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Tit_.2: The Index of Elliptic Units.

The elliptic units are a naturally arxising subgroup of units
of =zny given abelian extension of an imaginary quadratic field K;
their definition is motivated by the desire to find units which
play the same role as cyclotomic units in abelian extensions of
the rationals. Thé definition outlined in the thesis uses division
values of elliptic functions, and provides a siﬁbler starting point

of the theory than Robert's original exposition; The properties of

o
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“hese units are established using the theory of good reduction of
1l

v
e
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ptic curves rather than the classical basis of Robert's proofs.

The index of the elliptic units is calculated for various
abelian extensions of K, particularly for ray class fields modulo
an ideal n of K, and fields of division points Qn an elliptic curve
defined over K. Here it.is assumed that K has class number one
and that h is prime to 6- the relaxation of these assumptions
introduces inessential technical complications into the result.
There is a further restriction on h, which seemé essential for the
method of proof: h is not divisible by any rational prime which
splits in K. Thus these results include the earlier results of
Robert for prime power conductors h. These ray class field results
are subsequently used to calculate the p-adic value of the index
for a field-K(Eg) of g-division points on an elliptic:curve E
(over K) which has good reduction at all primes dividing g. Here
p is any rational prime not in the finite set of primes dividing 6
h
he ring of integers

10

conductor of E, and

ct

ox the degree of ray class field modulo
B

T

itself has complex multiplication by
of - ¥ . A similar p-adic result-ﬁor the elliptic units of an
arbitrary finite abelian extension of K 1is proved.
The special case with g a prime power is important for current
work on the afithmetic of elliptic curves. The p~adicbresult above
is used to prove a new result relating the rank of the group of

points on E over the field K(Ep) (p a split prime of K) to the

invariants of the Iwasawa module attached to the p-adic L-functions.
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Introduction.

The elliptic units are a natural subgroup of units of any
given abelian extension H of an imaginary field K. Their
definition is motivated by the desire to find units which play
the same role as cyclotomic units in abelian extensions of the
rational field. In particular, the index of such a subgroup
(in the global units of H) should be essentially the class
number of H, and should provide analogues of Kummer's criteria.

The first successful such definition was provided by
Robert [18], who crucially improved earlier work of Ramachandra
and Siegel; the units arise from special values of certain
modular functions. The definition we outline provides a simpler
starting point of the theory - it uses division values of
elliptic functions, and is closely related to Robert's original
definition. The properties of these units are established rather
differently, for we use the theory of good reduction of elliptic
curves in an intrinsic way, whereas Robert relies upon earlier
classical results about the discriminant function and theta
functions.

The index of the elliptic units is calculated for various
abelian extensions of K, particularly for ray class fields
(chapter 2) and fields of division points on an elliptic curve
defined over K (chapter 3). The index for other abelian extensions
is also described in chapter 3. For technical simplicity, we
assume that K has class number one, but it is apparent that our
methods extend to fields K of arbitrary class number. Robert

computed the index only for extensions H/K of prime power

conductor, which is included in our result. Our method was
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inspired by the work of Sinnott [25] on the index of circular
units in cyclotomic extensions of arbitrary conductor.

The elliptic units in fields of division points on an elliptic
curve defined over K are very important in current research on
elliptic curves, as evidenced by the work of Coates and Wiles [7],
[8]. This underlines the importance of the result of chapter three
and in chapter four we use it to prove a new result about the
arithmetic of elliptic curves.

A more precise description of the contents of each chapter is

given in the introduction to each.




Notation

Let %, ©, IR, € denote respectively the rational integers,

the real field, and the complex field. The letter p will be

reserved for rational primes, ZE)amd Qp will denote the p-adic
integers and the p-adic field.

Throughout, K will denote an imaginary quadratic - field,
with ring of integers o0, the letters a,b,...,$,9,h.... will denote
ideals of 0; p and ¢ will be reserved for prime ideals of K. 1In

chapter one, the notation 0 will be used for an order in K with

conductor c; the letters a,b,...,{,9,... will also be used to

denote ideals of e

Throughout p(z) will denote the Weierstrass p-function; since
the variable z will usually be included, no confusion should arise
with the prime ideal p.

The group of roots of unity in a field F will be denoted Upr
and its order, if finite, by eF. If? is a prime of F, let Ff be
the completion of F at?; in this case? will also be used for the
maximal ideal lying in the ring of integers of F,. In particular,

7

Kp denotes the completion of K at p; its ring of integers will be
denoted o
Let H be a (finite or infinite) Galois extension of F; its
| Galois group will be denoted G(H/F). If it is finite, the degree

of the extension will be denoted by [H:F] and the norm map by

NH/K' For any finite abelian extension H/K of conductor §, and

any ideal a of K prime to §, let [a,H/K] be the element of G(H/K)
Corresponding to a under the Artin reciprocity map: when the
extension H/K is unambiguous, this will be more briefly denoted

O4r and if a is principal with generator a, also by‘c . If H is

a

;



Notation

Let % ®©, IR, € denote respectively the rational integers,
the real field, and the complex field. The letter p will be
reserved for rational primes, ZE)amd Qp will denote the p-adic
integers and the p-adic field.

Throughout, K will denote an imaginary quadratic = field,
with ring of integers o, the letters a,b,...,4,9,h.... will denote
ideals of 0; p and ¢ will be reserved for prime ideals of K. 1In
chapter one, the notation o0, will be used for an order in K with
conductor c; the letters a,b,...s/6+s9,... will also be used to
denote ideals of Og-

Throughout p(z) will denote the Weierstrass p-function; since
the variable z will usually be included, no confusion should arise
with the prime ideal p.

The group of roots of unity in a field F will be denoted U
and its order, if finiter by ep- If? is a prime of F, let Ff be
the completion of F at?; in this case? will also be used for the
maximal ideal lying in the ring of integers of €f° In particular,
Kp denotes the completion of K at p; its ring of integers will be
denoted Op

Let H be a (finite or infinite) Galois extension of F; its
Galois group will be denoted G(H/F). If it is finite, the degree
Of the extension will be denoted by [H:F] and the norm map by
NH/K‘ For any finite abelian extension H/K of conductor §{, and
any ideal a of K prime to §, let [a,H/K] be the element of G(H/K)
Corresponding to a under the Artin reciprocity map: when the

€Xtension H/K is unambiguous, this will be more briefly denoted

94+ and if a is principal with generator a, also by'c . If H is
a




g

vi

the maximal abelian extension of K, and x is an ideéle of K, let
[x,K] denote the element of G(H/K) associated to x by global class
field theory.

The letter E will always denote an elliptic curve; if it is
defined over a field F, let E(F) be the F-rational points on E.

The units of a commutative ring R with identity will be
denoted Rx, and in particular, FX for the nonzero elements of the
field F, OZ for the units of the order Ogr and (oc/a)>< for the
units of the quotient ring of 0g by an ac-ideal a. For any o-ideal

a, let ¢(a) be the order of (o/a)x. The order of any finite group

G will be denoted |G]|.




Chapter 1. Elliptic Units.

This chapter presents the definition of the elliptic units
for arbitrary abelian extensions of an imaginary quadratic ground
field K. The first two sections review the concept of an order o

of a lattice L and explan how to construct the abelian extensions

of the imaginary quadratic field K in which ¢ lies i.e. global
class field theory for K is made explicit. In §3, the function, 0O,
from which the elliptic units arise, is defined; its values at division
| points of L are shown to be in appropriate abelian extensions of K.
1 The prime factorization of these values is obtained in §4. The
' method is quite different from Robert's [18] which relies upon
‘ earlier work of Ramachandra [17] and Siegel [24] using classical
results about the discriminant function and theta functions
associated to L. Here we use intrinsic properties of the elliptic
curve E attached to L. We choose an elliptic curve isomorphic
to E having certain good reduction properties; by considering an
appropriate primeig and the kernel of the reduction map modj?
(which is a formal group), we obtain theq:—adic values of the
O-function values. This allows us to define, in §5, the elliptic
units for an arbitrary abelian extension of K with respect to the
order o.

Two groups of elliptic units are defined (the larger being
called the full group of elliptic units); their relationship to
Robert's elliptic units - which are defined only for the maximal

Oorder of K - is discussed. The larger group's definition is

motivated by Sinnott's definition of the circular units of
Cyclotomic fields ([ 25]); his method of computing their index,

Wwhen modified suitably, applies to this last group. |
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The values of the 0-function at division points play an
analogous role to that of the numbers l-exp(2min/m) (n = 1,...,m-1)
in the field of mth roots of unity. Their prime factorization is

similar (see lemma 1.12), and they provide generators for the

ramified primes of the appropriate abelian extension (see lemmas

2 and 1.15).
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§1. Elliptic curves with complex multiplication.

Let L be a lattice in the complex plane €, that is, a subgroup
of € which is free of rank 2 over the rational integers 7Z , and
which generates € over the real numbers. Let p(z,L) be the
associated Weierstrass p-function: it satisfies the differential

equation
3
p'(2)2 = 4p(2) - g,p(z) - g3,

where g, = g, (L) = ) o2 and ga = galL) = ) w_6, the sums being
2 = 9 oo 3 = 93 wdo

taken over all nonzero points w of L. It is well known that the

| discriminant of L, A(L), which is equal to gg - 27g%, is nonzero,

so that the equation

2 3
1 ¥© = 4xT = gyX — g

curve
defines a nonsingular/E (over Q(gz,g3)) with points (x,y): E is

an elliptic curve.

The group E(€) of C-rational points on E is isomorphic to the

quotient group €/L under the correspondence

z mod L +—> E(z) = (p(z),p'(2)).

Every endomorphism of E corresponds to a complex analytic

| homomorphism of €/L into itself, and vice versa. Any such homo-
|
:

morphism is induced by the linear map of €

With a complex number a which maps L into itself: aL < L. The |

\
endomorphism corresponding to such an element a is the mapping |




g

which sends £ (z) to &(az):

Ef{z) ¥~—> Elaz].

The set A = {a ¢ € | aL < L} is called the order associated with L.
Clearly A contains 7Z ; we say that E has complex multiplication

if A is strictly larger than Z . Throughout this thesis we will

deal exclusively with elliptic curves E which have complex multi-

Blication.

1 @ Z(nz.

Then it is easy to show (see [23] section 4.4) that K = Q(wl/wz)

Assuming this, let [wl,wzj be a basis for L: L = Z w

is an imaginary quadratic field (independent of choice of basis)
and that the order of L is an order in K, that is, a subring of K

which contains %Z , and is a free 7Z -module of rank 2. Further,

for any such order A, there exists a unique positive rational
integer c such that A = Z + co, where 0 is the ring of integers
of K. This integer is called the conductor of A, and henceforth

A will be denoted by O+ Note that 0 = 0 is the maximal order

\‘

} of K.

} .

By a proper fractional ideal of OC, we shall mean a free

| Z -submodule a in K of rank 2, with order b (e is a lattice in C);
in the case that a is contained in Oc, we shall refer to a more
simply as a proper Oc;ideal. The properties of orders and proper
fractional ideals are outlined in [23 ] section 4.4 and [14 ] chapter

8: the following facts are pertinent to this chapter.

First, the product of two proper fractional ideals a and b
is defined to be the Z -module generated by the elements xy with

|
X e a and y € b. With this multiplication, the set of all proper
|




fractional Oc—ideals forms a group: the inverse of a member a of
L.

this group will be denoted a

Secondly, an ideal a of OC prime to c¢ is a proper OC—ideal.

(a@ is prime to c precisely if the ideal of OC generated by a and c

is equal to Oc). In this case, a is equal to the intersection with

0 of an ideal in 01(= 0) which is prime to c¢. In particular, if

p is a prime ideal of K, not dividing c, then p n 0 4 is a prime
ideal of .

Lastly, there exists a nonzero complex number  such that
Q—lL = d is a proper 0 -ideal. (For w; L is a proper fractional
oc—ideal).
For any Oc-ideal g , let Eg be the group of
g- division points on E, that is, Eg = {&(u)| au € L for all

ae€ gl}. An element £(u) of E is primitive if u is a primitive
g -division point of L, in which case the set {a ¢ K| au ¢ L} is

precisely equal to g .

§2. Class Field Theory.

This section outlines the class field theory for the imaginary

quadratic field K introduced in the last section: recall that the

endomorphism ring of the elliptic curve E attached to the lattice L

1s an order Oc in K.

Of course given such a field K and an order
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A in K, such a curve exists - it suffices to take for a lattice
the order itself, and construct the curve E as in section 1. The
precise field of definition for E, Q(gz(L),g3(L)), is of some

interest — more will be said later about this.

To begin, it is necessary to define the multiplication by an
idéle of K of two objects: a proper fractional Oc—ideal, and a

division point of L. Let QA and KA denote the adéle group of ©

X
A

cative) idéle groups. Then KA = K ®Q QA as a tensor product. For

each rational prime p, let Kp =K ®

and K respectively, and QX, K, denote the corresponding (multipli-

0 Qp; given an adeéle s of K,
there corresponds the p-component sp lying in Kp. Identifying
Kp with its image under the canonical injection of Kp into KA'
KA itself is a subgroup of the (unrestricted) direct product
e 1 Kp’ where K_ is the subgroup of KA corresponding to the

p
archimedean valuation of K. (In fact K_ is isomorphic to C).

Now suppose a is a proper fractional ideal of Ogr and s belongs

X " . —_ i
to KA' For each rational prime p, let ap = a ®ZIEP. Then ap is
a Zp-lattice in Kp, that is, a free ZE)imodule in Kp of rank 2.
Also there is a Z -lattice b in K such that b_ = b ®,, Z_= s_a

P Z p PP

for every p. This Z -lattice b is a proper fractional oc—ideal
and is defined to be the product of s and a. This multiplication
induces an isomorphism between K& and K/5.a4, as follows. K/ is
Canonically isomorphic to the direct sum of the groups Kp/ﬁp over
all p. Multiplication by sp induces an isomorphism between Kp/hp

and Kp/%pap, and combining these isomorphisms for each p gives the

Tequired isomorphism. The situation is summarized by the following

Commutative diagram




s
K /ﬁ . - I K /s a
b/ P B PP

K/ﬁ — K/%ﬂ

(the vertical maps are canonical injections).

Consider now a division point u of a, that is, an element of
K/h. The product of s and u (denoted s.u) is defined to be the

division point v of s.a such that

= a
\ v spu modulo sp P

\ for every rational prime p.

When the order of L is the full ring of integers of K, the
foregoing definitions simplify. %/& is canonically isomorphic to
the direct sum of the modules Kp/ﬁp for all primes p of K, where
Kp denotes the completion of K at p, and ap the ideal generated
by a in the ring of integers 0p of Kp' Corresponding to each prime
p of K, there is a component Sp of the idéle s, and there is a
fractional ideal b of K such that bp = Spop forfall p. Then
s.a = b.a and the isomorphism.Kyﬁ - K/%.a may be defined by 7

the commutative diagram i

K _> K
p/“to o/ Sp*p

K/L > Kfs.a.

The following lemma, which establishes explicitly the connection
between abelian extensions of K and subgroups of the idé&le group
K;, is proved on pl22 of [23]. Recall that L = Qd. , and d is
a proper oc—ideal; let j(L) and T1(z,L) respectively denote the

usual modular invariant and the Weber function of L.

————
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Lemma 1.1 Let u be a division point of d and
———_—_— — i
Ww={s € KZIS d = d, s.u= u}. Then KW is a subgroup of KZ

X_X
containing K K_, and it corresponds via the Artin reciprocity j

map to the abelian extension K(j(L), 71(Qu,L)) of K.

(K: is the idéle subgroup whose elements have component 1 at all

finite places).
If u is a primitive g-division point of d ( g a proper o=
ideal), let W(g ) denote the ideéle subgroup

{s ¢ K;]s.d = d, s.u= u}.

Clearly W(g ) depends merely on g and not on a particular choice
of u. We explicitly calculate W( g) in the next lemma. For each

rational prime p, let Up(g ) denote the invertible elements of

Oc,p a9, ®Z;Zp) when p and ¢ are coprime; when p and ¢ are not
coprime, let Up(g ) denote the invertible elements of (1+ g) ®Z Zp .
Here 1+ g denotes the multiplicative subset of elements of 0 o
congruent to 1 modulo g . Up(g ) canonically injects into KZ.

Lemma 1.2 W(g ) = KT U (g ),

the product being taken over all rational primes p.

Proof. Fix a rational prime p, and let

S = {) ¢ Kp|Ad g = dp}. Since d is a proper 0,-ideal, there

l
l
t eéxists an idéle s such that d = S.0 (see pl22 of [23]). Hence
i S ={) ¢ Kplxoc,p = Oc,p}‘ Since 1 belongs to Oc,p (ZE> injects
! intO o i = OX .
| C,p)’ it follows that S TS Also let

T = {A K_|X g y
€ pl ued p}

;Where u is a primitive ¢ -division point of d , regarded now as

| ‘;




an element of Kp[cip. Clearly

on the other hand, given A ¢ T, there exists an element p of K

such that
® 1) - A € g
(u ) 9o
and e 1 € g®2ZZZq
for all rational primes q # p. (For K  is dense in

the finite part of KX via the diagonal embedding.)

Hence (1 ® 1l)u e (iq for all rational primes q, including p;

consequently B € g and A e gp, so that T = ¢ p* Thus the set

p}

w

{Ax e XK |[xd_= d_ and Au = u mod
p P p

is equal to Up( g).
The lemma is now completely proved.
Henceforth the unique abelian extension associated with the

subgroup K;W( g) of KZ will be denoted by R(g).

=0

Remark. If the rational prime p does not divide c, ¢ .
e c,p 1,p

Hence if p is an arbitrary prime of K, prime to ¢ and to go¢
(the ideal generated by ¢ in Ol), then p is unramified in R(g):
for in this case, supposing that p lies above the rational prime p,
Up(g ) contains the p-adic units of the completion of K at p.
In particular, R(OC) is unramified at all primes of K not dividing
G

Shimura's treatment of complex multiplication enables us to

determine the action of the ideéle group on the j-invariant and on

—




division points of E. For any ideéle s of K, let s.L denote the
lattice Q(s.d ); if p is a division point of L, so that e L is

1

a division point of d , let s.p denote the division point Q(s.Q ~p)

oL L.

Lemma L.3. Let [s,K] denote the element of the Galois group for
the maximal abelian extension of K over K, which corresponds to
the idéle s under the Artin map.

(1) J (L) e R(o,), and j(L)[S’K] = j(s_lL). !

(2) Let g be an %—ideal, and p a g -division point of L. Then ‘

T(p,L) € R(g ). Moreover, s p is a g=division point of s-lL,

and

[s,K] 1

T(p,L) = t(s"p, 7).

Proof. The first part is proved in [23] pl22. As for the second
part, lerma 1.1 shows that T(p,L) € R(g ). Let 0 be an automorphism
of the complex numbers whose restriction to the maximal abelian

extension of K equals [s,K]. There is an isomorphism
n:e¢/d —> E(€)

given by n(z mod d ) = £(Qz,L).

Let E° denote the elliptic curve with invariants gg, gg. By
theorem 5.4 of [23] there is an isomorphism n*:c/s_ld—_>EO(¢) with
n(z)% = n*(s_lz) for all z ¢ K| d . In particular, the period
lattice of E° is of the form us—l d for some nonzero complex U,
and thus

g5 (L) = g,(es L),

Il

gg(L) gg(es—lL)

e




where € = u /(L. Now there exists an isomorphism

6 : ¢|std —> E9 (@)

i &

= - *
given by ¢(z mod s d) = &(uz, us ld). Thus n o ¢ 1 is an auto-

morphism of EG, and so there is a root of unity ¢ in 2. such that

n"(z) = £(cuz, us th).

Now let z = s—lp/ﬂd Then
n“(z) = n(e/m° = £(p,1)% = E(zeslp, es7iL) .
Hence t(p,L)° = T(CES_lp, es1L)
= T(Cs_lp, s_lL)
= T(S_lp, s_lL),
upon noting that t(ap,aL) = T(p,L) for any nonzero complex a. This

concludes the proof of the lemma.

Lemma 1.2 can now be used to find canonical sets of representatives

for the Galois groups of the extensions R(g ).

Lemmal.4 (1) G(R(oc)/K) is isomorphic to the group of the classes

of proper oc-ideals modulo principal oc—ideals.

(2) Let g be a proper oc—ideal. Let W denote the image
of 02 in (Oc/g )>< under the natural map of reduction modulo g
(In most cases, W is isomorphic to 02: for example, if g is prime

to 6). Then G(R(g )/R(OC)) is isomorphic to (oc/ g )X/W.

(3) Let Bg be a complete set of representatives in 0 for
the cosets of (oc/g )X/W, and let p be a primitive g -division point
of L. The conjugates of T(p,L) over R(oc) are the (distinct) elements

t(@p,L), for all a belonging to Bg .

———
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Proof. The first is proved in [23], pl23. As for the second part,

lemma 1.Z shows
G(R( §)/R(0)) ——> K'W(o)/KW(g).

There is an isomorphism between W(oc)/W(g ) and (oc/g )>< as follows.
Let u be a primitive g —division point of L. For each s ¢ W(oc),
s.u is also a primitive g -division point, because sL = L. Hence
there exists an element ag of 0. such that s.u = ag.u. This number
ag is well defined modulo § , and since u is primitive, it is a

unit modulo g . The map W(OC) _ (OC/g )x is a surjective homo-
morphism with kernel W(g ). Further if s ¢ W(oc), then s ¢ KXW(g )

precisely if s = ¢s, for some root of unity ¢ € 02 and some

L

S, € W(g9 ). Thus KXW(OC)/KXW(Q ) = (ac/g )X/W, and the second part

1
of the lemma is proved. The third part follows immediately from the

preceding lemma.

In later work, we will assume for simplicity that g is coprime
to 6, so that OZ may be identified with W. In this case, let Br
4

be a complete set of representatives in 0 for the cosets of

(Oc/ g)x/w; let u be a primitive g=division ﬁoint. Define the
polynomial
T(x, 9, L) = 1T (x - t(au, L))
aeB
g
if g # 0.r and to be the constant 1 if g = o_. By lemmas 3 and 4,
if g 0 v
o]
T(xl g, L) = H(X—T(U, L) )
o]

where the product is taken over all elements ¢ of G(R(g )/R(0)) .
Hence T(x, g, L) is independent of the choice of u, and a polynomial

with coefficients in R(Oc).

——_
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§3. The O-function.

In this section we define the function 0(z,a,L): it depends
upon a complex variable z and an oc—ideal a. It is an elliptic
function on L, and its values at {-division points of L lie
inside R({), provided a is prime to 64c. These values will be
calculated in the next section, and used in the following
section to define the elliptic units for R(4§) .
| Let o(z,L) =z 1 (l-z/w)exp(z/w+22/2w2) be the Weirstrass
i weL

‘ w#0

o-function of L. The function

k wel m2lw|28
w#o

is holomorphic at s = O (see [131]); let SZ(L) be its value at

| s = 0. Define the functions

V(z,1) = exp(-s,(L)z°/2)0(z,L)

and 6(z,L) A(L)lP(Z,L)l2

Il

Let a be a oc—ideal prime to 6c. Then a is’ proper: there
exists an o-ideal, which will be denoted Ay such that
agno, = d. Define Na to be the number of elements of oc/a.
Since oc/a & oc/aKnoc = (oc+aK)/oLK as abelian groups, and because
oc+aK contain the o-module cotdyg = 0, we conclude that oc/a S o/aK.
Thus Na equals the usual norm of the o-ideal dg. For such an

oc—ideal a, define the functions

¥ (z,a,5) = ¥(z, L)Yy (z,a" L)

A(L)Na

A(a_lL)

aridl 6lz,a,nL) = 6(z,L) % /0 (2,4~ 1) = ¥(z,a,L) 2.

_
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Here a—lL denotes the lattice Q(a—ld). Explicit expressions for
the functions in terms of the elliptic functions p(z,L) and

1(z,L) are given in the next lemma.

Lemma 1.5. 0(z,a,L) and ¥Y(z,a,L) are elliptic functions for the
lattice L, for which the following formulae hold.

(1) Let S be a complete set of inequivalent representatives of
a_lL modulo L, excluding that of L, and let S' be a subset of

%(Na—l) elements of S such that
{/Q;[ _2; qués'}

is a complete set of inequivalent representatives of a_lL modulo L,

excluding that of L.

Then Y(z,a,L) = T (p(z)-p(a))*
2e€S"
. .Na

and 0(z,a,L) = éiL%I— il (p(Z)—p(z))_6
A(a L) 2eS

*
30324 .

(2) Define P(x) to be the polynomial x2(x—l728)3/2 if 0 has

two elements, otherwise to be the constants 1 or -27 according as

*
oc has four or six elements.

_ A(L) 12

L p(5(n))NeL
A(a

Then 0(z,a, L) <
L) 9

i EaT(T(z,L),g,L)

where the product is taken over all 0.,~ideals g containing a.

(The polynomial T (x,g,L) was defined in the previous section).

Proof. Let w be a period of L, and let € = 1, or -1, according

as w/2 does, or does not, lie in L. Then

o(z+w,L) = eo(z,L) exp(n(w) (z+w/2)),




|
|
|
I,
|
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where n(w) is the Weirstrass n-function (see [14] p24l).
Thus v (z+w,L) /Y (z,L) = e.exp((z+w/2)(n(w)—wsz(L))).

Let a(L) denote the area of the fundamental parallelogram of L.

Then (see [13] appendix),

n(w) - ws,(L) = Tw/a (L) .

=1

Upon noting that a(a "L) = a(L)/Na, and that Na-1 is even, we see

\P(Z‘H'UIGLIL) = ENa_l\P(ZralL) = l1".(21‘1’]--1)7

hence ¥ is periodic on L, and so is 0.

To prove the first formula for ¥, we first note that the
right and left hand sides are elliptic functions for L. We show
they have the same zeros and poles.

The poles of ¥(z,a,L) are simple and occur at the elements
of a_lL which do not lie in L. The zeros of ¥Y(z,a,L) occur, with
multiplicity (Na-1l), at the elements of L. On the other hand,
the zeros of p(z)-p(L) occur at the points z = & and z = -2
modulo L, (where 2¢S) and are simple. (2 Z -2 mpdulo L because
a is prime to 6). The poles of p(z)-p (L) are double poles and

occur at the points of L. Since the functions

Y(z,a,L) and T fp(z)—p(%))_l

2 €S

have the same zeros and poles, their ratio is a constant C, which

may be evaluated by letting z -——> O. Since

\lf(z,a,L)/zNa_l s 1

and zzp(z) —> 1 as z —> 0O, we obtain C = 1. This proves the

first formula for ¥. The first formula for © immediately follows
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upon noting that for any feS', p(-2) = p(R).

The second formula for 0 is easily derived from the first.
First note that if ¢ is a root of unity in 0gr then p(zz) = g—zp(z),
sO given 2€S,

I, (p(z)-p(z8)) = (pT(z)-pt(a))?
Ceoc

where 2t is the number of roots of unity in 0o+ Let g be any
oc—ideal containing,a’(so that g is prime to 6c, and is proper),
and let % vary over all elements of S which are primitive g-division

points of L; let p(g) be the number of these primitive division

points. Then by the definition of T(x,g,L),

-6 =12

T(p(z)-p(2)) "¢ = ¢ @ r(r(z,1),9,1)
2
- 6 <. 2
where C; = (A(L)/g,(L)g5(L)) ", or (A(L) /g5 (L))", or (A(L)/g5(L))

according as t = 1, 2 or 3.

Na
Thus 0(z,a,1) = ¢, ¢ 1) 1 T(T(Z,L),g,L)_lg(éiL%I— )
' goa Afa™"L)
since ) u(g) = Na-1.
g-a
1728 g3 g .. 3
Since j(L) = 92 , and A = g-27g5 (with g5 = 0 if t = 2,

A
gy = O if t = 3), we obtain

c, = PGEIAm T,

and the second formula immediately follows.
The formulae derived above immeaiately imply the following

results.
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Lemma 1.6. Let p be a f-division point of L. Then for all
ac—ideals a which are prime to 6c4, ©(p,a,L) belongs to R({).

Further, if s is an idele of K,

-1
O(psa,L) = 0(s "p,a,s "L).
Proof. By the classical theory of complex multiplication, both
A (L)
A (et

for © in the previous lemma makes it obvious that O (p,a,L)eR(§) .

j (L) and

Since

(A(L) )[S'K] _ A(sTn)

Aa~tn) Aa~ts™ny

(see [14], pl59), we conclude, using lemma 1,3 that,

[s,K] -1

©(p,a,L) = 0O(s p,a,s'lL>.

Corcllary. Let p vary over a complete set S of inequivalent

primitive {-division points of L, which are distinct up to a

| in S for every root of unity ¢ in 0r other than 1). Then

4

{0(p,a,L); peS} is a complete set of conjugates'over R(oc).

Then for all zeC,
=1
I 0(z+p,a,L) = 06(z,a,4 L)
P
where the product is taken over a complete set of inequivalent

representatives of 5_1L modulo L. In particular,

belong to R(oc) = R(j(oc)). The second formula

factor of a root of unity in 0 (i.e. if p is in S, the ¢p is not

The following result - under the restriction that (§,6c) = 1 -
will be used in §5 to compute norms of the values 0(p,a,L).
Lemma 1.7. Let 4 and a be oc—ideals, prime to 6c and to each other.

A



-1 Na =1
I V€ T R N 2
H O(pIaIL) — (A(L) ) ( _l _l ) .
p70 Y O W

Proof. We begin by proving a similar result for ¥Y(z,a,L) and derive

| the lemma from this. The function

f(z) =1 ¥(z+p,a,L)
P

| is an elliptic function for the lattice L, whose poles and zeros
(counting multiplicities) are identical to those for the function
W(z,a,ﬁ_lL). Thus, there is a constant C = C(4,a,L) (depending
on §, a, and L) such that f(z) = C.W(z,a,ﬁ_lL). The constant may

be evaluated by considering limits as z —> O.

Z->0 W(z,a,ﬁ_lL)

c= 1 Y(p,a,L).
p#0

This constant will be computed by considering the value of
C(24,a,L) in two different ways. On the one hand,

cC(24,a,L) = I' ¥(n+g,a,L)
(A

where n and ¢ vary over a complete set of representatives for the

1L modulo 6_1L respectively,

cosets of ﬁ_lL modulo L and (2§)
subject to the condition that not both ¢ and n lie in the zero

cosets. Thus

T ¥(n,a,L) T C(§,a,1)¥(c,a,§ L)
n#o c#o

C(2¢,a,L)

cf,a, 1% c(2,a,41L).

On the other hand

i |
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C(25,a,L) = n* ¥(c'+n',a,L)
z'/m'

where n' and ¢' vary over a complete set of representatives for

-1

the cosets of (24) 'L modulo 27'L, and 27'L modulo L, subject to

the condition that not both n' and ¢ lie in the zero cosets.

Then
| -1
| c(24,a,L) = In' ¥(g'ya,L) T C(2,a,L)¥(n',a,2 "L)

g '#o n'#o
-1
= c(2,a,1)N c(4,a,27 1) .
de AT R <1 P
e = il .
C(f,a,2 "L) C(2,a,4 "L)

Now c(f,a, 27t o~ (Na-1) (N§-1) (r 4 1)

(because p(z,2—lL) = 4p(2z,L), and a,{ are prime to 6). We now

compute C(2,a,L). First suppose that L is normalized with basis

of form [T,1] with Im T > 0. Following Lang [14] p250 and 251,

we have

4 4 141

a(m) = 2lexpin W+ +l)n (0 /0 G0 (o

where ¢ and n denote the Weirstrass o-and n-functions attached

to L. Thus

4 - e 2
w4(%,L)w4(£,L)w4(l;1,L) _ 2 exp{n(lét£;+l)n(T) (l+14 7T ).SZLL)}

The identities n(l)—sz(L) = m/a(L)

n(t)-1s,(L)= mt/a (L)

proved in [13] (see also Lemma 5) give

4 1 4 4 l+1

v Gt Gt A3 = 2%exp (T, (L+THT)) A

——
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A similar computation for the lattice a-lL shows that

w4(%,a—lL)¢4(%,a—lL)w4(l;T,a_lL) = 24exp(

T (L+THTT) ) /A (s
a(a L)

Notice that %, %, l%l are 2-division points for a_lL but not

necessarily located in the usual fundamental parallelogram for a—l

The derivation of p250 of [1l4] is still valid.
Thus for the normalized lattice L and hence for any lattice L

Na -1
c(2,a,1)% = 24 Ma-1), (A(_L)?I )
A(a L)

The same is true for 6—1L: hence, because

, Na-1) (8¢-1) _ c(2,a,0) "

C(f,a,1)>. =
c(2,a,4 1)

4

we obtain

12 famNe -N§ A (4" LpyNa
C(g,a,L) = =1 . ——A:I—:T :
A(a”"L) A4 "a L)

Recalling that

Na
0(z,a,L) = éi&éf— : ‘P(z,a,L)12
A(a ~L)

we deduce that

T 0(z+p,a,L) = 0(z,a,{ ‘L).
O

L).

L
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§4, Factorization of values of O0-functions.

The prime factorization of the numbers 0(p,a,L) is now
considered. The technique depends upon expréssing these values
in terms of the discriminant and division points of an elliptic
curve E', which is isomorphic to E and which has certain good
reduction properties described below. The existence of such a
curve E' is guaranteed for all but the following "special type"
of order - the orders of Q(/-1) and of ©(V/-3) whose conductor is
a power of a single prime. Henceforth, the order 0 will be
assumed to be not of "special type"; in particular, 0, may be the
full ring of integers of K.

Throughout, let a and 4§ denote oc—ideals prime to c: they
are proper, so let Ay and ﬁK denote the o-ideals such that
a = agno, and § = 6Knoc. Furthermore a will be supposed prime to
64; p will denote a fixed {-division point of L, and for brevity

H will denote the field K(jE).

The principal result of this section (Lemma 1.12) is that
©(p,a,L) is an integer of R({); it is a unit if 6K is not a prime
power; if 6K is a power of a prime p, it is a unit at all places
of R(4) except those above p, and here its value is described.

As mentioned earlier the method of establishing this result
is different from Robert's; the main steps in the argument are
the following. First, it is noted that E can be taken as defined

over H = K(jE). Next, a prime p of K is fixed, and a curve E',

which is isomorphic to E, is defined over H, and has good reduction
at all primes of H dividing ﬁKaKp, is found; the exclusion of the
special type of order is needed for this step. ©O0(p,a,L) is then

expressed in terms of the discriminant, the {-division and the |
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a-division points on E'. ]xﬂ:EF be a prime above p in the field
of definition of such division points; E' has good reduction at?F 7
and the‘jg —adic value of these division points is found by

considering the formal group which is the kernel of the reduction

map modulo? . From this the ; —adic value of O(p,a,L) quickly
follows.

So we begin by considering the field of definition of E,
namely Q(gz(L),g3(L)). It is not necessarily algebraic (over @),
but since the j-invariant of E, jE’ generates over K the finite
algebraic extension R(oc), there is an elliptic curve E' which is
defined over H = K(jE) and is isomorphic to E over the complex
field. It has a Weierstrass model y2 = 4x3—g;x—g; with g;,g; in H

(see Shimura [23], p97-98); the isomorphism connecting points (x,y)

of E to points (x',y') of E' is given by

o oD '_4 ' 6
= uy, g2 = u g2l g3 = g3,

X' = u2x, vy

for some uec*. The lattice associated to E' is u—lL; hence

1(d'z,L") = 1(z,L) and A(L')/A(a" L") = A(L)/A(a”L). Thus in
considering the value of 0(p,a,L), we may suppose’ that E is defined
over H, that is, 95193 and A lie in H. We shall use El to denote

the model Y2 = X3—G2X-G3 which is related to E by the equations

X =x, 2Y = vy, 4G2 = gy 4G3 = g3-

El has discriminant equal to A(L).
Now suppose E' is another curve, which is defined over H

and is isomorphic to El' Let £f: E' —> El denote the isomorphism

carrying the origin of E' to that of E,i we denote the coordinates
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of a point P of E' by (x'(P),y'(P)) and those of the image point
f(P) on El by (X(£(P)),Y(£(P))) or more simply (X(P),Y(P)). This
isomorphism must be defined over a field extension M/H of degree

dividing e there exist constants r,s,u,w in M with u # O such

K;
that
= 12,1
X(P) = u™x'"(P)+r (%)
Y(P) = u3y'(P)+su2x'(P)+w,
12 |
and the discriminant A' of E' satisfies A' = u A(L) (see [281], T
p37) «
We may write 0(p,a,L) in terms of the a-division and {-division

points on E'. Let Pl = (p(p),%p‘(p)) and P = f—l(Pl) be corres-

ponding {-division points on El and E'; let E, a and Ea denote
4
=1

|
the corresponding a-division points on these curves (Ea = f (El a))’
! £
Then Lemma 1.5 shows that
Na
o(p,a,1) = 2 1 (x(ep-x(0;)7°
A(a “L) QlEEl,a
(1)
= AL oM o @@yt
A(a L) QeEa /

We emphasize this expression is valid for any such model E',
including those for which E' has certain good reduction properties.’

For the remainder of this section, let p be a fixed prime

of K. Since the special type of order has been excluded, the work

of Serre and Tate ([ 22 ], theorem 9 and corollary) shows that there

exists an H-form for El which has good reduction at all primes
of H dividing aKﬁKp. We will denote this form by E': it is defined
over H, it has the same j-invariant as El’ it is isomorphic to El

as described, it has a defining equation
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y2+alxy+a3y = x3+a2x2+a4x+a6

with coefficients a; which belong to H and are integral at each
prime of H dividing aKﬁKp, and, finally, its discriminant A' is
a unit at each such prime.

Let N = K(jE,E%,E;) be the extension of H obtained by adjoining
the coordinates of the {-division and a-division points on E'. Fix
a prime ?l of N lying above p; let $'= ;lnH and (p)

be the primes of H and Q above which it lies. To compute the

pno

EFl—adic value of 0 (p,a,L), we consider the one parameter formal
group £ which is the kernel of the reduction map modulo 33 on the
curve E' (see [28] p42). ©Let t(P)= —x(P)/y(P) for each point P
on E': t is a local parameter for the point at infinity on the

curve; as shown in [28], there are expansions
=2 _ -3
x(t) = t “a(t), y(t) = -t "a(t)

where a(t) is a power series in t, leading coefficient 1, and the
remaining coefficients lie in the ring R of integers of the
completion Hf of H at ? .

Let A be the ring of integers of a finite exténsion B of H 7
and m its maximal ideal. We write ﬁ(m) for the set m endowed with

A
the group law given by E. The map
t —> (x(t),y(t))

A
defines an isomorphism from E(m) onto the kernel of reduction

modulo m of the points on E' with coordinates in B. If v denotes

7
P

the valuation on B (for which the value of a generator of m is +1),

T
the subgroup m®™ corresponds to the subgroup En(B) of points (x,y)

on E' with

| " .
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>v(x) < =2n, v(y) < -3n

(and including the zero of E').

A
be the completion of 85 in Kp: we show that E is an

]
o -module, as follows. Let P lie in E. (B) and o in o .
| C,p 1. C,p

A |
Define the map [al] of E(m) by |

Let o
c

' 4

y [alt(P) = t(aP). :

We claim this is a power series in t with coefficients in R, i.e.
A
’ integral coefficients, and so is an endomorphism of E. By m-adic

continuity, it suffices to prove this for any dense subset of

;\ Oc,p’ in particular for any o in Og-
| If p is an unramified prime of degree 1, it even suffices to
prove this when o is a rational integer; this is well known (see
[14]1 p305). The result in general can be derived from a much
deeper result of Tate [28]. Since multiplication by p in ﬁ is an
isogeny of degree p2, ﬁ is a divisible formal group (see [28 1 pl62).

Let

AL .. E
T, (E) = lim " n

be the Tate-module, where the inverse limit is taken with respect

; to the maps p: E P N E 55 of multiplication by p. Now the map
P

[a]l is an endomorphism of Tp(E') which commutes with the action

) of G(ITI? /H, ) (- here P_I? denotes the algebraic closure of

¢

1 =3 = : . . ' =
[ IEF ); for if (Pn) is a sequence in T_(E'), we have p Pn+l P

P n

& and pPl = 0, and (aPn) is a similar such sequence. Now every

A -
endomorphism of E clearly gives rise to a G(%¥ /H¥ ) endomorphism

of Tp(E'); Tate's deep result asserts that every G(ﬁf /H? )
| A

| endomorphism of Tp(E') is induced by an endomorphism of E (see
\

corollary 1 of theorem 4.1 in [28 ]; c.f the examples on plé6l, and
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A
pl70) . In particular, [a] is an endomorphism of E. This proves
our claim.

The following lemma is an easy consequence of the preceding

discussion. Recall that P is a primitive {-division point (on E').

Lemma 1.8. Suppose that p does not divide 6K‘ Then P is integral

at }?l, and so |x'(P)\? < 1.
L}

Proof. Suppose P were not integral at a?fl: then it lies in
T A :
EénE(EFI). Choose an element o in §, but not in p. Since o is

invertible in oc P’ we have
14

P =[a 1] ([alP) = O,

a contradiction. Thus P is integral at EF 17 g.e.d.

We now compute the ?F l—adic value of x'(P) when 6K is a
power of the fixed prime p: say 5K'= pn+l. Note that in this
case p does not divide ¢ because { is prime to c.

Choose an oc—ideal d, and an analytic parametrization
g's: ¢/d —> E'. (Indeed, &' may be taken to be the composition
of the Weierstrass parametrization of §1, and theftransformation
laws (*) giving good reduction on E'). Let ¥ be the Grossen
character of the curve E': y maps the ideles of H to elements of
K* (see [231], p212.).

Because E' has good reduction at EF 17 Y is unramified at?F .
We define 11;(?) to be the value of y at an idele whose local compo-
nents exceptat ; ; equal one; the ? —component is taken to be any

local parameter for‘ﬂg (see [ 23], theorem 7.42). Further, the

reduction of the endomorphism [w(? ) 1 modulo ? is the Frobenus

endomorphism of the reduction of E' moduLaEF . If £ is the degree
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of the residue field cfH, over the residue field of K, pf is

4
principal, and is generated by’¢W§F). Setting q = (NK/Qp)f, this

means that

[w(}?)](t) = ¢4 mod? )

(Note that because p does not divide c, w(q:) lies in 0 P = op).
14

Let m be a local parameter for p; since p is unramified in
i H/K, m is a local parameter forlﬂz . There exists a unit u in

Op such that

i w(f) = urt.

We claim that [ m ] has the following properties.

| (i) Cml(t) = 7t mod degree 2.

(ii) [m1(t) = £9Py(r) + 7V (t) |

where U(t) is a unit power series, and V(t) is a power series.
(Both, of course, have coefficients in the ring R of integers of

He J»

F 4

To prove the first property, consider an element o of 0g-

4
i

Since [ol(p(2),p'(2)) = (p(az),p'(az)), for all z, the t-ordinate
for the model El’ T = X/Y satisfies [0 ]T = oT mod degree 2.

Under the transformation relating El and E', t transforms
(o]

t = uT(l+ ) 2 Tk) with coefficients %, lying in M. Thus

§ . k=1 %
l [alt = at mod degree 2. By continuity, the same is true for all o
: in 0 p = op; in particular, this holds for .
4

To prove the second property, suppose [m](t) has the form
[o0]
) antn with coefficients in R. Suppose a,. is the first coefficient
n=1
not lying in , so that it is a unit. Then the first coefficient
£
of [ﬂ]f(t) not lying in.EF is the coefficient of t* ; thus the

R —,
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first coefficient of [w(?r)](t) = [u][ﬂ]f(t) not lying in?F
is the coefficient of t* (because [ul(t) = ut mod degree 2).

Hence r = Np, and our assertions (i), (ii) are proven. We conclude:

Lemma 1.9. Suppose that 6K = pn+l. Then
n+1l
-2
%" (P) | = mf 44 S
7 ;
A
Proof. We first observe that P belongs to E(a?l). For otherwise,

t = t(P) is not in EFPl’ nor are the'conjugates over H. But
[l,b(? )1(t) is congruent mod? to one such conjugate, and since
this is zero, we have a contradiction.

Suppose n = 0. Then t satisfies [m]l(t) = 0. The assertions

(i) and (ii) above show that

|| NP1 = mg .
%
-2

Since x'(t) = t “a(t), the result follows. Now suppose the result
is true for some integer n > O, and consider a primitive pn+2—
division point P. Then [m]P is a primitive pn+l—division point,

and
n+1l

|[ﬂ]t% = |m| L0
(]

F

The assertions (i), (ii) again show that

|t1?1\,‘p = |tnitly,
) %
n+1

- |ﬂ[¥—2/¢()0 ] =
)

so that

| =" (2) |

%

The lemma follows by induction .
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Finally, we calculate the -ﬂ;l—adic value of x'(P) in the
cases not considered in the previous two lemmas, namely that 6K

is divisible by p and also by another prime of K.

Lemma 1.10. Suppose 6K is divisible by at least two primes of K,

including p. Then P is integral at ? 17 and so |x'(P) [? < 1s
°

n+lg for some non-trivial o-ideal g, and

Proof. Suppose ﬁK =p
let 51 = gnog be the corresponding proper oc—ideal. Since P is

a primitive {-division point, there exist a primitive pn+l—division
point Q; and a primitive ﬁl—division point Q, such that P = Q;+Q,.
Now suppose that P were not integral at ? 17 SO that

PeE%nﬁ(EFi). Now Qleﬁ(i?l) (see previous lemma), so that Q2 = P—Ql

A
must lie in E(ﬁrl). This contradicts lemma 1.8; thus P is integral

at EF 17 g.e.d.

Lemma 1.11. Let P and Q be primitive §f-division and a-division

points of E'. Suppose neither 6K nor a, are powers of the prime p.

K
Then

|x'(P)-—x'(Q)% =.1, y
]

Proof. The preceding lemmas show that |[x'(P)-x'(Q) I; < 1.
]

Suppose that strict inequality holds; thus denoting reduction

mod ?¥,l by a tilde, this means that x'(%) = x'(é), and therefore

P = ia; Since (§,a) = 1, we conclude that P = 5 =0 (the point at
A

infinity under reduction). Thus both P and Q lie in E(EFl),

contradicting lemmas 1.8 and 1.10. This proves the lemma.

We may now evaluate e(p,a,L)‘agl—adically.
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Lemma 1.12. Suppose that 6K is a power of the prime p: §, = pn+l.

K
n+l
) \

Then |0(p,a,L) | = |ﬂ|12(Na—l)/¢(p Otherwise, if §, is not

% %

a power of the prime p, 0(p,a,L) is a unit at ?3?1.

Proof. We use the expression (1) to calculate the ?¥?l—adic values.
First, note that because E' has good reduction at .EFl' A' is a

unit at ?1. Second, if pr is the exact power of p dividing a,

I-A(L)/A(a—lL)% _ |ﬂ§12r

[This follows from [14], pl65, where it is shown that if ¢ is an
unramified prime of degree 1, prime to c, and e = gnog, then
A(q;lL)/A(L) generates the ideal ql2 in the ring of integers of H.
From this a similar result for ramified primes holds (see proof of
corollary); the result is trivial for unramified primes of degree 2,
for they are principall.

+1

Considering first the case when 6K = pn , we note that p does

not divide a and so in the earlier notation

KI
lotosa il = 1, |x'(P>—x'(Q)%‘§ : |
1 QeEa d

n+1
Lemmas 1.8, 1.9 show that |x'(P)-x'(Q)]|. = |x'(P)% = |7r%_2/¢(’0 )
]

%

and so prove the result.

Now suppose that 6K is not a power of p. If p divides §, p

does not divide aK, and so

l0(p,a, L), = T  |x'(®)-x'(0)]| ° .

% QeEa %

Lemma 1.11 then shows that the right hand side equals 1, so that

O(p,a,L) is a unit at Ef?l. On the other hand, if p divides a,

e T T T e ]
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let pr be the exact power of p dividing a; we have
-12 -6
lo(p,a,L) = |r|77°F W |x"(P)-x'(Q) | .
" 1| QeEa ‘%
Lemma 1.11 shows that |x'(P)—x'(Q)%¥ = 1 unless Q is a primitive
N

pS—division point (for some 1<S<r), in which case

|z (P)y-=*(0) |

-

— 1 — _2/¢(p ’

= |x'(Q) = |m A
% | Ifu | %

The number of primitive ps—division points is ¢(ps), so O(p,a,L)

is a unit at EF‘ . Finally, if p does not divide 6K Or dy,

(0(pramy g = Tl (B)-x" () l; =1
v & (
a

by lemma 1.11. This completes the proof of lemma 1.12.

The following corollary is immediate:

+1

Corollary. Suppose that ﬁK = pn - Let a;,...,a,. be oc—ideals

X

prime to 6c, let PpreeerP, be primitive {-division points of L,
and Nyyeeern, be rational integers. The product

£ l’li
II O(DirairL) I 4

i=1

r
is a unit (in R(4)) precisely if ) n, (Na;-1) = O.
i=1

r

|

é

|

|
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§5. Definition of the Elliptic Units.

We can now define the elliptic units with respect to the

order B for arbitrary finite abelian extensions of K. As in the
last section, the special orders in @(/-1) and @ (/-3) are
excluded.

Consider first the field R(oc). Let 61""’5r be oc—ideals
prime to c, and Nq7ewerny, integers such that 6?1...5ir is a

principal fractional oc—ideal with generator X in K*. Then (see

lemma 1.12),

J-12 f L) 1 A (L) .
—l ® o ° —l
( (47T A(f, L)

is a unit in R(oc). We define the elliptic units of R(oc) (with
respect to the order oc) to be the group D(oc) of values generated

by these units and the roots ﬁR(o ) of unity in R(oc). [Note this
o

definition is applicable for any order of K, including the special

ones].

Lemma 1.13. D(ac) is stable under the action of G(R(oc)/K); it

is independent of the choice of lattice L of definition, and depends

solely upon Og-

be
Proof. Let a,ﬁ/prOper oc-ideals prime to c. Since

La,,R(0_)YK] _ 4\ -1
(A(L) \ K ol K a5 A (L) A (L)

A4 Ca Yy ey ) \ae i

it follows that D(oc) is stable under G(R(oc)/K). If L' is another

lattice with order 0or there is an idéle s of K such that L' = s—lL

(see [23] pl22.).

|
|
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(
(
|
= . . K
vow  A@n ATy _ (ML) R
sty s A (671
l D(o,) is independent of the choice of defining lattice, g.e.d.
When the conductor c¢ equals 1, it is possible to define a

l
| larger group of units in H = R(0). For in this case, every \
l element of the form described above is, apart from a factor of

a root of unity in R(oc), an e_-th power. It is sufficient to

1

K

prove this assertion for the numbers A(L)/A(p "L), where p is a

prime of K. Consider for a primitive p-division point p of L and

a nontrivial principal ideal a = (a) prime to 6p, the number f

NR()O)/R(O) ©0(p,a,L).

(4 Ne)
By lemma 1.7, it equals (A(L)/A(p—lL)) - 5 but by lemma 1.5 it

also equals

12 (Np-1) /e . (Np-1) (Na-1) /e o 12
(*) a K. P (3 (L)) K Mg () 7 (oo (7 (042 =T (2,20) )

(the notation is as explained there). The numbers Na-1, as a |
varies over all such principal ideals, generate the ideal eHZ : |

choose integers Nys.eeyn and principal ideals Apreeery such

P
7

r

r
that _z ni(Nai—l) e
i=1

H*

n., A(L) _eH/eK
N (T 0(p,ay,L) 1) = [ =1 ‘
R(p)/RUU_i=1 = (A(p )

=N

Then

Since ey divides 12 (see [18] lemma 7), numbers of the form (%)

are eH-th powers; thus A(L)/A(p_lL) is, apart from a factor in

| UH’ an eK—th power in H.
We define CH’ the full group of elliptic units in H, to be
ey _

H My

the largest subgroup of the units in H such that uHC D(o) .

[
|
|
(
|
|
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It is obvious that CH is stable under G(H/K); its definition is
independent of the defining lattice L - it depends solely on 0.

This group is defined by Robert ([18], section 3; see theorem 5

I

(

|

{

(

(

[

[ for the equivalence); he calculates its index in the units of H.
{ Henceforth, let C(oc) denote the group‘D(oc), if ¢ # 1, or the

/

l group CH’ if c=1.

{ Let us now consider the field R({§), where { is an oc—ideal prime
[ to c¢. For every divisor b # (1) of §, let P(b) denote the group

l

( generated by the values 0(p,a,L), where p varies over all primitive

(

b-division points of L, and a varies over all oc—ideals prime to
n, 1
6bc; let W(b) denote the subgroup of products I O(pi,ai,L) 1 in
i

P(b) satisfying Jn; (Na;-1) = O. Lemma 1.12 shows that W(b) lies
i

inside the units of R({). We define the group of elliptic units

of R(4) (with respect to oc) to be the group generated by these

groups W(b), by “R(ﬁ) and C(oc), that is, the group

W(b) . C(oc); we define the full group of elliptic

u & I
RUY™ b4, b#(1)

units of R(4) (with respect to oc) to be the units (of R({))

contained in the group

u 5 II P(b). C(0.).
RO p1¢,b71) .

More generally, given a finite abelian extension F of K with

oc-conductor 4, prime to c, (i.e. ¢4 is the largest oc—ideal g

such that F < R(g)), we define the group of elliptic units of F

(with respect to oc) to be the group generated by My and the

norm groups N (W(b)) (for b dividing {,b # (1))

R(b) /R(b)nF

and (C(oc)). Similarly, we define the full

NR(OC)/R(OC)nF
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group of elliptic units of F (with respéct to oc) to be the units

(in F) in the group generated by Uppr and the norm groups

P(b)) and N (C(o,)) .

NR(b) /R (b)nF R(0_) /R(0,) nF
Note that if 6K is a power of a single prime, the group of

elliptic units of F equals the full group.

Lemma 1.14. Both the group and the full group of elliptic units

of F are stable under the action of G(F/K). The groups are

independent of the choice of L, and depend solely upon 0 and F.

Proof. It suffices to show that the groups W(b) and P(b) are
stable under the action of a idele s of K. Let p be a primitive

b-division point of L, and a an ideal of K prime to 6cb. Then

0(p,a,L) o(s™tp,a,s7tL)

Now s_lL is a lattice with order 0or SO there is an oc—ideal g

prime to 6bc and a complex number A such that s_lL = Ag_lL; hence
0(p,a,0) 5% = o0 ts o, 4,07t .

But A_ls_lp is a primitive b-division point of g_LL, and
o(t,a,g"tn) = 0(r,ag,L)/0(t,q,1) V.

It is therefore clear that P(b) is stable under [s,K]. The action

of s on a product

Ny
H @(pi,ai,L)

1

of P(b) satisfying z ni(Nai—l) = O gives an element
i
ni . niNa.
i O(Ti,aig,L) /O(Ti,g,L)

i

with T, = A—ls_lpi; this lies in W(b) because the sum
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g n, (Na;g-1) -n;Na; (Ng-1) = ; n; (Na;-1)
is zero, so that W(b) is stable under [s,K].
Also, if L' is another lattice with order O then L' = s_lL
for some ideéle s of K. If p' is an b-division point of L', sp'
is a b-division of L, and therefore O(p',a,L') = e(sp',a,L)[S’K]

lies in P(b). Thus P(b), and similarly W(b), is independent of

the choice of L: that is, the group of elliptic units and the

full group of elliptic units of F depend solely upon 0 (and F) .
Remark. The group I P(b) defined above is, modulo roots of unity,
- b6, b#(1)

generated by the values O(p,a,L) where p varies over all primitive
or imprimitive division points of L, and a varies over all oc—ideals

prime to 6f{c. For, if p is primitive b-division, and a is not

prime to §, choose an oc—ideal g prime to 4 and lying in the same

class mod*b. Then using the function ¢(z,L) (see chap.2, p.46)
0(p,a,L) = (0, 1) "/9(0,a"'L) = 0(p,g,1)0(0, 1) " Mo (p,07'1) /(o ;L)
Choose integers a,B =1 mod b such that oa = g =c. Then
¢(p,g—1L)/¢(p,a_lL) = 08 0, ') /00 0, ). Now o 'p and 87 p
are b-division points for Q~IL and a—]p =p EB_kamod C—IL. Lemma 2.6
shows this ratio is a root of unity. Since Na-Ng is divisible

by eR(b)’ we may choose Oc—ldeals gl .,gr prime to,Qﬁc 20 the

principal class mod*b such that n = ni(Ngi_l) = Na-Ng; hence

—_1H e

r n.

¢(p,L)n = 1 O(p,gi,L) 1 and our assertion follows.
|

Robert [18 ] defines the group of elliptic units for arbitrary
abelian extensions F of K with respect to the order which is the
full ring of integers of K (c = 1). When the conductor { is prime

to ey, the group of elliptic units (not the full group) is

precisely that defined in [18 1 (8§4.4, 84.5 and 8§5; see theorem 7
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for the equivalence). In the case that (§ ,eK) # 1, Robert
obtains a slightly larger group by extracting a square root (and
third or fourth roots in Q(v/-3) or @(/-1)) in some of the sub-
groups W(b) as follows. For each divisor b, let ep be the number
of elements in M, congruent to 1 modulo b; then each element of
W(b) is an eb—th power, and set W'(b) to be the largest subgroup
of units such that (W'(b))eb c W(b) [This is non-trivial only if
b divides 2 (K # @®(/=3)) or b divides 2V/-3 (K = @(/-3))]. Robert
takes the elliptic units to be as defined above with W(b) replaced
by W'(b); in §6 of [18], he calculates the index of this group
for those extensions F with the conductor { a power of a single
prime p of K (in this case the full group equals the group of
elliptic units).

We will calculate the index of the full group of units for
a much wider class of conductors { which includes all prime powers.
For simplicity the conductor § will be taken to be prime to 6, and
the class number of K will be assumed to be 1. These assumptions
seem inessential to the method used, and we hope to publish the

refinements soon. 7

The following result will be used in chapters 2 and 3.

Lemma 1.15. Suppose K has class number one.

(1) Let 4§ be an integral ideal of K prime to 6 and p a prime divisor

of 4. Then for all positive integers n,

N 2 P(4p™) = P(4)
R(4p ) /R(4)

(2) Let p be a prime of K, not dividing 6, and ? be the unique

prime of R(pn) above p. Then ? 12 is principal, and is

generated by an element of P(pn).
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Proof. It suffices to prove the first assertion for n = 1. Let
p be a primitive {p-division point. The conjugates of 0(p,a,L)

over R({) are
o(p+n,a,L),

where n runs over all p-division points of L.

Lemma 1.5 shows that

=1
Il O(D'I"TI,CL,L) = @(Dralp L) 3
n
the result follows upon noting that p is a primitive {-division
point of p~lL.

As for the second, choose ideals Apreees
r

- prime to 6p and

integers n;,...,n. such that ) nj(Na.—l) = e Let p be a

I

I

I

[

I

[

I

|

|

I

I

I

I

I

I

I

I

I

I

I

I

I

I

|

I

I

‘ .
, primitive pn—division point of L. Then lemma 1.12 shows that the
I

| element

I
I
l
|
|
I
I
I
I
I
I
|
I
I
I
l
|
I
|
I
[
[
|
I
:
|
|

n,
O(p,aj,L) J, which lies in P (p™) generates ?F 12.
1

=R

J

Also in this case, when K has class number 1, and we consider
the order with conductor 1, the following more gengral version

of lemma 1.7 holds.

that
Lemma 1.16. Lemma 1.7 holds for o-ideals a and § such/(a,65) =1

(So 4 is not necessarily prime to 6).

Proof. As shown in the proof of lemma 1.7, there is a constant

C =C(4,a,L) such that

I 0(z+p,a,L) = C-20(z,a,§ L),

P I
where p runs over all {-division points of L; the constant C lies

in K. Lemma 1.12 shows that C is a unit; hence C12 = 1. g.e.d. |
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Chapter 2. The index of elliptic units for ray class fields.

This chapter presents the calculation of the index of the

elliptic units in the global units for ray class fields over
l‘ the quadratic imaginary base field K. The technique is guided
\ by the work of Sinnott [25] on the index of cyclotomic units
for fields of roots of unity. Throughout, we assume that K has

class number one; this is made for technical convenience only,

and we hope to extend these methods to arbitrary fields K. Also
the conductor h of the ray class field is assumed prime to 6;
but it is apparent that the present method can be refined to
remove this restriction. This is related to the need to define
a slightly larger subgroup of units than that given in 85 (c.f.
remarks there).,

Let h be a nontrivial integral ideal of K prime to 6, with

a fixed generator h; let H = R(h) denote the ray class field

modulo h. The ideal h will remain fixed throughout this chapter,

and suppose that h = pil...p:r is its factorization into primes

Ppreeerpy (with positive integers el,...,er); foﬁifhiet ™y denote

a fixed generator of p;. Let P be the group bTh /P (b) defined
b#(1)

in the last chapter (c.f. remark on p34); let S and C denote the
global units and the full group of elliptic units of H, so that
C = SnuHP.

We suppose that h satisfies the following condition: if any
prime Py dividing h is unramified and of degree 1, then its
conjugate EI' does not divide h. This somewhat strange condition

is needed to establish a property (lemma 2.,15) of the logarithm

map defined below; the present method of calculating the index

relies on this property.
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remarks there).

Let h be a nontrivial integral ideal of K prime to 6, with
a fixed generator h; let H = R(h) denote the ray class field

modulo h. The ideal h will remain fixed throughout this chapter,
e e
3

and suppose that h = Py ...prr is its factorization into primes
each
PpreesrPy (with positive integers el,...,er); for/i let Ty denote

a fixed generator of Py Let P be the group I P(b) defined
blh

b#(1)
in the last chapter (c.f. remark on p34); let S and C denote the

global units and the full group of elliptic units of H, so that

C = SnuyP. |
We suppose that h satisfies the following condition: if any

prime Py dividing h is unramified and of degree 1, then its

conjugate p; does not divide h. This somewhat strange condition

is needed to establish a property (lemma 2.,15) of the logarithm

map defined below; the present method of calculating the index

relies on this property.
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e e
i A r

and suppose that h = P17 s Py is its factorization into primes
each
Ppreeerpy (with positive integers el,...,er); for/l let my denote

a fixed generator of p;. Let P be the group 1  P(b) defined
blh

b#(1)
in the last chapter (c.f. remark on p34); let S and C denote the

global units and the full group of elliptic units of H, so that
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We suppose that h satisfies the following condition: if any
prime P dividing h is unramified and of degree 1, then its
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map defined below; the present method of calculating the index

relies on this property.
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Let S be the subset of 2°-1 divisors of h obtained from the
e e :
products of the ideals pll,...,prr, but omitting (1). Define
_ =T . _ st A .
W= ey bgseR(b)' note w eH/eK if h is a prime power. Throughout

let hH and R,, denote the class number and regulator of H. Our main

H

result is

Theorem 1. The group C is of finite index in S, equal to

2r—2

- =1
hHeK .wl(eH/eK)

h, (if r = 1) or 1ptH:KI-1

where Wy divides w.

(if x & 2);

Robert [18 ] proved this result for the case of a prime power
conductor h (i.e. r = 1); by using the cohomological arguments
of Sinnott [25], we are able to prove our result for more general
conductors h.

The method of proof analyses the classical class number

formula relating hH,R and the values of the L-function for the

H’
characters of G(H/K) at s = 1l: these values can be expressed in
terms of elliétic units. The formula is quoted in section 2.
Throughogt this chapter, it will be necessary to view H as
a subfield of a field of h-division points as an elliptic curve E,
which we now specify. As explained in chapter 1, %3, there is an
elliptic curve E defined over K (which is equal to its own maximal
abelian unramified extension) whose ring of endomorphisms is
isomorphic to the integers o of'K; by the work of Serre and Tate
([22 1, theorem 9), it is possible to suppose that E has good
reduction at each prime dividing 6hh: that is, E is specified by
an equation

2 _ 3 2
y +a xytagy = x“+a x"+a,x+ac

where the coefficients a; are elements of K, integral at all primes
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dividing 6hh, and the discriminant A is a unit at each such prime.

5Ll

pr—

[ Under the transformation

1
n=y+ 7(alx+a3)
2

1 1 2
| F, = X + l—— (al+4a2)
; ; . 2. .3 1 1
this equation takes the form E': n™ = &7 - Zgzg - 793 for some

constants g,,94 in K. Let p(z) be the associated Weierstrass

p-function satisfying

g pr(z)% = 4p3(2) - g,y (z)-g5.

Since K has class number one, there is a complex constant £ such
that L = Qo is the period lattice of p(z); the discriminant,

A(L), of L equals A. Combining these maps (€/L —> E' and E' —> E)
we obtain an analytic parametrization §£: €/L —> E; we conclude

that K(Eh) is generated over K by the values {p(p),p'(p); p is

: h-division of L}, and that H, which is generated by the values
{1(p,L); p is h-division}, is a subfield of K(Eh)‘ We also note

that E has integral j-invariant (see [23], §4.6).

Let Y be the Grossen character for E and §, its conductor
(see [23], theorems 7.40 and 7.42” 4 is divisible by precisely
those primes of K where E has bad reduction; in particular, h is
prime to 64f.

Throughout this chapter, G will denote the Galois group

G(H/K), and R = Z [G] its group ring; Gy will denote G(K(Eh)/K),

and Rl = ZZ[Gl] its group ring. The letters x and £ will be
reserved for characters of G and Gl respectively; pX and % will

denote the ring homomorphisms pX: €G] —> € and p C[Gl] —> C

£ |

induced by x and & respectively. Given a set of complex numbers

o aX for characters x of G, there is a unique a in C[G] such that
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pX(a) = aX for each x; explicitly a = § aXeX, where

1 -1 . ; i 2
e = 0)OoO is the idempotent associated to e = e H
x = TaT 0ZGX( ) P x(e, = e)

for any two distinct characters X17X2 of G, = 0. A similar

e e
X1 Xo
result holds for the homomorphisms pg, attached to Gl; we will

denote the idempotent attached to & by € (= Tlﬂ Z E(I)T—l).
3 GlITeGl

For a character x of G, denote its conductor by 6X; 6X is the
conductor (in the sense of class field theory) of the extension
KX/K, where KX is the fixed field of the kernel of x. x therefore
induces a character, denoted always by x', of G(R(ﬁX)/K); x' is the
associated primitive character of ¥, and its kernel fixes KX.

The conductor 6X divides h, and so is prime to 6; hence
G(R(ﬁx)/K) is isomorphic, via the Artin map, to (0/5X)*/UK. The

following diagram is commutative:

(0/h)* —> G(R(h)/K)
(o/ﬁx)* > G(R(ﬁx)/K)

,‘é
The vertical map on the left is the natural surjection; that on

the right is the restriction map.

We regard xy as a function on the ideals a of K by defining
x(a) to be x([La,H/K]) if (a,h) = 1, and to be zero otherwise;
similarly we define x'(a) to be X'([a,R(ﬁx)/K]) if (a,éx) =1,
and to be zero otherwise. Note that if p is a prime dividing h,
but not 5X, then x'(p) # O. For any integer of K, we set
x(t) = x(to).

A similar notation will be used for characters & of Gl;

these will be regarded as characters of G(R(4h)/K) whose kernels
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fix K(Eh)' The conductor 5€ is the conductor of the fixed field

K of the kernel of £ , and £ induces an associated primitive

3

character E' of G(R(ﬁE ) /K) (whose kernel fixes KE ) .

For brevity, B(g) will denote the group(O/g)*/uK for any
ideal g prime to 6.

Throughout & = ZH will denote the logarithmic embedding
into R[G], defined by

9: BX > RIG]

x +—> ¥ -log|x%|oT.
oeG

Note that % is an R-module map: of(x) = 2(x°) for each oeG. If
xeH® lies in the kernel of %, |x°| = 1 for each 0eG; thus if x
is integral, x lies in Mg In particular, the kernel of £ in S
is Mg r and since My < C, S/C = %(S)/%(C).

Finally, for any R-module A, let Ag denote the submodule
annihilated by s(G) = Z o; let AG denote the submodule fixed

0eG

by G.

The condition on h implies that if x lies in PnKx, and 2(x) =

the x is a root of unity in K. This property 6f & will be used in

lemma 2.15 to show that SL(P)o = 2(C).

O,




§1, Fields of division points.

In this section, we gather together some results about
fields of division points on E. Recall that h # (1), and is prime

to 644 -
Lemma 2.1. E has good reduction everywhere over K(Eh)'

Proof: Let p be a prime dividing h; we use the criterion of
Néron-Ogg-Shafarevich to show that E has good reduction everywhere
over K(Ep) =) K(Eh)’ If p is unramified of degree 1, this is
proven in [ 7] (theorem 2), so suppose that p is inert or ramified
and lies above the rational prime p. Let FO = K(Ep) and ¢ be a
prime of FO not lying above p; let Fo be the algebraic closure

of F . Pick a prime of F_ lying above ¢, and let I, be the

be the Tate module
n+1l

corresponding inertia group. Let Tp = lim E
formed from the pn+l—division points on E; it is a G(fO/FO) module,
and its automorphism group is 0?. The image of G(fo/FO) is
contained in the units congruent to 1 mod p; in particular, the

image of I_ in the automorphism group of Tp is either trivial

q
or infinite. Now E has integral j-invariant, aAd it is known

(c.f. [22] pd496) that the image of Iq must be finite; thus Iq acts
trivially on Tp. Theorem 1 of [22 ] shows that E has good reduction
at ¢g. This is true for all primes g of F, not above p; by

hypothesis the same is true for all primes above p, and the proof

of the lemma is complete.

Lemma 2.2. The ray class field mod {§ equals K(Eé);

the ray class field mod §{h equals K(Eﬁh)u

|
I The conductor of K(E,) is 4h .
\
|

—



Proof: We use the notation and results of [23] to prove this in
a manner similar to that of Coates-Wiles [ 7].

Let g be an ideal of K divisible by §. Let U(g) denote the
subgroup of the ideéle group as defined on pll6 of [23], and x be
any element of U(g) with x, = 1. Since the conductor § of VY
divides g, Shimura's reciprocitylaw shows that the Artin symbol
[x,K] fixes Eh (see [ 71, lemma 3). Thus K(Eg) < R(g). But the
classical theory of complex multiplication shows that R(g) < K(Eg).
Hence K(Eg) = R(g) and the first two statements of the lemma follow.

For the last part, let b denote the conductor of K(Eh) over K.
We first show that b divides {h. Again Shimura's reciprocity law
shows that, for any ideéle x in U(4h) with x_ = 1, the Artin symbol
[x,K] fixes E, (see [7 ], Lemma 4). Thus b divides §4h.

On the other hand, because E has good reduction everywhere
over K(Eh)’ the Grossen character Y of E over K(Eh) must be 1
(see [ 23], theorem 7.42). But ¥ is the composition of | and the
norm map from K(Eh) to K; so the conductor of | divides the
conductor b of K(Eh)/K. Furthermore, because K(Eh) contains
R(h), h must divide b. Since ({,h) = 1, fh divides g; we conclude

that g = fh , g.e.d.

Lemma 2.3. Suppose h is a power of a prime p, h = pn+l.

Then K(Eh) is an extension of K of degree ¢(pn+l), which is

totally ramified at p.

Proof: This is proved in [7 ], p228 for the case of an unramified

prime of degree 1. More generally, since E has good reduction at
A

p over K, we may consider as in §3, chapter 1, the formal group E

which is the kernel of reduction modulo p. K has class number one

—_



so Y(p) = m is a generator for p, and the endomorphism [Y(p) ] of
A
the formal group E induced by it satisfies

(i) [m]1(t) = mt mod degree 2

Np

i mod p.

i

(ii) [wl(t)

A
Thus E is a Lubin-Tate formal group over Op" By [16], there is a

unique formal group £ defined over ¢ _ such that the endomorphism

P

[7] of £ is given by the power series [mlw = wNp+ﬂw; E is isomorphic

A

to E over Op' We conclude that KP(E ) is a totally ramified

n+1
P
extension of Kp of degree (Np)n(Np—l).
Now the action of G(K(Eh)/K) on Eh defines an injection
G(K(Eh)/K) > (o/h)x, so that [K(Eh):K] is at most

¢ (h)

(Np)n(Np—l); we conclude that K(Eh)/K has degree ¢ (h) and

is totally ramified at p.

Lemma 2.4. Suppose hl and h2 are coprime ideals of K, prime to
644. Then K(Eh )nK(Eh ) = K and the composition
1 2

K(E, JK(E, ) = K(E, , ).
hl hZ hlhz

Proof: The conductor of the extension K(Eh ) NK(E, ) divides 5hl
1 /2

and 5h2, and so divides §. But R({) = K(Eﬁ) is unramified at any

primes dividing hlhz, so K(Ehl)nK(Ehz) = K. Because Ehlhz = EhleBEh2

is the direct sum of E and E on the curve E, K(E ) is
hl h2 hlhz

contained in K(Eh )‘K(Eh ); equality follows upon computing degrees.
1 2

Lemma 2.5. The ray class field mod 4{h equals the composition

K(E )'K(Eh)’ and

8
K(E ) nK(E,) = K.

The degree [K(Eh): R(h) ] equals ey

—



Proof: Since K(Eﬁ) is unramified at all primes dividing h,

K(Eé)nK(Eh) = K. Clearly
R(4h) = K(Eﬁh) > K(Eﬁ)'K(Eh);

equality follows by computing degrees. Finally,

[K(Eh): R(h)1 = [K(Eh):K][R(h):K]_l = eg.

Remark. The results of this section are in fact valid for any

conductor { and any ideal h prime to {{; we do not need the

conditions imposed on § and h in the introduction.
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|

812 . ‘The Class Number Formula.

The proof of theorem 1 relies upon the classical class number

formula, which relates the class number h the regulator R

HI

and the values L(l,x) of the L-functions attached to the nontrivial

HI

characters x of G. These values L(l,x) can be expressed in terms
of a function ¢ defined below (see [24 ],[18 ] ); this function
¢ (z,L) takes values at h-division points z of L which are closely
related to generators of the elliptic units of H.

We recall that the function 0(z,L) was defined in the last
chapter (§3), and that a(L) denotes the area of the fundamental

parallelogram of L = Qo. Define
2
¢(z,L) = 6(z,L)exp(-6m|z|“/a(L))

and u(z) = log|¢(zQ,L) . Notice that for an ideal a of K,

(2, )Y/ (z,a”tL) = 0(z,a,L);

we will be considering values of ¢(p,L) and u(p/Q,L) at h-division
points p of L. The following lemma summarises the basic properties

\
! of ¢ and u.
|

,

Lemma 2.6. Let b be an integral ideal of K.

(1) Suppose that b is the smallest positive rational integer in b;
let p be a b-division point of L. Then ¢(p,LfD is independent
of the choice of p modulo L.

(2) Let a be a nonintegral element of K. For any integer o and any

root of unity € in K, u(a+a) = u(ea) = u(a).
(3) Let B be a generator of b. Then

z u(a+t)

—) = u(a),
t mod b

B

the sum being taken over a complete set of inequivalent

| representatives for o mod b.

——
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Proof: For arbitrary wel,

9 (ptw,I) _ 6 (p+w,L) 6 - - -
o (0, 1)~ 8(p, L) XRFmy (22~ (ztw) (z+w)))
But gESTgSL): exp(%%g% (p + %w)) (see the proof of lemma 1.5),
so that
(ptw,L) _ 6w - o
500, o)~ =xXplgmy (we - pw))

Now (wp - pw)/2i in the area of the parallelogram formed by the
points w and p in the complex plane, so that this ratio is a
bth root of unity. This proves part (1).

Now consider a nonintegral element a of K. The result just
proved shows that u(a+t+a) = u(a) for every integer a. For the rest,

suppose that a has denominator g (so that ag < 0); choose a

nontrivial ideal a prime to6gb and in the principal ray class

mod gb. Then (Na-l)u(a,L) = log|0(aQ,a,L)|; from this, it is clear
that u(ea,L) = u(a,L) for any € in UK' Also by lemma 1.16,
+ +
Ma-1) ] uwE) =1log| 1 0(3FE q,a,L)
t mod b t mod b
= log|@(aQ,a,L)| = (Na-l)u(a).

This completes the proof of parts (2) and (3).
The connection between u and the elliptic units of H may be
summarized as follows. Let V(h) be the additive subgroup of

CLG] generated by the elements

n@ = I u@hrenxit,

teB(h)

where a ranges over all integers of K not divisible by h. V(h)
is an R-module ([t,H/KIn(a) = n(at)) and is in fact generated as

an R-module by the elements ni(b), where b ranges over all integers
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of K which divide h (excluding (b) = h). For given an integer
a ¢ h, we may choose an integer t, prime to 6h, such that b = at

is a divisor of h; then n(a) = [t,H/K]—l

n(b). Since n(eb) = n(b)
for any € in Hgrs We use the notation n(b) for n(b), where b is any
generator of b,

For any ideal a of K, prime to 6h,
(Na-[a,H/K])n(a) = 2(0(F,a,L)).

Thus, denoting by I(h) the R-ideal generated by the elements

Na-[a,H/K] as above, we have
I(h).V(h) = 2(P).

For brevity, V(h) and I(h) will be denoted by V and I (resp.) in
the rest of this chapter. |

The function u may be used to form sums depending upon
characﬁers x of G. For such a character, let fX be a generator
of the conducﬁor 6X of x; recall that X' denotes the associated
primitive character of G(R(ﬁx)/K). |
Define alx') = _ } u(%E)X'(Ot),

teB(ﬁx)

_where o, = [t,R(ﬂX)/K]. (Note it is independent of choice of

t

generator fX). The next lemma shows in particuiar that

p (1) = ] X HEADUE = uX). T (1-X'(p),
X teB(h) plh

X

the product being taken over all primes p dividing h.

Lemma 2.7. Let b = (b) be an integral ideal of K, prime to 6, and

divisible by 6X' Then




\ I x'(®uE@ =ux) T (1-x'(p))
teB (b) plb

the product being taken over all primes p dividing b.
' Proof: For any such ideal b divisible by 6X' let ub(x') denote

[ the sum on the left hand side. We show that for any prime p

(with generator )

| ubp(x') ub(x') if p divides b,

1 and ubp(x') (l—x'(p))ub(x') otherwise.

I Consider first the case when p divides b; we have

=il t
u, (x') = e ) X' (B)ulps) -
bp K ¢ mod bp B
(t,bp)=1

In this case, an integer of the form x+yb is prime to b precisely

if x is prime to b. Thus

=], + ‘
up %"} = ey ) : x'(X+yb)u(x—b%p-).
P x mod b y mod p
(x,b)=1 |
Now x'(x+yb) = x'(x) because 6X divides b, and Iemma 2.6 shows that |

xX+yb, _ X
I uFE = u).

y mod p
Hence u, (x') = e_l ) (x)u(X) = u, (y'), as desired
bp ‘X K X b hiA La ’
x mod b
(x,b)=1

Turning to the case where p+b, an integer of the form

xT+yb is prime to bp precisely if (x,b) = (y,p) = 1. Thus
‘ -1 . +vb
ubp(x ) = ex Z Z X (xn+yb)u(§%gi—)




P————

Again x'(xmtyb) = x'(xw); also
I ] ouEER) - u & - ud.
! y mod p
! (yrp)=1
.
| Thus ubp(x') = (l—x'(ﬂ))ub(x'), which proves the second part.

] We deduce from the formulae that

u, (x') = T (1-x'(p)). Ry (x"')
p|b X
pt6
where the product is taken over all primes dividing b, but not 6X'
Since x has conductor 6X' x'(p) = O if plﬁx, furthermore,
uﬁX(X') = u(yx'). The lemma is now proven. The class number
formula can be stated in terms of the u(y'):

u(x")

Il 6 ’

K x#1

the product being taken over all nontrivial characters y of G.

[See Robert [18 ] p20; in his notation, u(y') = S(x')/fx, where fX
denotes the smallest positive rational integer in 6X' the conductor

of x; the modulus of p(x') is 1, and e6 = 1 because (h,6) = 11].
X /
The techniques of computing the index wuses the general notion

of lattice index outlined in Sinnott[25 ]; we briefly describe it ,
here. 1If X is a subspace of the group ring R [G], we say that M E
is a lattice in X if M is a subgroup of X which is discrete (in
the induced topology from IR ) and which spans X. We note that a
subgroup M of R[G] is discrete if and only if it is free over Z
with a basis of elements linearly independent over IR .

Let Ml and M, be lattices in X: then there is a nonsingular

linear transformation A: X —> X such that A(Ml)'= M2. In this

case, we define the symbol (M;:M,) to be |det A| (the modulus of

R —_E_ESIE"EEEG——,
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the determinant of the transformation): it does not depend upon
the choice of A. The following lemma is stated in Sinnott [25]

(lemma 1.1) and is restated here for convenience.

Lemma 2.8. (a) If Ml and M2 are discrete subgroups of R [G] with
M2 < Ml’ then (Ml:MZ) is defined if and only if M2 is of finite
index in Ml; in this case (Ml:Mz) = [Ml:MZJ, the index.

(b) If Ml’ M2 and M, are discrete subgroups of IR [G], then

3
(Ml:M3) = (Ml:MZ)(MZ:M3) i.e. whenever two of these symbols are
defined, so is the third, and this relation holds.

This terminology and notation is applied to subgroups of
O[G], simply by viewing @[Glas a subring of R [G]. A subgroup M
of ®[G] is discrete precisely if M is finitely generated over % ;
given two discrete subgroups Ml and M, of Q[G], the index (Ml:Mz)
is defined precisely if My and M2 generate over @ the same subspace

of ®LG]. The following lemma which is proved in [25] (lemma 6.1)

is quite useful.

Lemma 2.9. Let A and B be discrete subgroups of @[G], and suppose

that (A:B) is defined. Let o be an element of @®[G].

Let A denote the set of elements aeA such that aa = O,
and define Ba similarly. Then (Aa:Ba) and (acdA:0B) are both defined,
and (A:B) = (Au:Bu)(aA:aB).

The remainder of this section relates V to an R-module U which
is independent of u; we will show that U is a free Z -module of
rank [H:K]. The basic step in the proof of theorem 1 is to

express the index [S:C] = [2(S):2(C)] = (2(S):2(C)) in the form
|
(2(8) :Ry) (Ry:U) (U (1-e1) V) ((1-eq) Vi (L-ey) £(P)) ((1-eq) &(P):2(C)) .

(Here Ro’Uo denote the submodules of R,U respectively annihilated

lIlhIlIIlllIlllIIIIllllllIIlllllllIlllllllllllIlIlllllllllllllllllllllllllllllllll
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by s(G) = ) 0). Each of the indices will be shown to be defined,
0eG
and the value calculated.

We now discuss the module U. For any prime p, let

- Z i'(p)ex, the sum being taken over all characters x of G.
X

Note that Ep actually lies in Q[G]. For any divisor b of h, let

“p

Hy = G(R(h)/R(b)) be the subgroup of G fixing R(b); let

s(Hb) = ) o (an element of % [G]). Finally, let
OEHb
w = w(u) = z u(i')e , the sum being taken over all nontrivial
X#1

characters of G. We define U(h) to be the R-module generated by

the elements ap = s(Hb) ? (l—5p), the product being taken over all
p|b
primes p dividing b , and b varying over all integral divisors

of h. For brevity U(h) will be denoted by U in this chapter.

Lemma 2.10. (l—el)V = w.U.

Proof: V is generated as an R-module by the elements n(b), where
b is an integral divisor of h (bgh). For such a divisor b = (b),

let a = hb_l. We claim that
(1-eq)n(b) = wo
it suffices to show that for any nontrivial character x of G,

px(n(b)) = pX(waa).

We first observe that pX(n(b)) = O if the conductor 6X of ¥
does not divide a. For, in this case, there exists an integer t
prime to h and congruent to 1 mod a such that y(t) # 1; then
[t,H/KIn(b) = n(bt) = n(b) since bt = b mod h. Applying pX to this

last equation shows that pX(n(b)) = 0. |

__
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On the other hand, if 6X divides «,

p_(n(b)) = )
X teB(h)

where a is a generator of «a.

X(e)u),

The term under summation depends only

upon t mod «,

and since a # (1)

pX(n(b)) o x (t)u(t/a)

T
|
|
|
|
|
(
|
|
{
l
|
|
|

T (1-%"'(p))
pla

by lemma 2.7.

We now compute px(waa). First, pX(w) = u(i') and
: pX(Ep) = x'(p) for all primes p dividing a. Also
px(S(Ha)) = ) x(o) equals O if ¥ is nontrivial on H, (in which
oeH
a
case §,fa), or equals |G|/|H,| = ¢ (h)/d(a) if x is trivial on H/

(in which case 6X[a). It is now clear that

pX(n(b)) = px(waa)

for all nontrivial characters x of G.

Upon noting that way = ws(G) = 0, it follows that (l—el)V = w.U,

(o (A= T c

Lemma 2.11. U is contained in @[G],

|G|

and is isomorphic as an

abelian group to 7% (i.e. is free on |G| generators).

Proof: Since Ep and s(H,) (any a dividing h) both lie in @[GI,

so do all the elements of U. Also U is finitely generated over

7Z [G], so it is free over Z . It remains to determine its rank

as an abelian group.

1

|

l

i

|
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Let I be the subspace spanned by U; since U is a ZZ [GJl-module,
I is an ideal of ®[G]. To prove the lemma, it suffices to show
that I = @[G]. If this were not the case, there would exist a
character xy of G such that pX(I) = O (since I is an ideal). Let

x be a character of G, with conductor a. Then, if a # (1),

_ q)(h) el
B A, ] = o (@) I (1=-x"(p)).

pla

) # 0. If, alternatively,

But X'(p) = O for any prime p|a, so pX(aa

a = (1), then p_(o ) = ¢ (h) # O, Hence I = Q[G], and the lemma
X' a ex

is proven.
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§3. Properties of elliptic units of H.

In this section, we discuss some properties of the elliptic
units C of H. This will enable us to compute four of the five
indices mentioned in §2; the remaining one (RO:UO) will be

calculated in the next section.

s (G)

Lemma 2.12. Let aeP. Then a ey if and only if aeC.

Proof: If aeC, aS(G) is a unit of K, that is, a root of unity

in K. On the other hand, suppose a¢C. Since aO_leC for each o

belonging to G, a|G| = aS(G) mod C. Since a is not a unit, neither

is aS(G), g.e«ds

o-1

Lemma 2.13. Let aeP. Suppose that a eUg for every 0eG. Then

2 (a) lies in the group

r
) 12 log|m,|Z s(G).
i=1

(Recall that (ﬂi) = Py is a prime divisor of h).

e
Proof: If a is a unit, a H is fixed by G and so is a unit of K;

thus aely and %(a) = O. So suppose that a is not,a unit. By

lemma 1.5,a is of the form

A(L)k b12
for some b in K(Eh); thus bO_l is a root of unity in K(Eh) for
every o in G(K(Eh)/K). Furthermore b is not a unit, for b12 has

the same ?—adic value as a for every prime? of K(Eh) not
dividing { (because at such primes A(L) is a unit). Let m be
the least positive integer n satisfying bner. We claim that
because K(um,b) is abelian over K, and b is not a unit, m must
divide e.,. (This will be proved in the following lemma). Thus

K
bO_l lies in Mg for every OeG(K(Eh)/K).

ld.IIIIIIIIIIIIlIIIlIIIIllIIIIIIIIlIIIIIlIIIIIIIIIIIIIIIlllllllllllllllllllllll
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(
Consider a prime p, (i = l1,...,r) dividing h. Recall that
e, -e,
pil is the exact power of p, dividing h; let g; = hpi 1. The

extension K(Eh)/K(Eg ) is totally ramified at all primes?F'df
i

K(Eg ) which divide p;- Thus for any prime?Fl of K(Eh) above p;
i

and any OEG(K(Eh)/K(Eg )), we have

2l
o-1 _
B = g modEFz.
Since GFi,eK) = 1, and bc_leuK, we conclude that b1 = 1 and
r
beK(E ). Thus b lies in AK(E ) = K.
93 i=1 i

Hence a lies in K. For any prime Py dividing h, its pi—adic
value is the 12-th power of that of b, and it is a unit at all

other primes not dividing h. Thus the fractional ideal (a)

r n,
factorizes in the form ( II pil)l2 for some integers nj; hence
i=1
i 73 2
L(a)e ) 12 log|ﬂi[ZZS(G); this completes the proof of lemma 2.13.
i=1

We now prove the result quoted in the proof of the preceding

lemma.

Lemma 2.14., Let m be the least positive integer n satisfying

Bner. If the extension K(um,B)/K is abelian, and if B is not a

root of unity, then um < K.

Proof: Let A = G(K(um)/K); A acts on M and defines an injection

X: A &—p (Z:/mZZ)X. On the other hand, A acts on G(K(um,B)/K(um),

via inner automorphisms, and it is clear from Kummer theory, and
the fact that o = Bm lies in K, that A acts on G(K(um,B)/K(um))
via the character x. But as K(um,B)/K is abelian, this action is

trivial, so x = 1 and A = 1, g.e.d.

—_
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The next lemma establishes the connection between £ (P) and
2(C). Its proof uses the condition imposed on h at the beginning
of this chapter, namely that h is not divisible by both an
unramified split prime p and its conjugate p. For brevity we
denote &(P) by T. Recall that for an Rfmodule A, AO denotes the

submodule of A annihilated by s(G), and AG the submodule fixed

by G.
Lemma 2.15. &2(C) = To'
Proof: By lemma 2.12, s(G)(C) = Q(CS(G))'= O; so that 2(C) = T,_.

O

For the reverse inclusion, consider an a in P with ¢(a) in To‘

Then Q(aS(G)) = 0, and so IaS(G)| = 1. Let b = aS(G); it lies in
K* and satisfies bb = 1. The fractional ideal (b) factorizes as
a product of unramified split prime ideals GQpre--1Qg of K and
their conjugates 61""’55 in the form
==1, H] ~1, g

(Q1q1 ) DI (qsqs ) I
for some integers Ny7eesrng. Because a lies in P, for each i,
either the ideal q; and its conjugate 51 must digide h, or n; = 0.

But since h is not divisible by pp for any unramified split prime p
of K, we conclude that b lies in Ui by lemma 2.12, a must lie
in C. This proves the lemma.

The next lemma computes one of the indices (described in §2)

to be used in the proof of theorem 1.

Lemma 2.16. To = Tn(l—el)T. Furthermore, To has finite index in

(l—el)T, equal to ¢(h)/e§.

Proof: Since s(G)(l—el)T = 0, TO contains Tn(l—el)T. Conversely,

if xaTo, (l—el)x = x, so that TO = (l—el)T. Hence To'= Tn(l—el)T.




T -

Now (l—el)T/To & (l—el)T+T/T

~

T+T/T

R

G
e elT/T 7

since (l—el)T+T = elT+T and elTnT = TG. The groups elT and TG

may be explicitly computed.
e

s (G) K

First, elT = —|—G—l— 2(P) =¢—(7{) Q,(PS(G)).

Lemma 1.12 shows that

r
j = J 13 ¢(hé. log|m.|s(G)Z .
L

Now consider TG. Let aeP: then z(a)eTG if and only if

o-1 o-1
a

(o=1)2(a) = 2( ) = O for every o0eG. Fix 0eG. Then a is

a unit in H (an elliptic unit!), and lies in the kernel of £: hence

it is a root of unity. By lemma 2.13, %(a) lies in the group

r
) 12 log|ﬂi|ZZs(G). We now show that TC is precisely the group
i=1

)12 loglﬂilz s(G); for each i, we produce an element a_ ¢P such
i i

that JL(ap ) = 12 log|ﬂi|s(G). Choose ideals a;,...,a  of K prime
i

Let

S
to 6h and integers Nyreeerng such that jzlnj(Naj—¥) =ey-

n.
Q
O(TT- Ia'IL) JI
1 "y

o
Il
= wn

j
and a = N

Lemma 1.12 shows that ap generates the
i

. |
R(pi)/K Py i

ideal piz in K, as required.

It is now clear that (l—el)T/To is finite, and has order

| oty ek

| I pi = . This concludes the proof of lemma 2.16.
l i=1l e er

’ K K

The next lemma computes another index required for the proof
of theorem 1, namely [(l—el)V: (l—el)T]. Recall that the set S

is the collection of 2Y-1 divisors of h generated by products of

—
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e e
the ideals pll,...,prr, omitting (l); the element w was defined

. ; ; -r
in the introduction to be ex bESeR(b). Let Wy = [(l—el)V:(l—el)T].

Lemma 2.17. The index Wy divides w; if h is a prime power,

Wy =W o= eH/eK.

Pfoof: Let g # (l)'be a divisor of h with generator g; let
b = (b) be the largest divisor of h divisible only by those primes

dividing g. Consider a nontrivial ideal a of K, prime to 6h, in

e A S i et i st e

the principal ray class mod h. Then by lemma 1.7 (or lemma 1.15),

1

Il

nthgl) = (Na-1)~ z(@(%a,m)

(Na-1) "t

- Q )
'Q'(NR(b)/R(g)@(B'a'L))'

this lastitem is equal to the sum of the distinct elements in the

1

set {on(hb 7); OeG(H/R(g)}.‘ Thus V is generated as an R-module

by the set {n(hb_l); beS}. Furthermore, if t is an integer prime

to 6h,

| Nt.n(hb"l) - [t,H/K]T](h.b—l)eT,

1. £/

| so that V=T+) nthb )z .

beS

l The group V' = z n(hb_l)z is, in fact, a direct sum. For
- A

suppose there are integers ap such that z abn(hb_l) = 0. We show
be '

by induction on the number s of distinct prime factors of hb_l,

" that each ab = 0. Consider the case s = 0. Choose a character

i

X of G with conductor 6X = h, and apply pX to the sum Zabn(hb—l).
A b

i The proof of lemma 2.7 showed that px(n(hb_l)) equals O unless

|

I

:,

- . | .
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b = h, in which case it equals u(x') (which is not 0). Thus

a, = O. Now suppose inductively that apy = O for all divisors beS
such that hb_l has at most s distinct prime factors. Consider a
divisor bleS such that hbil has s+1 distinct prime factors.
Choose a character x of G with conducto; ﬁx = bl' The proof of

lemma 2.7 shows that for each beS, pX(n(hb_l)) = 0 if 6X does not

sy . d)(h) el o
divide b, and otherwise equals $(6) u(y )pr(l et (B)) .
Now p (n(hb_l)) = 9(h) u(x"') because x'(p) = O for each prime p
X 1 (b))

dividing bl = 5X; it is not zero (by the class number formulal).

The inductive hypothesis implies that

1 1

o.( Y amn(thb 7)) = ) a,p_ (n(hb 7))
X bZS b bes P X
by |b
_ o(h) =
= a u(X')I
b, $(b;)

because bl is the unique divisor b in S which is divisible by bl
and that hb-l has s+l distinct prime factors. We deduce that

a, = 0; by induction ay = O for all beS, and we obtain a direct
1

sum

£
f

V' = @& n(hb_l

beS

)7
Thus V/T = V'/V'nT has order dividing
I e 7
beS R(b)

since eR(b) is the least integer ny such that nbn(hb_l) lies in T;
in that case that h is a prime power, S = {h}, and V/T has order

precisely e

H
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Thus the index (V:T) is defined; lemma 2.9 shows that

((1-e;)V:(l-e;)T) is defined and equals (V:T)(VG':TG)_l (since

VG, elTnT = TG). The preceding lemma showed that

e.VnVv

4

G . g G @
i ™ = @ 12 loglni|m s(G); we claim that T~ = e,V . If xeV , choose
i=1
s ideals a prime to 6h, and integers n, such that Zna(Na—l) = eg-
a
Then

T —r

; ln, (Na-l,H/K]) x lies in T;
a
since x = elx, this sum equals eKelx = e, X and lies in elT; we

conclude that eKXETnelT = TG, so that eKVG c TG. Conversely,

choosing an ideal a in the principal ray class mod h, we have

K

= §

t
L u(z) = (Na-1) “o(N 0(— ,a,L))
teB(py) i R{py) /R oy
12/e B
= &(my Ky = lZeKllog|ﬂi|s(G); we conclude that TC = eKVG.

r

Thus (VG:TG) = e

and the lemma follows immediately.
We have calculated most of the indices to be used in the proof
of theorem 1l; we gather together these results now.

Theorem 1. C has finite index in S, equal to

12 BT, (R s0) 6 () /6E e sey

| where Wy is the divisor of w defined above.

Proof: As noted earlier, S/C = &(S)/%2(C). Both 2(S) and &(C) lie
. in the subspace X = (l-e1)RI[G] (For if aeS, elz(a)=|G|_l£(aS(G)) = 0).

i Thus formally at least,

(2(S):2(C)) = (%(S):RO)(RO:UO)(UO:(l—el)V)(l—el)V:(l—el)ﬂ((l—el)T:To)

i
|
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' where we recall that TO = 2(C). In fact, each of the groups

pr—

appearing is a lattice in X; in the course of the proof this will
be demonstrated for each index separately. The last two indices
have already been calculated in the preceding two lemmas; also

lemma 2.11 shows that (RO:UO) is defined, for the span of each of

Ro and UO is X, they are discrete, lie inside ®[G], and are

s e s A, A A

finitely generated over Z . It remains to consider the first and

third indices.

Let m = [H:K]-1. The dimension of X over Ris equal to m; |

the 7Z -rank of 2(S) = S/uH is also equal tom (for H is an extension

of an imaginary quadratic field, of degree m+l). The elements
—(o_l—l), where ¢ varies over the nontrivial elements of G, form

|
; ; “l g
a basis for R, over Z (if x = )Ja_o ~ lies in R_, then Ja , = 0, so |

o o
A - |
i that x = Ja_(o 1_1)); hence they form a basis for X over R. [
5 ‘
Let NyreeerNy be a system of fundamental units of H. Then

for each 1i,

Ly =1 - lognlo™" = ] - log|nf| (e -1)

= o 0#Ll

"A
in terms of the specified basis of X. Label the nontrivial

elements of G as cl,...,cm. Now the absolute value of the

determinant of the mXxm matrix, whose entry in the ith row and jth

column is

94
lOglnj |'

is 2™ times the absolute value of the regulator RH of H.

Since RH # 0, 2(S) is a lattice in X and

=m
(Ry:2(S)) 2 IRHI

B AP |
so that (2(8):R,) = 2 IRH | .
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We now turn to the third index (UO:(l—el)V). Clearly
(l—el)V < X, and it has been shown in lemma 2.10 that (l—el)V = w
We first prove that (l—el)U = Uo' Let a be any divisor of h,
and let

o, = S(Ha) p]lTa(l—Gp)
be a typical generator of U. For any character y of G,

excp = X'(p)ex; in particular, elcp = e;. Hence e;ja, =0 if

a # (1); also e 0, = s(G). Let

1

a = g_ o
a%h aa

be a typical element of U (gaeR). Then o lies in UO precisely if
s(G)glul = 0, or equivalently if g a; = O. Furthermore,
gls(G)eZ:s(G). Then UO is the R-module generated by the elements
o, with a # (1), and U = UO+S(G)Z " Hence (l—el)U = Uo’ as was
to be shown. Let A be the linear transformation on X induced by
multiplication with w'

Ax = wx for each xeX.

f

Then, by lemma 2.10, A(U_) = (l-eq)V. Let Ap be the €-linear

extension of A to (l-e;)CLG]. Since the idempotents eX, for

nontrivial characters y of G, form a basis for (l—el)C[G], and
A (e) =we = u(i')éx,

we conclude that det A = det Ap = i u(i'). By the class number
x#1
formula, det A # O. Hence (l—el)V is a lattice in X, and

(U_:(l-e,)V) =| T u(x")]..
© . X#1 )’

.U.
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Combining these calculations gives
.c] = 2[H:KI-1 -1 : - ik
[s:C] = 2 | Ry | .(RO.UO).X;[qlu(X ) | W1-¢(’l)/éK

[H:K]1-1 . r
12 hy-Wq (Ry:U,) « (k) /ey ex/ey

by the class number formula. This completes the present
calculations. The calculation of (RO:UO) will be performed in

the next section.

Remark. If the restriction (h,6) = 1 is removed, extra factors
divisible by 2 or 3 enter the formula, but these come entirely
from the index (UO:(l—el)V) and can be compensated for by using the
slightly larger group of elliptic units mentioned on page 35, and

modifying the definition of V., 1In particular, the calculation of

the next section is unaffected by the removal of this restriction.
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84, The calculation of (Roigo)'

In this section we calculate the index (RO:UO) by computing
various indices in subspaces of €[G, ], where we recall that

G, = G(K(Eh)/K). Throughout, let J denote the subgroup of Gy

fixing H (J = G(K(Eh)/H)); it is cyclic of order e and let j be

KI
a generator of J. Let s(J) denote the group norm Z o in Ry and

Oed
ey = s(J)/eK; the natural surjection Gl —> G induces two iso-
morphisms eJRl ~ R and eJC[Gl] ~ ¢[G]. Let & be a character of

G,, and consider the idempotent €g in €[G,] associated to £. We

note that eJeg = 0 if & is nontrivial on J; otherwise & induces a
character xy of G, and ngg = eX is the idempotent in C[G] attached
to .

For any divisor a of h, let La‘= G(K(Eh)/K(Ea)) and let

s(La) = z 0 be its group norm in Rl' For any prime p dividing h,
ogeL
let a

I =7 5'(p)e€,
p £

the sum being taken over all characters & of Gl‘ Let W be the

f
Rl—module generated by the elements

Ba = S(La) I (1-2 )

where p varies over all prime divisors of a, and a varies over all
divisors of h. It is easily seen that eJW ~ U; the index (RO:UO)
will be evaluated by considering the index (Rl:W).

For a given Rl—module A, denote by AO (resp. A the submodule

J)
61 J
of A annihilated by s(Gl) (resp. s(J)); denote by A (resp. A7)

the submodule of A fixed by G, (resp. J). We will see that
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(Rl,o:Wo) (eJRl,o:eJWo)«Rl,o)J:(Wo)J)

and (eJR :eJWO) = (RO:UO). (Here Rl,o denotes (R

1,0 l)o)'

The following lemma shows that the index (Rl:W) is defined.

Lemma 2.18. W is contained in Q[Gl] and- is isomorphic, as an

G, |
abelian group, to %

Proof: It is easy to check that fp lies in Q[G;] (any prime p);
hence so does W. Also W is finitely generated over Rl’ and so is
free over Z . It remains to determine its rank as an abelian group.
To prove the lemma it suffices to show that the subspace I of

Q[Gl] spanned by W is, in fact, Q[Gl] itself. If this were not

the case, since I is an ideal, there would exist a character & of
Gl such that pg(I).= 0. Let a be the greatest common divisor of

its conductor 65 (which divides {h) and h. Then

pE(Ba) = [Lal T (L-£'(p)); since E£'(p) = O for any prime p dividing
pla
a, pE(Ba) # O. Thus I = @[G;], g.e.d.

For any prime p which divides h, let Tp be the inertia group

of p in Gy: so for i = l,...,r,Tp fixesK(Eh ei) f Further let

i Py
Wp = Rls(Tp)+Rl(l—Zp), and let W' be the Rl—module generated by
r
products I w where w_eW _ . We claim that W= W',
i=1 Pi Py Py

Proof: Gl is the internal direct product of its inertia groups
Tp’ where p varies over all prime divisors of h., W' is generated

by the elements

Ba = I S(Tp) n (1-z ),
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as S varies over all subsets of the set of primes p dividing h.
Given such a subset S, let g be the largest divisor of h not
divisible by any prime of S. K(E ) is the largest subfield of

g
K(Eh) unramified at the prime of S, so that it is the fixed field

of the subgroup I T of Gl.Hence
pPesS P
L = 11T,
g pes p
so that s(L. ) = I s(T.) in Rl‘
g pesS

Therefore Bg = s(Lg) T (1- ), and hence W' c W.
Pig

On the other hand, let g be a divisor of h, and we now show
that

B = S(Lg)

g I (l—Zp)eW .

plg
Let S be the set of primes dividing h but not g. Since K(Eg) is

unramified at each peS, 1T T < L_. Hence
peS

s(L ) =R.s{ NI T ) =R 1 s(T ) for some BeRl. Thus
g peS P peS

B =B8. 1 s(r ) I (1- ) = B.B
g pes P plh P S
p&S
lies in U'. This concludes the proof of the claim.

We can describe the element ip more explicitly. For any

i=1,...,x, let e, = s(T_ )/|T,. |; then e is idempotent in
Py Pi pi pi

QLG ]. Choose an integer t prime to 4h such that

=T
= 1 mod pil

‘-f-
1

-e,
l .
m; mod 6hpi ;

ot
1
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let Xp be the restriction of [t,R(fh)/K] to K(Eh)‘ We claim
i

that ¥ =2A Tt e . To see this, consider a character { of Gj.
P Py Py

If £ is nontrivial on Tp (equivalently if Py divides 6g)’
i
. -e,
R . ' - divi i
i pg(epi) 0; otherwise, p; does not dlv;de ﬁg, 6g ivides 5hpl

{ and pg(epi) = 1, so that pg(kgiepi) = g(t) = E'(wi). Since
I pg(fpi) = g'(pi), in either case we obtain pE(A;iepi) = pg(fpi),

and so prove the claim.
We introduce some rotadional conventions which will remain in

force throughout this section. Let hl be the product of the primes

dividing h. The symbols g and g' will be reserved for divisors

: of hl; such divisors correspond in an obvious way to subsets of

i the set of primes dividing h. The symbol p will always denote a
; divisor of h.

' For any g, let Wg denote the Rl—module generated by the

I products I x where each xp lies in Wp; let Tg denote the product
| plg
pTgT ; we have Thl = G; and, by convention W; = Ry, Ty = {1},

It is clear that each Wg is contained in Q[Gl], aqﬁ furthermore

1| over @ . [For it suffices to show, as in

»

)

|

1 is free, of rank |G
} lemma 2.18, that for each character & of Gl’ pg(Wg) # 0. Let
|

|

I a = (65,9). The element x = 1 S(Tp) I (l-fp) lies in Wg and
v plg pla
p+a
pg(x) = I |Tp| # 0, so that pg(wg) # 0.

plg
pta
We view W as being formed from Wl = Ry by multiplying
successively with the modules Wp for each p: most of what we

prove arises by comparing the module Wg and ng, where p*g.

|
|
——
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W is generated by the products X X where x eW X eW_ . Th
pg 159 Y P p*g pp’ *gMg -

main tool for comparison is a pair of exact sequences defined as
follows.
Since e is idempotent, e (l-e = 0. Thus (l-e T =0
P P , p( p) ( p)s( p)

% =1 Hence (l-e )W

and (l—ep)(l—Zp) = (l—ep), since Zp = Ap.ep' p) Wy (l—ep)Rl,

so that (l—ep)W 1

= (l-e )W if . If A is any R.,-submodule
gp ( ~f')) gl PJrQ Y

&

of Q[Gl], we denote by A", the set of elements of A left fixed

P
Therefore we have a pair of exact sequences of Rl—modules:

T
1 g == WP =W — s Y —> 0
= g g

T
2 Q= WP —3 W ey« F mien B
(2) gp gp i

where Y = (l—ep)wg = (l-e ) and the surjections in (1) and (2)

W
P gp’
are induced by mult. with (l—ep). We begin with two simple lemmas.

Lemma 2.19. Let H be a subgroup of Gl such that

HnTp = <1>, ,

Let A be a HTp submodule of Q[GlJ, and suppose A is free over HTp.
# I

T
Then A P and (l—ep)A are both free over H.

I
|
I
I
(
I
|
|
I
|
|
I
I
I
|
|
I
| by T : an element acA is fixed by Tp if and only if (l—ep)a = 0.
| ;
|
|
I
|
I
|
I
I
I
I
|
I
I
I
I
I
|
I
I
I
I
l
|
: This lemma is proved in a similar manner to that of Sinnott

(C25]1, lemma 5.1).

Lemma 2.20, Let A be an R,-module of Q[Gl]. Then

T

)A P. Hence if A is free over Tp’

4

i}

T
P -
(AWP) S;TP)A + (1 Xp

P _
A = T YA
s ( p)

l TP
AW
] ( p ) I
|
[AWp denotes the Rl—module generated by products au where
|

aEA’ UGWPJ.

—
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Proof: The second statement is immediate from the first. To
prove the first, let a be any element of AWP. Since

Wp = S(T )R +(l—§ )R , we may write a = S(Tp)b+(l;fp)c with

b,ceA. Now (l-e )a = (l-e )c, so a lies in (AW ) P if and only if
(l-ep)c = 0, i.e. CEATP. Since (l—Zp)c = (1= p )c if cea p, the

lemma follows.

Lemma 2.21. If g and g' are relatively prime, then Wg is a free

T i.-module; if in addition, gg"' # hy, then Wy dg & fess g1, module.

Proof: The proof proceeds by induction on g. If g =1, Wg = Ry is
free over any subgroup of Gl' Now let g be a divisor of hl, not
equal to hl, and suppose the proposition is true for g. Let p be
prime to g and let g' be prime to gp. We show that ng is free
over Tg" and is free over JTg' if gpg' # hl.

Since pg' is prime to g, Wg is free over Tpg'; since
p+g T nT , = <1>, Hence by lemma 2.19, (l—ep)wg is free over Tg"
The sequences (1) and (2) split over Tg" and

iy
o 5t P
W =W ® 1- W
g g (1-e,)W, 5
~ W p & (l-e )W
Wgp = Wgp & (1-ey)W,

as Tg—modules. Since p+g, Wg is free over Tp‘ By lemma 2.20,

T L

ng = ng, and thus Wg o ng as Tg,—modules. Hence ng is free

over Tg" as desired.

Suppose ! h,; then JInT = <1>. Now W_ is free over
PP gpg # 1 n gpgl g

pg " (by our inductive hypothesis) i.e. over TP'JTg' and ,
TanTg' = <1>, and lemma 2.19 implies that (l—ep)Wg is free over

JT

JTg,. The sequences (1) and (2) split over JTQ,, and Wg > ng
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T T

as JT ,-modules, because W P = W P. Hence W is free over
g' ! g gp gp

JTg" g.e.d.

This lemma will be used to compute cohomology groups arising
from the modules Wg; these cohomology groups will be used in the
last part to determine the index (RO:UO).A.general refererce is [21]1ch.8.

Let A be a Gl—module, and G, a subgroup of G,. For any
0eGy the endomorphism of A induced by multiplication with o is a
G2—endomorphism, since Gl is abelian. Thus o induces an endo-
morphism o* of the cohomology group Hq(Gz,A) for any q = 0. We
thus obtain an action of G, on Hq(GZ,A) which makes Hq(GZ,A) into
a Gl—module. The following properties of this Gl—module structure
are immediately verified:

! (1) I£f £: A —> B is a Gl—map, so is the induced map
£ : 19(6,,8) —> uY(G,,B).
i (2) If 0O — A —> B —> C —> O 1is an exact sequence of Gl—modules,

the connecting homomorphism
s: 1d(c,,c) —> HY(G,,A)
is a Gl—map.
| (3) If G, < G5 are subgroups of Gy, then
Res: Hq(G3,A) _ Hq(Gz,A)

[ is a Gl—map. Moreover if we make

H*(G3/G,,A )
' into a Gl—module in the same way as above, via the Gl—module
G G

2 2

structure on A “, then Inf: Hq(G3/G2,A ) ¥—> Hq(G3,A) is

also a Gl-map.
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Lemma 2.22. Let g,g' be relatively prime, and suppose neither
g nor g' equals hl. Then for all g > O,

T

d J d ~ 14 g'

H=(T ,,W =~ H*(JT _ ,,W ~ H>(J,W .
( g 9) ( g' Q) ( g )

These are Gl—module isomorphisms. Moreover, the groups are trivial

unless gg' = hl.

Proof: The final statement is immediate from lemma 2.21, for if

gg' # hl, Wg is free over JTg" and thus
Hq(JTg,,Wg) = 0.

We prove the first isomorphism. Since g # hl, Wg is free
over J by lemma 2.21 and so Hq(J,Wg) = O for all g > O. Hence

inflation gives an isomorphism of Gl—modules
d Jy . pd
H=(JT J,w ~ H*(JT W)
( Q'/ ! Q) ( g'""g

for all g > O. Since g' # hl, JnTg, = <1> and we may identify
JTg,/J = Tg,.
The second isomorphism is similar. By lemma 2.21 again,
7 7#
Wg is free over Tg" so that Hq(Tg,,Ug) = O for any q > O. Hence
inflation gives an isomorphism of Gl—modules
q g q
H (JTg./Tg.ng ) = H (JTg"Wg)
for all g > O. Since g' # hl, we may identify J = JTg'/Tg'°

This completes the proof.

For any q > O, and any g, let g' = hlg_l and write, for

brevity,

T ,
A9 = g9ag,w 9 ).
g g
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Since gg' = h these groups might not be trivial: we shall

l’

determine the structure of these Gl—modules.

Lemma 2.23. Ag has exponent dividing e’ and Gl acts trivially

on Aq.
g

Aq = 0. To see

Proof: Since J has order egr we certainly have ex - g

that Gl acts trivially on Ag, it suffices to show that Tp acts
trivially, for each p.

If p does not divide g, p must divide g' = hlg_l. Then Tp
acts trivially on W§g|, and therefore acts trivially on Ag for
all g > O.

If p divides g, let g = pb for some divisor b of hl. Now

Wg is the Rl—module generated by products xpxb where

{
| xpewp, xbeWb. Thus

| _ N
! Wg = S(Tp)wb + (1 Zp)wb'
l
|
{ Let T belong to Tp' Then (T—l)Wg < Wb' because (T—l)s(Tp) =0
; and (T—l)(l—fp) = (1-1). We obtain a commutative diagram of
|
| —_ .
| Gl modules: y
W =1 s W
g A9
¢ Y
v,

? Here ¢ is the map induced by multiplication by t-1, and y is the
map induced by multiplication by l—fp. Since (T—l)(l—fp) = (t-1),
Yo is simply the endomorphism of Wg induced by multiplication
with t-1. All of these maps are G,-maps. Let g' = hlg_l. Taking

Tg,—invariants, and applying the functor Hq(J, ) we obtain a

—




———— e~

I ©
< |
'_I
1
|
S
I._l
S
[Ca)
S
v
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second commutative diagram
\ /\w*
H (3 ng )
(¢*, Y* denote the maps induced by ¢ and y). However, by lemma

2.22, Hq(J,W:g') = 0, since g'b = p_lhl o hl. Hence Y*op* = O
i.e. (T—l)Ag = 0. Thus 'I'p acts trivially on Ag; the proof is
concluded.

The next lemma enables us to determine the order of the

group Ag.

Lemma 2.24. Suppose that p does not divide g. For any integer

g > O, there is an exact sequence

0 —> a9 —» a9 _, A9¥l

—— Oo
g gFr gp

Proof: We use the basic exact sequences (1) and (2). Since

(1- Zp)Wg < ng, there is a Gl—map B:Wg —> ng induced by

multiplication by l—fp. From this, and the sequences (1) and (2),

we obtain the following commutative diagram, with exact rows:

"p >

(0] >W W > Y —> 0
g
(3) la lB lY
TP
) > W > W > Y > 0
gp gp
Here Y = (l-e )W » and o and Yy are the maps 1nduced by B. Since

g
pfg, W is free over T (by lemma 2.21); hence W p = W p (lemma

2.20). Since 1 Zp = l—xp e , o is the map induced by multiplication

with 1-A =, and y is the identity map on Y
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I

| Let g' = h,g "p ~. By lemma 2.21, both Wg and ng are free

‘ T

|
over Tg,; by lemma 2.19, Wg P and Y are also free over Tg"
Taking Tg' invariants in (3) leaves rows exact: we therefore

obtain a second commutative diagram of Gl—module with exact rows:

T 1 T(_' T '
¢ o — ngg sy Pl iy ¥ g > 0
g
1277 B 1
(4) P
T T
0 —— wPs' 5 w8, y9 > P
gp 9p
(here "1" denotes indentity map).
o L .
Now Hq(J,ng ) = 0 for any q > O, since gg' = hlp L # hl,

(lemma 2.22). Applying the functor H4(J, ) to (4), we obtain

from the long exact cohomology sequence the following commutative

diagram of Gl—modules, with exact rows:

=1 T(- 1 q Tg, q'f'l
e.. — 4 g,¥9)—> Ag —> o —> ®lg,¥I) — A —...
Ll Ll—A;l l Ll ll-xgl
| T o o ol L.
e —m> Hq l(J,Y g') ._l._.> Aq _2> Aq __‘5_> Hq(J,Y g ) — Aq+l__> T o
g ap g
(here g is a positive integer). Let OqrQys0q ddnote the maps as

shown in the second row of the diagram.
Using the commutativity of the square on the far left, we
see that the image of 0q is (l—A;l)Ag, which is O by lemma 2.23

(because A;l acts trivially). Hence the map o, is injective. The

same argument applied to the square on the far right shows that

05 is surjective. Finally, the top row gives an isomorphism

T
g,y 9 ) = Ag+l.

The lemma is proved.
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The last two lemmas enable us to determine the order |Ag| of Ag

for any positive integer (.

Lemima -2.25. Let n be the number of primes dividing g.

If n=0, [af] =1 if q is odd
ad|l = e if g is even.
1
q 2n—l
If o % O, [Ag| = &

Proof: Let n = O, so that g l. Since W, = R, and T = Gq4
S 1 i 3 hl 1

G G G
¥ o s o 1 s 1
G, i}
where (Rl )Jdenotes the kernel of the map s(J) in Rl .
G G G
A | 1, _ 1,0 1
Also Al = H (J,Rl ) = (Rl ) /s(J)Rl
Gl Gl
=~ R.7/s(J)R = 7 /|J|z .
1 1
Since J is cyclic, Aiq+l = Ai and Aiq = Ai for all g > O. Thus we
have computed the order of A%.

Lemma 2.24 implies that, for g and any p+g tpat

|ad
pg

= |a9] a9t
= |A A
A simple induction shows that

|a]
Pg

| =2 T

This proves the lemma.

We can now calculate the index (RO:UO) using the results of

this section; we begin with the index (Rl:W).
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For i =1,...,r, let gy = PpeeePys and let G = (1) . Each

g; is a divisor of hy, and WgO = Rl’Wgr = W. As noted earlier,
each Wg has rank |Gl| as an abelian group, so the indices
i r
(w :W_ ) are defined. Hence(Rl:W) = I (W W ). This
9;-1 93 i=1 94i-1 93

expression is a product of indices of the form (W _:W_ ) where p

g gp
does not divide g. In view of the exact sequences (1) and (2),

i b i
lemma 2.9 shows that (W_:W = (W p:W P . But lemma 2.20 sh
( g gp) ( g gp) shows
T

! Ak
that w P = w P. Hence (R:W) = 1.
g gp 1

We use this result to obtain a relation between

(RO:UO) = (eJRl,o:ero) and ((Rl,o)J:(Wo)J)' By lemma 2.9,
(Rl:W) (Rl,o:WO)(S(Gl)Rl :S(Gl)W). Now S(Gl)Rl = Zﬂs(Gl) and
-1 ;
S(GW = [GlIZ s(Gy), so that (Rl,o:WO) = |Gl| . Again by lemma
_l — ° -
2.9, (Ry W) e, | — = (egRy oiegWo) ((Ry ) : (W) ).

We investigate the second factor on the right. First note

). = (Rl)J; similarly (Wo)J = WJ.

that (Rl)J < Rl , and thus (R 3

o) 1;06

Now
((Ry) 7:W5) = ((Ry) : (1=3)W) ((L-3)W:W),

where we recall that j generates J. Since (Rl)J = (l—j)Rl,

((Ry) ;W) = ((1=3)Ry: (1=3)W) (W (1=3)w) T,
But W_/(1-j)W = ol (g,w) = " has order ezr—l by lemma 2.25
gl VI # = K Y :

because r is the number of prime divisors of hl. Combining these
results, we obtain

r-1

e W) ((L-3)R;: (1-3)W) = e’ .| | 7",

(eJRl,o
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I
It remains to compute ((l—j)Rl:(l—j)W). As before, we write
r
((1=-3)Ry: (1-3)W) = T ((1-J)W :(l=-3)w_ ),
i=1 9i-1 93
which leads us to indices of form ((l—j)Wg:(l—j)ng) with p
not dividing g. Since (l_ep)(l_j)wgp = (l—ep)(l—j)Wg, lemma 2.9
shows that
TP TP
1-3 : (1-3 = 1-3)W s ((L=73)w
(( J)Wg( J)ng) (-] g) ( (1=]) g)o) )
By lemma 2.20,
T -1 T
-7 = i 1-9)W +(1-X 1-9)wW d i
((1 j)ng) s ( p)( J) g ( p y (€1=3) g) and is
T
contained in ((1-3)W ) P,
TP
Let B = 1-9)wW s(T 1-5)W .
e ((1-3) g) /s p)( J) g
-1 T T
Th -\ B = (1-j 1-3 )
en B/ (1 p) ( J)Wg / ( J)ng
T, T, -1 |
d 1-9)wW F:(1-7 = |B/(1l-)\ B|. !
an (=30 s (1=3)W 1) = [B/(1-2,7) |

We may identify B as one of the cohomology groups of the
preceding section as follows. The map Wg —> (l?j)Wg given by

multiplication by (l1-j) induces an exact sequence:

J

> W > W > 0.

g

> (l—j)Wg

()

From this we obtain the long exact cohomology sequence (of Gl—modules):

T T
p - 1 J ]
cee —> W —> (1l=-3)W —> 0 (T ,W > T W — e
g (1-3) g ( p’ g) ( p’ g)
Now W is free over T , so Hl(T (W_ ) = 0. Since the image of |
g o P g
T d s
ng = S(Tp)wg in (l—j)ng is s(Tp)(l—j)Wg, we obtain the isomorphism

of Gl—modules

1 J
B = HT(T W ).
(pg)

B
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T
1
Lemma 2,22 shows that B = H (J,ng) provided that neither

p nor g equals hl. Now g does not equal hl, because gp divides h

In the case that p = hl, we have g = 1, Tp = Gy, Wg = R, and
G

((1-3)R;) 1/ s(Gy) (i-3)R; = O.

1

Il

B

We now now compute ((l—j)Wg:(l—j)ng). First suppose that
r = 1; then h; = p and g = 1. We have just seen that B = O in

this case, so that

((l'J)Wg:(l—J)ng) = 1.

Now consider the case r > 1., If gp = hl' lemma 2.22 shows that

B = Hl(J ,WJ) = O and so
P g

((l-j)Wgt(l—j)W ) = 1.

gp
On the other hand, if gp = h B = A%l; by lemma 2.23, (1—x;l)B -
and so
1 2r—2
(A=W s A=W ) = || = e

because the number of primes dividing g is r-1.

We conclude that the index ((l—j)Rl:(l—j)W)#equals 1 1fr =
r-2
and equals ex if r > 1. Consequently the value of
_ i . =1, _ -1 . _
(Ry:U,) = (eJRl,o'eJWo) is equal to eK|Gl| = (¢(h)/eK) if ¥ =
r=2 r-2

and equal to eﬁ |Gl|—l = (¢(h)/e§ )L ifr > 1.

Applying this to the results of §3 we see that [S:C] equals

2r—2—r+1

[H:K]-1
1.2 hleeK

hH if r = 1, and otherwise equals lZEH:K]_l

where Wy is the divisor of w specified there.

1

1,

1,

e—l
""H
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Chapter 3. The index of elliptic units for fields of division

points on an elliptic curve.

This chapter presents the calculation of the index of the
elliptic units for fields of division points on an elliptic
curve E defined over the imaginary quadratic base field K. The
techniques used are similar to those of the preceding chapter,
and again are inspired by the work of Sinnott [ 22]. The results

depend upon those of the preceding chapter; hence we assume that

K has class number one. Also, as explained below, the conductor

of such a field is assumed prime to 6; but it is clear that the

1 relaxation of this assumption introduces a factor divisible by
‘ only 2 or 3 (c.f. earlier remarks in chapter 2, and remarks in
' § 2 of this chapter.), and so does not affect the main results of
this chapter.

Let E be an elliptic curve which is defined over K, and
whose ring of endomorphisms is isomorphic to the integers ¢ of K.
Since K has class number 1, E has a global minimal model (see

[28], p40), i.e. E is specified by an equation
2 ' 3 2
Y +alxy+a3y = X +a2X +a4x+a6

where the coefficients a; lie in 0, and the discriminant A is a
unit except at precisely those points of K where E has bad

reduction, Under the transformation

2 = C3— %gzc - %g3 for some constants

| this takes the form E':n
9193 (which are integral except perhaps at primes above 2 and 3).

Let p(z) be the associated Weierstrass function satisfying

—
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pr(z)? = 4p>(2) - g,p(z) - g,.

Since K has class number one, there is a complex constant @ such
that L = Qo is the period lattice of p(z); the discriminant,
A(L), of L, equals A. Combining the maps €/L —> E' and E' —> E
we obtain an analytic parametrization &£*: €/L —> E. Let {y be

the Grossencharacter for E and § its conductor (see [23 1, theorems

: 7.40 and 7.42); 4 is divisible by precisely those primes of K
where E has bad reduction. As remarked above, we assume that { is
prime to 6.

Let T denote the set consisting of 2, 3 and all rational
primes q,such that E does not have good reduction a£ at least one
prime of K lying above g. Throughout, g will denote a fixed ideal
of K not dividing any prime of T; in particular g is prime to
6464f. We will be considering the full group C of elliptic units
of the field M = K(Eg) of g-division points over K; recall that
M has conductor {g (lemma 2.4).

The elliptic units arise from {g-division points on L. Let
P, be the group I P(b) defined in chapter 1 (c.f. remark on

blég ;

b# (1)
p34), and let P be the group generated by the groups
NR(b)/R(b)nMP(b) where b varies over all divisors, except (1),
‘ of fg. Denoting the global units of M by S, we have C = SnuMP.
Let £ and g denote fixed generators of { and g respectively.

e e
Suppose that {§g has the factorization pll...prr into primes

Pyre-.sp,. (with positive integers ei); we suppose that the first
t primes PiresrpPy are the prime divisors of g; for each
1=1;...,; let T, be a fixed generator of Py

——
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Since we will be using results of chapter 2, we must assume

the following condition on g: if a prime p which divides g is
unramified and of degree 1, then its conjugate ﬁ does not
divide g.

Throughout this chapter, G will denote the Galois group
G(M/K), and G; the group G(R(4g9)/K); R and R; will denote the
corresponding group rings 7 [G] and ZZ[Gl]. Let
p: ¢[Gl] —> €[G] be the ring homomorphism induced by the natural
surjection G, —> G. The letter yx will be reserved for characters
of G: these will be regarded as characters of Gl' whose kernel
fix M. The conductor will be denoted 6X; note that if 6X divides

4, X is principal; the associated primitive character of

G(R(ﬁx)/K) will be denoted x'. Similarly, the letter & will be

reserved for characters of Gl’ 5£ for its conductor, &' for the
associated primitive character of G(R(ﬁg)/K). The definition

of x and § will be extended in the usual way to the integers and
ideals of ¢. The idempotents attached to x and & (in €[G] and
C[Gl] resp.) will be denoted eX and €g s and the ring homomorphisms
induced by x and & by pX and pg. Note that p(p&) = 0 if & is
nontrivial on G(R(4g)/M); otherwise & induces a character x of

G, and p(eg) = eX.
Throughout, let & denote the R-module mapping

! 2: M —> RIG]

| X —> ) —log|x0|o_l;
oeG

let ll = QR(ﬁg) denote the Rl—module mapping

|
|
J
(
|
|
[
!
_
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X
f1: R(§g) —> RIG;]

y > ) —loglyT|T_l;
TeGl

we note that S/C = 2(S)/%(C).

Let S be the subset of 2°-1 divisors of {g obtained from
e e

products of the ideals pll,...,prr, but omitting (1); set

-r
w,. = e I e . Let h,, denote the class number of M, For
M K beS R(b)nM M

any rational prime p, let [x]p denote the usual p-adic value of

a rational number x.

Our main result is

Theorem 2. The group C is of finite index in S; for any rational

prime p not dividing 6¢ (§),
[8:C = |h ,
tssca] = Ingl byl

where Wy is a divisor of Wiy e In particular, if g is a power of

an unramified split prime of K, which lies above p,

[S:C = [ .
|ts:ca| = Ihgl,

The last statement - the case of g a power of an unramified
split prime above p - follows because M does not contain any
p-power roots of unity.

Finally, for any R-module A, let Ao denote the submodule

annihilated by s(G) = z o, let AG denote the submodule fixed by G.

0eG




84

§1l. The class number formula.

The proof of theorem 2 relies also on the classical
class number formula. Recall that for any nontrivial character §

of Gl' u(g') = z u(%—)g'(ot) where fg is a generator of

teB(ﬁg) g

the conductor 55, and o, = [t,R(ﬁg)/K)J. In particular this applies

t

for any nontrivial character x of G. Denoting the regulator of M

by R,,, the formula states

e 1. 5
MI=EMH u(6) b
K x#1

where the product is taken over all nontrivial characters yx of G.

h [R

[See [ 18], p20].
The proof will use the Rj-modules V(gg), U(g) and I(4g) ‘
defined in §2 of the last chapter. We saw that I(4g)V(fg) = zl(Pl), :

and (l-e,)V(§g) = Q.U(4g), where Q = g;lu(é')eg, the sum being

taken over all characters & of Gl' We will consider the R-modules
V = p(V(4g)) and U = p(U(4g)); they are related by the formula

(l—el)V = w.U, where w = p(Q) = ; u(i')e ; the sum being taken
X#1

over all characters y of G. Now U is contained %n ®[G], and is
free of rank |G| as an abelian group. [For as in lemma 2.11, it
suffices to show that for all characters x of G ,pX(U) = 0.
Suppose that & is the character of Gl which induces y; lemma 2.11
shows that pg(U(ﬂg) # 0; but

Pe (U(§g)) = o, (p(U(4g)) = pX(U), q.e.d.].

X

The basic step in the proof of theorem 2 is to express the

index [S:C] = (2(S):2(C)) in the form
(Q(S):Ro)(RO:UO)(Uo:(l—el)V)((l-el)v:(l—el)Q(P))((l—el)Q(P):z(C))

and to evaluate each index separately. In section 4, we calculate

}
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the p-adic value of (RO:UO). These results rely upon the similar

results proved for the elliptic units of R({fg) in the last

chapter.
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§2. Properties of elliptic units of M.

In this section we discuss some properties of the
elliptic units C of M; most of them are simple consequences of

the corresponding properties outlined in 83 of chapter 2.

s(G)

Lemma 3.1. Let aeP. Then a elg if and only if aeC.

The proof is identical to that of lemma 2.12.

=1

Lemma 3.2, Let aeP. Suppose that a enM for every ceG. Then

2 (a) lies in the group

)
L 12 log|m,|Z s(G)
i=1

(Recall that (ﬂi) = py is a prime divisor of {g).

Proof: Lemma 2.13 shows that a, which lies in Pl' must be of the

r 12n,
form giElﬂi 1 for some integers n; and some ¢ in uR(ﬁg)'

Consequently, Cepl,, and 2(a) lies in the group mentioned, g.e.d.
Y M

The next lemma establishes the connection between £ (P) and
2(C), and as in chapter 2, it relies upon the condition imposed
upon g, namely that g is not divisible by both an mnramified split

prime p and its conjugate ﬁ. For brevity we denote 2 (P) by T.

Lemma 3.3. &(C) = To'

Proof: Lemma 3.1 shows that 2(C) < TO. For the reverse inclusion,

consider an a in T with 2(a) in To' Then Q(aS(G)) = 0O and so

B1E) ,

. it lies in K. and satisfies bb = 1.

1a8(G)| = 1. Let b =

The fractional ideal (b) factorizes as a product of unramified

split prime ideals P ey of K and their conjugates ¢ §emepq
a1 Ug a1 S

in the form

————————

IlhIIIIIIIIIlllllllllIIlllllIllllIIIlIlllllllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘



L

87

n., n
==] 1 =] 8
(q1q77) “-.elagag™)

for some integer Nyreserng. Because a lies in P, for each i,

Il

either the ideal q; and its conjugate 51 must divide {g, or n; 0.
Since g is not divisible by such a product qiEi, and is prime to
§6, we conclude that qigi divides §.

Let Dy and D, denote respectively the set of divisors of ¢
and g, excluding (1); let D, denote the set of divisors of {g

which divide neither § nor g. Recalling the definition of P,

we see that P is generated by the three groups

P, = I N P(b) (i=1,2,3)
i beD . R(b) /R(b)nM
i
Now a is a product a,aja, with each aiePi. The element as is a
unit; the argument above shows that a, is a unit. Thus
|af(G)| = |b| = 1, and since a; lies in K, |ag| = 1 for each 0eG.
Hence % (a) = 2(a2a3) lies in 2(C), g.e.d.

The next lemma computes one of the indices to be used in

the proof of theorem 2.

Lemma 3.4. TO = Tn(l—el)T. Furthermore, TO has finite index in T,
equal to ¢(g)/e§. (Recall that t is the number of distinct prime

divisors of g).

Proof: As in the proof of lemma 2.16, To = (l—el)TnT and

(l—el)T/TO = elT/TG; we compute the groups eT and TG explicitly.

Lemma 1.12 shows that

1 s(G) 1%
e.T = L(P = 12n  log|m.,|ZZ s(G
1 TET ( ) TET izl Py gl 1' (G),
e,
where the integer n, equals [G| if p; divides {, or eK|G|/¢(pil)
4.

if Py divides g.

e . e

R RRERRRBRRBRRERREERRRRRRRERREE
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Now consider TG. Let aeP: then z(a)eTG if and only if

o-1 o-1

(o=1)%(a) = 2(a ) = O for every 0eG. Fix 0eG. Then a is
a unit in M (an elliptic unit) and lies in the kernel of %: hence

it is a root of unity. By lemma 3.2, %2(a) lies in the group

¥
) 12 log[wi| Z s(G). For any prime p,, it is easy to choose an

i=1
element ap in P such that z(ap ) = 12 loglﬂi|S(G) (see lemma 2.16);
i i
consequently
G r
™ = } 12 log|m, |Z s(G).
i=1

It is now clear that (l—el)T/TO is finite, and has order equal to

e
the product of the factors ¢(pll), where p; divides g, i.e. equal

eK |

€
to ¢(g)/eK, qg.e.d.
The next lemma computes another of the indices required for

the proof of theorem 2. Recall that S is the collection of )
e e

divisors of {g generated by products of the ideals pll,...,prr

omitting (1); the element wy was defined in the introduction to
be eX I e denote the index [(l—el)V:(l—el)T].

Let w
5 beS

R(b)nM"® 1
#

Lemma 3.5. If p does not divide 6¢ (4), |wl|p > |wM|p.

Proof: The proof of lemma 2.5 shows that

V(4g) T, + ) n(ﬁgb_l)z » where T; = %(P;). Hence
€

V= p(Ty) + g o(n(fgb™ ) m . Let v g o(n(fgb™ 1))z . Ssince

eR(b)nMZS is the ideal generated by the integers Na-1, where a is

an ideal of K (prime to 6b) such that [a,R(b)nM/K] = 1,
eR(b)nMp(n(ﬁgb"l)) lies in p(T;). Hence V/p(Ty) = V'/V'np(T;)

has order dividing 2 eR(b)nM’

e
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s(G2) s(Gz)
Now p(Tl) = SL(Pl ), where G, = G(R(ﬁg)/M{. But Pl is
s (G
clearly of finite index in P, for P¢(6) c P “ c P. We conclude
1 =
that (V:T) = (V:p('I‘l))(T:p(Tl))_l exists, and moreover, that
|(V:T)]p = I(V:p(Tl))lp. Also (VG:TG) = ei (see lemma 2.17), so

the statement of the lemma follows immediately.

We have calculated most of the indices to be used in the proof
of theorem 2; we gather these results together now. Recall that

Wy denotes the index [(l—el)V: (l—el)TJ.

Theorem 2, C has finite index in S, equal to
12MMKILy Ly ) (M . ola)
M'7o® 0’ ‘e 1 £ °
K e
K
Proof: As noted earlier, S/C = £(S)/2(C). Both 2(S) and 2(C)
lie in the subspace X = (l—el) R[G]. Thus, formally at least,
(Q(S):Q(C))=(2(S):RO)(RO:UO)(UO:(l—el)V)((l—el)V:(l—el)T)((l—el)T:To)

where we recall that To = 2(C). In fact, each of the groups
appearing is a lattice in X; in the course of the proof this will
be demonstrated for each index separately. The last two indices
have already been calculated in the last two lemmas. Note that
the index (RO:UO) is defined, for the span of each RO and Uo is X
(the span of U is R[G], c.f. page 84), they are discrete, lie
inside QOLG] and are finitely generated over Z . The first index

is easily seen to be defined and equal to ZEM:K]_HR&l'by'the same

method on page 62. It remains to consider the third index
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(UO:(l—el)V). Clearly (l—el)V c X, and it was seen in §2 that
(l—el)V = w.,U. We first observe that (l—el)U = Uo‘ [For, from
page 63, (l—gl)Ul = Ul,o is the submodule of U, annihilated by
s(Gy). Apply p to obtain (l-e;)U = p(Ul,o) = U,]. Now consider

the linear transformation A on X induced by multiplication with w:
Ax = wx for each xeX.

Then A(UO) = (l—el)V. By considering the C€-linear extension of A
to (l—el)C[G], we have (see page 63),

det A = I u(i')
X71

where the product is taken over all nonprincipal characters ¥ of G.
By the class number formula, det A # O, so that (l—el)V is indeed

a lattice in X, and (U_:(l-e,)V) =| Il u(i')l-
= 1 X#1

Combining these calculations gives

tsic1 = 2RI R 1T (R cu) L T (w0 |y olg)
X#1 ey
s oMK ooy ST e
= g{RoilUp! - eK .Wl. et ’ p

by the class number formula. This proves the stated result.

In the next section we consider the p-adic value of (RO:UO)

for a rational prime p not dividing 6¢ (4). Our results so far
show that |[S:C]|p = th[p. Wl/eM|p‘ (RO:UO)Ip[¢(g)|p.
Remark If the restriction (@p) = 1 is removed extra factors

divisible by 2 or 3 enter the formula, but as remarked on p65, these
come from the index (Uo:(l—el)V), and can be compensated for by
using the slightly larger group of elliptic units mentioned on p35,

and modifying V. In particular, the p-adic value for the index is

unaffected by removal of this restriction.
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§3. The p-part of (RO:UO).

In this section we calculate the p-part of (RO:UO) for
any rational prime p not dividing 6¢(4); these results immediately
imply theorem 2. The prime p will be fixed henceforth and

) throughout, we will be calculating the p-part of various indices:
this is equivalent to considering the index of appropriate
Z:p—lattices, as we now explain.

Let X be a finite dimensional vector space over @, and let
M;/M, be lattices which span the same subspace V of X. Then there
exists a linear transformation A: V —> V such that A(Ml) = M2;

the index (Ml:Mz) was defined to be |det AI. (c.f. section 2,

chapter 2).

Now consider a finite dimensional vector space Y over Q@ , '

and two Z%)—lattices Nl’NZ which span the same subspace W of Y.

As before, there exists a linear transformation B: W —> W such

that B(Nl) = Nyj in this case we say the p-index of N2 in Nl exists,

denote it (Nl:Nz)p, and give it the value |det B|p; the value does

not depend upon the choice of B.

It is easily checked that if Nl and N, are fifiitely generated

ZE)-submodules of Qp[G], with N, c N, then (Nl:Nz)p is defined

if and only if N, is of finite index in Ny, and in this case

(Nl:NZ);l = [Nl:NZJ, the index. Also, given three finitely

generated ZI)—submodules Nl’NZ’N3’ then (Nl:N3) (Nl:NZ)p(Nz:N

p 3)p

i.e. whenever two of these symbols is defined, so is the third,

and this relation holds.
Now consider the original finite dimensional vector space X

over @, and the lattices Ml and M, The tensor product Y = X@QQp

,|; .
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is a finite dimensional space over Qp (of dimension equal to that
of X over @), and the products Ni = Mi®zizp (i =1,2) are
ZE)—lattices which generate the same subspace Y, viz. W = V®QQp'
The linear transformation A which mapped Ml onto M, now induces
a linear transformation B: W —> W such that B(Nl) = Ny, and
det B = det A. Thus the index (Nl:NZ)p is defined, and equals

|det A]p; equivalently, I(Ml:M2)|p = (Ml®Z:z%>:M Q. 7 ) By a

277 T p
slight abuse of notation, we set (Ml:Mz)p = |(Ml:M2)|p.

p’

The following analogue of lemma 2.9 is quite useful; it is

proved in a similar fashion (see [25 ] lemma 6.1).

Lemma 3.6. Let N, and N, be ZF)—lattices in Qp[G] and suppose that
(Nl:Nz)p is defined. Let o be an element of Qp[G]. Let Ni,
denote the set of elements aeNi such that aa = 0 (i = 1,2). Then
both (Nl,a:N2,a)p and (OLNl:och)p are defined and

(Nl:Nz)p = (Nl,a:NZ )p(uNl:aNz)p.

, O
We now consider the index (RO:UO). By lemma 2.9,

(R:U) = (RO:UO)(s(G)R:s(G)U). Now s(G)R = ZZ s(G); furthermore,

. -1
since Uy = Uy +s(G1)%Z ,s(G)U = lclley] Tr(s(6))Yy) = [Gy|s(C)Z .

°x

Th R U = ——— (R:U).

us ( & o) ¢(6g)( )

We will compute (R:U)p by considering the p-part of indices

and U the submodules of

related to (Rl:Ul)- Denoting by Rl,o 1;0

Rl and Ul annihilated by S(Gl)’ section 4 of the last chapter shows

. r-2
that (Rl o:Ul o) = eﬁ /9(4g) (r is the number of distinct primes
14 14
dividing 4g. Thus
2r—2
(Ry:Uq) = (Rl,o:Ul,o)(S(Gl)Rl:S(Gl)Ul) = ey '

and so (Rl:Ul)p = 1.
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Let G2 be the subgroup of G which fixes M, and let

g = S(G2)/|G2 . Then € is idempotent in Ry and the restriction

homomorphism p induces an isomorphism €¢[Gl] = CLG] under which
€Rl ~ R and eUl ~ U; in particular, (R:U) = (sRl:eUl). Since

p+6¢(6), the idempotent € lies inside Rl,p = Rl®zizp. Hence the

submodules of R and of U = U

1,p 1,p l®ZlEE) annihilated by € are,

respectively, (l—s)Rl’p and (l—e)Ul’p. Noting that ERl,p = (eRl)®ZZ

etc., lemma 3.6 shows that

1l = (Rl:Ul)p = (eRlzeUl)p((l-e)Rlz(l—e)Ul)p.

The remainder of this section is devoted to showing that the
two factors on the right hand side of this equation have p-adic
value less than or equal to one, and so are both equal to one.

We will analyse an Rl—module U*, which is closely related to Uy,

in a similar manner to that of §4 in the last chapter.

-e,
For a prime p, dividing 4g, let Tp = G(R(ﬁg)/R(égpil)) and
i
let s(Tp ) denote the group norm z 0. Furthermore, let
1. ogeT
€ pi
Ep = ¥ E'(pi)eg, the sum being taken over all characters & of Gy,
i & 4
—_ *
and set U =s (T )R,+(l-0_. )R,. Let U Dbe the R,-module
P, ps° 1 p.’ 1 L
i il i =
generated by all products of the form I x_, with x_ €U _ .
i=1 Pi Pi Py
*
Lemma 3.7. U is a submodule of Ul’ of index ek - Moreover,
* *
(l-e)U = (l—e)Ul and elU = eKElUl‘
*
Proof: We first show that (l—sl)U = (l—el)Ul. Let S be a subset
of primes dividing {g, and let a, = I s(T ) I (1-6_) be a typical
5 pes Popis P

*
generator of U . Let a be the largest divisor of {g divisible only

by primes not in S, and consider the element o, = S(Ha) T (l—Ep)
pla

P
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of Ul (recall that Ha = G(R(4g)/R(a))). It is easily checked that
*
(1_€l)as = (l—el)aa; thus (l—el)U c (l—el)Ul. The reverse
inclusion is similarly established (c.f. lemma 2.19).
= *
Since el(l_gp) = 0, E:lU = El pTégS(TP) = 2Z¢(6Q)81

4 *
= eK 77 s(Gl)el = eKelUl. It is now clear that U is a submodule

of Ul' Finally, since Ul,o = (l—ef Ul (see page 63 ), and

* *
Uo = (l—el)U (by a similar argument), we obtain
* * * .
(Ul'U ) = (elUl:elU )((l—el)Ul:(l-el)U } = ey~ The lemma is now

proved.

We deduce immediately that
* * _
(eRl.eU )p((l—e)Rl.(l—e)U )p =1,

(because (Ulzu*)p = (eUl:eU*)p«l—s)Ul:(l—el)U*)p = 1).

For i = 1,...,r, let bi = PrreecrPpr and let Wbi be the Rl—module
i

generated by the products 1 x where each x_ €U _; let b_ = (1)
=1 Ps Ps Ps o
J J J J

*
and Wb = Ry; note that Wy =10. Each Wy is contained in QLG,]
e} r i
and is free of rank |Gl| over Z (this is proved as on page 66) .

" r
Thus (Rl:U ) = I (Wb :Wb ). Each factor in this product is of
i=1 i-1 i

the form (Wb:wbp) where b is one of the divisors bi above, and p
is a prime divisor of §g, not dividing b. For the remainder of
this section b will denote such an ideal bi, and p is a prime
divisor of {g. We view U* as being formed from Wl = Rl by
successively multiplying by the modules Up (Ll = Lpsssg¥) « As in

i

*
chapter 2, the calculation of the indices (Wb:Wbp) and (Rl:U )

relies upon a pair of exact sequences.




First, it is necessary to describe the element Ep

explicitly. For each prime Py dividing §g, let ep. =
i

95

more

S(Tpi)/lT

Pi

°
I

it is idempotent in Q[Gl]. Let t be an integer prime to 6{g

satisfying the congruences

°i
t = 1 mod Py
t = m, mod 6gpi /

and set Xp = [t,R(4g)/K]. It is easily checked (c.f. page 68)

i
= -1
that o = A e .
Pi Py Pj
Since (l—ep)s(Tp) = 0 and (l—gp)(l—ep) = (l—ep), we have
(l_ep)wbp = (l—ep)Wb, for any prime p not dividing b. For any

i
R,-module A;, let A P be the submodule fixed by Tp an element a

1
T
of A lies in A P precisely if (l—ep)a = 0. We obtain the following

pair of exact sequences of Rl—modules

T
o - wbp —> W, —> Y —> 0
(1) .
o —> Wbp bp

4

where Y = (l—ep)Wb = (l_ep)wbp’ and the surjections in (1) and (2)

are induced by multiplication with (l—ep).

But the following two pairs of sequences are also exact:

T
o J— ((1—e)wb))° —>  (l-e)W, —> (l-e)¥ ——> O
(2) T
) —— ((l—e)Wbp) Pocs (1—e)wbp ety [Lmg) ¥ =m0,
T
0 ——> (eW) P > eW, —> e¥ —> 0
(3) & > eY —> 0.

o ——> (eWbp) P _ eWb

P
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T T
Lemma 2.9 shows that (ewb:ewb l. = ((eWb) p:(EWbp) Py and

((l—e)Wb:(l—a)Wbp)

Now Wbp = Wpr (the Rl—module generated by products Xbxp with

P
T

T
- P = P
((@-e)ywy) Pa-ow, ) Py,

Xy in Wb’ Xp in Wp)’ and it is easily checked (c.f. lemma 2.20)

T

o hyw, P
S(T )W, + (12, )W, ",

T
(eWy ) R S(T ) Wy + (1-Ap%(ewb) P,

that
Tp
L
p
and ((1-e)w, ) P

T g i T
In particular, (ewbp) P < (eWb) P and ((l—e)Wbp) P ((l—e)Wbp) P,

L
= - 5L - P
= s(T)) (L-e)Wy, + (1-A,7) ((1-e)Wy) .

Thus (eWb:EWbp) and ((l—e)Wb:(l—e)Wbp) are rational integers.

Since (eRl
g

i =1

integers. But
1l = (Rl:U)p =
we conclude that both
*
R:U = R,:€U =
( )p (eRqy:e )p

Applying this to
of the elliptic units

(where

oyl o1y /|

*
teU ) = H(ewb

:eWb ) and ((l—e)Rlz(l—e)U*)
i-1 i

:(l—e)Wb ), these two indices are also rational

L

* _ * *
(Rl:U )p = (eRlzeU )p((l—e)Rl:(l—e)U )p;

the factors on the right equal one; so
p

1, and (R:U) = [6(49) /o]

the result obtained in section 3, the index
of M has p-adic value equal to

Wy is the divisor of w, specified there).

M
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§4. The index for other abelian extensions.

The method of this chapter can be applied to calculate the

p-part of the index of the elliptic units for other abelian

extensions of K. See [10] for the index of related subgroups of units.
Let N be such an abelian extension, with conductor h; let H

be the ray class field modulo h, and d = [H:N]. Let h have

e e
factorization pll,...,prr into primes Pire--rPy of K (el,...,e

r
positive integers); let T be a fixed generator of Py L = lynaneE)s
Since we use results of chapter 2, we suppose that h is prime
to 6 (but as remarked earlier, this affects the actual index by
factors of 2 and 3 only), and moreover that if the prime p dividing
h is unramified and of degree one, then either the conjugate E
does not divide h, or R(pe)nN = R(ﬁf)nN = K, where pe and ﬁf denote
the exact powers of p and p dividing h.
The elliptic units arise from h-division points on a fixed

lattice L with order ¢. Let P; be the group I P(b) defined in
b

b# (1)
chapter 1, and let P be the group generated by the groups

NR(b)/R(b)nNP(b)’ where b varies over all lelSlOzS of h, except

(1) . Denoting the global units of N by S, we have C = SnuNP.
Let S be the set of 2-1 divisors of h generated by products
e e
. 1 r _ .=k

of the ideals Py reeerby s except (l1); let Wy = ex bESeR(b)“N'
e.

Let hN denote the class number of N. For each i, let dp = [NnR(p.l):K],
i

d.
Theorem 3. The group C has finite index in S; if p is a rational

prime not dividing 6d,

l[s:CJ[p = |hN|p. wl/eN|p

where wl is a divisor of w

N®




98

Throughout this section, let G and Gl denote the groups
G(N/K) and G(H/K) respectively, and R = 7Z [G] and Rl = Zl[Gl] the
respective group rings. Let p:C[Gl] —> €[G] be the ring homomorphism
induced by the surjection G, —> G. The letters x and & will be
reserved for characters of G and Gl (resp.); X will be regarded
as a character of G,y whose kernel fixes N. The conductors will
be denoted 6X and 6& (resp.); the associated primitive characters
by x' and &' (resp.). The ring homomorphisms associated to x and £
will be denoted pX (mapping €[G] —> €) and p(S (mapping c[Gl] —> C);
the idempotents attached to x and & will be denoted eX and eg. If
A is any R-module, the submodule annihilated by s(G) = ) o will

0eG
be denoted AO. Let % denote the mapping

2: N. —> RI[G]
X +—> ) —log|x0|0_17
0eG

let SLH:HX —> Ii[Gl] denote the mapping defined in chapter 2; note

that S/C = 2(S)/(C).
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8§5. Proof of theorem 3.

The proof of theorem 3 relies on the classical class number

formula. Denoting by Ry the regulator of N, it states ([18] p20)

hNIRN| - e

R — g________,ﬁ*

where the product is taken over all nontrivial characters yx of G.
We will use the Rl—modules V(h),U(h) and I(h) defined in §2

of chapter two. Recall that I(h)V(h) = QH(Pl), and

(lL-=e,)V(h) = Q.U(h), where Q = X u(€')e,. We consider the
1 £41 :
R-modules V = p(V(h)) and U = p(U(h)); denoting p(Q) = ) u(y"e
x# (1) X
by w (the sum over all characters ¥ of G), we have (l-el)V = w.U.

It is easily seen that U, which is contained in Q[G], is free of
rank |G| over Z [c.f. lemma 2.11, and page 84]. The basic step
in the proof is to express [S:C] = (2(S):2(C)) in the form

(Q(S):Ro)(RO:UO)(UO:(l—el)V)((l—el)V:(l—el)Q(P))((l—el)Q(P):Q(C))

and evaluate each index separately; in the final stage we calculate

the p-adic value of (RO:UO).

The following lemmas establish properties of C analogous to

those of §3 in the last chapter.

Lemma 3.8. Let aeC. Then aS(G)euK if and only if aeC.

The proof is identical to that of lemma 2.12,

Lemma 3.9. Let aeP. Suppose ao_leuN for every 0eG. Then %(a)

lies in the group
I
) 12 log|w,|Z s(G).
; i
i=1
The proof is very similar to lemma 3.2. The next lemma
establishes the connection between T = &(P) and £(C); it uses the

condition imposed upon h earlier.

i"
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Lemma 3.10. &(C) = TO.
Proof: TLemma 3.8 shows that &(C) c T . For the reverse inclusion
consider an a in T with %(a) = 0. Then l(aS(G)) = O and so
1a%©C) | = 1. Let b =a%©®); it lies in K* and satisfies bb = 1.

The fractional ideal (b) of K factorizes as a product of unramified

split prime ideals GpreeerQg of K and their conjugates cfl,...,qS

in the form

n n
] L et TR
(9107 7o lagag™)
for some integers nys...,ng . Because a lies in P, either qigi
divides h or n, = O, for each 1 = 1,...,r.

Let § be the largest divisor of h, which is divisible only
by unramified rational primes g which split in K, and set g = hﬁ—l.
Let Dl and D, denote respectively the set of prime power
divisors of § and g, excluding (1); let D3 denote the remaining
divisors of h, excluding (1) (they are divisible by at least two

distinct primes). Now P is generated by the three groups

eD.
i,
so a is a product ajajas with each aiePi. The element aj is a

unit; the condition on h implies that a, is a unit. Thus

]af(G)| = |pb| = 1, and since a; lies in K, |ai| = 1 for each 0eG.
Hence % (a) = Q(a2a3) lies in &(C), g.e.d.

The next two lemmas compute two of the indices mentioned above.

Lemma 3.11. TO = Tn(l—el)T. Furthermore To has finite index in
T e,
(l—el)T, equal to 1II dp . (Recall that dp = [NnR(pil):K]).

i=1 Fi i

— .
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Proof: As in the proof of lemma 2.16, TO = (l—el)TnT and
(l—el)T/TO & elT/TG; we compute the groups elT and TG explicitly.

Lemma 1.12 shows that

1 s(G) 1
g, T = L (P ) = ) 12n_ log|w,|Zs(G),
1 G G i=1 pi i
e, '
where n = [N: NnR(p. )1; note that n_d = |G]|.
by (p;™) p, %, |Gl
Now consider TG. Let aeP. If z(a)eTG, a now familiar argument
o-1

shows that a €Unr for every 0eG, and so by lemma 3.9, 2(a) lies
r

in Z 12 loglﬂilz s(G). For any prime P it is easy to choose an
i=1

element ap in P such that Q(ap') = 12 log]ﬂi[s(G) (see lemma 2.16);
i, i

r
consequently ¢ = ) 12 loglﬁi|ZZS(G). It is now clear that T
i=1 "
is of finite index in (l-el)T, equal to I d_ .
i=l *d

The next lemma describes another index needed in the proof of

theorem 3, Let Wy = [(l—el)V:(l-el)T]; recall that Wy was defined

in the introduction.

Lemma 3.12. If p does not divide 64, |wl|p ZlWN'p'

The proof is very similar to lemma 3.5. We mow gather together

these results.

Theorem 3bis, C has finite index in S equal to

e -1 r
12t N:K] th(RO:UO) (EH) w . nd .
K i=1 Py

Proof: As explained earlier, we write [S:C] = (2(S):2(C)) in the

form

(2(8) :RO) (RO:UO) (U= (1—el)v) (l—el)V: (1-eq) D) ((l—el)T:To) .
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Each of these groups is a lattice in X = (l—el)Il[G], as we shall
see. The fourth and fifth indices have been computed above;

the index (RO:UO) is defined, because, as we noted above, U has
rank |G| over Z . The first index is easily shown to equal
ZEN:K]_HRNI_l (c.f. page 62). Finally an argument similar to that
of the proof of theorem 2 (page 63 ) shows that the third index

equals 1II ]u(i')l (the product over all characters x of G). The
X7l

class number formula implies that

b o l
[S:C] = 2[N'KJ_1|RN|_1.(RO:UO) m |u(x")|.wy. T d '
X#1 i=1 Pi
-1 iy
_ . ,IN:K]-1 . °N
= 12 hN(Ro'Uo)(E_) Wy 'E dp.’ qg.e.d.
K i=1 "i

We finally address ourselves to the p-adic evaluation of

(RO:UO). Fix a prime p not dividing 6d. By lemma 2.9,

(R:U) = (RO:UO)(S(G)R:S(G)U). Now s (G)R = Z s (G); furthermore,
since U; = U; +S(G))%Z, s(G)U = |G[|Gl|"lp(s(Gl)Ul) = [6)ls(@)z .
Thus (R:U.) = |6;| " (R:V) .

Denoting by R and U the submodules of R

5 1,0 1,0 1 1
annihilatedisﬂGl), section 4 of the last chapter sﬁowed that

and U

: _ -1 _ -1 ] ~
Ry 53U1,0)p = [6(A) |7 = [Gy],7s and so (Ry:U)) = 1.

Let G, denote the subgroup Gy which fixes N, and let
e = 5(G,)/|G,|. Then e is idempotent in R; and the restriction

homomorphism p induces an isomorphism eC[Gl] ~ €[G] under which

eRl ~ R and eUl = U; in particular (R:U) = (eRl:eUl). Since
p}6d, the idempotent € lies inside Rl,p = Rl®Z:Z£); thus the
submodules of Rl,p and Ul,p = Ul®Z:Zp) annihilated by e are,

respectively, (l—e)Rl p and (l—e)Ul p° Hence, by lemma 3.6,
14 7
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1= (Rl:Ul)p = (eRl:eUl)p((l—e)Rl:(l—e)Ul)p.
The remainder of this section is devoted to showing that the
indices on the right have p-adic value less than or equal to one,

*
and so both equal one. We need an analogue of the module U

defined in the last section. For any prime p, dividing h, let
-e,
T = G(H/R(hp. ln, and o = z E'(p.)e , the sum being over all
pl 1 Pl g 1 g
- *
characters § of Gl' Let Up. = S(Tp.)Rl+(l—Op.)Rl' and let U be

L L i
r

the Rl—module generated by products 1II X with x_ €U . It is
i=1 P4 Pi Pi

*
easily checked (c.f. lemma 3.7) that U is a submodule of U of

ll

* *
index e and that (l—el)U = (l—el)Ul and €lU = e Ul; thus

i |
_ * _ * *
1 = (Rl:Ul)p = (Rl:U )p = (eRlzeU )p((l—e)Rl:(l-e)U )p.

For i =1,...,r let bi = pl,:..,pi, and let Wbi be the

i
R,-module generated by products I x with x_ €U _; set b_ = (1),
! j=1 P3 Py Py ©

*
and Wb = Rl; note that Wb = U . As before, each Wb is contained
o r i

in @[G;] and is free of rank |G| over Z . Thus,

r

*
(Rl:U i = iEl(wbi_lzwbi). Each factor is of the form (Wb:Wbp),

where b is one of the divisors bi above, and p is a#prime divisor
of h, not dividing b. For the remainder of this section, let b
denote such an ideal bi' and p a prime divisor of h. As before,

we view U* as being formed from Wl = Ry by successively multiplying
by the modules Up_(i = 1,...,r); the main tool is provided by two
pairs of exact se;uences.

For each prime p, let ep = s(Tp)/lTPI; then ep is idempotent,

and (l_ep)wbp = (l—ep)Wb. Let o denote either the idempotents €

or (l-g). The following pair of sequences is exact:
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0 > (awb)Tp —> oW, —> a¥ —> 0
(1) T

0 —> (ai ) P oW, —> a¥ —> 0,
where Y = (l—ep)wbp = (l—ep)Wb; the surjections are induced by
multiplication withT(l—ep). Lemma 3.6 shows that

T
(qu:aWbp) = ((qu) p:(ochp) p). But it is easily checked (c.f.

lemma 2.20) that

Tp - Tp
(OLWbp) = S(Tp)OLWb + (l")\p )(OLWb) ’

where Ap is defined, as before, so that g = A_l In particular,

8 .
P p P
ol b T
(awbp) P = (uwb) P, so that (awb:awbp) is a rational integer.

, " r
Hence (aRl:aU )y = I (uwb :aWb ) is a rational integer. But
i=1 i-1 i

* *
1l = (ERl:EU )p((l—e)Rl:(l—e)U )p; we conclude that both factors on
*
the right are equal to one. So (R:U)p = (SRl:EU )p = 1, and
_ =1
(RO.UO)p = |G1|p .

Applying this to the earlier index result, we see that the

p-adic value of the index of the elliptic units is equal to

1
I ld | .{G l ] , Where w
-1 pi 1

P P

| is a divisor of WN#

Ith .|w1/eN, 5
P P
e, e, e.
Clearly, [R(p. ):R(p. )NN] = ¢(p.l)/e d divides d, so
1 1 1 K P;
that if p does not divide 6d, this index has p—adic value 1.

This then implies the result of theorem 3.
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Chapter 4. Applications to the arithmetic of elliptic curves.

In this chapter we consider the relation between the rank of
the group of F-rational points on an elliptic curve E over a
number field F, and the order of the zero of the Hasse-Weil zeta
function L(E/F,s) for E over F at s = 1. It is conjectured that
L(E/F,s), which is defined in the half plane Re(s) > %,has an
analytic continuation to the whole plane,:and given this, Birch
and'Swinnerton—Dyer [1] conjectured that the rank of E(F) modulo
torsion is precisely the order of the zero at s = 1,(See also L3], [26]),
For the case we consider here, namely, when E has complex
multiplication, Deuring [ 9 ] has proven the analytic continuation
of the Haése-Weil zeta function.by identifying it with a product
of Hecke L-series with GrossenAcharacters. If Yy denotes the
Grossen character of E, and has conductor §, let
| s)—l

L(y,s) = I (1-v(q) (Nq) ~

ot
qQ prime

,- and define L(y,s) similarly.

Then if E is defined over K, L(E/K,s) = L(y,s)L(Y,s).

Let E bé-the elliptic curve described.in chapter 3; we use
the same notation for the objects attached to E; ig particular,
Y denotes the Grossen character, { its conductor, L = Qo the
period lattice described there, and T the set consisting of 2, 3
and'ali rational primes q for which E does not have good reduction
at at least one prime of K above g. Throughout, let p be a fixed
rational prime which splits in K and does not lie in T; let p and p

be the distinct factors of p, and let m = Y(p), so that m is a

generator of p in K. (see [23] §7.8).
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For each nonnegative integer n, let Fn = K(E n+l) and
P

Gn = G(Fn/K). The prime p totally ramifies in By (lemma 2.1);

let Py be the unique prime of Fn above p. Let @n = Fn,Pn be the

completion of Fn at p , U the units of @n congruent to 1 modulo

n

1
P and Un the subgroup of such units with norm 1 to Kp.

Let P = L“,Fn and G = G(Fm/K). Let T = G(Fm/FO); then
n=o

G, is canonically isomorphic to I'xA, where A is isomorphic to Gy
' is isomorphic to ZE" so let vy be a fixed topological generator

of I'. Let K: G —> Zﬁ; be the canonical character giving the

action of G on the group E = L_)E n+1 of p-power division
P n=o p
points on E: u’ = k(o)u for each ueE | and 0eG_ . We write yx for
P
the restriction of k to A; x takes values which are (p-1)-st roots
(1)

of unity in Z&). For any Z&)[A]—module A, let A denote the

ZE)—submodule of A on which A acts via xl: A then decomposes into
p-2 :
o ald)

i=o

a direct sum A = . We will be particularly interested

in three such modules X _, Y and Z_ which will be decomposed in

this fashion; the module X relates to the arithmetic of the

4
£

curve E, while Y and Z_ are formed from the elliptic units of
the fields F.o- the results we can prove about Y _ and 7Z_ imply
results about X _and the arithmetical properties of E.

Suppose X is a p-profinite abelian group (so that it is a
compact Z%;—module) on which I' operates continuously. Let
A= ﬂr)[FT]] be the ring of formal power series over Zp in one
indeterminate T. The I'-module structure on X gives rise to a

unique A-module structure satisfying (1l+T)x = y.x for each xeX.

(Recall that y generates topologically). The general properties
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of such A-modules and the structure theorem for finitely generated
A-modules are discussed in [ 20]. Two such modules are said to be
pseudo-isomorphic if there is a A-homomorphism between them with
finite kernel and finite cokernel. For each integer n > 0, let

n
I, = G(F,/F ), and w_ = w_(T) be the polynomial (1+4T)P -1. The

n n

Fn—invariance of X, denoted XF is defined to be the quotient
n
X/wnX; if n = O this is simply denoted X

re
We now define the first module X . Let M, denote the maximal

abelian p-extension of F_ unramified outside p , and X = G(M_ /F,) .

Define X_ = lim X where the projective limit is taken in the

D
obvious way. [ acts on Xn via inner automorphisms: let ©y denote

any extension of y to an element of G(Mn/FO), and then y acts on
oeX via ch_l. It is easily seen that (Xoo)F = X, (see for
i}
example [ 4 ]). Let M_ = l_)Mn.
n=o
Now for the second module Y . For each n = 0, let CO ” be
14
the subgroup N W(ﬁpn+l) of the group of elliptic units
n+1
R(gp™ ") /Fy
of Fn c.f. the definition of chapter 1, §5. Each element of
] -—
Co,n is congruent to 1 mod Pn (see [ 7 1), so let Yn = Un/co,n’
= : 7 :
where Co,n denotes the closure of co,n in the pn-adlc topology.

Define Y = lim Yn, where the projective limit is taken with
s

respect to the norm maps N (m 2 n =2 0). The A-module structure

Fm/Fn
¢ (1)

(oo}

of Y 1is described in [ 8 1; for each i = 0,...,p-2, is
pseudo-isomorphic to a quotient A/gi(T)A where gi(T) is, as we
now explain,a p-adic L-function.

For each integer k > 1, let Lﬁ(@k,s) be the Hecke L-function

-k : : b o I
of y, viewed as a (not necessarily primitive) Grossen character
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- -k _ - -g, -1
mod § (the conductor of ¥): Lﬁ(w ,8) = I (L= (q) (Ng) )
at6
q prime
(for Re(s) > %). Note that it possesses an analytic contribution

to the whole plane. The numbers a5 (3%, ) belong to K (see [71]),
and therefore may be viewed as lying inside Kp' Let @ denote the
completion of the maximal unramified extension of K , and Ip the
ring of integers of Qp'

Let f be a fixed generator of {, and write
= 12(-1)°"H(k-1) 1 (2/£) *; also set u = k(y) (recall y is the
generator of I' fixed above).

It is shown in [ 8] that for each nonzero class i mod(p-1),

there exists a power series Gi(T) in the ring of formal power series

Ip[[T]] with the following interpolation property:

= k
k1) = 417k - bp) Tk
G, (u"-1) = Yo o Mk (1 Np ) LT, k)
for all positive integers k = i mod(p-1l); here Yp is a unit in Ip'

Then Yil) is pseudo-isomorphic to A/gi(T)A, where gi(T) is a power
series in A which generates the same ideal in Ip[[T]] as Gi(T);

moreover (Yél))r = Yél). In fact, if i Z O or 1 mod(p-1), Yil)

n 7

is isomorphic to the stated module; the same is true for the case

1, provided p is not anomolous i.e. m+m = 1.

11

i
The third module Z_ is formed in a similar fashion with the

full groups G of elliptic units of Foi let C; be the subgroup of

such units congruent to 1 modulo Pne Define Zn = U;/E;, where E;

denotes the closure in the pn—adic topology; set

Z = lim U;/E;. As noted in [ 8 ], it is easily seen that Z(i) is

Lo
pseudo-isomorphic to a quotient A/hi(T)A for some h;eh; the

following more precise description of h, can be proved by the methods
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of [ 81, but the details are omitted because of length.

For each integer k > 1, let ék be the conductor of ﬁk (it
divides 4), and let fk be a fixed generator of it. Define
k

Ve = lZ(—l)k—l(k—l)!(Q/fk)— Then there exists a power series

Hi(T) in Ip [[T]] with the following interpolation property:

- .k
k. Y (p) -k
: - = - L 'k
for all positive integers k = i mod(p-1); here ép is a unit in
I _, and Ly (ﬁk,s) Ao (l—@k(q)(Nq)_s)_l is the Hecke L-function
3 k atby,

of @k, now viewed as a primitive Grossen character mod 6k' Then
Zil) will be pseudo-isomorphic to A/hi(T)A, where hi(T) is a
power series in A generating the same ideal in Ip[[T]] as Hi(T);

moreover (Zogi))P = Zéi).

n

The close connection between X and Y _,Z 1is provided by
considering the global units Sn of F.} let S; denote the global
units congruent to 1 mod [ and 5; the closure in Un' Denoting
by Ln the p-Hilbert class field of Fn’ global class field theory
shows (see [ 6 ]) that U;/gg is isomorphic as a Gn—mggule to
G(Mn/Lan), which is a subgroup of X, = G(Mn/Fw) of order the
p-part of the class number of F_. On the other hand 5;/5; has
precisely this order also, and it is conjectured that X and Y_
(and Z_) are pseudo-isomorphic and that the components
Xii), Yii), Zii) are individually pseudo-isomorphic. The
establishment of this property would have deep consequences for
the arithmetic of E. The cyclotomic analogue of these modules are

discussed in [ 4 ]; the analogous pseudo-isomorphism has been

recently proved by Wiles and Mazur. Indeed, the work of [8] was

motivated by Iwasawa's work on cyclotomic units [11],[12].
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In the next section we prove the theorem of Coates and Wiles
using the module Y i in the final section we relate the Iwasawa
invariants of Z and X_ (which are defined in that section) to

the rank of E(FO) as an o-module. Our results are:
Theorem 4. If E(K) has infinitely many points, then L(E/K,1l) = O.

Theorem 5. Suppose that p (which does not lie in T) is prime to
¢ (4) . Then the Iwasawa A- and p-invariants of X and Z_ are equal.

Furthermore the A-invariant is at least as large as the rank of

E(FO) (mod torsion) as an o-module.
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§1. The Coates-Wiles theorem.

In this section, we suppose that E(K) has infinitely

many points, and hence in particular, has a pointP of infinite order.
Further we assume throughout that p is not anomolous; infinitely many
such primes exist (see [7 ], lemma 12).

The idea of the proof is to show that gl(u—l) = O by construc-
ting sufficiently large submodules of (U;/Eoln)(l) for each n.
The proof may be broken into several stages.

First, let Yil)(—l) denote the Tate twist by (-1) (explained

below) . Then, as a A-module,
v (-1 = a/mem)

where h(T) = gl((u(l+T)—l) (recall u = k(y)).
Second, we show that either h(0) = O or |h(O)|;l is the number

of elements in (A/hA)F.

At the third stage, we construct extensions Hn of P for each

n, as follows. Let Qn be a point defined over the algebraic closure

n+1l _ _ ;
of K such that Qn = P, Set Hn = Fn(Qn), and reca;l that Ln is

the p-Hilbert class field of Fn' The extension HnLan/Lan will be

shown to have degree pn+l—c, where ¢ is a constant independent of

n, and depending only on P. The Galois group G(HnLan/Lan) is

(1),

1 -
a homomorphic image of (Un/co n)(l), and thus of Y =7 ; from this it
14

will follow that |h(OHI)s p—(n+l—c)’ and letting n —> «, we conclude

that

h(0) = g;(u-1) = 0 = L(y,1) = L(E/K,1).
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i We now proceed with the proof in stages. For Zg)ﬁmodules A
and B on which a group G acts, we define the action of G on the
Zr)-homomorphism group Hom (A,B) as follows. Let g belong to

Hom(A,B) . Define gO, for 0eG to be the homomorphism g: A —> B
=1

such that g(a) = (£ ))°

for every acA.

Let T be the Tate module lim E
Corms

Al (the connecting homomorphisms
™

are multiplication by powers of m). G_ acts on T via the character

{ k. Define the G, -~module T(-1) = HomZZ (T'ZE>); here the action of
5 p
| G, on Zp is trivial. Thus G acts on T(-1) via K—l: for teT, and

any homomorphisms g: T —> Zp ’

o gL -1 -1
g (t) = g(t ) = g(k(o 7)t) = k “(o)g(t).

Define the twist of Y1) by T(-1), denoted ¥‘!)(-1), to be the

(1)
®
0 7
p

products. Then for any o0eG_, eril) and geT(-1),

ZE)—module Y T(-1), with G, acting diagonally on tensor

i o (y8g) = oy®g’ = K—l(a)(cy®g).

(L)

°
o) I

The ZE>—module Yil)(—l) is isomorphic as a ZE)—module to Y
‘ ¢
A only the action of G has been changed. There is an isomorphism

\
B Yil’ —_—> Yil)(—l) such that

(1)

°
[oe]

B (oy) kK(o)ob(y) for all yeY

Now for any y in Y(l), and h(T) in A, we have

o

6(h(T)y) = h(u(l+T)-1)6(y);

this clearly holds if h(T) is a constant, or if h(T) = T (for then

To = (y=-1l)a, and u = k(y)) and the result follows for general h(T)
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by linearity and continuity, since the module is compact. Thus
v (-1) = a/n(ma,
where h(T) = gl(u(l+T)—l).
The next step in the argument is.to consider the value h(O) .

Lemma 4.1. Either h(0) = 0, or |h(O)|;l is the number of elements

of (A/(h(T))F.

Proof: Suppose h(0) # O, and |h(O)|;l = p"'. There is a surjective

homomorphism ¢z A/hA —> Zﬂ/meZ induced by mapping an element
gel to g(0). Since h(0) = O modulo ﬁmZE), the mapping

g(mod h) +—> g(0) mod pmmp is well defined (noting that

ZZp /p'"zzp = 77 /meZ ) . The kernel of ¢ clearly contains T.A/hA.
Suppose g+hA lies in the kernel of ¢: so pm|g(O). Write
(T) = p'g, + Tqq (T)
g =P 9, qq
h(T) = p'h_ + Tq, (T)
P B 95 ’

where dqq and d, belong to A, Io and hO belong to ZE>' and hO is

. #
a unit. Then

1

=1 -
g(T) Ioh, h(T) - T(G_h

JhoTa, (T) - qq(T))

Tq3(T) modulo hA

for some q3(T)eA. Thus the kernel of ¢ is equal to TA/hA, so

that

(ANMHr:Z/ﬁﬁ

has pm elements. The lemma is proved.

llJIIlllllllllllllllllllllllllllllllllllllllllllIlIIIllIlIlllllllllllIllllllll
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For the next step, let n be a nonnegative integer. As
explained in detail in [6 ], global class field theory describes
¥ 9
the Galois group G(Mn/LnFm) as a Gn—module: Un/Sn is isomorphic to

G(Mn/Lan). In particular, since Gn o GOXG(Fn/FO), we have

gL (1)

(u_/S,) = G(M_ /L F_) .

(Gn operates on G(Mn/Lan) via inner automorphisms: if 0eG and
xeG(Mn/LnFm), then x° = pxal, where p is any element of G(Mn/K)
whose restriction to Fo is equal to o). There is a natural

surjection of ZE>[GnJ modules
- (1) ' gy L)
(Un/co,n) > (U /8,) > 0. (1)

1 sy
We will show that (Un/Sn)(l) has a submodule of order at least

pn+l_c, where ¢ is a constant depending only on P.

Choose Qn over the algebraic closure of K such that w Q. = P;

set Hn = Fn(Qn). The extension Hn/Fn is cyclic of degree dividing

pn+l, and it is unramified outside [ thus Hn < Mn (see lemma 33

of [7])-
The group G, (or A) acts via ¥ on G(Hn/Fn). +For, let

xeG(Hn/Fn), 0eGy ., and let o, be any element of G(Hn/K) whose

L

restriction to F is equal to o. Define (x,P) = xQ -0, . (Subtrac-

tion in E(C€) ). This is independent of the choice of Qn: its value

lies in Eﬂn+l' Then
o o (o]
T. 00 _ .0 1 L _ 1 _ o
(X IP ) = X (Qn ) 5 Qn - (XQn Qn) S (XIP) o
Now PeE(K), so that (xG,P) = x (o) (x,P). Hence xO = x(o)x for

all xaG(Hn/Fn).
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The key step now is to show that Hn/Fn is nontrivial, and is
sufficiently large; more exactly, that G(HnLan/LnFm), which is a
homomorphic image of G(Mn/Lan)(l), is sufficiently large.

As noted in lemma 35 of [6], we may assume that P belongs to
the kernel of reduction modulo P on E(Kp). There is an isomorphism
over Op between the formal group ﬁ(p) on E corresponding to the
parameter t = 2p(z)/p'(z) and the formal group E(p) on which the
endomorphism corresponding to m is given by [7]w = wP+mw (see [7]
p228). Let § be the point on ﬁ(p) corresponding to P, and o the
image in E(p) under this isomorphism. For any integer n > O, let
E denote the points B in the algebraic closure of KP satisfying

ﬂn+l

[ﬂn+l

18 = 0: these correspond to the points of E n+l” We shall

™

denote addition in the group E(p) by a star (*) and subtraction
by a tilde (~).

Let @n = l_)@n (recall that @n is the completion of Fn at pn).

nzo
Then as explained in lemma 35 of [7 1], @n(Qn) - @n(an) and
@m(Qn) = Qm(un), where o ~are defined inductively by the formulae
[mlay = a, [mla ., = a for allm > Q.

By our remarks above, <I>O°(0Ln)/<1>oo is cyclic of degree dividing pn+l.

The following lemma is a refinement of theorem 11 of [7 ].

Lemma 4.2. Let c be the least positive integer such that

a*[ﬂc+l]E(p). For each n =2 c, the extension @m(anybw is totally

ramified, and of degree pn+l—c.

(We stress that c¢ depends only on P, and not on n).
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Proof: First we note that because F /K is totally ramified at p,
the Galois group G(QO/KP) may be identified with Go' Since o

belongs to E(p), one sees easily that GO operates on G(@m(an)/Qw)
via x. Thus ¢ _ is the maximal abelian extension of Kp contained

in @m(an). As any unramified extension of ¢ is abelian over Kp/
it suffic to prove that ¢ (o_)/® hés degree g
£ es P w (Op s gree p -

We may assume, without loss of generality, that c¢c = 0. 1Indeed,
choose B in E(p) such that [ﬂCJB = o, then B satisfies the hypotheses
of the lemma with ¢ = 0, and @w(an) = @m(Bn_c); here Bm satisfies

[W]BO = B and [ﬂ]Bm+l = Bm for all m = O.

Il

Suppose therefore that c O. The proof is by induction on n.

o
If n = O, suppose that @w(ao) ¢ . Then the map ¢ > ag "~ ey is

clearly a cocycle on G_ with values in Eﬂ. But by Sah's lemma
(see [191) Hl(Gm,Eﬂ) = 0. Hence there must exist vV, on Eﬂ such

o R - - N ; .
that o a0, = Vg s for all ¢ in G_. Thus Oy vV, is fixed by

G,r and so lies in Kp' But then o = [ﬂ](ao & vo) belongs to

LmJE(p), which is a contradiction. Hence the lemma is true for

n = 0.
Suppose it has been proven for n, but that pw(an) = ¢w(an+l)'
Let T denote a generator of G(@w(an)/Qw). Now
ot = 0 *
n+l n+tl
for some neEﬂn+2, whence
Tk
= *
oLn+l “n+l Lkn
n
for all k > 0. As 1P = 1, it follows that net nel® Therefore
i
n+l T _ n+1 . n+l _
Cm ](an+l) = [w ](an+l), but [ ]an+l = Qa,s SO that Og

belongs to ¢ _. But we have already shown that this is not the case,

and so the proof of the lemma is complete.
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This lemma implies that G(H_L_F /LnFm), which is cyclic, has

nn e
order at least p"t17C. (2)
The surjection (1) (see above) gives rise to the injection
S ¢ o=t (1) . ' = (1)
O —> Hom((U_/S )" "', Eﬁn+l) > Hom((U_/C_) "7, E 1) OF
Z;>_[Gn] modules; this gives an injection’
F_/F_) G(F_/F_)
. ¥ ozt (1) G(nO_ 'o= (1) n’*o
0] > Hom((Un/Sn) 7 ETrn+l >Hom((Un/Co,n) ’Eﬂn+l)
G(Fn/Fo)

(where for a G(Fn/Fo) module A, A denotes the elements of

A fixed by G(Fn/Fo)).

We saw above that G, operates on G(HnLnFm/LnFm) via X. Also

any homomorphism g: G(HnLth/Lan) — Eﬂn+l satisfies f° = f for all
0eG . (Let TeG(H L F_ /L F_ ). Then

o & ~1

£ (1) = (E{v" )) = klo)f(e(o ")) = £(T)°
since 0 acts on E - via k, and on T via k also). Therefore there

i
is an injection
. - (1) G(Fn/FO)

o —> Hom(G(HnLnFoo/LnFoo),Eﬂn+l) —> Hom((U_/C, ) ,E“nﬂ) .

#
We may now quickly deduce theorem 2. First, we see that

. G(F, _/F )
Hom(Yil),Eﬂn+l)r & Hom((Un/Co,n)(l)’Eﬂn+l) e
because (Yogl))F B (U;/EO n)(l).
n { 4
Also fom (v 1), & n+]_)F =~ Hom(v 1) (-1), = /p""1z )T
ﬂ

where G acts trivially on Zﬂ/pn+lz §

n+lzz r

But Hom(Yof,l)(—l),ZZ /P )

= Hom (M) (-1)) ., = /p™m) .
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From (2) above, there is a surjective homomorphism

¢: G(H L F /L F ) —> E

n-n n+l-c’
m

consequently, there is a surjective homomorphism

o2 (P (-1, — =M

Thus either gl(u—l) = h(0) = 0O,
c-(n+1)

or Igl(u_l)lp = Pp

Since this holds for all n, gl(u—l)

Il
O

But this implies that L(E/K,1)

Il
(©)
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§2. Proof of theorem 5.

The main result of this section is the relation between the
rank of the Fo—rational points on E (mod torsion) and the Iwasawa
invariants of the A-modules X , and 2 .

Suppose X is a A-torsion A-module. Then it is pseudo isomorphic

to a direct sum of the form
il Hx
A/p "N &...® A/p A & A/fl(T)A ®...0 A/fz(T)A

where ul,...,uk are positive integers, and fl(T),...,fQ(T) are

distinguished polynomials in A, that is, of the form

where p divides each bi’ and Ai = deg fi' Suppose that the

n
Fn—invariance of X, that is, X/wnX (wn = (l+'I‘)p -1), is finite;

e

let p % denote its order. Then (see [15] pl27 , or [20]) for all
% k

sufficiently large n, e, = n Z Ai # pn X Hy + v, where v is a
i=1 j=1

constant depending only on X. The coefficients of n and pn are

known as the Iwasawa A- and yp-invariants of X.

#
We now turn to the proof of theorem 5 and first establish the

equality of the invariants: it depends upon the following lemma.

_1 1
Lemma 4.3 For each n > O, the index of C, in Sn equals the p-part

of the class number of Fn‘

Proof: Theorem 2 shows that |[Sn:Cn]|p = |n » where p  denotes

n|p
] i 1 _
the class number of F_. Now S_/C_ =~ S _/C_ is a Z_ -module and so
n n’ “n n’ "n P

] 1
is a p-group; furthermore there is an injection Sn/cn c—> Sn/cn'
-1

1 )
so that S _/C_ has order dividing Ihn|p

] i 1
. But s /C_=8cC/C, and \
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1 1 1
since Sn/sncn has no p-torsion, we conclude that Sn/Cn has order

1 ! . !
(Sn/SnCn has no p-torsion; because Sn/Sn has

1 1
peSn, then x = xF = 1 mod pn, so that annLq,e.d.

precisely |hn|p
\ none: for if xeS and x

\ We consider the exact sequences

0 —> GM_ /L F,) —> G(M/F) —> G(LF./F) —> O

| o —> §_/C — u'fel  — u_/8, —> o.

‘ Now G(Mn/Lan) is isomorphic to U;/gg as a G(Fn/K)—module (see [ 6 1,
| theorem 11 ); these are both finite groups, because the p-adic rank

| of the global units of Fn equals the 7Z -rank (this is Leopoldt's

| conjecture which holds because Fo is abelian over K; see [2 ]).

2t - 158

nlp = [Sn:CnJ.

I

| Also the order of G(L F /F.) G(L /F ) is |h

Recalling that

Xoo/wnXoo -

I
b
Il
@
=
=}
e
&)
8

Il
N
I
c
oy
Ql

and Zoo/ngO°

we conclude that X and Zn have the same finite order for every n. ‘
Consequently the A- and p-invariants are equal; denote these by
A and u respectively.

To calculate a lower bound for A, we need the following result

(a similar result is due to Bashmakov [291]).

Let T = TTT = 1lim E il denote the Tate module . Let r be the
<— 7
rank of E(FO) as an ¢-module, and let Pl""’Pr be a basis for
E(FO) (modulo torsion) over ¢. Let A denote the ¢-submodule of

E(F,) generated by P -rPLi let A denote the set of points P

l,-.

on E, defined over the algebraic closure of For for which there

R
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exists an integer n (depending upon P) such that_ﬂnP lie in A;

note that A contains all the m-power division points. Let

H = Fw(i) be the field obtained by the adjunction of the coordinates
of the points in A; it is a Galois extension of FO. We wish to

describe the Galois group G(H/F_). Recall that T = G(Fw/FO).
Lemma 4.4 G(H/Fm) is isomorphic, as a I'-module, to a I'-submodule
of T,
i)

Proof: ©For each i = 1,...;t; let Pn i (n =0,1,2,...) denote the
14

sequence in A defined by the relations

= = >
Po = Byr "oy, 3 = By q 1B 20D,
i i < = o = .
For each o in G(H/F_), define o,Py a OPn’l Pn,l The seguence
<0,Pi>n (n=1,2,...) lies in T and is independent of the choice of
sequence (Pn i). Thus if ? is any extension of y to an element of
14

G(H/FO) the image o' of ¢ under Y (namely §0§_l) is mapped to the
~=] :
sequence <0Y,Pi>n = v < O,Y Pi§1= Y <0,Piﬁ1o We thus obtain a
r-injection of G(H/F_) into TT.
Clearly G(H/F_) has ZE)—rank at most r; we now fhow it has
ZE)—rank at least r and so is of finite index in T'. For any point

P in E(FO), let Q be such that ﬂnQ = P for some integer n.

Let Fo denote the algebraic closure of Fo‘ The map

G(F /Fg) —> E _
P
o —> 00-Q

is a well defined cocycle. Performing a similar construction for

E(F_), we obtain the following commutative diagram with exact rows

and columns:
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) ——— * PR Hl(G(Foo/Fo),E W) > ...
l o
l —
o —> E(FO)®KP/0p = H (G(Fo/Fo)'Epoo) —>  eee
l V
0 —> E(F)®K /0, —> H(G(F_/F),E ) —> ...
o’ "p p

Now because y-1 is an automorphism of E _, Sah's lemma [19 Jshows
P
that Hl(P,E ) = 0. Hence E(F_)®K /o = (K _/o )r injects into
p“ o PP PP
Hl(G(ﬁm/Fw),E o Hom(G(ﬁw/Fw),E )i we conclude that G(H/F_) has
P P
ZE)—rank at least r, and the proof of the lemma is complete.

Let W denote the T'-submodule of T' to which G(H/Fw) 1S
isomorphic. Lemma 33 of [7] shows that H is contained in M_, so
there is a surjection f: G(M_/F_) —> W.

According to the structure theorem, X = G(M_ /F ) may be decomposed

|} n 1
as a direct sum X = X _ & X where X  is a p-torsion group (i.e.

annihilated by a sufficiently large power of p) and X_ is a direct

sum & A/fj(T)A of a finite number of quotients by distinguished
J

1
polynomials fj. Since W has no p-torsion, £(X_ ) = O and

L n
£(X,) = £(X_); the A-invariants of X_ and X are the same, and

n
the p-invariant of X _is zero. The surjection f induces a surjection

" n n+1
Xoo/wnxo° _ W/(Yp -1)W

(Recall that y is a topological generator of y and acts on X via

y.x = (14T)x, for xeX ). Since W is of finite index in t, i
n+1l 1

WAVP -1)W has order prn—m (for some constant m depending only

on W) for sufficiently large n. Thus the A-invariant of X _is at

least as large as r. This completes the proof of theorem 5. w
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