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Abstract

Hot subdwarf B (sdB) stars are evolved core He-burning stars. The sdBs are formed by
binary interactions on the red giant branch (RGB) which cause the stars to lose most of their
H envelopes. Over half of all observed hot subdwarf B stars are found in binaries, many
of which are found in close configurations with orbital periods of 10d or less. These short
period systems are formed by common envelope evolution.

In order to estimate the companion masses in these predominantly single-lined systems,
tidal locking has frequently been assumed for sdB binaries with periods less than half a day.
Observed non-synchronicity of a number of close sdB binaries challenges that assumption
and hence provides an ideal testbed for tidal theory. The stars have convective cores and
radiative envelopes. Tidal dissipation in such systems is not particularly well understood. We
solve the second-order differential equations for detailed 1D stellar models of sdB stars to
obtain the tidal dissipation strength and hence to estimate the tidal synchronization time-scale
owing to Zahn’s dynamical tide and the equilibrium tide. The results indicate synchronization
time-scales longer than the sdB lifetime in all observed cases using standard input physics.

Asteroseismological analysis of NY Vir suggests that at least the outer 55 per cent of
the star (in radius) rotates as a solid body and is tidally synchronized to the orbit. Detailed
calculation of tidal dissipation rates in NY Vir fails to account for this synchronization.
Recent observations of He core burning stars suggest that the extent of the convective
core may be substantially larger than that predicted with theoretical models. We conduct
a parametric investigation of sdB models generated with the Cambridge STARS code to
artificially extend the radial extent of the convective core. These models with extended cores
still fail to account for the synchronization. Tidal synchronization may be achievable with a
non-MLT treatment of convection.

Several sdB stars have been both predicted and observed to pulsate with multiple frequen-
cies. Asteroseismological analysis of the observed pulsations shows that they do not quite fit
with the theoretical models, especially in the close binary systems. We present a method for
computing tidal distortion and associated frequency shifts. Validation is by application to
polytropes and comparison with previous work. For typical sdB stars, a tidal distortion of less
than 1% is obtained for orbital periods greater than 0.1 d. Application to numerical helium



x

core-burning stars identifies the period and mass-ratio domain where tidal frequency shifts
become significant and quantifies those shifts in terms of binary properties and pulsation
modes. Tidal shifts disrupt the symmetric form of rotationally split multiplets by introducing
an asymmetric offset to modes. Tides do not affect the total spread of a rotationally split
mode unless the stars are rotating sufficiently slowly that the rotational splitting is smaller
than the tidal splitting.
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Chapter 1

Introduction

A star is an object which is bound by its own gravity and radiates energy from an internal
source. For most of their life they have nuclear fusion reactions in their inner regions which
generate large amounts of energy. Typically, the energy is transported from the inner regions
to the surface where it is radiated away. During the life of a star its chemical composition
and structural properties undergo substantial changes. The nuclear reactions change the
composition of the star and ultimately the composition of the universe. The majority of stars
form near to other stars and reside in binaries, triples or higher order multiples. Interactions
with a companion can significantly alter the evolution of a star and create exotic objects
such as hot subdwarf B (sdB) stars. Furthermore, a closely orbiting companion raises a tide
in the star and distorts its structure. The internal structure of stars can be explored with
asteroseismology. This dissertation explores the effect of tidal interactions on the properties
of sdB stars.

1.1 Stellar Evolution

Stars are formed when clouds of interstellar molecular hydrogen gas collapse under the
influence of gravity to form clusters. The fully convective protostars dynamically contract
to become pre-main-sequence objects. During the contraction the internal temperature of a
star increases and the luminosity and opacity both decrease. Deuterium burning commences
which converts H and 2H into 3He. This reaction is highly sensitive to the temperature
and hence drives a convective core. When the core reaches 107 K hydrogen burning begins
in full. Stars with masses less than 1.1M⊙ burn hydrogen via the p-p chain in radiative
cores. More massive stars complete hydrogen fusion via the CNO cycle in convective cores.
Once the hydrogen burning is in equilibrium stars are said to be zero-age main-sequence
(ZAMS) stars. The minimum mass for a ZAMS star is 0.08M⊙ at solar metallicity (Burrows
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et al., 1997; Fernandes et al., 2019). Stars below this mass threshold are brown dwarfs. The
main-sequence phase is extremely stable and is the evolutionary stage in which stars spend
most of their lifetimes.

At the terminal-age main sequence (TAMS) central hydrogen reserves are fully depleted
and hydrogen burning continues in a shell which moves radially out. The inert He core
contracts which increases the central temperature and density. Meanwhile, the outer regions
cool and expand. The stars are now red giants. On the red giant branch (RGB) first dredge up
occurs. During first dredge up the envelope becomes convective and deepens mixing some
of the internal material, which has previously been hydrogen burning, to the surface of the
star. The outer regions of the RGB star are less tightly bound than they have been in previous
evolutionary phases so the outer layers of the star are be blown away by stellar wind.

Stars with masses below 0.5M⊙ never reach the central conditions required to commence
He fusion and instead settle on to a white dwarf cooling track where they steadily cool and
condense to become low-mass He white dwarfs. Stars with masses between 0.5 and 2.25M⊙
have electron degenerate cores which explosively ignite He in a process called the He flash.
The degeneracy of the inner material is lifted during the He flash. The stars become so-called
red clump stars which has a core fusing He into C and O and a H shell burning region outside
the core. If enough of the envelope is lost on the RGB the stars become extreme horizontal
branch stars. Higher mass stars have non-degenerate cores which stably ignite He.

Once central He resources are fully depleted, in either the degenerate and non-degenerate
ignition scenario, objects become asymptotic giant branch (AGB) stars. AGB stars have both
He and H shell burning. Stars with masses below 6M⊙ do not reach central conditions to
ignite carbon and so form C/O white dwarfs. Stars with masses between 6 and 9M⊙ ignite
carbon which burns into neon and magnesium then become oxygen-neon white dwarfs.

The high mass stars with masses over 9M⊙ continue fusing elements until an iron or
nickel core is formed. Shell burning of previous core elements continues. Once the Fe/Ni core
is formed there are no further elements for which nuclear fusion is energetically profitable and
so their cores collapse and the stars violently explode in the spectacular Type II supernovae.
The stellar remnants are either neutron stars or black holes.

1.1.1 Stellar Variability

Variable stars have observed brightnesses which change on time-scales significantly shorter
than major evolutionary changes. These changes in brightness can be intrinsic or extrinsic.
Intrinsic variables change brightness owing to internal physical changes whereas extrinsic
variables require some external influence. Eclipsing binaries are an example of extrinsic
variables because the source of the change in their observed light output is the stars physically
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passing in front of one another. Ellipsoidal variables are stars which have been deformed
by tidal interactions and are another example of an extrinsic variable. The photometric
lightcurves of ellipsoidal variable stars are approximately sinusoidal owing to their non-
spherical shapes in circular orbits. Pulsating stars are a class of intrinsic variables whose
changes in luminosity are due to periodic distortions to their shapes and sizes. These
modifications to the structure cause heating and cooling which is responsible for the variability
on the surface.

1.1.2 Binary Interactions

If stars form sufficiently close to one another they may form binaries, triples or higher
order systems. These stars are gravitationally bound to one another in elliptical orbits. The
multiplicity fraction of stars is strongly dependent on the mass of the primary. Higher mass
stars are far more likely to be in binaries. About 80% of O stars are in binary or higher order
systems and have 1.3 companions on average. Meanwhile, only 20% of M type stars are in
multiples (Duchêne and Kraus, 2013; Moe and Di Stefano, 2017). If they are sufficiently
close, the stars are said to be interacting. Binary-star interactions can have a significant effect
upon the evolution of stars. One of the major things that happens in the interacting regime is
mass transfer between the objects. Tidal interactions cause the stars to become deformed
from their spherically symmetric shape. Tides also alter the orbit and spin properties of a
system.

Roche Model of Binary Evolution

Roche models define a critical potential surface called a Roche lobe, of effective radius
RL, for each star in a binary configuration. Outside the Roche lobe material is no longer
gravitationally bound to the star. The effective radius of a Roche lobe is such that its volume
VL = 4

3πR3
L and can be approximated (Eggleton, 1983) as

rL(q) =
RL

a
=

0.49q2/3

0.6q2/3 + ln(1+q1/3)
, (1.1)

where a is the separation of the two stars. The mass ratio of the stars is denoted by q which
is defined as m1/m2, with m1 and m2 labelling the primary and its secondary companion
star respectively. Once a star overflows its Roche lobe mass is no longer bound and can be
accreted onto the companion star. Figure 1.1 shows mass transfer from a main-sequence star
to its white dwarf companion via RLOF. There are four major cases of mass transfer between
binary stars. Case A mass transfer begins on the main-sequence. Early case B mass transfer
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occurs as the star crosses the Hertzsprung Gap whereas late case B mass transfer is on the
RGB. Case C mass transfer begins after He ignition.

Fig. 1.1 Roche Lobe overflow and mass transfer from the more massive main-sequence
companion to the white dwarf with the formation of an accretion disc. The La-
grangian point is where the mass transfers from one object to the other. Image from
http://coffee.ncat.edu:8080/Flurchick/Lectures/StellarModeling/Section1/Lecture1-6.html
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1.2 Hot Subdwarf B Stars

The sdB stars are extreme horizontal branch (EHB) stars which are formed by binary inter-
actions. The sdBs are hot, with effective temperatures between 20000 and 40000 K. They
are also subluminous so sit below the main sequence with luminosities of the order 10L⊙
(Heber, 2016). The objects are small, with canonical masses of 0.47 M⊙ and radii between
0.1 and 0.25 R⊙. With such small radii, the objects are compact with surface gravities in
the range 5.0 < log10(gsurf/cms−2)< 6.0 whereas for the Sun log10(gsurf/cms−2) = 4.44.
They are evolved and so have He burning cores (distributed about 0.45 M⊙) and have H-rich
envelopes with masses less than 0.02 M⊙. Binary interactions on the RGB are responsible for
the loss of the H envelope. Figure 1.2 shows the position of sdBs in the Hertzsprung-Russell
(HR) diagram.

A small number of sdB stars were first discovered at high Galactic latitudes in the
1950s in the photometric survey of the North Galactic Pole carried out by Humason and
Zwicky (1947). Many more sdBs have since been discovered with large photometric surveys
including the work of Greenstein and Sargent (1974) and the Palomar-Green survey in the
1980s (Green et al., 1986). They are generally the dominant objects in surveys searching for
faint blue objects at the Galactic level.

Fig. 1.2 Hertzsprung Russel diagram showing the main evolutionary phases of stars including
the location of sdBs on the extreme horizontal branch (Heber, 2009)
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Whilst formed by binary evolution channels the sdB stars can be single or binary with
an observed binary fraction of 51% (Edelmann et al., 2005). The sdBs with white dwarf
or low-mass main-sequence unseen companions are single lined spectroscopic binaries and
those with G/K main-sequence companions are double lined. Many sdB binaries are close, in
short orbital period configurations with Porb < 10d, (Copperwheat et al., 2011) which would
suggest that tidal interactions could be significant.

Historically it has often been assumed that any sdB with white dwarf or dM companion
and orbital period of less than half a day was in synchronous rotation (Geier et al., 2010;
Maxted et al., 2002). A synchronously rotating system has a spin period which is is the same
as the orbital period. If the surface gravity and the rotational velocity in the line of sight
are known the orbital elements can then be solved. This is usually only possible for double
line spectroscopic binaries. The sdBs are also predicted and observed to pulsate. Recent
asteroseismological analysis has shown that the assumption of tidal locking is incorrect in
many cases (Kawaler et al., 2010; Pablo et al., 2012a,b).

1.2.1 Formation of sdB Stars

One of the earliest questions regarding sdBs was how these core He-burning stars initially lost
their envelopes. Current stellar wind prescriptions alone cannot remove the required quantity
of the envelope quickly enough. Many sdBs are observed to be in binaries. Mass transfer
between the two stars, either by stable Roche Lobe Overflow (RLOF) or common envelope
ejection, provides a mechanism to remove the envelope of a red giant (Han et al., 2002).
The existence of slowly rotating single sdBs are more difficult to explain. The merging of
two low-mass He white dwarfs (Han et al., 2002; Zhang and Jeffery, 2012) or a He white
dwarf with a low-mass main-sequence star (Clausen and Wade, 2011) have been suggested.
Merger products from either channel are expected have a broad mass distribution however
asteroseismic measurements indicate that the masses of single sdB stars are peaked at the
canonical mass of 0.47M⊙ (Fontaine et al., 2012).

Stable Roche Lobe Overflow

The stable Roche lobe overflow channel is the simplest mechanism for sdB formation. The
sdBs produced in this manner are in wide binaries with long orbital periods, between 400 and
1500d. They have thick H-rich envelopes and a mass distribution peaked around 0.46 M⊙.
The companions can be high mass white dwarfs or G/K main-sequence stars and are more
massive than the sdB progenitor. The mass transfer is assumed to be non-conservative and
mass lost from the system carries away orbital angular momentum. The mass loss occurs
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on the nuclear time-scale so thermal and hydrodynamic equilibrium are maintained. Mass
transfer begins on the red giant branch (RGB) when a low-mass giant fills its Roche lobe. It
is driven by the gradual expansion of the donor star owing to the burning of its fuel (Kuiper,
1941). As the star’s Roche lobe overflows mass is transferred and the binary orbit widens
causing mass transfer to be temporarily halted. The star continues to expand so it’s Roche
Lobe overflows again which restarts the mass transfer. Mass transfer stops once the H-rich
envelope is depleted to the extent that the star begins to shrink of its own accord. The
degenerate core ignites in a He-flash shortly after the mass loss is quenched if the mass of the
core is sufficiently large. Han et al. (2002) demonstrated that progenitor stars between 0.8
and 1.6M⊙ can experience dynamically stable mass transfer and form an sdB star. Vos et al.
(2019a) observed several wide binary sdBs formed by stable RLOF and found that the close
period systems have lower masses companions and smaller eccentricities (Vos et al., 2019b).
He found two populations. The shorter orbital period population are thought to originate
from more massive progenitors which undergo non-degenerate He ignition.

Common Envelope Ejection

The common envelope ejection channel produces sdBs in close binaries with thin H-rich
envelopes and a mass distribution similar to those stars formed in the RLOF channel. The
companions are low-mass white dwarfs, low-mass main-sequence stars or brown dwarfs.
The sdB envelopes from common envelope ejection are thinner than those formed by stable
RLOF (Han et al., 2002) because the stars are in more compact binaries and hence less of the
envelope remains bound to the degenerate core. The thinner envelope results in sdB stars
which are hotter and more compact (Han et al., 2002).The donor star first fills its Roche lobe
close to the tip of the RGB when its radius increases more quickly than the Roche radius. A
common envelope is formed when the envelope of the giant engulfs its low-mass companion.
The orbit of the cores shrinks, owing to the friction between the motion of the stars and
the common envelope. If sufficient orbital energy is released during the spiral-in phase, the
envelope is ejected. Once the envelope has been ejected the 0.45M⊙ core ignites. The mass
loss experienced is unstable and occurs on a dynamical time-scale.

It has been suggested that common envelope ejection can be described by the following
five phases (Ivanova et al., 2013).

• The common envelope evolution begins with the loss of corotation. The stars start off
in a circularized binary with the donor star synchronized to the orbit and ends with
spiralling in binary cores. The spiral-in occurs on a dynamical time-scale and may be
triggered by unstable mass transfer.
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• During the plunge-in phase there is a rapid inward spiral of the stars with the orbital
energy deposited in the envelope. This again occurs on a dynamical time-scale.

• After the plunge in there is a period of self-regulated spiralling in. The orbital energy
from the spiral-in is transported to the surface and radiated away.

• The termination of the spiral-in operates over several thermal time-scales. Generally
speaking, this is when the common envelope is ejected.

• Post common envelope evolution commences.

Common envelope ejection is the most plausible mechanism to form the sdBs in close binary
configuration because it shortens the orbit whereas stable Roche lobe overflow widens the
orbit. The theory behind common envelope ejection is still rather uncertain and strongly
depends upon the efficiency of the release of the orbital energy. The sdB stars may prove
to be useful to help understand this process. Schaffenroth et al. (2014)’s observations of
the system J162256+473051 confirm that brown-dwarf companions with masses as low as
0.064M⊙ are capable of removing the sdB envelope and surviving the common envelope
phase. The EREBOS project aims to constrain the lowest mass companion which can still
remove the sdB envelope (Schaffenroth et al., 2017). Results so far suggest that planet-mass
companion objects cannot remove the H envelope.

Helium White Dwarf Merges

Merging double He white dwarf systems are the most likely mode for single sdB formation
(Han et al., 2002). The resulting stars have very thin H envelopes and masses distributed
between 0.4 M⊙ and 0.7 M⊙ (Han et al., 2003). The required progenitor system of a close
white dwarf binary is formed by one or two episodes of CE ejection. If the orbital period is
sufficiently short, gravitational wave radiation removes angular momentum from the system
causing the orbit to shrink further. Dynamically unstable mass transfer begins once the lower
mass star fills its Roche lobe. At this stage the binary has an orbital period on the order of
minutes. The unstable mass transfer leads to dynamical disruption of the lower mass object
which is then smeared out to form an accretion disc around the more massive white dwarf.
Most of disc is accreted on to the white dwarf quickly although some of the disc may persist.
If the white dwarf is massive enough after the accretion of the disc, He ignites in its core.
The upper mass limit of the merged product is the sum of the original masses of the two
white dwarfs, although it is likely that some mass is lost during the process. Any H from the
envelopes of either white dwarf is mixed with the He and deeply embedded in the merged
product. It is then violently burned once the core ignites.
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This channel may be dominant for He rich sdBs (Zhang and Jeffery, 2012) and stars with
masses over 0.5 M⊙. One would generally expect these stars to be rapidly rotating owing
to conservation of angular momentum during the merge. However the majority of sdBs are
found to be slow rotators meaning that AM must be transported away during formation or
lost soon afterwards. The loss of AM is likely due to magnetic braking because we might
expect the merge to produce a strong magnetic field (Tout et al., 2008). Unlike WDs in which
the field freezes in, the core He burning driven convection in the sdB can cause it to dissipate.

Helium White Dwarf and Low-Mass Main-Sequence Merges

It has also been proposed that merging a He white dwarf and a low-mass MS companion
could produce an sdB (Clausen and Wade, 2011) via accelerated stellar evolution. Single
low-mass stars evolve directly onto the EHB with mass-loss on the RGB. Unfortunately,
the universe is not old enough for sufficiently low mass stars to have evolved of the main-
sequence. The merger product of a He white dwarf and a low-mass main-sequence star
makes an evolved star with masses between 0.53 and 0.84M⊙. One of the assumptions of
this channel is that the H-envelope must be entirely lost via unstable mass transfer on the
RGB. On the RGB Reimers mass-loss removes 0.1 to 0.3M⊙ of material from the merger
product. The ejected mass interacts with the magnetic field of the star which slows down
the wind and exerts a torque. Angular momentum is transferred from the star to the wind
which spins the star down. The sdB models created with this formation channel are naturally
slow rotators. This channel has been investigated less rigorously and so many of the details
of the evolution are still unknown. The system can also start as a hierarchical triple with the
inner binary consisting of a low-mass main-sequence star and a He white dwarf. Dynamical
interactions of the triple can cause the inner binary to merge leaving a wide binary with a
low-mass MS companion.

Single sdB Formation

Single sdB stars are observed to rotate slowly (Geier and Heber, 2012) and to have a mass
distribution peaked at 0.47M⊙ (Fontaine et al., 2012). The merging of a white dwarf
with either another white dwarf or a low-mass main-sequence star predicts a broad mass
distribution of the resulting sdB star and the initial components can have a range of masses.
Furthermore, the merging of two white dwarfs predicts a very rapidly rotating merger product.
Single star evolution reproduces the observed mass distribution, because it reflects the mass
of the He core in a red giant star, and produces a slowly rotating object. Enhanced mass-loss
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on the RGB (D’Cruz et al., 1996) produces a single sdB with the desired properties however
the reason for this enhanced mass-loss is unclear.

1.2.2 Pulsating sdBs

Non-radial pulsations in sdBs driven by the κ mechanism with iron group elements have
been both predicted (Charpinet et al., 1996a) and observed (Green et al., 2003; Kilkenny
et al., 1997). The majority of sdBs pulsators have long period gravity (g) mode pulsators
with brightness variations on the order of hours. Some sdBs displaying pressure (p) modes
with periods of minutes have also been found as well as a small number of hybrid pulsators
with both p and g-modes. The hybrid pulsators have oscillation modes which propagate both
through their cores, although not through convective regions, and though the outer regions
of the star and so are of particular scientific interest. Generally speaking the stars with
g-modes are observed to be cooler and have lower surface gravities than those with p-modes
as demonstrated in Figure 1.3. The two heavy-metal rich stars LS IV-14◦116 (Ahmad and
Jeffery, 2005) and Feige 46 (Latour et al., 2019) are both g-mode pulsators with high surface
temperatures and surface gravities. The ε mechanism offers a partial solution (Battich et al.,
2018; Miller Bertolami et al., 2011). Saio and Jeffery (2019) show that the pulsations can be
driven by the κ mechanism in partially ionized regions with C and O opacity bumps.

The observations of low-amplitude p-mode oscillators, also known as V361 Hya pulsators,
fit well with the theoretical models in terms of mode excitation Charpinet et al. (2007). The
first models for the g-mode pulsators, or V1093 Her stars, were less successful at predicting
the excitation boundaries. The observed temperatures of these V1093 Her stars are found
to be about 5000 K hotter than the detailed stellar models which reproduced the observed
pulsation instability regions. Boosting Ni abundances in the driving regions resolves the so
called blue edge problem (Jeffery and Saio, 2006, 2007). The required Ni and Fe abundances
have since been naturally created in models with improved atomic diffusion processes
(Bloemen et al., 2014).

Pulsations in stars are described with spherical harmonics and have three associated
wave-numbers k, l,m. Two of these come from the spherical harmonics Ylm(θ ,φ). The third
comes from the radial part of the solution R(r) such that ψklm ∝ R(r)Ylm(θ ,φ). If the stars are
rotating the degeneracy associated with the azimuthal order m is broken. This manifests as a
multiplet splitting in the observed frequency power spectrum. If the split multiplet spacing
can be resolved, the rotation rate of a star can accurately be determined independently of the
inclination of the system.
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Fig. 1.3 The locations of the V361 Hya and V1093 Her stars on a log10(gsurf/cms−2) − Teff
plane. The V361 Hya stars, marked in blue, are hotter and more compact than the V1093
Her stars which are coloured in red. The hybrid pulsators are displayed with red circles filled
in blue and all sit close to the boundary. This figure is from Green et al. (2011).

1.2.3 Rotation and Tidal Locking in sdB Stars

Post-common envelope sdB binaries are good potential laboratories to test tidal theories. The
systems may have synchronized on the RGB. During the common envelope evolution the
binary separation rapidly shrinks and this breaks any synchronization which has previously
occurred. The stars arrive on the EHB shortly after this common envelope phase. Recent
observations of sdBs put some constraints on the expected results. A significant fraction
of the radius of the star is convective because so much of the envelope has been removed.
Tidal synchronization is a controversial topic for stars with convective cores and radiative
envelopes such as the sdBs as the details of the dissipation mechanism remain elusive.
Most observational studies quote Zahn (1977)’s theory of the dynamical tide. However the
synchronization time-scales predicted by this theory are comparable to those of the core
helium burning lifetime which is 108 yr. The main results studying tidal synchronization are
as follows.
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Geier et al. (2010) examined the spectroscopic rotational broadening and inclinations of 31
close sdB binaries and then solved the orbits under the assumption of tidal synchronization.
Using Tassoul and Tassoul (1992)’s theory they argued that all post-common envelope
systems should be tidally synchronized in times shorter than their evolutionary time-scales.
The systems with low-mass companions and orbital periods of less than half a day could
be solved consistently under the assumption of synchronization owing to Zahn (1977)’s
dynamical tide. The sdBs with massive binary companions reveal a surprising dearth of
systems with high inclinations suggesting that the assumption of synchronization may be
incorrect. Pablo et al. (2012a) observed and analysed B4 which is a spectroscopically
confirmed sdB star in the open cluster NGC 6791. The star is in sub-synchronous rotation
and exhibits g-mode pulsations. It has an orbital period of 0.398 d and a rotation period
of 9.63 d. Pablo et al. (2012b) also analysed the Kepler data of two close sdB+dM binary
systems with g-mode pulsations. Neither of these systems are synchronized. Both sdBs
have orbital periods of 0.4 d and they have spin periods of 10.3 d and 7.4 d. Kawaler et al.
(2010) observed another two sdB + dM stars, which were again found to be rotating sub-
synchronously. Charpinet et al. (2008) found the pulsating sdB + dM system NY Virginis
to be both synchronized and rotating as a solid body in its outer half by radius. In light
of these results, Charpinet et al. (2013) suggest that synchronization may be efficient for
Porb < 0.125d for sdB + dM binaries.

Schaffenroth et al. (2014) observed SDSS J162256.66+473051 which is an eclipsing
system with an sdB with brown dwarf companion. The orbital period of the system is
0.069 d, or 103.68 min, but the star has a projected rotational velocity of 74 kms−1. This is a
sub-synchronous system since a rotational velocity of about 100 kms−1 would be required
for synchronization. If this sdB has a mass of 0.47 M⊙ the most likely companion mass
is 0.064 M⊙. Maxted et al. (2002) observed PG 1017− 086 which has an orbital period
of 0.073 days or 105.12 minutes. The rotational velocity of this object was found by least
squares fitting of the Hα line and was measured as vrot sin i =118 kms−1. They then assume
synchronous rotation, as do many other studies, to constrain the inclination i so this isn’t
really a confirmation of synchronization. The lack of eclipses constrains the inclination to
<72°. The companion mass derived from the study is 0.0687(250)M⊙.

Observational results suggest that tides are active in the sdB stars and that they are spun
up relative to the wide orbit or single sdB stars, who’s spin periods are similar to those of red
giants, but that the systems are not tidally locked. The discovery of pulsations in sdBs and
the recent advances in the precision of photometric measurements gathered with telescopes
have made these objects good asteroseismology candidates. Asteroseismology has led to
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the more accurate measurement of rotation rates so more systems can be studied and their
synchronization status can be confirmed or denied.
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1.3 Asteroseismology

Pulsating stars can be thought of as resonant spheroids with natural frequencies of oscillation,
which can be excited when perturbed. Not all stars are pulsators although those that are
can be categorised by their location on the Hertzsprung–Russell diagram. Figure 1.4 shows
the known classes of pulsating star and their locations. The majority of physical processes
involved with the evolution of stars occur deep within their interiors. Unfortunately, with
most observational techniques, it is only possible to learn about the surface properties of
a star. Asteroseismology is the study of the internal properties of a star by analysing its
observed pulsation oscillation frequency spectra. The word asteroseismology, as discussed
by Gough (1996), comes from the Greek words Aster (αστηρ), seismos (σεισ µoς ) and
logos (λoγoς ), meaning star, tremor and logic respectively. The technique was first used
for helioseismology by Christensen-Dalsgaard and Gough (1976) to determine the internal
properties of our Sun.

1.3.1 Driving Mechanisms

Hydrostatic equilibrium balances pressure with gravity and restores stability from struc-
tural perturbations on the dynamical time-scale. To have periodic variation pulsating stars
must have a driving mechanism. The four major proposed driving mechanisms are the ε

mechanism, the κ mechanism, convective blocking and stochastic excitations (Aerts et al.,
2010).

The ε Mechanism

In the ε mechanism variations in the nuclear reaction rate drive pulsations (Rosseland and
Randers, 1938). An increase in the nuclear reaction rate produces more energy. In response
to this extra energy the pressure increases and the star expands. During the expansion the
pressure drops and so the rate of nuclear reactions drops. The star begins to cool and contract,
causing an increase in the average pressure and temperature and the nuclear reaction rate
rises again. The periodic repetition of this process drives pulsations. Despite this being one
of the earliest proposed mechanisms for stellar pulsation there is still a dearth of supporting
observational evidence. Most stars have stable nuclear reaction rates. Even the unstable
thermal pulses seen in AGB stars happen on time-scales which are too long to result in
dynamical pulsations via this mechanism.
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Fig. 1.4 The different classes of known pulsators and their location on the H–R diagram. The
regions in dotted lines are predicted instability regions. This figure is from (Jeffery, 2008),
modified to include recent discoveries (priv. comm.)
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The κ Mechanism

Opacity κ describes how efficient stellar material is at absorbing incident radiation. The κ

mechanism, or the Eddington valve, relies on variations in the opacity in certain regions of
the star. These variations come in the form of opacity bumps which are local peaks in the
temperature profile of the opacity (Baker and Kippenhahn, 1962). Opacity bumps form in the
partially ionized regions of stars. They are usually caused by H and He but heavier elements
can also provide the same effect. Partial ionization of the stellar material raises the opacity
which then blocks the radiation and heats the surrounding gas. The pressure increases and
the star expands past its equilibrium point. The expansion reduces the ionization fraction
of the gas and thence the opacity so that radiation escapes with fewer interactions with the
surrounding material. The gas then cools and contracts under gravity. During the contraction
phase the gas recombines and the temperature and opacity rise, returning the gas to its initial
state and the cycle restarts. The κ mechanism was first used to describe the variations seen
in δ Cephei stars. Other classes of star seen to oscillate with this mechanism are β Cephei, δ

Scuti stars and some sdB stars (Charpinet et al., 1996a).

Convective Blocking

Convective blocking occurs if a composition transition region is just above the base of a
convective region (Brickhill, 1991; Pesnell, 1987). The transition region produces a small
amount of driving. Radiative luminosity rapidly drops off in convective regions so the energy
coming from the inner regions of the star cannot be moved by radiative transport any more.
It is assumed that the convective region does not instantaneously adjust to changes in the
incident luminosity. The extra luminosity from the pulsations driven in the transition region
is temporarily trapped. The radiation heats the surrounding material causing it to expand. As
the material expands, energy is released and the star eventually cools and contracts. With the
contraction, the temperature rises and the radiation is trapped again. This process repeats
cyclically to drive pulsations in γ Doradus (Guzik et al., 2000) stars.

Stochastic Excitation

Pulsations in solar-like stars are induced by stochastic excitations (Goldreich et al., 1994).
These stars have turbulent convective surfaces. The vigorous motion generates significant
acoustic noise over a broad range of frequencies. The acoustic noise can resonate with
the otherwise stable normal oscillation modes of the star. Owing to the complexity of the
turbulent surface convection the pulsations excited in this manner are random in nature.
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The balance between the complex excitation and the intrinsic damping of the pulsations
determines the amplitudes.

1.3.2 Radial Linear Adiabatic Stellar Oscillations

Radial modes are the simplest form of pulsations. The stars radially expand and contract
periodically whilst maintaining spherical symmetry. For the fundamental mode, the entire star
expands and contracts. The overtones have radial nodes, which are stationary, and periodically
expanding and contracting regions everywhere else. Mathematically, the displacement of
the star owing to the oscillations can be treated as an eigenvalue problem with differential
equations of Sturm–Liouville form. If the perturbations are small the equations are linear.
The fundamental pulsation period Π of a star is of the order

Π ≈ 2R
c̄s

, (1.2)

here R is the radius of the star and c̄s is the mean sound speed defined by c̄s =
√

Γ1P/ρ

where P is the pressure and ρ is the density. The adiabatic exponent is

Γ1 =

(
∂ lnP
∂ lnρ

)
S
, (1.3)

with the derivative at constant entropy S. Following Cox (1967) and Gough (priv. comm.) the
linear adiabatic wave equation for stellar oscillations can be derived from the mass continuity
equation

dm
dr

= 4πρr2, (1.4)

where m is the mass enclosed within radius r. The Lagrangian equation for hydrostatic
support which balances the inward gravity with the pressure is such that

dP
dm

=− 1
4πr2

(
Gm
r2 + r̈

)
, (1.5)

where r̈ is the acceleration at fixed m. The energy equation states that for radial nodes

Ṗ− Γ1P
ρ

ρ̇ = (Γ3 −1)ρ
(

ε − 1
ρ

∂Lr

∂m

)
, (1.6)
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where the dots are derivatives with respect to time, ε is the energy generated from the nuclear
reactions Lr is the internal luminosity and

Γ3 −1 =

∣∣∣∣∂T
∂ρ

∣∣∣∣
ad
=

∣∣∣∣ ∂P
∂ (ρE)

∣∣∣∣
ρ

, (1.7)

where ρE is the internal energy per unit volume. Generally with stellar oscillations one
considers the relative displacement

ζ = δ r/r0, (1.8)

where r0 is the equilibrium radius and the instantaneous radial distance of the mass shell is

r = r0(1+ζ ), (1.9)

and the instantaneous value of a relative Lagrangian variation of a given element f is

f = f0

(
1+

δ f
f0

)
. (1.10)

The general form for linearizing equations, to first order, is

dy
dt

= f (y,u)≈ f (ȳ, ū)+(y− ȳ)
∂ f
∂y

∣∣∣∣
ȳ,ū

+(u− ū)
∂ f
∂u

∣∣∣∣
ȳ,ū
, (1.11)

where the bars denote the equilibrium values. The linearized form of Eq. 1.4, if only
considering first order terms and dropping zero subscripts, is

δρ

ρ
=−3ζ − r

∂ζ

∂ r
. (1.12)

The linearized form of 1.5 is

∂δP
∂ r

=−4
dP
dr

ζ − rρζ̈ . (1.13)

Finally, Eq. 1.6 can be expressed as

δ Ṗ− Γ1P
ρ

δ ρ̇ = (Γ3 −1)ρ
(

δε − ∂δLr

δm

)
, (1.14)

where Lr is the internal luminosity. The time derivatives of the linearized pressure and mass
continuity equations can be substituted into the energy equation, if radius derivatives of the
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energy equation are taken, to give

−4
dP
dr

ζ̇ − rρ
...
ζ − ∂

∂ r

{
Γ1P

(
− r

∂ ζ̇

∂ r
−3ζ̇

)
+(Γ3 −1)ρ

(
δε − ∂δLr

δm

)}
= 0. (1.15)

Isolating the first term in the curly brackets from Eq. 1.15, expanding the derivatives, dividing
through by r3 then re-factorising the resulting expression gives

∂

∂ r

{
Γ1P

(
− r

∂ ζ̇

∂ r
−3ζ̇

)}
=

1
r3

∂

∂ r

(
Γ1Pr4 ∂ ζ̇

∂ r

)
+3

d(Γ1P)
dr

ζ̇ . (1.16)

Substituting Eq. 1.16 back in to Eq. 1.15 gives

∂

∂ r

(
Γ1ρr4 ∂ ζ̇

∂ r

)
+ r3

{
d
dr

[
(3Γ1 −4)P

]
ζ̇ − rρ

...
ζ

}
= r3 ∂

∂ r

{
(Γ1 −1)ρ

(
δε − ∂δLr

∂m

)}
,

(1.17)
in the adiabatic case the right hand side is zero and several of the terms simplify. One
considers solutions of the form

ζ (r, t) = ξ (r)eiωt , (1.18)

where ω is the eigenfrequency of the mode, t is time and ξ (r) is the spatial component of
the solution. The linearized adiabatic wave equation becomes

d
dr

(
Γ1Pr4 dξ

dr

)
+

{
r4 d

dr

[
(3Γ1 −4)P

]
+ r4

ρω
2
}

ξ = 0. (1.19)

The ω = 0 solution is discarded because it is just the static case. Solutions which have
real ξ (r) describe standing waves.

Non-Radial Modes

Oscillations in stars are analogous to oscillations on a string if generalised to the spherical,
three dimensional case. The natural oscillation modes can have nodes in any of the r, θ or φ

directions of spherical polar co-ordinates. The oscillations are treated as small perturbations
to the equations of stellar structure which disrupt the spherical symmetry of the star. Stars
with non-radial modes break spherical symmetry because the star physically changes shape.
The eigenfunctions in this case are proportional to the spherical harmonics.
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Solutions can be expressed as

ζ (r,θ ,φ , t) = ξ (r,θ ,φ)eiωt , (1.20)

where the orthogonal components of the Lagrangian displacement are

ζr(r,θ ,φ , t) = a(r)Y m
l (θ ,φ)exp(iωt),

ζθ (r,θ ,φ , t) = b(r)∂Y m
l (θ ,φ)

∂θ
exp(iωt),

ζφ (r,θ ,φ , t) =
b(r)
sinθ

∂Y m
l (θ ,φ)

∂φ
exp(iωt).

(1.21)

The spherical harmonics are

Y m
l (θ ,φ) = (−1)mNm

l Pm
l (cosθ)eimφ , (1.22)

where Pm
l is the associated Legendre polynomial which can be generated by

Pm
l (cosθ) =

1
2ll!

(1− cos2
θ)m/2 dl+m

d cosl+m θ
(cos2

θ −1)l, (1.23)

and Nm
l is a normalisation constant which ensures that Y m

l integrates to one over all directions.
It is

Nm
l =

√
2l +1

4π

(l −m)!
(l +m)!

. (1.24)

Three quantum numbers k, l and m describe the geometry of a given eigenmode. The
number of radial nodes of the mode is denoted k. The degree of the mode states how many
surface nodes exist and is labelled l. Finally m is the azimuthal order of the pulsation and
dictates how many of the surface nodes cross the equator of the star. Figure 1.5 shows the
spherical harmonics for different l and m. The zonal modes are the m = 0 modes and have
no node lines intersecting the equator. The sectoral modes have m = l and all the node lines
pass through the equator. Tesseral modes are a combination of the two and have 0 < m < l.

To derive the adiabatic wave equation for stars with non-radial pulsations, we start with
the Euler equation

ρ
duuu
dt

=−∇P+ρ∇Φ, (1.25)



1.3 Asteroseismology 21

where uuu = dζζζ/dt, P = P0+P′, ρ = ρ +0+ρ ′ and Φ = Φ0+Φ′ so the linearized momentum
equation is

ρ
∂ 2ζζζ

∂ t2 =−ω
2
ρξ =−∇P′+ρ

′
∇Φ+ρ∇Φ

′, (1.26)

where Φ is the potential and primes are the perturbation to a quantity. Cowling (1941) shows
that the Φ′ term can be ignored if l and the radial order |k| are large. The continuity equation
is

δρ = ρ
′+

dρ

dr
ξr, (1.27)

the pressure equation gives

δP = c2
(

ρ
′+

dρ

dr
ξr

)
, (1.28)

and the momentum equation in the radial direction is

∂P′

∂ r
+

gP′

c2 = ρ(ω2 −N2)ξr, (1.29)

where N is the Brunt-Väilsälä frequency which dictates the rate of oscillation of a packet of
gas radially about its equilibrium location within the star such that

N2 = g
(

1
p0Γ1

d p0

dr
− 1

ρ0

dρ0

dr

)
. (1.30)

The adiabatic wave equation for non-radial pulsations is

1
r2

∂

∂ r

(
r2

ζr

)
− g

c2 ζr =−P′

P
− ∇2

hP′

ω2 , (1.31)

in terms of spherical harmonics the adiabatic wave equation becomes

1
r2

∂

∂ r

(
r2

ζr

)
− g

c2 ζr =− 1
Γ1P

(
1− L2

l
ω2

)
P′, (1.32)

where ∇h is the horizontal motion. The Ll is the Lamb frequency which is the inverse of the
time taken to travel one horizontal wavelength within the star and defined

L2
l =

l(l +1)c2
s

r2 . (1.33)
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Fig. 1.5 The spherical harmonics with different values of the wavenumbers l and m. The l
dictates the number of surface nodes and m dictates how many of these cross the equator of
the star. Image from Townsend ESO Chile November 2006 Presentation Slides

1.3.3 Pressure and Gravity Modes

The Lamb frequency Ll and the Brunt-Väilsälä frequency N dictate the propagation of the
pulsation modes within the stellar interior. These two frequencies can be compared to the
stellar oscillation frequency ω to find the main restoring force in the region considered. If
ω is greater than the Lamb and Brunt-Väilsälä frequencies the restoring force is pressure.
Pressure modes are acoustic waves which are short in period and propagate in the same
direction as the oscillation. The waves are located in the outer regions of the star and start at
the surface moving radially towards the centre. The speed of sound increases with proximity
to the centre of the star which causes the waves to be refracted back towards the surface.
Once at the surface the waves are reflected by the sharp drop in density. This pattern of
motion continues around the star. Conversely, if ω is smaller than Ll and N g-modes are in
operation and the restoring force is gravity, specifically the buoyancy. The g-modes propagate
orthogonally to the direction of motion with long period oscillations and penetrate deep
within the stellar interior. The propagation of p and g-modes through the star is displayed
in Figure 1.6. Pulsations are quickly damped and fizzle out when ω is between the two
frequencies. Figure 1.7 shows the effect of l on the frequency of pulsations.
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Fig. 1.6 The propagation of p-modes (left) and g-modes (right) through the interior of a 1 M⊙
star. Figure from Aerts et al. (2010).

Fig. 1.7 The frequencies of stellar oscillation as a function of spherical degree l for a solar
type star. This image is from Aerts et al. (2010)

1.3.4 Observations

Asteroseismology uses observational time series measurements made with either photometry,
to detect changes in the apparent luminosity, or spectroscopy, to see surface velocity variations
(Aerts et al., 2010). Photometric light-curves which show periodic variation owing to
pulsations can be Fourier transformed to obtain power spectra in frequency space. The peaks
in the power spectra correspond to the observed eigenfrequencies. The stars must be observed
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for many pulsation cycles to obtain precise measurements because the frequency resolution,
∆ν , is given by

∆ν ∝
1
∆t

, (1.34)

where ∆t is the total time of all observations. Space based photometry has revolutionised
the field because it allows continuous measurements to be taken whilst bypassing several
of the undesirable effects associated with ground based observation including clouds and
atmospheric turbulence. Frequency analysis is carried out on the measured light curves to
find the frequencies of pulsation and identify the modes. The highest frequency which can
reliably be inferred corresponds to the Nyquist frequency which is defined as half of the
sampling rate. For example, if 100 samples are taken per second the corresponding Nyquist
frequency is 50 Hz. Data is generally converted to the frequency domain with a discrete
Fourier transform of the form

FN(ν) =
N

∑
k=1

x(tk)ei2πνtk , (1.35)

where x(tk) is the time series, N is the number of measurements and ν is the frequency.
Once a frequency power spectrum has been obtained the modes can be identified. Mode
identification aims to assign the quantum numbers k, l and m to the observed frequencies.
The k is the radial overtone, l is the number of node lines on the surface and m is the number
of node lines which pass through the equator. If the star is spherically symmetric and not
rotating the m mode frequencies are degenerate. The g-modes have periods which are linearly
spaced and the p-modes have frequencies that are linearly spaced for increasing l. The
difference in frequency of two adjacent l modes is called the larger frequency separation.
When the stars are rotating the degeneracy of the m modes is broken. To first order and
assuming that the star rotates as a solid body the frequency separation between the m modes
is equal and called the rotational splitting. The frequency separation of a rotationally split
multiplet is

∆νkl =Vrot(1−Ckl) (1.36)

where Vrot = 1/Prot and the Ledoux coefficient (Ledoux, 1951) is defined

Ckl =

∫ R
0 (ε2

h +2εrεh)ρr2 dr∫ R
0 (ε2

r + l(l +1)ε2
h )ρr2 dr

(1.37)

where εr(r) and εh(r) are the zeroth order radial and horizontal displacement eigenfunctions
of the mode. For p modes the contribution from the Ledoux coefficient is often ignored.



1.3 Asteroseismology 25

The spin period of the star can be determined fare more accurately than from rotational
broadening of spectral lines if the spacing of a rotationally split multiplet is known.

The space missions Kepler, K2 and TESS, and the upcoming PLATO, have hugely
increased the precision of photometric measurements relative to ground based observations.
The highest quality observations now have precision in the 1 µHz region owing to the short
cadence of the observations and the long time base of continuous observations. Recent
improvements to the quality of asteroseismic data have reinvigorated the field and allow for
the testing and development of the understanding of the physics operating within these stars.
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1.4 Tidal Interactions

Tidal interactions act to bring a binary system to the equilibrium tidally locked configuration.
When tidally locked the spin of both of the objects is aligned with and synchronized to
the circularized orbit. Fig. 1.8 is a schematic diagram demonstrating tidal synchronization.
When a massive companion is close to the star there is a difference in the potential between
the side closest to and that furthest from the companion star. This causes a bulge to form
along the line connecting the centre of masses of the two stars. The star is distended both
towards the companion, because the matter there is pulled towards the companion, and
away from the companion, because the matter there is less tightly bound. If the system is
synchronized the bulge stays in the same place on the star and always points towards the
companion. If the system is not synchronized and there is no dissipation mechanism, the
bulge moves around the star always pointing towards the companion. If the system is not
synchronized, and there is a dissipative mechanism, the bulge moves away from the line
connecting the centre of masses. This creates a torque through the star causing it to spin
up or down until it is synchronized, if such a stable configuration exists. The equilibrium
tide describes the instantaneous shape of the distorted star and mathematically refers to
the particular integral solution of the governing differential equations. If the orbit of the
system isn’t synchronized the tidal bulge moves away from the line connecting the centres of
masses perturbing the equilibrium tide. Mathematically this perturbation is described by the
complimentary function and physically refers to the dynamical tide. Simple models examine
how the changes in the equilibrium tide are dissipated.

Darwin (1879) created the earliest robust theory of tidal interactions. This theory sug-
gested that tidal locking was achieved purely by the torque created by the tidal bulge.
Unfortunately this mechanism failed to produce the torque necessary to tidally lock a system.
In convective regions the bulk movement of material over large distances causes a natural
turbulent viscosity. Viscosity provides a drag which prevents the bulge moving instanta-
neously around the star and offers a mechanism to dissipate energy via the equilibrium tide.
Among others, Peter Eggleton has also written his own formalism of convective dissipation
(Eggleton, 2006; Eggleton et al., 1998). Eggleton’s theory is self consistent and is derived by
citing only the Navier-Stokes equation, the Poisson equation and the equation of continuity
but requires a local viscosity to dissipate energy. There are currently two dominant theories
of tidal interactions which attempt to answer the question of how the tidal energy is dissipated
in the radiative regions. One was proposed by Zahn (1975, 1977) and the other by Tassoul
(1987). Zahn’s theory of dynamical tides applies to stars with convective cores and radiative
envelopes and suggests that the periodically varying potential in the star resonates with
and excites the stars natural modes of oscillation. These oscillations are excited near the
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Fig. 1.8 Schematic diagram illustrating basic tidal interactions. The top panel is a single
unperturbed star. In the second panel, the star has a close companion causing tidal distortion
in the form of a bulge on both sides of the star. This system is either locked or has no
dissipation because the bulge is along the line connecting the centres of mass of the objects.
The bottom panel shows a tidally distorted star with some sort of dissipation mechanism
causing the bulge to move away from the line connecting the centres of mass of the two stars.
This system is rotating sub-synchronously, spinning slower than it orbits, causing the tidal
bulge to lag behind the line connecting the two centres of masses. The tidal bulges then
experience a torque that serves to drive the system to synchronization.

convective core boundary then damped in the radiative envelope which provides a dissipative
mechanism for the tides. This theory predicts reasonable circularization time-scales but
synchronization time-scales which are too long to account for the observed numbers of locked
systems. Tassoul and Tassoul’s hydrodynamical mechanism was proposed in an attempt
to counteract these problems. It successfully predicts shorter synchronization time-scales.
The tidal disruption give rise to larger scale meridional flows. Mass exchange between an
Ekman boundary layer and the rest of the star allows angular momentum facilitates angular
momentum exchange which can spin up or spin down ther star. In an Ekman layer the forces
owing to pressure, the Coriolis force and the turbulent drag are balanced. Tassoul (1987)
suggests that large-scale meridional flow very efficiently synchronizes a star. However,
(Rieutord and Zahn, 1997) highly contest Tassoul (1987)’s theory by showing that incorrect
boundary conditions were used to increase the efficiency of the Ekman pumping.
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1.4.1 Convective Dissipation Derivation

Following (Eggleton, 2006; Eggleton et al., 1998) a theoretical framework for tidal dissipation
can be derived assuming only Poisson’s equation for the gravitational potential φ which
states

∇
2
φ = 4πGρ, (1.38)

and the Navier-Stokes equation for the flow of fluid in an inertial frame of reference

ρ
Dvvv
Dt

=−ρ∇φ −∇P+∇.(ρv{∇vvv}), (1.39)

where t is time, vvv is the velocity field of the fluid, ρ is density, P is pressure and ν is the fluid
viscosity.

The Effective Potential

Assuming that the mass of the star remains constant, the time derivative of the mass continuity
equation for a star gives

dM1

dt
=

∫
V1

d(ρdV )

dt
= 0, (1.40)

where V1 is the volume enclosing the star under consideration and M1 is the mass of the
tidally perturbed body. Then

ṙrr =
drrr
dt

=
1

M1

∫
V1

vvvρdV, (1.41)

where rrr is a vector from the centre of mass of the system. Further assuming that P and ρ

vanish outside the surface of the star and utilising the Navier-Stokes equation gives

r̈rr1 =− 1
M1

∫
V

ρ∇φdV. (1.42)

The force on star 1 is
F1F1F1 = M1r̈rr1 =−

∫
V1

ρ∇φdV, (1.43)

and self forces FFF ′
1 =−∫

V1
ρ∇φ1dV vanish because one finds

F ′
1F ′
1F ′
1 =−

∫
V1

1
4πG

∇
2
φ1∇φ1dV =

∫
S1

{
∂φ1

∂x j

∂φ1

∂xi
− 1

2
δi j

∂φ1

∂xk

∂φ1

∂xk

}
dA j, (1.44)
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where A is the area enclosed by the surface S1 so FFF ′
1 =−∫

V1
ρ∇φ2dV . The potential for a

star follows

φ1(x) =−G
∫

V1

ρ(xxx′)
|xxx−x′x′x′|dV, (1.45)

where xxx is a vector from the centre of mass of the tidally distorted object to the companion.
Taylor expanding this gives

φ1(x)≈−G
{∫

V1

ρ(x′x′x′)
x

dV −
∫

V1

ρ(x′x′x′)x′x′x′.∇
1
x

dV +
1
2

∫
V1

ρ(x′x′x′)x′ix
′
j

∂ 2

∂xi∂x j

(
1
x

)
dV

}
, (1.46)

where the first term is the monopole, the second term is the dipole and the third term is the
quadrupole. The dipole term vanishes to keep the star in a Keplerian orbit. One can define
the trace-free quadrupole tensor

qi j =
1
2

∫
V1

ρ(x′)(3x′ix
′
j − x′2δi j)dV, (1.47)

Using the quadrupole tensor the potential can be expressed as

φ1 =−GM1

xxx
−Gqi jli j(xxx), (1.48)

where

li j(aaa) =
aia j − 1

3a2δi j

a5 =
1
3

∂ 2

∂ai∂a j

(
1
a

)
=

li j(â̂âa)
a3 . (1.49)

The effective potential in the frame accelerating and rotating with star 1 which has angular
frequency Ω is

φ
∗∗ =

GM1

x
− GM2

r
− 1

3
Ω

2x2 −Gqi jli j(xxx)−
3
2

GM2x5li j(xxx)li j(rrr)+
1
2

Ω
2x5li j(Ω̂̂Ω̂Ω)li j(xxx).

(1.50)

Properties of the Quadrupole Tensor

The star has an axis of symmetry through the tidal bulge which is the kkk axis. The trace-free
quadrupole tensor is defined such that

qi j = q(kik j −
1
3

δi j) = qli j(kkk), (1.51)

and
li j(kkk)li j(x̂̂x̂x) = x3li j(kkk)li j(xxx) = cos2

θ − 1
3
=

2
3

P2(cosθ), (1.52)



30 Introduction

where θ is the angle between kkk and xxx.

The Shape of the Tidal Bulge

As posited by Darwin (1879), the tidal bulge is modelled as symmetric with a shape described
by a second order Legendre polynomial. To lowest order an equipotential surface of a tidally
distorted star can be approximated by

r̄ ≈ r(1+α(r)P2(cosθ)), (1.53)

r ≈ r̄[1−α(r̄)P2(cosθ)], (1.54)

where r(θ) is the local radius of the equipotential, P2 is the second order Legendre polynomial
and θ is the polar angle subtended in the star. The amplitude of the Legendre polynomial
distortion at a given radius of the star is defined by α(r) which is dimensionless and depends
on the structure of the star. As α is to first order it can be treated as the same function of r or
r̄. Substituting

∇φ = φ
′
∇rrr, (1.55)

into Poisson’s equation gives

∇
2
φ = φ

′′|∇rrr|2 +φ
′
∇

2rrr, (1.56)

where
∇rrr = (1+(rα)′P2(cosθ))eeer +α

dP2(cosθ)

dθ
eeeθ , (1.57)

so

∇
2
φ = φ

′′+
2
r

φ
′+

{
rα

′′+4α
′−2r

φ ′′

φ ′

(
rα

′+α

)}
φ
′P2(cosθ) = 4πGρ, (1.58)

where θ is the angle from the axis of symmetry. Collecting the angular terms gives Clairaut’s
equation

r2
α
′′+4rα

′−2α +2r
φ ′′

φ ′

(
rα

′+α

)
= 0. (1.59)

If the density is uniform ρ(r) =const and α(r) = const. In the non-homogeneous case
Clairaut’s equation can be solved for an unperturbed, non-rotating, detailed 1D stellar model,
such as is output by the STARS code. The solution for α(r) can be used to create 2D tidally
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distorted stars with equipotential surfaces with Eq. 1.54. On the surface

α(R) =−2
3

∆R
R

. (1.60)

The quadrupole tensor qi j has a dimensionless moment such that qi j = QM1R∆Rli j(kkk)

Q =
∫ R

0

4πρr4(5α + rα ′)
5MR2α(R)

dr, (1.61)

where ρ(r) is the density of the star at a given r, α(R) is α(r) at the surface of the star and R
is the total radius of the star. The Q is dimensionless and independent of the perturbation, it
depends only on the internal structure of the tidally distorted star.

Dissipation

If the orbit of the binary is not synchronized with the rotation, a time varying velocity field is
produced within the star as tides are raised and lowered. A model of the interior of the star as
a fluid with constant density along equipotentials and a tidal bulge described by a Legendre
polynomial allows the velocity field to be described with the equation of continuity. The
shape of the tidal distortion can be expressed as

r̄ = r+
α(r)

r
H, (1.62)

where H(r,θ) is a harmonic function describing the shape of the distorted star and r̄ is
constant in θ ,

H(r,θ) = r2P2(cosθ). (1.63)

With the time derivative of H denoted by K, the continuity equation can be satisfied by the
velocity field vvv defined as

vvv = −1
2

β (r)α(R)∇K, (1.64)

where

β (r) = − 1
ρ

∫ R

r

α(r′)
α(R)

dρ

dr′
dr′. (1.65)

From mixing length theory, the local turbulent viscosity can be approximated as ν = wl
where w is the mean velocity of the turbulent eddies and l is the mixing length which refers to
the size of the largest cells. As the tidal bulge moves around the star, this viscosity provides
a dissipative mechanism for the tides. The rate of dissipation of the mechanical energy ε
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through the star is

−dε

dt
=

1
2

∫
ρwlt2

i jdV =
9M2

2R6

2M2
1(1−Q)2 s2

i j

∫ M1

0
wlγ(r)dm. (1.66)

The rate of strain tensor is ti j and si j is the symmetric, time dependent, space independent
stress tensor. The masses of the primary and secondary stars are given by M1 and M2

respectively and

γ(r) = β
2 +

2
3

rββ
′+

7
30

r2
β
′2. (1.67)

The viscous time-scale of the convective region τvisc is defined by

1
τvisc

=
1

M1R2
1

∫ M1

0
wlγ(r)dm. (1.68)

Care must be taken here to evaluate this only in the convective regions of the star. The tidal
time-scale can be defined as

τtide =
2τvisc

9
a8

R8
M2

1(1−Q)2

M2(M1 +M2)
, (1.69)

where a is the binary separation. From this tidal time-scale, the rate of change of rotational
angular velocity dΩ

dt can be found to be

dΩ

dt
=

ω

τtide

(
1− Ω

ω

)
M2

M1 +M2

a2

R2k2
r
. (1.70)

The radius of gyration of the star k2
r refers to the distribution of the components of an object

around its rotational axis. It is defined so that k2
r = I/MR2 where I is the moment of inertia

of the star. Solving the first order differential equation 1.70 allows Ω(t) to be found. From
this, the time taken to arrive at a synchronous state can be calculated as

τsync = log
(

ω −Ω0

ω −Ω

)
τtide(M1 +M2)R2k2

r
M2a2 . (1.71)

It is assumed that the orbital angular velocity ω remains constant over these time-scales
because the moment of inertia of an sdB star is small compared to that of the binary orbit.
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The Relative Magnitude of Tidal and Rotational Distortions

Eggleton et al. (1998) calculate the distortion of a star owing to spin and tides in terms of a
quadrupole tensor

qi j = qrotli j(Ω̂̂Ω̂Ω)+qtidli j(â̂âa), (1.72)

where Ω̂ is a unit vector along the spin axis and â is directed towards the companion and

li j(kkk) =
3kik j − k2δi j

2k5 , (1.73)

for a general vector k. The constants qrot and qtid can be related to the difference between
the polar and equatorial radii ∆Rrot ⩽ 0 and ∆Rtid ⩾ 0 by q = QM1R∆R. So for the oblate
spheroid rotational distortion

∆Rrot

R
=

−Ω 2R3

2GM1(1−Q)
, (1.74)

where Ω is the spin frequency, R is the radius of the rotating star, M1 is its mass and Q is the
dimensionless tidal quadrupole moment obtained by solving Clairault’s equation. The tidal
distortion is a prolate spheroid symmetrical around the line connecting the centre of masses
of the binary system and

∆Rtid

R
=

3M2R3

2M1a3(1−Q)
, (1.75)

where M2 is the companion mass and a is the binary separation. Kepler’s second law can be
used to re-express the binary separation in terms of the orbital angular velocity ω . For the
tidal distortion to dominate, |∆Rtid|> |∆Rrot|, it is required that

M1 <

(
3
(

ω

Ω

)2

−1
)

M2. (1.76)

1.4.2 Zahn’s Mechanism of Radiative Dissipation

Zahn (1975, 1977) developed a theory of dynamical dissipation for stars with radiative
envelopes and convective cores. The periodic tidal potential induced by the companion
star resonates with g-modes in the core. At the radiative boundary, these excited g-modes
are damped. This provides a mechanism for tidal dissipation. The resultant characteristic
synchronization time-scale is given by

1
τsync

= 5 ·25/3
(

gsurf

R

)1/2

k2
r

(
R
a

)17/2

q2(q+1)5/6E2, (1.77)



34 Introduction

where gsurf is the surface gravity of the star and the mass ratio of the stars is q = M2/M1.
The tidal coefficient E2 describes the coupling between the tidal potential and the excited
pulsations. It is highly dependent on the structure of the star and is defined as

E2 =
38/3Γ(4

3)
2

(2n+1)(2(2+1))4/3
ρR3

M

((
N 2

x 2

)′

cc

ρR3

gsurf

)−1/3

H2
2 , (1.78)

where Γ(4
3) = 0.48060041894 and x is the fractional radius r/R. The Brunt-Vaisala fre-

quency N2 characterises the buoyancy of material within the star. The primes denote
derivatives with respect to x. The subscript cc refers to the convective boundary location.
The quantity H2 is

H2 =
2×2+1

((n−3)Y (1)+Y ′(1))X(xcc)

∫ xcc

0

(
Y ′′−2(2+1)

Y
x2

)
Xdx. (1.79)

where Y is defined as

Y =
x2Φ

g
, (1.80)

where Φ us the total gravitational potential. The Y can be described with

Y ′′− 6
x

(
1− ρ

ρ̄

)
Y ′−

(
6−12(1− ρ

ρ̄
)

)
Y
x2 = 0, (1.81)

which is evaluated throughout the star. Kopal (1989) uses the substitution

ηn(x) =
x
Y

Y ′, (1.82)

in Eq. 1.81, subject to the boundary conditions Y (0) = 0 and ηn(0) = n+1, to find Y . The
X is a structural quantity defined as

X = ρx2
χ
′, (1.83)

where χ is the sum of the perturbation to the gravitational potential and the relative density.
The X is given by the solution to the differential equation

X ′′− ρ ′

ρ
X ′− 6

x2 X = 0. (1.84)

The requirement that χ(0) = 0 and χ ′(0) = 0 gives the boundary conditions

X(0) = 0, X ′(0) = 0, (1.85)
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and is only evaluated in the convective region. This description of tidal dissipation doesn’t
consider the effect of the convective dissipation. This theory again models the tidal bulge as
a second order Legendre polynomial.
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1.5 Thesis Outline

The overall intention of this thesis is to use sdB stars as a laboratory to investigate tidal
interactions. Chapter 2 discusses the stellar evolution code used and the methods for creating
detailed stellar models. RGB stars are progenitors of sdBs and a significant portion of
Chapter 2 focuses on the modelling of these stars. RGBs can straightforwardly be modelled
with the STARS code without having to take intermediate stages making them good objects
to study to learn how to use the code. The RGB work focuses on the first dredge up phase
and the resulting chemical evolution of the surface of the stars. The RGB models created for
this project were used as intermediaries for the sdB models.

Chapter 3 discusses the tidal interactions in sdB systems which have lost their envelopes
via common-envelope evolution. Chapter 4 looks at what modifications to standard stellar
models created with regular input physics are required in order for tidal synchronization
to be achieved. In Chapter 5 the effect of tidal distortions on the observable pulsation
eigenfrequencies is considered. Stellar pulsation theory relies on the assumption of spherical
symmetry of the star. The sdB stars with close companions experience sufficiently substantial
tidal distortions that this spherical symmetry is broken. Chapter 6 concludes this thesis and
discusses the implications of the results obtained.



Chapter 2

Modelling Stars

Owing to the complexity of the physical processes occurring in stars and the non-linearity of
the equations much of the theoretical work carried out in the field is computational. Stellar
models are an important tool to analyse the effectiveness of a theory and the interpretation of
observations.

2.1 The STARS Code

The STARS code is a stellar evolution code developed by Eggleton (1971, 1972). It has been
in continuous use since its creation and has been updated a number of times over the years.
It was originally written in Fortran 4 then upgraded to Fortran 77 in Pols et al. (1995). The
code solves the four time-dependent equations of stellar structure, five equations governing
composition changes and one of two equations for the spacing of the mesh. It treats a star as
a sequence of thin concentric shells and uses an adaptive non-Lagrangian mesh to distribute
the shells across the star. The code is compact and produces effective models with as few as
199 shells. The opacity is read in as OPAL (Iglesias and Rogers, 1996) style tables which
allow for varying carbon and oxygen abundances (Eldridge and Tout, 2004). It is capable of
evolving both stars in a binary system as well as their orbit (Stancliffe and Eldridge, 2009).
With some encouragement it can also evolve thermally pulsing AGB stars. Unfortunately,
the code cannot evolve stars with solar metallicity and M < 2.25M⊙ through He ignition
without taking some intermediate steps because of the violence of the He flash. The code
utilises twenty subroutines, requires two input files and produces three standard output files.
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2.1.1 The Equations of Stellar Evolution

When stars form they consist of predominantly hydrogen. When nuclear reactions begin
the chemical composition and structural properties of a star undergo many changes. Stellar
evolution codes numerical solve the equations of stellar structure and evolution to create
detailed, numerical evolutionary models. The following coupled partial differential equations
dictate the properties of a star. The equation of continuity is

∂ r
∂m

=
1

4πr2ρ
, (2.1)

where r is the radius, m is the mass and ρ is the density. The requirement of hydrostatic
equilibrium of the material, where gravitational inward forces are balanced by the pressure
of the stellar material, gives

∂P
∂m

=− Gm
4πr4 . (2.2)

where P is the pressure. The first law of thermodynamics gives the energy balance

∂Lr

∂m
= εnuc − εν −T

∂ s
∂ t

, (2.3)

where Lr is the internal luminosity, T is the temperature. s is the entropy, t is time, εnuc is
the energy generated by nuclear reactions and εν is the energy lost in neutrinos. During the
red giant phase when the temperature and density of the inert deuterium core is very high
neutrinos are emitted by spontaneous weak interactions. They escape without interacting
with the stellar material and carry their energy away with them which causes the region
of highest temperature to drift off-centre. When He ignites it does so at Tmax and thus is
off-centre. The heat transport is

∂T
∂m

=− Gm
4πr4

T
P

∇, (2.4)

where the thermodynamic gradient ∇ is dependent on whether energy transport is by convec-
tion or radiative transfer. If the material is radiative then

∇ = ∇rad =
3κPLr

16πacGmT 4 , (2.5)

where a is the radiation constant and c is the speed of light. In convective regions ∇ = ∇mlt

which is determined from mixing length theory (Böhm-Vitense, 1958). Two different
criterion’s are used to determine if the local material is stable against convection. The
Schwarzschild (1958) criterion states that the material is convective if ∇rad > ∇ad. The



2.1 The STARS Code 39

Ledoux (1947) criterion states that energy transport is by convection if

∇rad > ∇ad +
Φ

δ
∇µ (2.6)

where

∇µ =

(
∂ ln µ

∂ ln p

)
, Φ =

(
∂ ln p
∂ ln µ

)∣∣∣∣
P,µ

, δ =−
(

∂ lnρ

∂ lnT

)∣∣∣∣
P,T

(2.7)

where µ is the mean molecular weight. The Ledoux criterion stabilises regions which would
be unstable with the Schwarzschild criterion. The chemical evolution of the jth element is

∂

∂m

(
σ

∂Xi

∂m

)
=

mi

ρ
∑

j
αi jr j +

∂Xi

∂ t
, (2.8)

where Xi is the mass fraction of the ith element, mi the mass of a nuclide of type i, αi j is
the number of particles of nuclide i created in reactions of type j and r j is the reaction rate
density. The convective diffusion coefficient is labelled σ and is zero in radiative regions.
In convective regions σ = K(∇−∇ad)

3M2/tnuc where K is a constant and tnuc is the nuclear
timescale.

2.1.2 Boundary Conditions

Solving any differential equation requires boundary conditions. The STARS code boundary
conditions are set such that in the core where m = 0

r = 0, Lr = 0,
∂P
∂m

= 0, σ
∂Xi

∂m
= 0, (2.9)

where the final boundary condition ensures the composition gradient is continuous. At the
surface where m = M

l = πacr2T 4, P =
2
3

Gm
κr2

(
1+

Lr

Ledd

)
, σ

∂Xi

∂m
= 0,

dM
dt

= fṀ(M,R,L,Xi,s). (2.10)

where fṀ is the mass loss rate, LEdd is the Eddington luminosity and κ is the opacity. The
code has routines for Reimers, Blöcker, Vassiliadis & Wood and Wolf-Rayet (Nugis and
Lamers, 2000) mass-loss prescriptions. Reimers (1975a,b) Law describes the mass-loss rate
for late-type giants and supergiants. Bloecker (1995)’s prescription is for mass-loss on the
asymptotic giant branch (AGB) and is based on simulations of shock-driven winds in the
astomspheres of Mira-like stars. Vassiliadis and Wood (1993)’s mass-loss is also for AGB
stars and is based on observations of dust-enshrouded stars OH/IR stars.
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2.1.3 Differential Equation Solvers

The differential equations are solved numerically with a Heyney method and a Newton-
Raphson iterative solution scheme. One assumes spherical symmetry of the star then divides
the star into a series of concentric spherical shells. This set of spherical shells forms the mesh.
The differential equations are solved by examining differences between adjacent meshpoints.
The code automatically decides the timestep interval. Each iteration the equations need to
be solved for the current model at t = t0 +∆t, where ∆t is the timestep and t0 refers to the
previous model.

The Heyney method uses implicit integration starting with an initial stellar model. The
derivatives of all variables are calculated to form an invertable matrix. This is iterated over
with the Newton-Raphson method to find the evolutionary model at the next timestep.

2.1.4 The Mesh Spacing Function

Some stellar evolution codes adopt a Lagrangian mesh with the spherically symmetrical
shells placed at fixed mass co-ordinates. As a modelled star evolves its structure changes
substantially making the Lagrangian mesh inefficient, particularly in regions with shell
burning. The STARS code uses an self-adaptive non-Lagrangian mesh to position the points.
The mesh spacing function

q = c4 lnP+ c5 ln
(

P+ c9

P+ ct1

)
+ c2 ln

(
P+ c10

P+ ct1

)
+ c7 ln

(
T

T + ct10

)
− ln

[
1
c6

(
m
M

)2/3

+1
]
− c3 ln

(
r2

c8
+1

)
,

(2.11)

depends on P, T , m and r. Mesh points are placed at equal intervals of q. The mesh
spacing function is chosen such that regions with rapidly changing quantities contain more
mesh points. The ci mesh spacing coefficients are user defined and can be modified so the
mesh responds to the desired physical property.

2.1.5 Convection

In the STARS code mixing length theory as described by Böhm-Vitense (1958) is used. Near
the core the pressure scale height HP → ∞. The mixing length l is defined to be αHP and
sets the average distance travelled by convective elements. The mixing length parameter α is
a user defined constant. Physically, convective elements cannot travel an infinite distance. As
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suggested by Eggleton (1972), the mixing length is modified such that it cannot exceed the
distance to the edge of the convective zone. This also has an effect on the mixing velocity w.

Semi-Convection and Convective Overshooting

Eggleton (1972) implemented semi-convection in STARS as a diffusive process which follows
Schwarzschild and Härm (1958)’s prescription. It assumes that the energy transport by
convection in the semi-convective region is borderline negligible but that there is substantial
chemical mixing which avoids any discontinuity in the chemical profile. The code defines
semi-convective regions as those with ∇r ≈ ∇a.

For convective overshooting we introduce a parameter δ such that convection occurs
when

∇r −∇a >−δ , (2.12)

where ∇r and ∇a correspond to the radiative and adiabatic thermodynamic gradients ∂ lnT/∂ lnP,
respectively, and where the overshooting parameter δ is

δ =
δov

2.5+20ζ +16ζ 2 . (2.13)

Here ζ is the ratio of radiation pressure to gas pressure and δov is a user defined parameter
calibrated to observations. Typically δov = 0.12 gives the best fit to ζ Aur giants in well
observed binary systems (Schröder et al., 1997).

2.1.6 Opacity

Opacity measures the degree to which photons are absorbed by matter. The opacity of the
material is one of the dominant factors in governing whether a star transports its energy by
convection or radiative transfer. There are four major sources of opacity in stars. Electron
scattering occurs when photons cause electrons to oscillate and radiate in another direction.
Electron scattering is important when the matter is ionized at high temperatures. Free-free
absorption occurs when an electron in the vicinity of a charged ion absorbs an incident
photon. Bound-free absorption is the absorption of a photon by a bound electron where
the ionization energy of the atom is lower than the energy of the incident photon. The H−

ion makes an important contribution to the bound-free opacities as do H2 and molecules
such as water. Bound-bound absorption occurs when matter changes energy level and either
emits or absorbs a photon. Predicting the opacity of stellar matter is a complex procedure
so the STARS code uses OPAL opacity tables. Cubic splines are set up across the opacity
tables which can than be interpolated for different local densities and temperatures. To
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reduce the size of the tables the code uses R as a proxy variable for density defined such
that R = ρ/T 3

6 . The code has been updated to track changing C/O levels. Opacity tables for
varying metallicities are available.

2.1.7 The Equation of State

The equation of state relates properties of the star to each other. The STARS code uses
temperature and a quantity f which relates to the electron degeneracy parameter

ψ =
µ ′

e
kT

, (2.14)

where µ ′
e is the electron chemical potential and k is the Boltzmann constant. The parameter

f used in the equation of state is defined such that

ψ = 2
√

1+ f + ln
(√

1+ f −1√
1+ f +1

)
. (2.15)

To solve the equations of stellar structure and evolution ρ( f ,T ), S( f ,T ) and P( f ,T ) are all
required. Several sources contribute to the equation of state and so they are generally written
in the form P = Pe +Pi +Pr +Pc where the subscripts refer to the electron contribution, the
ionic contribution, the radiation contribution and the pressure ionization plus other corrections
including plasma. For a given ψ , T and composition all the thermodynamic properties of the
star can be calculated.

2.2 Creating sdB Models

The sdBs are low-mass stars with burning He cores. The He can ignite degenerately in a
He-flash or non-degenerately if the progenitor mass is over 2.25M⊙. Modelling sdBs in the
STARS code presents two challenges, getting the stars through the He-flash and removing the
envelope. The STARS code cannot ignite He in this manner without intermediate steps being
taken. The established procedure for Z = 0.02 is to start with both a 3 M⊙ and a star with the
desired initial mass. Allow the higher mass star to ignite He under non-degenerate conditions
and evolve the lower mass star until it breaks down on the RGB. Once the non-degenerate
ignition has been achieved, the conversion of elements via nuclear reactions is stopped and
mass is slowly removed from the star to get it down to the mass of the lower mass star just
before it breaks down on the RGB. Next, the core which has He burning is put into the
envelope of the lower mass star with the degenerate core. Larger stars have smaller He-cores
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so some H is allowed to fuse to get the core mass to correspond to the new mass of the star.
Now, the composition of the substituted core is slowly modified to recover the H gradient
of the lower mass star at the end of the main-sequence. At this stage, the star is burning He
stably in its core. A very high mass loss is required to remove sufficient envelope for the star
to be considered a sdB. If the mass-loss is introduced too quickly the star goes in to shock
and fails to converge. To avoid this, I have updated the STARS code mass-loss routine to
allow for an increasing mass-loss rate. Using the above method I have created sdBs with
typically observed effective temperatures, surface gravities and masses as can be seen in
Fig 2.1.
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Fig. 2.1 A Teff - log10(gsurf/cms−2) plot of generated sdB models.
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2.3 The Red Giant Branch and First Dredge Up

RGB stars are progenitors to sdB stars and can be created with the stars code without having
to take any intermediate artificial steps. First dredge up occurs as a star ascends the red
giant branch after crossing the Hertzsprung gap as shown in Figure 2.2. During this phase,
a convective envelope extends through the star into regions which have previously been
fusing hydrogen as shown in Figure 2.3. The convective areas are then mixed, bringing
the products of the fusion to the surface of the star as seen in Figure 2.4 which alters the
surface composition. The dredge up also causes an internal composition discontinuity to
form at the deepest extent of the convective envelope. When the H burning shell reaches this
discontinuity there is a non-monotonic variation in the luminosity known as the red-giant
bump (Iben, 1968).

Fig. 2.2 A 0.995M⊙ star evolving from its pre-main sequence, A) down the Hayashi track
B) through the main sequence, C) across the Hetzsprung gap D) up the red giant branch E)
through the red giant bump F) ending with breakdown just before degenerate He ignition. The
deepest extent of first dredge up occurs when log10(Teff/K) = 3.675, log10(L/L⊙) = 1.00.
The model breaks down just before the He flash as L approaches 103.5 L⊙. The red giant
luminosity bump is visible.
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2.3.1 Modelling the First Dredge Up

Using the STARS code I created a grid of 420 evolutionary models simulating the first dredge
up phase. The grid had seven metallicities, Z ∈{0.0001, 0.0003, 0.001, 0.004, 0.008, 0.02, 0.03}.
The mass fraction of the star which is not H or He is given by Z. The intial Z distribution is
that of Anders and Grevesse (1989). Each metallicity set consisted of 60 stars distributed
logarithmically in mass from 0.8 M⊙ to 20 M⊙. The simulations were run from the pre-main
sequence to beyond the first dredge up and were allowed to continue until the code broke
down. For low-mass stars the code breaks down when the He flash is reached. For higher
mass stars, He ignition is achieved and the code breaks down on the AGB when thermal
pulses begin.

The investigated quantities were the change in the surface abundances of carbon and nitrogen
as a result of dredge up [C/N], the deepest extent of the convective envelope during the dredge
up, the surface gravity of the star when the envelope is fully extended and the full internal
chemical composition details of each model at the terminal-age main sequence (TAMS). The
TAMS corresponds to the evolutionary stage where core H is exhausted and nuclear burning
is quenched. The quantity [C/N] is

[C/N] = log10
nC,f

nC,i
− log10

nN,f

nN,i
, (2.16)

where nC,f is the post dredge up number fraction of the surface which is carbon, nC,i is the
initial number fraction of the surface which is carbon while nN,i and nN,f are defined in the
same way for the nitrogen abundances before and after dredge up.
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Fig. 2.3 The convective envelope boundary in a 0.995 M⊙ star for same path of evolution as
shown in Figure 2.2. First dredge up commences when the envelope begins to descend. The
shaded region represents areas with significant nuclear burning.
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Fig. 2.4 Plot of the number fraction of surface carbon abundance (top left) number fraction
surface nitrogen abundance (top right) and ratio of carbon to nitrogen (bottom) all as a
function of time for a 0.995M⊙ evolving star. The surface abundance refers to the total mass
fraction of the relevant element in the outermost shell at which the photospheric boundary
conditions are satisfied.

2.3.2 Metallicity

Lower metallicity stars have larger and hotter cores so they evolve more quickly. The time
taken to go from the pre-MS to first dredge up is illustrated for two 0.8 M⊙ stars, with
metallicities Z = 0.02 and Z = 0.0001, in Figure 2.5. The star with Z = 0.02 takes about
twice as long to reach first dredge up.
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Fig. 2.5 The surface carbon abundance (top left), surface nitrogen abundance (top right) and
ratio of carbon to nitrogen (bottom) all as a function of time for a 0.8M⊙ evolving star. The
black line shows a Z = 0.02 star and the blue line shows a Z = 0.0001 star. As observed
dredge up occurs much sooner for the lower metallicity star.

Changing the metallicity also has a fairly significant effect on other phases of a star’s
evolution. At subsolar metallicities stars more massive than a Z dependant threshold ignite
He without any first dredge up. Both of these effects are illustrated in Figure 2.6. Table 2.1
shows the highest mass at which subsolar metallicity stars experience first dredge up.

Table 2.1 Table of maximum mass of star experiencing first dredge up

Metallicity Max Mass for First Dredge Up /M⊙

0.0001 2.38229
0.0003 2.96330
0.001 6.36075
0.004 10.9764
0.008 11.5919
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Fig. 2.6 Two 3 M⊙ stars evolving from the pre-main sequence, through the main sequence,
across the Hertzsprung gap and up the red giant branch. The plot includes Z = 0.0001
(blue) and Z = 0.02 (black). The lower metallicity star has a larger luminosity and effective
temperature and at this mass does not experience a first dredge up. Instead He ignites in the
Hertzsprung gap before any red giant evolution.

2.3.3 Accuracy

It quickly became clear that the C and N fractional abundances were not well calculated
by the code for the sub-solar metallicity, low-mass stars as illustrated in Figure 2.7. This
problem was overcome by changing the accuracy with which the equations are solved by
reducing the size of the fractional difference of the increments taken during the numerical
differentiation of stellar variables, for the Newton-Raphson scheme, from 10−6 to 3×10−8

and generating a new set of models.



50 Modelling Stars

0 2 4 6 8 10 12 14
t/G yr

14
15
16
17
18
19
20
21

n
C
×

10
−

6

0 2 4 6 8 10 12 14
t/G yr

5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0

n
N
×

10
−

6

0 2 4 6 8 10 12 14
t/G yr

-0.25
-0.20
-0.15
-0.10
-0.05
0.00

[C
/N

]

High Accuracy
Low Accuracy

Fig. 2.7 The surface carbon abundance (top left) surface nitrogen abundance (top right) and
ratio of carbon to nitrogen (bottom) all as a function of time for a Z = 0.0001, 0.8M⊙ star.
The blue line shows the models tracking C and N poorly. The black line shows the corrected
models which solve the differential equations with greater accuracy.

2.3.4 Comparison of the First Dredge Up Result with the Terminal Age
Main-Sequence Model

Theoretically, no nuclear burning occurs in the dredged regions between the TAMS and first
dredge up. This means convective mixing can be approximated by averaging the composition
of the TAMS model down to the depth of the envelope at its deepest extent during dredge up.
It was discovered that the [C/N] ratio changed significantly between the TAMS and the first
dredge up as can be seen in Figures 2.8 and 2.9. The nuclear energy generation rate εnuc was
checked in the stars between the TAMS and first dredge up to confirm that no nuclear fusion
occurred to account for this discrepancy.

The next attempted solution to this problem was to redefine the TAMS. Initially, the TAMS
was defined as when core hydrogen abundance drops below 0.01, because it was thought
that negligible burning would take place after this. I showed this assumption to be incorrect
and so the TAMS was redefined as XH < 10−7. This improved the situation but did not fully
resolve it. Eventually I found the problem to be caused by numerical diffusion across the
envelope boundary region.
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Fig. 2.8 The change in surface [C/N] for all the Z = 0.02 stars. The models artificially mixed
at the terminal age main sequence (black) had ratios of up to 0.06 dex, or a factor of 100.06,
away from those computed after first dredge up (red).

Fig. 2.9 The Z = 0.004 results in the same configuration as Figure 2.8. In this case the
artificial results differed by up to, and in some cases over, 0.2 dex for the models over 4 M⊙.

2.3.5 High Resolution Results

The STARS code suffers from numerical diffusion across boundary regions owing to the
movement of the mesh points relative to mass shells as the model evolves. Increasing
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the number of shells evaluated significantly reduces the amount of numerical diffusion.
Increasing the number of shells in the model altered the [C/N] ratios found both at the
TAMS and during dredge up. A full data set with 999 meshpoints was created and all of the
dredge up models varied by less than 2.3% when compared to their artificially mixed TAMS
counterparts as can be seen in Figures 2.10 and 2.11. This is a substantial improvement from
the low resolution models in Figures 2.8 and 2.9. Figure 2.12 compares the high resolution
and low resolution results of all the Z = 0.004 models which experienced a first dredge up.
The Z = 0.004 data set is displayed here because the effects of numerical diffusion were
most pronounced in the lower metallicity, higher mass stars because the abundances of the
metals are lower.

Fig. 2.10 The change in surface [C/N] for all the Z = 0.02 stars when run at high resolution.
The models artificially mixed at the terminal age main sequence (black) had ratios of less
than 0.01 dex away from the computed surface values after first dredge up (red).
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Fig. 2.11 The Z = 0.004 results in the same configuration as Figure 2.10.

Fig. 2.12 The change in ratios of [C/N] for all the Z = 0.004 models experiencing first dredge
up. The low resolution models (red) had 199 shells and the high resolution set had 999 shells
(black). The higher resolution models have a systematically smaller [C/N] although the effect
is most significant at higher masses.

In addition to changing the abundance profiles, adding more shells to the model had a small
but noticeable effect on the evolution of the stars across the Hertzsprung gap. The code
always makes the outer 25 meshpoints of the star convective for numerical stability. Changing
the number of mesh points also changes the location of the outermost convective region and
hence alters the surface evolution in phases which have rapidly changing quantities. The
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evolutionary tracks placed on an H-R diagram for a 5 M⊙ star modelled with high and low
resolution can be seen in Figure 2.13.

Fig. 2.13 Increasing the number of shells in the model has an effect on the macroscopic
evolution. The high-resolution models (black) are less luminous between the late main-
sequence and first dredge up than their low resolution counterparts (red).

2.3.6 Application of RGB Models to Binary Stars in the Thick Disc

Izzard et al. (2018) implemented abundance changes at first dredge up of the above STARS
models into the BINARY_C population-nucleosynthesis code (de Mink et al., 2014; Izzard
et al., 2004) to investigate the role of the binary interactions on the Galactic thick disc
evolution. The combination of asteroseismologically measured masses with abundances
from detailed analyses of stellar atmospheres challenges our fundamental knowledge of
stars and our ability to model them. Ancient red-giant stars in the Galactic thick disc
are proving to be most troublesome in this regard. They are older than 5 Gyr, a lifetime
corresponding to an initial stellar mass of about 1.2 M⊙. So why do the masses of a sizeable
fraction of thick-disc stars exceed 1.3 M⊙, with some as massive as 2.3 M⊙? We answer
this question by considering duplicity in the thick-disc stellar population using a binary
population-nucleosynthesis model. We examine how mass transfer and merging affect the
stellar mass distribution and surface abundances of carbon and nitrogen. We show that a few
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per cent of thick-disc stars can interact in binary star systems and become more massive than
1.3 M⊙. Of these stars, most are single because they are merged binaries. Some stars more
massive than 1.3 M⊙ form in binaries by wind mass transfer. We compare our results to a
sample of the APOKASC data set and find reasonable agreement except in the number of
these thick-disc stars more massive than 1.3 M⊙. This problem is resolved by the use of a
logarithmically flat orbital-period distribution and a large binary fraction.
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2.4 GYRE

GYRE is an open source, stellar oscillation code which solves the adiabatic and non-adiabatic
pulsation equations with the Magnus Multiple Shooting numerical scheme for a given input
model (Townsend et al., 2018; Townsend and Teitler, 2013). The code was created by Richard
Townsend and Seth Tietler and was made publicly available in 2013. The adiabatic suite
can be used to find the periods of the possible pulsation modes but does not calculate their
stability. The non-adiabatic code uses the adiabatic eigenfrequencies as initial parameters
and calculates the period and stability of the pulsation modes. GYRE accepts a number of
different stellar model input formats but is not directly compatible with the STARS code
output. To analyse the pulsations of STARS code models, I have designed a back end for
the STARS code to output models in the appropriate format. Once GYRE accepts STARS
models as inputs I can examine the stability and frequency spectrum of the models I have
created. The quantities needed for GYRE inputs are shown in Table 2.2

I have modified the code such that all output models are written into two files, one in the
format required for STARS and one which can be used as input for GYRE. Many of the
required quantities are calculated in STARS or can be calculated without major modifications
to the code. The necessary thermodynamic quantities can be calculated within the statef
subroutine. The STARS opacity is read in as a temperature and density table. The code uses
a bicubic spline interpolation to find κ for a given set of conditions within the star. Bicubic
spline interpolation treats the table as a surface. The height of the surface p(x, y) can be
described with the sixteen nearest points as

p(x,y) =
3

∑
i=0

3

∑
j=0

ai jxiy j, (2.17)

where x and y are the two dimensions of the table and ai j are 16 coefficients which must be
calculated. The partial derivatives of p(x, y) with respect to x and y are then

px(xy) =
3

∑
i=1

3

∑
j=0

ai jixi−1y j, (2.18)

and

py(xy) =
3

∑
i=0

3

∑
j=1

ai j jxiy j−1. (2.19)

Equations 2.15, 2.16 and 2.17 can be used to find κT and κρ .
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Table 2.2 Table of inputs required for GYRE.

Column Variable Datatype Definition
Header n integer Number of grid points
Header M real Stellar mass /g
Header R real Stellar radius /cm
Header L real Stellar luminosity /ergs−1

1 k integer Grid point index (k = 1, . . . ,n)
2 r real Radius /cm
3 Mr real Interior mass /g
4 Lr real Luminosity /ergs−1

5 P real Total pressure /dynecm−2

6 T real Temperature /K
7 ρ real Density / gcm−3

8 ∇ real d lnT/d ln p
9 N2 real Brunt-Väisälä frequency squared /s−2

10 Γ1 real (∂ lnP/∂ lnρ)ad
11 ∇ad real (d lnT/d lnP)ad
12 δ real −(∂ lnρ/∂ lnT )P
13 κ real Opacity (cm2g−1)
14 κT real (∂κ/∂ lnT )ρ /cm2 g−1

15 κρ real (∂κ/∂ lnρ)T /cm2 g−1

16 ε real Energy generation/loss rate /ergs−1 g−1

17 εT real (∂ε/∂ lnT )ρ /ergs−1 g−1

18 ερ real (∂ε/∂ lnρ)T /ergs−1 g−1

19 Ωrot real Rotation angular velocity /rads−1
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The frequency spectrum for a model sdB star generated with the STARS code and
pulsations analysed by GYRE is shown in Figs. 2.14 and 2.15.
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Fig. 2.14 Calculated pulsation frequency spectrum of a sdB star with M = 0.47M⊙ and
Menv = 0.001M⊙ as a function of degree l.
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Fig. 2.15 Calculated pulsation frequency spectrum of a sdB star with M = 0.47M⊙ and
Menv = 0.001M⊙ as a function of k.





Chapter 3

Tidal Interactions in Post
Common-Envelope sdB Binaries

Over half of all observed hot subdwarf B (sdB) stars are found in binaries, and over half
of these are found in close configurations with orbital periods of 10d or less. In order to
estimate the companion masses in these predominantly single-lined systems, tidal locking
has frequently been assumed for sdB binaries with periods less than half a day. Observed
non-synchronicity of a number of close sdB binaries challenges that assumption and hence
provides an ideal testbed for tidal theory. We solve the second-order differential equations
for detailed 1D stellar models of sdB stars to obtain the tidal dissipation strength and hence
to estimate the tidal synchronization time-scale owing to Zahn’s dynamical tide. The results
indicate synchronization time-scales longer than the sdB lifetime in all observed cases.
Further, we examine the roles of convective overshooting and convective dissipation in the
core of sdB stars and find no theoretical framework in which tidally-induced synchronization
should occur 1.

3.1 Introduction

Hot subdwarf B (sdB) stars are compact sub-luminous stars. They have surface temperatures
between 20000 and 40000K and surface gravities 5 < log10(gsurf/cms−2)< 6. The sdBs
were first observed by Humason and Zwicky (1947) and their spectra were quantified by
Sargent and Searle (1968). The stars are helium core burning with low-mass hydrogen
envelopes. Typically the stars spend around 150 Myrs in their He burning phase. They
are thought to be the cores of red giant branch (RGB) stars exposed by close binary-star

1Chapter 3 is Preece, H. P., Tout, C. A., and Jeffery, C. S. (2018). Tidal Interactions of Close Hot Subdwarf
Binaries. MNRAS, 481:715–726.
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interaction (Han et al., 2002). One of the proposed mechanisms for sdB formation is common
envelope ejection. The sdBs produced in this manner are in binary systems with orbital
periods less than 10d. Observations suggest that about half of the observed sdB systems lie
in such configurations (Copperwheat et al., 2011; Napiwotzki et al., 2004).

The close sdB binaries are spectroscopically single-lined with either white dwarf (WD)
or low-mass main-sequence dM companions. Eclipsing post-common envelope sdBs with a
dM companion are referred to as HW Vir type systems. Unless it is eclipsing it is generally
not possible to find the inclination of a system. This means it can be difficult to estimate
the component masses. By assuming tidal synchronization, a spectroscopic measurement of
the projected rotation velocity and an assumed radius constrains the rotational period, the
orbital inclination, and hence the companion mass. Kudritzki and Simon (1978) first applied
this method to the subdwarf O star HD49798. Geier et al. (2010) further applied the same
technique to a sample of 51 close sdB stars.

The fact that so many sdBs are in close binaries makes them an ideal test bed for tidal
dissipation theories. These theories have always been controversial for stars with convective
cores and radiative envelopes such as sdBs. Two competing theoretical prescriptions for
dissipation in such stars are given by Zahn (1975, 1977) and Tassoul and Tassoul (1992).
Giuricin et al. (1984) demonstrated that the dynamical tide proposed by Zahn (1977) is too
inefficient to describe the observed level of synchronization of some early main-sequence
spectroscopic binaries, particularly when the fractional radius of the convective region is
below 0.05. Tassoul and Tassoul (1992) address this efficiency issue by suggesting that
pumping across the Ekman boundary provides a mechanism for tidal dissipation. Rieutord
and Zahn (1997) dispute the physical validity of Tassoul’s mechanism.

In Section 3.2 we review the current observations and previous calculations of tidal
synchronization. In Section 3.3 we address the methods used for this paper by discussing the
numerical methods and the stellar models. In Section 3.4 we present our results and Section
3.5 concludes.

3.2 Observations and Previous Studies of Tidal Synchro-
nization Time-scales

In a circular orbit, full tidal synchronization has been achieved when the entire star rotates as
a solid body with a spin period equal to the binary orbital period. Until recently, only the
surface rotation of sdBs could be determined from rotational broadening of spectral lines.
The metal lines are used to determine the projected equatorial speed vrot sin i. Pulsations
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Fig. 3.1 Companion mass, M2, versus orbital period for all observed sdB binary systems
with orbital period less than 0.6d. The masses of these systems have been estimated from
spectroscopic orbits. The white points have assumed tidal synchronization.

of sdBs have been both predicted (Charpinet et al., 1996b) and observed (Kilkenny et al.,
1997) making them candidates for asteroseismology. If the stars are rotating, one of the
degeneracies of the pulsations is broken. This manifests itself as a small symmetric splitting
of the pulsation modes. If this splitting can be resolved the internal rotation rate of the star
can be determined. If the rotation period and orbital period are known tidal synchronization
can be confirmed or dismissed.

3.2.1 Observational Context

About 65 sdB binaries with orbital periods below 0.6d have been observed so far. The
orbital periods and companion masses of this sample are shown in Fig. 3.1. Of this sample
some have assumed tidal synchronization. The observations are summarised by Kupfer et al.
(2015a) and in papers cited therein. Several pulsating sdBs have been observed with the
Kepler mission (Østensen et al., 2010). The observed properties of the sdBs most relevant to
this study are summarised in Table 3.1.
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Table 3.1 Rotation and orbit properties of sdBs with orbital periods below 0.6d and known
spin periods.

Name Porb/d Prot/d
CD−30◦11223 0.0489 0.0427 or 0.0646

J162256+473051 0.069789 0.1151563523
NY Vir 0.101016 0.101016

Feige 48 0.34375 ?
KIC 11179657 0.394454167 7.4

B4 0.3985 9.63
KIC 02991403 0.443075 10.3

Of all observed sdB binaries, NY Vir is the only object for which the outer layers show
evidence of synchronous rotation with the binary orbit from asteroseismology (Charpinet
et al., 2008). If the star is in synchronous rotation it is a fast rotator which complicates
asteroseismological analysis. Charpinet et al. (2008) obtained an sdB mass of 0.459±
0.006M⊙ from asteroseismology. Vučković et al. (2007) solved for the binary properties of
the system using multi-band photometric lightcurves and radial velocity curves from high-
resolution spectra. Owing to the correlation between the large number of free parameters and
degeneracies in the mass ratio of the binary, three equally probable solutions were obtained.
These three solutions predict sdB masses of 0.530, 0.466 or 0.389M⊙. The companion mass
M2 is either 0.11 or 0.12M⊙ and the orbital period of the binary Porb = 0.101016d. Van
Grootel et al. (2013)’s seismic analysis measured an sdB mass of 0.471 ± 0.006M⊙.

Feige 48 was initially thought to be synchronized with Prot = 9.02 ± 0.07hr (Van Grootel
et al., 2008) and Porb = 9.0 ± 0.5hr (O’Toole et al., 2004). This Prot was determined
from asteroseismology with a 6 night campaign at CFHT. Latour et al. (2014) remeasured
Porb = 8.24662hr which challenges conclusion of tidal synchronization. In addition, Fontaine
et al. (2014) carried out an extensive 5-month asteroseismic campaign which challenges the
Prot obtained by Van Grootel et al. (2008). The true Prot remains unknown.

Rotational splitting was measured for the three HW Vir type systems B4 (Pablo et al.,
2012a), KIC 02991403 and KIC 11179657 (Pablo et al., 2012b). All of these were found
to be rotating substantially sub-synchronously. B4 is a sdB binary in the NGC 6791 open
cluster. It has Porb = 0.3985d and Prot = 9.63d. The companion has been identified as a
low-mass main-sequence star but its mass has not been further constrained. KIC11179657
has Porb = 9.4669hr, Prot = 7.4d and M2 < 0.26M⊙. KIC02991403 has Porb = 10.6338hr,
Prot = 10.3d and M2 < 0.26M⊙.

The remaining sdB binaries observed with Kepler and with asteroseismically inferred
rotation rates are PG1142-037 (Reed et al., 2016), KIC7664467 (Baran et al., 2016),
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KIC10553698 (Østensen et al., 2014), KIC7668647 (Telting et al., 2014). These have
13hr < Porb < 14d and 35d < Prot < 47d. Typical rotation rates for sdBs, without consider-
ing the effects of common envelope evolution, have been approximated with measurements
from red clump stars, which are considered to have a similar evolutionary origin (Mosser
et al., 2012). If we take initial spin periods from those of the red clump stars as lying
between 30 and 300d, the binaries in wider orbits aren’t spun up while those in systems with
Prot ≪ 30d are somewhat spun up but predominantly not synchronized.

Further insight is provided by J162256+473051, the shortest period HW Vir system
known, with Porb = 0.069789d (Schaffenroth et al., 2014). The system is eclipsing, so the
inclination is known and the surface rotation rate can be directly measured from the line pro-
files. Combined with the measured radius, Prot = 0.1151563523d and so J162256+473051
is rotating non-synchronously. The mass of the sdB star was found to be between 0.28 and
0.64M⊙, with MsdB = 0.48 ± 0.03M⊙ giving the best results (Schaffenroth et al., 2014).
With the orbit fully solved, the mass of the unseen companion is found to be 0.064M⊙, well
below the H-burning threshold. This is therefore evidence that sub-stellar companions can
provide enough energy to remove the H-envelope during common envelope evolution but not
enough torque to synchronize the sdB star.

To date, the shortest period sdB binary is CD−30◦11223 with Porb = 0.0489d. This
system is eclipsing and displays clear signs of ellipsoidal variations. Spectroscopically,
the projected surface rotation vrot sin i = 177±10kms−1 and the inclination i = 83.8◦±0.6
(Vennes et al., 2012). The logarithmic surface gravity log(gsurf/cms−2) of this sdB has been
measured as 5.72 from high dispersion spectra and 5.36 from low dispersion spectra (Vennes
et al., 2011). The higher solution gravity is consistent with the system being synchronized but
the lower is not. If the canonical mass of 0.47M⊙ is assumed for the sdB star, the companion
mass M2 = 0.74M⊙. A sdB mass of 0.54M⊙ and companion mass of M2 = 0.79M⊙ also
provide a consistent solution. Because CD−30◦11223 is an extreme system with both a
short orbital period and a high companion mass, it is the sdB binary most likely to have been
synchronized.

In many cases the detection of ellipsoidal variations with a period of half the orbital
period have been used as confirmation of tidal synchronization. By definition, the tidal bulge
forms in response to the presence of a companion and so should point towards it. Whilst the
bulge may slightly lag or lead the orbit the angle of the lag is assumed constant over an orbit.
In the case of Koen et al. (1998) ellipsoidal variations are detected but synchronization is
assumed on the basis that the orbital period is short.
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3.2.2 Previous Calculations

Geier et al. (2010) investigated whether the assumption of tidal synchronization could be used
to determine the inclination and thus yield the companion mass for close spectroscopically
single lined sdB binaries. They analysed a sample of 51 observed sdB stars in binaries
with periods below 10d. They calculated synchronization time-scales with the theoretical
prescriptions described by Zahn (1977) and Tassoul and Tassoul (1992). Fig. 3.2 applies the
calculations of synchronization due to Zahn’s dynamical tide to the set of known sdBs with
orbital periods less than 0.6d assuming an EHB lifetime of 150 Myr.

The Tassouls’ mechanism for dissipation predicts that all systems with Porb < 10d are
synchronized which is not observed. Zahn’s theory of dynamical tides describes tidal
dissipation for stars with convective cores and radiative envelopes. The synchronization
time-scales depend on the tidal coupling coefficient E2 which is highly dependent on the
structure of the star. The coefficient is laborious to calculate so Geier et al. (2010) used a
scaling from main-sequence models and E2 was approximated as (rconv/RsdB)

8 (Claret and
Cunha, 1997), where rconv is the radius of the convective core and RsdB is the total radius of
the sdB star. Note that rconv includes any semi-convective region. The sdB model used had
rconv/RsdB = 0.15 and a canonical mass of 0.47M⊙. The radii of the sdBs are calculated
from observed spectroscopic gsurf. Zahn’s dynamical tide doesn’t consider dissipation via
turbulent convection, this must be calculated separately.

Geier et al. (2010)’s calculations of Zahn’s dynamical tide predicted that systems with
orbital periods less than 0.39d would synchronize within the EHB lifetime. The study found
that the systems with orbital periods up to 1.2d could be solved consistently under the
assumption of tidal synchronization. However, using this approach they found a dearth of
systems at high inclinations and also predicted some very large companion masses. The
assumption of tidal locking is further contradicted by Schaffenroth et al. (2014) and the three
Pablo observations. Follow up observations of some of the Geier et al. (2010) systems has
shown that the observed companion masses are lower than those predicted.

In light of the asteroseismological results for sub-synchronously rotating sdB systems
with orbital periods substantially below 1.2d, Pablo (2012) recalculated the time-scales
predicted by Zahn’s dynamical tide. This approach was to solve the two required structural
differential equations to get a precise E2. He did this for one detailed stellar model with
a mass of 0.478M⊙, radius 0.298R⊙ and rconv/RsdB = 0.08 and an undisclosed radius
of gyration. These calculations found E2 to be significantly smaller than (rconv/RsdB)

8.
Ultimately he predicted that systems with Porb < 3.6hr should be synchronized within a
typical sdB lifetime of 150Myr. Pablo’s study looked at only one sdB model which has a
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Fig. 3.2 The ratio of synchronization time-scale to the extreme horizontal branch lifetime as
a function of the orbital period for the known close sdB binaries with orbital periods less
than 0.6d as calculated by Geier et al. (2010) using Zahn’s mechanism. Geier’s calculations
of Zahn’s dynamical tide suggest that sdB stars synchronize with orbital periods less than
0.39d.
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fairly large radius compared to most sdBs and only considered dissipation owing to excited,
and subsequently damped, g-modes.

3.3 Methods

Calculation of the tidal effects for all dissipation mechanisms considered in this paper requires
solving structural differential equations for detailed stellar models. A grid of stellar models
was created for this purpose and differential equation solvers were written and included in
the tidal dissipation calculation code.

3.3.1 Differential Equation Solvers

Both dissipation prescriptions require solutions to second-order differential equations for
detailed 1D stellar models. Both differential equations are initial value problems that can be
solved with integrator methods. We constructed an Euler solver, second order Runge-Kutta
solver and a fourth order Runge-Kutta solver based on the algorithms presented by Conte
and Boor (1980). These methods all allow for variable step sizes so errors introduced by
interpolation can be avoided. The Euler solution is the fastest computationally but also the
least accurate. However all the methods predicted the same time-scales to within 0.5per cent.

3.3.2 Stellar Models

All the stellar models used were created with the Cambridge STARS code (Eggleton, 1971).
STARS has been modified substantially since its inception (Stancliffe and Eldridge, 2009). It
uses OPAL II type opacity tables, allows for binary evolution and follows the chemical evo-
lution of 1H, 3He, 4He, 12C, 14N, 16O and 20Ne. The code uses an adaptive non-Lagrangian
mesh. Convection is treated with mixing-length theory (MLT) as described by Böhm-Vitense
(1958) and uses a MLT parameter of α = 2.0 (defined as the ratio of mixing length to
pressure scale-height). Semi-convection is treated as a diffusive process (Eggleton, 1972).
Convective overshooting as described by Schröder et al. (1997) is also included. Mass loss
on the red giant branch (RGB) is described by Reimers’ prescription (Reimers, 1977). The
sdB star models were made with the method described by Hu et al. (2008, 2010) as follows.

The He Flash

The STARS code cannot evolve stars through the He-flash independently. To imitate this
process, a star with just enough mass to ignite He quietly and non-degenerately is created
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Fig. 3.3 The H composition profile through the post He-flash model. The purple line is the
profile of the degenerate star just before He ignition. The black line is the profile of the
He burning non-degenerate star before modifying the core or envelope. The purple points
show the adjusted 1.75M⊙ post He-flash model. The adjusted profile maintains the steep
composition gradient formed during the red giant branch phase.

(Pols et al., 1998). This is allowed to evolve until just after He is ignited. Next, mass is
removed from the star to give it the desired mass. The composition profile through the star is
modified and the core is allowed to grow a little to give the same envelope profile and core
mass as its degenerate counterpart. The H composition profile for the 1.75M⊙ post He-flash
star is displayed in Fig. 3.3. Piersanti et al. (2004) and Castellani and Castellani (1993) show
that this treatment isn’t fully correct as some extra carbon is produced during the He flash
however the models suffice for this body of work.

The sdB Stars

The sdBs were made from three different mass progenitors, 1.25, 1.5 and 1.75M⊙. These
stars had respective core masses of 0.4680, 0.4614 and 0.4510M⊙ at the tip of the RGB.
Common envelope ejection was simulated with high mass-loss rates. During the common-
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envelope simulation the nuclear reactions were turned off and the star was kept in thermal
equilibrium. The mass loss was stopped with envelope masses distributed between 0, where
the hydrogen mass fraction reached 0.1, and 0.02M⊙ giving a range of resultant sdB masses
distributed near the canonical mass of 0.47M⊙. Each sdB model was then allowed to relax on
to the zero-age extreme horizontal branch (ZAEHB) and then to evolve through He burning.
As discussed by Schindler et al. (2015), overshooting affects the mass of the sdB’s convective
region during its evolution. Models with no overshooting and an overshooting parameter
of δov = 0.12 (Schröder et al., 1997) were created. This results in a grid of over 800 stellar
models with a range of envelope masses and evolutionary states. Fig. 3.4 shows the sdB
models on a Teff − logg diagram with the observed close sdBs from Fig. 3.1. The radial
growth of the convective core for a single sdB evolutionary sequence can be seen in Fig.
3.5 for an sdB model with MsdB = 0.47M⊙ and envelope mass 10−4 M⊙ and no convective
overshoot.

Boosting the overshooting parameter did not result in as much core growth as achieved
by Schindler et al. (2015). Unlike the STARS code MESA defines semiconvective regions as
those which are unstable to convection according to the Schwarzschild criterion but stable
according to the Ledoux criterion (Paxton et al., 2011, 2013). The MESA overshooting
region is defined as lovHP where lov is user defined and HP is the pressure scale height.
Because HP → ∞ as r → 0 the overshooting length can become very large for stars with
small convective cores.

3.4 Results

We calculated synchronization time-scales for all of the modelled sdBs with companion
masses below the Chandrasekhar mass limit and orbital periods less than 4hr for dissipation
by Zahn’s prescription. Our results suggest that the sdBs cannot become tidally synchronized
within the extreme horizontal branch (EHB) lifetime. Traditionally the dynamical tide as-
sumes no dissipation via the equilibrium tide. In the case of sdBs this assumption may not be
valid. The sdBs have had the majority of their envelope removed meaning that the convective
core now occupies a much more substantial fraction of the star. The synchronization time
and change in the rotational period due to the equilibrium tide is also calculated.

3.4.1 Zahn’s Dynamical Tide

Previous studies of tidal synchronization for sdB stars have focused on Zahn’s prescription
of tidal dissipation which applies to stars with convective cores and radiative envelopes as
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Fig. 3.4 The logarithm of the surface gravity as a function of effective temperature Teff. The
tracks are the sdB models. The observed quantities for the known close sdB binaries shown
in Fig. 1 are plotted in black with error bars. The sdBs with the largest envelope masses have
the lowest effective temperatures and surface gravities.
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Fig. 3.5 The evolution of the fractional radial extent of the convective core over the sdB
evolution for a single evolutionary sequence against time t measured from the start of the
sdB phase. Towards the end of the sdB evolution core breathing pulses can be seen. The
model is a 0.47M⊙ sdB star with a 10−4 M⊙ envelope.
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Fig. 3.6 E2 as a function of the ratio of the radial extent of the convective zone of the ZAEHB
sdB models. The blue circles are E2 calculated as (rconv/RsdB)

8 and the green circles are E2
calculated by solving the required second order differential equations. The blue line is that
used for Geier (2010)’s study. The two different methods for calculating E2 give results that
differ by an average of 4 orders of magnitude and show that scaling from main-sequence
models doesn’t work.

discussed in section 1.4.2. The grid of models discussed in section 3.3.2 was used to solve
Eqs. 1.81 and 1.84 and then to find the tidal coefficient E2. The results of these calculations
are shown in Fig. 3.6. This re-calculation of E2 shows that the main-sequence scaling
treatment is a poor approximation. The parametrization over-predicts E2 by at least a factor
of 3000. In addition, E2 is highly sensitive to the relative size of the convective region and
spreads over two orders of magnitude.

Geier et al. (2010) assumed rconv/RsdB = 0.15. The ZAEHB sdB model with rconv/RsdB =

0.15 has E2 = 10−10.6. The results of applying this to the synchronization calculations can
be seen in Fig. 3.7. None of the systems reach synchronization within the sdB lifetime and
so the dynamical tide cannot explain any observed tidal synchronization. This approach
assumes that all sdB stars have the same E2, which has been demonstrated to be incorrect
and will be addressed further in Sec. 3.4.3.
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Fig. 3.7 As Fig. 2 with tsync computed via Zahn’s mechanism with E2 = 10−10.6.
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3.4.2 Basic Convective Dissipation

We consider convective dissipation as discussed in section 1.4.1 in the model of a zero-age
extended horizontal-branch (ZAEHB) star with Msdb = 0.47M⊙ and Menv = 10−4 M⊙. As
a preliminary investigation into the significance of convective dissipation, the Porb and M2

parameter space for tidal synchronization within the EHB lifetime for a single sdB model
has been computed and is shown in Fig. 3.8. This plot shows the results for convective
dissipation assuming an initial rotation period of 100d based on observations of rotation rates
of red clump stars (Mosser et al., 2012). As can be seen, synchronization is not achieved
within the EHB lifetime by this mechanism except for the shortest period systems with
relatively high-mass white dwarf companions. These systems rapidly reach a state of tidal
synchronization. The model was selected because it has the canonical mass of 0.47M⊙ and
one of the lower-mass envelopes of the grid. Owing to its influence on the overall stellar
radius, the envelope mass is the main factor governing the fractional radial extent of the
convective region. A model with a low envelope mass synchronizes more quickly than
one with a higher envelope mass. Closer examination of the mixing length and velocity of
this model shows that the convective turnover time is substantially longer than the orbital
period. This results in the tidal forces being significantly less effective because convective
elements do not travel over the full mixing length during one orbital revolution (Goldreich
and Nicholson, 1977). The implications of fast tides are discussed the next section.

3.4.3 Synchronization Time-scales

Convective dissipation approximates the convective viscosity as ν = wl where w is the local
velocity of MLT convective cells and l is the size of these cells. The convective turnover
time was found to be orders of magnitude longer than the orbital periods at which tides are
most effective. This means the dissipation is substantially less efficient. A corrective factor
is introduced to the equation for finding the viscosity of the convective region such that

ν = wlΨ(r), (3.1)

and Eq. 1.68 is updated to

1
τvisc

=
1

M1R2
1

∫ M1

0
wlγ(r)Ψ(r)dm. (3.2)
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Fig. 3.8 Plot of synchronization time-scales by convective dissipation for a single ZAEHB
sdB model with Msdb = 0.47M⊙, Menv = 10−4 M⊙. Companion masses less than the
Chandrasekhar mass limit and orbital periods less than 0.5d were calculated. Observed stars
are open points with error bars. The synchronization time is shown in the colour bar. Only
the closest sdBs with intermediate-mass white dwarf companions are expected to synchronize
within the sdB lifetime.
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Zahn (1966, 2008) introduced

Ψ1(r) =
∣∣ Porb

2tturnover

∣∣1, (3.3)

which corrects for the distance that the convective material moves in half an orbital period.
Goldreich and Nicholson (1977); Hurley et al. (2002) define the corrective factor Ψ(r) as

Ψ2(r) =
∣∣ Porb

2tturnover

∣∣2. (3.4)

as even though the largest convective eddies move a distance described by Ψ1 they do not
exchange momentum with the mean flow on this time-scale. Assuming that the Kolmogorov
spectrum applies to convective turbulence they arrived at Ψ2. Goodman and Oh (1997);
Penev et al. (2007) carried out 3D hydrodynamical simulations to investigate the effect of
fast tides and obtained results more in agreement with Ψ2(r). They suggest that these results
are most applicable to tidal dissipation in gaseous planets owing to uncertainties in stellar
convection feedback. We compare the two cases here.

The mixing length in the core of the star tends to infinity when defined as l = αP/ρg
where α is the mixing length parameter, P is the pressure, ρ is the density and g is the
gravity. It is unphysical for l to exceed the radius of the convective region so several different
approximations were used to study the effect on the tidal synchronization times. The four
mixing lengths examined are as follows:

1. MLT1 is l as predicted by traditional mixing length theory

2. MLT2 is l restricted to the distance to the edge of the convective region. This is the
most necessary constraint.

3. MLT3 has l limited so that the convective turnover time is just less than the orbital
period and so the tides are not fast. Typically l = rconv/20 satisfies this.

4. MLT4 has l = rconv/50.

CD−30◦11223

The effects of initial rotation rate and different corrective factors are considered for the full
set of ZAEHB models and applied to the CD−30◦11223 system in Fig. 3.9. Properties of
CD−30◦11223 can be found in Table 3.1. The majority of models predict synchronization
time-scales longer than the typical EHB lifetime. In the most efficient cases, with a modified
MLT, synchronization via convective dissipation, is predicted within the EHB lifetime for
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some models. Even the models which predict synchronization within the EHB lifetime do so
on times comparable to this evolutionary stage meaning assumptions of tidal synchronization
should be made with extreme care. An initial rotation rate of 1d only has a very small effect
on the synchronization time-scales.

The equilibrium tidal dissipation time-scales are generally longer than dynamical tide
dissipations unless MLT3 or MLT4 are used as can be seen in Fig. 3.9. Calculation by Geier
et al. (2010)’s method predicts synchronization well within the EHB lifetime of 150Myr.
However detailed calculation of E2 does not predict this system to be synchronized. The
results are slightly different to those predicted in section 3.4.1 because E2 is calculated
individually for each model.

Without taking the effects of fast tides on the tidal dissipation into consideration, shorter
mixing lengths predict longer synchronization times because the viscosity in the convective
region is smaller. However, the fastest synchronization predictions are for MLT3 because
the convective turnover time for this scheme is just below the threshold for the tides to be
fast. If the mixing length is longer than this the tides are fast and if the mixing length is
shorter the viscosity decreases. When Ψ1(r) is used the dependence on the mixing length is
decreased for MLT1 and MLT2. MLT3 and MLT4 have convective turnover times shorter
than the orbital period and so are not affected by fast tides. MLT4 predicts slightly longer
synchronization times than MLT3 because it has a lower viscosity.

The synchronization time as a function of sdB age for a 0.47M⊙ sdB star with a 10−4 M⊙
envelope can be seen in Fig. 3.10. The ZAEHB models predict the shortest synchronization
time-scales. For these calculations a corrective factor of Ψ(r)1 and an initial rotation rate of
1d were used.

3.4.4 Change in Rotational Period Over sdB Lifetime

At this stage, it is apparent that sdB stars do not synchronize in the EHB lifetime. Despite
this, the tides may still cause the stars to be spun up to some degree. The change in the
angular velocity Ω(t) of the sdB star as it evolves can be calculated by integrating Eq. 1.70
where kr, R and τtide are all functions of time.

These calculations were applied to the systems CD−30◦11223 , J162256+473051 and
NY Vir to find the rotational period at the TAEHB. J162256+473051 is the shortest period
sdB binary not observed to be tidally synchronized. It has Porb = 0.069d and sub-stellar
companion mass M2 = 0.064M⊙. Neither convective dissipation nor radiative dissipation
predict the synchronization of this system. NY Vir is the only sdB with asteroseimsological
evidence suggesting that it is rotating synchronously. The rotational period at the TAEHB
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Fig. 3.9 The synchronization time for CD−30◦11223 as a function of the fractional size of
the convective region for the ZAEHB models. The different mixing length (MLT) prescrip-
tions are defined in Sec. 3.4.3. The initial rotation period (Prot0) and choice of corrective
factor (Ψ1(r) or Ψ2(r)) are shown in the legend for each panel. MLT3 predicts the shortest
time-scales whilst MLT1 predicts the longest. Dynamical calc refers to Zahn’s calculations
with E2 calculated as discussed in the text. Dynamical approx refers to Zahn’s calculations
with E2 = (rconv/RsdB)

8.
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Fig. 3.10 The synchronization time as a function of sdB age for a 0.47M⊙ sdB star with
a 10−4 M⊙ envelope. An initial rotation period of 1d and a corrective factor Ψ(r)1 were
used. Even though the fractional convective radius increases, the total radius and the mass
of the convective region also increase. The combination of these effects somewhat counter
intuitively increases the synchronization time as the star evolves.
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was calculated using Ψ1(r) and Ψ2(r) and multiple mixing length schemes and can be seen
in Fig. 3.11.

In contradiction to the observations, J162256+473051 is predicted to be spun up more
than NY Vir by the time it reaches the TAEHB. This is due to the fact that the orbital period
of J162256+473051 is substantially shorter than that of NY Vir. Using (Böhm-Vitense,
1958)’s mixing length theory or restricting the mixing length to the distance to the edge of
the convective zone, we find the stars not to be spun up at all. If the mixing length is limited
so that the convective turnover time is shorter than the tides and the tidal forces are no longer
dissipated, all three systems considered are spun up to some degree. If Ψ1(r) is used the
mixing length dependence becomes less strong. MLT3 and MLT4 are independent of Ψ(r)
because they have sufficiently short convective turnover times.

3.4.5 Convective Cores and Associated Uncertainties

The models presented above use standard convection theories widely implemented in stellar
evolution codes. However, the extent of the convective core measured in some asteroseismic
studies, log(1−mconv/MsdB) = −0.30 (Charpinet et al., 2011; Van Grootel et al., 2010b),
is somewhat larger than that seen in our models. Additional evidence from white dwarf
asteroseismology (Giammichele et al., 2018) suggests even more of the core of the post
horizontal-branch star has been homogenized, presumably by additional convective processes.
Evidence suggests that red clump stars also have larger convective regions than predicted by
standard stellar models (Constantino et al., 2015). A newly adopted maximal overshooting
scheme must be used to reproduce the period spacings of the g-dominated mixed modes
observed in these stars. However the physical validity of such a scheme is still in question.

Recent theoretical investigations show that extreme care must be taken when determining
edges of convective regions in stellar evolution codes (Gabriel et al., 2014; Paxton et al.,
2018). Both studies find that the exact method used to find the convective boundary has
consequences for the subsequent evolution of a model.

In summary, the physics of helium burning cores is still not well established. In the context
of tidal interactions, a larger convective core mass implies a larger fractional convective
core radius and hence a shorter tidal synchronization time. However, in the absence of a
self-consistent framework in which to compute extreme-horizontal branch models with larger
convective cores, it is not possible to compute the effect directly. A parametric investigation
would make a worthwhile study.
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Fig. 3.11 The rotational period of the sdB evolutionary sequences at the TAEHB is shown as
a function of the envelope mass of the model. The MLT and viscosity corrective factors are
described in Sec. 3.4.3. Whilst the envelope mass does not directly influence the radius of the
convection zone it is the main factor governing the stellar radius RsdB. Tidal interactions are
strongly dependent on rconv/RsdB. The data points shown here are for evolutionary sequences
with an rconv/RsdB which varies.
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3.5 Conclusions

The goal of this study was to find synchronization time-scales for short period sdB binary
systems. A grid of sdB models was created with the STARS code for a variety of progenitor
masses, envelope masses and treatments of convection. Previous studies have predominantly
used Zahn’s theory of dynamical tides with a scaling from main-sequence models to find
the synchronization times. Recalculating the tidal coefficient E2 for the grid of sdBs shows
scaling from main-sequence models overpredicts E2 by a factor of at least 3000. The
synchronization time-scales should be several orders of magnitude longer. As a result,
estimates of Zahn’s dynamical tide synchronization time-scales are longer than EHB lifetimes,
even for the extreme case of CD−30◦11223.

The sdB stars have convective cores which provide a mechanism for tidal dissipation. By
solving Clairaut’s equation the tidal synchronization times owing to turbulent convection
have been calculated. Initial calculations of the convective tides predicted that the three
sdB systems with the most massive WD companions should be synchronized. Closer
examination revealed that the orbital period is typically shorter than the convective turnover
time. This causes the convective dissipation of the tides to become substantially less efficient.
The corrective factor depends on the turnover time for convective elements within the star
and is calculated with mixing length theory. The corrective factor causes estimates of
synchronization time-scales to increase by several orders of magnitude so that no sdB binary
systems are conclusively predicted to be synchronized.

Böhm-Vitense (1958)’s mixing length theory predicts a singularity at the stellar centre.
The effects on tidal synchronization time-scales when the mixing length was altered to
remove this singularity were examined. Reducing the mixing length to avoid the central
singularity generally increases the synchronization time because the estimated viscosity
decreases. The optimal case for tidal dissipation is to reduce the mixing such that the
convective turnover time is slightly shorter than the orbital period so that the tidal dissipation
is not affected by fast tides. Even in this case synchronization is not achieved because the
viscosity is substantially reduced and the tidal interactions are less efficient.

The rotational periods of sdB stars at the TAEHB were calculated to investigate the
impact of the tides. The models with the optimally chosen mixing length and with envelope
masses less than 0.01M⊙ are most substantially affected by the tides. The convective region
accounts for a larger fractional volume in the sdBs with the lowest mass envelopes so tides
are more effectively dissipated.

With the theoretical framework presented, tidal synchronization times for EHB stars
are long, but not excessively so, compared with nuclear lifetimes. With evidence from
asteroseismology that convective core sizes may be larger than those predicted by classical
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convection theory, and with the possibility that the tides could induce differential rotation
with the EHB star, these avenues of exploration still open.



Chapter 4

Convection physics and tidal
synchronization of the subdwarf binary
NY Virginis

Asteroseismological analysis of NY Vir suggests that at least the outer 55 per cent of the
star (in radius) rotates as a solid body and is tidally synchronized to the orbit. Detailed
calculation of tidal dissipation rates in NY Vir fails to account for this synchronization.
Recent observations of He core burning stars suggest that the extent of the convective
core may be substantially larger than that predicted with theoretical models. We conduct
a parametric investigation of sdB models generated with the Cambridge STARS code to
artificially extend the radial extent of the convective core. These models with extended cores
still fail to account for the synchronization. Tidal synchronization may be achievable with a
non-MLT treatment of convection 1.

4.1 Introduction

Hot subdwarf B (sdB) stars are core-helium burning stars which have had their hydrogen-rich
envelopes stripped, most likely in a binary interaction. The stars are typically slow rotators.
However, those in close binaries are somewhat spun up. The sdB stars in close binaries,
with orbital periods less than 10d, have either low-mass main-sequence or white dwarf
companions. The companions are unseen so it is not possible to measure the inclination of
the observed systems unless they are eclipsing. If the system is tidally locked then the spin

1Chapter 4 is Preece, H. P., Tout, C. A., and Jeffery, C. S. (2019). Convection physics and tidal synchroniza-
tion of the subdwarf binary NY Virginis. MNRAS, 485(2):2889–2894.
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period and orbital period of the binaries should be the same and an observed rotation velocity
would allow the inclination to be measured. Several observed sdB systems challenge this
assumption (Pablo et al., 2012a,b; Schaffenroth et al., 2014). Theoretical calculations of tidal
synchronization time-scales for sdB stars fail to account for synchronization via either the
equilibrium or dynamical dissipation mechanisms (Preece et al., 2018).

Of the observed pulsating sdB binaries, the eclipsing HW Vir type binary NY Vir
(PG 1336−018) is the only object whose outer layers show evidence of synchronous rotation
with the binary orbit (Charpinet et al., 2008). The star oscillates with p-modes in its outer 55
per cent. Rotation in the deep interior is not constrained owing to the lack of sensitivity of
p-modes to these regions.

Charpinet et al. (2008) obtained a mass for the sdB component of 0.459± 0.006M⊙
from asteroseismology, while Van Grootel et al. (2013) measured an asteroseismic mass
of 0.471 ± 0.006M⊙. Vučković et al. (2007) obtained three equally probable solutions
from photometry and radial velocities. These give sdB masses of 0.530, 0.466 or 0.389M⊙.
The companion mass M2 is either 0.11 or 0.12M⊙ and the orbital period of the binary
Porb = 0.101016d.

The tidal synchronization time-scale is inversely proportional to the ratio of the radius of
the dissipative region to the binary separation to the sixth power (Darwin, 1879; Eggleton,
2006). Increasing the radius of the convective region reduces the tidal synchronization
time. Observational asteroseismic data suggest the radial extent of the He burning core, as
illustrated in Fig. 4.1, is substantially underestimated in stellar models (Charpinet et al., 2011;
Giammichele et al., 2018; Van Grootel et al., 2010a,b). We investigate whether increasing
the radius of the convective zone could reduce synchronization times sufficiently to account
for the observed synchronization of NY Vir. We examine the effect that increasing the extent
of the convective region has on all the quantities which go into the tidal synchronization
calculations.

4.2 Stellar Models

The evolutionary models used in this study were all constructed with the Cambridge STARS
code as first described by Eggleton (1971) and subsequently updated by Pols et al. (1995)
and Stancliffe and Eldridge (2009). Three classes of model were created, one with overshoot
(labelled: δov = 0.12), one without overshoot (δov = 0) and one without overshooting but
with a modified Schwarzschild criterion (∆∇+0.15), where ∆∇ ≡ ∇r −∇a, the difference
between radiative and adiabatic thermodynamic gradients d lnT/dlnP. Under the standard
Schwarzschild criterion, the convective region is defined as that where ∆∇ > 0 and hence
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includes the semi-convective region. The super-adiabacity of the convective region that
develops as the star evolves is very low and is in fact more likely a semi-convective region.
For each of these classes, an early and a late model were compared. The early model was
defined as the model obtained when the fractional core He abundance by mass drops to 0.9.
The late model was defined to be the model where the convective core reached its maximal
radial extent. The initial models were constructed without a modified Schwarzschild criterion
by the same method used by Preece et al. (2018). We introduce several mechanisms for
artificially increasing the convective region. For the models labelled ∆∇+0.15, the extent of
the convective region was artificially extended by modifying the Schwarzschild criterion for
stability against convection from ∇r −∇a > 0 to ∇r −∇a +0.15 > 0. This has the effect of
forcing convection to occur in regions near to convective boundaries which would otherwise
be radiative. The increment 0.15 was chosen because this was the largest which produced
stable evolutionary models.

4.3 Convective Tidal Dissipation

The most efficient mechanism for tidal dissipation in sdB stars in close binaries is convective
dissipation. Convection implies the bulk movement of material over large distances within
the star. Turbulent viscosity in the convective region causes the tidal bulge to move away
from the line connecting the centres of mass of the two stars.

The tidal synchronization time-scale τsync, owing to convective dissipation, as described
by Eggleton (2006) and Eggleton et al. (1998), is

τsync =
2
9

log
(

ω −Ω0

ω −Ω

)(
M1

M2
(1−Q)

)2( I
M1R2

1

)
a6

R6
1

τvisc, (4.1)

where I is the moment of inertia of the star, τvisc is the viscous time, Q is the dimensionless
quadrupole moment, a is the binary separation radius, R1 is the radius of the dissipative
region, M1 is the mass of the dissipative region, M2 is the mass of the companion, ω is the
angular frequency of the binary, Ω0 is the initial spin angular frequency of the primary and
Ω is the final spin angular frequency. The viscous time τvisc is

τvisc =
M1R2

1∫ M1
0 wlγ(r)Ψ(r)dm.

, (4.2)

where γ(r) is a dimensionless structural property related to the coupling of the tides. The
tides are described as fast when the orbital period is faster than the convective turnover
time. In this circumstance the turbulent viscosity of the convective region reduces and the
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Table 4.1 Convective mass, radius, dimensionless quadrupole moment and synchronization
time for the models considered.

Model R1/R⊙ M1/M⊙ Q (1−Q)2 τsync(Ψ1)/Gyr τsync(Ψ2)/Gyr
Earlyδov = 0 0.021 0.113 0.01385 0.97250 36.47 588.63
Lateδov = 0 0.033 0.280 0.00890 0.98228 65.31 2448.11
Earlyδov = 0.12 0.021 0.107 0.01389 0.97241 32.76 492.56
Lateδov = 0.12 0.024 0.151 0.00802 0.98402 62.78 1007.95
Early∆∇+0.15 0.042 0.317 0.01078 0.97856 74.02 4222.01
Late ∆∇+0.15 0.053 0.441 0.00867 0.98274 12.52 60.24

dissipation of the tides is less efficient. The turbulent viscosity is

ν = wlΨ(r). (4.3)

Zahn (1966, 2008) uses a corrective factor to viscosity of Ψ(r)

Ψ1(r) =
∣∣∣∣wPorb

2l

∣∣∣∣, (4.4)

and Hurley et al. (2002) uses

Ψ2(r) =
∣∣∣∣wPorb

2l

∣∣∣∣2. (4.5)

Goodman and Oh (1997); Penev et al. (2007) revisited the problem with 3D hydro-dynamical
simulations and found better agreement between theory and observation with Ψ2(r).

4.3.1 The Tidal Synchronization Time-scale

As can be seen in Table 4.1, tidal synchronization time-scales for NY Vir predicted from
standard models of sdB stars are close to or longer than the Hubble time. Tidal synchroniza-
tion cannot occur before these models exhaust their core helium supplies, move off the EHB
and on to a white dwarf cooling track. Because τsync is inversely proportional to the radius
of the dissipative region to the sixth power, simple calculations suggest that increasing the
convective radius rconv should substantially decrease the synchronization time. Somewhat
surprisingly, increasing rconv by a factor of 2.5 by modifying the Schwarzschild criterion
only reduces the synchronization time by about an order of magnitude. The changes in the
structural properties of the star affect the quadrupole tensor and so too the tides. Increases in
the viscous time and mass of the convective region and decreases in the quadrupole moment
and moment of inertia term counteract the effect of increasing the fractional convective
radius.
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The equation for tidal synchronization has multiple terms, all of which have an allowed
physically constrained ranges. The dependence of the radial extent of the convective zone on
the individual terms and their allowed ranges is now examined.

4.3.2 The Dimensionless Quadrupole Moment

The mass quadrupole tensor of an object describes the spatial distribution of the matter. If
the object is a point source the quadrupole tensor vanishes. The dimensionless quadrupole
moment Q is given in Table 4.1. Varying rconv/RsdB does not particularly change Q because
the early and late models with convective overshooting have the same fractional convective
radius. However Q is sensitive to the total radius and density of the star and Q doesn’t partic-
ularly change for the evolving models with no overshooting and a modified Schwarzschild
criterion (∆∇+ 0.15). For the models tested (1−Q)2 is between 0.97 and 0.99. Because
(1−Q)2 is close to unity in all cases considered it does not have a substantial influence on
the tidal synchronization time-scale.

4.3.3 The Mass and Radius of the Convective Region

The sdB star He cores are small but dense. The H-rich envelope is radially extended but
accounts for a small amount of the mass. The mass as a function of radius can be seen
in Fig. 4.2. The outer regions of the star expand as the star evolves. In addition the high
internal density means a small increase in the convective radius substantially increases the
convective mass. When convective overshooting is used the radius of the convective region
stays approximately the same but the mass increases by half. It is worth noting that whether
a region is convective or radiative has little impact on the density profile. The models with
the modified Schwarzschild criterion are denser than the standard models. Furthermore, the
mass and radius term in Eq. 4.1 can be plotted as in Fig. 4.3. From this the mass and radius
term can be constrained to be between 108 and 7×109 g2 cm−6. The lower limits are found
by looking at the value when r/RsdB = 0.45 as the outer 55% as this region has been probed
with asteroseismic observations and is not convective.

4.3.4 Moment of Inertia Term

For tidal calculations the ratio of the moment of inertia at the edge of the convective core
to the moment of inertia if the mass were confided to a shell at the same radius is required.
The overall dependence of the moment of inertia term on the fractional convective radius is
displayed in Fig. 4.4. This term lies between 0.15 and 0.37. The lower limits are found by
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Fig. 4.2 The mass m contained within a sphere of radius r. The models with semi-convection
and no convective overshooting are plotted in black and labelled δov = 0. The models with
no convective overshooting had the same profiles and thus are not plotted. The modified
Schwarzschild criterion models, labelled ∆∇+0.15 and plotted in grey, are denser.
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Fig. 4.3 The mass to the second power over the radius to the sixth power as a function of
fractional radius for the same models as in Fig. 4.2.
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the matter were confined to a shell placed at the same radius as a function of fractional sdB
radius.

looking at the value when r/RsdB = 0.45 as the outer 55% as this region has been probed
with asteroseismic observations and is not convective.

4.3.5 The Viscous Time

Tidal interactions convert kinetic energy from tidal distortions into heat by dissipative
processes whilst conserving angular momentum. This dissipation can be calculated from the
square of the variation in the quadrupole tensor over time. As the companion moves around
the sdB star the gravitational potential through the star changes cyclically. This changes the
matter distribution and so affects the quadrupole tensor. If not synchronized, the tidal bulge
moves around the star following the companion. This introduces a time dependent velocity
field in the dissipative regions. The dissipation has a time-scale of τvisc.

The viscous time as calculated by Eq. 4.2 with Ψ1 is shown in Fig. 4.5 for convective
regions modified to extend throughout the star. The mixing length l used is the distance
to the edge of the convective region such that at r = 0, l = R1 and at r = R1, l = 0. The
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Fig. 4.5 The viscous time-scale as a function of the convective radius as a fraction of the total
radius. Each line represents a single evolutionary model. The points plotted are the viscous
times predicted by the stellar models with each model’s convective core radius. Increasing
the radius of the convective region increases the viscous time-scale. A corrective factor of
Ψ1 is used.

time-scales at the models’ convective boundaries are also plotted. The δov = 0.12 models are
again omitted because they are almost identical to the δov = 0 models. The mixing velocity
w is not well defined for regions which would be radiative. If r < R1 we use w from the
models. If r > R1, w was given the same distribution but over the extended region. The dip in
the Late ∆∇+0.15 models is due to a large peak in γ(r) at the convective boundary. This is
most likely an artefact of our modification to the Schwarzschild criterion. Without this peak
the τvisc profile is almost identical to the Early ∆∇+0.15 profile. Overall, larger convective
cores have longer viscous times.

4.3.6 Critical Viscous Time

All terms on the right hand side of Eq. 4.1 are known for any given mass and radius. The
equation can be rearranged for the desired synchronization time. The maximum τvisc to
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synchronize the system in this time as a function of convective radius can be derived. The
upper limit to the viscous time for synchronization within the EHB lifetime τEHB = 108 yr is
plotted in Fig. 4.6. The viscous time as calculated with Eq. 4.2 for each of the evolutionary
models in Table 4.1 is also plotted.

The τvisc calculated for the models with Eq. 4.2 and the usual mixing theory estimates for
the convective velocity are above the upper limits even when the corrective factor is ignored.
The τvisc increases as the convective core grows for all models with increasing radius owing
to the high density of the material in the helium mantle. The corrective factor to the turbulent
viscosity in the fast tides regime is the most influential parameter. The choice of Ψ stratifies
τvisc by orders of magnitude. When the corrective factor is excluded τvisc does not vary much
between the models and is about 10yr. Fig. 4.6 shows that doubling the radial extent of the
convective region increases the viscous time-scale by approximately an order of magnitude.
If the mixing velocity is increased such that w = l/Porb the tides are no longer considered
fast and dissipation is more efficient. The convective velocity is driven by the heat flux.
Increasing the velocity would cause a substantial increase in the heat flux which would then
change the temperature gradient and hence the structure in other significant ways. If the
convective cells turnover without releasing all of their energy to the surroundings higher
velocities can be reached without changing the overall heat flux. Some 3D hydro-dynamical
simulations of convective regions in stars have typical velocities which are much larger than
those predicted by mixing length theory (Arnett et al., 2009; Gilkis and Soker, 2016).

The derived upper limits are all within an order of magnitude of each other. If the radius
of the dissipative region is small the viscous time must be less than a year for synchronization
to be achieved. For convective regions which take up more than half of the sdB star by radius
the critical viscous time is less than 10yr. This is more than the viscous time predicted when
no correction to the turbulent viscosity is included.

4.4 Discussion

J162256+473051 is another HW Vir type system with a lower mass companion in a shorter-
period orbit than NY Vir. Observations show that this star is rotating sub-synchronously.
Calculations of the tidal synchronization time indicate that this system should synchronize
more rapidly than NY Vir owing to its substantially smaller orbital separation. If J162256+
473051 is neither expected nor observed to be synchronized, why should NY Vir appear to
be synchronized?

HW Vir type systems are most likely formed via a common-envelope interaction (Han
et al., 2002). The spin of the outer regions of the sdB star that subsequently forms are affected
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Fig. 4.6 The viscous time-scale τvisc as a function of the fractional convective radius. The
curves show the critical viscous time, for each convective radius, to achieve tidal synchro-
nization during the EHB lifetime. Each line represents a single evolutionary model. The
points plotted and connected with dotted lines are the viscous times predicted by the stellar
models. The dotted lines connect the end points of evolutionary sequences with the same
input physics (δov = 0 and ∆∇+ 0.15). For completeness the evolutionary models with
convective overshoot are also plotted. The early models without a modified Schwarzschild
criterion both start at almost identical places. The spread in the points is due to different
corrective factors. The squares use Ψ1, the triangles Ψ2 and the circles Ψ = 1. The diamonds
have the convective velocity w = l/Porb, the minimum velocity required for the tides not to be
considered fast. Increasing the fractional convective region increases the viscous time-scale.
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during this process. NY Vir has p-modes which propagate through the outer 55 per cent
of the star. These p-modes are consistent with synchronization. However, synchronization
could have been achieved during the common-envelope phase. NY Vir’s companion is more
massive and more radially extended than that of J162256+473051 so its companion should
have had more of an effect during this phase.

4.5 Conclusions

Asteroseismic evidence for rotational and orbital synchronization in the hot subdwarf binary
NY Vir is at variance with our previous theoretical predictions of tidal synchronisation in
such stars. Because the tidal synchronization time-scale is inversely proportional to the radius
of the convective region to the sixth power artificial extensions to the convection boundary
have been examined to see whether a larger convective region could account for the observed
synchronization. Increasing the radius of the convective region by a factor of 2.5 decreases
tidal synchronization times by less than one order of magnitude, insufficient to bring NY Vir
close to synchronization within its core-helium burning (or extended horizontal-branch)
lifetime. When the radius of the convective region is increased the mass also increases
significantly owing to the density of the material in the vicinity. The mass increase cancels
out most of the contribution from the radius. Furthermore, the moment of inertia term
decreases as you move out of the star which makes the synchronization time longer.

The individual terms of Eq. 4.1 were examined to test how much each contributes to
the synchronization time and what constraints may be placed on the quantities contained
in them. The boundary of the convective core was moved outwards to see if there was a
radius at which tidal synchronization could occur without any modifications to the theory. It
was found that even making the stars fully convective would not be sufficient because the
orbital periods are shorter than the convective turnover time and consequently dissipation
of the tides is less efficient. The corrective factor and choice of mixing length theory are
the areas of largest uncertainty. If the convective mixing velocity is increased such that
w > l/Porb all the models predict tidal synchronization within the EHB lifetime. Some 3D
hydro-dynamical simulations of convective regions predict sufficiently fast convective eddies
however these calculations are not enormously reliable. If these calculations prove correct,
tidal synchronization might result from invocation of non-classical convection physics.

In seeking an alternative explanation for the synchronization of NY Vir, we note that
the common-envelope phase is not well understood. If the tides do not synchronize on the
EHB it is possible that at least the outer layers of the sdB star were synchronized during the
common-envelope phase.





Chapter 5

Asteroseismology of tidally distorted sdB
stars

Most subdwarf B stars are located in post common-envelope binaries. Many are in short-
period systems subject to tidal influence, and many show pulsations useful for asteroseismic
inference. In combination, one must quantify when and how tidal distortion affects the
normal modes. We present a method for computing tidal distortion and associated frequency
shifts. Validation is by application to polytropes and comparison with previous work. For
typical sdB stars, a tidal distortion to the radius of between 0.2per cent and 2per cent is
generated for orbital periods of 0.1 d. Application to numerical helium core-burning stars
identifies the period and mass-ratio domain where tidal frequency shifts become significant
and quantifies those shifts in terms of binary properties and pulsation modes. Tidal shifts
disrupt the symmetric form of rotationally split multiplets by introducing an asymmetric
offset to modes. Tides do not affect the total spread of a rotationally split mode unless
the stars are rotating sufficiently slowly that the rotational splitting is smaller than the tidal
splitting. 1

5.1 Introduction

Hot subdwarf B, sdB, stars are compact He burning stars with masses of about 0.5M⊙ (Heber
et al., 1986). The stars have lost their H envelopes through binary evolution mechanisms (Han
et al., 2002). Indeed, many of the observed systems are single lined spectroscopic binaries
with orbital periods less than 10d. Some of them are extremely close with orbital periods
of only a few hours (Kupfer et al., 2015b). Whether such stars are tidally synchronized is

1Chapter 5 is Preece, H. P., Jeffery, C. S., and Tout, C. A. (2019a). Asteroseismology of tidally distorted
sdB stars. MNRAS, 489(3):3066–3072.
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debated by Preece et al. (2018). However the closest of these systems certainly experience
significant tidal interactions.

A subset of the sdB stars are intrinsic variables with pulsations excited by the κ mech-
anism (Charpinet et al., 1996b; Kilkenny et al., 1997). Asteroseismology often relies on
the assumption of spherical symmetry. The closest binary systems are sufficiently distorted
by tidal interactions to break this symmetry. We investigate the significance of this on the
observable pulsation frequencies of detailed numerical models.

We develop a method to estimate the perturbations to the observed eigenfrequencies
owing to the tides. We compare our method to previous work in the field, mostly involving
polytrope calculations, and then apply the method to detailed numerical models of sdB stars.
We consider the model dependence of the results and comment upon which systems are most
affected by tidal interactions.

5.2 Theoretical Background

We present a brief overview of the tidal and asteroseismological theory used in this paper.

5.2.1 Tidal Distortion

The geometric shape of the tidal distortion, to lowest order, is modelled by the second
Legendre polynomial (Darwin, 1879). It is assumed that all physical properties of the star are
constant along equipotential surfaces. The radius variable r which defines these equipotential
surfaces

r = r̄(1−α(r̄)P2(cos θ̃)), (5.1)

where r̄ is the radius of the undistorted star, P2(cos θ̃) is the second Legendre polynomial and
the angle θ̃ is measured from the tidal axis. The tidal axis is directed towards the companion.
The function α(r̄) can be obtained by solving Eggleton (2006)’s form of Clairaut’s equation

r̄2
α
′′+4r̄α

′−2α +2r̄
Φ′′

Φ′ (r̄α
′+α) = 0, (5.2)

where Φ is the gravitational potential of the star and primes denote derivatives with respect
to r̄. For a detailed, undistorted, non-rotating stellar evolution model, with a known density
profile ρ(r̄), Clairault’s equation can be solved numerically. The quadrupole moment Q is
defined by

Q =
1

5M1R2α(R)

∫ R

0
(5α + r̄α

′)4πρ r̄4dr̄. (5.3)
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From equation 5.1 we find at the surface α(R) obeys

α(R) =
−2∆R

3R
, (5.4)

where ∆R is the difference between the polar and equatorial radii. With these equations, the
distortion parameter α can be determined as a function of r̄ and a detailed distorted 2D star
can be created for small α .

The Relative Magnitude of Tidal and Rotational Distortions

A three dimensional tidally and rotationally distorted star is a triaxial ellipsoid (Song et al.,
2009). The tidal distortion is again prolate while the rotational distortion is oblate. If the spin
is aligned with the orbital angular momentum, as is generally assumed to be the case with
post-common envelope systems such as sdBs, the distortions are about different axes. For
small, linear, distortions the rotational and tidal distortions are linearly additive and so can be
separated.

For a synchronously rotating system the orbital and spin periods are the same. In this
case a companion mass which satisfies M2 > M1/2 creates a larger tidal distortion than
rotational distortion. Generally speaking, this is not the case for sdB + dM binaries so they
have larger rotational distortions than tidal distortions in the event that they are synchronized.
However observational results (Pablo et al., 2012a,b; Schaffenroth et al., 2014) and theoretical
calculations (Preece et al., 2018, 2019) suggest that these systems may not synchronize. Even
if synchronously rotating, the sdB + WD binaries have more substantial tidal deformations
than rotational unless the WD mass is particularly small.

5.2.2 Polytrope Calculations

Perturbative methods applied to the pulsations of tidally distorted polytrope models give
important insight into our methodology.

Pulsations in Tidally Distorted Polytrope Models

Saio (1981) calculated solutions of the rotational and tidal perturbations of non-radial
oscillations in a polytropic star using perturbation theory. Ultimately, he found that the
observed pulsation frequency ν obeys

ν = ν0 − (1−C1)mΩ +C2ν0

(
Ω

ν0

)2

, (5.5)
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where Ω is the angular frequency of the star. The star is assumed to be co-rotating so this is
also the orbital angular frequency. The azimuthal order of the pulsation is denoted m and ν0

is the pulsation frequency for the undistorted star, which can be expressed as

ν
2
0 = ω

2
0 GM1/R3

1, (5.6)

where ω0 is the dimensionless frequency, R1 is the radius of the star, G is the gravitational
constant and M1 is the mass of the star. The second order coefficient can be expressed as

C2 = X1 +m2Y1 +Z +

(
1+

3
2

M2

M1 +M2

)
(X2 +m2Y2). (5.7)

For a polytrope of index n = 3 and an adiabatic gradient of γ = 5/3, the quantities ω2
0 , C1,

X1, Y1, Z, X2 and Y2 can be evaluated numerically. As a general result, Saio (1981) found
that the p-modes are more affected by the structural perturbation owing to the tides than the
g-modes. Isolating the terms proportional to M2 from equation 5.5 shows the perturbation
owing to the tides.

Application of Polytrope Results to Estimate Higher-order Effects owing to Tidal and
Rotational Distortion for the Pulsating Binary System NY Virginis

Charpinet et al. (2008) applied the polytrope based calculations of Saio (1981) to evaluate
the second order effects owing to tidal and rotational effects for the binary hot subdwarf
system NY Virginis. These methods are non-perturbative and so have exact solutions for
the pulsation frequencies. Whilst polytropes are only approximate representations of stars
they give insight into which processes are important. They found that the p-modes were
typically disrupted by a few µ Hz which is above detection thresholds. Both the rotation and
the distortion impact the frequency splittings. Predictions from the tidal correction suggest
that the different m modes are split asymmetrically. Given the ever increasing precision of
observational measurements these perturbations need to be quantified for future analysis.

Perturbative Methods

Reyniers and Smeyers (2003) predict the mode splitting for tidal perturbations of linear isen-
tropic oscillations in components of circular-orbit close binaries with perturbative methods.
They predict the ratios of eigenfrequencies for the tidally perturbed stars. They make their
calculations without considering rotation and thus leave open the question as to whether or
not the companion is in synchronous rotation with the orbit. Fig. 5.1 depicts the ratio of the
eigenfrequency splitting owing to tidal distortions. They find a difference by a factor of −2
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Fig. 5.1 Schematic diagram of the ratios of the eigenfrequency shifts to tidally distorted
stars as presented by Reyniers and Smeyers (2003) Figs. 1,2 and 3. The perurbation to the
eigenfrequencies are shown in triangular points and the unperturbed frequency is the circular
point. Reyniers and Smeyers (2003) predict that the |m|= 0 modes are shifted to negative
frequencies then the increasing |m| modes cascade to higher frequencies. Saio (1981) predicts
the same ratios between line splitting but the amplitudes differ by a factor of -2 meaning the
|m|= 0 mode is higher frequency and the increasing |m| modes have decreasing frequencies.

in the predicted frequency splitting compared to the results of Saio (1981). Our results agree
with Saio (1981).

5.3 Methods

Detailed stellar models are computed, tidally distorted and then analysed for pulsations.

5.3.1 Stellar Evolution Code

Evolved sdB models are created with the Cambridge STARS code (Eggleton, 1971). The
code uses an adaptive non-Lagrangian mesh to calculate the structure. The mesh points
redistribute themselves as the star evolves. During the evolution the structure and composition
are solved simultaneously. The code has been updated several times since its creation in the
early 1970s. One update deals with the equation of state (Eldridge and Tout, 2004). Stancliffe
and Eldridge (2009) modified the code to evolve both components in binary systems.

For this work we consider an sdB star to be a core helium burning extreme horizontal
branch (EHB) star which evolved from the zero-age EHB (ZAEHB). We consider EHB
models with no H envelope and models with a 0.01M⊙ H envelope. With these two evolu-
tionary sequences the observed surface gravity loggsurf parameter space for these objects is
encompassed. As the models evolve their radii increase until a maximum is reached part way
through He burning. After this point they steadily contract until He is exhausted and they
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settle on to the WD cooling track. We consider the ZAEHB models and the evolved models
at maximum radius.

5.3.2 Tidal Distortion

The first stage is to create a single, undistorted, non-rotating sdB model as did Preece et al.
(2018). Its density profile ρ(r) is used to construct Clairaut’s equation which is solved for
α(r). The quadrupolar tidal distortion of a non-rotating star makes it a prolate spheroid
relative to the spin axis, the equatorial radius through the axisymmetric tidal bulge (high tide)
is larger than the polar radius and the equatorial radius at low tide which are equal.

The three dimensional distorted star, shown in Fig. 5.2, is generated with equation
5.1, in which θ̃ is the angle from the tidal axis, directed towards the companion. A right
angled triangle can be projected on to the surface of the 3D star to find θ̃(θ ,φ) where θ

and φ are the usual spherical co-ordinates with the z-axis aligned with the spin axis. The
axisymmetric tidal bulges are at θ = π/2, φ = 0,π . Application of the spherical cosine rule
gives cos(θ̃) =−sin(θ)cos(φ). The radius of the equipotentials r(θ ,φ) is then

r(θ ,φ) = r̄[1−α(r̄)P2(−sinθ cosφ)]. (5.8)

The previously spherical shells of the model are treated as equipotential surfaces. The
tidal distortion is applied to every shell. It is assumed that the physical properties of the
object are constant along equipotential surfaces of the tidally distorted star. Recall that for a
synchronously rotating system the tidal distortion is greater than the rotational distortion if
the companion mass satisfies M2 > M1/2.

5.3.3 Obtaining Asteroseismic Eigenfrequencies

We obtain our asteroseismic eigenfreqencies using the open source oscillation code GYRE
(Townsend et al., 2018; Townsend and Teitler, 2013). GYRE is a 1D code that solves
the adiabatic and non-adiabatic pulsation equations to obtain eigenfrequencies and eignen-
functions for a given stellar model. We developed a back end for the STARS code which
allows STARS models to be analysed by GYRE. For convenience of comparison the STARS
models are written in the same format as MESA models (Paxton et al., 2011, 2013). For
each point (θ ,φ) on the surface of the tidally distorted star a set of local eigenfrequencies
ν(θ ,φ) can be found by applying the GYRE analysis to a spherically symmetric star with
local radius r = r(α(r̄),θ ,φ). For p-modes the models at the rotation poles have higher
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pulsation frequencies than those at the equator. Fig. 5.2 shows the local fractional shift in the
eigenfrequency on the surface of a tidally distorted polytrope model for a selected p mode.

5.3.4 Volume Averaged Frequency

Exploiting the azimuthal symmetry of the bulge, the m degenerate global volume averaged
frequency ν̄ can be found by integrating ν(θ ,φ) over the surface of the entire star. We find
that the global average frequency is the same as that of the undistorted model. This is the
case for the l = 0 mode. Asteroseismic pulsations are described by the spherical harmonics
with radial order k, number of node lines on the surface l and number of node lines passing
through the equator m. For each l there are 2l + 1 possible m modes. When the star is
spherically symmetric, the m modes are all degenerate for a given l. When the spherical
symmetry is broken the degeneracy of the m modes is also broken. With the spherical
harmonics, Y m

l (θ ,φ), we estimate the frequency for each m mode with

ν̄ =

∫ 2π

0
∫

π

0 |Y m
l (θ ,φ)|2ν(θ ,φ)sinθdθdφ∫ 2π

0
∫

π

0 |Y m
l (θ ,φ)|2 sinθdθdφ

, (5.9)

which reduces to

ν̄ =

∫ 2π

0
∫

π

0 |Pm
l (cosθ)|2ν(θ ,φ)sinθdθdφ∫ 2π

0
∫

π

0 |Pm
l (cosθ)|2 sinθdθdφ

. (5.10)

where Pm
l (cosθ) are the associated Legendre polynomials.

5.3.5 Magnitude of the Tidal Distortion

The magnitude of the tidal distortion depends on the orbital period and the mass ratio of the
two stars. The percentage magnitude (100∆R/R) is plotted in Fig. 5.3 for three evolutionary
models. The radius of the star is the most important parameter for calculating the magnitude
of the distortion. Doubling the radius of the star increases the distortion by a factor of 5. For
systems with Porb > 0.5d the distortion is less than 0.02per cent.

The post common envelope sdB systems have either dM or WD companions. We consider
two companion masses for the remainder of this work M2a = 0.11M⊙ and M2b = 0.4M⊙
which correspond to the two peaks of the observed bimodal companion mass distribution
(Kupfer et al., 2015b). The mass M2a is typical of an sdB + dM and M2b is more representative
of an sdB + WD system. Furthermore, M2a is the same as that predicted for the system NY
Virginis which is one of the closest binary systems containing a pulsating sdB star observed
to date.
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Fig. 5.3 A contour plot in orbital period Porb and companion mass M2 of the percentage of
the tidal distortion. The contours show the percentage of the tidal distortion (100∆R/R). The
left hand panel is a ZAEHB model with no H envelope and log10(gsurf/cms−2) = 5.982.
The middle panel is an sdB with no envelope which has evolved until the radius is at the
evolutionary maximum and has log10(gsurf/cms−2) = 5.809. The right hand panel is a
ZAEHB detailed evolutionary model of an sdB star with canonical mass 0.47M⊙, radius of
0.19R⊙, Menv = 0.01M⊙ and log10(gsurf/cms−2) = 5.515.
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5.4 Results

Averaging ν(θ ,φ) for polytropic models with the spherical harmonics gives the same ratios
of m splitting as predicted by both Saio (1981) and Reyniers and Smeyers (2003) for the
l = 1 to l = 3 modes. The magnitudes and directions of the frequency shifts are in agreement
with Saio (1981). We compare the polytrope mode to a detailed numerical model of an sdB
star. We also predict the l = 4 and l = 5 mode splitting owing to tidal effects in this work.
This mode is observed in p-mode pulsating sdB stars. The l = 0 mode is unaffected by tidal
interactions.

5.4.1 Calibration of Polytrope Models

Saio (1981) numerically evaluated the required quantities for equation 5.5 with an n = 3 but
γ = 5/3 polytropic stellar model. The results of these calculations test the effectiveness of
our method. We numerically solve the Lane-Emden equation to generate our own polytropic
model to make a comparison.

The eigenfrequency of a pulsation mode in a star with given mass and radius can be
found with equation 5.6. The m dependent shift δνm in the eigenfrequency follows

δνm =

(
3
2

M2

(M1 +M2)

)
(X2 +m2Y2)ν0

(
ω

ν0

)2

, (5.11)

where X2 and Y2 are calculated numerically and tabulated by Saio (1981).

We obtain frequencies for our tidally distorted numerical polytrope model using the full
methodology laid out in section 5.3. The positive and negative m modes for a given l and k
have the same perturbation to the frequency owing to tidal perturbations. The different m
modes have different tidal frequency perturbation magnitudes which result in asymmetric
mode splitting.

To cast more light on whether the magnitude of the shift of the frequency predicted by
Saio (1981) or Reyniers and Smeyers (2003) is correct, the polytrope ν(θ ,φ) obtained from
GYRE can be compared to their respective results. Fig. 5.4 shows our method compared to
Saio (1981). Whilst not identical there is a good agreement. Saio’s lower radial order modes
are perturbed more than ours and our higher radial order modes are perturbed more than his
but the difference is always within a few micro-Hertz. No corrective factor is required for
these results. The magnitude and direction of our frequency shift agrees with Saio (1981).
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Fig. 5.4 Comparison of our (solid black) polytrope calculations to those of Saio (dashed grey)
for a polytrope model with the binary parameters of NY Virginis. As illustrated in Fig. 5.1,
the m = 0 line is most positively shifted, the increasing |m| eigenfrequencies linearly cascade
down until the |m|= l eigenfrequency which is shifted the most negatively. The magnitude
of our frequency perturbations differ from Reyniers and Smeyers (2003) by a factor of -2.
The frequencies used for our polytrope model are output by GYRE. No corrective factor is
applied to the frequency magnitudes.

5.4.2 Comparison of Polytropic and Numerical Models

Fig. 5.5 shows the comparison of our polytrope to our detailed stellar model. The magnitude
of the frequency perturbation owing to tidal interactions for the polytrope is larger than
that for the detailed stellar model even though the surface tidal distortion is the same. This
particularly applies to the higher radial order modes so that an n = 3, γ = 5/3 polytrope
is not the best approximation for an sdB star. If the system is tidally synchronized, the
tidally induced splitting is smaller than the rotational splitting. For the numerical models the
frequency splitting is generally far smaller than the rotational splitting. However the rotation
period of the star is not as well constrained as the orbital period.

5.4.3 Tidal and Rotational Splitting

The rotation rate of sdB stars in close binaries is not well constrained. Table 3.1 shows the
close sdB binary population with known orbital and spin periods. Kepler observations of
pulsating systems with orbital periods greater than 0.3d show that these systems rotate with
periods of the order of days and thus are certainly rotating sub-synchronously. The observed
pulsation frequencies of these longer period close binaries show symmetric rotational splitting.
This means the measured rotation periods are precise. Another implication is that the tides do
not operate strongly in these regimes. The presence of significant tidal interactions spins up
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Fig. 5.5 As Fig. 5.4, comparing our numerical (solid black) calculations to our polytrope
models (dashed grey).

the star and introduces asymmetric splitting. The closest of the sdB systems are rotationally
spun up relative to their longer period counterparts. However, assuming current convection
theory, they are still unlikely to be synchronized to their orbits (Preece et al., 2019).

Observational and theoretical results both suggest that the sdB stars are not synchronously
rotating, even when in the closest configurations. This makes including rotational effects
more complicated. Were the stars co-rotating with the orbit then the rotational splitting would
be well constrained. Knowing the best rotation period to apply is a tricky business!

Whilst most likely sub-synchronous, the stars are still rotating. The rotational splitting
is constant for all modes assuming the star is rotating as a solid body in the regions probed
by the pulsations. This may not be a good assumption for these systems. Fig. 5.6 shows
the rotation and tidal splitting of the modes for a companion mass of 0.1M⊙ for a star with
a rotation period equal to double the orbital period. The m = 0 mode is influenced the
most. The splitting of the modes becomes asymmetric. At short orbital periods the tides
become more significant. At the shortest periods the asymmetry of the modes becomes
quite substantial. This has significant implications for the mode identification of an observed
pulsation spectrum.

Whilst the splitting becomes asymmetric, the total spread of a mode owing to rotation
doesn’t change with the introduction of tides. The m =±l modes both experience the same
frequency perturbation owing to the tides and so the total spread of a multiplet remains
constant. This may be helpful in the identification of modes. This also means it is still
possible to infer the rotation rate of the region from the multiplet splitting.

Because the rotation periods are generally not well constrained for the short period
systems we consider a system with fixed orbital period and companion mass and alter the
rotation period. The results of these calculations can be seen in Fig.5.7. We approximate the
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Fig. 5.6 The frequency perturbation for selected eigenmodes as a function of orbital period.
For these plots it is assumed that the stars are rotating with a spin period double the orbital
period. The companion mass is 0.1M⊙. When the rotational splitting is added, the m = 0
line is the central line. The higher m eigenfrequencies then split around the m = 0 line in the
typical pattern. The dashed grey lines show only rotational splitting for reference.

rotational eigenfrequency splitting δνrot ≈ 1/Prot. The observed order of the modes changes
as the stars spin up. If the star isn’t rotating the |m| modes are degenerate. As rotation
is introduced this |m| degeneracy is slowly broken. At spin periods greater than 18hr for
the m = 0 the tidal effects dominate and the order of the modes from positive to negative
frequency perturbation is m = 0, then m =−1 then m = 1. At rotation periods of less than
18hr the rotation starts to dominate and the observed order of the modes becomes m =−1,
then m = 0 then m = 1. The equator is the rotational axis which is perpendicular to the axis
with the tidal bulge.

5.4.4 Higher Order Modes

The splitting of l = 4 and l = 5 modes owing to the tidal distortion has not previously been
computed. However, this mode is sometimes identified in observed pulsation spectra so is of
some interest. Table 5.1 shows the frequency perturbation relative to the m = 0 mode, δν0

for m > 0 and l = 4 and l = 5. Recall that δνm = δν−m.

5.5 Discussion

The sdB stars have 5 < log10(gsurf/cms−2)< 6 and masses sharply peaked at 0.47M⊙. The
radii of these stars varies substantially depending on the H envelope mass. The envelope is
low mass but radially extended. A ZAEHB sdB star with no H envelope experiences a tidal
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M2 = 0.1M⊙. The m = 0 mode is unaffected by the spin. As the star spins up the tidal
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Table 5.1 Predicted |m| dependent frequency perturbation owing to tidal interactions for the
l = 4 and l = 5 modes.

Mode l = 4 l = 5
δν1 0.828 δν0 0.885 δν0
δν2 0.312 δν0 0.541 δν0
δν3 -0.548 δν0 -0.034 δν0
δν4 -1.752 δν0 -0.837 δν0
δν5 - -1.871 δν0
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distortion 5 times smaller than a ZAEHB sdB with Menv = 0.01M⊙. As an sdB star evolves
the He burning region increases in mass. The star also expands for a period of time until
loggsurf reaches a minimum and then contracts again. Fig. 5.3 compares three models with
different envelopes and at different evolutionary stages to characterize these effects. Our
results suggest that if the distortion is less than 1per cent the frequencies are not significantly
altered.

The version of the STARS code used in this work does not include atomic processes such
as radiative levitation and gravitational settling. The inclusion of convective overshooting
alters the evolution of the models. With no overshooting a large semi-convective region
forms around the convective He fusing core. The models with overshooting typically have
smaller radii in which case pulsations would be less influenced by the tides.

5.6 Conclusions

Tides play an important role in binary star interactions. The sdB systems typically do not
experience tides strong enough to synchronize the systems during their extreme horizontal
branch evolution but the closest systems are still significantly distorted and spun up. The
pulsations observed for these systems are influenced by the tidal distortions. The perturbations
to the frequencies owing to the tides are typically smaller than the rotational effects if the
stars are significantly spun up, particularly for the sdB + dM systems. Whilst often subtle, the
tides still have an observable effect on the m splitting. At high spin rates the observed order
of the modes, and total spread of the multiplet, is not affected by the tides but the splitting
becomes asymmetric and this has important implications for the mode identification. At low
spin rates the order of the modes is altered.



Chapter 6

Conclusions

Post common-envelope binary stars can be used as test-beds for tidal synchronization theories.
During common-envelope evolution the orbital period substantially shrinks on a dynamical
time-scale. The orbital shrinkage means any synchronization achieved on the the RGB is
broken and this determines the initial spin period. Observational data confirm that sdBs
in sdB+dM systems with orbital periods of about half a day are not significantly spun-up
relative to their red clump counterparts and have spin periods of the order of 10d.

The sdB stars in the closest binaries are certainly spun-up but neither dynamical nor
equilibrium tidal theory predicts synchronization within the EHB lifetime with standard input
physics. The only way synchronization of the cores could be achieved in this study was
to speed up the convecting material in the star such that the convective turnover time was
shorter than the orbital period. The required convective velocity is far smaller than the sound
speed in the core but still needs to be enhanced by a factor of about 20 without modifying
the overall energy flux. Some 3D hydro-dynamical simulations reach the required velocities.
However the results are somewhat unreliable and haven’t been applied to He burning cores. It
may be possible for the common-envelope evolution phase to spin-up the outer regions of the
star – in particular the remaining low-mass radially-extended H envelope. Unfortunately, the
common-envelope phase is not well understood and this hypothesis remains beyond robust
testing with existing theories.

Without considering the contributions of resonances, the dynamical tide for the sdB stars
predicts synchronization time-scales on the order of the Hubble time even for systems such as
CD−30◦11223. Studies investigating white dwarf tidal synchronization show that resonance
of the tidal potential with a g-mode in the star becomes significant at orbital periods of less
than an hour (Fuller and Lai, 2012). These systems only approach spin-orbit synchronization
such that ω/Ω > 0.8 when the orbital period is less than 20min. Even at orbital periods less
than 10min some of the white dwarf models still maintain some degree of asynchronicity.
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The white dwarf binary systems are far closer than any observed sdB system and thus it seems
safe to conclude that this mechanism is no more efficient than the convective dissipation.

Tidal deformations influence the asteroseismic pulsations of a star by breaking spherical
symmetry. We showed that it is possible to recover analytical predictions of the shifts
to the m mode eigenfrequencies. The aim of this project was to answer the question of
whether the tides affect the pulsations of the stars to an observable degree. The shifts to the
eigenfrequencies depend on a multi-dimensional parameter space including the radius of the
star, the radius of the convective region, the mass of the star, the mass of the companion, the
separation of the stars and the k, l and m of a pulsation mode. The higher k modes are effected
substantially more than the lower k modes and certainly to an observable degree if the orbital
periods are less than a few hours. For an l = 1, k = 6 mode the splitting between the m = 0
and m = −1 mode is four times smaller than between the m = 0 and m = 1 mode. The
tidal contribution becomes more substantial when the stars are rotating sub-synchronously.
In many cases the tidal perturbations are small. However they can significantly alter the
architecture of a rotationally split multiplet.

The mode analysis, in particular the mode identification process, for observed pulsating
stars is highly non-trivial. To simplify it one generally only considers the first order rotational
splitting and neglects the tidal contribution. Recent space missions including Kepler, TESS
and the future mission PLATO have hugely increased the precision of asteroseismological
measurements. Observations are now able to observe with µ Hz precision making the tidal
contribution, for the first time, observable. Unfortunately, none of the TESS candidate sdB
stars have observable rotational splitting to date.

To better understand the influence of the tides more close binary sdB systems must
be observed. Currently there are several systems with orbital periods of 0.1d which have
been observed and are sufficiently influenced by the tides to be spun-up, even if not totally
synchronized. There are also a collection of systems at orbital periods of about 0.4d which
are observed not to be spun up. To further parameterize the effect of tides on the pulsation
properties of the stars ellipsoidal variations may be useful. Ellipsoidal variations give insights
into the magnitude of the tidal distortion. As shown in Chapter 5 the magnitude of the
distortion is linearly related to the perturbation to the pulsations. Furthermore, the ellipsoidal
variations may be further disrupted if the stars also experience rotational distortion. Tidally
distorted rapidly rotating stars are triaxial ellipsoids. Future work should demonstrate how
this geometry affects the light-curve both with and without the presence of pulsations.
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