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the cellular miRNA, hsa-miR-92a, and a concomitant upregu-
lation of the GATA2 myeloid transcription factor, which, in 
turn, drives the expression of cellular IL-10. Taken together, 
we argue that HCMV latency, rather than a period of viral qui-
escence, is associated with the virally driven manipulation of 
host cell functions, perhaps every bit as complex as lytic infec-
tion. A full understanding of these changes in cellular and viral 
gene expression during latent infection could have far-reach-
ing implications for therapeutic intervention.
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Introduction

Human cytomegalovirus (HCMV) is typical of human 
herpesviruses in that it has both a latent and a lytic phase 
of its life cycle, which are bridged by periodic reactiva-
tion events. In the immune competent, primary infection 
is rarely symptomatic, and following the establishment of 
latency, the virus maintains a persistent infection effectively 
controlled by the immune system. It is now established 
that, in vivo, one site of HCMV latency is in bone marrow 
resident CD34+ myeloid progenitor cells as well as in their 
derivative CD14+ monocytes present in peripheral blood. 
Whilst there is little consensus, likely due to differences 
in cell types analysed and models of latency used, in the 
spectrum of viral genes expressed during latent infection, 
it is clear that latency is associated with a much restricted 
virus gene transcription programme and, in general, an 
absence of expression of viral major lytic genes [1–5]. This 
is also true for cytomegalovirus infection in other species, 
although the mechanisms by which latency is established 
vary. A number of studies have demonstrated that murine 

Abstract As with all human herpesviruses, human cyto-
megalovirus (HCMV) persists for the lifetime of the host by 
establishing a latent infection, which is broken by periodic 
reactivation events. One site of HCMV latency is in the pro-
genitor cells of the myeloid lineage such as CD34+ cells and 
their CD14+ derivatives. The development of experimental 
techniques to isolate and culture these primary cells in vitro is 
enabling detailed analysis of the events that occur during virus 
latency and reactivation. Ex vivo differentiation of latently 
infected primary myeloid cells to dendritic cells and mac-
rophages results in the reactivation of latent virus and provides 
model systems in which to analyse the viral and cellular func-
tions involved in latent carriage and reactivation. Such analy-
ses have shown that, in contrast to primary lytic infection or 
reactivation which is characterised by a regulated cascade of 
expression of all viral genes, latent infection is associated with 
a much more restricted viral transcription programme with 
expression of only a small number of viral genes. Addition-
ally, concomitant changes in the expression of cellular miR-
NAs and cellular proteins occur, and this includes changes in 
the expression of a number of secreted cellular proteins and 
intracellular anti-apoptotic proteins, which all have profound 
effects on the latently infected cells. In this review, we concen-
trate on the effects of one of the latency-associated viral pro-
teins, LAcmvIL-10, and describe how it causes a decrease in 
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cytomegalovirus (MCMV) establishes latency, which sug-
gests that some parallels may be drawn between the two 
species [6, 7]. This inhibition of lytic gene expression dur-
ing latency is likely affected through repressive chromatin 
marks around the promoter of the viral major immediate 
early promoter (MIEP). Following differentiation of pro-
genitor myeloid cells into terminally differentiated den-
dritic cells or macrophages, however, this repressive chro-
matin structure around the MIEP is relieved, resulting in 
changes in post-translational modifications of histones 
around the MIEP associated with transcriptional activation 
and concomitant induction of viral lytic immediately early 
(IE) gene expression [5, 8–12]. These data imply that reac-
tivation routinely occurs in vivo, but this is sub-clinical due 
to robust host immune responses and is supported by the 
recent observations that macrophages and DCs, in vivo, are 
sites of virus reactivation in the healthy carrier [13, 14].

Main text

There are numerous effects on the host cell 
during HCMV latency

It is well established that the numerous HCMV-encoded 
genes expressed during lytic infection act in concert to 
exert profound effects on the infected cell, resulting in 
the modulation of a wide range of cell functions and their 
downstream effects. This includes modulation of cell 
metabolism, transcription, translation, cell cycle, cell sig-
nalling as well as the inhibition of immune surveillance, 
cell stress, and cell death [15–30] (Fig. 1a). However, 
despite a much restricted transcription profile, a number of 
studies have also shown that latent infection is associated 

with a profound manipulation of host cell transcription and 
cell signalling and, again, the inhibition of host immune 
surveillance, cell stress, and cell death [4, 5, 31–36] 
(Fig. 1b). Thus, far from being silent, latent infection with 
HCMV also results in the viral-driven orchestration of cel-
lular gene expression and cell functions, likely, to optimise 
the cell for latent carriage and reactivation. For example, 
a number of changes in total cellular mRNAs have been 
shown to occur upon latent during experimentally latent 
infection of granulocyte macrophage progenitors (GMPs) 
[37, 38] resulting in changes in MHC class II expression 
and secreted monocyte chemoattractant protein-1 (MCP-1) 
also known as chemokine C–C motif ligand-2 (CCL2) [39]. 
Consistent with this, latent infection of myeloid progenitors 
also results in the regulation of MCP-1 as well as a large 
number of other secreted cell proteins [32]. In addition to 
the regulation of secreted proteins during latency, an apop-
tome array shows that there are also a number of changes in 
levels of anti-apoptotic proteins during latent infection of 
CD34+ cells with HCMV (Fig. 2).

Given the relative paucity of viral genes expressed dur-
ing HCMV latency [1–5] compared to lytic infection, it 
may initially seem surprising that such profound changes in 
the cell result from latent infection. However, another level 
of regulation of gene expression is via microRNAs (miR-
NAs). These are highly conserved small (approximately 
21 nucleotides in length) RNA molecules encoded in the 
genomes of plants and animals, which generally regulate 
the expression of genes by binding to the 3′-untranslated 
regions (3′-UTR) of specific mRNAs.

Although the first published description of an miRNA 
was in 1993 [40], the understanding of the functions of 
many of these small non-coding RNA molecules is still 
being elucidated and is complicated by the fact that each 
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Fig. 1  Manipulation of host cell functions during latent HCMV 
infection, perhaps every bit as complex as lytic infection. Infection 
of cells results in a wide range of changes to the infected cell. Dur-
ing lytic infection (a), there are reported changes to the modulation 
of cell metabolism, transcription, translation, cell cycle, cell signal-

ling as well as the inhibition of immune surveillance, cell stress, and 
cell death [15–25]. Similarly, during latent infection (b), there are 
reported changes to the manipulation of host cell transcription and 
cell signalling and, again, the inhibition of host immune surveillance, 
cell stress, and cell death [4, 5, 31–36]
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miRNA is thought to be able to regulate multiple genes. 
This, coupled with the fact that there are hundreds of miR-
NAs transcribed in the cells of higher eukaryotes [41–43], 

reflects the enormous complexity in levels of regulation 
of gene expression afforded by miRNAs. Various lines of 
research suggest that miRNAs may act as key regulators of 
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Fig. 2  A number of pro- and anti-apoptotic factors in the FAS signal-
ling pathway are altered during HCMV latency. Either CD34+ cells 
were uninfected or HCMV latency was established for 10 days, and 
the cells were harvested for protein analysis (a–d). Relative levels of 
proteins involved in FAS-mediated and IL-10 signalling were ana-
lysed by apoptosis array (R&D systems) (a) and highlighted are Aa 
(Bcl2), Ab (p53 phospho-serine-15), and Ac (HSP70). Alternatively, 
cells were harvested for Western blot analysis of total and phos-
phorylated STAT3 (antibodies from cell signalling) relative to actin 
loading control (antibody from Abcam) (b) and quantified by den-
sitometry. Data are represented as fold change during latency from 
representative Western blots (c). The data are summarised in context 

with the literature in (d). Extrinsic FAS-mediated apoptosis involves 
FADD, caspase 8, pro-caspase 3, and caspase 3 and leads to apop-
tosis [81, 82]. Intrinsic mitochondrial-mediated apoptosis involves 
Bax, Bid, voltage-dependent anion channel (VDAC), cytochrome C 
(cyt c), pro-caspase 9, and the apoptome [83, 84]. Additionally, anti-
apoptotic IL-10 signalling can involve STAT3 phosphorylation, Bcl2, 
and HSP70 [59, 61, 62]. These anti-apoptotic factors are all positively 
regulated during HCMV latency. Finally, the two isoforms of virally 
induced IL-10, cmvIL-10 and LAcmvIL-10, are shown in (e), where 
grey boxes represent exons. LAcmvIL-10 is generated from alterna-
tive splicing, which does not express exon 3
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processes as diverse as early development [44], cell prolif-
eration and cell death [45], apoptosis, and fat metabolism 
[46], as well as cell differentiation [47–49]. There is also 
evidence to suggest that miRNA expression is involved in 
the pathogenesis of a number of diseases, including cancer 
[50, 51] and viral infection [31, 52–55].

It is interesting, therefore, that during HCMV latency, 
there are changes to a number of cellular miRNAs ([31] 
and Table 1). Additionally, HCMV itself encodes a number 
of miRNAs. Consequently, it is possible that many of the 
changes in the latency-associated secretome as well as the 
observed changes in anti-apoptotic proteins during latent 
infection is due, at least in part, to the HCMV-mediated 
regulation of cellular miRNAs [31] as well as, possibly, 
expression of a number of viral miRNAs [56].

Downregulation of a cellular miRNA can lead 
to upregulation of cellular proteins during latency

One of the cellular miRNAs which is known to be down-
regulated during latent infection of CD34+ progenitor cells 
is hsa-miR-92a ([31] and Table 1). Predictive algorithms 
and biochemical analysis have shown that this miRNA 
can target the myeloid transcription factor GATA2, and as 
predicted, during experimental HCMV latency, there is an 
increase in levels of this myeloid cellular transcription fac-
tor [31, 34].

GATA2 is a cellular transcription factor known to 
be important in the proliferation, lineage commitment, 
and survival of haematopoietic progenitor cells [57–60], 
and the virus targets this important myeloid transcrip-
tion factor for a number of now well-established reasons. 
For instance, GATA2 has also been found to regulate the 
transcription of the latency-associated viral gene prod-
uct UL144 and may also play a role in the expression of 

other latency-associated viral gene products. GATA2 not 
only regulates viral genes but is also known to regulate the 
expression of a number of cellular genes, including IL-10. 
Consistent with this, increases in cellular IL-10 (cIL-10) 
in the secretome of latently infected CD34+ cells have 
been shown to occur. Detailed analysis of the mechanism 
by which latency-associated changes in hsa-miR-92a were 
linked to GATA2 expression and subsequent regulation 
of cIL-10 came from studies in KG1 cells, a CD34+ cell 
line which can be manipulated by transfection and reca-
pitulate some aspects of HCMV latent infection, namely 
the expression of latency-associated genes such as UL138 
in the absence of lytic immediate early gene expression 
[31]. In these cells, transfection of an antagomir to hsa-
miR-92a led to increased GATA2 mRNA expression [31] 
and increased cIL-10. Importantly, this induction of cIL-
10 by hsa-miR-92a antagomir did not occur if GATA2 
was depleted by RNAi [31]. Taken together, these studies 
showed that latency-associated changes in hsa-miR-92a 
result in increased GATA2, which drives the expression of 
cIL-10 during latent infection (Fig. 3).

Cellular IL‑10 is important for the maintenance 
of latency and immune evasion

Cellular IL-10 is a secreted cytokine known to have 
immune modulatory properties as well as having pro-life 
effects on myeloid progenitors, such as CD34+ cells, by 
driving the expression of the anti-apoptotic factor Bcl2 
(Fig. 2a, c, d and [31]). During HCMV latency, cIL-10 is 
upregulated, and for this reason, the specific functions of 
cIL-10 in the latent secretome have been analysed [32]. 
For example, consistent with this observation that cIL-10 
is known to play an anti-apoptotic role in CD34+ cells 
(Fig. 2d), [31, 61], antibody depletion of latency-associ-
ated secretion of cIL-10 from the supernatants of latently 
infected cells results in increased cell death and loss of 
latent viral genome carriage [31]. Additionally, latency-
associated secretion of cIL-10, together with virally 
induced increases in cellular TGF-beta, results in the estab-
lishment of an immune suppressive microenvironment 
around latently infected cells. This, in turn, inhibits CD4+ 
cytotoxic T-cell effector functions and thereby suppresses 
host immune surveillance of the latently infected cell [32].

We know that latent infection of primary CD34+ pro-
genitor cells by HCMV results in their increased survival 
in the face of pro-apoptotic signals, and this, at least in part, 
appears to involve the known latency-associated increase 
in the expression of cIL-10 [31, 59]. However, how cIL-10 
mediated this protection was unclear, but the changes in the 
latent apoptome would suggest that the cIL-10 upregulated 
during latency modulates cIL-10-mediated suppression of 
extrinsic and intrinsic pro-apoptotic signals (Fig. 2d).

Table 1  HCMV-induced latency leads to changes in a number of cel-
lular miRNAs

Following the establishment of latency for 10 days in CD34+ cells, 
the cells were harvested for miRNA analysis (nCode, Invitrogen), and 
data are presented as fold change over mock infected cells with prob-
ability values

MicroRNA Fold change during latency 
compared to mock

hsa-miR-let-7a −2.5

hsa-miR-let-7b −3.7

hsa-miR-206 −2

hsa-miR-296 3p −2.6

hsa-miR-297 −2.9

hsa-miR-32* −2

hsa-miR-608 −2.4

hsa-miR-92a −2.5
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Engagement of the cIL-10 receptor by cIL-10 is known 
to induce signalling via STAT3 phosphorylation. This 
results in positive autoregulation of cIL-10 expression as 
well as expression of intrinsic death-signalling pathway 
inhibitors such as Bcl2 [31, 59] and HSP70 [62]. Consistent 
with this, and the known increase in cIL-10 during HCMV 
latent infection of CD34+ cells [32], latently infected 
CD34+ cells also showed extensive increases in STAT3 
phosphorylation (Fig. 2b, c) and concomitant increases 
in the expression of Bcl2 and HSP70 (Fig. 2a, c). HSP70 
plays a role in the negative regulation of the intrinsic path-
way due to the ability to target pro-caspase 3 [63, 64], pre-
sent in the FAS-mediated signalling pathway. Thus, during 
latency, the FAS-mediated signalling pathway is targeted 
at different stages of FAS-mediated apoptosis via extrinsic 
apoptosis signalling (Fig. 2d). Interestingly, HSP70 also 
plays a significant role as a potent inhibitor of the forma-
tion of the mitochondrial apoptome [65] and the intrinsic 
pathway of programmed cell death (Fig. 2d).

Not all of the changes in proteins we have identified 
during HCMV latency are in pro-life factors. Figure 2a, c 
shows that there was a 3.5-fold increase in levels of p53 
phosphorylated at serine 15. Ser 15-phosphorylated p53 
is known to have pro-apoptotic properties as it is able to 
upregulate the transcription of the pro-apoptotic factor 
Bax and concomitantly decrease the expression of anti-
apoptotic factor Bcl2 [66]. However, the expression of Bcl2 
clearly increased during HCMV latency in our studies (see 

Fig. 2a, c and [31]) despite elevated levels of phosphoryl-
ated p53. Consequently, our view is that other functions 
associated with latent infection also counter the transcrip-
tional regulation of Bcl2 by p53. One possibility is that 
HSP70 increased during latent infection and can act to 
stimulate the expression of Bcl2 via AKT [67]. Therefore, 
the expression of HSP70 may be strong enough to over-
come the repressive effects of phosphorylated p53. Simi-
larly, formation of pro-apoptotic Bax homodimers can be 
prevented by HSP70 [65]. Therefore, it is likely that HSP70 
works at multiple levels to help check and balance the lev-
els of anti-apoptotic factors in the latently infected cell, 
although this needs to be formally addressed.

Latency‑associated viral IL‑10 can cause 
downregulation of the cellular miRNA hsa‑miR‑92a

It appears, then, that the changes in cellular miRNA expres-
sion resulting from latent infection can have important 
downstream effects on both intrinsic cell survival and host 
immune evasion. However, until recently, the mechanism 
by which HCMV latent infection caused such changes in 
cellular miRNAs expression was far from clear. There 
are a number of viral genes expressed during latency, 
which could potentially affect cellular miRNA expres-
sion, although the latency-associated functions of many of 
these latency-associated genes are only just beginning to be 
unravelled.
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Fig. 3  Myeloid transcription factor GATA2 plays multiple roles 
during HCMV latency. Following the establishment of latency 
in CD34+ cells for 10 days, there is an induction of cellular hsa-
miRNA-92a via LAcmvIL-10 [31, 79]. This leads to a direct upreg-
ulation of the cellular transcription factor GATA2 [34]. GATA2 can 
drive the transcription of the latency-associated viral products LUNA 
and UL144 [34, 85] as well as driving transcription of the cellular 

cytokine gene IL-10 [31]. Whether other mechanisms for the upregu-
lation of GATA2 during HCMV latency are also induced is not yet 
known. IL-10 serves to create an immune suppressive environment 
[32] as well as to lead to pro-life signalling to the latently infected 
cell [31]. IL-10 leads to STAT3 phosphorylation and signals to anti-
apoptotic factors Bcl2 and HSP70 (see Fig. 2)
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One of these is a viral cIL-10 homologue, known as 
LAcmvIL-10, encoded by the UL111A gene. It is interest-
ing that although latent HCMV infection robustly induces 
the expression of cIL-10, as discussed above, the virus also 
expresses LAcmvIL-10 during this life cycle. However, 
HCMV is not unique amongst the herpesviruses in encod-
ing a cIL-10 homologue [68]. However, HCMV actually 
encodes two IL-10 homologues. These two isoforms of 
virus-encoded IL-10 are generated by alternative splic-
ing from the viral UL111A gene as depicted graphically 
in Fig. 2e. One of these is a protein of 175 amino acids, 
termed cmvIL-10, which is expressed during lytic infec-
tion and has the expression kinetics of a late gene. The sec-
ond isoform, predicted to consist of 139 amino acids and 
termed LAcmvIL-10, has a C-terminal truncation and is 
expressed during both lytic and latent infection [68–70]. 
The encoding of a cIL-10 homologue is not unique to 
HCMV. An IL-10 homologue encoded by the UL111A 
open reading frame (ORF) has also been identified in rhe-
sus macaque CMV (RhCMV). Although it has a slightly 
different gene structure than cmvIL-10, like cmvIL-10, it 
shows low amino acid identity to host cIL-10 [69].

The full-length cmvIL-10 gene shares 27 % amino acid 
homology with cIL-10 [71] and has a number of functions 
in common with cIL-10: it forms homodimers and binds the 
cIL-10 receptor [69, 72]; it triggers STAT3 phosphorylation 
and activation of the JAK/STAT signalling pathway [73, 74]; 
it signals via the phosphoinositide-3-kinase pathway, con-
tributing to cytokine suppression [74–76] and cIL-10-posi-
tive autoregulation [77]; and it shares the ability of cIL-10 to 
prevent NF-κB activity via inhibition of IKK [75, 78].

In contrast, LAcmvIL-10 appears quite dissimilar to 
cIL-10 and cmvIL-10. Although, like cIL-10 and cmvIL-
10, it can downregulate major histocompatibility complex 
(MHC) class II in latently infected GMPs [76], either it 
does not signal through the IL-10 receptor (IL-10R) or it 
engages the receptor in a different way than cIL-10 and 
cmvIL-10. Therefore, the mode of action and function dur-
ing HCMV latency is uncertain.

Interestingly, analysis of viruses lacking the UL111A 
gene locus was found to be impaired in their ability to 
induce cIL-10 upon latent infection [79]. Similarly, con-
sistent with these observations, viruses lacking UL111A 
did not downregulate cellular hsa-miR-92a. Furthermore, 
recombinant LAcmvIL-10 was found both to induce cIL-
10 and to cause the downregulation of hsa-miR-92a [79].

Taken together, then it appears that expression of LAc-
mvIL-10 during latent infection results in downregulation 
of cellular hsa-miR-92a, which in turn leads to the upreg-
ulation of the myeloid transcription factor GATA2. This 
increase in GATA2 then drives the expression of cIL-10, 
which inhibits intrinsic cell death signals and aids immune 
evasion of the latently infected cell (Fig. 3).

It is also worth emphasising that GATA2 is known to be 
involved in the hematopoiesis and myeloid cell differentia-
tion [80]. The extent to which latent infection of CD34+ 
cells, in itself, drives the latently infected progenitor cell 
down the myeloid lineage, rather than the lymphocyte line-
age, is unclear. However, this could, in part, explain the fact 
that latent viral genomes have not been detected in T and B 
cells even though these presumably derived from the same 
CD34+ progenitor cells giving rise to cells of the myeloid 
lineage.

Future perspectives

The ramifications of latency-associated changes in a num-
ber of other cellular miRNAs that have been identified dur-
ing latent (Table 1 and [31]) infection are unclear. Simi-
larly, latent infection also results in changes in a number of 
other secreted cellular proteins [32], and the effects of these 
changes on the latently infected cell will be enlightening. 
Regardless, it is now clear that latent infection imparts on 
the latently infected cells a plethora of phenotypic changes 
through an orchestrated manipulation of cell gene expres-
sion and cell functions. These are likely necessary for 
efficient carriage and reactivation of latent viral genomes, 
but they may also provide an ‘Achilles heel’ to allow the 
development of novel therapeutics to target and clear latent 
infection, at least in some clinical settings.
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