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Abstract

This paper extends the transformed maximum likelihood approach for estimation of dynamic
panel data models by Hsiao, Pesaran, and Tahmiscioglu (2002) to the case where the errors are cross-
sectionally heteroskedastic. This extension is not trivial due to the incidental parameters problem
that arises, and its implications for estimation and inference. We approach the problem by working
with a mis-specified homoskedastic model. It is shown that the transformed maximum likelihood
estimator continues to be consistent even in the presence of cross-sectional heteroskedasticity. We
also obtain standard errors that are robust to cross-sectional heteroskedasticity of unknown form.
By means of Monte Carlo simulation, we investigate the finite sample behavior of the transformed
maximum likelihood estimator and compare it with various GMM estimators proposed in the liter-
ature. Simulation results reveal that, in terms of median absolute errors and accuracy of inference,
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1 Introduction

In dynamic panel data models where the time dimension (7') is short, the presence of lagged dependent
variables among the regressors makes standard panel estimators inconsistent, and complicates statisti-
cal inference on the model parameters considerably. Over the last few decades, a sizable literature has
been developed on the estimation of dynamic panel data models. Early work includes the Instrumental
Variables (IV) approach by Anderson and Hsiao (1981, 1982). More recently, a large number of studies
have been focusing on the generalized method of moments (GMM), see, among others, Holtz-Eakin,
Newey, and Rosen (1988), Arellano and Bond (1991), Arellano and Bover (1995), Ahn and Schmidt
(1995) and Blundell and Bond (1998). One important reason for the popularity of GMM in applied
economic research is that it provides asymptotically valid inference under a minimal set of statistical
assumptions. Arellano and Bond (1991) suggested to transform the dynamic model into first differ-
ences to eliminate the individual-specific effects, and then use a set of moment conditions where lagged
variables in levels are used as instruments. Blundell and Bond (1998) showed that the performance
of this estimator deteriorates when the parameter associated with the lagged dependent variable is
close to one and/or the variance ratio of the individual effects to the idiosyncratic errors is large since
in these cases the instruments are only weakly related to the lagged dependent variables.! Among
others, the poor finite sample properties of GMM has been documented in Monte Carlo studies by
Kiviet (2007). To deal with this problem, Arellano and Bover (1995) and Blundell and Bond (1998)
proposed the use of extra moment conditions arising from the model in levels, available when the
initial observations satisfy certain conditions. The resulting GMM estimator, known as system GMM,
combines moment conditions for the model in first differences with moment conditions for the model
in levels. We refer to Blundell, Bond, and Windmeijer (2000) for an extension to the multivariate
case, and for a Monte Carlo study of the properties of GMM estimators using moment conditions from
either the first differenced and/or levels models. Bun and Windmeijer (2010) proved that the equation
in levels suffers from a weak instrument problem when the variance ratio is large. Hayakawa (2007)
also shows that the finite sample bias of the system GMM estimator becomes large when the variance
ratio is large.

The GMM estimators discussed so far have been widely adopted in the empirical literature, to
investigate problems in areas such as labour economics, development economics, health economics,
macroeconomics and finance. Theoretical and applied research on dynamic panels has mostly focused
on the GMM, and has by and large neglected the maximum likelihood (ML) approach. Indeed, the
incidental parameters issue and the initial values problem lead to a violation of the standard regularity
conditions for the ML estimators of the structural parameters to be consistent. Hsiao et al. (2002)
developed a transformed likelihood approach to overcome the incidental parameters problem. Binder
et al. (2005) have extended this approach for estimating panel VAR (PVAR) models. Alvarez and

Arellano (2004) have studies ML estimation of autoregressive panels in the presence of time-specific

!See also the discussion in Binder, Hsiao, and Pesaran (2005), who proved that the asymptotic variance of the Arellano
and Bond (1991) GMM estimator depends on the variance of the individual effects.



heteroskedasticity (see also Bhargava and Sargan (1983)). Kruiniger (2008) considers ML estimation
of a stationary/unit root AR(1) panel data models.

In this paper, we extend the analysis of Hsiao et al. (2002) to allow for cross-sectional heteroskedas-
ticity. This extension is not trivial due to the incidental parameters problem that arises, and its im-
plications for estimation and inference. To deal with the problem, we follow the GMM literature and
ignore the error variance heterogeneity and work with a mis-specified homoskedastic model, and show
that the transformed maximum likelihood estimator by Hsiao et al. (2002) continues to be consistent.
We then derive a covariance matrix estimator which is robust to cross-sectional heteroskedasticity.
Using Monte Carlo simulations, we investigate the finite sample performance of the transformed like-
lihood estimator and compare it with a range of GMM estimators. Simulation results reveal that,
in terms of median absolute errors and accuracy of inference, the transformed likelihood estimator
outperforms the GMM estimators in almost all cases when the model contains an exogenous regressor,

and in many cases if we consider pure autoregressive panels.

The rest of the paper is organized as follows. Section 2 describes the model and its underlying as-
sumptions. Section 3 proposes the transformed likelihood estimator for cross-sectionally heteroskedas-
tic errors. Section 4 reviews the GMM approach as applied to dynamic panels. Section 5 describes
the Monte Carlo design and comments on the small sample properties of the transformed likelihood

and GMM estimators. Finally, Section 6 ends with some concluding remarks.

2 The dynamic panel data model

Consider the panel data model

Yit = i + VYit—1 + BTit + Ui, (1)
fori=1,2,...,N. It is supposed that these dynamic processes have started at time ¢ = —m, (m being a
finite positive constant) but we only observe the observations (y;;, x;) over the period t = 0,1,2,....,T.

We assume that z;; is a scalar to simplify the notation. Extension to the case of multiple regressors

is straightforward at the expense of notational complexity. We further assume that z; is generated

either by
o0 o
=it Ot Y ageieg, Y lajl < o9 2)
j=0 j=0
or o oo
Ary = ¢ + Zdj&‘,t—j, Z |d;| < o0 (3)
j=0 J=0

where u; can either be fixed constants, differing across 4, or randomly distributed with a common
mean, and ¢; are independently distributed over ¢ and ¢ with E(g;) = 0, and var(ey) = ‘7521‘7 with
0<% <K <oo.

We shall also consider the following assumptions:



Assumption 1 (Initialization) Depending on whether the y;; process has reached stationarity, one of
the following two assumptions holds:

(i) | v |< 1, and the process has been going on for a long time, namely m — oo;

(ii) The process has started from a finite period in the past not too far back from the Oth period, namely

for given values of y; —m41 with m finite, such that
E(Ayi7,m+1|A{L‘i1, A.:UZ'Q, ceey AZL’ZT) = b, fO’l“ all i,
where b is a finite constant.

Assumption 2 (shocks to equations) Disturbances u; are serially and cross-sectionally independently
distributed, with E (uy) = 0, E (uft) =02, and E (uft/af) = K, such that 0 < 0? < K < oo, and
O<k<K<oo, fori=1,2,... N andt=1,2,...,T.

Assumption 3 (shocks to regressors) iy in x;y are independently distributed over all i and t, with
E(ey) =0, and E (5%) = 03 and independent of u;s for all s and t.
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Assumption 4 (constant variance ratio) o2, /o? = c, fori=1,2,...,N, with 0 < ¢ < K < 00.

Remark 1 Assumption 1.(ii) constrains the expected changes in the initial values to be the same
across all individuals, but does not necessarily require that | v |< 1. Assumptions 2, 3, and 4 allow
for heteroskedastic disturbances in the equations for y; and x;, but to avoid the incidental parameter
problem require their ratio to be constant overi. Also Assumption 8 requires x;; to be strictly exogenous.
These restrictions can be relaxed by considering a panel vector autoregressive specification of the type
considered in Binder et al. (2005). However, these further developments are beyond the scope of the

present paper. See also the remarks in Section 6 .

3 Transformed likelihood estimation
Take the first differences of (1) to eliminate the individual effects:
Ayit = YAyi -1 + BAZi + Ay, (4)

which is well defined for t = 2, 3,...,T, but not for ¢ = 1, because the observations y; —1,¢=1,2,..., N,

are not available. However, starting from Ay; _,,+1, and by continuous substitution, we obtain

m—1 m—1
Ayt =" AYi—m+41 + B Z vV Azi—j + Z v Auga—j.
7=0 J=0



Note that the mean of Ay;; conditional on Ay; 41, Az, Az, ..., given by
m—1 .
ni1 = E (Ayit| Ay —mi1, Azin, Azio, ...) = Y™ Ay —mi1 + B Z vV Az, (5)

j=0

is unknown, since the observations Ax;i_;, for j = 1,2,...,m — 1,4 = 1,2, ..., N are unavailable. To
solve this problem, we need to express the expected value of 7,1, conditional on the observables, in
a way that it only depends on a finite number of parameters. The following theorem provides the
conditions under which it is possible to derive a marginal model for Ay;1, which is a function of a

finite number of unknown parameters.

Theorem 1 Consider model (1), where x;; follows either (2) or (3). Suppose that Assumptions 1, 2,
3, and 4 hold. Then Ay;1 can be expressed as:

Ay = b+ 7' Ax; + v, (6)

. . . . /
where b is a constant, 7 is a T-dimensional vector of constants, Ax; = (Azj1, Azxio, ..., Axyr)’, and viy

is independently distributed across i, such that E(vi) =0, and E(v)/0? = w, with 0 < w < K < oo.

Note that Assumption 4 is used to show that E(v3)/o? does not vary with i.

It is now possible to derive the likelihood function of the transformed model given by equations
(6) and (4) for t =2,3,...,T. Let Ay; = (Ayi1, Ayia, ..., AyiT)/,

1 AX, 0 0
0 0 Ay Az
0 0 Ayir1 Axyr
and note that the transformed model can be rewritten as

Ay; = AW;p + 1, (7)

with ¢ = (b, 7,7, ). The covariance matrix of r; = (vi1, Augo, ..., Ausp) has the form:

where w is a free parameter defined in Theorem 1.



The log-likelihood function of the transformed model (7) is given by

N
NT T N
((Yn) = ——In(2r) - 521%2 — S +T(w-1)]
=1
1L 1
-5 3 — (Ay; — AW, ) Q71 (Ay; — AW, ),
i=1 "t

where ¥ = ((,o/ LW, o%, a%, ...012\,)/. Unfortunately, the maximum likelihood estimation based on £(%) )

encounters the incidental parameter problem of Neyman and Scott (1948) since the number of pa-
rameters grows with the sample size, N. Following the mis-specification literature in econometrics,
(White, 1982; Kent, 1982), we examine the asymptotic properties of the ML estimators of the param-
eters of interest, ¢ and w, using a mis-specified model where the heteroskedastic nature of the errors
is ignored.

Accordingly, suppose that it is incorrectly assumed that the regression errors u;; are homoskedastic,

2 2

ie., o0 =0 4i=1,2,..,N. Then under this mis-specification the pseudo log-likelihood function of

the transformed model (7), is given by

NT NT N
0, (0) = —71n(27r)—71n(02)—51n[1+T(w—1)]
1%@ AW,0) 271 (Ayi — AWe0) ()
902 Yi iP yi i®)
=1

where 6 = (cp’ ,w,aQ)l is the vector of unknown parameters. Let 0 be the estimator obtained by

maximizing the pseudo log-likelihood in (9), and consider the pseudo-score vector

LYY AW (Ay; — AW o)
N
90 = _% + 20—%92 Ei:l r;(I)ri )
ST e,

where g = [2] =1+ T(w — 1), (see (40)), and

T2 T(T - 1) T(T —2) T
o T(T: 1) (T 7 1?2 (T - 1):(T -2) ... (T f 1) . (10)
T (T —1) (T — 2) . 1



Under heteroskedastic errors, the pseudo-true value of @ denoted by 6. = (¢, ws,02)’, is the solution
of E[0¢y,(0)/00] = 0, namely

N
Y E[AWQ ! (Ayi — AW,p,)] = 0, (11)
=1
_N gQZE (t)®r;) = 0, (12)
NT 1
* =1

where expectations are taken with respect to the true probability measure, and g, = 1+ T (wx — 1).
Focusing first on (12) and (13), we have

N N
Y E(rj®r) = ) oitr(®Q) = NoyTy,
=1 ]

N

Y E(ri.'r;) = TNoxtr(Q,'Q)/T,

=1

where 5%, = N1 Zfil 02 and (42) is used. Hence, using the above results in (12) and (13), we have

NT 1 NT 1
_ —— N&2tr (®Q) = ——— NonTg =0,
29 20292 oxtr (29) 29, +20*g* oNT9
N
1 NT Q!

From the first equation, we have 02/6% = g/g« = 1+ T (w—1)] /[1 + T (w« — 1)]. From the second
equation, we have 02/53; = tr(Q; ') /T. Using these two, we have

1+T(w-1) 1

T T 1) Ttr(ﬂ,jlﬂ). (14)

To solve this equation for w,, we first note that note that
tr(Q1Q) /T =1+ g, (w — wy).

This result follows since all elements of A = € — €, are zero, except for the first element of A which
is given by w — wy. Substituting this into (14), and after some algebra we have (T' — 1)( wy —w) =0,
which yields w, = w for all T > 1. It also follows that 02 = limy_,o, 6% Using the former result in

(11), we have ¢, = ¢. These results are stated formally in the following theorem.

Theorem 2 Suppose that Assumptions 1, 2, 3, and 4 hold, and let 8, = (cp*,w*, ) be the pseudo



true values of the ML estimator obtained by maximizing the pseudo log-likelihood function in (9).

Then, we have

P =P, wi=w, o, = lim N_lg o2
i

This is one of the key results of this paper. This theorem shows that the first (7T'+ 4) entries
of 6, are identical to the first (7' + 4) entries of 9. This indicates that the ML estimator of ¢
and w obtained under mis-specified homoskedastic models will continue to be consistent, namely, the
transformed ML estimator by Hsiao et al. (2002) is consistent even if cross-sectional heteroskedasticity
is present.

The following theorem establishes the asymptotic distribution of the ML estimator of the trans-

formed model.

Theorem 3 Suppose that Assumptions 1, 2, 8 and 4 hold and let 0= (go' w 32) be the ML estimator
obtained by maximizing the pseudo log-likelihood function in (9). Then as N tends to infinity, 0 is

asymptotically normal with

VN (6-6.) SN (0, A7 1B A (15)
where 0, = (@', w,02),
. 1 9%, (6.) o [106,(6.) 00, (6.)
A= NlinooE[_N 0006’ ] and Br= PN 00 o0

To obtain consistent estimators of A* and B*, robust to unknown heteroskedasticity, let
/fz = Ayi - szgb
Further, let

UNT— TN IZ/I'\/Q I‘z,

be an estimator of N1 Zf\il 012 . Then a consistent estimator of A*, denoted as A*, is given by

ﬁ%zﬁl AW/Q AW, SN AW/SE; 0

2N~2
~ 1 T2 T
* ——— TPAW,; —
A" = gQNO'?\,T ZZ 11 292 29‘712\7T
T T
O 2g512VT 2(0.2 )2
NT

To obtain a consistent estimator of B*, denoted by ]§*, we also need to assume that the fourth moment

of (vi1 — wi1)/0; is homogeneous across . In particular,

Assumption 5 (kurtosis condition) Assume that E(n}) = k = 42 + 3 for i = 1,2,.., N, where

ni1 = (vi1 — wi1)/[oi(w — 1)/?], and ~o is the Pearson’s measure of kurtosis.



This assumption is used in combination with Assumption 2 to consistently estimate N~ Ef\i 1 0?

by %7 defined in the Appendix by (66). Then the elements of B*are given by:

N
~ 1 ~
Tl = Z AWéﬂ_lri?Q_lAWi,

N (&Jz\fT)2 i=1 Z

N T2 RN A
§Q—A4~2)2{N 1Z<1T1> — 0PN (-

4g (JNT i=1
_ T2 AN A
By =——"—3 N12<H> —GNT ¢
4(‘712VT)4 i=1 T
1 N
2 = ?ﬁ—lAW) TOT;)
e ) e
1 N
Bl = (?’ﬁ_lAW) (?9—1?),
31 ON (5_,12VT)3 ; i 1 7 1
T2 1 L ¥eE PO IF
B — . i R A
273 B) [NZ T """NT]

4 GMM approach

In this section, we review the GMM approach as a basis for the simulation studies in the next section.

In the GMM approach, it is assumed that a; and u; have an error components structure, in which?
E(a;) =0, E(uy)=0, E(xuy)=0, fori=1,..,N; andt=1,2,...,T, (16)
and the errors are uncorrelated with the initial values
E (yioui) =0, fori=1,2,..,N, andt=1,2,...,T. (17)

As with the transformed likelihood approach, it is also assumed that the errors, w;, are serially and

cross-sectionally independent:

E (ujuis) =0, fori=1,2,.,N, andt #s=1,2,...,T. (18)

2Note that no restrictions are placed on E(w;ui:) under the transformed likelihood approach



4.1 Estimation
4.1.1 The first-difference GMM estimator

Under (16)-(18), and focusing on the equation in first differences, (4), Arellano and Bond (1991)
suggest the following 7'(T" — 1)/2 moment conditions:

E [yisAug] = 0, (s=0,1,...t —2,t=2,3,..T). (19)

If regressors, x;, are strictly exogenous, i.e., if E (x;su;) = 0, for all ¢ and s, then the following

additional moments can also be used
E[z;sAuy) =0, (s,t=2,..,T). (20)
The moment conditions (19) and (20) can be written compactly as:
E|Zi| =0,

where w; = q; — Wid, 0= (%5), = (01,02)" and

Yi0y Lily -+ey TiT 0 0
. 0 Yi0s Yils Tily ooey TiT  ooe 0
Z; = ,
0 0 ceo Yi0s o Yi, T—25 Tidy oeny TiT
Ayio Ayin Az
élz' = s W,; =
Ayir Ayir—1 Az

The one and two-step first-difference GMM estimators based on the above moment conditions are
given by
) -1
~dif - . -1 . - . -1 .
domm = ZwW (Dlstep) Szw Szw (Dlstep) San (21)

~dif . . -1 . -1 . -1
5GMM2 = ( ,ZW (D28t6p> SZW> S/ZW (D28t6p> Squ (22)

: 1 N v : 1N 1 T 1 ~N mryr7. T 1 N Sy
where Sz = N 21:1 ZZ-WZ', SZq =N Zi:l Z,‘Qia Dlstep - N 21;21 ZiHZiv DQstep - N Zi:l Ziuiuizu

—~ . ~d
w=q; — Wléé]]\} a1, and H is a matrix with 2’s on the main diagonal, -1’s on the first sub-diagonal

and 0’s otherwise.

10



4.1.2 System GMM estimator

Although consistency of the first-difference GMM estimator is obtained under a mild assumption of
no serial correlation, Blundell and Bond (1998) demonstrated that it suffers from the so called weak
instruments problem when ~ is close to one and/or the variance ratio var(a;)/var(u;) is large. As
a solution, these authors propose the system GMM estimator due to Arellano and Bover (1995) and
show that it works well even if v is close to unity. But as shown recently by Bun and Windmeijer
(2010), the system GMM estimator continues to suffer from the weak instruments problem when the
variance ratio var(q;)/var(u;) is large.

To introduce the moment conditions for the system GMM estimator, the following additional

homogeneity assumptions are required:

E(yisci) = E(ynoy), for all s and t,
E(zisa) = E(ria;), for all s and ¢.

Under these assumptions, we have the following moment conditions:
E[Ayw (ai—i—uit)] =0, (8: 1,...,t—1,t:2,3,...,T), (23)

E[Ax;s (o + ui)] = 0, (s,t=2,3,...,7T). (24)

For the construction of the moment conditions for the system GMM estimator, given the moment
conditions for the first-difference GMM estimator, some moment conditions in (23) and (24) are
redundant. Hence, to implement the system GMM estimation, in addition to (19) and (20), we use

the following moment conditions:

FE [Ayiﬂg,l (Oéi + ult)] = 0, (t =2,3,..., T), (25)
ElAzg (s +ug)] = 0, (t=2,3,..T). (26)

The moment conditions (19), (20), (25) and (26) can be written compactly as

E [Z;ﬁz} —o,

11



where uz = qz — Wzd,

Ayil,Axig 0 0
; .. 5 0 Ayin, Az 0
7, = diag (zz) Z; = , . . 7

0 0 Ayi,T—la Al’iT
. Yi2 W Yi1 Ti2
. qi v . X i X . .
4 = , A p— . 5 W: v 3 W: . .
o (8w [T () e[
Yir Yir—-1 XiT

The one and two-step system GMM estimators based on the above conditions are given by

~SYS

. 3} —1.. -1 ) 1.
darvan = (S'zw (Dlstep) SZW> Shw (Dlstep) Szq, (27)
sys ., B} —1., -t B} —1.
dcvumz = | Szw (D2step> Szw | Szw (DZStep) Szq; (28)
where Sy = % vazl Z;Wz, qu ~ ZN Z’qz and Dlstep diag ( L 25\]:1 Z;HZZ, % val Z'-v )
The two—step system GMM estimator is obtained by replacing D1 step With ]jgstep ~ ZN 7' qu Z

~ . ~sys
where u; = - W, 6G'MM1

4.1.3 Continuous-updating GMM estimator

Since the two-step GMM estimators have undesirable finite sample bias property, (Newey and Smith,
2004), alternative estimation methods have been proposed in the literature. These include the empir-
ical likelihood estimator, (Qin and Lawless, 1994), the exponential tilting estimator (Kitamura and
Stutzer, 1997; Imbens, Spady, and Johnson, 1998) and the continuous updating (CU-) GMM estimator
(Hansen, Heaton, and Yaron, 1996), where these are members of the generalized empirical likelihood
estimator (Newey and Smith, 2004). Amongst these estimators, we mainly focus on the CU-GMM
estimator as an alternative to the two-step GMM estimator.

To define the CU-GMM estimator, we need some additional notation. Let Z; denote Z; or Zi, and
1; denote u; or 1;. Also, let m be the number of columns of Z;, i.e., the number of instruments, and

set

N<

1 & 1 &
60 = Zin 80)= D e0) A= > [(0) - &0 [u:5) -6
Then, the CU-GMM estimator is defined as
domm-cu = arg m(sin Q(9), (29)
Q8) = B(6)Q0)'8(5)/2. (30)

12



Newey and Smith (2004) demonstrate that the CU-GMM estimator has a smaller finite sample bias
than the two-step GMM estimator.

4.2 Inference
4.2.1 Alternative standard errors

In the case of GMM estimators the choice of the covariance matrix is often as important as the choice of
the estimator itself for inference. Although, it is clearly important that the estimator of the covariance
matrix should be consistent, in practice it might not have favorable finite sample properties and result
in inaccurate inference. To address this problem, some modified standard errors have been proposed.
For the two-step GMM estimators, Windmeijer (2005) proposes corrected standard errors for linear
static panel data models which are applied to dynamic panel models by Bond and Windmeijer (2005).
For the CU-GMM, while it is asymptotically equivalent to the two-step GMM estimator, it is more
dispersed than the two-step GMM estimator in finite samples and inference based on conventional
standard errors formula results in a large size distortion. To overcome this problem, Newey and
Windmeijer (2009) propose an alternative estimator for the covariance matrix of CU-GMM estimators
under many-weak moments asymptotics and demonstrate by simulation that the use of the modified

standard errors improve the size property of the tests based on the CU-GMM estimators.?

4.2.2 Weak instruments robust inference

As noted above, the first-difference and system GMM estimators could be subject to the weak in-
struments problem. In the presence of weak instruments, the estimators are biased and inference
becomes inaccurate. As a remedy for this, some tests that have correct size regardless of the strength
of instruments have been proposed in the literature. These include Stock and Wright (2000) and
Kleibergen (2005). Stock and Wright (2000) propose a GMM version of the Anderson and Rubin(AR)
test (Anderson and Rubin, 1949). Kleibergen (2005) proposes a Lagrange Multiplier (LM) test. This
author also extends the conditional likelihood ratio (CLR) test of Moreira (2003) to the GMM case
since the CLR test performs better than other tests in linear homoskedastic regression models.

We now introduce these tests. The GMM version of the AR statistic proposed by Stock and
Wright (2000) is defined as

AR(8) = 2N - Q(5). (31)

Under the null hypothesis Hy : § = &, this statistic is asymptotically (as N — oo) distributed as x?2,,

regardless of the strength of the instruments, where m is the dimension of §.

3For the precise definition of many weak moments, see Newey and Windmeijer (2009).

13



The LM statistic proposed by Kleibergen (2005) is

La1(6) = N - A (5 5ya6) Do) YA, (32)
where D(8) = (al(a),HQ(a)) with
Lo 1n0800)  (1m08(0) <) eratis .
dﬂé)_JVEZ o5, ]V§: 25, g;(8) | Q8)"'g(s), forj=1and?2
=1 i=1

Under the null hypothesis Hy : 6 = &y, this statistic follows x3, asymptotically
The GMM version of the CLR statistic proposed by Kleibergen (2005) is given by

CLR(6) = % AR(8) — R(8) + \/ (AR((S) - fz(a))Q +ALM(8)R(8) (33)

where E(é) is a statistic which is large when instruments are strong and small when the instruments
are weak, and is random only through ]5(6) asymptotically. In the simulation, following Newey and
Windmeijer (2009), we use R(8) = N - Amin (f)(d)’ﬁ((ﬂ_lf)(é)) where A\jin(A) denotes the smallest
eigenvalue of A. Under the null hypothesis Hy : § = dp, this statistic asymptotically follows a
nonstandard distribution which can be obtained by simulation?.

These tests are derived under the standard asymptotic where the number of moment conditions
is fixed. Recently, Newey and Windmeijer (2009) show that these results are valid even under many

weak moments asymptotics.

5 Monte Carlo simulations

In this section, we conduct Monte Carlo simulations to investigate the finite sample properties of
the transformed log-likelihood approach and compare them to those of the various GMM estimators

proposed in the literature and discussed in the previous section.

5.1 ARX(1) model

We first consider a distributed lag model with one exogenous regressor (ARX(1)), which is likely to

be more relevant in practice than the pure AR(1) model which will be considered later.

“For the details of computation, see Kleibergen (2005) or Newey and Windmeijer (2009).

14



5.1.1 Monte Carlo design

For each i, the time series processes {y;;} are generated as

Yit = o +YYis—1+ Bri +uy, fort=-m+1,-m+2,.,0,1,...T, (34)

with the initial value y; —m = @i + B%i—m + Ui—m, and u; ~ N(0,02), with o? ~ U[0.5,1.5], so
that E(c?) = 1. We discard the first m observations, and use the observations t = 0 through T for

estimation and inference.® The regressor, x;;, is generated as

it = i + gt + G, fort=-m,-m-+1,..,0,1,....,T, (35)

where
Gt = ¢Gi—1+ it fort =—-49 —m,—-48 —m,...,0,1,...., T, (36)
eir ~ N(0,0%), §i,—m—50 = 0. (37)

with |¢| < 1. We discard the first 50 observations of (;; and use the remaining 7'+ 1 + m observations
for generating x;; and y;;.

In the simulations, we try the values v = 0.4,0.9, 8 = 0.5, ¢ = 0.5, and g = 0.01. The error

2

variances oZ; are set so that to ensure a reasonable fit, namely®

, _ O, (1+6)(1 - ¢)
€t ,32 (1 _ R2Ay)

with Riy = 0.4. The sample sizes considered are N = 50,150,500 and T = 5,10,15. For the

g

individual effects, we set a; = 7 (qi/_;> , where ¢; ~ x?. For the value of 7, which is the variance ratio,

T = var(«a;) /var(ui), we consider the values of 7 = 1 often used in the literature, and the high value
of 7 = 5. Further, we assume that both y;; and x; depend linearly on the same individual effects, by
taking u; = no; where the value of 1 is computed by (69) in the Appendix A.5 with Rf/ =04

In computing the transformed ML estimators we use the minimum distance estimator of Hsiao

et al. (2002) as starting values for the nonlinear optimization where w is estimated by the one-step

SHence, T + 1 is the actual length of the estimation sample.
5For the derivation of RZAy, see Appendix A.5.
"Since (69) is a quadratic equation, we have two solutions. In the simulations, we used the positive solution.

15



first-difference GMM estimator (21) in which Z; is replaced with

Yir—2 TiT-1 YiT-3 TiT-2

For the GMM estimators, although there are many moment conditions for the first-difference GMM
estimator as in (19) and (20), we consider two sets of moment conditions which only exploit a subset
of instruments. The first set of moment conditions, denoted as “DIF1”, consists of E(y;sAu;;) = 0 for
s=0,.,t—=2;t=2,..,T and E(zjsAuy) =0 for s =1,...,t;t = 2,...,T. In this case, the number of
moment conditions are 24, 99, 224 for T' = 5, 10, 15, respectively. The second set of moment conditions,
denoted as “DIF2”, consist of E(y;;—2_jAuy) =0 with i =0fort=2,1=0,1fort =3,...,7 and
E(x;p—1Auy) = 0 with I = 0,1 for ¢t = 2,1 = 0,1,2 for t = 3,...,7. In this case, the number of
moment conditions are 18, 43, 68 for T' = 5,10, 15, respectively. Similarly, for the system GMM
estimator, we add moment conditions (25) and (26) in addition to “DIF1” and “DIF2”, which are
denoted as “SYS1” and “SYS2”, respectively. For “SYS1” we have 32, 117, 252 moment conditions for
T = 5,10, 15, respectively, while for “SYS2” we have 26, 61, 96 moment conditions for T' = 5, 10, 15,
respectively.

In a number of cases where NN is not sufficiently large relative to the number of moment conditions
(for example, when T' = 15 and N = 50) the inverse of the weighting matrix can not be computed.
Such cases are denoted — in the summary result tables.

For inference, we use the robust standard errors formula given in Theorem 2 for the transformed
likelihood estimator. For the GMM estimators, in addition to the conventional standard errors, we
also compute Windmeijer (2005)’s standard errors with finite sample correction for the two-step GMM
estimators and Newey and Windmeijer (2009)’s alternative standard errors formula for the CU-GMM
estimators.

In addition to the MC results for v and B, we also report simulation results for the long-run
coefficient defined by 6 = /(1 — 7). We report median biases, median absolute errors (MAE), size
and power for v, 5 and 6. The power is computed at v — 0.1,  — 0.1 and (8 —0.1)/(1 — (v — 0.1)),
for selected null values of v and . All tests are carried out at the 5% significance level, and all

experiments are replicated 1,000 times.

5.1.2 Results for the ARX(1) model

To save space, we report the results of the GMM estimators which exploit moment conditions “DIF2”
and “SYS2” only. The reason for selecting these moment conditions is that, in practice, these moment
conditions are often used to mitigate the finite sample bias caused by using too many instruments. A

complete set of results giving the remaining GMM estimators that make use of additional instruments
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are provided in a supplement available from the authors on request.

The small sample results for v are summarized in Tables 1 to 4. Table 1 provides the results for
the case of v = 0.4, and shows that the transformed likelihood estimator has a smaller bias than the
GMM estimators in all cases with the exception of the CU-GMM estimator (the last panel of Table
1). In terms of MAE the transformed likelihood estimator outperforms the GMM estimators in all
cases.

As for the effect of increasing the variance ratio, 7, on the various estimators, we first recall that
the transformed likelihood estimator must be invariant to the choice of 7, although the estimates
reported in Table 1 do show some effects, albeit small. The observed impact of changes in 7 on the
performance of the transformed likelihood estimator is solely due to computational issues and reflects
the dependence of the choice of initial values on 7 in computation of the transformed ML estimators.
One would expect that these initial value effects to disappear as IV is increased, and this is seen to be
the case from the results summarized in Table 1. In contrast, the performance of the GMM estimators
deteriorates (in some case substantially) as 7 is increased from 1 to 5. This tendency is especially
evident in the case of the system GMM estimators, and is in sharp contrast to the performance of the
transformed likelihood estimator which are robust to changes in 7. These observations also hold if we
consider the experiments with v = 0.9 (Table 2). Although the GMM estimators have smaller biases
than the transformed likelihood estimator in a few cases, in terms of MAE, the transformed likelihood
estimator performs best in all cases.

We next consider size and power of the various tests, summarized in Tables 3 and 4. Table 3 shows
that the empirical size of the transformed likelihood estimator is close to the nominal size of 5% for
all values of T', N and 7.

For the GMM estimators, we find that the test sizes vary considerably depending on T', N, 7, the
estimation method (1step, 2step, CU), and whether corrections are applied to the standard errors.
In the case of the GMM results without standard error corrections, most of the GMM methods are
subject to substantial size distortions when NV is small. For instance, when N =50, T' =5, and 7 = 1,
the size of the test based on DIF2(2step) estimator is 30.4%. But the size distortion gets smaller as
N increases. Increasing N to 500, reduces the size of this test to 6.6%. However, even with N = 500,
the size distortion gets larger for two-step and CU-GMM estimators as T increases.

As to the effects of changes in 7 on the estimators, we find that the system GMM estimators are
significantly affected when 7 is increased. When 7 = 5, all the system GMM estimators have large
size distortions even when T'= 5 and N = 500, where conventional asymptotics are expected to work
well. This may be due to large finite sample biases caused by a large 7.

Amongst the tests based on corrected GMM standard errors, Windmeijer (2005)’s correction seems
to be quite useful, and in many cases it leads to accurate inference, although the corrections do not
seem able to mitigate the size problem of the system GMM estimator when 7 is large. The standard
errors of Newey and Windmeijer (2009) are not always helpful, and although they improve the size

property in some cases, they have either little effects or tend to worsen the test sizes in other cases.
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Comparing power of the tests, we observe that the transformed likelihood estimator is in general
more powerful than the GMM estimators. For example when N = 150, the transformed likelihood
estimators have higher power than “SYS2(2stepy)” which is the most efficient amongst the reported
GMM estimators.

The above conclusions hold generally when we consider experiments with v = 0.9 (Table 4),
except that the system GMM estimators now perform rather poorly even for a relatively large N. For
example, when v = 0.9, T'=5, N = 500 and 7 = 1, size distortions of the system GMM estimators
are substantial, as compared to the case where v = 0.4. Although it is known that the system GMM
estimators break down when 7 is large®, the simulation results in Table 4 reveal that they perform
poorly even when 7 is not so large (7 = 1).

The small sample results for 5 (Tables 5 to 8), are similar to the results reported for 7. The
transformed likelihood estimator tends to have smaller biases and MAEs than the GMM estimators
in many cases, and there are almost no size distortions for all values of 7', N and 7. The performance
of the GMM estimators crucially depends on the values of T, N and 7. Unless N is large, the GMM
estimators perform poorly and the system GMM estimators are subject to substantial size distortions
when 7 is large even for N = 500, although the magnitude of size distortions are somewhat smaller
than those reported for ~.

The results for the long-run coefficient, § = §/(1 — «y), are reported in a supplementary appendix,
and are very similar to those of v and 8. Although the GMM estimators outperform the transformed
likelihood estimator in some cases, in terms of MAE, the transformed likelihood estimator performs
best in almost all cases. As for inference, the transformed likelihood estimator has correct sizes for all
values of T, N and 7 when v = 0.4. However, it shows some size distortions when v = 0.9 and the
sample size is small, say, when 7' =5 and N = 50. However, size improves as T" and/or N increase(s).
When T = 15 and N = 500, there is essentially no size distortions. For the GMM estimators, it is
observed that although the sizes are correct in some cases, say, the case with T' =5 and N = 500
when v = 0.4, it is not the case when v = 0.9; even for the case of T'=5 and N = 500, there are size
distortions and a large 7 aggravates the size distortions.

Finally, we consider weak instruments robust tests, which are reported in Tables 9 and 10. We
find that test sizes are close to the nominal value only when T' = 5 and N = 500. In other cases,
especially when N is small and/or T is large, there are substantial size distortions. Although Newey
and Windmeijer (2009) prove the validity of these tests under many weak moments asymptotics, they
are essentially imposing m?/N — 0 or a stronger restriction where m is the number of moment con-
ditions, which is unlikely to hold when N is small and/or T is large. Therefore, the weak instruments
robust tests are less appealing, considering the very satisfactory size properties of the transformed
likelihood estimator, the difficulty of carrying out inference on subset of the parameters using the
weak instruments robust tests, and large size distortions observed for these tests when N is small.

In summary, for estimation of ARX panel data models the transformed likelihood estimator has

8See Hayakawa (2007) and Bun and Windmeijer (2010).
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several favorable properties over the GMM estimators in that the transformed likelihood estimator
generally performs better than the GMM estimators in terms of biases, MAEs, size and power, and

unlike GMM estimators, it is not affected by the variance ratio of individual effects to disturbances.

5.2 AR(1) model
5.2.1 Monte Carlo design

The data generating process is the same as that in the previous section with 8 = 0. More specifically,

y;t are generated as

Yit = O+ VYit—1 + Ui, fort=1,..,Tandi=1,...,N, (38)

(673 1
Yio = 1_7+Ui0\/m7 (39)

where u;; ~ N(0,0?) with o2 ~ U[0.5,1.5]. Note that y;; are covariance stationary. Individual effects

are generated as o; = 7(g; — 1)/v/2 where ¢; ~ x3.

For parameters and sample sizes, we consider v = 0.4,0.9, T' = 5,10, 15,20 N = 50, 150, 500, and
T=15.

Some comments on the computations are in order. For the starting value in the nonlinear opti-
mization routine used to compute the transformed log-likelihood estimator, we use (E, y,@,52%) where
b= N1 Zf\i 1 Ayi1, 7 is the one-step first-difference GMM estimator (21) where W, and Z; are

replaced with?

Yio 0 0
Ayin Vi1 Yio 0

W, = : ) Z; = Yi2 Yi1 Yio ,
Ayir—1 : : :
Yir—2 Yi,7-3 Yi,T—4

5= (N - D52 S, (Aya ~) and 52 = N (T - 2] S, (A — 59301

For the first-difference GMM estimators, we consider two sets of moment conditions. The first set
of moment conditions, denoted as “DIF1”, consists of E(y;sAu;;) =0 for s =0,...,t —2;t =2,....T.
In this case, the number of moment conditions are 10, 45, 105 for T = 5, 10, 15, respectively. The
second set of moment conditions, denoted by “DIF2”, consist of E(y;+—2_jAu;) = 0 with [ = 0 for
t=2,and [ = 0,1 for t = 3,...,T. In this case, the number of moment conditions are 7, 17, 27 for
T = 5,10, 15, respectively.

Similarly, for the system GMM estimator, we add moment conditions E[Ay; ¢+—1(a; + ui)] = 0 for
t =2,...,T in addition to “DIF1” and “DIF2”, which are denoted as “SYS1” and “SYS2”, respectively.

9This type of estimator is considered in Bun and Kiviet (2006). Since the number of moment conditions are three,
this estimator is always computable for any values of N and T' considered in this paper. Also, since there are two more
moments, we can expect that the first and second moments of the estimator to exist.
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For the moment conditions “SYS1”, we have 14, 54, 119 moment conditions for 7" = 5, 10, 15, respec-
tively, while for the moment conditions “SYS2”, we have 11, 26, 41 moment conditions for T" = 5,
10, 15, respectively. With regard to the inference, we use the robust standard errors formula given in
Theorem 2 for the transformed log-likelihood estimator. For the GMM estimators, in addition to the
conventional standard errors, we also compute Windmeijer (2005)’s standard errors for the two-step
GMM estimators and Newey and Windmeijer (2009)’s standard errors for the CU-GMM estimators.

We report the median biases, median absolute errors (MAE), sizes (7 = 0.4 and 0.9) and powers
(resp. v = 0.3 and 0.8) with the nominal size set to 5%. As before, the number of replications is set
to 1, 000.

5.2.2 Results

As in the case of ARX(1) experiments, to save space, we report the results of the transformed likelihood
estimator and the GMM estimators exploiting moment conditions “DIF2” and “SYS2”. Complete set
of results are provided in a supplement, which is available upon request.

The biases and MAEs of the various estimators for the case of v = 0.4 are summarized in Table
11. As can be seen from this table, the transformed likelihood estimator performs best (in terms of
MAE) in almost all cases, the exceptions being the CU-GMM estimators that show smaller biases
in some experiments. As to be expected, the one- and two-step GMM estimators deteriorate as the
variance ratio, 7, is increased from 1 to 5, and this tendency is especially evident for the system GMM
estimator. For the case of v = 0.9 (Table 12), we find that the system GMM estimators have smaller
biases and MAEs than the transformed likelihood estimator in some cases. However, when 7 = 5, the
transformed likelihood estimator outperforms the GMM estimators in all cases, both in terms of bias
and MAE.

Consider now the size and power properties of the alternative procedures. The results for v =
0.4 are summarized in Table 13. We first note that the transformed likelihood procedure shows
almost correct sizes for all experiments. For the GMM estimators, although there are substantial size
distortions when N = 50, the empirical sizes become close to the nominal value as N is increased.
When T" = 5,10 and N = 500 and 7 = 1, the size distortions of the GMM estimators are small.
However, when 7 = 5, there are severe size distortions for the system GMM estimator even when
N = 500. For the effects of corrected standard errors, similar results to the ARX(1) case are obtained.
Namely, Windmeijer (2005)’s correction is quite useful, and in many cases it leads to accurate inference
although the corrections do result in severely under-sized tests in some cases. Also, this correction
does not seem that helpful in mitigating the size problem of the system GMM estimator when 7 is
large. The standard errors of Newey and Windmeijer (2009) used for the CU-GMM estimators are
not always helpful: although they improve the size property in some cases, they have almost no effects
in some cases or worsen the test sizes in other cases.

Size and power of the tests in the case of experiments with v = 0.9 are summarized in Table 14,

and show significant size distortions in many cases. The size distortion of the transformed likelihood
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gets reduced for relatively large sample sizes and its size declines to 7.7% when 7 = 1, N > 150 and
T > 15. As to be expected, increasing the variance ratio, 7, to 5, does not change this result. A
similar pattern can also be seen in the case of GMM-DIF estimators if we consider 7 = 1. But the size
results are much less encouraging if we consider the system GMM estimators. Also, as to be expected,
size distortions of GMM type estimators become much more pronounced when the variance ratio is
increased to 7 = 5.

Finally, we consider the small sample performance of the weak instruments robust tests which are
provided in a supplement, to save space. These results show that size distortions are reduced only
when N is large (N = 500). In general, size distortions of these tests get worse as T', or the number of
moment conditions, increases. In terms of power, although “LM(SYS2)” and “CLR(SYS2)” tests have
almost the same power as the transformed likelihood estimator when v = 0.4, T'= 5, N = 500 and
7 = 1, their powers decline when 7 = 5, unlike the transformed likelihood estimator which is invariant
to changes in 7. For the case of v = 0.9, the results are very similar to the case of v = 0.4. Size

distortions are small only when NV is large. When N is small, there are substantial size distortions.

6 Concluding remarks

In this paper, we proposed the transformed likelihood approach to estimation and inference in dynamic
panel data models with cross-sectionally heteroskedastic errors. It is shown that the transformed
likelihood estimator by Hsiao et al. (2002) continues to be consistent and asymptotically normally
distributed, but the covariance matrix of the transformed likelihood estimators must be adjusted to
allow for the cross-sectional heteroskedasticity. By means of Monte Carlo simulations, we investigated
the finite sample performance of the transformed likelihood estimator and compared it with a range
of GMM estimators. Simulation results revealed that the transformed likelihood estimator for an
ARX(1) model with a single exogenous regressor has very small bias and accurate size property, and
in most cases outperformed GMM estimators, whose small sample properties vary considerably across
parameter values (v and ), the choice of moment conditions, and the value of the variance ratio, 7.

In this paper, x;; is assumed to be strictly exogenous. However, in practice, the regressors may be
endogenous or weakly exogenous (c.f. Keane and Runkle, 1992). To allow for endogenous and weakly
exogenous variables; one could consider extending the panel VAR approach advanced in Binder et al.
(2005) to allow for cross-sectional heteroskedasticity. More specifically, consider the following bivariate

model:

Yit = Qi +VYig—1+ Bri + uy
Tit = O+ QYip—1 + pTip—1 + Vit

where cov(uit,vir) = 6. In this model, x;; is strictly exogenous if ¢ = 0 and 6 = 0, weakly exogenous
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if § = 0, and endogenous if # # 0. This model can be written as a PVAR(1) model as follows

Yir | _ [ it B I + B¢ Bp Yier | [ + B
Tit Qg ¢ p Tig1 Vit 7

for i =1,2,...,N. Let A = {a;;}(¢,j = 1,2) be the coefficient matrix of (y;;—1,2;+—1)" in the above
VAR model. Then, we have 8 = aja/a22, v = a11 — a12a21/a22, p = azz and ¢ = ag;. Thus, if we
estimate a PVAR model in (y;s, x;), allowing for fixed effects and cross-sectional heteroskedasticity,
we can recover the parameters of interest, v and [, from the estimated coefficients of such a PVAR
model. However, detailed analysis of such a model is beyond the scope of the present paper and is left

to future research.

A  Proofs

A.1 Preliminary results

In this appendix we provide some definitions and results useful for the derivations in the paper.

Lemma A1l Let Q be given by (8). Then the determinant and inverse of Q are:

Q = g=1+T(w-1), (40)
T T-1 2 1
T-1|(T-1w .. 2w w

Q! = 4! T—2
2 2w 2[(T-2)w—(T—-3)] (T'-2)w—(T-3)

w e T-2)w-—T-3) T-Nw-(T-2)

The generic (t, s)th element of the (T — 1)x (T — 1) lower block of =1, denoted by Q, can be calculated
using the following formulas, fort,s =1,2,....T — 1:

~ s(T—tw—(s=1)(T—1t), (s<t)
{Q}w - { ) ( (s>1) (41)

Proof. See Hsiao et al. (2002). m
Lemma A2 Let ® be defined in (10). We have

o = 9V,
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where ¢ = (T, T —1,...,2,1) and

tr (®Q) = tr (99'Q) =9'QY =Ty, (42)
where g is given by (40).
Proof. See Hsiao et al. (2002). =

Lemma A3 Let {z;,i = 1,2,...., N} and {z;,i = 1,2,..., N} be two sequences of independently dis-
tributed random wvariables, such that x;z; are independently distributed across i, although x; and z;
need not be independently distributed of each other. Then

(i:;x) (i z)] :éC’ov(xi,zi)+

N

> B ()

=1

N

> E(z)

=1

E

=1

Lemma A4 Consider the transformed model (7). Under Assumptions 1 and 2 we have
E (AW 'r;) =0, (i=1,2,..,N), (43)
where Q is given in (8). Further,
E(x@Aw) =(0 0 = 0), (i=1,2,..N), (44)
where ® is given by (10), and w # 0.

Proof. Let Ay; _1 = (0, Ay, ..., Ay;7—1)" and note that, for (43) to hold, it is only needed to prove
that E (Afﬂﬁlﬂ_lri) = 0. To show this, let p; = Q7 'r; = (pi1, ..., pir)’ where by (41)

T
pi1 = Tvi + Z(T — s+ 1)Auys,
s=2

t T
pr = (T—t+ v+ Y hsluis+ > keBuge,  (t=2,...,T = 1)

s=2 s=t+1
T
pir = Vit + Z hrsAuis
s=2
and
his = (T —t+1)[(s — w — (s — 2)], (45)

ks = (T — s+ 1) [(t — )w — (t — 2)].
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Then, we have

T T-1
E[AY, 17 'ri] = > Elpulyis] E [pitAy;p—1) + E [pir Ay; 1]
t=2 t=2
T—1 t T
= Y E|(T—t+DoalAyir 1+ Y hsBuigAyip 1+ Y keAuiAyiy
t=2 s=2 s=t+1
+E (pir Ayir-1)
T T t
= > (T—t+1)E Wialyiz—1)+ > > husE (AuisAyi 1)
t=2 t=2 s=2
= A+ A

where we used E(Au;sAy;) = 0 for t < s — 1. To derive A; and As, we use the followings!'®

w t=1
E V; A - =
(vi1Ayir) { 7t—zww -1 t=2,..,T
1 t=s—-1
*E(AuisAyy) = (2=1) 5=t

—(I=y)*' 7 s <t

Using (46) and (47), we have

2
Al — O—Z'

T
(T —Dw+ (yw— 1) (T —t+1)7?],
t=3

10These results are obtained by noting that Ay;, can be written as follows

Ay = b+ ' Ax; + Vi1,
t—2 ) t—2 )

Ay = +'Aya +8 <Z V]L',t—j) +> 7 Auiey
j=0 j=0

t—2 t—2
-1 (b + ﬂ'Axi) + 775—10“ + (Z ’}/jxiyt_j> + ZyjAui,t_j, t=2,..,T).

=0 =0
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Ay = haFE(AupAy;
+haa E(AupAyio
+haa E(AuinAy;s
+hse E(AuizAyia

~—

+ has E(AuizAyso)
+ hys E(AuizAy;z) + haa E(Auigs Ay;s)
+ hs3 E(AuizAyia) + hsa E(AuisAyia) + hss E(Auis Ayia)

~— ~— ~~—

+hroE(AupAy;r—1) + hrsE(AuigAyir—1) + - + hrr—o E(Aui 7oAy 7—1) +
+hrr 1 E(Au; 1Ay 7—1) + hrr E(Auir Ayir—1)

T T-1 T t-2
= 02‘2 [(_1) Z hss +(2 =) Z hsy1,s — (1 — 7)2 Z z hesy ™72 (49)
s=2 s=2 t=4 s=2

Then, by using (45), (48) and (49), and after some algebra, we obtain E [Ay; Q7 r;] = Aj+Ay = 0.
To prove (44), first note that E (AW/®r;) is a (T + 3) dimensional vector having all zeros, except
for the (T" 4 2)th entry, given by E (A?Q_léri). We have

T T T—1
’19,1‘1‘ = Z(T —t4+ 1)Uit =Tv; + Z(T —t+ 1)Auit7 ﬁ/Aii,fl = Z(T — S)yis-
t=1 t=2 s=1

Hence, using results (46)-(47), we have

T-1 T—1 T
0;2E (ﬁ’riA§;7_119) = w=T Z(T — 8)E(Ay;svi1) + Z(T —t+ 1)(T — s)E (Ay;sAugyp)
s=1 s=1 t=2
T-1 T—1 s+1
=T Z( ) Ayzsvzl + Z Z —t+ 1 )E (AyzsAuzt)
s=1 s=1 t=1

~
-

= T(T — I)E(Ayﬂvil) + (T - S)E(Ayisvil)

S

Il
¥

+ —t + 1 )E (AyiSAuit)

~
LA
~

-1
+ (T — s+ 1)(T — s)E (AyisAuis) + (T — 5)2E (AyisAu; s41)

s=1 - s=1
= T(T—1w+ (yw—1)Y (T —s)y"?
T—1s—1 =
—(1 =)D Y (T =t + 1)(T = s)y* !
Ts—:11 = T—1
+2-ND (T —s+1)(T—s)— > (T —s)? (50)
s=1 s=1
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which in general is different from zero. m

Lemma A5 Let Ay = —(1/N) (0%¢, (6.) /0008'), where £, (0) is given by (9), and 6, = (¢',w,02)’

18 the vector of pseudo-true values. Then as N tends to infinity and for fized T, we have

plim Ay = A",

N—oo

where A* is a positive definite matriz.

Proof. The elements of A% are given by!!

1 9%, (

Avn = —% 8(,0(94,0 = UQNZAW’ 1AW,
AN = Na22w(29) :—5924‘0393]\7;1‘2@%
Al = Na:(a(?) - 3Nir5“ 1
AN = —ji,aziéi*) = 03912 N ;Awgcbri,

i = ) S

A = o0 (Jg)ggwgrgqm.

Given that, under Assumptions 2 and 3 AW/Q~ Ly;, are independent across i, and, by Lemma A4, have
zero mean, and have finite variance for fixed T', by applying the law of large numbers for heterogeneous
observations (White, 2001), we have

plim — Z AWQ =0.

N—)oo

Further, r/®r; and rgﬂ_lri are independent across ¢, with mean Taizg and Taiz, respectively, and

finite variances for fixed T, so that

N
plim — Zr ®r; = To?g, plim — Zr Q-

N—)oo N—>oo

'See also Hsiao et al. (2002).
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Hence, the matrix A* is given by

N
1 ro—1 /
plim = ;Awiﬂ AW, plim Ng Neio? ZAW Pr; 0
N 2

AT = i 'TPAW - T
J\gim Ng20? ;rl ! 292 290 %2

0 T T
2903 2 (02)?

(51)

Lemma A6 Let by = (1/\/ﬁ) 0l (0.) /08, where £, (0) is given by (9), and 0. = (¢',w,0?) is

the vector of pseudo-true values. Then as N tends to infinity and for fized T, we have
* d *
by — N (0,B¥).
Proof. Note that b}, can be written as

SN AWQ!
1 N
242 Zi:l & )
1 —N
307 Dim1 Gi

L
-

10,0, _
JN 08

1
o2

where &; and (; are given by

fi = I';(I)I‘i — TgO'z-z, CZ = I';Q_II‘Z‘ — F.FO'Z2

(52)

(54)

By Lemma A4, AW;Q_lri has zero mean for all 7. It is easily seen that & and (; have also zero mean.

Then, using Lemma A3, we have

N
R 1 - -
B}, = <§ AW.Q r,§ ri Q- 1AW> WE E (AW i QT AW,)

i=1 %) =1

Again, using Lemma A3, and recalling that E (&) = 0, we have

N
Bj, = 4Ng [Z@ SE Z(r;@ri—Tga?f]

- 4Ng < )
1 N ; N N
= ——=FE (®r;)” — 2T 7 (v ®r;) +T%¢° ) of
4Ng4 (0_2)2 ; (I‘Z rz) Q;Jz (I'Z rz) +1°g ;Uz]
T2

gl
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Similarly
N

12{( ZZI

The off-diagonal elements of B* are (using Lemma A3 and noting that E (AW;Q_lri) = 0 and
E (&) =0):

N
— 72 Zaf}
i=1

r ] (56)

4 (a*

N N
* 1 —
2 = oy =) 92E Z&r;ﬂ AW, | = 2N (0 E Z (X} Q' AW,) (v} ®r; — Tgo?)
* i=1 i=1
1 N
-1
- IN (D) 92E Z(riﬂ AWZ-) (r;@ri) , (57)
* i=1
1 N
B, = N SE D (AW ) (rj 7 'ry) (58)
T i=1
Similarly, using Lemma A3 we have
N N
1 T2 (r’@ri 2) <r’-ﬂlri 2)
B, = ——F G| =———F Y — go; ! — 0;
2T N (;“) V(o2 g [g AN
T2 N r'Q tr; r, Q- r.®r;
= E Akl _ a5 274071 4
AN (02)3 92 Zzl < T T go; T — 0y T + go;
72 N N N
r,®r; r,Q)
vt 2o ) e et o3t e 3l
9 Li=1 i=1 i=1
T2 (r’fI)ri r'Q 1r; 4)
- - E bl LIy R 59

For fixed T, and under Assumption 2, the elements inside the sum operator in expressions (55)-(59)
are finite for all . Hence, (52) is established by applying the central limit theorem for independent
and heterogeneous random variables (White, 2001). m

A.2 Proof of Theorem 1

First note that, under Assumption 1, equation (5) can be rewritten as

m—1

i =b+ BAza + B Y Y E (Awiaj|Ax:) + in, (60)
=1
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where ¢;1 = n;1 — E (ni1]Ax;), and b is zero under Assumption 1.(i) and is equal to b otherwise. Using
either (2) or (3) we have
o0
Ay = ¢+ djeisj, (61)
§=0

with g] = d; under (3), dj = aj —a;j—; under (2), and do = ag. Hence, it is easily seen that under (61)
FE (Al’i,1,j|AXi) = bj + W;AXZ', (62)

where b; and 7; do not depend on i. Using (62) in (6) and (60), the marginal distribution of Ay;;

conditional on Ax; can be written as

m—1
Ayzl —b+/Bszl +5Z7 b +m; sz) +Gi1 + Z’YJAUZI R
j=1 7=0
or, more compactly,
Ayip =b+ 7 Ax; + Vi1, (63)

where v;1 = ¢1 + Z;n;()l Al Awu;1—j, b is a constant, and 7 is a T-dimensional vector of parameters.
Note that b = 0 under Assumption 1.(i) and if ¢ = 0, while it is a nonzero constant otherwise. In the

above equation, v;; has zero mean and its variance satisfies

1 1 m—1 m—1 2
w = sz (7)@-21) = 72E ﬂ Z ’}/ AJIZ 1—j — (A$i71_j|AXi)] + Z VJAum_j
i i j=1 §=0
62 m—1
T 52 Z VHE{[Azi1j — B (A1 jx0)] [Azia ¢ — B (Azi1olx,)]}
i je=0
1 m—1
? Z ’Y]+EE Auz 1_JAU,Z 1— g)
v j7 _0
1 m—1 m—1 m—1 m—2
= 5 |B%0% ) YT +207 Y AY -0l Y AT =0 Yy 4P
i J£=0 j=0 j=1 §=0
o2 m—1 ‘ m—1 A m—1 . m—2 A
= 5207521 Y m + |2 Z S A AHTL (64)
i =0 j=0 J=1 j=0

where wjy = 5 E{[Ax;1-j — E (Ax;1-j|x;)] [Axi1—¢ — E (Az1—¢|x;)]} is given by

o0
Wit = — Z dpdiE [(gi1—j—h — ®h&i—h—;j) (Ein—t—k — ThEi—k—r) ]
€l b k=0

29



where €; _p—j = (€i1—h—js€i2—h—j, s €i7T,h,j)/, and is easily seen to be finite and constant across 1,
for fixed T'. It follows that v;;/0; has a constant variance under Assumption 4. We also have that
%E (v?l) > 1, and E (vi1Aup) = —0?, E (vi1Auy) = 0 for t = 3,4,...,T. Finally, note that under

Assumption 1.(i), the term in the square bracket in (64) reduces to

D o oo 2
9 2j 2j—-1 2j+1 _ _
N
Jj=0 Jj=1 j=0
|

A.3 Proof of Theorem 3

First, take a Taylor series expansion of (1 JVN ) (%p(b\) /00 around 0 = 0, yielding

1 96(0) 1 a0 +1a2£p(0*)m<5_0*)+5m

0= -
JN 00 JN 00 N 0000

where d is an approximation error which, given the consistency of 5, goes to zero as N tend to

infinity. Rearranging, we have

)[R

As N — oo and for fixed T', we have

10%,(0.)

P *
— = A
N 0606 ’

Ay =

where, by Lemma A5, A* is a symmetric and positive definite matrix (see expression (51)). Then by

the Slutsky’s theorem
~ 1 0¢,(0y)
N(6-6,)=A"—""L
VN (6-6.) = A=y

Further, by Lemma A6, as N — oo and for a fixed T" we have

+o0,(1).

1 00, (6,)

* —_—

d *
N_\/N 90 —>N(0,B),

where the elements of B* are given in expressions (55)-(59). Hence, result (15) follows, and 0 is

asymptotically normally distributed for a fixed T, and as N tends to infinity.H
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A.4 Estimation of N7' YV o

To obtain an estimator of N~} Zf\i Lo, we first note that r; can be written as

1 0 O 0 ¥
0 -1 0 0 Uil
r;, = 0 0 -1 ... ;2 = H Si
TX(T+1)(T+1)x1
1 0
0 0 0 .. —1 1 ;T

where 9; = ¢;1 —u;g —|—Z;7:11 fyjAui,l_j = v;j1 —u;1 (see equation (63)) is independent of w1, u;2, ..., uir.
Clearly, the elements of ¢; are independent of each other. Noting that ﬁE (0?) = %E (v3) +

J%E (“121) — 20%_2E (vitui1) = w — 1 > 0, the random vector ¢; has variance

(w—1) 0 0 0
0 1

FE (gigg) = Qg, = U? 1 =o?

) QC:
(T+1)x (T+1)

so that
E (rir)) = 0792 = E (Heic/H') = HQ¢,H' = o;HOH'.

—1/2 : !
Let m; = Qgi/ Si = o ((w_ﬁﬁ,uﬂ,un,---,uﬁ) = (Mi1, - mir, Mi;7+1)" and note that E (1) = 0,

EMm3) =1fori=1,2,..,N, fori=1,2,..,N, t=1,2,...,T + 1. Also under Assumptions 2 and 5,
we have E(n}) = k = y2 + 3 for t = 1,...,T + 1, where 72 is the Pearson’s measure of kurtosis. Then
using results on moments of quadratic forms for independent random variables under non-normality,

we have

E

7

1,0\ 1 _ 2 /241 12, \? 2
<02r29 lri> ] = —B|(«¢HQ 'He)’| = B [(ngng/ HQ'HQY n,) | = E |(n/Gn,)’]
where G is a (T'+ 1) x (T'+ 1) matrix G = Qé/gH’Q’lHQé/Q. Then using!?

E [n;Gnmm;] = v2(Ir41 © G) + tr(G)Ipg; + 2G (65)

128ee Ullah (2004, p. 187).
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and tr(G) = tr(G?) = T, we have

E [(néGm)z} = E[(mGn;)tr (nm;G)] = tr [E (n;Gnmn;n;) G]
= ytr [(Irs+1 ©® G)G] + [tr(G)]* + 2tr(G?)
T+1
= ')’ZZQEt‘i‘T(T"‘Q)a

where gy are the diagonal elements of G. On the basis of the above result, we consider the following
estimator of N=1 SN

zlz

L& 1
aNT_N; — Z(rﬂ ) (66)

[72Zt 1 gtt‘*‘T(T‘f‘Q} i=1

where g7 are the diagonal elements of G = ﬁé/ ‘H ﬁleﬁé/ ?. In the case of normal errors, x = 3

and 5 = 0, so that the above expression reduces to:
~4
ONT = NT(T + 2) ; ( ) '

To obtain an estimator of o (i.e., the kurtosis of 7;;) in the more general case of non-normal errors,
we can exploit information on r;. In particular, note that, for ¢ = 1,2,..., N and ¢t = 1, under the

Assumption 5,

E(r) = E[(z?i—i-uﬂ)ﬂ _ [1+(w—1)}n+60§(w—1)

- 0?{[1—1—(0.1—1)2} 72+3[1+(w—1)2} +6(w—1)},
while for t = 2, ..., T, under Assumption 2

E(T?t) =K [(uzt - Uz’,tﬂ)ﬂ = Uf (26 +6) = o—f (272 + 12).

_ NlTéaf{[(w_l) +2T—1}72—|—3(w—1) F6(w—1)+12T 9}
_ NlTiV:o—f{[(wl) +2T—1}72+3w +12(T 1)}
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Hence
1 N T 4
NT Doim1 D=1 Tit)
N1 Zi\il ‘7?

722[(w—1)2+2T—1]71 TE( — B+ 12(T=1)] ¢,

and 5 can be consistently estimated by

T N T
-1 [72 Zt:ﬁl g5 +T (T + 2)] Dim1 Do—1 Thy

— 352 +12(T -1
=, (B’ ey

Ay = [(@—1)2+2T—1}

or
. T(T+2)q—-3w*-12(T -1)

V2 = T Y o)
@-1)°+2Tr-1-3% /'3

where

N T
D1 D1 &
~ 2
Zi\; (ﬁﬂfl?z)

qg=

A.5 Derivation of R} and R},

We derive Ri for models (34) and (35) where homoskedasticity, o7 = o2 and 02 = o2 for all i is
2

assumed for simplicity. We also let var(o;) = o3,

var(p;) = UZ, and cov(ay, f1;) = 0qu. We assume

that the process has been going for a long time (i.e., m — o0) as follows:

o o
Vit = 7 _Z + 7 Z Y xip—j+ Z Y i,
v =0 =0

and, in first differences,

Ay = B Z Awiyj+ Z Auipj.

J=0 J=0

The population value of RZ is given by

. Var (yit|xita Tit—1, )

R2=1
Y Var (yit)
We have
o0 2 oo
(67} j O J
Var (yit|zit, vig—1,...) = Var = + Z’y Uit—j | = ————= + Var Z’y Uit—j
Y =0 (1—-7) §=0
_ o2 N o? _ 1 [ 5  (1+ ’y)ai}
1-9)? 1-9* 1-79° 1—7
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Further,

[e.e] oo [e.e]
. o . : (67
Var (yi) = B°Var Z Yai—; | +Var ﬁ + Z Y uig—j | +2Cov | B Z V' Tig—j, ﬁ
7=0 7=0 7=0
> 0—2 0_2 > (673
— 2 e e ¢
- v S+ [ ] e [ 115
7=0 7=0
Using (35)-(37),
> > o2 >
Var (Y Awiv | = Var | D 47 (mi+gt—5)+Gig)| = -2 _u,yg +Var | Y 47Gii
=0 =0 =0

Let
1 1

o j;m’” AL =eL) T U=+ o)LL)

Note that wy an AR(2) process, wi = @1w; —1+@aw; —2+¢€4¢, with parameters @1 = y+¢, g2 = —¢7,
and having variance (Hamilton, 1994, p. 58)

Var (wy) = (L+¢v)o? _ (1+ ¢y) o2

(1=¢m) |1 +67)° = (v+9p] (A=7)A=) =97

It follows that

o o (14 ¢7) o2
Var Vi | = —L=+ = .
D ) R R e T Ty
Further,
i, 0\ _ B N | B
Cov ngolyxz,tjvl_fy 1_’7 azj§07 Mg (1_,}/)27
and
o2 (1+ ¢y)o? o2 o? 200
Var (yir) = 5 -+ : +[ et } ap
) [1—% - o | a2 1] Ty
1 21 2 1 2 + 280,
5 |:/8205+02 + 5 ( ;_ (ZS’Y)UE + ( +7)(0—a+ 60— #):| )
1—x (1=¢%)(1-9¢7) 11—~
Using the above results, R; is given by
2, (4o
Ry=1- 63(14;:57)0127 ()02 20es) (68)
Boit o+ amiey T 1
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Then, using 02 = 72, JZ = 7?72 and Cap = n7?, we have

2, (+9)7?
RZ=1- S
y 2 o2 T2 72) 0
821272 4 o2 4 (lﬂ_;};)rgv_)(ﬁ;) + (1+7)(1_J:Y2577 )
or
267%(1+ 1) Ft+one? L4y T+ (%Y) i
32722 4 n+ o+ 5 e 4 - 5 =0. (69)
1—vy (1-9¢°)(1—-9¢7) 1—vy 1 - R2
Note that (69) is a quadratic equations of 7.
We now derive Riy. We have
g 202
Var (Ayi| Az, Axiy—q,...) = Var Z’y]Aui7t_j =17 =
=0
= 202
Var (Ayy) = B*Var Z’y]Ax@t_j + ] .
j=0 T
Using result D.11 in Hsiao et al. (2002), where 6 = 0,
o0
; 202
Var YAz | = £ ,
278 | = T T =)
and it follows that 202
o
Ry, = : (70)

B2024+02(1+¢)(1—¢y)
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Table 1: Median bias(x100) and MAE(x100) of v (v = 0.4, 8 = 0.5) for ARX(1) model

v=04 median bias(x100) [ MAE(x100) median bias(x100) [ MAE(x100)
T=1 T=25
N/T 5 10 15 | 5 10 15 5 10 15 ] 5 10 15
Transformed Tikelthood estimator
50 -0.539  -0.I83 -0.162 | 4.128 2354 1.624 | -0.367 -0.I183 -0.153 1.259 2.354 1.625
150 -0.100  0.007 -0.119 | 2.456 1.336 1.101 | -0.100 0.007 -0.119 2.456 1.336 1.101

500 0.014 -0.048 -0.050 | 1.272 0.729 0.554 0.014 -0.048 -0.050 1.272 0.729 0.554
One-step first-difference GMM estimator based on “DIF2”

50 -3.079 -2.202 — 5.239 3.479 — -4.013 -3.054 — 6.118 3.947 —
150 -1.271  -0.742 -0.730 | 3.106 1.818 1.430 | -1.378 -1.099 -1.030 | 3.425 2.126 1.702
500 -0.174  -0.231 -0.270 | 1.569 1.011 0.789 | -0.214 -0.267 -0.317 1.798 1.194 0.948
Two-step first-difference GMM estimator based on “DIF2
50 -2.812  -0.874 — 6.366 5.935 — -3.579  -2.032 — 7.068 6.826 —
150 -0.867 -0.514 -0.486 | 3.183 2.130 1.811 | -1.257 -0.819 -0.824 3.611 2.444 2.024
500 -0.196  -0.190 -0.257 | 1.609 1.057 0.863 | -0.296 -0.267 -0.335 1.768 1.188 1.012
Continuous-updating first-difference GMM estimator based on “DIF2”
50 0.599 1.365 7.576  8.408 — 0.420 1.477 — 8.899 9.454

150 0.291 0.464 0.473 3.267 2.238 2.076 0.312 0.329 0.248 3.753 2.738 2.309
500 0.161 0.081 0.030 | 1.611 1.016 0.876 | 0.134 0.085 0.006 1.795 1.213 1.008
One-step system GMM estimator based on “SYS2”
50 1.218 — — 4.647 — — 29.721 — — 29.721 — —
150 0.545 0.814 0.766 | 2.809 1.851 1.512 | 19.854 20.312 19.851 | 19.854 20.312 19.851
500 0.366 0.275 0.156 1.527 0.961 0.750 9.322 9.227 9.077 9.322 9.227 9.077
Two-step system GMM estimator based on “SYS2”
50 1.331 — — 5.815 — — 28.124 — — 28.124 — —
150 0.440 0.490 0.553 | 2.760 2.133 2.037 | 12.942 14.353 14.263 | 12.942 14.353  14.263
500 0.226 0.171 0.091 | 1.311 0.998 0.848 | 2.654 3.156 3.073 2.833 3.156 3.073
Continuous-updating system GMM estimator based on “SYS2”

50 0.779 — — 8.205 — — 47799 — — 9.930 — —
150 0.055 0.004 0.067 | 2.963 2.382 2.536 | 0.272 0.123 0.125 3.073 2.375 2.552
500 0.066 0.029 -0.056 | 1.316 0.982 0.871 | 0.095 0.046 -0.016 1.414 1.007 0.845

Note: “DIF2” denotes Arellano and Bond type moment conditions: E(y; —2_jAus;) =0withl=0fort=2,1=0,1fort=3,..,T
and E(zr; +—;Aui;) =0 withl =0,1fort =2,1=0,1,2for t = 3,...,T. One-step, two-step and continuous-updating first-difference
GMM estimators are computed by (21), (22) and (29) with a suitable modification of Z;. “SYS2” denotes Blundell and Bond
type moment conditions: E[Ay; ;—1(o; + uit)] = 0 and E[Azi(o; + use)] = 0 for ¢ = 2,...,T in addition to the ones used in
“DIF2”. One-step, two-step and continuous-updating system GMM estimators are computed by (27), (28) and (29) with a suitable
modification of Z;. The numbers of moment conditions of “DIF2” and “SYS2” are 18 and 26 when T' = 5, 43 and 61 when 7" = 10

and 68 and 96 when T' = 15.“—” denotes the cases where the GMM estimators are not computed since the number of moment
conditions exceeds the sample size.

Table 2: Median bias(x100) and MAE(x100) of v (v = 0.9, 8 = 0.5) for ARX(1) model

~=0.9 median bias(x100) [ MAE(x100) median bias(x100) | MAE(x100)
T=1 T=25
N/T 5 10 15 [ 5 10 15 5 10 15 [ 5 10 15
Transformed likelihood estimator
50 -0.344  -0.193 -0.113 | 5.419 2.286 1.349 | -0.557 -0.217 -0.104 [ 5.673 2.273 1.343
150 -0.086 -0.124 -0.122 | 3.281 1.280 0.843 | -0.060 -0.102 -0.117 | 3.269 1.284 0.847

500 0.059 -0.021 0.011 | 1.535 0.716 0.436 | 0.056 -0.011 0.017 | 1.534 0.715 0.441
One-step first-difference GMM estimator based on “DIF2”

50 -4.990 -3.756 — 6.704 4.224 — -5.207  -3.944 — 6.680 4.307 —
150 -1.746  -1.318 -1.268 | 3.642 2.045 1.671 | -1.783 -1.380 -1.322 | 3.665 2.078 1.757
500 -0.293 -0.358 -0.408 | 1.789 1.069 0.875 | -0.259 -0.321 -0.429 | 1.767 1.074 0.908
Two-step first-difference GMM estimator based on “DIF2
50 -4.452  -2.831 — 7.516 6.164 — -4.745  -3.172 — 7.214  6.542 —
150 -1.860 -1.178 -1.198 | 3.928 2.294 1.918 | -1.973 -1.271 -1.290 | 3.945 2.243 2.016
500 -0.353 -0.409 -0.411 | 1.793 1.113 0.928 | -0.344 -0.388 -0.371 | 1.719 1.115 0.968
Continuous-updating first-difference GMM estimator based on “DIF2”
50 0.086  -0.687 8.339 8.673 — 0.048  -1.226 — 8.313 8.744 —

150 0.023 0.155 -0.039 | 3.811 2.291 2.051 | -0.028 0.153 -0.114 | 3.989 2.371 2.021
500 0.174 -0.017 -0.028 | 1.909 1.095 0.897 | 0.266 0.021 0.011 | 1.904 1.154 0.986
One-step system GMM estimator based on “SYS2”
50 4.841 — — 4.931 — — 7.238 — — 7.238 — —
150 3.672 3.598 3.519 | 3.732 3.598 3.519 | 7.068 7.094 7.054 | 7.068 7.094 7.054
500 1.983 1.830 1.723 2.139 1.854 1.723 6.476 6.459 6.459 6.476  6.459  6.459
wo-step system GMM estimator based on “SYS2”
50 5.158 — — 5.380 — — 7.285 — — 7.285 — —
150 3.804 3.664 3.408 | 4.007 3.685 3.415 | 7.190 7.146 7.148 | 7.190 7.146 7.148
500 1.873 1.678 1.473 | 2.184 1.733 1.497 | 6.560 6.484 6.459 | 6.560 6.484 6.459
Continuous-updating system GMM estimator based on “SYS2”
50 4297 — — 6.973 — — 7.054 — — 7.525 —
150 0.833 0.556 0.769 | 4.273 2.936 3.085 | 5.779 4.929 5.819 | 6.528 5.710 6.050
500 0.195 0.045 -0.019 | 1.586 1.037 0.852 | 0.991 0.160 0.093 | 2.473 1.173  0.922

Note: See notes to Table 1.
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Note: For the definition of “DIF2” and “SYS2”, see notes to Table 1. “NW” denotes Newey and Windmeijer’s(2009) standard

€errors.

Table 3: Size(%) and power(%) of v (v = 0.4, 5 = 0.5) for ARX(1) model

size (Ho : v =0.4) | power (H; : v = 0.3)

size (Ho : v =0.4) |

power (Hi : v =10.3)

T=1 T=25
N/T | 5 10 15 [ 5 10 15 5 10 15 [ 5 10 15
Transformed likelihood estimator
50 6.4 5.7 4.6 | 424  83.7 97.2 6.4 5.7 4.6 | 42.8 83.7 97.6
150 4.1 5.2 4.1 78.6  99.9 100.0 | 4.1 5.2 4.1 | 786 999 100.0
500 3.8 6.3 52 | 99.9 100.0 100.0 | 3.8 6.3 5.2 | 99.9 100.0 100.0
One-step first-difference GMM estimator based on “DIF2”
50 8.6 8.9 — 45.3 787 — 104 9.8 — 426 752 —
150 6.6 5.8 56 | 72.8 98.2 100.0 | 6.9 5.9 74 | 65.2 95.7 99.9
500 4.4 4.6 5.6 | 99.3 100.0 100.0 | 4.7 5.9 7.2 | 97.6  100.0 100.0
Two-step first-difference GMM estimator based on “DIF2”
50 304 759 — 62.7 88.5 — 30.8 777 — 61.5 88.3 —
150 | 13.1 209 32.7 | 77.0 98.2 100.0 | 13.8 209 33.6 | 70.3 96.6 99.6
500 6.6 9.2 11.6 | 99.3 100.0 100.0 | 7.0 9.1 13.8 | 97.6  100.0 100.0
Two-step first-difference GMM estimator based on “DIF2” with Windmeijer standard errors
50 8.4 0.7 — 26.3 2.5 . 7.3 0.7 — 25.4 2.8 —
150 5.7 5.1 2.9 | 65.6 919 96.2 6.6 5.4 3.9 | 576 84.3 91.2
500 4.9 5.3 6.1 | 98.5 100.0 100.0 | 54 5.4 6.2 | 96.9 100.0 100.0
Continuous-updating first-difference GMM estimator based on “DIF2”
50 36.7 83.1 - 53.1 88.4 - 40.1 824 - 53.1 86.4 -
150 | 11.3 25,5 40.3 | 68.6  95.9 99.5 124 255 39.2 | 60.3 90.6 97.4
500 7.4 9.4 11.9 | 98.3 100.0 100.0 6.9 8.7 13.2 | 96.3 100.0 100.0
Continuous-updating first-difference GMM estimator based on “DIF2” with NW standard errors
50 45.3 33.6 — 62.3  40.9 — 45.1 373 — 56.6  42.3 -
150 | 12.0 423 73.2 | 67.2 97.6 99.9 | 125 414 68.3 | 58.0 94.5 98.7
500 6.9 106 17.0 | 98.1 100.0 100.0 6.7 10.1  17.8 | 96.0 100.0 100.0
One-step system GMM estimator based on “SYS2”
50 8.7 — - 24.2 — — 89.6 — - 72.1 - -
150 6.2 6.2 6.5 | 626 925 99.3 | 78.0 97.1 99.6 | 41.1  57.2 66.4
500 4.3 4.8 6.3 99.1 100.0 100.0 | 53.8 874 97.5 9.1 12.3 13.2
Two-step system GMM estimator based on “SYS2”
50 45.8 — — 64.4 — — 96.5 — — 89.3 — —
150 16.3 33.7 525 | 80.2 98.1 99.8 | 80.8 97.1 98.9 | 59.2  75.5 84.7
500 7.5 11.2 152 | 99.8 100.0 100.0 | 39.6 65.8 789 | 83.6 95.5 99.2
Two-step system GMM estimator based on “SYS2” with Windmeijer standard errors
50 3.5 — — 10.4 - - 38.6 — — 22.7 - —
150 4.8 3.6 05 | 626  77.5 55.7 | 429 71.1 583 | 15.6 21.5 18.9
500 5.1 5.6 4.7 | 99.7 100.0 100.0 | 19.6 40.3 478 | 674 84.1 94.0
Continuous-updating system GMM estimator based on “SYS2”
50 58.6 — — 71.1 — — 75.7 — — 80.6 — —
150 179 385 62.6 | 80.7 97.5 99.0 | 28.1 509 71.8 | 84.5 98.3 99.2
500 7.7 108 16.1 | 999 100.0 100.0 | 11.4 146 21.4 | 99.9 100.0 100.0
Continuous-updating system GMM estimator based on “SYS2” with NW standard errors
50 53.9 - — 63.4 — — 36.0 — — 43.5 - —
150 19.4 625 42.8 | 81.7 98.9 91.3 | 188 335 144 | 785 924 75.5
500 8.1 144 236 | 999 100.0 100.0 | 7.7 128 23.0 | 99.5 100.0 100.0
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Table 4: Size(%) and power(%) of v (v = 0.9, 5 = 0.5) for ARX(1) model

size (Ho : v =0.9) | power (H; : v = 0.8) size (Ho : v =0.9) [ power (Hi:v=0.8)
T=1 T=25
N/T | 5 10 15 [ 5 10 15 5 10 15 [ 5 10 15
Transformed likelihood estimator
50 5.1 5.4 56 | 33.2 795 98.1 4.4 5.5 5.7 32,9  80.0 98.3
150 4.4 6.0 55 | 56.8 99.6  100.0 4.5 6.0 5.7 57.1  99.6 100.0

500 4.9 5.5 5.4 | 959 100.0 100.0 4.9 5.3 5.6 95.9  100.0 100.0

One-step first-difference GMM estimator based on “DIF2”

50 12.2 12.7 - 50.3 86.3 - 11.7 13.5 - 49.8 85.9 -
150 8.3 8.0 9.9 | 677 978 100.0 8.3 7.6 10.9 67.6 97.1 100.0
500 5.7 7.1 8.4 | 96.6 100.0 100.0 5.5 7.6 8.2 96.6  100.0 100.0

Two-step first-difference GMM estimator based on “DIF2”

50 329 774 - 65.6 919 - 30.9 77.2 - 65.5 918 -
150 14.5 223 345 | 73.0 98.2 99.9 14.9 23.4 35.9 | 72.1 98.1 99.9
500 7.2 10.1 145 | 96.9 100.0 100.0 7.4 9.7 15.1 96.7  100.0 100.0

Two-step first-difference GMM estimator based on “DIF2” with Windmeijer standard errors

50 7.3 1.2 - 31.0 3.7 — 7.5 1.2 - 29.2 3.8 —
150 7.9 5.3 4.1 61.9 92.5 96.7 6.9 6.0 5.2 61.5 92.0 95.6
500 5.7 6.6 7.8 | 96.3 100.0 100.0 5.9 6.5 8.9 96.4  100.0 100.0

Continuous-updating first-difference GMM estimator based on “DIF2”

50 38.0 83.3 — 53.4  88.5 - 37.5 83.0 - 51.6  88.3 -
150 13.2 227 372 | 61.3 945 99.0 13.9 23.9 36.7 | 61.4 93.6 98.2
500 7.3 9.1 13.6 | 95.8 100.0 100.0 7.2 9.4 14.5 | 95.8 100.0 100.0

Continuous-updating first-difference GMM estimator based on “DIF2” with NW standard errors

50 42.9  34.5 — 57.5  46.8 — 42.2 33.7 - 55.5  46.8 -
150 13.2 385 704 | 60.1 96.3 99.7 13.2 38.9 66.8 | 60.3  96.1 99.4
500 6.7 10.7 18.0 | 95.6 100.0 100.0 7.0 11.1 18.3 | 95.5 100.0 100.0

One-step system GMM estimator based on “SYS2”

50 40.4 — - 42.5 - — 99.6 — - 92.2 — -
150 | 30.5 53.7 66.5 | 72.1 98.1 99.9 99.4 100.0 100.0 | 95.1  100.0 100.0
500 | 21.6 348 419 | 99.4 100.0 100.0 | 98.7 100.0 100.0 | 99.2 100.0 100.0

Two-step system GMM estimator based on “SYS2”

50 78.7 — — 81.1 — — 100.0 — - 98.5 — —
150 | 60.3 80.3 89.0 | 88.2  99.5 100.0 | 99.8 100.0 100.0 | 97.6  100.0 100.0
500 | 35.2 48.7 56.4 | 99.7 100.0 100.0 | 99.8 100.0 100.0 | 99.7 100.0 100.0

Two-step system GMM estimator based on “SYS2” with Windmeijer standard errors

50 18.7 — — 10.9 — — 73.7 — — 42.4 — —
150 | 25.9 21.0 89 | 41.8 61.0 37.7 78.7 91.1 91.6 | 54.7 66.4 66.0
500 | 15.7 176 199 | 94.1 100.0 100.0 | 69.5 95.3 99.5 | 452  51.5 69.2
Continuous-updating system GMM estimator based on “SYS2”
50 81.8 - - 82.2 - - 97.9 - - 94.2 — -
150 | 57.6 68.4 81.2 | 89.2 96.8 98.2 89.5 93.7 96.4 | 90.9 96.4 97.5
500 | 23.5 253 281 | 99.6 100.0 100.0 | 66.8 67.5 704 | 95.8  99.9 100.0
Continuous-updating system GMM estimator based on “SYS2” with NW standard errors
50 55.4 - - 57.0 - - 59.0 - - 48.6 - -
150 | 39.3 43,5 39.6 | 781  89.5 86.5 59.2 49.1 51.3 | 65.3  50.0 44.5
500 13.2 142 226 | 97.3 99.8 100.0 29.5 11.7 9.8 89.3 98.7 99.6

Note: See notes to Table 3.
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Table 5: Median bias(x100) and MAE(x100) of 8 (v = 0.4,8 = 0.5) for ARX(1) model

B=05 median bias(x100) | MAE(x100) median bias(x100) | MAE(x100)
T=1 T=25
N/T 5 10 15 [ 5 10 15 5 10 15 [ 5 10 15
Transformed likelihood estimator
50 0.082 -0.066 -0.026 | 3.187 1.865 1.478 | 0.052 -0.066 -0.026 | 3.141 1.865 1.478
150 -0.026  -0.004 0.063 | 1.803 1.021 0.838 | -0.026 -0.004 0.063 | 1.803 1.021 0.838
500 0.000 -0.002 0.031 | 0.878 0.567 0.462 | 0.000 -0.002 0.031 | 0.878 0.567 0.462
One-step first-difference GMM estimator based on “DIF2”
50 -0.034  0.105 — 3.460 2.167 - -0.043  -0.280 - 3.613 2.163 —
150 -0.116  0.148 0.140 | 2.050 1.379 1.029 | -0.187 0.010 -0.012 | 2.091 1.410 1.070
500 -0.081 -0.011  0.050 | 1.011 0.714 0.556 | -0.044 -0.092 -0.022 | 1.069 0.766 0.592
Two-step first-difference GMM estimator based on “DIF2”
50 -0.188  0.045 — 3.937  4.220 - -0.088  -0.625 - 4.124  4.627 —
150 -0.100 -0.062 -0.028 | 2.225 1.531 1.382 | -0.137 -0.143 -0.150 | 2.248 1.649 1.390
500 -0.137 -0.069 -0.015 | 1.050 0.714 0.601 | -0.082 -0.139 -0.036 | 1.075 0.777 0.638
Continuous-updating first-difference GMM estimator based on “DIF2”
50 -0.238  0.090 - 4.936 6.625 - 0.525 0.139 - 5.135 6.629 -
150 -0.099 -0.019 -0.061 | 2.247 1.663 1.545 | 0.068 -0.021 -0.053 | 2.366 1.801 1.589
500 -0.132 -0.065 -0.019 | 1.065 0.724 0.615 | -0.046 -0.072 0.005 | 1.083 0.803 0.648
One-step system GMM estimator based on “SYS2”
50 0.446 - - 3.640 - - 6.885 - - 7.149 - —
150 0.117 0.216 0.269 | 2.119 1.385 1.075 | 4.682 5.077 5.058 | 4.824 5.077 5.058
500 0.062 0.029 0.079 | 1.146 0.735 0.603 | 2.249 2.403 2.410 | 2.698 2.408 2.416
Two-step system GMM estimator based on “SYS2”
50 0.243 - - 4.381 - - 4.933 - - 6.683 — -
150 0.103  -0.193 -0.115 | 2.128 1.543  1.447 | 2.557 2.223 2.254 | 3.372 2.524  2.543
500 -0.089 -0.065 -0.009 | 1.015 0.732 0.600 | 0.420 0.376 0.395 | 1.189 0.869 0.684
Continuous-updating system GMM estimator based on “SYS2”
50 0.009 — — 5.858 - - 1.713 - - 6.721 - -
150 -0.058 -0.203 -0.234 | 2.250 1.677 1.832 | 0.031 -0.165 -0.091 | 2.365 1.706 1.861
500 -0.121  -0.103 -0.038 | 1.031 0.759 0.611 | -0.119 -0.071 -0.031 | 1.033 0.774 0.597

Note: See notes to Table 1.

Table 6: Median bias(x100) and MAE(x100) of 8 (v = 0.9,8 = 0.5) for ARX(1) model

Note: See notes to Table 1.

B8=0.5 median bias(x100) [ MAE(x100) median bias(x100) [ MAE(x100)
T=1 T=25
N/T 5 10 5 [ 5 10 15 5 10 15 [ 5 10 15
Transformed likelihood estimator
50 -0.019 -0.013 0.013 | 3.939 2.163 1.715 | 0.078 -0.015 0.016 | 3.838 2.169 1.718
150 -0.046 0.016 0.008 2.241 1.185 0.954 | -0.038 0.017 0.007 2.231 1.183 0.953
500 0.014 0.026 0.028 | 1.125 0.670 0.559 | 0.010 0.025 0.028 | 1.122 0.671  0.559
One-step first-difference GMM estimator based on “DIF2”
50 -1.365  -1.263 — 4.769  2.869 — -1.177  -1.278 — 4.522  2.856 -
150 -0.533  -0.428 -0.294 | 2.704 1.783 1.345 | -0.528 -0.392 -0.406 | 2.790 1.801 1.331
500 -0.174 -0.214 -0.084 | 1.393 0.999 0.752 | -0.162 -0.268 -0.120 | 1.389 0.959 0.743
Two-step first-difference GMM estimator based on “DIF2”
50 -0.763  -0.743 — 5.639  5.598 — -0.832  -0.786 — 5.272  5.683 —
150 -0.468 -0.374 -0.395 | 2.931 2.002 1.732 | -0.383 -0.336 -0.493 | 2.903 2.110 1.756
500 -0.187 -0.206 -0.074 | 1.410 1.013 0.771 | -0.143 -0.221 -0.094 | 1.388 0.993 0.799
Continuous-updating first-difference GMM estimator based on “DIF2”
50 0.899  -0.019 - 6.866  8.450 - 0.686  -0.031 - 6.839  8.998 —
150 -0.030 -0.004 0.033 | 3.039 2.140 2.005 | 0.109 0.118  -0.040 | 3.105 2.299 2.024
500 -0.038 -0.056  0.063 | 1.413 1.005 0.778 | 0.005 -0.065 0.026 | 1.397 0.981 0.806
One-step system GMM estimator based on “SYS2”
50 1.375 - — 4.260 - - 2.511 - - 4.484 - —
150 1.056 1.227 1.179 2.444 1.835 1.521 2.211 2.552 2.486 2.737 2591 2495
500 0.558 0.647  0.668 | 1.356 0.993 0.874 | 2.226 2.383 2.422 | 2.242 2.383  2.422
Two-step system GMM estimator based on “SYS2”
50 1.561 — - 5.070 — — 2.321 — — 5.182 - -
150 0.708 0.535 0.453 | 2.425 1.880 1.805 | 1.216 1.175 0.986 | 2.694 2.039 1.804
500 0.315 0.292 0.280 | 1.219 0.938 0.749 | 1.482 1.452 1.376 | 1.704 1.487 1.398
Continuous-updating system GMM estimator based on “SYS2”
50 1.414 — - 6.836 — — 1.961 — — 6.725 - -
150 0.037  0.020 0.190 | 3.008 2.192 2.154 | 1.095 0.801 0.848 | 3.161 2.333  2.390
500 -0.067 -0.066 -0.021 | 1.312 0.933 0.704 | 0.448 0.120 0.161 | 1.565 1.054 0.767
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Table 7: Size(%) and power(%) of 8 (v = 0.4, 3 = 0.5) for ARX(1) model

size (Ho : 8 =0.5) | power (Hy:f =0.4) size (Ho : # =0.5) | power (Hi : 8 =0.4)
T=1 T=25
N/T | 5 10 15 [ 5 10 15 5 10 15 [ 5 10 15
Transformed likelihood estimator
50 7.8 5.9 6.3 63.9 96.3 99.7 8.3 5.9 6.0 63.9 96.3 99.7
150 5.9 5.2 5.3 97.3 100.0 100.0 | 5.9 5.2 5.3 97.3  100.0 100.0
500 4.6 6.5 5.3 | 100.0 100.0 100.0 | 4.6 6.5 5.3 | 100.0 100.0 100.0
One-step first-difference GMM estimator based on “DIF2”
50 7.4 5.3 — 55.5 87.8 — 8.2 6.4 — 54.7 88.0 —
150 6.5 6.4 6.6 92.6 99.9 100.0 6.0 6.1 6.9 92.5 99.9 100.0
500 4.6 5.0 4.7 | 100.0 100.0 100.0 | 5.2 5.7 4.5 99.9  100.0 100.0
Two-step first-difference GMM estimator based on “DIF2”
50 26.7  75.7 — 72.3 93.5 — 27.3  78.3 — 71.2 93.5 —
150 13.5 204 320 94.2 100.0 100.0 | 13.8 20.7 329 92.6 99.9 100.0
500 6.7 8.9 9.6 | 100.0 100.0 100.0 | 6.6 8.8 10.7 | 100.0 100.0 100.0
Two-step first-difference GMM estimator based on “DIF2” with Windmeijer standard errors
50 5.9 1.1 — 39.4 5.0 — 6.7 0.9 - 38.3 3.4 —
150 7.1 5.1 3.2 89.0 99.5 99.8 7.5 6.0 3.9 87.9 98.8 99.3
500 5.5 5.1 4.6 | 100.0 100.0 100.0 | 5.5 5.7 4.7 | 100.0 100.0 100.0
Continuous-updating first-difference GMM estimator based on “DIF2”
50 35.3 834 - 68.6 90.9 - 38.2 83.8 - 65.3 91.8 —
150 | 15.6 24.3 38.7 | 924 100.0 100.0 | 15.4 244 39.0 | 90.7 99.6 100.0
500 6.6 9.5 10.4 | 100.0 100.0 100.0 | 6.9 9.2 11.3 | 100.0 100.0 100.0
Continuous-updating first-difference GMM estimator based on “DIF2” with NW standard errors
50 457 40.2 — 72.6 56.5 — 44.5  43.7 - 69.3 60.3 -
150 | 14.9 403 74.0 | 92.1 100.0 100.0 | 149 40.1 71.2 | 89.7 99.9 100.0
500 6.5 10.6 15.0 | 100.0 100.0 100.0 | 6.4 10.2 14.8 | 100.0 100.0 100.0
One-step system GMM estimator based on “SYS2”
50 7.2 — - 47.9 - - 25.8 - - 11.5 - -
150 5.5 5.7 5.8 89.6 99.8  100.0 | 21.0 48.7 67.1 22.7 46.0 65.5
500 4.5 5.2 5.7 | 100.0 100.0 100.0 | 13.0 28.7 48.4 | 72.9 98.3 100.0
Two-step system GMM estimator based on “SYS2”
50 42.0 — - 76.1 — - 57.9 - - 56.3 - —
150 | 15.3 27.1  49.1 | 95.9 99.9 100.0 | 31.2 49.0 70.2 | 73.6 93.5 97.8
500 7.5 10.6 14.1 | 100.0 100.0 100.0 | 10.8 15.8 22.7 | 99.8 100.0 100.0
Two-step system GMM estimator based on “SYS2” with Windmeijer standard errors
50 3.0 — — 24.3 — — 3.0 — — 4.5 — —
150 7.1 3.9 0.7 87.8 98.0 88.7 | 10.1 11.2 4.1 47.9 62.5 37.2
500 5.0 5.3 54 | 100.0 100.0 100.0 | 6.4 7.4 7.0 99.7  100.0 100.0
Continuous-updating system GMM estimator based on “SYS2”
50 55.3 - - 77.6 — - 61.6 - - 75.4 - -
150 | 18.3 34.6 60.4 | 94.9 99.8 100.0 | 21.5 36.7 64.4 | 934 99.8 99.9
500 8.1 11.0 15.2 | 100.0 100.0 100.0 | 9.3 11.0 15.3 | 100.0 100.0 100.0
Continuous-updating system GMM estimator based on “SYS2” with NW standard errors
50 58.1 - - 74.5 - - 42.4 - - 53.5 - -
150 | 21.7 62.6 42.8 | 944 100.0 985 | 21.8 50.3 304 | 93.6 99.7 94.8
500 7.8 139 24.6 | 100.0 100.0 100.0 8.7 13.6 23.1 | 100.0 100.0 100.0

Note: See notes to Table 3.
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Table 8: Size(%) and power(%) of 8 (v =0.9,8 = 0.5) for ARX(1) model

size (Ho : 8 =0.5) | power (Hy:f =0.4) size (Ho : # =0.5) | power (Hi : 8 =0.4)
T=1 T=25
N/T | 5 10 15 [ 5 10 15 5 10 15 [ 5 10 15
Transformed likelihood estimator
50 7.9 5.8 5.8 47.9 87.8 98.1 7.8 5.8 5.8 48.5 87.8 98.1
150 5.9 5.2 5.6 86.7 100.0 100.0 | 6.1 5.3 5.7 86.6  100.0 100.0
500 4.1 5.4 5.7 | 100.0 100.0 100.0 | 4.1 5.4 5.7 | 100.0 100.0 100.0
One-step first-difference GMM estimator based on “DIF2”
50 8.0 7.2 — 46.5 76.9 — 7.9 7.5 — 46.4 77.2 —
150 6.5 7.3 7.1 79.4 98.6 99.9 6.4 6.9 7.3 78.6 98.2 99.9
500 5.4 5.2 4.7 99.8 100.0 100.0 | 5.4 5.2 5.2 99.8  100.0 100.0
Two-step first-difference GMM estimator based on “DIF2”
50 29.9 76.9 — 61.9 91.6 — 29.7 T78.7 — 62.1 90.7 —
150 141  19.9 322 82.5 98.7 99.7 144  20.3 31.8 82.4 98.4 99.7
500 6.4 7.5 10.3 | 999 100.0 100.0 | 6.4 8.4 12.1 | 99.8 100.0 100.0
Two-step first-difference GMM estimator based on “DIF2” with Windmeijer standard errors
50 7.1 0.7 — 31.3 3.2 — 6.8 0.9 - 30.1 3.0 —
150 8.3 5.8 3.2 72.6 94.1 96.7 8.0 5.7 3.0 73.3 93.3 95.4
500 5.8 5.4 5.2 99.7  100.0 100.0 | 5.6 5.3 5.6 99.7  100.0 100.0
Continuous-updating first-difference GMM estimator based on “DIF2”
50 39.2 849 — 55.4 89.2 — 38.6 85.2 — 55.5 87.4 —
150 | 15.2 23.3 385 | 773 96.9 989 | 15,5 245 389 | 773 96.7 98.9
500 6.5 8.8 10.3 | 99.8 100.0 100.0 | 6.6 9.1 12.2 | 99.8 100.0 100.0
Continuous-updating first-difference GMM estimator based on “DIF2” with NW standard errors
50 48.3  42.0 — 59.9 53.9 - 46.0 38.5 - 62.5 51.5 —
150 | 14.7 39.6 70.1 76.6 98.3 994 | 15.0 39.0 69.3 | 77.0 98.5 99.4
500 6.4 9.9 14.5 | 99.7 100.0 100.0 | 6.5 10.2 16.4 | 99.7  100.0 100.0
One-step system GMM estimator based on “SYS2”
50 8.5 — - 35.8 — - 9.8 - - 30.0 - -
150 6.7 9.0 9.8 76.7 97.9 100.0 | 11.1 20.0 285 | 64.1 93.5 99.5
500 4.8 8.7 10.1 | 100.0 100.0 100.0 | 20.9 46.9 67.2 | 98.7 100.0 100.0
Two-step system GMM estimator based on “SYS2”
50 43.0 — - 65.8 — - 45.6 - - 63.5 - —
150 | 16.9 32,7 534 | 87.6 99.6 99.7 | 20.5 359 543 | 81.6 99.0 99.6
500 6.9 11.2 15.1 | 100.0 100.0 100.0 | 17.3 32.1 45.2 | 99.8 100.0 100.0
Two-step system GMM estimator based on “SYS2” with Windmeijer standard errors
50 2.7 — — 13.1 — — 2.3 — — 8.5 — —
150 5.3 3.1 0.6 71.8 88.9 69.1 5.3 3.6 1.6 52.1 66.8 42.5
500 4.6 5.9 4.8 | 100.0 100.0 100.0 | 7.9 128 15.0 | 95.6 99.8 100.0
Continuous-updating system GMM estimator based on “SYS2”
50 57.3 - - 68.3 — - 57.2 - - 68.7 - -
150 | 22.0 383 58.6 | 87.3 99.3 99.2 | 26.3 424 634 | 80.3 96.5 98.5
500 7.5 11.2  15.2 | 100.0 100.0 100.0 | 14.0 154 196 | 99.6  100.0 100.0
Continuous-updating system GMM estimator based on “SYS2” with NW standard errors
50 52.8 - - 62.5 - - 38.3 - - 48.5 - -
150 | 22.0 58.9 37.7 | 85.7 98.8 949 | 21.5 395 23.6 | 733 85.8 74.4
500 6.4 13.0 224 99.8 100.0 100.0 | 10.5 13.7 19.6 99.2 100.0 100.0

Note: See notes to Table 3.
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Table 9: Size(%) and power(%) of weak instruments robust tests (68 = (0.4,0.5)") for ARX(1) model

size (Ho : @ = (0.4,0.5)) [ power (Hy : 6 = (0.3,0.4)") [ size (Ho : 6 = (0.4,0.5)") [ power (H; : 6 = (0.3,0.4)")
T=1 T=25
N/T| 5 10 5 [ 5 10 15 5 10 15 [ 5 10 15
Anderson and Rubin test based on “DIF2”
50 51.7 100.0 - 61.8 100.0 - 51.6 100.0 — 56.7  100.0 -
150 14.2  65.1 99.2 43.2 98.8 100.0 13.8  67.0 99.1 28.6  90.5 100.0
500 6.6 14.9 34.5 88.4 100.0 100.0 7.0 14.2 34.1 56.1 98.0 99.9
Anderson and Rubin test based on “SYS2”
50 84.5 — - 93.2 - - 86.7 - — 89.3 - -
150 | 245 94.6 100.0 74.3 100.0 100.0 24.6 949 100.0 51.0  99.9 100.0
500 9.4 26.9 60.8 99.2 100.0 100.0 8.6 26.2 60.8 80.6 100.0 100.0
Lagrange multiplier test based on “DIF2”
50 33.2 989 - 46.9 99.6 - 33.2  99.2 - 41.5  99.2 -
150 8.9 29.2 64.5 54.2 72.2 99.8 8.9 27.6 67.3 29.1 53.2 97.8
500 6.4 8.7 11.4 98.8 100.0 100.0 5.7 9.1 12.5 83.6 100.0 100.0
Lagrange multiplier test based on “SYS2”
50 54.1 — - 69.8 - - 54.9 — — 57.5 — —
150 117 422 78.2 75.9 95.5 100.0 12.8 429 79.3 394 788 98.6
500 5.4 12.1 15.8 100.0 100.0 100.0 5.7 11.5 16.2 93.0 99.1 87.9
Conditional likelihood ratio test based on “DIF2”
50 44.3 989 - 57.8 99.6 - 444 99.2 - 50.8  99.2 -
150 9.4 33.4 68.2 55.5 82.6 99.9 9.5 34.3 71.5 319 67.2 98.1
500 6.3 8.6 11.3 98.8 100.0 100.0 5.9 8.8 13.1 84.0  100.0 100.0
Conditional likelihood ratio test based on “SYS2”
50 57.6 - - 72.7 - - 57.2 - - 59.6 - -
150 12.0 48.5 78.4 78.4 96.9 100.0 139 453 79.4 41.5  80.1 98.7
500 5.3 12.1 15.8 100.0 100.0 100.0 5.7 11.0 16.5 93.2  99.3 90.3

For the definition of “DIF2” and “SYS2”, see notes to Table 1. “Anderson and Rubin test” denotes Anderson and Rubin test for
GMM (Stock and Wright 2000)(eq. (31)). “Lagrange multiplier test” denotes Kleibergen’s(2005) LM test (eq. (32)). “Conditional
likelihood ratio test” denotes the conditional likelihood ratio test of Moreira (2003)(extended by Kleibergen(2005)) (eq.(33)). “—”
denotes the cases where the GMM estimators are not computed since the number of moment conditions exceeds the sample size.

Table 10: Size(%) and power(%) of weak instruments robust tests (8 = (0.9,0.5)") for ARX(1) model

size (Ho : @ = (0.9,0.5)") [ power (H; : 6 = (0.8,0.4)") [ size (Ho : 6 = (0.9,0.5)") [ power (H; : 6 = (0.8,0.4)")
T=1 T=25
N/T| 5 10 5 [ 5 10 15 5 10 5 [ 5 10 15
Anderson and Rubin test based on “DIF2”
50 50.6  100.0 — 49.6  100.0 — 50.0 100.0 - 49.6  100.0 -
150 14.6 69.3 99.1 15.5 72.7 99.5 15.5 68.6 99.5 15.6 70.5 99.4
500 7.2 14.7 35.1 10.7  31.1 73.8 7.6 14.1 34.2 8.7 18.0 42.0
Anderson and Rubin test based on “SYS2”
50 84.5 — — 90.3 - — 87.7 — — 90.0 — -
150 | 25.6 94.6 100.0 72.7  100.0 100.0 25.8 944 100.0 439  98.6 100.0
500 10.3  25.0 60.5 99.1  100.0 100.0 11.6  26.5 62.1 59.8  94.7 99.8
Lagrange Multiplier test based on “DIF2”
50 40.1 99.3 — 49.3  99.1 — 42.3  99.1 — 48.5  99.3 -
150 9.5 37.5 78.2 10.2 484 94.9 10.3  36.8 77.9 11.3  53.1 91.5
500 6.0 9.5 11.0 10.4  42.1 73.9 5.4 9.0 13.7 8.7 16.0 24.1
Lagrange Multiplier test based on “SYS2”
50 58.3 — — 72.4 — — 56.9 — — 65.8 — —
150 14.7 464 79.1 59.7 959 99.6 17.4  44.2 77.6 45.1 71.6 92.6
500 5.8 13.3 18.1 98.6 100.0 99.0 7.5 11.9 16.5 78.7  94.7 97.8
Conditional likelihood ratio test based on “DIF2”
50 49.1 99.3 — 54.8  99.1 — 49.2  99.1 — 54.3  99.3 —
150 14.0 51.3 82.8 15.7  66.1 96.2 16.1 54.0 83.1 16.8  68.3 93.2
500 6.4 10.5 12.1 12.7 46.2 80.2 7.5 11.7 18.9 10.3 22.2 38.2
Conditional likelihood ratio test based on “SYS2”
50 61.0 - - 75.4 - - 58.6 — - 68.7 — —
150 15.8 525 79.3 62.0 96.7 99.5 17.8  45.1 77.8 46.0 75.5 92.5
500 5.8 13.3 18.1 98.7  100.0 99.6 7.8 12.3 17.0 78.9  95.0 97.9

Note: See notes to Table 9.
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Table 13: Size(%) and power(%) of v (v = 0.4) for AR(1) model

size (Hop : v = 0.4) [ power (Hj : v =0.3) size (Hop : v = 0.4) [ power (Hj : v =0.3)
T=1 T=25
N/T 5 10 15 20 [ 5 10 15 20 5 10 15 20 [ 5 10 15 20
Transformed likelihood estimator

50 5.2 7.2 7.0 5.9 | 20.7 49.8 69.1 85.3 5.1 7.2 7.0 5.9 | 206 49.8 69.1 85.3
150 6.1 4.9 5.0 56 | 42.2  90.0 99.3 100.0 | 6.1 4.9 5.0 5.6 | 42.2  90.0 99.3  100.0
500 4.8 4.9 5.3 5.0 | 83.6 100.0 100.0 100.0 | 4.8 4.9 5.3 5.0 | 83.6 100.0 100.0 100.0

One-step first-difference GMM estimator based on “DIF2”

50 9.7 8.1 9.6 6.1 | 21.8  38.0 56.8 66.9 | 159 148 14.1 114 | 25.6  34.7 41.9 53.8
150 5.3 6.0 6.0 6.5 | 283 65.6 88.8 95.6 9.3 7.3 9.5 74 | 206 36.3 55.8 74.8
500 5.6 5.1 5.2 51 | 55.0 97.1 100.0 100.0 | 5.1 5.4 5.9 7.1 | 242  53.6 88.3 98.2

Two-step first-difference GMM estimator based on “DIF2”

50 177 29.7 435 65.6 | 31.6 57.7 75.7 84.3 259 38.2 50.7 714 | 37.1 57.7 71.3 81.4
150 8.6 104 12.7 185 | 32.8 72.8 89.7 95.3 11.7 151 19.3 21.4 | 24.2 43.7 68.2 83.3
500 5.9 7.0 6.7 7.7 | 56.6 96.9 100.0 100.0 | 5.9 7.9 7.0 10.6 | 274  59.2 92.1 98.8

Two-step first-difference GMM estimator based on “DIF2” with Windmeijer standard errors

50 7.8 5.1 3.0 1.2 16.4 22.2 16.8 5.4 11.7 7.1 2.9 1.1 19.5 17.2 8.6 3.0
150 5.8 5.2 4.8 52 | 27.0 60.3 77.9 86.7 8.2 6.4 6.9 59 | 181 29.0 46.1 60.7
500 5.4 5.3 4.6 4.0 | 542 96.5 100.0 100.0 | 5.3 5.7 5.4 6.3 | 240 54.0 88.0 97.9

Continuous-updating first-difference GMM estimator based on “DIF2”

50 20.6 35.0 51.1 75.0 | 25.5 464 66.5 788 | 30.8 425 555 743 | 34.0 435 59.6 77.8
150 89 11.1 155 20.5 | 26.1  62.1 82.8 90.8 | 124 163 179 22,5 | 182  30.1 50.8 71.0
500 6.0 7.3 6.7 7.3 51.9 96.0 100.0 100.0 6.2 7.4 6.5 10.2 | 21.2 48.8 85.7 97.7

Continuous-updating first-difference GMM estimator based on “DIF2” with NW standard errors

50 22.1 52.8 586 381 | 262 620 70.6 43.8 | 24.8 495 54.0 375 | 286 50.5 57.3 40.5
150 7.1 12.6 213 352 | 249 653 87.9 95.5 9.7 165 226 35.8 | 15,5 29.8 57.4 81.1
500 5.7 7.3 7.6 9.2 50.3 96.2 100.0  100.0 5.2 7.1 6.9 11.1 | 18.8 47.4 85.4 97.9

One-step system GMM estimator based on “SYS2”

50 9.9 9.4 9.3 — 124 20.5 28.2 — 76.9 923 979 — 65.3  82.0 89.8 —
150 5.8 5.0 6.5 6.3 | 25.7 55.5 78.2 88.9 | 56.9 828 943 98.7 | 38.7 57.1 68.9 73.0
500 5.4 6.6 5.2 51 | 65.9 96.5 100.0 100.0 | 37.5 66.7 83.7 940 | 15.0 185 16.4 16.8

Two-step system GMM estimator based on “SYS2”

50 25.5 523 76.0 — 38.0 61.2 85.5 - 90.8 98.3 100.0 — 84.5  94.6 98.3 —
150 | 12.1  14.3 233 28.0 | 47.7  80.7 91.0 96.9 | 741 923 975 995 | 649 745 83.7 85.9
500 7.0 9.2 9.9 11.7 | 8.8 99.6 100.0 100.0 | 50.1 68.1 81.3 85.8 | 59.6  70.2 78.2 82.9

Two-step system GMM estimator based on “SYS2” with Windmeijer standard errors

50 7.2 3.2 2.1 — 12.8 9.6 3.5 — 65.0 534 11.2 — 53.4  38.2 8.0 —
150 6.4 3.6 4.6 4.3 | 346 594 72.8 76.0 | 46.2 69.3 81.8 85.6 | 33.2 428 53.2 49.7
500 5.6 6.5 4.8 53 | 82.8 99.3 100.0 100.0 | 244 432 54.0 62.6 | 31.4 39.7 43.7 50.8

Continuous-updating system GMM estimator based on “SYS2”

50 32.7 584 858 — 43.9  72.0 89.5 — 64.1 80.6 954 — 71.5  85.7 95.5 —
150 | 12.3 16.8 25.8 34.7 | 49.7 83.8 93.4 964 | 31.2 372 472 544 | 623 914 97.1 98.0
500 7.4 8.6 9.1 119 | 8.7 99.8 100.0 100.0 | 14.1 159 172 20.0 | 8.2 99.8 100.0 100.0

Continuous-updating system GMM estimator based on “SYS2” with NW standard errors

50 33.9 50.3 321 — 44.4 625 40.9 — 36.0 22.0 23.7 — 43.8  27.6 24.0 —
150 | 12.3 19.6 409 569 | 474 855 96.5 98.5 | 13.3 16.7 243 24.1 | 46.8 81.3 90.9 90.5
500 6.6 85 10.0 154 | 84.9 99.8 100.0 100.0 | 5.7 8.9 9.8 14.2 | 81.4 99.5 100.0 100.0
Note: For the definition of “DIF2” and “SYS2”, see notes to Table 11. “NW” denotes Newey and Windmeijer’s(2009) standard

€rrors.
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Table 14: Size(%) and power(%) of v (7 = 0.9) for AR(1) model

size (Hop : v =0.9) [ power (Hq : vy =0.8) size (Hop : 7 =0.9) [ power (Hi :v=0.8)
T=1 T=25
N/T| 5 10 15 20 [ 5 10 15 20 5 10 15 20 [ 5 10 15 20
Transformed likelihood estimator
50 135 159 13.1 10.2 | 286 44.0 60.1 77.1 13.5 15.9 13.1 10.3 | 28.6  44.0 60.1 77.1
150 16.7 12.7 7.7 6.7 31.6 584 81.9 95.3 16.8 12.6 7.7 6.6 31.6 58.3 81.9 95.2
500 170 7.7 5.1 4.5 | 446 76.2 953 100.0 | 17.2 7.7 5.1 4.5 447 76.2 95.2 100.0
One-step first-difference GMM estimator based on “DIF2”
50 33.8 30.8 275 24.1 | 45.0 53.3 579 66.3 | 37.5 43.5 39.8 38.5 | 47.4  58.8 64.3 71.1
150 229 16.2 11.7 9.1 32.5 39.2 56.9 72.4 30.8 36.5 32.6 29.9 41.7 54.8 61.4 68.6
500 14.7 7.8 7.0 6.7 | 279 41.2 72.1 92.0 | 27.3  30.1 27.0 25.8 | 39.5 51.7 56.7 67.5
Two-step first-difference GMM estimator based on “DIF2”
50 59.0 69.6 74.1 809 | 66.1 81.6 87.7 91.3 | 64.5 80.9 87.2 90.2 | 71.8 884 93.6 96.0
150 39.1 428 41.0 35.7 | 48.8 62.7 76.9 85.8 52.1 69.1 77.0 79.0 60.2 80.8 88.8 93.0
500 | 21.6 16.1 14.7 14.6 | 33.8 49.0 77.3 94.0 | 39.0 56.2 57.4 63.3 | 47.9 71.4 79.6 84.7
Two-step first-difference GMM estimator based on “DIF2” with Windmeijer standard errors
50 29.1 20.6 8.6 5.0 | 34.7 29.5 14.7 7.0 33.3  30.2 174 6.7 39.5 38.1 23.2 9.0
150 | 20.7 153 12,6 7.5 | 27.7 314 455 57.3 | 28.1 30.9 33.4 29.3 | 35.6 42.6 48.7 48.6
500 13.6 10.0 9.5 8.6 | 244 37.7 708 91.1 23.9 28.1 32.0 34.1 30.5  43.3 52.0 62.1
Continuous-updating first-difference GMM estimator based on “DIF2”
50 50.7 619 70.1 81.8 | 54.0 659 756 85.8 | 58.1 78.2 88.4 92.2 | 60.9 794 88.6 93.1
150 | 30.8 319 257 232 | 353 370 47.0 63.6 | 424  63.3 70.4 73.7 | 47.2 659 72.9 74.5
500 144 9.3 5.9 7.7 19.3 25.3  56.5 84.2 | 28.9 40.6 39.6 43.1 329 446 44.6 49.7
Continuous-updating first-difference GMM estimator based on “DIF2” with NW standard errors
50 37.1 455 46.3 399 | 41.6 49.8 53.7 45.2 | 43,5 527 52.0 48.1 | 46.7  55.1 55.0 51.1
150 20.1 214 223 33.0 | 25.1 28.1 46.2 73.1 29.3 34.8 32.8 40.4 32.0 38.9 35.2 42.8
500 8.7 5.9 6.0 8.6 13.7 19.7 545 85.3 17.4 15.6 13.9 175 | 21.0 204 19.5 23.3
One-step system GMM estimator based on “SYS2”
50 316 48.1 65.2 - 1.1 6.2 11.7 — 96.1 100.0 100.0 — 0.2 0.8 1.9 -
150 | 27.7 426 57.5 652 | 3.8 19.8 37.2 52.1 | 96.3  99.7 100.0 100.0 | 0.7 1.6 3.1 3.7
500 19.3 309 39.1 499 | 266 73.9 943 98.9 | 93.7 99.8 100.0 100.0 | 2.3 8.3 12.3 18.2
Two-step system GMM estimator based on “SYS2”
50 56.9 77.1 90.8 — 46.1  69.1 85.8 — 98.5 100.0 100.0 — 43.6 61.6 82.5 —
150 | 44.1 56.1 69.6 78.2 | 42.2 74.1 86.8 92.6 | 984 100.0 100.0 100.0 | 39.7 51.9 52.5 63.0
500 | 26.5 36.8 393 46.6 | 75.0 97.3  99.8 100.0 | 97.0 100.0 100.0 100.0 | 52.5  63.7 68.8 72.4
Two-step system GMM estimator based on “SYS2” with Windmeijer standard errors
50 179 12.7 4.9 — 7.3 7.3 4.3 — 78.5 81.6 40.0 — 4.9 5.4 2.5 -
150 176 204 23.8 244 | 9.7 24.1 36.1 38.7 | 8.0 98.9 99.9 99.9 3.6 8.8 13.9 16.3
500 109 154 162 16.0 | 434 87.0 97.1 99.9 | 86.5  99.7 99.8 100.0 | 5.3 17.7 26.1 34.0
Continuous-updating system GMM estimator based on “SYS2”
50 69.8 85.8 943 - 63.4 81.6 92.2 - 97.4 98.2 99.3 - 73.8 89.5 95.8 -
150 | 49.4 519 60.1 67.2 | 584 89.7  96.0 97.7 | 943  95.9 93.3 95.8 | 75.1 96.2 99.3 99.5
500 29.2 273 277 277 | 824 999 100.0 100.0 | 90.1 87.3 83.4 79.3 93.3 100.0 100.0 100.0
Continuous-updating system GMM estimator based on “SYS2” with NW standard errors

50 43.5 303 213 — 352  28.3 19.8 - 46.8 274 21.2 - 10.0 2.5 1.6 —
150 | 30.3 27.1 28.8 26.2 | 382 70.8 81.8 81.0 | 63.0 48.0 34.4 274 | 225 257 21.1 12.4
500 175 146 13.3 14.8 | 66.5 96.6 99.3 99.9 57.6 44.9 29.8 19.7 44.1 79.7 89.8 93.6

Note: See notes to Table 13.
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