequences defined as 

follows. 

Since e is idempotent, ep(l-ep ) = o. Thus (l-e ) s(T ) = 0 p p p 

- I ~ 

and (l-e ) (1-[; ) (l-e
p

) , since L: 
-1 Hence (l-e ) W (l-ep)Rl , = = A e = p p p p . p p p 

so that (l-e)W = (l-e.f)W , if pfg· If A is any Rl-submodule p gp 9 
of ~[Gl J, we denote by A P , the set of elements of A left fixed 

by T p. an element a EA is fixed by Tp if and only if (l-e ) a = o. p 

Therefore we have a pair of exact sequences of Rl-modules: 

T 
(1) 0--> W p --> W --> Y - - > 0 

9 9 

T 
(;2 ) o --> W P --> W - - > Y --> 0, gp gp 

where Y = (l-ep)Wg = (l-ep)Wgp ' and the surjections in (1) and (2) 

are induced by multo with (l-ep ). We begin with two simple lemmas. 

Lemma 2.19. Let H be a subgroup of Gl such that 

HnT = <1 > . 
P 

Let A be a HT submodule of ~[G1J, and suppose A is free over HTn. 
p I I~ 

T 
Then A p and (l-e )A are both free over H. 

p 

This lemma is proved in a similar manner to that of Sinnott 

([25J, lemma 5.1). 

Lemma 2.20. 

T 
(AW ) P 

P 
T 

(AW ) P 
p 

Let A be an Rl-module of ~[G1J. Then 

1 T 
= s(T )A + (l-A- )A P Hence if A is free over Tn' 

p P r 
T 

= A P = s (Tp)A. 

[AWp denotes the Rl-module generated by products au where 

UEW J. 
P 
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Proof: The second statement is immediate from the first. To 

prove the first, let a be any element of AW . Since p 

Wp = s (Tp)Rl+(l-~p)Rl' we may write a = s (Tp)b+(l;~p)C with 

b,c EA. Now (l-e )a = (l-e )c; so a lies in (AW ) p if 
P T P P 

(l-e )c = 0, i.e. CEA p Since (l- ~ )c = (l-A - l)c if . 

and only if 
T 

p p p CEA P, the 

lemma follows . 

Lemma 2.21. If 9 and g' are relatively prime, then W is a free 
9 

Tg,-module; if in addition, gg' f hI' then Wg is a free module. JT
g

, 

Proof: The proof proceeds by induction on g. If 9 = 1, W = 
9 RI is 

free over any subgroup of Gl • Now let 9 be a divisor of hI' not 

equal to hI' and suppose the proposition is true for 9 • Let p be 

prime to 9 and let g' be prime to gp. We show that W is free gp 

over Tg " and is free over JTg , if gpg' t hI . 

Since pg' is prime to g, Wg is free over Tpg '; since 

ptg', TpnTg' = <1 > . Hence by lemma 2 . 19, (l-ep)Wg is free over Tg ,. 

The sequences (1) and ( 2 ) split over T 9 , , and 

T 
W ~ 

9 
W P ffi (l-ep)Wg 9 I 

T 
W P ffi (l-e ) W gp p 9 

as Tg - modules. Since pfg, Wg is free over Tp . By lemma 2 . 20, 

T T 
Wg~ = WgP, and thus Wg ~ Wgp as Tg, - modules. Hence Wgp is free 

over Tg " as desired. 

Suppose gpg' t hI; then J nT ,= <1 >. Now Wg is free over gpg 

JT pg ' (by our inductive hypothesis) i . e. over Tp . JTg , and, 

TpnJTg' = <1 > , and lemma 2.19 implies that (l-ep)Wg is free over 

JTg ,. The sequences (1) and (2) split over JTg " and Wg ~ Wgp 



----I 
I 
I 
1 
I 
I 

T 
as JT , - modules, because W P = 

9 9 
JT 9 " q . e . d . 

T 
W p . 

gp Hence W is free over gp 
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This lemma will be used to compute cohomology groups arising 

from the modules W ; these cohomology groups will be used in the 
9 

last part to determine the index (R : U) . A general refererce is [21 J ch. 8. o ,0 

Let A be a Gl-module, and G2 a subgroup of Gl • For any 

OEG1 , the endomorphism of A induced by multiplication with 0 is a 

G2 - endomorphism, since Gl is abelian . Thus 0 induc e s an endo ­

morphism 0* of the cohomology group Hq (G 2 ,A) for any q ~ O . We 

thus obtain an action of Gl on Hq (G 2 ,A) which makes Hq (G 2 ,A) into 

a Gl-module. The following properties of this Gl-module structure 

are immediately verified: 

(1) If f : A --> B is a Gl - map, so is the induced map 

f*: HQ(G
2

,A) --> HQ(G 2 ,B) . 

(2) If 0 --> A --> B --> C --> 0 is an e xact sequence of Gl - modules, 

the connecting homomorphism 

is a Gl - map . 

(3) If G2 ~ G3 are subgroups of Gl , then 

is a Gl - map. Moreover if we make 

G2 HQ (G 3/G 2 ,A ) 

I 

into a Gl - module in the same way as above, via the Gl-module 
G2 G 

structure on A , then Inf: HQ(G 3/G 2 ,A 2) --> HQ(G
3

,A) is 

also a Gl - map . 
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Lemma 2.22. Let g,g' be relatively prime, and suppose neither 

9 nor g' equals hI. Then for all q > 0, 

These are Gl-module isomorphisms. Moreover, the groups are trivial 

unless gg' = hI. 

Proof: The final statement is immediate from lemma 2 . 21, for if 

gg' ~ hI' Wg is free over JTg " and thus 

We prove the first isomorphism . Since 9 ~ hI' Wg is free 

over J by lemma 2.21 and so Hq(J,W ) = 0 for all q > O. Hence 
9 

inflation gives an isomorphism of Gl-modules 

for all q > o. Since g' ~ hI' JnTg , = <1> and we may identify 

JT 9 ,I J ~ T 9 , • 

The second isomorphism is similar. 

W is free over T " so that Hq(T "U ) 
9 9 9 9 

By lemma 2 . 21 again, 
I 

= 0 for any q > O. Hence 

inflation gives an isomorphism of Gl-modules 

q Tg , 
H (JT ,IT "W ) ~ 

9 9 9 

for all q > O. Since g' ¥ hI' we may identify J ~ JT ,IT ,. 
9 9 

This completes the proof. 

For any q > 0, and any g, let g' 

brevity, 

T , 
= Hq(J W 9 ) 'g • 

-1 = hlg and write, for 
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Since gg' = h l , these groups might not be trivial: we shall 

determine the structure of these Gl-modules. 

Lemma 2.23. Ai has exponent dividing e K, and Gl acts trivially 

on Aq . 
9 

Proof: Since J has order e K, we certainly have eK.Ai = O. To see 

that G acts trivially on Aq it suffices to show that T acts 
1 . g' p 

trivially, for each p. 

-1 
If P does not divide g, p must divide g' = hlg • Then Tp 

T , 
acts trivially on W 9 , and therefore acts trivially on Aq for 

9 9 
all q > O. 

If P divides g, let 9 = pb for some divisor b of hl . Now 

Wg is the Rl-module generated by products xpxb where 

Thus 

Let T belong to Tp. Then (T-l)W c Wb ' because (T-l) s(T ) = 0 
9 - P 

and (1-1) (l-E ) = (T-l). 
p 

Gl-modules: 

~ve obtain a commutative diagram of 

Here ~ is the map induced by multiplication by 1-1, and ~ is the 

map induced by multiplication by l-L
p

. Since (T-l) (l-E
p

) = (T-l), 

~o~ is simply the endomorphism of W induced by multiplication 
9 

h -1 with T-l. All of these maps are Gl-maps. Let g' = 19 Taking 

T ,-invariants, and applying the functor Hq(J, 
9 

we obtain a 

} 
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second commutative diagram 

(~*, ~* denote the 
T , 

2.22, Hq(J,Wbg ) = 

maps induced by ~ and ~) . However, by lemma 

0, since 9 'b -1 
= P hI 'I hI' Hence ~* o ~* = 0 

i.e. (T-l)A
q = O. 
9 

Thus T acts trivially on A q. the proof is 
p g' 

concluded. 

The next lemma enables us to determine the order of the 

group Aq . 
9 

Lemma 2 . 24. Suppose that p does not divide g . For any integer 

q > 0, there is an exact sequence 

- > Aq+l -> O . gp 

Proof: We use the basic exact sequences (1) and (2) . Since 

(l-~)W c W , there is a Gl-map S:Wg -> Wgn induced by 
p 9 - gp I~ 

multiplication by l-~. From this, and the sequences (1) and (2), 
p I 

we obtain the following commutative diagram, with exact rows: 

( 3) 

o 
T 

---> W P 
9 

la 
T 

o ---> W P 
gp 

---> W 
9 

is 
---> W 

gp 

---> Y ---> 0 

---> Y ---> 0 

Here Y = (l-e )W , and a and y are the maps induced by S. Since 
p 9 T T 

ptg, W is free over T (by lemma 2.21); hence W p = W P (lemma 
9 p . gp 9 

- 1 
2.20). Since I-En = I-A e, a is the map induced by multiplication 

I ~ p P 

with l-A~l, and y is the identity map on Y. 
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Let g' h,g - 1 - 1 By lerruna 2.21, both W and Wgp free = p . are 
Tp 9 

over T by 1 errun a 2.19, Wg and Y are also free over T 9 , , 9 , . 

Taking T g' invariants in (3 ) leaves rows exact: we therefore 

obtain a second corrunutative diagram of Gl-module with exact rows: 

T T 
0 > pg' > g ' W W 

9 ' Q J 

(4 ) 
il-A~l is 

T T , 
0 > W pg' > w. 9 

gp gp 

(here "I" denotes indentity map). 
T , 

Now Hq(J,W 9 )' = 0 for any q > 0, 
9 

since 

(lerruna 2.22). q Applying the functor H (J, 

T , 
> Y 9 > 0 

11 

i' Y 
T

g
, 

)- P 

- 1 
99' = hIP ~ hI' 

to (4), we obtain 

from the long e x act cohomology sequence the following corrunutative 

diagram of Gl-modules, with exact r o ws: 

1 T, 
Aq T , q +l 

... --> Hq - (J,Y 9 )--> - - > 0 - -> Hq(J,Y 9 ) --> Ag 
9 

-> . .. 

11 ll-A~l 
1 11 ll - A;l 

1 T, Ci l Cl. 2 oL T , 
A q+l_> .. . ... --> Hq- (J, Y 9 ) - - > Aq --> Aq ~> Hq(J,Y 9 ) - - > 

9 gp 9 

(here q is a positive integer). Let Cl. l , Cl. 2 , Cl. 3 d J note the maps as 

shown in the second row of the diagram . 

Using the commutativity of the square on the far left, we 

see that the image of Cl.
l 

is (l - A- ljAq, which is 0 by lerruna 2 . 23 
p 9 

(because A~l acts trivially). Hence the map Cl. 2 is injective. The 

same argument applied to the square on the far right shows that 

Cl. 3 is surjective . Finally, the top row gives an isomorphism 

T , 
Hq (J, Y 9 ) ~ 

The lemma is proved. 
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The last two lemmas enable us to determine the order IAql of Aq 
9 9 

for any positive integer q. 

Lemma -2.25. Let n be the number of primes dividing g. 

If n = 0, 

If n > 0, 

IAil = 1 

IAil 

IAil 

= 

= 

e K 

2 eK 

if q is odd 

if q is even. 

n-l 

Proof: Let n = 0, so that 9 = 1 . Since Wl = Rl and Th = Gl , 
1 

Gl Gl where (Rl )Jdenotes the kernel of the map s(J) in Rl . 

Also 

Since J is cyclic, Aiq+l = Ai and Aiq = Ai for all q > 0. Thus we 

have computed the order of Ai. 

Lemma 2 . 24 implies that, for 9 and any pt g t 9 at 

A simple induction shows that 

This proves the lemma. 

We can now calculate the index (Ro:Uo ) using the results of 

this section; we begin with the index (Rl:W) . 
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For i = 1, .. . ,r, let gi = Pl",Pi' and let go = (1). Each 

gi is a divisor of hI' and W = Rl,W = W. As noted earlier, 
go gr 

each W has rank IGll as an abelian group, so the indices 
gi r 

(W :W) are defined. 
9 i-I 9 i 

Hence (Rl:W) = IT (W :W). 
i=l 9 i-I 9 i 

This 

expression is a product of indices of ' the form (Wg:Wgp) where P 

does not divide g. In view of the exact sequences (1) and (2), 
T T ' 

lemma 2.9 shows that (W:W ) = (W P: W p) But lemma 2.20 shows 9 gp 9 gp ' 
'I' T 

that W p = W p. Hence (Rl:W) = 1. 
9 gp 

We use this result to obtain a relation between 

(Rl:W) = (Rl,o:Wo ) (S(Gl)Rl : ~(Gl)W), Now s(Gl)Rl = ~ s(Gl ) and 

S(Gl)W = IGll~ S(Gl ), so that (Rl,o:Wo ) = IGll-l. Again by lemma 

-1 
2.9, (Rl,o:Wo ) = IGll = (eJRl,o:eJWo ) ((Rl,o)J: (Wo)J)' 

We investigate the second factor on the right. First note 

that (Rl)J ~ Rl,o' and thus (Rl,o)J = (Rl)J i similarly (Wo)J = WJ . 

Now 

where we recall that j generates J . Since (Rl)J = (1-j)R1 , 

((Rl)J:WJ) = ((l - j)Rl : (l-j)W) (WJ : (l-j)W)-l . 

1 2r - l 
But WJ/(l-j)W ~ H1(J,W) = ~ has order e K by lemma 2 . 25 

1 

because r is the number of prime divisors of hI' Combining these 

results, we obtain 

2r - l -1 
= e K . I Gll 
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It remains to compute ((l - j)Rl : (l - j)W) . As before, we write 

r 
((l-j)Rl : (l - j)W) = IT ((l - j)W : (l-j)W ), 

i=l gi - l gi 

which leads us to 

not dividing g. Since 

indices of form ((l - j)W
g

: (l - j)W
gp

) with p 

(l-e ) (l-j)W . ~ (l-e ) (l - j)W , lemma 2 . 9 
p gp . p 9 

shows that 

By lemma 2 . 20, 

T T . 
((l-j)W ) p = S(T ) (l-j)W +(1 -1. - 1) ((l-j)W ) p and is 

gp p 9 P 9 
T 

contained in ((l-j)W ) p. 
9 

T 
B = ((l-j)W ) P/'S(T ) (l-j)W . 

9 P 9 
Let 

Then 
-1 T T 

B/(l-A p )B ~ (l - j)WgP/(l-j)Wg~ , 

T T 
and ((l-j)W P: (l-j)W p) = IB/(l -A~l)BI . 

. 9 gp ~ 

We may identify B as one of the cohomology groups of the 

preceding section as follows . The map W --> (l - j)W given by 
9 . I 9 

multiplication by (l-j) induces an exact sequence: 

o --> W
J 

9 
--> W 

9 
--> (l-j)W --> 

9 
o. 

From this we obtain the long exact cohomology sequence (of Gl-modules): 

T 
... --> W P --> 

9 

T 
(l - j)W P -> 

9 
HI (T WJ ) - - > Il- (T ,W ) -> 

p' 9 p 9 

Now W is free 
9 

T 
W P = s(T ) W 

9 p . 9 

of Gl - modules 

over T , so 
P 

T 
in (l - j)W p 

9 

Hl (T W) = 0 Since the image of p' 9 • 

is s (T ) (l-j)W , we obtain the isomorphism 
p 9 
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1 T 
Lemma 2.22 shows that B ~ H (J,W p) provided that neither 

9 

P nor 9 equals h l . Now 9 does not equal h l , because gp divides h l . 

In the case that p = hl , we have 9 = 1, Tp = Gl , Wg = Rl and 
G . 

B = ((l-j)Rl ) 1/ s(G l ) (i-j)Rl = O. 

We now now compute ((l-j)W : (l-j)W ). First suppose that 
9 . gp 

r = 1; then hl = p and 9 = 1 . We have just seen that B = 0 in 

this case, so that 

Now consider the case r > 1 . If gp = hl , lemma .2.22 shows that 

B ~ Hl(J ,wJ) = 0 and so 
p 9 

On the other hand, if gp = h1 , B 

and so 

~ A1 ; by lemma 2 . 23, (l-A-l)B = 0, 
1 P 

2r -2 
( (1- j ) W : (1- j ) W ) = I Al I = e

K 9 gp 9 

because the number of primes dividing 9 is r-l. 

We conclude that the index ((l-j)Rl : (l-j)W) / equals 1 i f r = 1, 
2r -2 

and equals e K if r > 1. Consequently the value of 

is equal to eKIG11-1 = (~(h)/eK)-l if r = 1, 

r-2 
= (~(h)/e~ )-1 if r > 1. 

Applying this to the results of §3 we see that [S:CJ equals 

r-2 
12 [H:KJ - l h l' f r = 1 and h' 1 12[H:KJ-lh 2 -r+l - 1 H ,ot erWlse equa s HWleK .eH 

where wl is the divisor of w specified there . 
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Chapter 3 . The index of elliptic unit~ for fields of divisdon 

pOints on an elliptic curve. 

This chapter presents the calculation of the index of the 

elliptic units for fields of division points on an elliptic 

curve E defined over the imaginary quadratic base field K. The 

techniques used are similar to those of the preceding chapter, 

and again are inspired by the work of Sinnott [22J. The results 

depend upon those of the preceding chapter; hence we assume that 

K has class number one . Also, as explained below, the conductor 

of such a field is assumed prime to 6; but it is clear that the 

relaxation of this assumption introduces a factor divisible by 

only 2 or 3 (c.f. earlier remarks in chapter 2, and remarks in 

§ 2 of this chapter.) , a 'nd so does not affect the main re suI ts of 

this chapter. 

Let E be an elliptic curve which is defined over K, and 

whose ring of endomorphisms is isomorphic to the integers 0 of K. 

Since K has class number I, E has a global minimal model (see 

[28J, p40), i.e. E is specified by an equation 

I 

where the coefficients a. lie in 0, and the discriminant 6 is a 
1 

unit except at precisely those pOints of K where E has bad 

reduction. Under the transformation 

1 n = y + 2(al x+a 3 ) 

1 2 S = x + l2(a l +4a 2) 

231 1 
this takes the form Kl: n = S - Lf9 2s - ~ 3 for some constants 

g2,g3 (which are integral except perhaps at primes above 2 and 3) . 

Let p(z) be the associated Weierstrass function satisfying 
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Since K has class number one, there is a complex constant ~ such 

that L = ~o is the period lattice of p(Z)i the discriminant, 

~(L), of L, equals~. Combining the maps ~/L --> El and El --> E 

we obtain an analytic parametrization . ~*: ~/L --> E. Let ~ be 

the Grossencharacter for E and fi its conductor (see ~3 ], theorems 

7.40 and 7.42) i fi is divisible by precisely those primes of K 

where E has bad reduction. As remarked above, we assume that fi is 

prime to 6. 

Let T denote the set consisting of 2, 3 and all rational 

primes 9' such that E does not have good reduction at at least one 

prime of K lying above q. Throughout, 9 will denote a fixed ideal 

of K not dividing any prime of Ti in particular 9 is prime to 

6fi6. We will be considering the full group C of elliptic units 

of the field M = K(E ) of g-division points over Ki recall that 
g 

M has conductor fig (lemma 2.4). 

The elliptic units arise from fig-division points on L. Let 

PI be the group IT p(b) defined in chapter 1 (c.f. remark on 
blfig 
bt(l) I 

p34), and let P be the group generated by the groups 

NR(b)/R(b)nMP(b) where b varies over all divisors, except (1), 

of fig. Denoting the global units of M by S, we have C = Sn~MP. 

Let f and g denote fixed generators of fi and g respectively. 

. . e l er. 
Suppose that 6g has the factorlzatlon PI .•. Pr lnto primes 

PI' ··.,Pr (with positive integers e i ) i we suppose that the first 

t primes PI' ... ,p t are the prime divisors of gi for each 

i = l, ... ,r, let n. be a fixed generator of p .• 
1 1 
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Since we will be using results of chapter 2, we must assume 

the following condition on g: if a prime p which divides 9 is 

unramified and of degree 1, then its conjugate p does not 

divide g. 

Throughout this chapter, G will denote the Galois group 

G(M/K), and Gl the group G(R(6g)/K); Rand Rl will denote the 

corresponding group rings ?l eG] and ?l[Gl ]. Let 

p: ~[Gl] --> ~[G] be the ring homomorphism induced by the natural 

surjection Gl --> G. The letter X will be reserved for characters 

of G: these will be regarded as characters of Gl , whose kernel 

fix M. The conductor will be denoted 6 ; note that if 6 divides 
X X 

6, X is principal; the associated primitive character of 

G(R(6
X

)/K) will be denoted Xl. Similarly, the letter ~ will be 

reserved for characters of Gl , 6 ~ for its conductor, ~ I for the 

associated primitive character of G(R(6 ~ )/K) . The definition 

of X and ~ will be extended in the usual way to the integers and 

ideals of o. The idempotents attached to X and ~ (in t [ G] and 

~ [ Gl ] resp.) will be denoted e X and E~ , and the ring homomorphisms 

induced by X and ~ by PX and p~ . Note that P ( PE) = 0 if ~ is 

nontrivial on G(R(6g)/M); otherwise ~ induces a character X of 

G, and P( E~ ) = e X. 

Throughout, let £ denote the R- module mapping 

x 
£ : M ---> JR [G] 

x ~> L - logi x Oio - l ; 
OE G 

let £1 = £R(6g) denote the Rl - module mapping 



--> 

y 1--> 

JR [G
l 

] 

T -1 I -logly IT i 
TEGl 

we note that SIC ~ ~(S)/~(C) . 
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r Let S be the subset of 2 -1 divisors of fig obtained from 
e l er 

products of the ideals Pl , ... ,Pr ' but omitting (1) i set 

Let 

any rational prime p, let 

a rational number x. 

Our main result is 

hM denote the class number of M. For 

Ixl denote the usual p-adic value of 
p 

Theorem 2. The group C is of finite index in Si for any rational 

prime p not dividing 6~(fi), 

where wl is a divisor of WM. In particular, if g is a power of 

an unramified split prime of K, which lies above p, 

I [ S: C ] I = I hH I . p p 

The last statement - the case of g a power 01 an unramified 

split prime above p - follows because M does not contain any 

p-power roots of unity. 

Finally, for any R-module A, let Ao denote the submodule 

annihilated by s(G) = I 0~ let AG denote the submodule fixed by G. 
0 EG 
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§l. The class number formula. 

The proof of theorem 2 relies also on the classical 

class number formula. Recall that for any nontrivial character ~ 

t L u(r)~'(at) 
t E B(6~) ~ 

of Gl , u(~') = where f~ is a generator of 

the conductor 6~, and at = [t,R(6~)/K) J . In particular this applies 

for any nontrivial character X of G. Denoting the regulator of M 

by RM, the formula states 

eM · 1 U(X') 1 
hMIRMI = - IT 6 

e K Xll 

where the product is taken over all nontrivial characters X of G. 

[ See [ 18J, P 2 0 J . 

The proof will use the Rl-modules V(6g), U(6g) and I(6g) 

defined in §2 of the last chapter. 

and (1-E l )V(6g) = ~.U(6g), where ~ 

We saw that I(6g)V(6g) = £l(P l ), 

= L U(~')E~, the sum being 
~Il 

taken over all characters ~ of Gl . We will consider the R-modules 

v = p(V(6g)) and U = p(U(6g))i they are related by the formula 

(l-el)V = w.U, where w = p(~) = L u(x')e , the sum being taken 
Xll X 

over all characters X of G. Now U is contained }n ~[GJ, and is 

free of rank IGI as an abelian group. [For as in lemma 2.11, it 

suffices to show that for all characters X of G ,P (U) = o. 
X 

Suppose that ~ is the character of Gl which induces Xi lemma 2.11 

shows that p~(U(6g) I Oi but 

p~(U(6g)) = P
X

(p(U(6g)) = PX(U), q.e.d.]. 

The basic step in the proof of theorem 2 is to express the 

index [S:CJ = (£(S) :£(C)) in the form 

and to evaluate each index separately . In section 4, we calculate 
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the p-adic value of (Ro:Uo )' These results rely upon the similar 

results proved for the elliptic units of R(Ug) in the last 

chapter. 
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§2. Properties of elliptic units of M. 

In this section we discuss some properties of the 

elliptic units C of M; most of them are simple consequences of 

the corresponding properties outlined in §3 of chapter 2. 

Lemma 3.1. Let aEP. Then as{G)E~K if ~nd only if aEC. 

The proof is identical to that of lemma 2.12. 

Lemma 3.2. Let aEP. a-I 
Suppose that a E~M for every O'EG. Then 

2{a) lies in the group 

r 
I 12 10gl'TT·lzz s{G) 

i=l 1 

(Recall that ('TT.) = p. is a prime divisor of 69). 
1 1 

Proof: Lemma 2.13 shows that a, which lies in PI' must be of the 

r l2n. 
form s IT 1 for some integers n. and some s in ]lR (6 9) . 'TT. 

i=l 1 1 

Consequently, sE]lM and 2{a) lies in the group mentioned, q.e.d. 

The next lemma establishes the connection between 2{P) and 

2{C), and as in chapter 2, it relies upon the condition imposed 

upon 9, namely that 9 is not divisible by both an ~nramified split 

prime p and its conjugate p. For brevity we denote 2{P) by T. 

Lemma 3.3. 2{C) = To. 

Proof: Lemma 3.1 shows that 2{C) c To· For the reverse inclusion, -
consider an a in T with 2{a) in To· Then 2{as {G)) = 0 and so 

las{G) I = 1. Let b = 
s{G) a ; it lies in K 

x 
and satisfies bi) = 1 . 

The fractional ideal (b) factorizes as a product of unramified 

split prime ideals ql' . .. ,q of K and their conjugates ql' ... ,q s . s 

in the form 
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for some integer n l , ... ,ns ' Because a lies in P, for each i, 

either the ideal qi and its conjugate qi must divide fig, or n i = O. 

Since 9 is not divisible by such a product q.q., and is prime to 
1 1 

fi6, we conclude that q.q. ' divides fie 
1 1 

Let Dl and D2 denote respectively the set of divisors of fi 

and g, excluding (1); let D3 denote the set of divisors of fig 

which divide neither fi nor g . Recalling the definition of P, 

we see that P is generated by the three groups 

P. = 
1 

(i = 1,2,3) 

Now a is a product a l a 2a 3 with each ai EPi " The element a 3 is a 

unit; the argument above shows that a 2 is a unit. Thus 

laf(G) I = Ibl = 1, and since a l lies in K, la~1 = 1 for each 0 EG. 

Hence £(a) = £ (a 2a 3 ) lies in £(C), q . e.d . 

The next lemma computes one of the indices to be used in 

the proof of theorem 2. 

Lemma 3.4. To = Tn(l-el)T. Furthermore, To has ffinite index in T, 

t equal to ~(g)/eK' (Recall that t is the number of distinct prime 

divisors of g) • 

Proof: As in the proof of lemma 2.16, To = (l-el)TnT and 

(l-el)T/To ~ elT/TG; we compute th~ groups elT and TG explicitly . 

Lemma 1.12 shows that 

1 r 
= TGT L l2n logITI·I?l s(G), . 1 Vl. 1 1= 1~ 1 

e. 
where the integer np. equals IGI if Pi divides fi, or eKIGI/~(Pi1) 

1 

if p. divides g . 
1 
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Now consider TG. Let aEP: then £(a)ETG if and only if 

(a-l)£(a) = £(aa-l) = 0 for every a EG. Fix a EG. Then aa-l is 

a unit in M (an elliptic unit) and lies in the kernel of £: hence 

it is a root of unity. By lemma 3.2, £(a) lies in the group 

r 
I 12 loglTIil ~ s(G). For any prime Pi' it is easy to choose an 

i=l 

element a in P such that £(a ) = 12 loglTI 1, Is(G) (see lemma 2.16); 
Pi Pi 

consequently 
r 
I 12 logITI,I~s(G). 

, 1 1 1= 

It is now clear that (l-el)T/To is finite, and has order equal to 

e l 
the product of the factors ~(Pl ), where Pi divides g, i.e. equal 

e K 
t 

to ~(g)/eK' q.e.d. 

The next lemma computes another of the indices required for 

the proof of theorem 2. Recall that S is the collection of 2r _l 
, e l er 

divisors of 6g generated by products of the 1deals Pl , .•. ,Pr 

omitting (1); the element wM was defined in the introduction to 

-r 
be e K' b~S eR(b) nM· Let wl denote the index [(l-el)v: (l-el)T]. 

I 

Lemma 3.5. If P does not divide 6~(6), IWllp ~ IWMlp. 

Proof: The proof of lemma 2.5 shows that 

V(6g) = Tl + I n(6gb-l)~ , where Tl = £(Pl ). Hence 
b ES 

V = p(T l ) + t p(n(6gb-l))~. Let V' = ~ p(n(6gb-l))~ Since 

eR(b)nM~ is the ideal generated by the integers Na-l, where a is 

an ideal of K (prime to 6b) such that [a,R(b)nM/K] = 1, 

-1 
eR (b)nM P(n(6g b )) lies in p(Tl ). Hence V/p(T l ) = V'/V'np(T l ) 

has order dividing ~ eR(b)nM. 
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s (G
2

) 
Now P(Tl ) = £ (Pl ), where G2 = G(R(fig)/M). 

"'(I) s(G2' 

s (G
2

) 
But PI is 

clearly of finite index in P for P~ u c P , - 1 c P. We conclude 

-1 
that (V:T) = (V:p(T l )) (T:p(Tl )) exists, and moreover, that 

I (V:T) Ip = I (V:p(T l )) Ip. Also (VG:TG) = e~ (see lemma 2.17), so 

the statement of the lemma follows immediately . 

We have calculated most of the indices to be used in the proof 

of theorem 2; we gather these results together now. Recall that 

wl denotes the index [(l-el)v: (l-el)TJ . 

Theorem 2. C has finite index in S, equal to 

.e -1 
12[M:KJ-lh (R :U ) (~) w . <P(9

t
) . 

Moo eR 1 e K 

Proof: As noted earlier, SiC ~ £(S)/£(C) . Both £(S) and £(C) 

lie in the subspace X = (l-el ) ~[GJ . Thus, formally at least, 

where we recall that T = £(C) . In fact, each of the groups o 

appearing is a lattice in X; in the course of the proof this will 

be demonstrated for each index separately. The If st two indices 

have already been calculated in the last two lemmas . Note that 

the index (Ro:Uo ) is defined, for the span of each Ro and Uo is X 

(the span of U is ]R [G J, c. f. page 84), they are discrete, lie 

inside ~[GJ and are finitely generated over ~. The first index 

is easily seen to be defined and equal to 2[M:KJ-~~11 by the same 

method on page 62 . It remains to consider the third index 
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(Uo : (l-el)V). Clearly (l-el)V ~ X, and it was seen in §2 that 

(l-el)V = w.U. We first observe that (l-el)U = Uo. [For, from 

page 63, (l-cl)Ul = Ul,o is the submodule of Ul annihilated by 

s(G l )· Apply p to obtain (l-el)U = p(Ul,o) = UoJ. Now consider 

the linear transformation A on X in~uced by multiplication with w: 

Ax = wx for each XEX. 

Then A(Uo ) = (l-el)v. By considering the ~ -linear extension of A 

to (l-el)~[GJ, we have (see page 63), 

det A = IT u (X ' ) 
Xtl 

where the product is taken over all nonprincipal characters X of G. 

By the class number formula, det A t 0, so that (l-el)V is indeed 

a lattice in X, and (U : (l-el)V) = I IT u(X') I· 
o Xtl 

Combining these calculations gives 

by the class number formula . This proves the stated result . 

In the next section we consider the p-adic value of (Ro:Uo ) 

for a rational prime p not dividing 6~(6). Our results so far 

Remark'. If the restriction (6,6) = 1 is removed extra factors 

divisible by 2 or 3 enter the formula, but as remarked on p6S, these 

come from the index (Uo : (l-el)V) , and can be compensated for by 

using the slightly larger group of elliptic units mentioned on p3S, 

and modifying V. In particular, the p-adic value for the index is 

unaffected by removal of this restriction. 
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In this section we calculate the p-part of (R :U ) for o 0 

any rational prime p not dividing 6~(6)i these resulrnimmediately 

imply theorem 2. The prime p will be fixed henceforth and 

throughout, we will be calculating the p~part of various indices: 

this is equivalent to considering the index of appropriate 

~ -lattices, as we now explain. 
p 

Let X be a finite dimensional vector space over ~, and let 

Ml ,M2 be lattices which span the same subspace V of X. Then there 

exists a linear transformation A: V --> V such that A(M
l

) = M2i 

the index (Ml :M2) was defined to be Idet AI. 

chapter 2). 

(c.f. section 2, 

Now consider a finite dimensional vector space Y over ~ , 
p 

and two ~p-lattices Nl ,N 2 which span the same subspace W of Y. 

As before, there exists a linear transformation B: W --> W such 

that B(Nl ) = N2i in this case we say the p-index of N2 in Nl exists, 

denote it (Nl :N2)p' and give it the value Idet Blpi the value does 

not depend upon the choice of B. 

It is easily checked that if Nl and N2 are fi~itely generated 

~p -submodules of ~p[GJ, with N2 ~ Nl , then (Nl :N 2)p is defined 

if and only if N2 is of finite index in Nl , and in this case 

-1 
(N l :N 2)p = [N l :N 2 J, the index. Also, given three finitely 

generated ~p-submodules Nl ,N 2 ,N3 , then (Nl :N3 )p= (N l :N 2)p(N 2 :N 3)p 

i.e. whenever two of these symbols is defined, so is the third, 

and this relation holds. 

Now consider the original finite dimensional vector space X 

over ~, and the lattices Ml and M2 . The tensor product Y = X®~~p 
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is a finite dimensional space over ~ (of dimension equal to that . p 

of X over ~), and the products N. = M.®2Z 2Z (i = 1,2) are 
1 1 P 

2Zp -lattices which generate the same subspace Y, viz . W = V®f/2().p. 

The linear transformation A which mapped Ml onto M2 now induces 

a linear transformation B: W -> W such that B(Nl ) = N2 , and 

det B = det A.Thus the index (N l :N2)p is defined, and equals 

I det A I pi equivalently, I (Ml : M2 ) I p = (Ml ®2Z Z'lp : M2®2Z 2Zp ) p. By a 

slight abuse of notation, we set (Ml :M2)p = I (Ml :M2 ) Ip. 

The following analogue of lemma 2~9 is quite usefuli it is 

proved in a similar fashion (see [25 ] lemma 6.1). 

Lemma 3.6. Let Nl and N2 be Z'lp-lattices in (dp[G] and suppose that 

Let a be an element of ~p[G]. Let N. l,a 

denote the set of elements a EN. such that aa = 0 (i = 1,2). Then 
1 

both (Nl :N2 ) and (aNl :aN 2 ) are defined and ,a . ,a pp' 

(Nl :N2 ) = (Nl :N2 ) (aNl :aN2 ) . p ,a ,a p p 

We now consider the index (Ro:Uo ). By lemma 2.9, 

(R:U) = (Ro:Uo ) (s(G)R:s(G)U). Now s(G)R = Z'l S(G)i furthermore, 

since 

'l'hU:s 

Ul = Ul,o+s(Gl)Z'l ,s(G)U 

e K 
(Ro:Uo ) = ~(6g) (R:U). 

We will compute (R:U)p by considering the p-part of indices 

related to (Rl:Ul ). Denoting by Rl and U the submodules of ,0 1,0 

Rl and Ul annihilated by s(Gl ), section 4 of the last chapter shows 

2r -2 
that (Rl :Ul ) = e K /~(6g) (r is the number of distinct primes 

,0 ,0 

dividing 6g. Thus 

and so 
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Let G2 be the subgroup of G which fixes M, and let 

E = s(G2)/IG21. Then E is idempotent in RI and the restriction 

homomorphism p induces an isomorphism E~[GIJ ~ ~[GJ under which 

ERl ~ Rand EUl ~ Ui in particular, (R:U) = (ERl: EUl ). Since 

pt6~(fi), the idempotent E lies inside Rl,p = Rl®~ ~p. Hence the 

sUbmodules of 

respectively, 

Rl,p and of Ul,p = Ul®~ ~p annihilated by E are, 

(l-E)Rl,p and (l-E)Ul,p . Noting that ERl,p = ( E Rl)®~ ~p 

etc., lemma 3.6 shows that 

The remainder of this section is devoted to showing that the 

two factors on the right hand side of this equation have p-adic 

value less than or equal to one, and so are both equal to one. 

* We will analyse an RI-module U , which is closely related to Ul ' 

in a similar manner to that of §4 in the last chapter. 
-e. 

For a prime p. dividing fig, let T = G(R(fig)/R(figp
1
·

1
)) a nd 

1 Pi 

let s(T ) denote the group norm 
Pi 

Furthermore, let 

o = I ~ '(Pi) EC ' the sum being taken over all characters ~ of Gl , 
Pi ~ S I 

* Let U be the RI-module 

r 
generated by all products of the form IT x , with x EU . 

i=l Pi Pi Pi 

* Lemma 3.7. U is a submodule of Ul ' of index e K. Moreover, 

* * (l- E)U = (l-E)Ul and EIU = eKElul . 

* Proof: We first show that (l -E l)U = (l -E l)Ul . Let S be a subset 

of primes dividing fig, and let as = IT s(T ) IT (1 - 0 ) be a t ypical 
p ES P PfS P 

* generator of U . Let a be the largest divisor of fi g divisible only 

by p r imes not in S , and consider the element aa = s(H ) IT (l -Op) 
a pia 
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of Ul (recall that Het = G(R(6g)/R(a)) ). It is easily checked that 

* (l-£l)aS = (l-£l)aa; thus (l-£l)U ~ (l-£l)Ul · The reverse 

inclusion is similarly established (c.f. lemma 2.19). 

* = eK ~ s(Gl)£l = eK£lUl • It is now clear that U is a submodule 

of Ul . Finally, since Ul,o = (l-£~ Ul (see page 63 ), and 

* * Uo = (l-£l)U (by a similar argument), we obtain 

* * * (Ul:U) = (£lUl:£lU ) ((l-£l)Ul : (l-£l)U ) = e K· The lemma is now 

proved. 

We deduce immediately that 

For i = 1, ... , r, let bi = Pl' · .. ,Pr ' and let Wb . be the Rl-module 
l 

i 
generated by the products IT x 

j=l Pj 
where each x p. 

J 
EU ; let b = (1 ) p. 0 

J 
* and Wb = Rl ; note that Wb = U Each Wb . is contained in ~[G1J 

o r l 

and is free of rank I G11 over ZZ (this is proved a, on page 66) • 

r 
* Thus (Rl:U ) = IT (Wb :Wb ). Each factor in this product is of 

i=l i-l i 

the form (Wb:Wbp ) where b is one of the divisors b i above, and P 

is a prime divisor of 6g, not dividing b. For the remainder of 

this section b will denote such an ideal b., and P is a prime 
l 

* divisor of 6g. We view U as being formed from Wl = Rl by 

successively multiplying by the modules U (i = l, ... ,r). As in 
Pi * 

chapter 2, the calculation of the indices (Wb:Wbp ) and (Rl:U ) 

relies upon a pair of exact sequences. 
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First, it is necessary to describe the element 0p more 

e xplicitly. For each prime Pi dividing 69, let e 
Pi 

= s (T P . ) / IT P . I ; 
1 1 

it is idempotent in ~[G1J. Let t be an integer prime to 669 

satisfying the congruences 

e . 
t 1 mod 1 

- p. 
1 

-e. 
t mod 69p· 

1 
- 7f. , 

1 1 

and set = [t , R ( 69 ) /K ] • It is easily checked (c . f. page 68) 

-
that ° 

Pi 

Since 

(l - e ) Wb p p 

B -module 1 

e p. 
1 

(l-e )s(T ) p p = 0 and (1-0 ) (l - e ) = (l - e
p

) , p p 

= (l-ep)Wb , for any prime p not dividing b • 

T A, let A p be the submodule fixed by T : an 
T P 

we have 

For any 

element a 

of A lies in A p precisely if (l-ep)a = o. We obtain the following 

pair of exact ·sequences of Rl - modules 

o --> 
T 

W P 
b - - > Wb - - > Y --> 0 

(1 ) 
T 

W P --> Wbp - -> Y - - > 0, 
0 --> bp 

I 
where Y = (l - ep)Wb = (l-e )Wb ' p p and the surjections in (1) and ( 2) 

are induced by multiplication with (l-ep ) . 

But the following two pairs of sequences are also exact : 

T 
o - - > ((l-E)W)P 

b - - > (l -E )Wb --> (l-E) Y - -> 0 

( 2) T 
o --> ( (l - E)W

bp
) p-> (l - E)Wbp -> (l -E ) Y --> o. 

T 
o --> ( EWb ) P - -> EWb 

--> EY --> 0 

( 3) T - - > EY --> o. o --> ( EWbp ) P - -> EWbp 

I , 
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T T 
Lemma 2.9 shows that (SW

b
: SW

bp
) = ((SWb ) P: (SWbp ) p) and 

T T 
((l-s)W

b
: (l-s)W

bp
) = (( (l-s)W

b
) p( (l-S)Wbp ) p) . 

Now Wbp = WbWp (the RI-module generated by products xbxp with 

xb in Wb ' xp in W
p
), and it is easily checked (c.f. lemma 2.20) 

that 

T 
and ((l-s)W

bp
) p = 

T 
In particular, (SW

bp
) p 

1 T 
S(T

p
) (l-s)Wb + (l-A~ ) ((l -s )Wb ) p. 

T T T 
~ (sW

b
) p and ((l-S)W

bp
) p c ((l-s)W

bp
) p 

* * Since (SRl:sU ) = ~(sWb, :sWb ,) and ((l-S)Rl : (l-s)U ) 
1 1-1 1 . 

= ~((l-s)Wb,: (l-s)Wb ,)' these two indices are also rational 
1 1-1 1 

integers. But 

we conclude that both the factors on the right equal one; so 

* ~ (R:U) = (SRl:SU) = 1, and (R :U) = 1<p(6g)/eK lp- . p p 0 0 p 

Applying this to the result obtained in section 3, the index 

of the elliptic units of M has p-adic value equal to 
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§4 . The index for other abelian extensions. 

The method of this chapter can be applied to calculate the 

p-part of the index of the elliptic units for other abelian 

extensions of K. See [ lOJ for the index of related subgroups of units. 

Let N be such an abelian extension~ with conductor h; let H 

be the ray class field modulo h, and d = [H:NJ. Let h have 
e e 

f t ' , 1 r't' fK( ac orlzatlon P l ' ... ,Pr ln 0 prlmes Pl' ... ,Pr 0 el, ... ,er 

positive integers); let TIi be a fixed generator of Pi (i = 1, .. . ,r) . 

Since we use results of chapter 2, we suppose that h is prime 

to 6 (but as remarked earlier, this affects the actual index by 

factors of 2 and 3 only), and moreover that if the prime P dividing 

h is unramified and of degree one, then either the conjugate P 

does not divide h, or R(pe)nN = R(pf)nN = K, where pe and pf denote 

the exact powers of P and p dividing h. 

The elliptic units arise from h-division pOints on a fixed 

lattice L with order o. Let P l be the group IT p(b) defined in 

chapter 1, and let P be the group generated 

blh 
bl(l) 

by the groups 

NR(b)/R(b)nNP(b), where b varies over all divisions of h, except 
l 

(1). Denoting the global units of N by S, we have C = Sn~NP . 

Let S be the set of 2 r -l divisors of h generated by products 

e l er -r 
of the ideals Pl ,··.,Pr ' except (1); let wN = e K b~SeR(b)nN. 

e i Let hN denote the class number of N. For each i, let d = [NnR(P
1
, ) :KJ . 

Pi 

Theorem 3. The group C has finite index in Si if P is a rational 

prime not dividing 6d, 

I [ S : C J I p = I h Nip. I w 1/ eN I p 

where wl is a divisor of wN. 
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Throughout this section, let G and Gl denote the groups 

G(N/K) and G(H/K) respectively, and R = 2Z [G] and Rl = 2Z [G l ] the 

respective group rings. Let P:~[Gl] --> ~[G] be the ring homomorphism 

induced by the surjection Gl --> G . The letters X and ~ will be 

reserved for characters of G and Gl (resp.)i X will be regarded 

as a character of Gl whose kernel fixes N. The conductors will 

be denoted fi X and fi ~ (resp . )i the associated primitiv e characters 

by X' and ~ ' (resp . ) . The ring homomorphisms associated to X and ~ 

will be denoted Px (mapping ~[G] --> ~) and P~ (mapping ~[Gl] --> ~)i 

the idempotentsattached to X and ~ will be denoted e 
X 

A is any R-module, the submodule annihilated bY' s (G) = 

be denoted A. Let t denote the mapping o 

x 
t : N ---> JR [G] 

x ~> L - loglxOlo - li 
OEG 

and E: ~. 

L a will 
OEG 

If 

x 
let t H:H --> JR [ Gl ] denote the mapping defined in chapter 2i note 

that SIC ~ t (S)/ t (C). 

I 
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§5 . Proof of theorem 3. 

The proof of theorem 3 relies on the classical , class nWllber 

formula. Denoting by ~ the regulator of N, it states ([18J p20) 

I u (X ' ) I 
6 

where the product is taken over all nontrivial characters X of G . 

We will use the RI-modules V(h ) ,'U (h) and I(h) defined in §2 

of chapter two . Recall that I(h)v(h) = l H (P l ), and 

(l- £l)V(h) = n.u(h), where n = L u( ~ ') £ . We consider the 
. l; ~l l; 

R-modules V = p(V(h)) and U = p(U(h))i denoting p(n) = L u( X ')e 
X~(l) X 

by w (the sum over all characters X of G), we have (l - el)V = w. U. 

It is easily seen that U, which is contained in Q[GJ, is free of 

rank I G lover 2Z [c. f . lemma 2.11, and page 84 J . The basic step 

in the proof is to express [S:CJ = (,Q,(S):,Q,(C)) in the form 

and evaluate each index separatelYi in the final stage we calculate 

The following lemmas establish properties o~ C analogous to 

those of §3 in the last chapter . 

Lemma 3.8 . Let a EC . Then as(G) E ~K if and only if a EC . 

The proof is identical to that of lemma 2 . 12 . 

Lemma 3.9 . Let a EP . 0-1 Suppose a E ~N for every 0E G. Then l(a) 

lies in the group 

r 
L 1 2 log I 7T • I 2Z .s (G) . 

i=l 1 

The proof is very similar to lemma 3 . 2 . The next lemma 

establishes the connection between T = l (P) and ,Q, (C)i it uses the 

condition imposed upon h earlier . 
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Lemma 3.10. ~(C) = To. 

Proof: Lemma 3.8 shows that ~(C) c T o· For the reverse inclusion -

consider an a in T with ~(a) = O. Then ~(as(G)) = 0 and so 

laS(G) I = 1. Let b = as (G) ; it lies in K 
x 

and satisfies bb = 1 . 

The fractional ideal (b) of K factorizes .as a product of unrarnified 

split prime ideals ql' ··.,qs of K and their conjugates ql' ... ,qs 

in the form 

for some integers nl, ... ,ns . Because a lies in P, either q.q. 
~ ~ 

divides h or n. = 0, for each i = l, ... ,r. 
~ 

Let 6 be the largest divisor of h, which is divisible only 

b h · h l' d h f -
l . y unramified rational primes q w ic sp it ~n K, an set 9 = u 

Let Dl and D2 denote respectively the set of prime power 

divisors of 6 and g, excluding (1); let D3 denote the remaining 

divisors of h, excluding (1) (they are divisible by at least two 

distinct primes). Now P is generated by the three groups 

P. = 
l IT NR(b)/R(b)nN p(b) 

bED. 
l 

(i=1,2, j ), 

so a is a product a l a 2a 3 with each aiEP i . The element a 3 is a 

unit; the condition on h implies that a 2 is a unit. Thus 

la~(G) I = Ibl = 1, and since a l lies in K
X la~1 = 1 for each 0 EG. 

Hence ~(a) = ~(a2a3) lies in ~(C), q.e.d. 

The next two lemmas compute two of the indices mentioned above. 

Lemma 3.11. T 
o = Tn(l-el)T. 

r 
Furthermore To has finite index in 

e. 
(l-el)T, equal to IT d 

i=l Pi 
l 

(Recall that d p . = [NnR(pi ) :KJ). 
l 
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Proof: As in the proof of lemma 2.16, To = (l-el)TnT and 

(l-el)T/To ~ elT/TGi we compute the groups elT and TG explicitly. 

Lemma 1.12 shows that 

r 
= -J.-r L 12n 10gl7T·I 2Zs(G), 

IGI i=l Pi 1 

e. 
where n = [N: NnR(P

l
.

l
) Ji note that n d = IGI. Plo p. p. 

1 1 

Now consider TG. Let aEP. If ~(a)ETG, a now familiar argument 

a-I shows that a E~N' for every aEG, and so by lemma 3.9, ~(a) lies 

r 
in L 12 10gl7T. 12Z s(G). For any prime Pi' it is easy to choose an 

i=l 1 

element a in P such that ~ (a . ) = 12 
Pi Pi 

G r 
consequently T = L 12 10gl7T.I2Z s(G). 

i=l 1 

log I 7T . I s (G) (see lemma 2 .16) i 
1 

It is now clear that To 

r 
is of finite index in (l - el)T, equal to IT d . 

i=l Pi 

The next lemma describes another index needed in the proof of 

theorem 3. Let wl = [(l-el)v: (l-el)TJi recall that wN was defined 

in the introduction. 

The proof is very similar to lemma 3.5. We / now gather together 

these results. 

Theorem 3 ~~. C has finite index in S equal to 

12[N:KJ-l h (R :U ) 
-~ 0 0 

Proof: As explained earlier, we write [S:CJ = (~(S):~(C)) in the 

form 

( ~ (S):R ) (R :U ) (U : (l-el)v) (l-el)V: (l-el)'l) ((l-el)T:T ). 000 0 ' 0 
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Each of these groups is a lattice in X = (l-e l ) JR [GJ, as we shall 

see. The fourth and fifth indices have been computed above; 

the index (Ro:Uo ) is defined, because, as we noted above, U has 

rank i Gi over 2Z . 

[N:KJ-l
i 

-1 

The first index is easily shown to equal 

2 RNi (c.~. page 62) . Finally an argument similar to that 

of the proof of theorem 2 (page 63) shows that the third index 

equals IT iu(x') i (the product over all characters X of G) . The 
X;fl 

class number formula implies that 

[S:CJ = [N:KJ-li 1-1 i -, i r 2 RN .(R:U) IT u(X) .wl . IT d 
o 0 X;fl i=l Pi 

e -1 . r 
= 12 [N: K J -lh , (R : U ) (.-B) w' IT d , q. e . d . 

N 0 0 e K 1 i=l Pi 

We finally address ourselves to the p-adic evaluation of 

(R :U ). Fix a prime p not dividing 6d. By lemma 2.9, o 0 

(R:U) = (R :U ) (s (G)R: s(G)U). Now s (G)R = 2Z s ' (G); furthermore, o 0 

since Ul = Ul ,o+S(G l )2Z, s , (G)U = iGiIGli-lp(s(Gl)Ul) = iGlis(G)2Z 

Thus (Ro:Uo ) = iG11-l(R:U). 

Denoting by Rl,o and Ul,o the submodules of Rl and Ul 

annihilate~~ .~Gl)' section 4 of the last chapter s~owed that 

-1 -1 
(Rl :Ul ) = 1<I>(h) 1 = iGli , and so (Rl:Ul)p = 1. 

,0 ,0 P P P 

Let G2 denote the subgroup Gl which fixes N, and let 

E = S(G2)/iG2i. Then E is idempotent in Rl and the restriction 

homomorphism P induces an isomorphism E~[G1J ~ ~[GJ under which 

ERl ~ Rand EUl = U; in particular (R:U) = (ER1: EU1 ). Since 

pf6d, the idempotent E lies inside Rl = Rl@~ 2Z ; thus the ,p liJ P 

submodules of Rl,p and Ul,p = Ul @2Z 2Zp annihilated by E are, 

respectively, (l-E)Rl and (l-E)Ul . Hence, by lemma 3.6, 
, P , P 
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The remainder of this section is devoted to showing that the 

indices on the right have p-adic value less than or equal to one, 

* and so both equal one. We need an analogue of the module U 

defined in the last section. For any prime Pi dividing h, let 
-e. 

T = G (H/R(hp. l)), and 0 
Pi l Pi 

= I ~1(p·)£C' the sum being over all 
~ l <, 

- * characters ~ of Gl . Let U = s(T )Rl+(l-a )Rl , and let U 
Pi Pi Pi 

be 

r 
the RI-module generated by products IT x 

i=l ' P i 
with x EU p. p.' It is 

l l 

* easily checked (c.f. lemma 3.7) that U is a submodule of Ul ' of 

* index eK' and that (l-£l)U 

For i = l, ... ,r let b. = PI' ... ,p., and let Wb be the 
l i l i 

RI-module generated by products IT xn with Xn.EU n ., set bo = (1), 
j=l '~j '~ J '~J 

* and Wb = RI; note that Wb = U . 
o r 

As before, each Wb . is contained 
l 

in ~[GIJ and is free of rank IGll over ~. Thus, 

r 
* (Rl:U ) = IT (Wb :Wb ) • 

i=l i-I i 
Each factor is of the form (Wb:W bp ), 

where b is one of the divisors b. above, and p is a / prime divisor 
l 

of h, not dividing b. For the remainder of this section, let b 

denote such an ideal b., and P a prime divisor of h. As before, 
l 

* we view U as being formed from Wl = RI by successively multiplying 

by the modules U (i = l, ... ,r); the main tool is provided by two 
Pi 

pairs of exact sequences. 

For each prime P, let en = s(T )/IT I; then e is idempotent, 
,~ P P P 

and (l-ep)Wbp = (l-ep)Wb • Let a denote either the idempotents £ 

or (1-£). The following pair of sequences is exact: 
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T 
0 --> (aW b ) p --> aWb --> aY --> 0 

(1 ) T 
0 --> (aWb p) p --> a'itvb --> aY --> 0, , p 

where Y = (l-e )Wb = (l-e )Wbi the surjections are induced by 
p P P 

multiplication with (I-e). Lemma 3.6 shows that p . . 
T T 

(awb:awbp ) = ((aWb ) P: (awbp ) p). But it is easily checked (c.f. 

lemma 2.20) that 

, d f' d b f so that -- ,-le 1S e 1ne , as e ore, Gp Ap P In particular, 

T 
~ (aWb ) P, so that (awb:awbp ) is a rational integer. 

* Hence (aR1:au ) = 
r 
IT (aWb :aWb ) 

i=l i-I i 
* * 

is a rational integer. But 

1 = (ERl:EU )p((l-E)Rl : (l-E)U )pi we conclude that both factors 

* the right are equal to one. 
;...1 

So (R:U) = (ERl:EU) = 1, and p p 

(Ro:Uo)p = IGll p . 

Applying this to the earlier index result, we see that the 

p-adic value of the index of the elliptic units is equal to 

r 

IhNI ·lwj/eNI ' IT Id I ·IGjl-
1 

, where w
1 

~s a divisor of wN I 
p p i=j Pi p p 

e, e. e. 
Clearly, [R(p.~): R(p. ~)nN] <Hp. ~) /eKd divides d, so 

~ ~ ~ Pi 

that if p does not divide 6d, this index has p-adic value I, 

This then implies the result of theorem 3, 

on 
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Chapter 4. Applications to the arithmetic of elliptic curves. 

In this chapter we consider the relation between the rank of 

the group of F-rational points on an elliptic curve E over a 

number field 'f, and the order of the zero of the Hasse-Weil zeta 

function L(E/F,s) for E over F at s = 1. It is conjectured that 

3 L(E/F,s) , which is defined in the half plane Re(s) > 2,has an 

analytic continuation to the whole plane,' and given this, Birch 

and Swinnerton-Dyer [lJ conjectured that the rank of E(F) modulo 

torsion is precisely the order of the zero at s= 1. (See also L 3 J, [26J)., 

For the case we consider here, namely, when E has complex 

multiplication, Deuring [9 J has proven the analytic continuation 

of the Hasse-vJeil zeta function by identifying it with a product 

of Hecke L-series with Grossen characters. If ~ denotes the 

Grossen character of E, and has conductor 6, let 

L(ll',s) = IT (l-~(q) (Nq)-s)-l" and define L(~,s) similarly. 
qt6 
q prime 

~hen if ,E is defined over R, L(E/R,s) = L(~,S)L(~,s). 

Let E b~the elliptic curve described in chapter 3; we use 

the same notation for the objects attached to E; i particular, 

W denotes the Grossen character, 6 its conductor, L = no the 

period lattice described there, and T the set consisting of 2, 3 

and all rational primes q for which E does not have good reduction 

at at least one prime qf R above q. Throughout, let p be a fixed 

-rational prime which splits in R and does not lie in T; let p and p 

be the distinct factors of p, and let ~ = ll'{p), so that ~ is a 

qenerator of p in R - (see [23J §7.8). 
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For each nonnegative integer n, let F = K(E +1) and 
n pn 

Gn = G(Fn/K). The prime p totally ramifies in Fn (lemma 2.1); 

let Pn be the unique prime of Fn above p. Let CP = F be the n n,p n 

completion of Fn at Pn' Un the units of <I>n congruent to 1 modulo 
, 

Pn' and U the subgroup of such unitf? " with norm 1 to K . n P 

Let F = 
00 

U F and G = G (F IK) . n 00 00 

n~o 

Let r = G(F IF ); then 
00 0 

Goo is canonically isomorphic to r x ~, where ~ is isomorphic to Go. 

r is isomorphic to ~p' so let y be a fixed topological generator 

x 
of r . Let K: G --> ~ be the canonical character giving the 

00 p 

action of Goo on the group E 00 = U E n+l of p-power division 
p n~o p 

points on E: u O = K(O)U for each UEE 00 

P 
and OEG . 

00 
We write X for 

the restriction of K to ~ ; X takes values which are (p-l)-st roots 

of unity in ~ . 
p 

~ - submodule of 
p 

a direct sum A = 

For any ~ [ ~J -module A, let A (i) denote the 
p 

i A on which ~ acts via X : A then decomposes into 
p - 2 ( . ) 

® Al . We will be particularly interested 
i=o 

in three such modules Xoo ' Yoo and Zoo which will be decomposed in 

this fashion; the module Xoo relates to the arithmetic of the 
I 

curve E, while Y and Z are formed from the elliptic units of 
00 00 

the fields Fn - the results we can prove about Yoo and Zoo imply 

results about Xoo and the arithmetical properties of E . 

Suppose X is a p - profinite abelian group (so that it is a 

compact ~p -module) on which r operates continuously . Let 

in one A = 2'l P [ r T ] ] be the ring of formal power ser ies over ~ p 

indeterminate T . The r-module structure on X gives rise to a 

unique A-module structure satisfying (l+T) x = y.x for each XEX . 

(Recall that y generates topologically) . The general properties 
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of such A-modules and the structure theorem for finitely generated 

A-modules are discussErl in [ 20 J. Two such modules are said to be 

pseudo:-isomorphic if there is a A-homomorphism between them with 

finite kernel and finite cokernel. For each integer n ~ 0, let 
n 

r = G(F IF ), and w = w (T) be the polynomial (l+T)P -1. The n oo n n n . 

rn-invariance of X, denoted ' Xr is defined to be the quotient 
n 

X/wnXi if n = ° this is simply denoted Xr . 

We now define the first module Xoo. Let Mn denote the maximal 

abelian p-ex tension of Fn unramified outside Pn' and Xn = G(Mn/Foo ) . 

Define Xoo = lim Xn where the projective limit is taken in the 
<-

obvious way . r acts on X via inner automorphisms: let y denote 
n 

any extension of y to an element of G(Mn/Fo) ' and then y acts on 

("V """' - 1 a EXn via yay It is easily seen 

example [ 4 J ). net Moo = U Mn . 
n~o 

Now for the second module Y . 
00 

that (Xoo )r = Xn (see for 
n 

For each n ~ 0, let C be o,n 
n+l the subgroup N +1 W(6p ) of the group of elliptic units 

R (6pn ) IF n 

of Fn c.f. the definition of chapter 1, §5. Each element of 
, -

C is congruent to 1 mod P (see [ 7 J), so let Y = U IC o ' o,n n n n ,n 

where C denotes the closure of C in the Pn~adic topology . o,n o,n 

Define Y = lim Y , where the projective limit is taken with 
00 n 

<-
respect to the norm maps NF IF (m ~ n ~ 0) . The A- module structure 

m n 

of Yoo is described in [ 8 Ji for each i = 0, ... ,p- 2, y~i) is 

pseudo-isomorphic to a quotient A/gi(T)A where gi(T) is, as we 

now explain,a p- adic L- function . 

-k For each integer k ~ ~ , let L6(~ ,s) be the Hecke L- function 

-k of ~ , viewed as a (not necessarily primitive) Grossen character 
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- -k 
mod 6 (the conductor of ~): L6(~ ,s) = (Nq)-s)-l IT ( l-ijj ( q ) 

qt6 
q prime 

3 (for Re(s) > 2). Note that it possesses an analytic contribution 

to the whole plane. 
. -k -k 

The numbers ~ L(~ ,k) belong to K (see [7J), 

and therefore may be viewed as lying inside K. Let ~ denote the p p 

completion of the maximal unramified extension of K , and I the p p 

ring of integers of ~p . 

Let f be a fixed generator of 6, and write 

~k = 12(-1)k-l(k-l)! (~/f)-ki also set u = K(Y) (recall y is the 

generator of r fix ed above) . 

It is shown in [ 8J that for each nonzero class i mod(p-l), 

there exists a power series G. (T) in the r ~ng of formal power series 
1 

Ip [ [TJ J with the following interpolation property: 

k . 
G. (u -1) 

1 

- k 
= l-k ~k (1 - ~(p) ) L(ijjk,k) 

Yp Np 

for all positive integers k = i mod(p-l)i here Yp is a unit in Ip. 

Then y(i) is pseudo-isomorphic to A/g. (T)A, where g. (T) is a power 
00 1 1 

series in A which generates the same ideal in I [[TJJ as G. (T)i p 1 

moreover (y!i))r 
n 

= y(i). In fact, if i ~ 0 or 1 mod(p- l), y!i) 
n I 

is isomorphic to the stated modulei the same is true for the case 

i = 1, provided p is not anomolous i.e. n+n = 1. 

The third module Z is formed in a similar fashion with the 
00 

full groups en of elliptic units of Fni let en be the subgroup of 

, -' -' 
such units congruent to 1 modulo Pn. Define Zn = Un/en' where en 

denotes the closure in the p - adic topologYi set 
n 

, -' 
Z = lim U /e . 

<_ n n 
As noted in [ 8 J, it is easily seen that z(i) is 

pseudo- isomorphic to a quotient A/hi(T)A for some hiEAi the 

follow i ng mor e precise description of h . can be proved by the methods 
1 
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of [ 8], but the details are omitted because of length. 

For each integer k ~ 1, let nk be the conductor of ~k (it 

divides n), and let fk be a fixed generator of it. Define 

k-l -k vk = 12 (-1) · . (k-l)! (r2/f k ) . Then there exists a power series 

H. (T) in I [[T]] with the following int~rpolation property: 
1 p 

k ~ ( )k -k 
Hi (u-l) = 0p~ , (l - N~ ) Ln k (ljJ ,k) 

for all positive integers k = i mod(p-l)i here 0p is a unit in 

lp' and Ln (~k,s) = IT (l_~k(q) (Nq)-s)-l is the Hecke L-function 

-k k qtnk 
of ljJ , now viewed as a primitive Grossen character mod nk. Then 

z~i) will be pseudo-isomorphic to A/hi (T)A, where hi eT) is a 

power series in A generating the same ideal in lp[[T]] as Hi(T) i 

moreover (Z(i)) 
00 r 

n 

= Z (i) 
n 

The close connection between Xoo and Yoo,Zoo is provided by 
, 

considering the global units Sn of Fni let Sn denote the global 
-, 

units congruent to 1 mod p , and S the closure in U. Denoting n n n 

by Ln the p-Hilbert class field of Fn' global class field theory 

, -' 
shows (see [ 6 J)that Un/Sn is isomorphic as a G -module to 

n I 

G(Mn/LnFoo), which is a subgroup of Xn = G(Mn/Foo) of order the 

p-part of the class number of Fn. -' -' On the other hand S /e has n n 

precisely this order also, and it is conjectured that X and Y 
00 00 

(and Zoo) are pseudo-isomorphic and that the components 

x(i) y(i) z(i) are individually pseudo-isomorphic. The 
00 ' 00 ' 00 

establishment of this property would have deep consequences for 

the arithmetic of E. The cyclotomic analogue of these modules are 

discussed in [ 4 Ji the analogous pseudo-isomorphism has been 

recently proved by Wiles and Mazur. Indeed, the work of [ 8J was 

motivated by Iwasawa's work on cyclotomic units [ llJ, [12J. 
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In the next section we prove the theorem of Coates and Wiles 

using the module Yoo ; in the final section we relate the Iwasawa 

invariants of Zoo and Xoo (which are defined in that section) to 

the rank of E(Fo ) as an a-module. Our results are: 

Theorem 4. If E(K) has infinitely many points, then L(E/K,l) = o. 

Theorem 5. Suppose that p (which does not lie in T) is prime to 

cp(fi). Then the Iwasawa A- and ~-invariants of X and Z are equal. 
00 00 

Furthermore the A-invariant is at least as large as the rank of 

E(F ) (mod torsion) as an a-module. o 

I 
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§l. The Coates-Wiles theorem. 

In this section, we suppose that E(K) has infinitely 

many pOints, and hence in particular, has a pointP of infinite order. 

Further we assume throughout that p is not anomolous; infinitely many 

such primes exist (see [7 ], lemma 12) . 

The idea of the proof is to show that gl(u-l) = 0 by construc­

ting sufficiently large submodules of (Un'/c ) (1) for each n. 
o,n 

The proof may be broken into several stages. 

First, let y(l) (-1) denote the Tate twist by (-1) (explained 
00 

below). Then, as a A-module, 

y(l) (-1) ~ A/(h(T)) 
00 

where h(T) = gl ((u(l+T) -1) (recall u = K (Y)) . 

Second, we show that either h(O) = 0 or Ih(O) 1-1 is the number 
p 

of elements in (A/hA)r . 

At the third stage, we construct extensions Hn of Fn for each 

n, as follows. Let Q be a point defined over the algebraic closure 
n 

of K such that nn+1Q = P. Set H = F (Q ), and recal.l that Ln is n n n n 7 

the p-Hilbert class field of Fn. The extension H L F /L F will be nn oo n oo 
n+l-c shown to have degree p , where c is a constant independent of 

n, and depending only on P. The Galois group G(HnLnFoo /LnFoo ) is 

a homomorphic image of (U'/c ) (1), and thus of y(l). from this it 
n o,n 00 ' 

will follow that Ih(O)1 :5 p-(n+l-c), and letting n - > 00 , we conclude 
p 

that 

h ( 0 ) = g 1 (u -1) = 0 = L ( ~ , 1 ) = L ( E /K , 1) . 
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We now proceed with the proof in stages. For II -modules A 
p 

and B on which a group G acts, we define the action of G on the 

II -homomorphism group Hom(A,B) as follows. Let g belong to 
p 

Hom(A,B). Define g O, ~or 0 EG to be the homomorphism g: A --> B 

o - 1 ° 
such that g(a) = (f(a )) for every a EA. 

Let T be the Tate module lim E n~l (the connecting homomorphisms 
<- TI 

are multiplication by powers of TI) • G acts on T via the character 
00 

K. Define the G -module T(-l) 
00 

= Hom
ll 

(T, II ); here the action of 
p p 

Goo on II is trivial. 
p 

Thus G 
00 

acts on T(-l) via K- l : for t ET, and 

any homomorphisms g: T - > 

- 1 
g0(t) = g(t0 ) = 

Define the twist of Y (1) by 
00 

II - module y(l) 
®ll T(-l) , p 00 

p 

products. Then for any 0 EG 

ll, , 
P 

-1 g(K( 0 )t) 

T( - l) , denoted y(l) ( - 1) , 
00 

with G acting diagonally 
00 

00 ' 

Y (1) y E 00 and g ET ( - 1) , 

0(y®g) = 0y®g0 = K- l (0) (0y®g) . 

to be the 

on tensor 

The ll . - module y(l) (-1) is isomorphic as 
p 00 

a II -module to y (1) . p OO l 
I 

only the action of G has been changed. 
00 

There is an isomorphism 

8: y(l) _ > y(l) ( - 1) such that 
00 00 

8 (0Y) = K (o) o8 (y) for all Y E y~l) . 

Now for any y in y~l), and h(T) in A, we have 

8 (h (T) y) = h (u ( 1 +T) -1) 8 (y) ; 

this clearly holds if h(T) is a constant, or if h(T) = T (for then 

Ta = (y-l)a, and u = K(y)) and the result follows for general h(T) 
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by linearity and continuity, since the module is compact. Thus 

y ( 1) (-1) ~ 11. /h ( T) 11. , 
00 

where h(T) = gl(u(l+T)-l). 

The next step in the argument is . to consider the value h (0) . . 

Lemma 4.1. Either h(O) = 0, or Ih(O) 1-1 is the number of elements 
p 

of (1I./(h(T))r. 

Proof: Suppose h(O) I 0, and Ih(O) I~l = pm. There is a surjective 

homomorphism ~: A/h1l. --> ~/pm~ induced by mapping an element 

gE1I. to g (0). Since h (0) :: 0 modulo pm~p' the mapping 

g (mod h) 1-> g (0) mod pm~p is well defined (noting that 

~ /ptn2Z ~ 2Z /pm~ ). The kernel of ~ clearly contains T .1I./h1l.. p p 

Suppose g+h1l. lies in the kernel of ~: so pmlg(o). Write 

g(T) 

h(T) 

where ql and q2 belong to 11., go and ho belong to 2Zp' and ho is 

a unit. Then I 

g(T) = g h-lh(T) - T(G h-lq2(T) - ql(T)) o 0 0 0 

- Tq3(T) modulo h1l. 

for some q3(T) Efl.. Thus the kernel of ~ is equal to ~1I./h1l., so 

that 

has pm elements. The lemma is proved. 



if 
( 
r 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

114 

For the next step, let n be a nonnegative integer. As 

explained in detail in [6J, global class field theory describes 
, -' 

the Galois group G(Mn/LnFoo ) as a Gn-module: Un/S n is isomorphic to 

G(Mn/LnFoo ). In particular, since Gn ~ GoxG(Fn/Fo )' we have 

~ G (M /L F ) (1) • 
n n 00 , 

(G operates on G(M /L F ) via inner automorphisms ·,. if OEGn and n n n 00 

o -1 
XE G(Mn/LnFoo )' then x = pxp , where p is any element of G(Mn/K) 

whose restriction to F is equal to 0). There is a natural n 

surjection of ~ [G J modules 
p n 

(U ' /e ) (1) - > (U' /S ') (1) - > O. 
n o,n n n ( 1) 

We will show that (U'/S') (1) has a submodule of order at least n n 
n+l-c p , where c is a constant depending only on P. 

Choose Q over the algebraic closure of K such that TIn+lQn = Pi 
n , 

set H = F (Q ) . The extension H /F is cyclic of degree dividing n n n n n 
n+l 

p ,and it is unramified outside Pn : thus Hn ~ Mn (see lemma 33 

of [ 7J). 

The group Go (or ~) acts via X on G(Hn/Fn)' I For, let 

XEG(Hn/F n ), OEG
O

' and let 0
1 

be any element of G(Hn/K) whose 

restriction to Fn is equal to a. Define (x,P) = x Qn-Qn' (Subtrac -

tion in E(<r) ). 

lies in E n+l' 
TI 

This is independent of the choice of Q : its value 
n 

Then 

Now P EE(K), so that (xo ,P) = X (o ) (x ,P). Hence x O = X (o ) x for 
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The key step now is to show that Hn/Fn is nontrivial, and is 

sufficiently large; more exactly, that G(HnL F /L F ), which is a noon 00 

homomorphic image of G(Mn/LnFoo) (1), is sufficiently large. 

As noted in lemma 35 of [6J, we may assume that P belongs to 

the kernel of reduction modulo P on E(K ). There is an isomorphism 
. p 

A . 
over 0p between the formal group E(p) on E corresponding to the 

parameter t = 2p(z)/p' (z) and the formal group E(p) on which the 

endomorphism corresponding to n is given by [nJw = wP+nw (see [7J 
A 

p228). Let 0 be the point on E(p) corresponding to P, and a the 

image in E(p) under this isomorphism. For any integer n ~ 0, let 

Enn+l denote the points S in the algebraic closure of Kp satisfying 

[nn+l JS = 0: these correspond to the points of E n+l. We shall 
n 

denote addition in the group E(p) by a star (*) and subtraction 

by a tilde (~). 

Let ~n= ~~n (recall that ~n is the completion of Fn at Pn). 
n_o 

Then as explained in lemma 35 of [7 J, ~n(Qn) = ~n(an) and 

~ (Q ) = ~ (a ), where an are defined inductively by the formula e 
00 noon 

n+l By our remarks above, ~ (a )/~ is cyclic of degree dividing p 
00 n 00 

The following lemma is a refinement of theorem 11 of [7 J. 

Lemma 4.2. Let c be the least positive integer such that 

t c+l ~ a~[n JE(p). For each n ~ c, the extension ~ (a)~ is totally 
00 n 00 

n+l-c ramified, and of degree p 

(We stress that c depends only on P, and not on n). 
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Proof: First we note that because FolK is totally ramified at p, 

the Galois group G(~ IK ) may be identified with Go' Since a o p 

belongs to E(p), one sees easily that Go operates on G(~oo (an)/~oo ) 

via X. Thus ~ 
00 

is the maximal abelian extension of K p contained 

in ~oo ( an)' As any unramified extension of ~ oo is abelian over K p ' 

it suffic es t o prov e tha t ~ (a )/~ 
00 n 00 

n+l-c has degree p . 

We may assume, without loss of generality, that c = 0. Indeed, 

choose S in E(p) such that [ncJS = a , then S satisfies the hypotheses 

of the lemma with c = 0, and ~oo ( an) = ~oo (Sn-c); here Srn satisfies 

[n J So = Sand [ nJ Sm+l = Srn for all m ~ 0. 

Suppose therefore that c = 0. The proof is by induction on n. 
a 

If n = 0, suppose that ~ oo ( ao) = ~oo ' Then the map a ~> a ~ a is o 0 

clearly a cocycle on G with values in E. But by Sahls lemma 
00 n 

1 
(see [19J) H (G ,E ) = 0. Hence there must exist v on E such 

00 non 

~ a 
o 

~ v 
o for all a in G . 

00 
Thus a ~ v is fixed by o 0 

Goo ' and so lies in Kp' But then a = [nJ(ao ~ v o ) belongs to 

[n JE(p), which is a contradiction. Hence the lemma is true for 

n = O. 

Suppose it has been proven for n, but that ' 00 (a n) = ~oo ( an+l) ' 

Let T denote a generator of G(~oo ( a n)/~oo )' Now 

for some n EE n+2' whence 
n 

k 
L 

a n+l = a n+l * [kJn 

n 
for all k ~ 0. As LP 1, it follows that n EE n+l ' Therefore 

n 
n+l L n+l n+l 

[ n J( a n+l ) = [n J( a n+l ); but [n Ja n+l = a o ' so that a o 

belongs to ~ oo' But we have already shown that this is not the case, 

and so the proof of the lemma is complete . 
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This len~a implies that G(H L F IL F ), which is cyclic, has nn oo n oo 
n+l-c order at least p . (2) 

The surjection (1) (see above) gives rise to the injection 

o - > Horn ( (U~/S~) (1), E 'n+l) -> Hom( U~/en) (1), E n+l) of 
TI TI 

2Zp -~Gn ] modules; this gives an injection ' 

• I ( ) G( F IF ) • (1) G(Fn/Fo) 
0-> Hom«U IS ) 1 ,E +1) ' n 0 ->Hom«U le ) ,E ) n n n n o,n n+l 

TI TI 

G (F n /F 0) 
(where for a G(Fn/Fo) module A, A denotes the elements of 

A fixed by G(Fn/Fo)). 

We saw above that Go operates on G(HnLnFoo/LnFoo) via X· Also 

any homomorphism g: G(H L ' F I L F ) - -> E n+l satisfies fO = f for all nn oo n oo 
'IT 

(Let Te G(H L F IL F ). Th e n n n oo n 00 

-1 
fO(T) = (f( 't"° ))0 = K(O)f(K(O-l)T) = f(T) ' 

since ° acts on E n+l via K, and on T via K also). Therefore there 
TI 

is an injection 

I 
We may now quickly deduce theorem 2. First, we see that 

I G(F IF ) 
Horn (Y (1) E ) r ~ Horn ( (U le ) (1) E ) n 0 

00 ' n+l n o,n 'n+l 

because 

Also 

TI TI 

(y(l)) 
00 r 

n 

~ (U I le ) (1) • 
n o,n 

Horn (Y (1) E ) r ~ Horn (Y (1) ( - 1), 2Z Ipn+ 12Z ) r 
00 ' n+l 00 

TI 

where Goo acts trivially on 2Z Ipn+l2Z . 

But HOm(y~l) (-1) ,2Z Ipn+l2Z)r ~ Horn ( (y~l) (-1) )r' 2Z Ipn+l2Z). 
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From (2) above, there is a surjective homomorphism 

consequently, there is a surjective homomorphism 

Thus either 91(u-l) = h(O) = 0, 

or I I c-(n+l) 
gl(u-l) p ~ p 

Since this holds for all n, gl(u-l) = O. 

But this implies that L(E/K,l) = o. 

I 
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§2. Proof of theorem 5. 

The main result of this section is the relation between the 

rank of the F -rational points on E (mod torsion) and the Iwasawa o 

invariants of the A- modules X , and Z . 
(X) (X) 

Suppose X is a A-torsion A-module. Tnen it is pseudo isomorphic 

to a direct sum of the form 

where ~l' ... ,Wk are positive integers, and fl(T), . .. ,f~(T) are 

distinguished polynomials in A, that is, of the form 

A. A. - I 
fi(T) = T 1 + bA. _IT 1 + ... + bo 

1 

where p divides each b i , and Ai = deg f i . Suppose that the 
n 

rn-invariance of X, that is, x/oo X (00 = (l+T)P - 1), is finite ~ n n 
e n . 

let p denote its order. Then (see [15J pl27 , or [20J) for all 
~ k 

sufficiently large n, en = n L A. + pn l. ~. + v, where v is a 
i=l 1 j =l J 

constant depending only on X. The coefficients of nand pn are 

known as the Iwasawa A- and ~ ·~ invariants of X. 
I 

We now turn to the proof of theorem 5 and first establish the 

equality of the invariants: it depends upon the following lemma . 

- - ' 
Lemma 4.3 For each n ~ 0, the index of Cn in Sn equals the p - part 

of the class number of Fn. 

Proof: Theorem 2 shows that I [S : C J I = Ih I ' where h denotes n n p n p n 
, , -' -' 

the class number of F n . Now Sn/Cn '" Sn/Cn is a zzp -module and so 
, , 

is a p-groupi furthermore there is an injection S IC ~> S IC , n n n n 
I I I 

so that Sn/Cn has order dividing Ihnl~ . 
" , 

But Sn/Cn '" SnCn/Cn' and 
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, , , 
since Sn/SnCn has no p-torsion, we conclude that Sn/Cn has order 

- 1 ' , 
precisely Ih I (S /S C has no p-torsioni because S /S has n p n n n n n 

none: for if xeSn and xP e S~, then x ~ x P - 1 mod Pn , so that xeS~),q.e. 

We consider the exact sequences 

0 - > G{Mn/LnFoo ) - > G{M /F ) n 00 
- > G ,(lJnF oo/F 00 ) - > 0 

- ' -' , -' , -' 0 - > S /C - > Un/Cn - > Un/Sn - > o. n n 

, -' 
Now G{Mn/LnFoo ) is isomorphic to Un/Sn as a G{Fn/K)-module {see [ 6 J, 

theorem ll)i these are both finite groups, because the p - adic rank 

of the global units of Fn equals the ~ -rank (this isLeopoldt's 

conjecture which holds because Fn is abelian over Ki see [2 J) 

Also the order of G{L F /F ) n GO 00 

Recalling that 

x /w X 
00 n 00 

and 

= G{M /F ) n ,00 

-' -' [S :C J . n n 

we conclude that Xn and Zn have the same finite order for every n. 

Consequently the A- and ~-invariants are equali de note these by 

A and ~ respectively. 

To calculate a lower bound for A, we need the following result 

(a similar result is due to Bashmakov [29J). 

Let T = T 
7f 

= lim E n+l denote the Tate module 
<- 7f 

Let r be the 

rank of E{Fo ) as an a -module, and let Pl, . . . ,Pr be a basis for 

E{Fo ) (modulo torsion) over a. Let A denote the 'Q- -submodule of 

E{F o ) generated by Pl , .. . ,Pri let A denote the set of points P 

on E, defined over the algebraic closure of Fo' for which there 
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e x ists an integer n (depending upon P) such ' that TInp lie in Ai 

note that A contains all the TI-power division points. Let 

H = F (A) be the field obtained by the adjunction of the coordinates 
00 

of the points in Ai it is a Galois extension of Fo. We wish to 

describe the Galois group G{H/F
oo

) • Recall that f = G(F /F ). 
00 0 

Lemma 4.4 G{H/Foo ) is isomorphic, as a f-module, to a f - submodule 

of Tr 
TI· 

Proof: For each i = l, ... ,r, let P . (n = o,l,i , .. . ) denote the n,l 

sequence in A defined by the relations 

P . = P., TIP +1 . = P . (n 2: 0) . 
0,1 1 n,l n,l 

For each a in G(H/F ), de fine <a, P. > = aP . - P .. The seo_,uence 
00 1 n n,l n,l 

<a ,p. > (n = 1,2, ... ) lies in T and is independent of the choice of 1 n 
~ 

sequence (P .). Thus if Y is any extension of y to an element of n,l ' 

/ 
y ~ ~-l 

G{H Fo) the image a of a under y (namely ya y ) is mapped to the 

y ~-l 
s equence <a , Pi> n = y < a , y P i >l'I -- y <a , P i >1'\ . We thus obtain" a 

f-injection of G(H/ F ) into Tr. 
00 

Clearly G (H/F ) has LZ - rank at most r i we now show it has 
00 p , I 

LZ -rank at least r and so is of finite index in Tr . For any point 
p 

n P in E{F o )' let Q be such that TI Q = P for some integer n . 

Let Fo denote the algebraic closure of Fo . The map 

--> E 
00 

p 

a 1- -> aQ- Q 

is a well defined cocycle . Performing a ~imilar construction for 

E(Foo )' we obtain the following commutative diagram with e xact rows 

and columns: 
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o --> H
I 

(G (F /F ), E ) 
00

1 
0 p oo --> * --> 

1 
o - - > HI (G (F /F ), E ) 

00 00 --> --> 

1 I ')¥. 

p 

o --> E(F )®K /0 
00 P P 

--> - -> 

Now because y - l is an automorphism of E 00' Sahls lemma [19 Jshows 
p 

that Hl(r,E 00 ) = o. 
p 

Hence E(Fo)®Kp/O p ~ (Kp/Op)r injects into 

Hl(G(F /F ),E ) 
00 00 00 

p 
= Hom(G(Foo/Foo),E 00 ); we conclude that G(H/Foo ) has 

p 

~ -rank at least r, and the proof of the lemma is complete. p 

Let W denote the r-submodule of Tr to which G(H/F ) is 00 

isomorphic. Lemma 33 of [7J shows that H is contained in M , so 
00 

there is a surjection f: G(M /F ) -> W. 
00 00 

According to the structure theorem, Xoo = G(Moo /Foo ) may be decomposed 
11 I 

as a direct sum Xoo = Xoo ~ Xoo where Xoo is a p - torsion group (i.~. 
11 

annihilated by a sufficiently large power of p) and Xoo is a direct 

sum ~ A/fj(T)A of a finite number of quotients by distinguished 
J 

I 

polynomials f .. 
J 

Since W has no p-torsion, f(Xoo ) = 0 ~d 
11 11 

f(Xoo ) = f(Xoo ); the A-invariants of Xoo and Xoo are the same, and 
11 

the ~-invariant of X is zero. The surjection f induces a surjection 00 

11 11 . n+l 
X /w X -> W/Cyp - l)W 

00 n 00 

(Recall that y is a topological generator of y and acts on Xoo via 

y.x = {l+T )x, for XEX ). Since W is of finite index in Tr, 
n+l ~ 

w/hP - l)W has order prn-m (for some constant m depending only 

on W) for sufficiently large n. Thus the A- invariant of X is at 
00 

least as large as r. This completes the proof of theorem 5. 
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