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SUMMARY

Axons require the axonal NAD-synthesizing enzyme
NMNAT2 to survive. Injury or genetically induced
depletion of NMNAT2 triggers axonal degeneration
or defective axon growth. We have previously pro-
posed that axonal NMNAT2 primarily promotes
axon survival by maintaining low levels of its sub-
strate NMN rather than generating NAD; however,
this is still debated. NMN deamidase, a bacterial
enzyme, shares NMN-consuming activity with
NMNAT2, but not NAD-synthesizing activity, and it
delays axon degeneration in primary neuronal cul-
tures. Here we show that NMN deamidase can also
delay axon degeneration in zebrafish larvae and
in transgenic mice. Like overexpressed NMNATs,
NMN deamidase reduces NMN accumulation in
injured mouse sciatic nerves and preserves some
axons for up to three weeks, even when expressed
at a low level. Remarkably, NMN deamidase also res-
cues axonal outgrowth and perinatal lethality in a
dose-dependent manner in mice lacking NMNAT2.
These data further support a pro-degenerative effect
of accumulating NMN in axons in vivo. The NMNdea-
midase mouse will be an important tool to further
probe the mechanisms underlying Wallerian degen-
eration and its prevention.

INTRODUCTION

Axon degeneration is a widely recognized hallmark of

many neurodegenerative disorders and axonopathies, including
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peripheral neuropathies, Parkinson’s disease, multiple sclerosis,

and others [1, 2]. Therefore, understanding the molecular mech-

anisms causing axon destruction will have significant thera-

peutic implications.

Wallerian degeneration, the degeneration of the distal axon

stump following injury [3], shares both morphological and mech-

anistic features with the axon pathology in several neurodegen-

erative disorders [2]. Recent studies revealed a crucial role for

the endogenous mammalian nicotinamide mononucleotide ad-

enylyltransferase (NMNAT) isoform NMNAT2 in axon survival

[4]. NMNAT2 is actively transported along the axon, but, due to

a short half-life [4, 5], its levels in transected axons decline prior

to any visible sign of fragmentation, suggesting it may be a

trigger for axon degeneration [4]. Any of the three natural NMNAT

isoforms or the slow Wallerian degeneration protein (WLDS)

(an aberrant fusion protein with NMNAT activity [6]) can robustly

delay Wallerian degeneration when present at sufficient levels in

axons [2]. This is likely achieved by maintaining axonal NMNAT

enzymatic activity after loss of endogenous NMNAT2 through

increased levels and/or greater relative stability of the introduced

proteins [2, 4]. The findings that specific depletion of NMNAT2 in

neuronal primary culture is sufficient to initiate WLDS-sensitive

degeneration [4] and that mice lacking NMNAT2, which develop

severe axonal defects and die at birth, can be rescued by WLDS

expression [7] are also consistent with this model.

More recently, other endogenous regulators of Wallerian

degeneration have emerged, but NMNAT2 loss appears to be a

critical, early event in a conserved axon degeneration pathway

upstream of other core regulators, including the pro-degenera-

tive sterile alpha and TIR motif containing 1 (SARM1) protein

[2, 8–12]. However, exactly howmaintaining NMNAT activity pro-

motes axon survival has still not been fully resolved [8]. We have

proposed a model, based on pharmacological and genetic evi-

dence, where accumulation of the NMNAT substrate, nicotin-

amide mononucleotide (NMN), an expected consequence of
rs. Published by Elsevier Ltd.
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Figure 1. NMN Deamidase Blocks Wallerian Degeneration in Zebrafish Larvae

(A) Schematic representation of larval zebrafish tail showing the location of the sensory (Rohon-Beard) axon and the site of injury (green arrow).

(B) One-cell-stage emrbyos were injected with plasmids for DsRed and NMN deamidase or empty vector. Time-lapse fluorescent images show DsRed-

expressing axons in empty vector or NMN deamidase embryos after cut (green arrow shows the location of cut site). Axons have degenerated within 2 hr in the

empty vector control, whereas NMN deamidase-expressing axons are preserved up to at least 12 hr.

(C) Length of the lag phase (time between the cut and the first sign of degeneration) in control or NMN deamidase-expressing axons (mean ± SEM; empty vector

n = 9, NMN deamidase n = 8; Student’s t test, ****p < 0.0001).
NMNAT2 depletion, promotes Wallerian degeneration [11, 13]. A

cornerstone of the model was the finding that expression of

theE. coli enzymeNMNdeamidase, for which the only known ac-

tivity is conversion of NMN to its deamidated form, nicotinic acid

mononucleotide (NaMN) [14], confers neurite protection in pri-

mary neuronal cultures comparable to that produced by WLDS

or stable NMNATs [13]. Crucially, both WLDS/NMNATs and

NMN deamidase are able to scavenge NMN, but, unlike WLDS/

NMNATs, NMNdeamidase lacks intrinsic NAD synthesis activity.

Here we have used zebrafish larvae and a transgenic mouse

line to test whether E. coli NMN deamidase can delay axon

degeneration in vivo as it does in primary neuronal cultures.

We have also tested whether it can protect axons from insults

that do not involve physical injury, including whether it can

rescue axonal defects in mice lacking NMNAT2. In all cases,

we find that NMN deamidase expression confers strong protec-

tion, consistent with a pro-degenerative role for NMN accumula-

tion in axons in vivo.

RESULTS

NMN Deamidase Blocks Wallerian Degeneration in
Zebrafish Larvae
Many events occurring in Wallerian degeneration are evolution-

arily conserved [15–19]. We previously found that the NAMPT in-

hibitor FK866 delays Wallerian degeneration in zebrafish larvae,

likely through inhibition of NMN accumulation and a consequent

rise in Ca2+ [11, 13]. Therefore, we first asked whether expres-

sion of NMN deamidase can protect axons in vivo using this rela-

tively simple vertebrate model system.

NMN deamidase was transiently expressed (along with DsRed)

in trigeminal and Rohon-beard somatosensory neurons (Fig-

ure 1A). Axons were cut 48–54 hr post-fertilization using two-
photon laser axotomy. Control larvae displayed a normal rate of

axon degeneration after injury (expressed as lag phase [18]), usu-

ally completed within 2 hr under these experimental conditions

(Figures 1B and 1C; Movie S1). In contrast, NMN deamidase

blocked injury-induced axon degeneration up to at least 12 hr

(Figures 1B and 1C; Movie S2), similar to the previously reported

effects ofWLDS [18]. A few axons (n = 3) were followed up to 24 hr

and were found to remain intact (Movie S2). Axon regrowth from

the site of injury confirmed successful axon transection and that

the zebrafish larvaewere viable for the duration of the experiment.

Interestingly, quick axonal regeneration following laser axotomy in

NMN deamidase-expressing neurons occurred despite the pres-

ence of the preserved distal stump (Movie S2), contrastingwhat is

seen in nerves inWldSmice [20, 21]. It may be that there are fewer

physical restrictions influencing regrowth in the zebrafish larvae,

but, as previously described [18], the regenerating axons still

avoided the distal stump, suggesting the regeneration process

may still be affected.

These data indicate that NMN deamidase can confer strong

in vivo protection against Wallerian degeneration in a vertebrate

system.

Generation and Biochemical Characterization of an
NMN Deamidase Transgenic Mouse
Next, we generated a transgenic mouse expressing E. coli NMN

deamidase, fused to EGFP, under the control of the b-actin pro-

moter (see the Experimental Procedures). We obtained four pos-

itive founder mice that showed no overt phenotype up to at least

1 year (mice were not aged further). All four founders were fertile,

but only one (14209) transmitted the NMN deamidase transgene

to fertile offspring. Although we were able to detect the presence

of transgene mRNA by RT-PCR (Figure 2A), EGFP-tagged NMN

deamidase was undetectable using fluorescence microscopy,
Current Biology 27, 784–794, March 20, 2017 785



Figure 2. NMN Deamidase Expression Increases Steady-State Levels of NaMN and NaAD

(A) RT-PCR analysis of eGFP-NMN deamidase and Actb (sample control) mRNA in E18.5 brain of wild-type or NMNdhemi embryos (representative of n = 3).

(B) Schematic representation of NAD biosynthetic pathways and point at which bacterial NMN deamidase will act in mammalian cells (NA, nicotinc acid; NAM,

nicotinamide; NaMN, nicotinic acidmononucleotide; NMN, nicotinamidemononucleotide; NaAD, nicotinic acid adenine dinucleotide; NAD, nicotinamide adenine

dinucleotide; NAPRT, nicotinc acid phosphoribosyltransferase; NAMPT, nicotinamide phosphoribosyltransferase; NMNAT, nicotinamide mononucleotide

adenylyltransferase; NADS, NAD synthase).

(C–E) Mononucleotide (C, NMN and NaMN), dinucleotide (D, NAD and NaAD), and nucleotide (E; ATP, ADP, and AMP) levels in brain of wild-type, 14209-derived

NMNdhemi mice, and NMN deamidase founders 14207 and 14208 (nd, non-detectable). Data are expressed as nanomoles per gram fresh weight (nmol/gFW)

(mean ± SD; Student’s t test, *p < 0.05, **p < 0.01, and ***p < 0.001; NS, non-significant).
immunofluorescence, or by immunoblotting for EGFP (data not

shown), suggesting extremely low expression of the protein.

However, NMN deamidase activity was detectable in brain ex-

tracts. Interestingly, mean enzyme activity in founder 14209

and its hemizygous offspring (0.007 ± 0.001 mU/mg) was one

or two orders of magnitude lower than in the other founders,

which were unable to efficiently transmit the transgene (0.069

and 0.612 mU/mg protein in founders 14207 and 14208, respec-

tively). Enzyme activity was essentially undetectable in wild-type

mice (%0.002 mU/mg).

Notably, brain levels of NMN negatively correlated with NMN

deamidase activity in the founders (Figure 2C), whereas NaMN

and the corresponding dinucleotide NaAD, which were only reli-

ably detectable in transgenic mice, both positively correlated

with activity (Figures 2C and 2D). These are predicted conse-

quences of NMN deamidase activity on the NAD biosynthetic

pathway (Figure 2B), and they match previously reported nucle-

otide determinations in cultured dorsal root ganglion (DRG) neu-

rons exogenously expressing NMN deamidase [22]. NAD levels
786 Current Biology 27, 784–794, March 20, 2017
did not appear to correlate as strongly with NMN deamidase ac-

tivity (Figure 2D), perhaps indicating that the generation of NAD

from NaAD (via NAD synthase) can balance any loss of produc-

tion from NMN (via NMNAT) (Figure 2B). ATP, ADP, and AMP

levels appeared largely unaffected by NMN deamidase expres-

sion (Figure 2E).

NMNDeamidase Expression ConfersMorphological and
Functional Preservation of Transected Axons
We previously reported that NMN deamidase expression con-

fers protection against injury-induced axon degeneration in pri-

mary neuronal cultures similar to WLDS [11, 13]. Here, using

four complementary methods, we assessed whether this pro-

tective effect was reproducible in vivo by comparing rates of

Wallerian degeneration in wild-type mice with those in hemizy-

gous (NMNdhemi) or homozygous (NMNdhomo) transgenic mice.

First, we found that degradation of neurofilament heavy

chain (NF-H) in tibial nerves after sciatic nerve lesion, as deter-

mined by immunoblot analysis, was delayed in NMNdhemi and



(legend on next page)
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NMNdhomo mice for up to 2 or 3 weeks, respectively (Figures 3A

and 3B; Figure S1C). Second, light microscopy revealed

morphological preservation of significant numbers of trans-

ected myelinated sciatic nerve axons for at least 2 weeks after

lesion in NMNdhemi mice and for greater than 3 weeks in

NMNdhomo mice (Figures 3C and 3D; Figure S1D). Third, struc-

tural continuity of YFP-labeled axons in lesioned sciatic nerves

from NMNdhemi mice additionally hemizygous for the YFP-H

transgene was also preserved for up to 2 weeks (Figure 3E).

Finally, we used electromyography to assess functionality of

severed axons, and we found that conduction velocity was fully

preserved in NMNdhomo mice at 7 days after sciatic nerve lesion

(Figure 3F). Crucially, structural preservation of axons after

sciatic nerve lesion was also seen in independent NMN deami-

dase founder mice (Figures S1A, S1B, and S1E), thereby ruling

out the possibility that the protective phenotype in the founder

14209-derived line is the result of disruption of another gene

at the site of transgene integration. While the majority of axons

in transected nerves from NMNdhemi and NMNdhomo mice were

strongly protected, a small proportion appeared to degenerate

rapidly. This likely reflects variation in NMN deamidase expres-

sion between different axons, although we cannot rule out this

subpopulation was instead dying via an alternative mechanism.

Interestingly, variable protection of individual fibers is also seen

in transected WldS nerves [6].

Together, these data show that the NMN scavenger enzyme

NMN deamidase delays Wallerian degeneration in mice. The

level of protection is approaching that seen in WldS mice [6],

despite NMN deamidase being unable to synthesize NAD

directly. Crucially, where NMNdhemi and NMNdhomo mice were

compared directly, we saw greater and prolonged protection

of axons in the NMNdhomo mice (Figures 3A–3D; Figure S1C).

Enzymatic activity and deamidated nucleotide levels were higher

in NMNdhomo mice than in NMNdhemi mice (data not shown), in

keeping with an expected higher expression level of the bacterial

enzyme, indicating a dose-dependent protective effect for NMN

deamidase similar to that seen for WLDS [6, 23].

NMN Deamidase Prevents NMN Accumulation in Injured
Sciatic Nerves
We have previously shown that NMN accumulates in transected

wild-type sciatic nerves prior to degeneration of their axons,

reasoning that this is likely due to rapid loss of axonal NMNAT2

and a subsequent failure to convert NMN to NAD [13]. In trans-

ected nerves from NMNdhemi mice, we instead observed a

reduction in the rate of accumulation of NMN, consistent with
Figure 3. NMN Deamidase Expression Confers Morphological and Fun

(A) Western blot showing reduced neurofilament heavy chain (NF-H) degradation

is delayed in NMNdhemi and NMNdhomo mice compared to wild-type controls.

(B) Quantification of NF-H band intensity after normalization to histone 3 (H3) in w

was used per lane to avoid overloading and progressively higher amounts loaded f

smear of degradation products.We corrected for this by normalizing to the loading

uncut nerve (mean ± SD; n = 3–4; two-way ANOVA followed by Bonferroni post

(C and D) Light microscopy images of sciatic nerves fromwild-type, NMNdhemi, an

the percentage of intact axons (D) (mean ± SD; n = 3; two-way ANOVA followed

(E) Fluorescent images of sciatic nerves from YFP and YFP/NMNdhemi mice at the

deamidase-expressing axons.

(F) Conduction velocities measured in uncut nerves or 7 days after cut via stimulat

one-way ANOVA, ***p < 0.001). See also Figure S1.
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the activity of the bacterial enzyme, coupled to a compensatory

increase in NaMN (Figures 4A and 4B). Accumulation of NaMN in

the transected nerves from NMNdhemi mice, like NMN accumu-

lation in wild-type nerves, is an anticipated consequence of an

early loss of NMNAT2, since conversion of NaMN to NaAD, like

the conversion of NMN to NAD, requires NMNAT activity (Fig-

ure 2B). Similarly, modestly declining levels of NAD in both the

wild-type and NMNdhemi transected nerves, and of NaAD in the

NMNdhemi nerves (Figures 4C and 4D), are also realistic out-

comes of loss of axonal NMNAT2 prior to frank degeneration

of axons. This metabolic profiling of pyridine mononucleotides

and dinucleotides in transected sciatic nerves is consistent

with the hypothesis that NMN deamidase delays Wallerian

degeneration by preventing NMN accumulation.

NMN Deamidase Protection Is Neuron Specific and
Effective against Insults that Do Not Involve Physical
Injury
Exogenous expression of NMN deamidase in primary superior

cervical ganglion (SCG) neurons is sufficient to confer a slow

Wallerian degeneration phenotype [13]. To confirm that the

axon-protective effect of transgene-expressed NMN deamidase

is also neuron specific, we cultured SCGs and DRGs from

NMNdhemi and NMNdhomo mice and assessed protection of cut

neurites. We found that SCG and DRG neurites were both

strongly protected against injury-induced degeneration in the

transgenic cultures and that this was dose dependent (Figures

5A and 5B; Figures S3A and S3B). Protection appeared stronger

in DRG neurites than in SCG neurites. Interestingly, the exoge-

nous addition of NMN to transected NMNdhomo SCG neurites

had limited toxic effect on the protective phenotype, reflecting

the ability of NMN deamidase to scavenge exogenous NMN

(Figures 5A and 5B). This contrasts the toxic effect of NMN on

transected neurites protected with FK866, where the synthesis

of the NMN is inhibited but where a scavenging system for the

exogenously added NMN is not present [13].

We next tested the relative resistance of NMNdhomo SCG neu-

rons to two different pro-degenerative insults, vincristine toxicity

and trophic factor deprivation, both of which trigger WLDS-sen-

sitive axon degeneration without physical injury [24–26]. In both

cases, we observed substantial neurite protection in the

NMNdhomo cultures relative to controls (Figures 5C–5F).

These data confirm that NMN deamidase functions within

neurons and that it inhibits an axon degeneration pathway that

can be activated by several types of insult, including those not

involving physical injury.
ctional Preservation of Transected Axons

in tibial nerve at the indicated times after sciatic nerve transection. Degradation

ild-type, NMNdhemi, and NMNdhomo mice. Less nerve lysate from uncut nerve

or cut nerves (as degeneration increased) to better visualize the intact NF-H and

control band and expressing values as a percentage of the normalized value in

hoc test, **p < 0.01, ***p < 0.001, and ****p < 0.0001; NS, non-significant).

d NMNdhomomice at the indicated time points after cut (C) and quantification of

by Bonferroni post hoc test, ****p < 0.0001).

indicated time points after cut. Axon continuity is better preserved in the NMN

ion of sciatic nerve to evoke electromyographic activity (mean ± SEM; n = 5–6;



Figure 4. NMN Deamidase Reduces NMN Accumulation in Injured Sciatic Nerves

(A–D) Pyridine mononucleotide (A and B, NMN and NaMN) and pyridine dinucleotide (C and D, NAD and NaAD) levels in sciatic nerves of wild-type and NMNdhemi

mice at the indicated time points after cut. Data are normalized to the total adenylate (ADE) pool (ATP + ADP + AMP) as ameasure of nucleotide yield (mean ± SD;

n = 5 nerves per two independent measurements per time point; two-way ANOVA followed by Bonferroni post hoc test, *p < 0.05). ADE pool remained stable in

nerves up to 20 hr after cut (data not shown). The levels of the nucleotides in the uncut contralateral nerves remained relatively stable (Figure S2) and their average

represents time 0. See also Figure S2.
NMN Deamidase Rescues Axonal Defects
in NMNAT2-Deficient Mice
Mice homozygous for theNmnat2gtE gene trap allele lack detect-

able NMNAT2 expression and die at birth, with widespread axon

truncation caused by an underlying axon outgrowth defect [7].

WLDS expression or an absence of SARM1 can rescue the

axon extension defect, allowing mice to survive into adulthood,

indicating that the underlying defect shares aspects of its mech-

anism with Wallerian degeneration [7, 10]. Consistent with an

involvement of NMN in promoting axon degeneration [13], we

previously found that blocking NMN synthesis in Nmnat2gtE/gtE

DRG cultures with NAMPT inhibitor FK866 partially rescues neu-

rite extension [10]. However, technical limitations meant more

pronounced or prolonged rescue could not be achieved. We

therefore assessed whether NMN deamidase expression in

NMNAT2-deficient mice can restore axon extension and pro-

mote their survival.

We first assessed rescue of the axon defect in newborn

Nmnat2gtE/gtE;NMNdhemi pups (lacking NMNAT2 but expressing

NMN deamidase). Although Nmnat2gtE/gtE;NMNdhemi pups still

died during the first post-natal day, they lacked the character-

istic hunched posture of Nmnat2gtE/gtE pups that die at birth

(Figure 6A). Consistent with this rescue of gross morphology,

we found that distal phrenic nerve branches, which are absent

from diaphragms of embryonic day (E)18.5 Nmnat2gtE/gtE

embryos, were present in Nmnat2gtE/gtE;NMNdhemi embryos

(Figure 6C). In addition, neurite outgrowth in E18.5 DRG and

SCG explant cultures was significantly rescued (Figures 6D

and 6E). Nmnat2gtE/gtE;NMNdhemi DRG neurite outgrowth

actually matched that of wild-type and NMNdhemi controls.

In contrast, rescue of Nmnat2gtE/gtE;NMNdhemi SCG neurite

outgrowth was substantial, but less complete (including no

rescue of a small subpopulation of neurites). Interestingly,

this is consistent with the marginally weaker protection against

Wallerian degeneration in SCG cultures compared to DRG

cultures, and it may reflect different levels of transgene ex-

pression in different neuronal types. Crucially, the Nmnat2gtE
allele remained effectively silenced when NMN deamidase

was expressed (Figure 6B), excluding the possibility that

changes in Nmnat2 silencing are responsible for the observed

rescue.

To assesswhether higher doses of NMNdeamidase can confer

improved rescue, we inter-crossed Nmnat2+/gtE;NMNdhemi mice.

These crosses produced a number of mice lacking NMNAT2

and positive for the NMN deamidase transgene that survived

beyond weaning up to at least 2–3 months of age (Figure 6F).

Our current genotyping methods cannot distinguish NMNdhemi

mice from NMNdhomo mice with complete certainty, but the

fact that no Nmnat2gtE/gtE;NMNdhemi pups from Nmnat2+/gtE 3

Nmnat2+/gtE;NMNdhemi crosses survived past the first post-natal

day (Figure 6F) strongly suggests the viable NMNAT2-deficient/

NMN deamidase-positive mice from the Nmnat2+/gtE;NMNdhemi

inter-crosses were homozygous for the NMN deamidase trans-

gene (Nmnat2gtE/gtE;NMNdhomo mice). Interestingly, this implies

dose-dependent rescue, similar to that conferred by WLDs in the

same model [7], matching the dose-dependent protection of

axotomized axons (see above).

The ability of NMN deamidase expression to rescue axon

defects in Nmnat2gtE/gtE mice and promote their survival in a

dose-dependent manner provides strong support for a key

involvement of NMN accumulation in the axon truncation pheno-

type caused by NMNAT2 deficiency.

DISCUSSION

Here we have demonstrated that NMN deamidase is able to

delayWallerian degeneration in vivo, thereby extending previous

findings obtained in primary neuronal cultures [11, 13, 22]. It can

do this in two disparate vertebrate species and seemingly also

when expressed at very low levels. Neurites in primary cultures

of neurons from NMN deamidase transgenic mice also show

strong protection following vincristine treatment and nerve

growth factor (NGF) withdrawal, both of which are insults that

do not involve physical injury. Strikingly, NMN deamidase
Current Biology 27, 784–794, March 20, 2017 789



Figure 5. NMN Deamidase Protection Is Neuron Specific and Effective against Various Toxic Insults

(A) Representative bright-field images of transected neurites in wild-type, NMNdhemi, and NMNdhomo SCG cultures. Transected neurites expressing NMN

deamidase show morphological continuity several days after axotomy.

(B) Quantification of the degeneration index in experiments described in (A).

(C) Representative bright-field images of neurites in wild-type and NMNdhomo SCG cultures at the indicated time points after 20 nM vincristine addition.

(D) Quantification of the degeneration index in experiments described in (C).

(E) Representative bright-field images of neurites in wild-type and NMNdhomo SCG cultures at the indicated time points after NGF withdrawal.

(F) Quantification of the degeneration index in experiments described in (E). Degeneration index in (B), (D), and (F) was calculated from three fields per sample

in three independent experiments (mean ± SD; two-way ANOVA followed by Bonferroni post hoc test, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001; NS,

non-significant).

See also Figure S3.
expression can also rescue the severe axon outgrowth defect in

mice lacking NMNAT2, which has an underlying degenerative

basis [7, 10], to the extent that NMNAT2-deficient mice, rather

than dying at birth, can instead survive well past weaning

age if they express enough of the enzyme. Notably, all of these

outcomes, including the dose dependency of the protective

phenotype, mirror those previously seen with WLDS, thereby

supporting the idea that NMN deamidase influences a core
790 Current Biology 27, 784–794, March 20, 2017
step in an evolutionarily conserved WLDS-sensitive axon degen-

eration pathway that is activated in a variety of situations.

When considered in isolation, all the data presented here are

consistent with a model in which preventing NMN accumulation

in axons after induced or constitutive depletion of NMNAT2 pro-

tects them from degeneration. We originally proposed this

model in response to two observations that contradicted the

view that maintaining NAD levels is instead critical for axon



Figure 6. Expression of NMN Deamidase Rescues Axon Defects in Mice Lacking NMNAT2

(A) Representative gross morphology of newborn Nmnat2gtE/gtE and Nmnat2gtE/gtE;NMNdhemi pups.

(B) RT-PCR analysis of Nmnat2, eGFP-NMN deamidase, and Actb (sample control) mRNA in E18.5 brain from embryos of the indicated genotypes (images

representative of n = 3).

(legend continued on next page)
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survival. The first was the ability of NAMPT inhibitor FK866 to

delay Wallerian degeneration despite a simultaneous decline

in NAD levels, while the second was our previous finding that

exogenous expression of NMN deamidase in primary neuronal

cultures can phenocopy WLDS, despite there being no clear

route for generating NAD from its product, NaMN, once

NMNAT2 depletion has occurred [13]. We argued that the

simplest way to link these observations to the strong protective

effect of NMNATs (which domaintain NAD levels) was through a

shared ability to keep NMN levels low.

However, a recent study has questioned this model, reporting

situations where genetic and pharmacological manipulation of

the NAD biosynthetic pathway in primary DRG cultures raises

NMN either in uninjured neurites that remain unaffected or in

injured neurites that show delayed Wallerian degeneration [22].

While these findings seem inconsistent with the NMN accumula-

tion model, it is notable that all instances where raised NMN

correlates with neurite preservation also involve substantial in-

creases in NAD. An increase in NAD is also not universally suffi-

cient to protect injured axons [22, 27], so it was postulated that

changes in other, as yet unknown, metabolites cause axon

degeneration [22]. However, the common protective mechanism

of FK866, bacterial NMN deamidase, and mammalian NMNAT is

more likely to be their known, shared influence on NMN than

similar effects on another metabolite that has not yet been iden-

tified or shown to be similarly affected by all three manipulations.

Likewise, it can be argued that a direct involvement of changes

to endogenous levels of NaMN or NaAD in the protective mech-

anism is unlikely.

Given that our new in vivo data further support a pro-degener-

ative role for NMN, we suggest that the best fit for all currently

available data is a model involving both NMN and NAD. For

example, the effects of accumulated NMN may be evident only

in the context of physiological or declining NAD levels, as occurs

in transected axons in the first few hours after injury [13, 22].

Given their structural relatedness, high NAD could inhibit the

pro-degenerative function of NMN directly. Alternatively, accu-

mulated NMN could activate early steps in the degeneration

pathway, irrespective of NAD concentration, but raising NAD

could compensate for later SARM1-dependent NAD depletion

[22, 28]. Crucially, this would reconcile the NMN accumulation

model [10, 11, 13] with a SARM1-dependent NAD depletion

model [22, 28], and it provides a simple explanation for FK866-

mediated protection of cut axons. Of note, although the pro-

tective effect of FK866 has been reported in several studies,
(C) bIII-tubulin immunostaining (left-hand images) revealing the presence of phren

invariantly absent from Nmnat2gtE/gtE diaphragms. Boxed regions are magnified

with bungarotoxin-TRITC. Innervation of AChR clusters is only evident in the Nm

and n = 5 Nmnat2gtE/gtE;NMNdhemi diaphragms). Innervation in Nmnat2gtE/gtE;NM

controls (data not shown).

(D and E) Radial neurite outgrowth from DRG explants (D) and radial neurite outg

genotypes listed and outgrowth followed over 7 days in culture (mean radial exten

genotype; two-way repeated-measures ANOVAwith Dunnett’s multiple comparis

Representative images of neurite outgrowth at 7 days forNmnat2gtE/gtE andNmna

graph in each panel. Nmnat2gtE/gtE;NMNdhemi DRG and SCG neurite outgrowth (f

images. Two populations of neurites can be differentiated in Nmnat2gtE/gtE and

severely retarded outgrowth (mass, solid line), with a subpopulation extending fu

normal outgrowth (mass, solid line), while a subpopulation shows severely limite

(F) Viability past post-natal day 1 (P1) for offspring from Nmnat2+/gtE 3 Nmnat2+
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the degree of protection achieved does vary [11, 13, 22, 27,

29]. Different sources of FK866 could account for this variability;

however, in our hands, FK866 is one of the most effective phar-

macological tools for delaying Wallerian degeneration, consis-

tently protecting injured DRG neurites for up to 48 hr [13].

NMN deamidase transgenic mice have other potential uses.

The ability of NMN deamidase to rescue axon defects in

NMNAT2-deficient mice suggests that these mice could be

a useful tool to study the putative detrimental effects of

NMN accumulation in models of neurodegenerative diseases.

Crucially, comparisons between the abilities of NMN deamidase

and WLDS to ameliorate symptoms in any given model should

help to resolve whether the primary underlying defect is axon

degeneration or a failure to produce NAD, particularly in the

nucleus where WLDS is most abundant [2]. Outside of the axon

degeneration field, NMN deamidase transgenic mice could be

informative with respect to general NAD metabolism. In keeping

with the reported low expression levels of NAD synthase in

the nervous system [30], which converts NaAD to NAD, these

mice have abnormally high steady-state levels of both NaMN

and NaAD. It will, therefore, be interesting to establish to what

extent normal regulatory feedback loops in the NAD biosyn-

thetic pathway [31] are altered in NMNdhemi and NMNdhomo

mice. Importantly, such changes might explain why the trans-

genic founders with higher enzyme activity failed to transmit

the transgene.

In conclusion, our data strongly support an in vivo role for NMN

accumulation in triggering axon degeneration both after injury

and when NMNAT2 is constitutively depleted, with axon protec-

tion byWLDs/NMNATs andNMNdeamidase in both situations at

least partially relying on their ability to limit NMN accumulation.

EXPERIMENTAL PROCEDURES

Animal Procedures

Animal work was carried out in accordance with the Animals (Scientific Pro-

cedures) Act, 1986, under Project Licenses PPL 70/7620 and PPL 40/3482

following the appropriate ethical review processes at the University of

Nottingham and Babraham Institute. Design and generation of a transgene

construct for expression of E. coli NMN deamidase fused to EGFP from a

b-actin promoter and procedures for PCR-genotyping founder mice and

their transgene-positive offspring are detailed in the Supplemental Experi-

mental Procedures. Sciatic nerve lesions and the analysis of YFP-labeled

nerves were performed as described previously [13, 32] (see also the

Supplemental Experimental Procedures). Zebrafish experiments were per-

formed as described in [11] (see also the Supplemental Experimental

Procedures).
ic nerve terminal branches in a Nmnat2gtE/gtE;NMNdhemi diaphragm. These are

(right). Acetylcholine receptor (AChR) clusters are labeled by counter-staining

nat2gtE/gtE;NMNdhemi diaphragm (images representative of n = 3 Nmnat2gtE/gtE

Ndhemi diaphragms is superficially similar to that in wild-type and NMNdhemi

rowth from SCG explants (E). Ganglia were taken from E18.5 embryos of the

sion in mm ± SEM; average of two ganglia per embryo for n = 3–5 embryos per

ons post hoc tests of wild-type versus other groups, *p < 0.05 and ***p < 0.001).

t2gtE/gtE;NMNdhemi DRG (D) and SCG (E) cultures are shown to the right of each

rom ganglia positioned on the left) extends beyond the right-hand edge of the

Nmnat2gtE/gtE;NMNdhemi SCG cultures (E); most Nmnat2gtE/gtE neurites show

rther (dashed line); most Nmnat2gtE/gtE;NMNdhemi neurites instead show near-

d outgrowth (dashed line).
/gtE;NMNdhemi and Nmnat2+/gtE;NMNdhemi 3 Nmnat2+/gtE;NMNdhemi matings.



Statistical Analysis

Data are expressed as mean ± SEM or SD (as stated). Statistical analysis was

performed using GraphPad ANOVA or Student’s t test, with p values less than

0.05 being considered significant for any set of data.

All other methods are described in the Supplemental Experimental

Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures, Supplemental Experimental

Procedures, and two movies and can be found with this article online at

http://dx.doi.org/10.1016/j.cub.2017.01.070.
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