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To the Editor: 

 

The human brain comprises nearly one hundred billion neurons that are highly 

interconnected and communicate with each other. It is this very interconnectedness that gives 

rise to functional brain networks that govern complex cognition and human behaviour. To date, 

the human brain mapping community has largely gleaned insights into the principles of brain 

network organization from large-scale imaging consortia (i.e. Human Connectome Project) and 

small-scale observational and interventional studies. We have learned that, in common with other 

naturally-occurring networks, brain networks demonstrate three topological network features1: i) 

small-worldness, ii) existence of hubs, and iii) community structure. In addition, we have learned 

that two major driving principles of brain network organization are minimising the energetic 

costs of wiring whilst investing resources that promote network efficiency2. In disease, these 

principles are stretched from normality, but persist to maintain the classical features of complex 

networks. Insights into the human connectome have largely been derived from merging 

neuroimaging with network science, and more recently transcriptomics3. However, neurosurgical 

practice has barely been utilized to unmask the principles of brain network organization. Given 

that minute (i.e. thalamotomy) to massive (i.e. temporal lobectomy) volumes of brain 

parenchyma are routinely removed for various clinical indications4, neurosurgery provides a 

unique scientific perspective on the human connectome. 

 

Recently, Kliemann and colleagues5 investigated how functional brain networks were 

organised in six adults who underwent hemispherectomy (HS) as children. The main objective of 

their study was to determine how functional brain networks differed between HS patients and 

controls by quantifying within-network and between-network connectivity. The authors5 

recruited a historical HS cohort with a mean age of 24.33 years. The timing of HS ranged from 

minutes after birth to early adolescence. Four of the six HS patients underwent complete 

functional hemispherectomy, while two patients underwent a complete anatomical 

hemispherectomy. The investigators acquired high-resolution resting-state functional MRI scans 

and compared the brain’s intrinsic functional architecture between adult HS patients (n = 6) and 

healthy controls (n = 6). To aid in generalisability, the authors used a normative functional 

connectome (n = 1482) as a second control dataset. Despite radical surgery, resting-state 
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networks in HS subjects remained in typical configurations with normal levels of within-network 

connectivity, but increased between-network connectivity. Specifically, they report that the HS 

cohort had a significantly increased between-network connectivity, outside the range seen in 

controls, in all seven of Yeo’s empirically-derived functional brain networks6 (i.e. default mode, 

frontoparietal, etc). Finally, compared to controls, the authors demonstrated that global 

efficiency (a measure of functional integration) increases and modularity (a measure of 

functional segregation) remained stable in HS patients.  

 

This study highlights several important findings relevant to the neurosurgical community. 

First, the authors curated an interesting, hard-to-acquire dataset that provides insight into how 

large-scale networks organize and communicate when the brain experiences a major physical 

alteration in early life. They demonstrated that functional brain networks can be reconstructed 

normally, albeit unilaterally, and that the healthy hemisphere can resume normal function. 

Second, the authors found normal communication within networks but increased synchronicity 

between networks, suggesting that HS brains in adulthood work harder to integrate neural 

activity. The clear implication here is that bilateral hemispheres promote brain network 

segregation. Third, this study provides weight to using brain stimulation to promote functional 

remapping and recovery in the contralateral hemisphere after an injury (i.e. stroke)7 because 

canonical functional networks can be recapitulated despite highly atypical anatomy. Finally, 

Kliemann and colleagues5 imply that following HS in early life, brains undergo compensation to 

regain function. However, without longitudinal data it is unclear of how these networks 

topologically reorganise acutely post-surgery and during subsequent rehabilitation. Moreover, it 

appears that some in the HS cohort were actually hemispheretomies8,9 and partial bilateral 

communication could have been preserved despite functional isolation of the healthy 

hemisphere.  

 

It is important to place the study within a broader neuroscientific context, especially with 

regards to compensation and network communication. First, on the grounds of this study, there is 

very little evidence of any kind of reorganisation of brain networks caused by HS, and perhaps 

the preservation of functional networks is what is surprising. While it is reasonable to assume 

network plasticity following HS in the developing brain, the authors do not demonstrate this 
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concept due to the absence of longitudinal imaging and cognitive data. The most obvious 

explanation for their findings is that large-scale functional brain networks are broadly fixed in 

very early life within their spatial/anatomical configuration to generate internal synchronicity. 

Moreover, the brain ‘switches’ the configuration and emphasis of its network communication in 

response to cognitive demands10, and thus any form of compensation can only truly be discussed 

within the framework of task-related activation.  Finally, if we interpret increased between-

network communication above the normal range as ‘compensation’, then presumably a priori we 

would posit that the greater the deviation of activation, the greater the degree of compensation, 

and thus better cognitive outcomes. While the authors do point out that there was insufficient 

data to be definitive, the available evidence suggests the opposite; namely, HS patients with the 

greatest cognitive challenges had increased connectivity across functional networks. Thus, in our 

cautious view, inferring cognitive “compensation” in the context of network connectivity in a 

retrospective study needs to be tempered by the available evidence.   

 

In summary, connectomics is still an evolving field of research, although there is 

reasonable evidence that certain emerging themes may prove to be both reproducible and useful. 

Neurosurgeons can help elucidate the principles of brain network organisation given the highly 

distorted anatomy we work with; specifically, predicting surgical morbidity, mechanisms of 

network plasticity, and the natural history of recovery curves may bi-directionally advance basic 

neurophysiology and neurosurgical care. Kliemann and colleagues5 make a positive first step 

towards these aims with additional studies on the way. Ultimately, we hope neurosurgeons 

partner with neuroscientists and continue to play an active role in not only deciphering the 

principles of brain network organisation, but also mechanisms of cerebral plasticity, as there is 

still much to unravel.  
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