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Abstract

This paper extends the transformed maximum likelihood approach for estimation of dynamic

panel data models by Hsiao, Pesaran, and Tahmiscioglu (2002) to the case where the errors are cross-

sectionally heteroskedastic. This extension is not trivial due to the incidental parameters problem

that arises, and its implications for estimation and inference. We approach the problem by working

with a mis-specified homoskedastic model. It is shown that the transformed maximum likelihood

estimator continues to be consistent even in the presence of cross-sectional heteroskedasticity. We

also obtain standard errors that are robust to cross-sectional heteroskedasticity of unknown form.

By means of Monte Carlo simulation, we investigate the finite sample behavior of the transformed

maximum likelihood estimator and compare it with various GMM estimators proposed in the liter-

ature. Simulation results reveal that, in terms of median absolute errors and accuracy of inference,

the transformed likelihood estimator outperforms the GMM estimators in almost all cases.
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1 Introduction

In dynamic panel data models where the time dimension (T ) is short, the presence of lagged dependent

variables among the regressors makes standard panel estimators inconsistent, and complicates statisti-

cal inference on the model parameters considerably. Over the last few decades, a sizable literature has

been developed on the estimation of dynamic panel data models. Early work includes the Instrumental

Variables (IV) approach by Anderson and Hsiao (1981, 1982). More recently, a large number of studies

have been focusing on the generalized method of moments (GMM), see, among others, Holtz-Eakin,

Newey, and Rosen (1988), Arellano and Bond (1991), Arellano and Bover (1995), Ahn and Schmidt

(1995) and Blundell and Bond (1998). One important reason for the popularity of GMM in applied

economic research is that it provides asymptotically valid inference under a minimal set of statistical

assumptions. Arellano and Bond (1991) suggested to transform the dynamic model into first differ-

ences to eliminate the individual-specific effects, and then use a set of moment conditions where lagged

variables in levels are used as instruments. Blundell and Bond (1998) showed that the performance

of this estimator deteriorates when the parameter associated with the lagged dependent variable is

close to one and/or the variance ratio of the individual effects to the idiosyncratic errors is large since

in these cases the instruments are only weakly related to the lagged dependent variables.1 Among

others, the poor finite sample properties of GMM has been documented in Monte Carlo studies by

Kiviet (2007). To deal with this problem, Arellano and Bover (1995) and Blundell and Bond (1998)

proposed the use of extra moment conditions arising from the model in levels, available when the

initial observations satisfy certain conditions. The resulting GMM estimator, known as system GMM,

combines moment conditions for the model in first differences with moment conditions for the model

in levels. We refer to Blundell, Bond, and Windmeijer (2000) for an extension to the multivariate

case, and for a Monte Carlo study of the properties of GMM estimators using moment conditions from

either the first differenced and/or levels models. Bun and Windmeijer (2010) proved that the equation

in levels suffers from a weak instrument problem when the variance ratio is large. Hayakawa (2007)

also shows that the finite sample bias of the system GMM estimator becomes large when the variance

ratio is large.

The GMM estimators discussed so far have been widely adopted in the empirical literature, to

investigate problems in areas such as labour economics, development economics, health economics,

macroeconomics and finance. Theoretical and applied research on dynamic panels has mostly focused

on the GMM, and has by and large neglected the maximum likelihood (ML) approach. Indeed, the

incidental parameters issue and the initial values problem lead to a violation of the standard regularity

conditions for the ML estimators of the structural parameters to be consistent. Hsiao et al. (2002)

developed a transformed likelihood approach to overcome the incidental parameters problem. Binder

et al. (2005) have extended this approach for estimating panel VAR (PVAR) models. Alvarez and

Arellano (2004) have studies ML estimation of autoregressive panels in the presence of time-specific

1See also the discussion in Binder, Hsiao, and Pesaran (2005), who proved that the asymptotic variance of the Arellano
and Bond (1991) GMM estimator depends on the variance of the individual effects.
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heteroskedasticity (see also Bhargava and Sargan (1983)). Kruiniger (2008) considers ML estimation

of a stationary/unit root AR(1) panel data models.

In this paper, we extend the analysis of Hsiao et al. (2002) to allow for cross-sectional heteroskedas-

ticity. This extension is not trivial due to the incidental parameters problem that arises, and its im-

plications for estimation and inference. To deal with the problem, we follow the GMM literature and

ignore the error variance heterogeneity and work with a mis-specified homoskedastic model, and show

that the transformed maximum likelihood estimator by Hsiao et al. (2002) continues to be consistent.

We then derive a covariance matrix estimator which is robust to cross-sectional heteroskedasticity.

Using Monte Carlo simulations, we investigate the finite sample performance of the transformed like-

lihood estimator and compare it with a range of GMM estimators. Simulation results reveal that,

in terms of median absolute errors and accuracy of inference, the transformed likelihood estimator

outperforms the GMM estimators in almost all cases when the model contains an exogenous regressor,

and in many cases if we consider pure autoregressive panels.

The rest of the paper is organized as follows. Section 2 describes the model and its underlying as-

sumptions. Section 3 proposes the transformed likelihood estimator for cross-sectionally heteroskedas-

tic errors. Section 4 reviews the GMM approach as applied to dynamic panels. Section 5 describes

the Monte Carlo design and comments on the small sample properties of the transformed likelihood

and GMM estimators. Finally, Section 6 ends with some concluding remarks.

2 The dynamic panel data model

Consider the panel data model

yit = αi + γyi,t−1 + βxit + uit, (1)

for i = 1, 2, ..., N . It is supposed that these dynamic processes have started at time t = −m, (m being a

finite positive constant) but we only observe the observations (yit, xit) over the period t = 0, 1, 2, ...., T .

We assume that xit is a scalar to simplify the notation. Extension to the case of multiple regressors

is straightforward at the expense of notational complexity. We further assume that xit is generated

either by

xit = µi + ϕt+

∞∑
j=0

ajεi,t−j ,

∞∑
j=0

|aj | < ∞ (2)

or

∆xit = ϕ+
∞∑
j=0

djεi,t−j ,
∞∑
j=0

|dj | < ∞ (3)

where µi can either be fixed constants, differing across i, or randomly distributed with a common

mean, and εit are independently distributed over i and t with E(εit) = 0, and var(εit) = σ2
εi, with

0 < σ2
εi < K < ∞.

We shall also consider the following assumptions:
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Assumption 1 (Initialization) Depending on whether the yit process has reached stationarity, one of

the following two assumptions holds:

(i) | γ |< 1, and the process has been going on for a long time, namely m → ∞;

(ii) The process has started from a finite period in the past not too far back from the 0th period, namely

for given values of yi,−m+1 with m finite, such that

E(∆yi,−m+1|∆xi1,∆xi2, ...,∆xiT ) = b, for all i,

where b is a finite constant.

Assumption 2 (shocks to equations) Disturbances uit are serially and cross-sectionally independently

distributed, with E (uit) = 0, E
(
u2it
)
= σ2

i , and E
(
u4it/σ

4
i

)
= κ, such that 0 < σ2

i < K < ∞, and

0 < κ < K < ∞, for i = 1, 2, ..., N and t = 1, 2, ..., T .

Assumption 3 (shocks to regressors) εit in xit are independently distributed over all i and t, with

E (εit) = 0, and E
(
ε2it
)
= σ2

εi, and independent of uis for all s and t.

Assumption 4 (constant variance ratio) σ2
εi/σ

2
i = c, for i = 1, 2, ..., N , with 0 < c < K < ∞.

Remark 1 Assumption 1.(ii) constrains the expected changes in the initial values to be the same

across all individuals, but does not necessarily require that | γ |< 1. Assumptions 2, 3, and 4 allow

for heteroskedastic disturbances in the equations for yit and xit, but to avoid the incidental parameter

problem require their ratio to be constant over i. Also Assumption 3 requires xit to be strictly exogenous.

These restrictions can be relaxed by considering a panel vector autoregressive specification of the type

considered in Binder et al. (2005). However, these further developments are beyond the scope of the

present paper. See also the remarks in Section 6 .

3 Transformed likelihood estimation

Take the first differences of (1) to eliminate the individual effects:

∆yit = γ∆yi,t−1 + β∆xit +∆uit, (4)

which is well defined for t = 2, 3, ..., T , but not for t = 1, because the observations yi,−1, i = 1, 2, ..., N ,

are not available. However, starting from ∆yi,−m+1, and by continuous substitution, we obtain

∆yi1 = γm∆yi,−m+1 + β

m−1∑
j=0

γj∆xi,1−j +

m−1∑
j=0

γj∆ui,1−j .

4



Note that the mean of ∆yi1 conditional on ∆yi,−m+1,∆xi1,∆xi0, ..., given by

ηi1 = E (∆yi1|∆yi,−m+1,∆xi1,∆xi0, ...) = γm∆yi,−m+1 + β

m−1∑
j=0

γj∆xi,1−j , (5)

is unknown, since the observations ∆xi,1−j , for j = 1, 2, ...,m − 1, i = 1, 2, ..., N are unavailable. To

solve this problem, we need to express the expected value of ηi1, conditional on the observables, in

a way that it only depends on a finite number of parameters. The following theorem provides the

conditions under which it is possible to derive a marginal model for ∆yi1, which is a function of a

finite number of unknown parameters.

Theorem 1 Consider model (1), where xit follows either (2) or (3). Suppose that Assumptions 1, 2,

3, and 4 hold. Then ∆yi1 can be expressed as:

∆yi1 = b+ π′∆xi + vi1, (6)

where b is a constant, π is a T -dimensional vector of constants, ∆xi = (∆xi1,∆xi2, ...,∆xiT )
′, and vi1

is independently distributed across i, such that E(vi1) = 0, and E(v2i1)/σ
2
i = ω, with 0 < ω < K < ∞.

Note that Assumption 4 is used to show that E(v2i1)/σ
2
i does not vary with i.

It is now possible to derive the likelihood function of the transformed model given by equations

(6) and (4) for t = 2, 3, ..., T . Let ∆yi = (∆yi1,∆yi2, ...,∆yiT )
′,

∆Wi
T×(T+3)

=


1 ∆x′

i 0 0

0 0 ∆yi1 ∆xi2
...

...
...

...

0 0 ∆yi,T−1 ∆xiT

 ,

and note that the transformed model can be rewritten as

∆yi = ∆Wiφ+ ri, (7)

with φ = (b,π′, γ, β)′. The covariance matrix of ri = (vi1,∆ui2, ...,∆uiT )
′ has the form:

E(rir
′
i) = Ωi = σ2

i



ω −1 0

−1 2
. . .

. . .

. . . 2 −1

0 −1 2


= σ2

iΩ, (8)

where ω is a free parameter defined in Theorem 1.
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The log-likelihood function of the transformed model (7) is given by

ℓ (ψN ) = −NT

2
ln (2π)− T

2

N∑
i=1

lnσ2
i −

N

2
ln [1 + T (ω − 1)]

−1

2

N∑
i=1

1

σ2
i

(∆yi −∆Wiφ)
′Ω−1 (∆yi −∆Wiφ) ,

where ψN =
(
φ′, ω, σ2

1, σ
2
2, ...σ

2
N

)′
. Unfortunately, the maximum likelihood estimation based on ℓ(ψN )

encounters the incidental parameter problem of Neyman and Scott (1948) since the number of pa-

rameters grows with the sample size, N . Following the mis-specification literature in econometrics,

(White, 1982; Kent, 1982), we examine the asymptotic properties of the ML estimators of the param-

eters of interest, φ and ω, using a mis-specified model where the heteroskedastic nature of the errors

is ignored.

Accordingly, suppose that it is incorrectly assumed that the regression errors uit are homoskedastic,

i.e., σ2
i = σ2, i = 1, 2, ..., N . Then under this mis-specification the pseudo log-likelihood function of

the transformed model (7), is given by

ℓp (θ) = −NT

2
ln (2π)− NT

2
ln
(
σ2
)
− N

2
ln [1 + T (ω − 1)]

− 1

2σ2

N∑
i=1

(∆yi −∆Wiφ)
′Ω−1 (∆yi −∆Wiφ) , (9)

where θ =
(
φ′, ω, σ2

)′
is the vector of unknown parameters. Let θ̂ be the estimator obtained by

maximizing the pseudo log-likelihood in (9), and consider the pseudo-score vector

∂ℓp (θ)

∂θ
=


1
σ2

∑N
i=1∆W′

iΩ
−1 (∆yi −∆Wiφ)

−NT
2g + 1

2σ2g2
∑N

i=1 r
′
iΦri

−NT
2σ2 + 1

2σ4

∑N
i=1 r

′
iΩ

−1ri

 ,

where g = |Ω| = 1 + T (ω − 1), (see (40)), and

Φ =


T 2 T (T − 1) T (T − 2) . . . T

T (T − 1) (T − 1)2 (T − 1)(T − 2) . . . (T − 1)
...

...
... . . .

...

T (T − 1) (T − 2) . . . 1

 . (10)
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Under heteroskedastic errors, the pseudo-true value of θ denoted by θ∗ = (φ′
∗, ω∗, σ

2
∗)

′, is the solution

of E [∂ℓp (θ∗) /∂θ] = 0, namely

N∑
i=1

E
[
∆W′

iΩ
−1
∗ (∆yi −∆Wiφ∗)

]
= 0, (11)

−NT

2g∗
+

1

2σ2
∗g

2
∗

N∑
i=1

E
(
r′iΦri

)
= 0, (12)

−NT

2σ2
∗
+

1

2σ4
∗

N∑
i=1

E
(
r′iΩ

−1
∗ ri

)
= 0, (13)

where expectations are taken with respect to the true probability measure, and g∗ = 1 + T (ω∗ − 1).

Focusing first on (12) and (13), we have

N∑
i=1

E
(
r′iΦri

)
=

N∑
i=1

σ2
i tr (ΦΩ) = Nσ̄2

NTg,

N∑
i=1

E
(
r′iΩ

−1
∗ ri

)
= TNσ̄2

N tr(Ω−1
∗ Ω)/T,

where σ̄2
N = N−1

∑N
i=1 σ

2
i and (42) is used. Hence, using the above results in (12) and (13), we have

−NT

2g∗
+

1

2σ2
∗g

2
∗
Nσ̄2

N tr (ΦΩ) = −NT

2g∗
+

1

2σ2
∗g

2
∗
Nσ̄2

NTg = 0,

−NT

2σ2
∗
+

1

2σ4
∗

N∑
i=1

E
(
r′iΩ

−1
∗ ri

)
= −NT

2σ2
∗
+

1

2σ4
∗
TNσ̄2

N tr(Ω−1
∗ Ω)/T = 0.

From the first equation, we have σ2
∗/σ̄

2
N = g/g∗ = [1 + T (ω − 1)] / [1 + T (ω∗ − 1)]. From the second

equation, we have σ2
∗/σ̄

2
N = tr(Ω−1

∗ Ω)/T . Using these two, we have

1 + T (ω − 1)

1 + T (ω∗ − 1)
=

1

T
tr(Ω−1

∗ Ω). (14)

To solve this equation for ω∗, we first note that note that

tr(Ω−1
∗ Ω)/T = 1 + g−1

∗ (ω − ω∗).

This result follows since all elements of ∆ = Ω−Ω∗ are zero, except for the first element of ∆ which

is given by ω − ω∗. Substituting this into (14), and after some algebra we have (T − 1)( ω∗ − ω) = 0,

which yields ω∗ = ω for all T > 1. It also follows that σ2
∗ = limN→∞ σ̄2

N . Using the former result in

(11), we have φ∗ = φ. These results are stated formally in the following theorem.

Theorem 2 Suppose that Assumptions 1, 2, 3, and 4 hold, and let θ∗ =
(
φ′

∗, ω∗, σ
2
∗
)′

be the pseudo
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true values of the ML estimator obtained by maximizing the pseudo log-likelihood function in (9).

Then, we have

φ∗ = φ, ω∗ = ω, σ2
∗ = lim

N→∞
N−1

N∑
i=1

σ2
i .

This is one of the key results of this paper. This theorem shows that the first (T + 4) entries

of θ∗ are identical to the first (T + 4) entries of ψN . This indicates that the ML estimator of φ

and ω obtained under mis-specified homoskedastic models will continue to be consistent, namely, the

transformed ML estimator by Hsiao et al. (2002) is consistent even if cross-sectional heteroskedasticity

is present.

The following theorem establishes the asymptotic distribution of the ML estimator of the trans-

formed model.

Theorem 3 Suppose that Assumptions 1, 2, 3 and 4 hold and let θ̂ =
(
φ̂′, ω̂, σ̂2

)′
be the ML estimator

obtained by maximizing the pseudo log-likelihood function in (9). Then as N tends to infinity, θ̂ is

asymptotically normal with √
N
(
θ̂ − θ∗

)
d→ N

(
0,A∗−1B∗A∗−1

)
(15)

where θ∗ = (φ′, ω, σ2
∗)

′,

A∗ = lim
N→∞

E

[
− 1

N

∂2ℓp (θ∗)

∂θ∂θ′

]
, and B∗ = lim

N→∞
E

[
1

N

∂ℓp (θ∗)

∂θ

∂ℓp (θ∗)

∂θ′

]
.

To obtain consistent estimators of A∗ and B∗, robust to unknown heteroskedasticity, let

r̂i = ∆yi −∆Wiφ̂.

Further, let

σ̃2
NT = (TN)−1

N∑
i=1

r̂′iΩ̂
−1r̂i,

be an estimator of N−1
∑N

i=1 σ
2
i . Then a consistent estimator of A∗, denoted as Â∗, is given by

Â∗ =


1

Nσ̃2
NT

∑N
i=1∆W′

iΩ̂
−1∆Wi

1
g2Nσ̃2

NT

∑N
i=1∆W′

iΦr̂i 0

1
g2Nσ̃2

NT

∑N
i=1 r̂

′
iΦ∆Wi

T 2

2g2
T

2gσ̃2
NT

0 T
2gσ̃2

NT

T

2(σ̃2
NT )

2

 .

To obtain a consistent estimator of B∗, denoted by B̂∗, we also need to assume that the fourth moment

of (vi1 − ui1)/σi is homogeneous across i. In particular,

Assumption 5 (kurtosis condition) Assume that E(η4i1) = κ = γ2 + 3 for i = 1, 2, ..., N , where

ηi1 = (vi1 − ui1)/[σi(ω − 1)1/2], and γ2 is the Pearson’s measure of kurtosis.
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This assumption is used in combination with Assumption 2 to consistently estimate N−1
∑N

i=1 σ
4
i

by σ̃4
NT defined in the Appendix by (66). Then the elements of B̂∗are given by:

B̂∗
11 =

1

N
(
σ̃2
NT

)2 N∑
i=1

∆W′
iΩ̂

−1r̂ir̂
′
iΩ̂

−1∆Wi,

B̂∗
22 =

T 2

4ĝ4
(
σ̃2
NT

)2
{
N−1

N∑
i=1

(
r̂′iΦr̂i
T

)2

− ĝ2σ̃4
NT

}
,

B̂∗
33 =

T 2

4
(
σ̃2
NT

)4
N−1

N∑
i=1

(
r̂′iΩ̂

−1r̂i
T

)2

− σ̃4
NT

 ,

B̂∗
21 =

1

2Nĝ2
(
σ̃2
NT

)2 N∑
i=1

(
r̂′iΩ̂

−1∆Wi

) (
r̂′iΦr̂i

)
,

B̂∗
31 =

1

2N
(
σ̃2
NT

)3 N∑
i=1

(
r̂′iΩ̂

−1∆Wi

)(
r̂′iΩ̂

−1r̂i

)
,

B̂∗
32 =

T 2

4ĝ2
(
σ̃2
NT

)3
[
1

N

N∑
i=1

r̂′iΦr̂i
T

r̂′iΩ̂
−1r̂i
T

− ĝσ̃4
NT

]
.

4 GMM approach

In this section, we review the GMM approach as a basis for the simulation studies in the next section.

In the GMM approach, it is assumed that αi and uit have an error components structure, in which2

E (αi) = 0, E (uit) = 0, E(αiuit) = 0, for i = 1, .., N ; and t = 1, 2, ..., T, (16)

and the errors are uncorrelated with the initial values

E (yi0uit) = 0, for i = 1, 2, .., N, and t = 1, 2, ..., T. (17)

As with the transformed likelihood approach, it is also assumed that the errors, uit, are serially and

cross-sectionally independent:

E (uituis) = 0, for i = 1, 2, .., N, and t ̸= s = 1, 2, ..., T. (18)

2Note that no restrictions are placed on E(αiuit) under the transformed likelihood approach
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4.1 Estimation

4.1.1 The first-difference GMM estimator

Under (16)-(18), and focusing on the equation in first differences, (4), Arellano and Bond (1991)

suggest the following T (T − 1)/2 moment conditions:

E [yis∆uit] = 0, (s = 0, 1, ..., t− 2, t = 2, 3, ..., T ). (19)

If regressors, xit, are strictly exogenous, i.e., if E (xisuit) = 0, for all t and s, then the following

additional moments can also be used

E [xis∆uit] = 0, (s, t = 2, ..., T ). (20)

The moment conditions (19) and (20) can be written compactly as:

E
[
Ż′
iu̇i

]
= 0,

where u̇i = q̇i − Ẇiδ, δ = (γ, β)′ = (δ1, δ2)
′ and

Żi =


yi0, xi1, ..., xiT 0 ... 0

0 yi0, yi1, xi1, ..., xiT ... 0
...

. . .
...

0 0 ... yi0, ..., yi,T−2, xi1, ..., xiT

 ,

q̇i =


∆yi2
...

∆yiT

 , Ẇi =


∆yi1 ∆xi2
...

...

∆yi,T−1 ∆xiT

 .

The one and two-step first-difference GMM estimators based on the above moment conditions are

given by

δ̂
dif

GMM1 =

(
Ṡ′
ZW

(
Ḋ1step

)−1
ṠZW

)−1

Ṡ′
ZW

(
Ḋ1step

)−1
ṠZq, (21)

δ̂
dif

GMM2 =

(
Ṡ′
ZW

(
Ḋ2step

)−1
ṠZW

)−1

Ṡ′
ZW

(
Ḋ2step

)−1
ṠZq, (22)

where ṠZW = 1
N

∑N
i=1 Ż

′
iẆi, ṠZq =

1
N

∑N
i=1 Ż

′
iq̇i, Ḋ1step =

1
N

∑N
i=1 Ż

′
iHŻi, Ḋ2step =

1
N

∑N
i=1 Ż

′
i
̂̇ui
̂̇u′
iŻi,̂̇ui = q̇i − Ẇiδ̂

dif

GMM1, and H is a matrix with 2’s on the main diagonal, -1’s on the first sub-diagonal

and 0’s otherwise.
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4.1.2 System GMM estimator

Although consistency of the first-difference GMM estimator is obtained under a mild assumption of

no serial correlation, Blundell and Bond (1998) demonstrated that it suffers from the so called weak

instruments problem when γ is close to one and/or the variance ratio var(αi)/var(uit) is large. As

a solution, these authors propose the system GMM estimator due to Arellano and Bover (1995) and

show that it works well even if γ is close to unity. But as shown recently by Bun and Windmeijer

(2010), the system GMM estimator continues to suffer from the weak instruments problem when the

variance ratio var(αi)/var(uit) is large.

To introduce the moment conditions for the system GMM estimator, the following additional

homogeneity assumptions are required:

E(yisαi) = E(yitαi), for all s and t,

E(xisαi) = E(xitαi), for all s and t.

Under these assumptions, we have the following moment conditions:

E [∆yis (αi + uit)] = 0, (s = 1, ..., t− 1, t = 2, 3, ..., T ), (23)

E [∆xis (αi + uit)] = 0, (s, t = 2, 3, ..., T ). (24)

For the construction of the moment conditions for the system GMM estimator, given the moment

conditions for the first-difference GMM estimator, some moment conditions in (23) and (24) are

redundant. Hence, to implement the system GMM estimation, in addition to (19) and (20), we use

the following moment conditions:

E [∆yi,t−1 (αi + uit)] = 0, (t = 2, 3, ..., T ), (25)

E [∆xit (αi + uit)] = 0, (t = 2, 3, ..., T ). (26)

The moment conditions (19), (20), (25) and (26) can be written compactly as

E
[
Z̈′
iüi

]
= 0,

11



where üi = q̈i − Ẅiδ,

Z̈i = diag
(
Żi, Z̆i

)
, Z̆i =


∆yi1,∆xi2 0 ... 0

0 ∆yi2,∆xi3 0
...

. . .
...

0 0 ... ∆yi,T−1,∆xiT

 ,

q̈i =

(
q̇i

q̆i

)
, q̆i =


yi2
...

yiT

 , Ẅi =

(
Ẇi

W̆i

)
, W̆i =


yi1 xi2
...

...

yi,T−1 xiT

 .

The one and two-step system GMM estimators based on the above conditions are given by

δ̂
sys

GMM1 =

(
S̈′
ZW

(
D̈1step

)−1
S̈ZW

)−1

S̈′
ZW

(
D̈1step

)−1
S̈Zq, (27)

δ̂
sys

GMM2 =

(
S̈′
ZW

(
D̈2step

)−1
S̈ZW

)−1

S̈′
ZW

(
D̈2step

)−1
S̈Zq, (28)

where S̈ZW = 1
N

∑N
i=1 Z̈

′
iẄi, S̈Zq = 1

N

∑N
i=1 Z̈

′
iq̈i and D̈1step = diag

(
1
N

∑N
i=1 Ż

′
iHŻi,

1
N

∑N
i=1 Z̆

′
iZ̆i

)
.

The two-step system GMM estimator is obtained by replacing D̈1step with D̈2step =
1
N

∑N
i=1 Z̈

′
i
̂̈ui
̂̈u′
iZ̈i

where ̂̈ui = q̈i − Ẅiδ̂
sys

GMM1.

4.1.3 Continuous-updating GMM estimator

Since the two-step GMM estimators have undesirable finite sample bias property, (Newey and Smith,

2004), alternative estimation methods have been proposed in the literature. These include the empir-

ical likelihood estimator, (Qin and Lawless, 1994), the exponential tilting estimator (Kitamura and

Stutzer, 1997; Imbens, Spady, and Johnson, 1998) and the continuous updating (CU-) GMM estimator

(Hansen, Heaton, and Yaron, 1996), where these are members of the generalized empirical likelihood

estimator (Newey and Smith, 2004). Amongst these estimators, we mainly focus on the CU-GMM

estimator as an alternative to the two-step GMM estimator.

To define the CU-GMM estimator, we need some additional notation. Let Ži denote Żi or Z̈i, and

ǔi denote u̇i or üi. Also, let m be the number of columns of Ži, i.e., the number of instruments, and

set

gi(δ) = Ž
′
iǔi, ĝ(δ) =

1

N

N∑
i=1

gi(δ), Ω̂(δ) =
1

N

N∑
i=1

[gi(δ)− ĝ(δ)] [gi(δ)− ĝ(δ)]′ .

Then, the CU-GMM estimator is defined as

δ̂GMM−CU = argmin
δ

Q(δ), (29)

Q(δ) = ĝ(δ)′Ω̂(δ)−1ĝ(δ)/2. (30)

12



Newey and Smith (2004) demonstrate that the CU-GMM estimator has a smaller finite sample bias

than the two-step GMM estimator.

4.2 Inference

4.2.1 Alternative standard errors

In the case of GMM estimators the choice of the covariance matrix is often as important as the choice of

the estimator itself for inference. Although, it is clearly important that the estimator of the covariance

matrix should be consistent, in practice it might not have favorable finite sample properties and result

in inaccurate inference. To address this problem, some modified standard errors have been proposed.

For the two-step GMM estimators, Windmeijer (2005) proposes corrected standard errors for linear

static panel data models which are applied to dynamic panel models by Bond and Windmeijer (2005).

For the CU-GMM, while it is asymptotically equivalent to the two-step GMM estimator, it is more

dispersed than the two-step GMM estimator in finite samples and inference based on conventional

standard errors formula results in a large size distortion. To overcome this problem, Newey and

Windmeijer (2009) propose an alternative estimator for the covariance matrix of CU-GMM estimators

under many-weak moments asymptotics and demonstrate by simulation that the use of the modified

standard errors improve the size property of the tests based on the CU-GMM estimators.3

4.2.2 Weak instruments robust inference

As noted above, the first-difference and system GMM estimators could be subject to the weak in-

struments problem. In the presence of weak instruments, the estimators are biased and inference

becomes inaccurate. As a remedy for this, some tests that have correct size regardless of the strength

of instruments have been proposed in the literature. These include Stock and Wright (2000) and

Kleibergen (2005). Stock and Wright (2000) propose a GMM version of the Anderson and Rubin(AR)

test (Anderson and Rubin, 1949). Kleibergen (2005) proposes a Lagrange Multiplier (LM) test. This

author also extends the conditional likelihood ratio (CLR) test of Moreira (2003) to the GMM case

since the CLR test performs better than other tests in linear homoskedastic regression models.

We now introduce these tests. The GMM version of the AR statistic proposed by Stock and

Wright (2000) is defined as

AR(δ) = 2N ·Q(δ). (31)

Under the null hypothesis H0 : δ = δ0, this statistic is asymptotically (as N → ∞) distributed as χ2
m,

regardless of the strength of the instruments, where m is the dimension of δ.

3For the precise definition of many weak moments, see Newey and Windmeijer (2009).
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The LM statistic proposed by Kleibergen (2005) is

LM(δ) = N · ∂Q(δ)′

∂δ

[
D̂(δ)′Ω̂(δ)−1D̂(δ)

]−1 ∂Q(δ)

∂δ
, (32)

where D̂(δ) =
(
d̂1(δ), d̂2(δ)

)
with

d̂j(δ) =
1

N

N∑
i=1

∂gi(δ)

∂δj
−

(
1

N

N∑
i=1

∂gi(δ)

∂δj
gi(δ)

′

)
Ω̂(δ)−1ĝ(δ), for j = 1 and 2.

Under the null hypothesis H0 : δ = δ0, this statistic follows χ2
2, asymptotically

The GMM version of the CLR statistic proposed by Kleibergen (2005) is given by

CLR(δ) =
1

2

[
AR(δ)− R̂(δ) +

√(
AR(δ)− R̂(δ)

)2
+ 4LM(δ)R̂(δ)

]
(33)

where R̂(δ) is a statistic which is large when instruments are strong and small when the instruments

are weak, and is random only through D̂(δ) asymptotically. In the simulation, following Newey and

Windmeijer (2009), we use R̂(δ) = N ·λmin

(
D̂(δ)′Ω̂(δ)−1D̂(δ)

)
where λmin(A) denotes the smallest

eigenvalue of A. Under the null hypothesis H0 : δ = δ0, this statistic asymptotically follows a

nonstandard distribution which can be obtained by simulation4.

These tests are derived under the standard asymptotic where the number of moment conditions

is fixed. Recently, Newey and Windmeijer (2009) show that these results are valid even under many

weak moments asymptotics.

5 Monte Carlo simulations

In this section, we conduct Monte Carlo simulations to investigate the finite sample properties of

the transformed log-likelihood approach and compare them to those of the various GMM estimators

proposed in the literature and discussed in the previous section.

5.1 ARX(1) model

We first consider a distributed lag model with one exogenous regressor (ARX(1)), which is likely to

be more relevant in practice than the pure AR(1) model which will be considered later.

4For the details of computation, see Kleibergen (2005) or Newey and Windmeijer (2009).
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5.1.1 Monte Carlo design

For each i, the time series processes {yit} are generated as

yit = αi + γyi,t−1 + βxit + uit, for t = −m+ 1,−m+ 2, .., 0, 1, ..., T, (34)

with the initial value yi,−m = αi + βxi,−m + ui,−m, and uit ∼ N (0, σ2
i ), with σ2

i ∼ U [0.5, 1.5], so

that E(σ2
i ) = 1. We discard the first m observations, and use the observations t = 0 through T for

estimation and inference.5 The regressor, xit, is generated as

xit = µi + gt+ ζit, for t = −m,−m+ 1, .., 0, 1, ..., T, (35)

where

ζit = ϕζi,t−1 + εit, for t = −49−m,−48−m, ..., 0, 1, ..., T, (36)

εit ∼ N (0, σ2
εi), ξi,−m−50 = 0. (37)

with |ϕ| < 1. We discard the first 50 observations of ζit and use the remaining T +1+m observations

for generating xit and yit.

In the simulations, we try the values γ = 0.4, 0.9, β = 0.5, ϕ = 0.5, and g = 0.01. The error

variances σ2
εi are set so that to ensure a reasonable fit, namely6

σ2
εi =

σ2
iR

2
∆y(1 + ϕ)(1− ϕγ)

β2
(
1−R2

∆y

) ,

with R2
∆y = 0.4. The sample sizes considered are N = 50, 150, 500 and T = 5, 10, 15. For the

individual effects, we set αi = τ
(
qi−1√

2

)
, where qi ∼ χ2

1. For the value of τ , which is the variance ratio,

τ = var(αi)/var(uit), we consider the values of τ = 1 often used in the literature, and the high value

of τ = 5. Further, we assume that both yit and xit depend linearly on the same individual effects, by

taking µi = ηαi where the value of η is computed by (69) in the Appendix A.5 with R2
y = 0.4.7

In computing the transformed ML estimators we use the minimum distance estimator of Hsiao

et al. (2002) as starting values for the nonlinear optimization where ω is estimated by the one-step

5Hence, T + 1 is the actual length of the estimation sample.
6For the derivation of R2

∆y, see Appendix A.5.
7Since (69) is a quadratic equation, we have two solutions. In the simulations, we used the positive solution.
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first-difference GMM estimator (21) in which Żi is replaced with

Żi =


yi0 xi1 0 0

yi1 xi2 yi0 xi1
...

...
...

...

yi,T−2 xi,T−1 yi,T−3 xi,T−2

 .

For the GMM estimators, although there are many moment conditions for the first-difference GMM

estimator as in (19) and (20), we consider two sets of moment conditions which only exploit a subset

of instruments. The first set of moment conditions, denoted as “DIF1”, consists of E(yis∆uit) = 0 for

s = 0, ..., t− 2; t = 2, ..., T and E(xis∆uit) = 0 for s = 1, ..., t; t = 2, ..., T . In this case, the number of

moment conditions are 24, 99, 224 for T = 5, 10, 15, respectively. The second set of moment conditions,

denoted as “DIF2”, consist of E(yi,t−2−l∆uit) = 0 with l = 0 for t = 2, l = 0, 1 for t = 3, ..., T and

E(xi,t−l∆uit) = 0 with l = 0, 1 for t = 2, l = 0, 1, 2 for t = 3, ..., T . In this case, the number of

moment conditions are 18, 43, 68 for T = 5, 10, 15, respectively. Similarly, for the system GMM

estimator, we add moment conditions (25) and (26) in addition to “DIF1” and “DIF2”, which are

denoted as “SYS1” and “SYS2”, respectively. For “SYS1” we have 32, 117, 252 moment conditions for

T = 5, 10, 15, respectively, while for “SYS2” we have 26, 61, 96 moment conditions for T = 5, 10, 15,

respectively.

In a number of cases where N is not sufficiently large relative to the number of moment conditions

(for example, when T = 15 and N = 50) the inverse of the weighting matrix can not be computed.

Such cases are denoted − in the summary result tables.

For inference, we use the robust standard errors formula given in Theorem 2 for the transformed

likelihood estimator. For the GMM estimators, in addition to the conventional standard errors, we

also compute Windmeijer (2005)’s standard errors with finite sample correction for the two-step GMM

estimators and Newey and Windmeijer (2009)’s alternative standard errors formula for the CU-GMM

estimators.

In addition to the MC results for γ and β, we also report simulation results for the long-run

coefficient defined by δ = β/(1 − γ). We report median biases, median absolute errors (MAE), size

and power for γ, β and δ. The power is computed at γ − 0.1, β − 0.1 and (β − 0.1)/(1 − (γ − 0.1)),

for selected null values of γ and β. All tests are carried out at the 5% significance level, and all

experiments are replicated 1, 000 times.

5.1.2 Results for the ARX(1) model

To save space, we report the results of the GMM estimators which exploit moment conditions “DIF2”

and “SYS2” only. The reason for selecting these moment conditions is that, in practice, these moment

conditions are often used to mitigate the finite sample bias caused by using too many instruments. A

complete set of results giving the remaining GMM estimators that make use of additional instruments

16



are provided in a supplement available from the authors on request.

The small sample results for γ are summarized in Tables 1 to 4. Table 1 provides the results for

the case of γ = 0.4, and shows that the transformed likelihood estimator has a smaller bias than the

GMM estimators in all cases with the exception of the CU-GMM estimator (the last panel of Table

1). In terms of MAE the transformed likelihood estimator outperforms the GMM estimators in all

cases.

As for the effect of increasing the variance ratio, τ , on the various estimators, we first recall that

the transformed likelihood estimator must be invariant to the choice of τ , although the estimates

reported in Table 1 do show some effects, albeit small. The observed impact of changes in τ on the

performance of the transformed likelihood estimator is solely due to computational issues and reflects

the dependence of the choice of initial values on τ in computation of the transformed ML estimators.

One would expect that these initial value effects to disappear as N is increased, and this is seen to be

the case from the results summarized in Table 1. In contrast, the performance of the GMM estimators

deteriorates (in some case substantially) as τ is increased from 1 to 5. This tendency is especially

evident in the case of the system GMM estimators, and is in sharp contrast to the performance of the

transformed likelihood estimator which are robust to changes in τ . These observations also hold if we

consider the experiments with γ = 0.9 (Table 2). Although the GMM estimators have smaller biases

than the transformed likelihood estimator in a few cases, in terms of MAE, the transformed likelihood

estimator performs best in all cases.

We next consider size and power of the various tests, summarized in Tables 3 and 4. Table 3 shows

that the empirical size of the transformed likelihood estimator is close to the nominal size of 5% for

all values of T , N and τ .

For the GMM estimators, we find that the test sizes vary considerably depending on T , N , τ , the

estimation method (1step, 2step, CU), and whether corrections are applied to the standard errors.

In the case of the GMM results without standard error corrections, most of the GMM methods are

subject to substantial size distortions when N is small. For instance, when N = 50, T = 5, and τ = 1,

the size of the test based on DIF2(2step) estimator is 30.4%. But the size distortion gets smaller as

N increases. Increasing N to 500, reduces the size of this test to 6.6%. However, even with N = 500,

the size distortion gets larger for two-step and CU-GMM estimators as T increases.

As to the effects of changes in τ on the estimators, we find that the system GMM estimators are

significantly affected when τ is increased. When τ = 5, all the system GMM estimators have large

size distortions even when T = 5 and N = 500, where conventional asymptotics are expected to work

well. This may be due to large finite sample biases caused by a large τ .

Amongst the tests based on corrected GMM standard errors, Windmeijer (2005)’s correction seems

to be quite useful, and in many cases it leads to accurate inference, although the corrections do not

seem able to mitigate the size problem of the system GMM estimator when τ is large. The standard

errors of Newey and Windmeijer (2009) are not always helpful, and although they improve the size

property in some cases, they have either little effects or tend to worsen the test sizes in other cases.
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Comparing power of the tests, we observe that the transformed likelihood estimator is in general

more powerful than the GMM estimators. For example when N = 150, the transformed likelihood

estimators have higher power than “SYS2(2stepW )” which is the most efficient amongst the reported

GMM estimators.

The above conclusions hold generally when we consider experiments with γ = 0.9 (Table 4),

except that the system GMM estimators now perform rather poorly even for a relatively large N . For

example, when γ = 0.9, T = 5, N = 500 and τ = 1, size distortions of the system GMM estimators

are substantial, as compared to the case where γ = 0.4. Although it is known that the system GMM

estimators break down when τ is large8, the simulation results in Table 4 reveal that they perform

poorly even when τ is not so large (τ = 1).

The small sample results for β (Tables 5 to 8), are similar to the results reported for γ. The

transformed likelihood estimator tends to have smaller biases and MAEs than the GMM estimators

in many cases, and there are almost no size distortions for all values of T , N and τ . The performance

of the GMM estimators crucially depends on the values of T , N and τ . Unless N is large, the GMM

estimators perform poorly and the system GMM estimators are subject to substantial size distortions

when τ is large even for N = 500, although the magnitude of size distortions are somewhat smaller

than those reported for γ.

The results for the long-run coefficient, δ = β/(1− γ), are reported in a supplementary appendix,

and are very similar to those of γ and β. Although the GMM estimators outperform the transformed

likelihood estimator in some cases, in terms of MAE, the transformed likelihood estimator performs

best in almost all cases. As for inference, the transformed likelihood estimator has correct sizes for all

values of T , N and τ when γ = 0.4. However, it shows some size distortions when γ = 0.9 and the

sample size is small, say, when T = 5 and N = 50. However, size improves as T and/or N increase(s).

When T = 15 and N = 500, there is essentially no size distortions. For the GMM estimators, it is

observed that although the sizes are correct in some cases, say, the case with T = 5 and N = 500

when γ = 0.4, it is not the case when γ = 0.9; even for the case of T = 5 and N = 500, there are size

distortions and a large τ aggravates the size distortions.

Finally, we consider weak instruments robust tests, which are reported in Tables 9 and 10. We

find that test sizes are close to the nominal value only when T = 5 and N = 500. In other cases,

especially when N is small and/or T is large, there are substantial size distortions. Although Newey

and Windmeijer (2009) prove the validity of these tests under many weak moments asymptotics, they

are essentially imposing m2/N → 0 or a stronger restriction where m is the number of moment con-

ditions, which is unlikely to hold when N is small and/or T is large. Therefore, the weak instruments

robust tests are less appealing, considering the very satisfactory size properties of the transformed

likelihood estimator, the difficulty of carrying out inference on subset of the parameters using the

weak instruments robust tests, and large size distortions observed for these tests when N is small.

In summary, for estimation of ARX panel data models the transformed likelihood estimator has

8See Hayakawa (2007) and Bun and Windmeijer (2010).
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several favorable properties over the GMM estimators in that the transformed likelihood estimator

generally performs better than the GMM estimators in terms of biases, MAEs, size and power, and

unlike GMM estimators, it is not affected by the variance ratio of individual effects to disturbances.

5.2 AR(1) model

5.2.1 Monte Carlo design

The data generating process is the same as that in the previous section with β = 0. More specifically,

yit are generated as

yit = αi + γyi,t−1 + uit, for t = 1, ..., T and i = 1, ..., N, (38)

yi0 =
αi

1− γ
+ ui0

√
1

1− γ2
, (39)

where uit ∼ N (0, σ2
i ) with σ2

i ∼ U [0.5, 1.5]. Note that yit are covariance stationary. Individual effects

are generated as αi = τ(qi − 1)/
√
2 where qi ∼ χ2

1.

For parameters and sample sizes, we consider γ = 0.4, 0.9, T = 5, 10, 15, 20 N = 50, 150, 500, and

τ = 1, 5.

Some comments on the computations are in order. For the starting value in the nonlinear opti-

mization routine used to compute the transformed log-likelihood estimator, we use (̃b, γ̃, ω̃, σ̃2) where

b̃ = N−1
∑N

i=1∆yi1, γ̃ is the one-step first-difference GMM estimator (21) where Ẇi and Żi are

replaced with9

Ẇi =


∆yi1
...

∆yi,T−1

 , Żi =



yi0 0 0

yi1 yi0 0

yi2 yi1 yi0
...

...
...

yi,T−2 yi,T−3 yi,T−4


,

ω̃ = [(N − 1)σ̃2
u]
∑N

i=1

(
∆yi1 − b̃

)2
and σ̃2

u = [2N(T − 2)]−1
∑N

i=1 (∆yit − γ̃∆yi,t−1)
2.

For the first-difference GMM estimators, we consider two sets of moment conditions. The first set

of moment conditions, denoted as “DIF1”, consists of E(yis∆uit) = 0 for s = 0, ..., t − 2; t = 2, ..., T .

In this case, the number of moment conditions are 10, 45, 105 for T = 5, 10, 15, respectively. The

second set of moment conditions, denoted by “DIF2”, consist of E(yi,t−2−l∆uit) = 0 with l = 0 for

t = 2, and l = 0, 1 for t = 3, ..., T . In this case, the number of moment conditions are 7, 17, 27 for

T = 5, 10, 15, respectively.

Similarly, for the system GMM estimator, we add moment conditions E[∆yi,t−1(αi + uit)] = 0 for

t = 2, ..., T in addition to “DIF1” and “DIF2”, which are denoted as “SYS1” and “SYS2”, respectively.

9This type of estimator is considered in Bun and Kiviet (2006). Since the number of moment conditions are three,
this estimator is always computable for any values of N and T considered in this paper. Also, since there are two more
moments, we can expect that the first and second moments of the estimator to exist.
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For the moment conditions “SYS1”, we have 14, 54, 119 moment conditions for T = 5, 10, 15, respec-

tively, while for the moment conditions “SYS2”, we have 11, 26, 41 moment conditions for T = 5,

10, 15, respectively. With regard to the inference, we use the robust standard errors formula given in

Theorem 2 for the transformed log-likelihood estimator. For the GMM estimators, in addition to the

conventional standard errors, we also compute Windmeijer (2005)’s standard errors for the two-step

GMM estimators and Newey and Windmeijer (2009)’s standard errors for the CU-GMM estimators.

We report the median biases, median absolute errors (MAE), sizes (γ = 0.4 and 0.9) and powers

(resp. γ = 0.3 and 0.8) with the nominal size set to 5%. As before, the number of replications is set

to 1, 000.

5.2.2 Results

As in the case of ARX(1) experiments, to save space, we report the results of the transformed likelihood

estimator and the GMM estimators exploiting moment conditions “DIF2” and “SYS2”. Complete set

of results are provided in a supplement, which is available upon request.

The biases and MAEs of the various estimators for the case of γ = 0.4 are summarized in Table

11. As can be seen from this table, the transformed likelihood estimator performs best (in terms of

MAE) in almost all cases, the exceptions being the CU-GMM estimators that show smaller biases

in some experiments. As to be expected, the one- and two-step GMM estimators deteriorate as the

variance ratio, τ , is increased from 1 to 5, and this tendency is especially evident for the system GMM

estimator. For the case of γ = 0.9 (Table 12), we find that the system GMM estimators have smaller

biases and MAEs than the transformed likelihood estimator in some cases. However, when τ = 5, the

transformed likelihood estimator outperforms the GMM estimators in all cases, both in terms of bias

and MAE.

Consider now the size and power properties of the alternative procedures. The results for γ =

0.4 are summarized in Table 13. We first note that the transformed likelihood procedure shows

almost correct sizes for all experiments. For the GMM estimators, although there are substantial size

distortions when N = 50, the empirical sizes become close to the nominal value as N is increased.

When T = 5, 10 and N = 500 and τ = 1, the size distortions of the GMM estimators are small.

However, when τ = 5, there are severe size distortions for the system GMM estimator even when

N = 500. For the effects of corrected standard errors, similar results to the ARX(1) case are obtained.

Namely, Windmeijer (2005)’s correction is quite useful, and in many cases it leads to accurate inference

although the corrections do result in severely under-sized tests in some cases. Also, this correction

does not seem that helpful in mitigating the size problem of the system GMM estimator when τ is

large. The standard errors of Newey and Windmeijer (2009) used for the CU-GMM estimators are

not always helpful: although they improve the size property in some cases, they have almost no effects

in some cases or worsen the test sizes in other cases.

Size and power of the tests in the case of experiments with γ = 0.9 are summarized in Table 14,

and show significant size distortions in many cases. The size distortion of the transformed likelihood
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gets reduced for relatively large sample sizes and its size declines to 7.7% when τ = 1, N > 150 and

T > 15. As to be expected, increasing the variance ratio, τ , to 5, does not change this result. A

similar pattern can also be seen in the case of GMM-DIF estimators if we consider τ = 1. But the size

results are much less encouraging if we consider the system GMM estimators. Also, as to be expected,

size distortions of GMM type estimators become much more pronounced when the variance ratio is

increased to τ = 5.

Finally, we consider the small sample performance of the weak instruments robust tests which are

provided in a supplement, to save space. These results show that size distortions are reduced only

when N is large (N = 500). In general, size distortions of these tests get worse as T , or the number of

moment conditions, increases. In terms of power, although “LM(SYS2)” and “CLR(SYS2)” tests have

almost the same power as the transformed likelihood estimator when γ = 0.4, T = 5, N = 500 and

τ = 1, their powers decline when τ = 5, unlike the transformed likelihood estimator which is invariant

to changes in τ . For the case of γ = 0.9, the results are very similar to the case of γ = 0.4. Size

distortions are small only when N is large. When N is small, there are substantial size distortions.

6 Concluding remarks

In this paper, we proposed the transformed likelihood approach to estimation and inference in dynamic

panel data models with cross-sectionally heteroskedastic errors. It is shown that the transformed

likelihood estimator by Hsiao et al. (2002) continues to be consistent and asymptotically normally

distributed, but the covariance matrix of the transformed likelihood estimators must be adjusted to

allow for the cross-sectional heteroskedasticity. By means of Monte Carlo simulations, we investigated

the finite sample performance of the transformed likelihood estimator and compared it with a range

of GMM estimators. Simulation results revealed that the transformed likelihood estimator for an

ARX(1) model with a single exogenous regressor has very small bias and accurate size property, and

in most cases outperformed GMM estimators, whose small sample properties vary considerably across

parameter values (γ and β), the choice of moment conditions, and the value of the variance ratio, τ .

In this paper, xit is assumed to be strictly exogenous. However, in practice, the regressors may be

endogenous or weakly exogenous (c.f. Keane and Runkle, 1992). To allow for endogenous and weakly

exogenous variables, one could consider extending the panel VAR approach advanced in Binder et al.

(2005) to allow for cross-sectional heteroskedasticity. More specifically, consider the following bivariate

model:

yit = αyi + γyi,t−1 + βxit + uit

xit = αxi + ϕyi,t−1 + ρxi,t−1 + vit

where cov(uit, vit) = θ. In this model, xit is strictly exogenous if ϕ = 0 and θ = 0, weakly exogenous
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if θ = 0, and endogenous if θ ̸= 0. This model can be written as a PVAR(1) model as follows(
yit

xit

)
=

(
αyi + βαxi

αxi

)
+

(
γ + βϕ βρ

ϕ ρ

)(
yi,t−1

xi,t−1

)
+

(
uit + βvit

vit

)
,

for i = 1, 2, ..., N . Let A = {aij}(i, j = 1, 2) be the coefficient matrix of (yi,t−1, xi,t−1)
′ in the above

VAR model. Then, we have β = a12/a22, γ = a11 − a12a21/a22, ρ = a22 and ϕ = a21. Thus, if we

estimate a PVAR model in (yit, xit), allowing for fixed effects and cross-sectional heteroskedasticity,

we can recover the parameters of interest, γ and β, from the estimated coefficients of such a PVAR

model. However, detailed analysis of such a model is beyond the scope of the present paper and is left

to future research.

A Proofs

A.1 Preliminary results

In this appendix we provide some definitions and results useful for the derivations in the paper.

Lemma A1 Let Ω be given by (8). Then the determinant and inverse of Ω are:

|Ω| = g = 1 + T (ω − 1) , (40)

Ω−1 = g−1



T T − 1 ... 2 1

T − 1 (T − 1)ω ... 2ω ω

T − 2

2 2ω 2 [(T − 2)ω − (T − 3)] (T − 2)ω − (T − 3)

1 ω ... (T − 2)ω − (T − 3) (T − 1)ω − (T − 2)


.

The generic (t, s)th element of the (T − 1)×(T − 1) lower block of Ω−1, denoted by Ω̃, can be calculated

using the following formulas, for t, s = 1, 2, ..., T − 1:

{
Ω̃
}
ts

=

{
s (T − t)ω − (s− 1) (T − t) , (s ≤ t)

t (T − s)ω − (t− 1) (T − s) , (s > t)
. (41)

Proof. See Hsiao et al. (2002).

Lemma A2 Let Φ be defined in (10). We have

Φ = ϑϑ′,
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where ϑ′ = (T, T − 1, . . . , 2, 1) and

tr (ΦΩ) = tr
(
ϑϑ′Ω

)
= ϑ′Ωϑ = Tg, (42)

where g is given by (40).

Proof. See Hsiao et al. (2002).

Lemma A3 Let {xi, i = 1, 2, ..., N} and {zi, i = 1, 2, ..., N} be two sequences of independently dis-

tributed random variables, such that xizi are independently distributed across i, although xi and zi

need not be independently distributed of each other. Then

E

[(
N∑
i=1

xi

)(
N∑
i=1

zi

)]
=

N∑
i=1

Cov(xi, zi) +

[
N∑
i=1

E (xi)

][
N∑
i=1

E (zi)

]
.

Lemma A4 Consider the transformed model (7). Under Assumptions 1 and 2 we have

E
(
∆W′

iΩ
−1ri

)
= 0, (i = 1, 2, ..., N), (43)

where Ω is given in (8). Further,

E
(
r′iΦ∆Wi

)
=
(

0 0 ϖ 0
)
, (i = 1, 2, ..., N), (44)

where Φ is given by (10), and ϖ ̸= 0.

Proof. Let ∆ỹi,−1 = (0,∆yi1, ...,∆yi,T−1)
′ and note that, for (43) to hold, it is only needed to prove

that E
(
∆ỹ′

i,−1Ω
−1ri

)
= 0. To show this, let pi = Ω−1ri = (pi1, ..., piT )

′ where by (41)

pi1 = Tvi1 +
T∑

s=2

(T − s+ 1)∆uis,

pit = (T − t+ 1)vi1 +

t∑
s=2

hts∆uis +

T∑
s=t+1

kts∆uis, (t = 2, ..., T − 1)

piT = vi1 +
T∑

s=2

hTs∆uis

and

hts = (T − t+ 1) [(s− 1)ω − (s− 2)] , (45)

kts = (T − s+ 1) [(t− 1)ω − (t− 2)] .
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Then, we have

E
[
∆ỹ′

i,−1Ω
−1ri

]
=

T∑
t=2

E [pit∆yi,t−1] =
T−1∑
t=2

E [pit∆yi,t−1] + E [piT∆yi,T−1]

=

T−1∑
t=2

E

[
(T − t+ 1)vi1∆yi,t−1 +

t∑
s=2

hts∆uis∆yi,t−1 +

T∑
s=t+1

ks∆uis∆yi,t−1

]
+E (piT∆yi,T−1)

=

T∑
t=2

(T − t+ 1)E (vi1∆yi,t−1) +

T∑
t=2

t∑
s=2

htsE (∆uis∆yi,t−1)

= A1 +A2.

where we used E(∆uis∆yit) = 0 for t < s− 1. To derive A1 and A2, we use the followings10:

σ−2
i E(vi1∆yit) =

{
ω t = 1

γt−2(γω − 1) t = 2, ..., T
(46)

σ−2
i E(∆uis∆yit) =


−1 t = s− 1

(2− γ) s = t

−(1− γ)2γt−s−1 s < t

(47)

Using (46) and (47), we have

A1 = σ2
i

[
(T − 1)ω + (γω − 1)

T∑
t=3

(T − t+ 1)γt−3

]
, (48)

10These results are obtained by noting that ∆yit can be written as follows

∆yi1 = b+ π′∆xi + vi1,

∆yit = γt−1∆yi1 + β

(
t−2∑
j=0

γjxi,t−j

)
+

t−2∑
j=0

γj∆ui,t−j

= γt−1 (b+ π′∆xi

)
+ γt−1vi1 + β

(
t−2∑
j=0

γjxi,t−j

)
+

t−2∑
j=0

γj∆ui,t−j , (t = 2, ..., T ).
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A2 = h22E(∆ui2∆yi1)

+h32E(∆ui2∆yi2) + h33E(∆ui3∆yi2)

+h42E(∆ui2∆yi3) + h43E(∆ui3∆yi3) + h44E(∆ui4∆yi3)

+h52E(∆ui2∆yi4) + h53E(∆ui3∆yi4) + h54E(∆ui4∆yi4) + h55E(∆ui5∆yi4)

...

+hT2E(∆ui2∆yi,T−1) + hT3E(∆ui3∆yi,T−1) + · · ·+ hT,T−2E(∆ui,T−2∆yi,T−1) +

+hT,T−1E(∆ui,T−1∆yi,T−1) + hTTE(∆uiT∆yi,T−1)

= σ2
i

[
(−1)

T∑
s=2

hss + (2− γ)

T−1∑
s=2

hs+1,s − (1− γ)2
T∑
t=4

t−2∑
s=2

htsγ
t−s−2

]
. (49)

Then, by using (45), (48) and (49), and after some algebra, we obtain E
[
∆ỹ′

i,−1Ω
−1ri

]
= A1+A2 = 0.

To prove (44), first note that E (∆W′
iΦri) is a (T + 3) dimensional vector having all zeros, except

for the (T + 2)th entry, given by E
(
∆ỹ′

i,−1Φri

)
. We have

ϑ′ri =

T∑
t=1

(T − t+ 1)vit = Tvi1 +

T∑
t=2

(T − t+ 1)∆uit, ϑ′∆ỹi,−1 =

T−1∑
s=1

(T − s)yis.

Hence, using results (46)-(47), we have

σ−2
i E

(
ϑ′ri∆ỹ′

i,−1ϑ
)

= ϖ = T

T−1∑
s=1

(T − s)E(∆yisvi1) +

T−1∑
s=1

T∑
t=2

(T − t+ 1)(T − s)E (∆yis∆uit)

= T
T−1∑
s=1

(T − s)E(∆yisvi1) +
T−1∑
s=1

s+1∑
t=1

(T − t+ 1)(T − s)E (∆yis∆uit)

= T (T − 1)E(∆yi1vi1) +

T−1∑
s=2

(T − s)E(∆yisvi1)

+

T−1∑
s=1

s−1∑
t=1

(T − t+ 1)(T − s)E (∆yis∆uit)

+
T−1∑
s=1

(T − s+ 1)(T − s)E (∆yis∆uis) +
T−1∑
s=1

(T − s)2E (∆yis∆ui,s+1)

= T (T − 1)ω + (γω − 1)

T−1∑
s=2

(T − s)γs−2

−(1− γ)2
T−1∑
s=1

s−1∑
t=1

(T − t+ 1)(T − s)γs−t−1

+(2− γ)

T−1∑
s=1

(T − s+ 1)(T − s)−
T−1∑
s=1

(T − s)2. (50)
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which in general is different from zero.

Lemma A5 Let A∗
N = −(1/N)

(
∂2ℓp (θ∗) /∂θ∂θ

′), where ℓp (θ) is given by (9), and θ∗ = (φ′, ω, σ2
∗)

′

is the vector of pseudo-true values. Then as N tends to infinity and for fixed T , we have

plim
N→∞

A∗
N = A∗,

where A∗ is a positive definite matrix.

Proof. The elements of A∗
N are given by11

A∗
N,11 = − 1

N

∂2ℓp (θ∗)

∂φ∂φ′ =
1

σ2
∗

1

N

N∑
i=1

∆W′
iΩ

−1∆Wi,

A∗
N,22 = − 1

N

∂2ℓp (θ∗)

∂ω2
= − T 2

2g2
+

T

σ2
∗g

3N

N∑
i=1

r′iΦri,

A∗
N,33 = − 1

N

∂2ℓp (θ∗)

∂ (σ2)2
= − T

2 (σ2
∗)

2 +
1

(σ2∗)3N

N∑
i=1

r′iΩ
−1ri,

A∗
N,12 = − 1

N

∂2ℓp (θ∗)

∂φ∂ω
=

1

σ2
∗g

2N

N∑
i=1

∆W′
iΦri,

A∗
N,13 = − 1

N

∂2ℓp (θ∗)

∂φ∂σ2
=

1

(σ2
∗)

2N

N∑
i=1

∆W′
iΩ

−1ri,

A∗
N,23 = − 1

N

∂2ℓp (θ∗)

∂ω∂σ2
=

1

2 (σ2
∗)

2 g2N

N∑
i=1

r′iΦri.

Given that, under Assumptions 2 and 3 ∆W′
iΩ

−1ri, are independent across i, and, by Lemma A4, have

zero mean, and have finite variance for fixed T , by applying the law of large numbers for heterogeneous

observations (White, 2001), we have

plim
N→∞

1

N

N∑
i=1

∆W′
iΩ

−1ri = 0.

Further, r′iΦri and r′iΩ
−1ri are independent across i, with mean Tσ2

i g and Tσ2
i , respectively, and

finite variances for fixed T , so that

plim
N→∞

1

N

N∑
i=1

r′iΦri = Tσ2
∗g, plim

N→∞

1

N

N∑
i=1

r′iΩ
−1ri = Tσ2

∗.

11See also Hsiao et al. (2002).
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Hence, the matrix A∗ is given by

A∗ =



plim
N→∞

1

Nσ2
∗

N∑
i=1

∆W′
iΩ

−1∆Wi plim
N→∞

1

Ng2σ2
∗

N∑
i=1

∆W′
iΦri 0

plim
N→∞

1

Ng2σ2
∗

N∑
i=1

r′iΦ∆Wi
T 2

2g2
T

2gσ∗2

0
T

2gσ2
∗

T

2 (σ2
∗)

2


. (51)

Lemma A6 Let b∗
N =

(
1/

√
N
)
∂ℓp (θ∗) /∂θ, where ℓp (θ) is given by (9), and θ∗ = (φ′, ω, σ2

∗)
′ is

the vector of pseudo-true values. Then as N tends to infinity and for fixed T , we have

b∗
N

d→ N (0,B∗) . (52)

Proof. Note that b∗
N can be written as

1√
N

∂ℓp (θ∗)

∂θ
=

1

σ2
∗

1√
N


∑N

i=1∆W′
iΩ

−1ri
1

2g2
∑N

i=1 ξi
1

2σ2
∗

∑N
i=1 ζi

 , (53)

where ξi and ζi are given by

ξi = r′iΦri − Tgσ2
i , ζi = r′iΩ

−1ri − Tσ2
i . (54)

By Lemma A4, ∆W′
iΩ

−1ri has zero mean for all i. It is easily seen that ξi and ζi have also zero mean.

Then, using Lemma A3, we have

B∗
11 =

1

N (σ2
∗)

2E

(
N∑
i=1

∆W′
iΩ

−1ri

N∑
i=1

r′iΩ
−1∆Wi

)
=

1

N (σ2
∗)

2

N∑
i=1

E
(
∆W′

iΩ
−1rir

′
iΩ

−1∆Wi

)
.

Again, using Lemma A3, and recalling that E(ξi) = 0, we have

B∗
22 =

1

4Ng4 (σ2
∗)

2E

[
N∑
i=1

ξ2i

]
=

1

4Ng4 (σ2
∗)

2E

[
N∑
i=1

(
r′iΦri − Tgσ2

i

)2]

=
1

4Ng4 (σ2
∗)

2E

[
N∑
i=1

(
r′iΦri

)2 − 2Tg

N∑
i=1

σ2
i

(
r′i Φri

)
+ T 2g2

N∑
i=1

σ4
i

]

=
T 2

4g4 (σ2
∗)

2E

[
N−1

N∑
i=1

{(
r′iΦri
T

)2

− g2σ4
i

}]
. (55)
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Similarly

B∗
33 =

1

4N (σ2
∗)

4E

[
N∑
i=1

ζ2i

]
=

1

4N (σ2
∗)

4

{
E

[
N∑
i=1

(
r′iΩ

−1ri
)2]− T 2

N∑
i=1

σ4
i

}

=
T 2

4 (σ2
∗)

4E

[
N−1

N∑
i=1

{(
r′iΩ

−1ri
T

)2

− σ4
i

}]
. (56)

The off-diagonal elements of B∗ are (using Lemma A3 and noting that E
(
∆W′

iΩ
−1ri

)
= 0 and

E (ξi) = 0):

B∗
21 =

1

2N (σ2
∗)

2 g2
E

[
N∑
i=1

ξir
′
iΩ

−1∆Wi

]
=

1

2N (σ2
∗)

2 g2
E

[
N∑
i=1

(
r′iΩ

−1∆Wi

) (
r′iΦri − Tgσ2

i

)]

=
1

2N (σ2
∗)

2 g2
E

[
N∑
i=1

(
r′iΩ

−1∆Wi

) (
r′iΦri

)]
, (57)

B∗
31 =

1

2N (σ2
∗)

3E

[
N∑
i=1

(
∆W′

iΩ
−1ri

) (
r′iΩ

−1ri
)]

, (58)

Similarly, using Lemma A3 we have

B∗
32 =

1

4N (σ2
∗)

3 g2
E

(
N∑
i=1

ξiζi

)
=

T 2

4N (σ2
∗)

3 g2
E

[
N∑
i=1

(
r′iΦri
T

− gσ2
i

)(
r′iΩ

−1ri
T

− σ2
i

)]

=
T 2

4N (σ2
∗)

3 g2
E

[
N∑
i=1

(
r′iΦri
T

r′iΩ
−1ri
T

− gσ2
i

r′iΩ
−1ri
T

− σ2
i

r′iΦri
T

+ gσ4
i

)]

=
T 2

4N (σ2
∗)

3 g2

[
N∑
i=1

E

(
r′iΦri
T

r′iΩ
−1ri
T

)
− g

N∑
i=1

σ4
i − g

N∑
i=1

σ4
i + g

N∑
i=1

σ4
i

]

=
T 2

4N (σ2
∗)

3 g2
E

[
N∑
i=1

(
r′iΦri
T

r′iΩ
−1ri
T

− gσ4
i

)]
. (59)

For fixed T , and under Assumption 2, the elements inside the sum operator in expressions (55)-(59)

are finite for all i. Hence, (52) is established by applying the central limit theorem for independent

and heterogeneous random variables (White, 2001).

A.2 Proof of Theorem 1

First note that, under Assumption 1, equation (5) can be rewritten as

ηi1 = b+ β∆xi1 + β
m−1∑
j=1

γjE (∆xi,1−j |∆xi) + ςi1, (60)
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where ςi1 = ηi1 −E (ηi1|∆xi), and b is zero under Assumption 1.(i) and is equal to b̃ otherwise. Using

either (2) or (3) we have

∆xit = ϕ+

∞∑
j=0

d̃jεi,t−j , (61)

with d̃j = dj under (3), d̃j = aj − aj−1 under (2), and d̃0 = a0. Hence, it is easily seen that under (61)

E (∆xi,1−j |∆xi) = bj + π
′
j∆xi, (62)

where bj and πj do not depend on i. Using (62) in (6) and (60), the marginal distribution of ∆yi1

conditional on ∆xi can be written as

∆yi1 = b+ β∆xi1 + β

m−1∑
j=1

γj
(
bj + π

′
j∆xi

)
+ ςi1 +

m−1∑
j=0

γj∆ui,1−j ,

or, more compactly,

∆yi1 = b+ π′∆xi + vi1, (63)

where vi1 = ςi1 +
∑m−1

j=0 γj∆ui,1−j , b is a constant, and π is a T -dimensional vector of parameters.

Note that b = 0 under Assumption 1.(i) and if ϕ = 0, while it is a nonzero constant otherwise. In the

above equation, vi1 has zero mean and its variance satisfies

ω =
1

σ2
i

E
(
v2i1
)
=

1

σ2
i

E

β

m−1∑
j=1

γj [∆xi,1−j − E (∆xi,1−j |∆xi)] +

m−1∑
j=0

γj∆ui,1−j

2
=

β2

σ2
i

m−1∑
j,ℓ=0

γj+ℓE {[∆xi,1−j − E (∆xi,1−j |xi)] [∆xi,1−ℓ − E (∆xi,1−ℓ|xi)]}

+
1

σ2
i

m−1∑
j,ℓ=0

γj+ℓE (∆ui,1−j∆ui,1−ℓ)

=
1

σ2
i

β2σ2
εi

m−1∑
j,ℓ=0

γj+ℓϖjℓ + 2σ2
i

m−1∑
j=0

γ2j − σ2
i

m−1∑
j=1

γ2j−1 − σ2
i

m−2∑
j=0

γ2j+1


= β2σ

2
εi

σ2
i

m−1∑
j,ℓ=0

γj+ℓϖjℓ +

2m−1∑
j=0

γ2j −
m−1∑
j=1

γ2j−1 −
m−2∑
j=0

γ2j+1

 . (64)

where ϖjℓ =
1
σ2
εi
E {[∆xi,1−j − E (∆xi,1−j |xi)] [∆xi,1−ℓ − E (∆xi,1−ℓ|xi)]} is given by

ϖjℓ =
1

σ2
εi

∞∑
h,k=0

d̃hd̃kE
[(
εi,1−j−h − π′

hεi,−h−j

) (
εi,1−ℓ−k − π′

kεi,−k−ℓ

)]
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where εi,−h−j = (εi,1−h−j , εi,2−h−j , ..., εi,T−h−j)
′, and is easily seen to be finite and constant across i,

for fixed T . It follows that vi1/σi has a constant variance under Assumption 4. We also have that
1
σ2
i
E
(
v2i1
)
> 1, and E (vi1∆ui2) = −σ2

i , E (vi1∆uit) = 0 for t = 3, 4, ..., T . Finally, note that under

Assumption 1.(i), the term in the square bracket in (64) reduces to

2
∞∑
j=0

γ2j −
∞∑
j=1

γ2j−1 −
∞∑
j=0

γ2j+1 =
2

1 + γ
.

■

A.3 Proof of Theorem 3

First, take a Taylor series expansion of
(
1/
√
N
)
∂ℓp(θ̂)/∂θ around θ̂ = θ∗, yielding

0 =
1√
N

∂ℓp

(
θ̂
)

∂θ
=

1√
N

∂ℓp (θ∗)

∂θ
+

1

N

∂2ℓp (θ
∗)

∂θ∂θ′
√
N
(
θ̂ − θ∗

)
+ δN ,

where δN is an approximation error which, given the consistency of θ̂, goes to zero as N tend to

infinity. Rearranging, we have

√
N
(
θ̂ − θ∗

)
=

[
− 1

N

∂2ℓp (θ∗)

∂θ∂θ′

]−1
1√
N

∂ℓp (θ∗)

∂θ
+ op (1) .

As N → ∞ and for fixed T , we have

A∗
N = − 1

N

∂2ℓp (θ∗)

∂θ∂θ′
p→ A∗,

where, by Lemma A5, A∗ is a symmetric and positive definite matrix (see expression (51)). Then by

the Slutsky’s theorem
√
N
(
θ̂ − θ∗

)
= A∗ 1√

N

∂ℓp (θ∗)

∂θ
+ op (1) .

Further, by Lemma A6, as N → ∞ and for a fixed T we have

b∗
N =

1√
N

∂ℓp (θ∗)

∂θ

d→ N (0,B∗) ,

where the elements of B∗ are given in expressions (55)-(59). Hence, result (15) follows, and θ̂ is

asymptotically normally distributed for a fixed T , and as N tends to infinity.■
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A.4 Estimation of N−1
∑N

i=1 σ
4
i

To obtain an estimator of N−1
∑N

i=1 σ
4
i , we first note that ri can be written as

ri =


1 1 0 0 ... 0

0 −1 1 0 ... 0

0 0 −1 ...

... 1 0

0 0 0 ... −1 1




ϑi

ui1

ui2

uiT

 = H
T×(T+1)

ςi
(T+1)×1

,

where ϑi = ςi1−ui0+
∑m−1

j=1 γj∆ui,1−j = vi1−ui1 (see equation (63)) is independent of ui1, ui2, ..., uiT .

Clearly, the elements of ς i are independent of each other. Noting that 1
σ2
i
E
(
ϑ2
i

)
= 1

σ2
i
E
(
v2i1
)
+

1
σ2
i
E
(
u2i1
)
− 2 1

σ2
i
E (vi1ui1) = ω − 1 > 0, the random vector ςi has variance

E
(
ςiς

′
i

)
= Ως i

(T+1)×(T+1)

= σ2
i


(ω − 1) 0 0 0

0 1

1

...

0 1

 = σ2
iΩς ,

so that

E
(
rir

′
i

)
= σ2

iΩ = E
(
Hς iς

′
iH

′) = HΩς iH
′ = σ2

iHΩςH
′.

Let ηi = Ω
−1/2
ς i ς i = 1

σi

(
ϑi

(ω−1)0.5
, ui1, ui2, ..., uiT

)′
= (ηi1, ..., ηiT , ηi,T+1)

′ and note that E (ηit) = 0,

E(η2it) = 1 for i = 1, 2, ..., N , for i = 1, 2, ..., N , t = 1, 2, ..., T + 1. Also under Assumptions 2 and 5,

we have E(η4it) = κ = γ2 + 3 for t = 1, ..., T + 1, where γ2 is the Pearson’s measure of kurtosis. Then

using results on moments of quadratic forms for independent random variables under non-normality,

we have

E

[(
1

σ2
i

r′iΩ
−1ri

)2
]
=

1

σ4
i

E
[(
ς ′iH

′Ω−1Hςi
)2]

= E

[(
η′iΩ

1/2
ς H′Ω−1HΩ

1/2
ς ηi

)2]
= E

[(
η′iGηi

)2]

where G is a (T + 1)× (T + 1) matrix G = Ω
1/2
ς H′Ω−1HΩ

1/2
ς . Then using12

E
[
η′iGηiηiη

′
i

]
= γ2(IT+1 ⊙G) + tr(G)IT+1 + 2G (65)

12See Ullah (2004, p. 187).
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and tr(G) = tr(G2) = T , we have

E
[(
η′iGηi

)2]
= E

[(
η′iGηi

)
tr
(
ηiη

′
iG
)]

= tr
[
E
(
η′iGηiηiη

′
i

)
G
]

= γ2tr [(IT+1 ⊙G)G] + [tr(G)]2 + 2tr(G2)

= γ2

T+1∑
t=1

g2tt + T (T + 2) ,

where gtt are the diagonal elements of G. On the basis of the above result, we consider the following

estimator of N−1
∑N

i=1 σ
4
i :

σ̃4
NT =

̂
1

N

N∑
i=1

σ4
i =

1

N
[
γ̂2
∑T+1

t=1 ĝ2tt + T (T + 2)
] N∑

i=1

(
r̂′iΩ̂

−1r̂i

)2
. (66)

where ĝ2tt are the diagonal elements of Ĝ = Ω̂
1/2
ς H′Ω̂−1HΩ̂

1/2
ς . In the case of normal errors, κ = 3

and γ2 = 0, so that the above expression reduces to:

σ̃4
NT =

1

NT (T + 2)

N∑
i=1

(
r̂′iΩ̂

−1r̂i

)2
.

To obtain an estimator of γ2 (i.e., the kurtosis of ηit) in the more general case of non-normal errors,

we can exploit information on rit. In particular, note that, for i = 1, 2, ..., N and t = 1, under the

Assumption 5,

E(r4i1) = E
[
(ϑi + ui1)

4
]
= σ4

i

[
1 + (ω − 1)2

]
κ+ 6σ4

i (ω − 1)

= σ4
i

{[
1 + (ω − 1)2

]
γ2 + 3

[
1 + (ω − 1)2

]
+ 6 (ω − 1)

}
,

while for t = 2, ..., T , under Assumption 2

E(r4it) = E
[
(uit − ui,t−1)

4
]
= σ4

i (2κ+ 6) = σ4
i (2γ2 + 12) .

Then

E

(
1

NT

N∑
i=1

T∑
t=1

r4it

)
=

1

NT

N∑
i=1

σ4
i

{[
1 + (ω − 1)2

]
γ2 + 3

[
1 + (ω − 1)2

]
+ 6 (ω − 1)

+2 (T − 1) γ2 + 12 (T − 1)}

=
1

NT

N∑
i=1

σ4
i

{[
(ω − 1)2 + 2T − 1

]
γ2 + 3 (ω − 1)2 + 6 (ω − 1) + 12T − 9

}
=

1

NT

N∑
i=1

σ4
i

{[
(ω − 1)2 + 2T − 1

]
γ2 + 3ω2 + 12 (T − 1)

}
.
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Hence

γ2 =
[
(ω − 1)2 + 2T − 1

]−1

T
E
(

1
NT

∑N
i=1

∑T
t=1 r

4
it

)
N−1

∑N
i=1 σ

4
i

−
[
3ω2 + 12 (T − 1)

] ,

and γ2 can be consistently estimated by

γ̂2 =
[
(ω̂ − 1)2 + 2T − 1

]−1


[
γ̂2
∑T+1

t=1 ĝ2tt + T (T + 2)
]∑N

i=1

∑T
t=1 r̂

4
it∑N

i=1

(
r̂′iΩ̂

−1r̂i

)2 −
[
3ω̂2 + 12 (T − 1)

]
or

γ̂2 =
T (T + 2) q̂ − 3ω̂2 − 12 (T − 1)

(ω̂ − 1)2 + 2T − 1− q̂
∑T+1

t=1 ĝ2tt
, (67)

where

q̂ =

∑N
i=1

∑T
t=1 r̂

4
it∑N

i=1

(
r̂′iΩ̂

−1r̂i

)2 .
A.5 Derivation of R2

y and R2
∆y

We derive R2
y for models (34) and (35) where homoskedasticity, σ2

i = σ2 and σ2
εi = σ2

ε for all i is

assumed for simplicity. We also let var(αi) = σ2
α, var(µi) = σ2

µ, and cov(αi, µi) = σαµ. We assume

that the process has been going for a long time (i.e., m → ∞) as follows:

yit =
αi

1− γ
+ β

∞∑
j=0

γjxi,t−j +
∞∑
j=0

γjui,t−j ,

and, in first differences,

∆yit = β
∞∑
j=0

∆xi,t−j +
∞∑
j=0

∆ui,t−j .

The population value of R2
y is given by

R2
y = 1− V ar (yit|xit, xi,t−1, ...)

V ar (yit)
.

We have

V ar (yit|xit, xi,t−1, ...) = V ar

 αi

1− γ
+

∞∑
j=0

γjui,t−j

 =
σ2
α

(1− γ)2
+ V ar

 ∞∑
j=0

γjui,t−j


=

σ2
α

(1− γ)2
+

σ2

1− γ2
=

1

1− γ2

[
σ2 +

(1 + γ)σ2
α

1− γ

]
.
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Further,

V ar (yit) = β2V ar

 ∞∑
j=0

γjxi,t−j

+ V ar

 αi

1− γ
+

∞∑
j=0

γjui,t−j

+ 2Cov

β

∞∑
j=0

γjxi,t−j ,
αi

1− γ


= β2V ar

 ∞∑
j=0

γjxi,t−j

+

[
σ2
α

(1− γ)2
+

σ2

1− γ2

]
+ 2Cov

β
∞∑
j=0

γjxi,t−j ,
αi

1− γ

 .

Using (35)-(37),

V ar

 ∞∑
j=0

γjxi,t−j

 = V ar

 ∞∑
j=0

γj (µi + g (t− j) + ζi,t−j)

 =
σ2
µ

1− γ2
+ V ar

 ∞∑
j=0

γjζi,t−j

 .

Let

wit =
∞∑
j=0

γjζi,t−j =
1

(1− γL) (1− ϕL)
εit =

1

(1− (γ + ϕ)L+ ϕγL2)
εit,

Note that wit an AR(2) process, wit = φ1wi,t−1+φ2wi,t−2+εit, with parameters φ1 = γ+ϕ, φ2 = −ϕγ,

and having variance (Hamilton, 1994, p. 58)

V ar (wit) =
(1 + ϕγ)σ2

ε

(1− ϕγ)
[
(1 + ϕγ)2 − (γ + ϕ)2

] =
(1 + ϕγ)σ2

ε

(1− γ2) (1− ϕ2) (1− ϕγ)
.

It follows that

V ar

 ∞∑
j=0

γjxi,t−j

 =
σ2
µ

1− γ2
+

(1 + ϕγ)σ2
ε

(1− γ2) (1− ϕ2) (1− ϕγ)
.

Further,

Cov

β

∞∑
j=0

γjxi,t−j ,
αi

1− γ

 =
β

1− γ
E

αi

∞∑
j=0

γjµi

 =
βσαµ

(1− γ)2
,

and

V ar (yit) = β2

[
σ2
µ

1− γ2
+

(1 + ϕγ)σ2
ε

(1− γ2)(1− ϕ2)(1− ϕγ)

]
+

[
σ2
α

(1− γ)2
+

σ2

1− γ2

]
+

2βσαµ
(1− γ)2

=
1

1− γ2

[
β2σ2

µ + σ2 +
β2(1 + ϕγ)σ2

ε

(1− ϕ2)(1− ϕγ)
+

(1 + γ)(σ2
α + 2βσαµ)

1− γ

]
.

Using the above results, R2
y is given by

R2
y = 1−

σ2 + (1+γ)σ2
α

1−γ

β2σ2
µ + σ2 + β2(1+ϕγ)σ2

ε
(1−ϕ2)(1−ϕγ)

+
(1+γ)(σ2

α+2βσαµ)
1−γ

. (68)
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Then, using σ2
α = τ2, σ2

µ = η2τ2 and σαµ = ητ2, we have

R2
y = 1−

σ2 + (1+γ)τ2

1−γ

β2η2τ2 + σ2 + β2(1+ϕγ)σ2
ε

(1−ϕ2)(1−ϕγ)
+ (1+γ)(τ2+2βητ2)

1−γ

,

or

β2τ2η2 +
2βτ2(1 + γ)

1− γ
η + σ2 +

β2(1 + ϕγ)σ2
ε

(1− ϕ2)(1− ϕγ)
+

(1 + γ)τ2

1− γ
−

σ2 +
(
1+γ
1−γ

)
τ2

1−R2
y

= 0. (69)

Note that (69) is a quadratic equations of η.

We now derive R2
∆y. We have

V ar (∆yit|∆xit,∆xi,t−1, ...) = V ar

 ∞∑
j=0

γj∆ui,t−j

 =
2σ2

1 + γ
,

V ar (∆yit) = β2V ar

 ∞∑
j=0

γj∆xi,t−j

+
2σ2

1 + γ
.

Using result D.11 in Hsiao et al. (2002), where θ = 0,

V ar

 ∞∑
j=0

γj∆xi,t−j

 =
2σ2

ε

(1 + γ) (1 + ϕ) (1− ϕγ)
,

and it follows that

R2
∆y =

β2σ2
ε

β2σ2
ε + σ2 (1 + ϕ) (1− ϕγ)

. (70)
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Table 1: Median bias(×100) and MAE(×100) of γ (γ = 0.4, β = 0.5) for ARX(1) model
γ = 0.4 median bias(×100) MAE(×100) median bias(×100) MAE(×100)

τ = 1 τ = 5
N/T 5 10 15 5 10 15 5 10 15 5 10 15

Transformed likelihood estimator
50 -0.539 -0.183 -0.162 4.128 2.354 1.624 -0.367 -0.183 -0.153 4.259 2.354 1.625
150 -0.100 0.007 -0.119 2.456 1.336 1.101 -0.100 0.007 -0.119 2.456 1.336 1.101
500 0.014 -0.048 -0.050 1.272 0.729 0.554 0.014 -0.048 -0.050 1.272 0.729 0.554

One-step first-difference GMM estimator based on “DIF2”
50 -3.079 -2.202 − 5.239 3.479 − -4.013 -3.054 − 6.118 3.947 −
150 -1.271 -0.742 -0.730 3.106 1.818 1.430 -1.378 -1.099 -1.030 3.425 2.126 1.702
500 -0.174 -0.231 -0.270 1.569 1.011 0.789 -0.214 -0.267 -0.317 1.798 1.194 0.948

Two-step first-difference GMM estimator based on “DIF2”
50 -2.812 -0.874 − 6.366 5.935 − -3.579 -2.032 − 7.068 6.826 −
150 -0.867 -0.514 -0.486 3.183 2.130 1.811 -1.257 -0.819 -0.824 3.611 2.444 2.024
500 -0.196 -0.190 -0.257 1.609 1.057 0.863 -0.296 -0.267 -0.335 1.768 1.188 1.012

Continuous-updating first-difference GMM estimator based on “DIF2”
50 0.599 1.365 − 7.576 8.408 − 0.420 1.477 − 8.899 9.454 −
150 0.291 0.464 0.473 3.267 2.238 2.076 0.312 0.329 0.248 3.753 2.738 2.309
500 0.161 0.081 0.030 1.611 1.016 0.876 0.134 0.085 0.006 1.795 1.213 1.008

One-step system GMM estimator based on “SYS2”
50 1.218 − − 4.647 − − 29.721 − − 29.721 − −
150 0.545 0.814 0.766 2.809 1.851 1.512 19.854 20.312 19.851 19.854 20.312 19.851
500 0.366 0.275 0.156 1.527 0.961 0.750 9.322 9.227 9.077 9.322 9.227 9.077

Two-step system GMM estimator based on “SYS2”
50 1.331 − − 5.815 − − 28.124 − − 28.124 − −
150 0.440 0.490 0.553 2.760 2.133 2.037 12.942 14.353 14.263 12.942 14.353 14.263
500 0.226 0.171 0.091 1.311 0.998 0.848 2.654 3.156 3.073 2.833 3.156 3.073

Continuous-updating system GMM estimator based on “SYS2”
50 0.779 − − 8.205 − − 4.799 − − 9.930 − −
150 0.055 0.004 0.067 2.963 2.382 2.536 0.272 0.123 0.125 3.073 2.375 2.552
500 0.066 0.029 -0.056 1.316 0.982 0.871 0.095 0.046 -0.016 1.414 1.007 0.845

Note: “DIF2” denotes Arellano and Bond type moment conditions: E(yi,t−2−l∆uit) = 0 with l = 0 for t = 2, l = 0, 1 for t = 3, ..., T
and E(xi,t−l∆uit) = 0 with l = 0, 1 for t = 2, l = 0, 1, 2 for t = 3, ..., T . One-step, two-step and continuous-updating first-difference

GMM estimators are computed by (21), (22) and (29) with a suitable modification of Żi. “SYS2” denotes Blundell and Bond
type moment conditions: E[∆yi,t−1(αi + uit)] = 0 and E[∆xit(αi + uit)] = 0 for t = 2, ..., T in addition to the ones used in
“DIF2”. One-step, two-step and continuous-updating system GMM estimators are computed by (27), (28) and (29) with a suitable

modification of Z̈i. The numbers of moment conditions of “DIF2” and “SYS2” are 18 and 26 when T = 5, 43 and 61 when T = 10
and 68 and 96 when T = 15.“−” denotes the cases where the GMM estimators are not computed since the number of moment
conditions exceeds the sample size.

Table 2: Median bias(×100) and MAE(×100) of γ (γ = 0.9, β = 0.5) for ARX(1) model
γ = 0.9 median bias(×100) MAE(×100) median bias(×100) MAE(×100)

τ = 1 τ = 5
N/T 5 10 15 5 10 15 5 10 15 5 10 15

Transformed likelihood estimator
50 -0.344 -0.193 -0.113 5.419 2.286 1.349 -0.557 -0.217 -0.104 5.673 2.273 1.343
150 -0.086 -0.124 -0.122 3.281 1.280 0.843 -0.060 -0.102 -0.117 3.269 1.284 0.847
500 0.059 -0.021 0.011 1.535 0.716 0.436 0.056 -0.011 0.017 1.534 0.715 0.441

One-step first-difference GMM estimator based on “DIF2”
50 -4.990 -3.756 − 6.704 4.224 − -5.207 -3.944 − 6.680 4.307 −
150 -1.746 -1.318 -1.268 3.642 2.045 1.671 -1.783 -1.380 -1.322 3.665 2.078 1.757
500 -0.293 -0.358 -0.408 1.789 1.069 0.875 -0.259 -0.321 -0.429 1.767 1.074 0.908

Two-step first-difference GMM estimator based on “DIF2”
50 -4.452 -2.831 − 7.516 6.164 − -4.745 -3.172 − 7.214 6.542 −
150 -1.860 -1.178 -1.198 3.928 2.294 1.918 -1.973 -1.271 -1.290 3.945 2.243 2.016
500 -0.353 -0.409 -0.411 1.793 1.113 0.928 -0.344 -0.388 -0.371 1.719 1.115 0.968

Continuous-updating first-difference GMM estimator based on “DIF2”
50 0.086 -0.687 − 8.339 8.673 − 0.048 -1.226 − 8.313 8.744 −
150 0.023 0.155 -0.039 3.811 2.291 2.051 -0.028 0.153 -0.114 3.989 2.371 2.021
500 0.174 -0.017 -0.028 1.909 1.095 0.897 0.266 0.021 0.011 1.904 1.154 0.986

One-step system GMM estimator based on “SYS2”
50 4.841 − − 4.931 − − 7.238 − − 7.238 − −
150 3.672 3.598 3.519 3.732 3.598 3.519 7.068 7.094 7.054 7.068 7.094 7.054
500 1.983 1.830 1.723 2.139 1.854 1.723 6.476 6.459 6.459 6.476 6.459 6.459

Two-step system GMM estimator based on “SYS2”
50 5.158 − − 5.380 − − 7.285 − − 7.285 − −
150 3.804 3.664 3.408 4.007 3.685 3.415 7.190 7.146 7.148 7.190 7.146 7.148
500 1.873 1.678 1.473 2.184 1.733 1.497 6.560 6.484 6.459 6.560 6.484 6.459

Continuous-updating system GMM estimator based on “SYS2”
50 4.297 − − 6.973 − − 7.054 − − 7.525 − −
150 0.833 0.556 0.769 4.273 2.936 3.085 5.779 4.929 5.819 6.528 5.710 6.050
500 0.195 0.045 -0.019 1.586 1.037 0.852 0.991 0.160 0.093 2.473 1.173 0.922

Note: See notes to Table 1.
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Table 3: Size(%) and power(%) of γ (γ = 0.4, β = 0.5) for ARX(1) model
size (H0 : γ = 0.4) power (H1 : γ = 0.3) size (H0 : γ = 0.4) power (H1 : γ = 0.3)

τ = 1 τ = 5
N/T 5 10 15 5 10 15 5 10 15 5 10 15

Transformed likelihood estimator
50 6.4 5.7 4.6 42.4 83.7 97.2 6.4 5.7 4.6 42.8 83.7 97.6
150 4.1 5.2 4.1 78.6 99.9 100.0 4.1 5.2 4.1 78.6 99.9 100.0
500 3.8 6.3 5.2 99.9 100.0 100.0 3.8 6.3 5.2 99.9 100.0 100.0

One-step first-difference GMM estimator based on “DIF2”
50 8.6 8.9 − 45.3 78.7 − 10.4 9.8 − 42.6 75.2 −
150 6.6 5.8 5.6 72.8 98.2 100.0 6.9 5.9 7.4 65.2 95.7 99.9
500 4.4 4.6 5.6 99.3 100.0 100.0 4.7 5.9 7.2 97.6 100.0 100.0

Two-step first-difference GMM estimator based on “DIF2”
50 30.4 75.9 − 62.7 88.5 − 30.8 77.7 − 61.5 88.3 −
150 13.1 20.9 32.7 77.0 98.2 100.0 13.8 20.9 33.6 70.3 96.6 99.6
500 6.6 9.2 11.6 99.3 100.0 100.0 7.0 9.1 13.8 97.6 100.0 100.0

Two-step first-difference GMM estimator based on “DIF2” with Windmeijer standard errors
50 8.4 0.7 − 26.3 2.5 − 7.3 0.7 − 25.4 2.8 −
150 5.7 5.1 2.9 65.6 91.9 96.2 6.6 5.4 3.9 57.6 84.3 91.2
500 4.9 5.3 6.1 98.5 100.0 100.0 5.4 5.4 6.2 96.9 100.0 100.0

Continuous-updating first-difference GMM estimator based on “DIF2”
50 36.7 83.1 − 53.1 88.4 − 40.1 82.4 − 53.1 86.4 −
150 11.3 25.5 40.3 68.6 95.9 99.5 12.4 25.5 39.2 60.3 90.6 97.4
500 7.4 9.4 11.9 98.3 100.0 100.0 6.9 8.7 13.2 96.3 100.0 100.0

Continuous-updating first-difference GMM estimator based on “DIF2” with NW standard errors
50 45.3 33.6 − 62.3 40.9 − 45.1 37.3 − 56.6 42.3 −
150 12.0 42.3 73.2 67.2 97.6 99.9 12.5 41.4 68.3 58.0 94.5 98.7
500 6.9 10.6 17.0 98.1 100.0 100.0 6.7 10.1 17.8 96.0 100.0 100.0

One-step system GMM estimator based on “SYS2”
50 8.7 − − 24.2 − − 89.6 − − 72.1 − −
150 6.2 6.2 6.5 62.6 92.5 99.3 78.0 97.1 99.6 41.1 57.2 66.4
500 4.3 4.8 6.3 99.1 100.0 100.0 53.8 87.4 97.5 9.1 12.3 13.2

Two-step system GMM estimator based on “SYS2”
50 45.8 − − 64.4 − − 96.5 − − 89.3 − −
150 16.3 33.7 52.5 80.2 98.1 99.8 80.8 97.1 98.9 59.2 75.5 84.7
500 7.5 11.2 15.2 99.8 100.0 100.0 39.6 65.8 78.9 83.6 95.5 99.2

Two-step system GMM estimator based on “SYS2” with Windmeijer standard errors
50 3.5 − − 10.4 − − 38.6 − − 22.7 − −
150 4.8 3.6 0.5 62.6 77.5 55.7 42.9 71.1 58.3 15.6 21.5 18.9
500 5.1 5.6 4.7 99.7 100.0 100.0 19.6 40.3 47.8 67.4 84.1 94.0

Continuous-updating system GMM estimator based on “SYS2”
50 58.6 − − 71.1 − − 75.7 − − 80.6 − −
150 17.9 38.5 62.6 80.7 97.5 99.0 28.1 50.9 71.8 84.5 98.3 99.2
500 7.7 10.8 16.1 99.9 100.0 100.0 11.4 14.6 21.4 99.9 100.0 100.0

Continuous-updating system GMM estimator based on “SYS2” with NW standard errors
50 53.9 − − 63.4 − − 36.0 − − 43.5 − −
150 19.4 62.5 42.8 81.7 98.9 91.3 18.8 33.5 14.4 78.5 92.4 75.5
500 8.1 14.4 23.6 99.9 100.0 100.0 7.7 12.8 23.0 99.5 100.0 100.0

Note: For the definition of “DIF2” and “SYS2”, see notes to Table 1. “NW” denotes Newey and Windmeijer’s(2009) standard
errors.
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Table 4: Size(%) and power(%) of γ (γ = 0.9, β = 0.5) for ARX(1) model
size (H0 : γ = 0.9) power (H1 : γ = 0.8) size (H0 : γ = 0.9) power (H1 : γ = 0.8)

τ = 1 τ = 5
N/T 5 10 15 5 10 15 5 10 15 5 10 15

Transformed likelihood estimator
50 5.1 5.4 5.6 33.2 79.5 98.1 4.4 5.5 5.7 32.9 80.0 98.3
150 4.4 6.0 5.5 56.8 99.6 100.0 4.5 6.0 5.7 57.1 99.6 100.0
500 4.9 5.5 5.4 95.9 100.0 100.0 4.9 5.3 5.6 95.9 100.0 100.0

One-step first-difference GMM estimator based on “DIF2”
50 12.2 12.7 − 50.3 86.3 − 11.7 13.5 − 49.8 85.9 −
150 8.3 8.0 9.9 67.7 97.8 100.0 8.3 7.6 10.9 67.6 97.1 100.0
500 5.7 7.1 8.4 96.6 100.0 100.0 5.5 7.6 8.2 96.6 100.0 100.0

Two-step first-difference GMM estimator based on “DIF2”
50 32.9 77.4 − 65.6 91.9 − 30.9 77.2 − 65.5 91.8 −
150 14.5 22.3 34.5 73.0 98.2 99.9 14.9 23.4 35.9 72.1 98.1 99.9
500 7.2 10.1 14.5 96.9 100.0 100.0 7.4 9.7 15.1 96.7 100.0 100.0

Two-step first-difference GMM estimator based on “DIF2” with Windmeijer standard errors
50 7.3 1.2 − 31.0 3.7 − 7.5 1.2 − 29.2 3.8 −
150 7.9 5.3 4.1 61.9 92.5 96.7 6.9 6.0 5.2 61.5 92.0 95.6
500 5.7 6.6 7.8 96.3 100.0 100.0 5.9 6.5 8.9 96.4 100.0 100.0

Continuous-updating first-difference GMM estimator based on “DIF2”
50 38.0 83.3 − 53.4 88.5 − 37.5 83.0 − 51.6 88.3 −
150 13.2 22.7 37.2 61.3 94.5 99.0 13.9 23.9 36.7 61.4 93.6 98.2
500 7.3 9.1 13.6 95.8 100.0 100.0 7.2 9.4 14.5 95.8 100.0 100.0

Continuous-updating first-difference GMM estimator based on “DIF2” with NW standard errors
50 42.9 34.5 − 57.5 46.8 − 42.2 33.7 − 55.5 46.8 −
150 13.2 38.5 70.4 60.1 96.3 99.7 13.2 38.9 66.8 60.3 96.1 99.4
500 6.7 10.7 18.0 95.6 100.0 100.0 7.0 11.1 18.3 95.5 100.0 100.0

One-step system GMM estimator based on “SYS2”
50 40.4 − − 42.5 − − 99.6 − − 92.2 − −
150 30.5 53.7 66.5 72.1 98.1 99.9 99.4 100.0 100.0 95.1 100.0 100.0
500 21.6 34.8 41.9 99.4 100.0 100.0 98.7 100.0 100.0 99.2 100.0 100.0

Two-step system GMM estimator based on “SYS2”
50 78.7 − − 81.1 − − 100.0 − − 98.5 − −
150 60.3 80.3 89.0 88.2 99.5 100.0 99.8 100.0 100.0 97.6 100.0 100.0
500 35.2 48.7 56.4 99.7 100.0 100.0 99.8 100.0 100.0 99.7 100.0 100.0

Two-step system GMM estimator based on “SYS2” with Windmeijer standard errors
50 18.7 − − 10.9 − − 73.7 − − 42.4 − −
150 25.9 21.0 8.9 41.8 61.0 37.7 78.7 91.1 91.6 54.7 66.4 66.0
500 15.7 17.6 19.9 94.1 100.0 100.0 69.5 95.3 99.5 45.2 51.5 69.2

Continuous-updating system GMM estimator based on “SYS2”
50 81.8 − − 82.2 − − 97.9 − − 94.2 − −
150 57.6 68.4 81.2 89.2 96.8 98.2 89.5 93.7 96.4 90.9 96.4 97.5
500 23.5 25.3 28.1 99.6 100.0 100.0 66.8 67.5 70.4 95.8 99.9 100.0

Continuous-updating system GMM estimator based on “SYS2” with NW standard errors
50 55.4 − − 57.0 − − 59.0 − − 48.6 − −
150 39.3 43.5 39.6 78.1 89.5 86.5 59.2 49.1 51.3 65.3 50.0 44.5
500 13.2 14.2 22.6 97.3 99.8 100.0 29.5 11.7 9.8 89.3 98.7 99.6

Note: See notes to Table 3.
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Table 5: Median bias(×100) and MAE(×100) of β (γ = 0.4, β = 0.5) for ARX(1) model
β = 0.5 median bias(×100) MAE(×100) median bias(×100) MAE(×100)

τ = 1 τ = 5
N/T 5 10 15 5 10 15 5 10 15 5 10 15

Transformed likelihood estimator
50 0.082 -0.066 -0.026 3.187 1.865 1.478 0.052 -0.066 -0.026 3.141 1.865 1.478
150 -0.026 -0.004 0.063 1.803 1.021 0.838 -0.026 -0.004 0.063 1.803 1.021 0.838
500 0.000 -0.002 0.031 0.878 0.567 0.462 0.000 -0.002 0.031 0.878 0.567 0.462

One-step first-difference GMM estimator based on “DIF2”
50 -0.034 0.105 − 3.460 2.167 − -0.043 -0.280 − 3.613 2.163 −
150 -0.116 0.148 0.140 2.050 1.379 1.029 -0.187 0.010 -0.012 2.091 1.410 1.070
500 -0.081 -0.011 0.050 1.011 0.714 0.556 -0.044 -0.092 -0.022 1.069 0.766 0.592

Two-step first-difference GMM estimator based on “DIF2”
50 -0.188 0.045 − 3.937 4.220 − -0.088 -0.625 − 4.124 4.627 −
150 -0.100 -0.062 -0.028 2.225 1.531 1.382 -0.137 -0.143 -0.150 2.248 1.649 1.390
500 -0.137 -0.069 -0.015 1.050 0.714 0.601 -0.082 -0.139 -0.036 1.075 0.777 0.638

Continuous-updating first-difference GMM estimator based on “DIF2”
50 -0.238 0.090 − 4.936 6.625 − 0.525 0.139 − 5.135 6.629 −
150 -0.099 -0.019 -0.061 2.247 1.663 1.545 0.068 -0.021 -0.053 2.366 1.801 1.589
500 -0.132 -0.065 -0.019 1.065 0.724 0.615 -0.046 -0.072 0.005 1.083 0.803 0.648

One-step system GMM estimator based on “SYS2”
50 0.446 − − 3.640 − − 6.885 − − 7.149 − −
150 0.117 0.216 0.269 2.119 1.385 1.075 4.682 5.077 5.058 4.824 5.077 5.058
500 0.062 0.029 0.079 1.146 0.735 0.603 2.249 2.403 2.410 2.698 2.408 2.416

Two-step system GMM estimator based on “SYS2”
50 0.243 − − 4.381 − − 4.933 − − 6.683 − −
150 0.103 -0.193 -0.115 2.128 1.543 1.447 2.557 2.223 2.254 3.372 2.524 2.543
500 -0.089 -0.065 -0.009 1.015 0.732 0.600 0.420 0.376 0.395 1.189 0.869 0.684

Continuous-updating system GMM estimator based on “SYS2”
50 0.009 − − 5.858 − − 1.713 − − 6.721 − −
150 -0.058 -0.203 -0.234 2.250 1.677 1.832 0.031 -0.165 -0.091 2.365 1.706 1.861
500 -0.121 -0.103 -0.038 1.031 0.759 0.611 -0.119 -0.071 -0.031 1.033 0.774 0.597

Note: See notes to Table 1.

Table 6: Median bias(×100) and MAE(×100) of β (γ = 0.9, β = 0.5) for ARX(1) model
β = 0.5 median bias(×100) MAE(×100) median bias(×100) MAE(×100)

τ = 1 τ = 5
N/T 5 10 15 5 10 15 5 10 15 5 10 15

Transformed likelihood estimator
50 -0.019 -0.013 0.013 3.939 2.163 1.715 0.078 -0.015 0.016 3.838 2.169 1.718
150 -0.046 0.016 0.008 2.241 1.185 0.954 -0.038 0.017 0.007 2.231 1.183 0.953
500 0.014 0.026 0.028 1.125 0.670 0.559 0.010 0.025 0.028 1.122 0.671 0.559

One-step first-difference GMM estimator based on “DIF2”
50 -1.365 -1.263 − 4.769 2.869 − -1.177 -1.278 − 4.522 2.856 −
150 -0.533 -0.428 -0.294 2.704 1.783 1.345 -0.528 -0.392 -0.406 2.790 1.801 1.331
500 -0.174 -0.214 -0.084 1.393 0.999 0.752 -0.162 -0.268 -0.120 1.389 0.959 0.743

Two-step first-difference GMM estimator based on “DIF2”
50 -0.763 -0.743 − 5.639 5.598 − -0.832 -0.786 − 5.272 5.683 −
150 -0.468 -0.374 -0.395 2.931 2.002 1.732 -0.383 -0.336 -0.493 2.903 2.110 1.756
500 -0.187 -0.206 -0.074 1.410 1.013 0.771 -0.143 -0.221 -0.094 1.388 0.993 0.799

Continuous-updating first-difference GMM estimator based on “DIF2”
50 0.899 -0.019 − 6.866 8.450 − 0.686 -0.031 − 6.839 8.998 −
150 -0.030 -0.004 0.033 3.039 2.140 2.005 0.109 0.118 -0.040 3.105 2.299 2.024
500 -0.038 -0.056 0.063 1.413 1.005 0.778 0.005 -0.065 0.026 1.397 0.981 0.806

One-step system GMM estimator based on “SYS2”
50 1.375 − − 4.260 − − 2.511 − − 4.484 − −
150 1.056 1.227 1.179 2.444 1.835 1.521 2.211 2.552 2.486 2.737 2.591 2.495
500 0.558 0.647 0.668 1.356 0.993 0.874 2.226 2.383 2.422 2.242 2.383 2.422

Two-step system GMM estimator based on “SYS2”
50 1.561 − − 5.070 − − 2.321 − − 5.182 − −
150 0.708 0.535 0.453 2.425 1.880 1.805 1.216 1.175 0.986 2.694 2.039 1.804
500 0.315 0.292 0.280 1.219 0.938 0.749 1.482 1.452 1.376 1.704 1.487 1.398

Continuous-updating system GMM estimator based on “SYS2”
50 1.414 − − 6.836 − − 1.961 − − 6.725 − −
150 0.037 0.020 0.190 3.008 2.192 2.154 1.095 0.801 0.848 3.161 2.333 2.390
500 -0.067 -0.066 -0.021 1.312 0.933 0.704 0.448 0.120 0.161 1.565 1.054 0.767

Note: See notes to Table 1.
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Table 7: Size(%) and power(%) of β (γ = 0.4, β = 0.5) for ARX(1) model
size (H0 : β = 0.5) power (H1 : β = 0.4) size (H0 : β = 0.5) power (H1 : β = 0.4)

τ = 1 τ = 5
N/T 5 10 15 5 10 15 5 10 15 5 10 15

Transformed likelihood estimator
50 7.8 5.9 6.3 63.9 96.3 99.7 8.3 5.9 6.0 63.9 96.3 99.7
150 5.9 5.2 5.3 97.3 100.0 100.0 5.9 5.2 5.3 97.3 100.0 100.0
500 4.6 6.5 5.3 100.0 100.0 100.0 4.6 6.5 5.3 100.0 100.0 100.0

One-step first-difference GMM estimator based on “DIF2”
50 7.4 5.3 − 55.5 87.8 − 8.2 6.4 − 54.7 88.0 −
150 6.5 6.4 6.6 92.6 99.9 100.0 6.0 6.1 6.9 92.5 99.9 100.0
500 4.6 5.0 4.7 100.0 100.0 100.0 5.2 5.7 4.5 99.9 100.0 100.0

Two-step first-difference GMM estimator based on “DIF2”
50 26.7 75.7 − 72.3 93.5 − 27.3 78.3 − 71.2 93.5 −
150 13.5 20.4 32.0 94.2 100.0 100.0 13.8 20.7 32.9 92.6 99.9 100.0
500 6.7 8.9 9.6 100.0 100.0 100.0 6.6 8.8 10.7 100.0 100.0 100.0

Two-step first-difference GMM estimator based on “DIF2” with Windmeijer standard errors
50 5.9 1.1 − 39.4 5.0 − 6.7 0.9 − 38.3 3.4 −
150 7.1 5.1 3.2 89.0 99.5 99.8 7.5 6.0 3.9 87.9 98.8 99.3
500 5.5 5.1 4.6 100.0 100.0 100.0 5.5 5.7 4.7 100.0 100.0 100.0

Continuous-updating first-difference GMM estimator based on “DIF2”
50 35.3 83.4 − 68.6 90.9 − 38.2 83.8 − 65.3 91.8 −
150 15.6 24.3 38.7 92.4 100.0 100.0 15.4 24.4 39.0 90.7 99.6 100.0
500 6.6 9.5 10.4 100.0 100.0 100.0 6.9 9.2 11.3 100.0 100.0 100.0

Continuous-updating first-difference GMM estimator based on “DIF2” with NW standard errors
50 45.7 40.2 − 72.6 56.5 − 44.5 43.7 − 69.3 60.3 −
150 14.9 40.3 74.0 92.1 100.0 100.0 14.9 40.1 71.2 89.7 99.9 100.0
500 6.5 10.6 15.0 100.0 100.0 100.0 6.4 10.2 14.8 100.0 100.0 100.0

One-step system GMM estimator based on “SYS2”
50 7.2 − − 47.9 − − 25.8 − − 11.5 − −
150 5.5 5.7 5.8 89.6 99.8 100.0 21.0 48.7 67.1 22.7 46.0 65.5
500 4.5 5.2 5.7 100.0 100.0 100.0 13.0 28.7 48.4 72.9 98.3 100.0

Two-step system GMM estimator based on “SYS2”
50 42.0 − − 76.1 − − 57.9 − − 56.3 − −
150 15.3 27.1 49.1 95.9 99.9 100.0 31.2 49.0 70.2 73.6 93.5 97.8
500 7.5 10.6 14.1 100.0 100.0 100.0 10.8 15.8 22.7 99.8 100.0 100.0

Two-step system GMM estimator based on “SYS2” with Windmeijer standard errors
50 3.0 − − 24.3 − − 3.0 − − 4.5 − −
150 7.1 3.9 0.7 87.8 98.0 88.7 10.1 11.2 4.1 47.9 62.5 37.2
500 5.0 5.3 5.4 100.0 100.0 100.0 6.4 7.4 7.0 99.7 100.0 100.0

Continuous-updating system GMM estimator based on “SYS2”
50 55.3 − − 77.6 − − 61.6 − − 75.4 − −
150 18.3 34.6 60.4 94.9 99.8 100.0 21.5 36.7 64.4 93.4 99.8 99.9
500 8.1 11.0 15.2 100.0 100.0 100.0 9.3 11.0 15.3 100.0 100.0 100.0

Continuous-updating system GMM estimator based on “SYS2” with NW standard errors
50 58.1 − − 74.5 − − 42.4 − − 53.5 − −
150 21.7 62.6 42.8 94.4 100.0 98.5 21.8 50.3 30.4 93.6 99.7 94.8
500 7.8 13.9 24.6 100.0 100.0 100.0 8.7 13.6 23.1 100.0 100.0 100.0

Note: See notes to Table 3.
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Table 8: Size(%) and power(%) of β (γ = 0.9, β = 0.5) for ARX(1) model
size (H0 : β = 0.5) power (H1 : β = 0.4) size (H0 : β = 0.5) power (H1 : β = 0.4)

τ = 1 τ = 5
N/T 5 10 15 5 10 15 5 10 15 5 10 15

Transformed likelihood estimator
50 7.9 5.8 5.8 47.9 87.8 98.1 7.8 5.8 5.8 48.5 87.8 98.1
150 5.9 5.2 5.6 86.7 100.0 100.0 6.1 5.3 5.7 86.6 100.0 100.0
500 4.1 5.4 5.7 100.0 100.0 100.0 4.1 5.4 5.7 100.0 100.0 100.0

One-step first-difference GMM estimator based on “DIF2”
50 8.0 7.2 − 46.5 76.9 − 7.9 7.5 − 46.4 77.2 −
150 6.5 7.3 7.1 79.4 98.6 99.9 6.4 6.9 7.3 78.6 98.2 99.9
500 5.4 5.2 4.7 99.8 100.0 100.0 5.4 5.2 5.2 99.8 100.0 100.0

Two-step first-difference GMM estimator based on “DIF2”
50 29.9 76.9 − 61.9 91.6 − 29.7 78.7 − 62.1 90.7 −
150 14.1 19.9 32.2 82.5 98.7 99.7 14.4 20.3 31.8 82.4 98.4 99.7
500 6.4 7.5 10.3 99.9 100.0 100.0 6.4 8.4 12.1 99.8 100.0 100.0

Two-step first-difference GMM estimator based on “DIF2” with Windmeijer standard errors
50 7.1 0.7 − 31.3 3.2 − 6.8 0.9 − 30.1 3.0 −
150 8.3 5.8 3.2 72.6 94.1 96.7 8.0 5.7 3.0 73.3 93.3 95.4
500 5.8 5.4 5.2 99.7 100.0 100.0 5.6 5.3 5.6 99.7 100.0 100.0

Continuous-updating first-difference GMM estimator based on “DIF2”
50 39.2 84.9 − 55.4 89.2 − 38.6 85.2 − 55.5 87.4 −
150 15.2 23.3 38.5 77.3 96.9 98.9 15.5 24.5 38.9 77.3 96.7 98.9
500 6.5 8.8 10.3 99.8 100.0 100.0 6.6 9.1 12.2 99.8 100.0 100.0

Continuous-updating first-difference GMM estimator based on “DIF2” with NW standard errors
50 48.3 42.0 − 59.9 53.9 − 46.0 38.5 − 62.5 51.5 −
150 14.7 39.6 70.1 76.6 98.3 99.4 15.0 39.0 69.3 77.0 98.5 99.4
500 6.4 9.9 14.5 99.7 100.0 100.0 6.5 10.2 16.4 99.7 100.0 100.0

One-step system GMM estimator based on “SYS2”
50 8.5 − − 35.8 − − 9.8 − − 30.0 − −
150 6.7 9.0 9.8 76.7 97.9 100.0 11.1 20.0 28.5 64.1 93.5 99.5
500 4.8 8.7 10.1 100.0 100.0 100.0 20.9 46.9 67.2 98.7 100.0 100.0

Two-step system GMM estimator based on “SYS2”
50 43.0 − − 65.8 − − 45.6 − − 63.5 − −
150 16.9 32.7 53.4 87.6 99.6 99.7 20.5 35.9 54.3 81.6 99.0 99.6
500 6.9 11.2 15.1 100.0 100.0 100.0 17.3 32.1 45.2 99.8 100.0 100.0

Two-step system GMM estimator based on “SYS2” with Windmeijer standard errors
50 2.7 − − 13.1 − − 2.3 − − 8.5 − −
150 5.3 3.1 0.6 71.8 88.9 69.1 5.3 3.6 1.6 52.1 66.8 42.5
500 4.6 5.9 4.8 100.0 100.0 100.0 7.9 12.8 15.0 95.6 99.8 100.0

Continuous-updating system GMM estimator based on “SYS2”
50 57.3 − − 68.3 − − 57.2 − − 68.7 − −
150 22.0 38.3 58.6 87.3 99.3 99.2 26.3 42.4 63.4 80.3 96.5 98.5
500 7.5 11.2 15.2 100.0 100.0 100.0 14.0 15.4 19.6 99.6 100.0 100.0

Continuous-updating system GMM estimator based on “SYS2” with NW standard errors
50 52.8 − − 62.5 − − 38.3 − − 48.5 − −
150 22.0 58.9 37.7 85.7 98.8 94.9 21.5 39.5 23.6 73.3 85.8 74.4
500 6.4 13.0 22.4 99.8 100.0 100.0 10.5 13.7 19.6 99.2 100.0 100.0

Note: See notes to Table 3.
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Table 9: Size(%) and power(%) of weak instruments robust tests (θ = (0.4, 0.5)′) for ARX(1) model
size (H0 : θ = (0.4, 0.5)′) power (H1 : θ = (0.3, 0.4)′) size (H0 : θ = (0.4, 0.5)′) power (H1 : θ = (0.3, 0.4)′)

τ = 1 τ = 5
N/T 5 10 15 5 10 15 5 10 15 5 10 15

Anderson and Rubin test based on “DIF2”
50 51.7 100.0 − 61.8 100.0 − 51.6 100.0 − 56.7 100.0 −
150 14.2 65.1 99.2 43.2 98.8 100.0 13.8 67.0 99.1 28.6 90.5 100.0
500 6.6 14.9 34.5 88.4 100.0 100.0 7.0 14.2 34.1 56.1 98.0 99.9

Anderson and Rubin test based on “SYS2”
50 84.5 − − 93.2 − − 86.7 − − 89.3 − −
150 24.5 94.6 100.0 74.3 100.0 100.0 24.6 94.9 100.0 51.0 99.9 100.0
500 9.4 26.9 60.8 99.2 100.0 100.0 8.6 26.2 60.8 80.6 100.0 100.0

Lagrange multiplier test based on “DIF2”
50 33.2 98.9 − 46.9 99.6 − 33.2 99.2 − 41.5 99.2 −
150 8.9 29.2 64.5 54.2 72.2 99.8 8.9 27.6 67.3 29.1 53.2 97.8
500 6.4 8.7 11.4 98.8 100.0 100.0 5.7 9.1 12.5 83.6 100.0 100.0

Lagrange multiplier test based on “SYS2”
50 54.1 − − 69.8 − − 54.9 − − 57.5 − −
150 11.7 42.2 78.2 75.9 95.5 100.0 12.8 42.9 79.3 39.4 78.8 98.6
500 5.4 12.1 15.8 100.0 100.0 100.0 5.7 11.5 16.2 93.0 99.1 87.9

Conditional likelihood ratio test based on “DIF2”
50 44.3 98.9 − 57.8 99.6 − 44.4 99.2 − 50.8 99.2 −
150 9.4 33.4 68.2 55.5 82.6 99.9 9.5 34.3 71.5 31.9 67.2 98.1
500 6.3 8.6 11.3 98.8 100.0 100.0 5.9 8.8 13.1 84.0 100.0 100.0

Conditional likelihood ratio test based on “SYS2”
50 57.6 − − 72.7 − − 57.2 − − 59.6 − −
150 12.0 48.5 78.4 78.4 96.9 100.0 13.9 45.3 79.4 41.5 80.1 98.7
500 5.3 12.1 15.8 100.0 100.0 100.0 5.7 11.0 16.5 93.2 99.3 90.3

For the definition of “DIF2” and “SYS2”, see notes to Table 1. “Anderson and Rubin test” denotes Anderson and Rubin test for
GMM (Stock and Wright 2000)(eq. (31)). “Lagrange multiplier test” denotes Kleibergen’s(2005) LM test (eq. (32)). “Conditional
likelihood ratio test” denotes the conditional likelihood ratio test of Moreira (2003)(extended by Kleibergen(2005)) (eq.(33)). “−”
denotes the cases where the GMM estimators are not computed since the number of moment conditions exceeds the sample size.

Table 10: Size(%) and power(%) of weak instruments robust tests (θ = (0.9, 0.5)′) for ARX(1) model
size (H0 : θ = (0.9, 0.5)′) power (H1 : θ = (0.8, 0.4)′) size (H0 : θ = (0.9, 0.5)′) power (H1 : θ = (0.8, 0.4)′)

τ = 1 τ = 5
N/T 5 10 15 5 10 15 5 10 15 5 10 15

Anderson and Rubin test based on “DIF2”
50 50.6 100.0 − 49.6 100.0 − 50.0 100.0 − 49.6 100.0 −
150 14.6 69.3 99.1 15.5 72.7 99.5 15.5 68.6 99.5 15.6 70.5 99.4
500 7.2 14.7 35.1 10.7 31.1 73.8 7.6 14.1 34.2 8.7 18.0 42.0

Anderson and Rubin test based on “SYS2”
50 84.5 − − 90.3 − − 87.7 − − 90.0 − −
150 25.6 94.6 100.0 72.7 100.0 100.0 25.8 94.4 100.0 43.9 98.6 100.0
500 10.3 25.0 60.5 99.1 100.0 100.0 11.6 26.5 62.1 59.8 94.7 99.8

Lagrange Multiplier test based on “DIF2”
50 40.1 99.3 − 49.3 99.1 − 42.3 99.1 − 48.5 99.3 −
150 9.5 37.5 78.2 10.2 48.4 94.9 10.3 36.8 77.9 11.3 53.1 91.5
500 6.0 9.5 11.0 10.4 42.1 73.9 5.4 9.0 13.7 8.7 16.0 24.1

Lagrange Multiplier test based on “SYS2”
50 58.3 − − 72.4 − − 56.9 − − 65.8 − −
150 14.7 46.4 79.1 59.7 95.9 99.6 17.4 44.2 77.6 45.1 71.6 92.6
500 5.8 13.3 18.1 98.6 100.0 99.0 7.5 11.9 16.5 78.7 94.7 97.8

Conditional likelihood ratio test based on “DIF2”
50 49.1 99.3 − 54.8 99.1 − 49.2 99.1 − 54.3 99.3 −
150 14.0 51.3 82.8 15.7 66.1 96.2 16.1 54.0 83.1 16.8 68.3 93.2
500 6.4 10.5 12.1 12.7 46.2 80.2 7.5 11.7 18.9 10.3 22.2 38.2

Conditional likelihood ratio test based on “SYS2”
50 61.0 − − 75.4 − − 58.6 − − 68.7 − −
150 15.8 52.5 79.3 62.0 96.7 99.5 17.8 45.1 77.8 46.0 75.5 92.5
500 5.8 13.3 18.1 98.7 100.0 99.6 7.8 12.3 17.0 78.9 95.0 97.9

Note: See notes to Table 9.
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Table 13: Size(%) and power(%) of γ (γ = 0.4) for AR(1) model

size (H0 : γ = 0.4) power (H1 : γ = 0.3) size (H0 : γ = 0.4) power (H1 : γ = 0.3)
τ = 1 τ = 5

N/T 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
Transformed likelihood estimator

50 5.2 7.2 7.0 5.9 20.7 49.8 69.1 85.3 5.1 7.2 7.0 5.9 20.6 49.8 69.1 85.3
150 6.1 4.9 5.0 5.6 42.2 90.0 99.3 100.0 6.1 4.9 5.0 5.6 42.2 90.0 99.3 100.0
500 4.8 4.9 5.3 5.0 83.6 100.0 100.0 100.0 4.8 4.9 5.3 5.0 83.6 100.0 100.0 100.0

One-step first-difference GMM estimator based on “DIF2”
50 9.7 8.1 9.6 6.1 21.8 38.0 56.8 66.9 15.9 14.8 14.1 11.4 25.6 34.7 41.9 53.8
150 5.3 6.0 6.0 6.5 28.3 65.6 88.8 95.6 9.3 7.3 9.5 7.4 20.6 36.3 55.8 74.8
500 5.6 5.1 5.2 5.1 55.0 97.1 100.0 100.0 5.1 5.4 5.9 7.1 24.2 53.6 88.3 98.2

Two-step first-difference GMM estimator based on “DIF2”
50 17.7 29.7 43.5 65.6 31.6 57.7 75.7 84.3 25.9 38.2 50.7 71.4 37.1 57.7 71.3 81.4
150 8.6 10.4 12.7 18.5 32.8 72.8 89.7 95.3 11.7 15.1 19.3 21.4 24.2 43.7 68.2 83.3
500 5.9 7.0 6.7 7.7 56.6 96.9 100.0 100.0 5.9 7.9 7.0 10.6 27.4 59.2 92.1 98.8

Two-step first-difference GMM estimator based on “DIF2” with Windmeijer standard errors
50 7.8 5.1 3.0 1.2 16.4 22.2 16.8 5.4 11.7 7.1 2.9 1.1 19.5 17.2 8.6 3.0
150 5.8 5.2 4.8 5.2 27.0 60.3 77.9 86.7 8.2 6.4 6.9 5.9 18.1 29.0 46.1 60.7
500 5.4 5.3 4.6 4.0 54.2 96.5 100.0 100.0 5.3 5.7 5.4 6.3 24.0 54.0 88.0 97.9

Continuous-updating first-difference GMM estimator based on “DIF2”
50 20.6 35.0 51.1 75.0 25.5 46.4 66.5 78.8 30.8 42.5 55.5 74.3 34.0 43.5 59.6 77.8
150 8.9 11.1 15.5 20.5 26.1 62.1 82.8 90.8 12.4 16.3 17.9 22.5 18.2 30.1 50.8 71.0
500 6.0 7.3 6.7 7.3 51.9 96.0 100.0 100.0 6.2 7.4 6.5 10.2 21.2 48.8 85.7 97.7

Continuous-updating first-difference GMM estimator based on “DIF2” with NW standard errors
50 22.1 52.8 58.6 38.1 26.2 62.0 70.6 43.8 24.8 49.5 54.0 37.5 28.6 50.5 57.3 40.5
150 7.1 12.6 21.3 35.2 24.9 65.3 87.9 95.5 9.7 16.5 22.6 35.8 15.5 29.8 57.4 81.1
500 5.7 7.3 7.6 9.2 50.3 96.2 100.0 100.0 5.2 7.1 6.9 11.1 18.8 47.4 85.4 97.9

One-step system GMM estimator based on “SYS2”
50 9.9 9.4 9.3 − 12.4 20.5 28.2 − 76.9 92.3 97.9 − 65.3 82.0 89.8 −
150 5.8 5.0 6.5 6.3 25.7 55.5 78.2 88.9 56.9 82.8 94.3 98.7 38.7 57.1 68.9 73.0
500 5.4 6.6 5.2 5.1 65.9 96.5 100.0 100.0 37.5 66.7 83.7 94.0 15.0 18.5 16.4 16.8

Two-step system GMM estimator based on “SYS2”
50 25.5 52.3 76.0 − 38.0 61.2 85.5 − 90.8 98.3 100.0 − 84.5 94.6 98.3 −
150 12.1 14.3 23.3 28.0 47.7 80.7 91.0 96.9 74.1 92.3 97.5 99.5 64.9 74.5 83.7 85.9
500 7.0 9.2 9.9 11.7 85.8 99.6 100.0 100.0 50.1 68.1 81.3 85.8 59.6 70.2 78.2 82.9

Two-step system GMM estimator based on “SYS2” with Windmeijer standard errors
50 7.2 3.2 2.1 − 12.8 9.6 3.5 − 65.0 53.4 11.2 − 53.4 38.2 8.0 −
150 6.4 3.6 4.6 4.3 34.6 59.4 72.8 76.0 46.2 69.3 81.8 85.6 33.2 42.8 53.2 49.7
500 5.6 6.5 4.8 5.3 82.8 99.3 100.0 100.0 24.4 43.2 54.0 62.6 31.4 39.7 43.7 50.8

Continuous-updating system GMM estimator based on “SYS2”
50 32.7 58.4 85.8 − 43.9 72.0 89.5 − 64.1 80.6 95.4 − 71.5 85.7 95.5 −
150 12.3 16.8 25.8 34.7 49.7 83.8 93.4 96.4 31.2 37.2 47.2 54.4 62.3 91.4 97.1 98.0
500 7.4 8.6 9.1 11.9 86.7 99.8 100.0 100.0 14.1 15.9 17.2 20.0 86.2 99.8 100.0 100.0

Continuous-updating system GMM estimator based on “SYS2” with NW standard errors
50 33.9 50.3 32.1 − 44.4 62.5 40.9 − 36.0 22.0 23.7 − 43.8 27.6 24.0 −
150 12.3 19.6 40.9 56.9 47.4 85.5 96.5 98.5 13.3 16.7 24.3 24.1 46.8 81.3 90.9 90.5
500 6.6 8.5 10.0 15.4 84.9 99.8 100.0 100.0 5.7 8.9 9.8 14.2 81.4 99.5 100.0 100.0

Note: For the definition of “DIF2” and “SYS2”, see notes to Table 11. “NW” denotes Newey and Windmeijer’s(2009) standard
errors.
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Table 14: Size(%) and power(%) of γ (γ = 0.9) for AR(1) model

size (H0 : γ = 0.9) power (H1 : γ = 0.8) size (H0 : γ = 0.9) power (H1 : γ = 0.8)
τ = 1 τ = 5

N/T 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
Transformed likelihood estimator

50 13.5 15.9 13.1 10.2 28.6 44.0 60.1 77.1 13.5 15.9 13.1 10.3 28.6 44.0 60.1 77.1
150 16.7 12.7 7.7 6.7 31.6 58.4 81.9 95.3 16.8 12.6 7.7 6.6 31.6 58.3 81.9 95.2
500 17.0 7.7 5.1 4.5 44.6 76.2 95.3 100.0 17.2 7.7 5.1 4.5 44.7 76.2 95.2 100.0

One-step first-difference GMM estimator based on “DIF2”
50 33.8 30.8 27.5 24.1 45.0 53.3 57.9 66.3 37.5 43.5 39.8 38.5 47.4 58.8 64.3 71.1
150 22.9 16.2 11.7 9.1 32.5 39.2 56.9 72.4 30.8 36.5 32.6 29.9 41.7 54.8 61.4 68.6
500 14.7 7.8 7.0 6.7 27.9 41.2 72.1 92.0 27.3 30.1 27.0 25.8 39.5 51.7 56.7 67.5

Two-step first-difference GMM estimator based on “DIF2”
50 59.0 69.6 74.1 80.9 66.1 81.6 87.7 91.3 64.5 80.9 87.2 90.2 71.8 88.4 93.6 96.0
150 39.1 42.8 41.0 35.7 48.8 62.7 76.9 85.8 52.1 69.1 77.0 79.0 60.2 80.8 88.8 93.0
500 21.6 16.1 14.7 14.6 33.8 49.0 77.3 94.0 39.0 56.2 57.4 63.3 47.9 71.4 79.6 84.7

Two-step first-difference GMM estimator based on “DIF2” with Windmeijer standard errors
50 29.1 20.6 8.6 5.0 34.7 29.5 14.7 7.0 33.3 30.2 17.4 6.7 39.5 38.1 23.2 9.0
150 20.7 15.3 12.6 7.5 27.7 31.4 45.5 57.3 28.1 30.9 33.4 29.3 35.6 42.6 48.7 48.6
500 13.6 10.0 9.5 8.6 24.4 37.7 70.8 91.1 23.9 28.1 32.0 34.1 30.5 43.3 52.0 62.1

Continuous-updating first-difference GMM estimator based on “DIF2”
50 50.7 61.9 70.1 81.8 54.0 65.9 75.6 85.8 58.1 78.2 88.4 92.2 60.9 79.4 88.6 93.1
150 30.8 31.9 25.7 23.2 35.3 37.0 47.0 63.6 42.4 63.3 70.4 73.7 47.2 65.9 72.9 74.5
500 14.4 9.3 5.9 7.7 19.3 25.3 56.5 84.2 28.9 40.6 39.6 43.1 32.9 44.6 44.6 49.7

Continuous-updating first-difference GMM estimator based on “DIF2” with NW standard errors
50 37.1 45.5 46.3 39.9 41.6 49.8 53.7 45.2 43.5 52.7 52.0 48.1 46.7 55.1 55.0 51.1
150 20.1 21.4 22.3 33.0 25.1 28.1 46.2 73.1 29.3 34.8 32.8 40.4 32.0 38.9 35.2 42.8
500 8.7 5.9 6.0 8.6 13.7 19.7 54.5 85.3 17.4 15.6 13.9 17.5 21.0 20.4 19.5 23.3

One-step system GMM estimator based on “SYS2”
50 31.6 48.1 65.2 − 1.1 6.2 11.7 − 96.1 100.0 100.0 − 0.2 0.8 1.9 −
150 27.7 42.6 57.5 65.2 3.8 19.8 37.2 52.1 96.3 99.7 100.0 100.0 0.7 1.6 3.1 3.7
500 19.3 30.9 39.1 49.9 26.6 73.9 94.3 98.9 93.7 99.8 100.0 100.0 2.3 8.3 12.3 18.2

Two-step system GMM estimator based on “SYS2”
50 56.9 77.1 90.8 − 46.1 69.1 85.8 − 98.5 100.0 100.0 − 43.6 61.6 82.5 −
150 44.1 56.1 69.6 78.2 42.2 74.1 86.8 92.6 98.4 100.0 100.0 100.0 39.7 51.9 52.5 63.0
500 26.5 36.8 39.3 46.6 75.0 97.3 99.8 100.0 97.0 100.0 100.0 100.0 52.5 63.7 68.8 72.4

Two-step system GMM estimator based on “SYS2” with Windmeijer standard errors
50 17.9 12.7 4.9 − 7.3 7.3 4.3 − 78.5 81.6 40.0 − 4.9 5.4 2.5 −
150 17.6 20.4 23.8 24.4 9.7 24.1 36.1 38.7 86.0 98.9 99.9 99.9 3.6 8.8 13.9 16.3
500 10.9 15.4 16.2 16.0 43.4 87.0 97.1 99.9 86.5 99.7 99.8 100.0 5.3 17.7 26.1 34.0

Continuous-updating system GMM estimator based on “SYS2”
50 69.8 85.8 94.3 − 63.4 81.6 92.2 − 97.4 98.2 99.3 − 73.8 89.5 95.8 −
150 49.4 51.9 60.1 67.2 58.4 89.7 96.0 97.7 94.3 95.9 93.3 95.8 75.1 96.2 99.3 99.5
500 29.2 27.3 27.7 27.7 82.4 99.9 100.0 100.0 90.1 87.3 83.4 79.3 93.3 100.0 100.0 100.0

Continuous-updating system GMM estimator based on “SYS2” with NW standard errors
50 43.5 30.3 21.3 − 35.2 28.3 19.8 − 46.8 27.4 21.2 − 10.0 2.5 1.6 −
150 30.3 27.1 28.8 26.2 38.2 70.8 81.8 81.0 63.0 48.0 34.4 27.4 22.5 25.7 21.1 12.4
500 17.5 14.6 13.3 14.8 66.5 96.6 99.3 99.9 57.6 44.9 29.8 19.7 44.1 79.7 89.8 93.6

Note: See notes to Table 13.
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