SUPPORTING INFORMATION

Cooperative Assembly of H-bonded Rosettes Inside a Porphyrin Nanoring

Petr Motloch, ${ }^{\text {a }}$ Pernille S. Bols, ${ }^{\text {b }}$ Harry L. Anderson, ${ }^{\mathrm{b},{ }^{*}}$ and Christopher A. Hunter ${ }^{\text {a,* }}$
${ }^{a}$ Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK).
${ }^{b}$ Department of Chemistry, Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA (UK)

Email: herchelsmith.orgchem@ch.cam.ac.uk,harry.anderson@chem.ox.ac.uk

Table of Contents

S1: General experimental 2
S2: Synthesis 3
S3: UV-vis-NIR titrations 44
S4: DOSY Spectrum 72
S5: Molecular Modelling 73
S6: References 76

S1: General experimental

The syntheses of $\mathbf{B}, \mathbf{C}, \mathbf{A}$ and \boldsymbol{c} - $\mathbf{P 6}$ were described previously. ${ }^{1,2}$ The chemicals were purchased from commercial suppliers and used without further purifications unless stated otherwise. Solvents were either distilled before use or used as obtained. For chromatography, automatic chromatography systems CombiFlash R_{f}^{+}and CombiFlash R_{f}^{+}Lumen (with UV light detection at 254 nm and 280 nm and evaporative light scattering detector for Lumen) with pre-packed puriFlash columns from Interchim (silica, $25 \mu \mathrm{~m}$) with a loading of mixtures on Celite were used. The microwave used was Biotage Initiator+. The reactions were monitored either by glass TLC plates coated with silica gel $60 \mathrm{~F}_{254}$ (Merck) and the plates were inspected by UV light (254 nm) or by LCMS Waters Acquity H-class UPLC coupled with a single quadrupole Waters SQD2 with the conditions as follows: UPLC Column (see below), solvent A: Water $+0.1 \%$ formic acid; solvent B: acetonitrile or THF (see below) + 0.1% formic acid; gradient and flow rate (see below); column temperature of $40^{\circ} \mathrm{C}$, the signal was monitored at 254 nm and 280 nm .

Columns
Col1: ACQUITY UPLC CSH C18 Column, 130Å, $1.7 \mu \mathrm{~m}, 2.1 \mathrm{~mm} \mathrm{X} 50 \mathrm{~mm}$
Col3: ACQUITY UPLC HSS T3 Column, $100 \AA, 1.8 \mu \mathrm{~m}, 2.1 \mathrm{~mm} \mathrm{X} 50 \mathrm{~mm}$
Methods
MeCN-FAST: Gradient: $0-2$ minutes $5 \%-100 \% \mathrm{~B}+1$ minute $100 \% \mathrm{~B}$ Flow rate: $0.6 \mathrm{ml} / \mathrm{min}$
MeCN-SLOW: Gradient: $0-4$ minutes $5 \%-100 \% \mathrm{~B}+1$ minute $100 \% \mathrm{~B}$ Flow rate: $0.6 \mathrm{ml} / \mathrm{min}$
THF-FAST: Gradient: $0-2$ minutes $5 \%-80 \%$ B +1 minute 80% B
Flow rate: $0.4 \mathrm{ml} / \mathrm{min}$
THF-SLOW: Gradient: $0-4$ minutes $5 \%-80 \% \mathrm{~B}+1$ minute $80 \% \mathrm{~B}$ Flow rate: $0.4 \mathrm{ml} / \mathrm{min}$
THF_FAST_5\%-35\%: Gradient of 0-2 minutes 5\% - 35\%B + 1 minute 100\%B Flow rate: $0.4 \mathrm{ml} / \mathrm{min}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker 400 MHz Avance III HD SmartProbe Spectrometers at 400 MHz for ${ }^{1} \mathrm{H}, 128 \mathrm{MHz}$ for ${ }^{11} \mathrm{~B}, 101 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$ or on a Bruker 500 MHz AVIII HD SmartProbe Spectrometer at 500 MHz for ${ }^{1} \mathrm{H}$ and 126 MHz for ${ }^{13} \mathrm{C}$. All chemicals shift are quoted in ppm and were referenced to the residual peaks of used solvents: $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}: 7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}: 77.00 \mathrm{ppm}\right), \mathrm{CD}_{3} \mathrm{OD}\left({ }^{1} \mathrm{H}: 3.31 \mathrm{ppm} ;{ }^{13} \mathrm{C}: 49.00 \mathrm{ppm}\right), \mathrm{d}^{6}-$ DMSO ($\left.{ }^{1} \mathrm{H}: 2.50 \mathrm{ppm} ;{ }^{13} \mathrm{C}: 39.52 \mathrm{ppm}\right)$. Coupling constants J are stated in Hz. FT-IR spectra were measured on a Bruker Alpha spectrometer. HR-MS spectra were obtained on a Waters Xevo G2-S, Waters Vion IMS Qtof or Waters LCT Premier by electrospray-ionisation of samples. Melting points were recorder on a Mettler-Toledo MP90 system. Elemental analysis was performed by the Microanalysis facility at the Department of Chemistry at the University of Cambridge.

S2: Synthesis

Synthesis of 1

A mixture of 4,6-dichloropyrimidin-2-amine ($689 \mathrm{mg}, 4.20 \mathrm{mmol}$), 3-picolylamine (1 mL , $1 \mathrm{~g}, 9.8 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(437 \mathrm{mg}, 3.17 \mathrm{mmol})$ and $t \mathrm{BuOH}(15 \mathrm{~mL})$ were heated at $50^{\circ} \mathrm{C}$ for 4 days. The mixture was evaporated and water (20 mL) was added. The mixture was then sonicated for 2 minutes. The obtained solid was collected by suction and dried overnight in vacuum oven at $40^{\circ} \mathrm{C}$ to provide the title compound ($831 \mathrm{mg}, 84 \%$ yield) as a white solid.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D}_{\mathbf{3}} \mathbf{O D} / \mathbf{C D C l}_{3}, 400 \mathrm{MHz}, 298 \mathbf{K}\right): \delta 8.47(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (\mathbf{d}^{6}-DMSO, $126 \mathrm{MHz}, 298 \mathrm{~K}$): δ 164.0, 163.0, 157.6, 149.0, 148.2, 135.4, 135.2, 123.6, 92.8, 41.08.

HR-MS (ESI): Calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$236.0703, found: 236.0693 ($\Delta=4.2 \mathrm{ppm}$)
FT-IR (thin film): $1640,1575,1551,1469,1427,1369,1331,1150 \mathrm{~cm}^{-1}$.
MP: $198-200^{\circ} \mathrm{C}$
LCMS Method: Col3_MeCN_FAST_5\%-35\%

Synthesis of 2

A mixture of 4,6-dichloropyrimidin-2-amine ($776 \mathrm{~g}, 4.64 \mathrm{mmol}$), 3-(2-aminoethyl)pyridine $(1 \mathrm{~mL}, 1 \mathrm{~g}, 7.5 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(490 \mathrm{mg}, 3.55 \mathrm{mmol})$ and $t \mathrm{BuOH}(18 \mathrm{~mL})$ were heated at $50^{\circ} \mathrm{C}$ for 2 days. The mixture was evaporated and water (20 mL) was added. The mixture was then sonicated for 30 minutes. The obtained solid was collected by suction and dried overnight in vacuum oven at $40^{\circ} \mathrm{C}$ to provide the title compound ($840 \mathrm{mg}, 73 \%$ yield) as a pale yellow solid.
${ }^{1} \mathbf{H}$ NMR (CD ${ }_{3} \mathbf{O D}$, $400 \mathrm{MHz}, 298 \mathrm{~K}$): $\delta 8.41(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{dd}, J=5.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74(\mathrm{dt}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, \mathrm{J}=8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H})$, 2.92 (t, J = $7.0 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13}$ C NMR (d ${ }^{6}$-DMSO, $126 \mathrm{MHz}, 298 \mathrm{~K}$): δ 164.1, 163.1, 157.3, 150.0, 147.5, 136.5, 135.1, 123.6, 92.8, 41.3, 32.0.

HR-MS (ESI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+} 250.0859$, found: 250.0850 ($\Delta=3.6 \mathrm{ppm}$)
FT-IR (thin film): 3276, 2371, 1575, 1478, 1425, $1362 \mathrm{~cm}^{-1}$.
MP: $152-157^{\circ} \mathrm{C}$
LCMS Method: Col3_MeCN_FAST_5\%-35\%

${ }^{13} \mathrm{C}$ NMR

$\stackrel{\text { 区 }}{\underset{\sim}{\sigma}}$

Synthesis of 3

A mixture of 4,6-dichloropyrimidin-2-amine ($800 \mathrm{mg}, 4.88 \mathrm{mmol}$), 4-picolylamine (3 mL , $3.18 \mathrm{~g}, 29 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(676 \mathrm{mg}, 4.89 \mathrm{mmol})$ and $t \mathrm{BuOH}(15 \mathrm{~mL})$ were heated at $60{ }^{\circ} \mathrm{C}$ overnight. The mixture was evaporated and water $(30 \mathrm{~mL})$ was added. The mixture was then sonicated for 30 minutes and the mixture dissolved. After standing, the form solid was collected and dried in the vacuum oven overnight to provid the title compound $(727 \mathrm{mg}, 63 \%$ yield) as a pale yellow solid.
${ }^{1} \mathbf{H}$ NMR (CD $\left.{ }_{3} \mathbf{O D}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 8.44(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, 5.90 (s, 1H), 4.60 (s, 2H).
${ }^{13}$ C NMR (d ${ }^{6}$-DMSO, $126 \mathrm{MHz}, 298$ K): δ 164.2, 163.0, 157.8, 149.6, 148.9, 122.3, 92.8, 42.3.

HR-MS (ESI): Calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+} 236.0697$, found: 236.0694 ($\Delta=1.5 \mathrm{ppm}$)
FT-IR (thin film): $3312,3200,2387,1573,1556,1496,1475,1417,1360,1314,1249 \mathrm{~cm}^{-1}$.
MP: > $136^{\circ} \mathrm{C}$ (carbonisation)
LCMS Method: Col3_MeCN_FAST_5\%-35\%

Synthesis of 4

A mixture of 4,6-dichloropyrimidin-2-amine ($1.06 \mathrm{~g}, 6.46 \mathrm{mmol}$), 4-(2-aminoethyl)pyridine $(1.2 \mathrm{~mL}, 1.2 \mathrm{~g}, 10 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.76 \mathrm{~g}, 5.5 \mathrm{mmol})$ and $t \mathrm{BuOH}(15 \mathrm{~mL})$ were heated at $50^{\circ} \mathrm{C}$ for 3 days. The mixture was evaporated and water (30 mL) was added. The mixture was then sonicated for 20 minutes. The obtained solid was collected by suction and dried overnight in vacuum oven at $40^{\circ} \mathrm{C}$ to provide the title compound ($1.43 \mathrm{~g}, 89 \%$ yield) as a yellow solid.
${ }^{1} \mathbf{H}$ NMR (CD $\left.\mathbf{3}_{\mathbf{3}} \mathbf{O D}, 400 \mathrm{MHz}, 298 \mathbf{K}\right): \delta 8.43-8.42(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.79$ (s, 1H), $3.61(\mathrm{~s}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D}_{3} \mathbf{O D}, 101 \mathrm{MHz}, 298 \mathrm{~K}\right)$: δ 165.7, 164.4, 162.8, 151.7, 149.9, 126.1, 94.8, 41.9, 35.8.

HR-MS (ESI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]+250.0854$, found: 250.0850 ($\Delta=1.4 \mathrm{ppm}$)
FT-IR (thin film): 3277, 2397, 1574, 1481, 1420, $1362 \mathrm{~cm}^{-1}$.
MP: $157^{\circ} \mathrm{C}$ (carbonisation)
LCMS Method: Col3_MeCN_FAST_5\%-35\%

${ }^{13}$ C NMR

F
i

Synthesis of mA1

$\mathbf{1}(337 \mathrm{mg}, 1.43 \mathrm{mmol})$ was flushed with nitrogen in a MW vial. n-Pentylamine ($1 \mathrm{~mL}, 0.9 \mathrm{~g}$, 10 mmol) was added and the mixture was heated in microwave at $160^{\circ} \mathrm{C}$ for 2 hours. A saturated solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(20: 1,2 \times 50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, evaporated and loaded to Celite. A combiflash of the residue on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}: \mathrm{MeOH} 0 \% \rightarrow 20 \%\right)$ provided the title compound ($253 \mathrm{mg}, 62 \%$ yield) as yellowish oil.
${ }^{1} \mathbf{H}$ NMR (CD $\left.\mathbf{C l}_{\mathbf{3}} \mathbf{O D}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 8.50$ (s, 1H), 8.38 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=7.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{C D}_{3} \mathrm{OD}, 101 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 165.2,165.1,164.0,149.1,148.4,137.7$, 137.1, 125.1, $74.0,43.2,42.3,30.3,30.1,23.5,14.4$.

HR-MS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{6}[\mathrm{M}+\mathrm{H}]^{+} 287.1979$, found: 287.1976 ($\Delta=0.98 \mathrm{ppm}$)
FT-IR (thin film): 3309, 2955, 2928, 2858, 1575, 1505, 1455, 1424, $1355 \mathrm{~cm}^{-1}$.
LCMS Method: Col3_MeCN_FAST_5\%-35\%

${ }^{13}$ C NMR

		$\begin{aligned} & \stackrel{\circ}{\circ} \underset{\sim}{\sim} \\ & \stackrel{\sim}{\mu} \end{aligned}$
GV1	41	\(
)		

৷

Synthesis of mA2

2 ($123 \mathrm{mg}, 0.493 \mathrm{mmol}$) was flushed with nitrogen in a MW vial. n-Pentylamine ($1 \mathrm{~mL}, 0.9 \mathrm{~g}$, 10 mmol) was added and the mixture was heated in microwave at $150^{\circ} \mathrm{C}$ for 7 hours. A saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added and the mixture was extracted with dichloromethane $(4 \times 30 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, evaporated and loaded to Celite. A combiflash of the residue on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}: \mathrm{MeOH} 0 \% \rightarrow 10 \%\right)$ provided the title compound ($124 \mathrm{mg}, 84 \%$ yield) as orange dense oil.
${ }^{1} \mathbf{H}$ NMR (CD $\left.\mathbf{C l}_{\mathbf{3}} \mathbf{O D}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 8.41$ (s, 1H), 8.36 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.71 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=6.0 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR (CD $\left.{ }_{3} \mathbf{O D}, 101 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta$ 165.1, 165.0, 163.9, 150.4, 147.9, 138.7, 137.4, 125.1, 73.6, 43.2, 42.3, 33.8, 30.3, 30.2, 23.5, 14.4.

HR-MS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{6}[\mathrm{M}+\mathrm{H}]^{+} 301.2141$, found: 301.2142 ($\Delta=0.3 \mathrm{ppm}$)
FT-IR (thin film): 3310, 3189, 2953, 2928, 2858, 1573, 1526, 1458, 1429, $1358 \mathrm{~cm}^{-1}$.
LCMS Method: Col3_MeCN_FAST_5\%-35\%

${ }^{13}$ C NMR

		¢.
V'	11	11

Synthesis of pA1

3 ($105 \mathrm{mg}, 0.45 \mathrm{mmol}$) was flushed with nitrogen in a MW vial. n-Pentylamine ($1 \mathrm{~mL}, 0.9 \mathrm{~g}$, 10 mmol) was added and the mixture was heated in microwave at $160^{\circ} \mathrm{C}$ for 3 hours. A saturated solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(20: 1,2 \times 50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, evaporated and loaded to Celite. A combiflash of the residue on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}: \mathrm{MeOH} 0 \% \rightarrow 20 \%\right)$ provided the title compound ($71 \mathrm{mg}, 55 \%$ yield) as orange dense oil.
${ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathbf{O D}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 8.42$ (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (d, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}$), $4.86(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, 4 H), 0.88 ($\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (CD ${ }_{3} \mathbf{O D}$, $101 \mathrm{MHz}, 298 \mathrm{~K}$): δ 165.2, 165.2, 163.9, 152.3, 149.9, 123.6, 74.0, 44.7, 42.3, 30.3, 30.1, 23.5, 14.4.

HR-MS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{6}[\mathrm{M}+\mathrm{H}]^{+} 287.1979$, found: 287.1975 ($\Delta=1.26 \mathrm{ppm}$)
FT-IR (thin film): 3302, 3175, 2953, 2926, 2587, 1572, 1497, 1446, 1355, 1312, 1219, $1204 \mathrm{~cm}^{-1}$.

LCMS Method: Col3_MeCN_FAST_5\%-35\%

${ }^{13} \mathrm{C}$ NMR

Synthesis of pA2

$4(100 \mathrm{mg}, 0.40 \mathrm{mmol})$ was flushed with nitrogen in a MW vial. n-Pentylamine ($1 \mathrm{~mL}, 0.9 \mathrm{~g}$, 10 mmol) was added and the mixture was heated in microwave at $160^{\circ} \mathrm{C}$ for 5 hours. A saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$ were added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(20: 1,50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, evaporated and loaded to Celite. A combiflash of the residue on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}: \mathrm{MeOH} 0 \% \rightarrow 10 \%\right)$ provided the title compound ($97 \mathrm{mg}, 81 \%$ yield) as yellow oil.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 8.53(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.80(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.41(\mathrm{~m}, 3 \mathrm{H}), 3.51(\mathrm{dd}, J=13.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{dd}, J=13.0,7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 3H).
${ }^{13}{ }^{3}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z}, 298 \mathrm{~K}\right): \delta 164.1,163.8,162.2,150.0,148.0,124.1,72.5,41.7$, 41.7, 35.1, 29.1, 29.0, 22.4, 14.0.

HR-MS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{6}[\mathrm{M}+\mathrm{H}]^{+} 301.2135$, found: 301.2131 ($\Delta=1.30 \mathrm{ppm}$)
FT-IR (thin film): 3310, 2954, 2927, 2857, 2421, 1555, 1494, 1455, 1430, 1417, 1357, $1219 \mathrm{~cm}^{-1}$.

LCMS Method: Col3_MeCN_FAST_5\%-35\%
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

Synthesis of 5

To a solution of 3-(pyridin-3-yl)propan-1-ol ($1 \mathrm{~mL}, 1.06 \mathrm{~g}, 7.7 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(3 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added methanesulfonyl chloride ($0.8 \mathrm{~mL}, 10.3 \mathrm{mmol}, 1.4 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$ in small parts over the period of 90 minutes. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for additional 30 minutes and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The still-cool solution was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ and brine (30 mL), dried with MgSO_{4} and solvents were removed under reducer pressure (at no more than $30^{\circ} \mathrm{C}$). A combiflash of the residue on silica gel (PE/EtOAc, EtOAc: $0 \% \rightarrow 100 \%$) provided the title compound as yellowish liquid (1.65 g ; quant.)
(This compound is quite unstable even when stored in fridge.)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}, 298 \mathrm{~K}\right): \delta 8.53-8.42(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{dt}, J=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{dd}, \mathrm{J}=8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.74(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 2H), 2.13-2.05 (m, 2H).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z}, 298 \mathrm{~K}\right): 149.9,147.9,135.9,135.6,123.4,68.6,37.4,30.4$, 28.8.
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

Synthesis of $\mathbf{5 - B H} \mathbf{3}$

5 ($2.41 \mathrm{~g}, 11.1 \mathrm{mmol}$) was flushed with nitrogen. Then THF (20 mL) was added, which produced slurry solution. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$. To this solution, $\mathrm{BH}_{3} \bullet \mathrm{SMe}_{2}\left(6.0 \mathrm{~mL}, 2.0 \mathrm{M}\right.$ solution in THF, 12 mmol) was added dropwise at $-78^{\circ} \mathrm{C}$. After 30 minutes of stirring, the cooling bath was removed. After stirring at RT for 1 hour, the conversion was checked by TLC ($10: 1 \mathrm{EtOAc} / \mathrm{MeOH}$) and additional $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(1.0 \mathrm{~mL}$, 2.0 M solution in THF, 2 mmol ; altogether 14 mmol) was added dropwise at $-78^{\circ} \mathrm{C}$. The solution was stirred for 15 minutes and the cooling bath was removed. After additional 30 minutes of stirring, the mixture was cooled again to $-78^{\circ} \mathrm{C}$ and methanol (9 mL) was added dropwise. After 15 minutes, the cooling bath was removed and the mixture was allowed to heat to room temperature and then solvents were removed under reduced pressure. A combiflash of the residue on silica (Celite loading, PE/EtOAc; EtOAc: $0 \% \rightarrow 100 \%$) provided the title compound $(2.25 \mathrm{~g}, 88 \%$ yield) as transparent oil, which crystalise upon standing in a freezer over a couple of days/weeks to form a white solid.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}, 298 \mathrm{~K}\right): \delta 8.45-8.43(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ $(\mathrm{dd}, J=8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{td}, J=6.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.84(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.15(\mathrm{br}, 3 \mathrm{H}), 2.16-2.02(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, 400 \mathbf{~ M H z}, 298 \mathbf{K}$, ${ }^{11} \mathbf{B}$ decoupled): $\delta 8.45-8.43(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~d}, J=1 \mathrm{~Hz}, 3 \mathrm{H})$, $2.83(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.02(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z}, 298 \mathrm{~K}\right): \delta 147.2,145.4,139.2,138.5,125.2,68.11,37.4,29.9$, 28.6.
${ }^{11} \mathbf{B}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 2 8} \mathbf{~ M H z}, 298 \mathrm{~K}$, normal glass): $\delta-12.4(\mathrm{~d}, J=88 \mathrm{~Hz})$

HR-MS (ESI): Calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{BNO}_{3} \mathrm{~S}$ [M-H] ${ }^{+}$228.0866, found: 228.0865 ($\Delta=0.4 \mathrm{ppm}$)

FT-IR (thin film): 2936, 2360, 2310, 2271, 1620, 1585, 1486, 1443, 1346, 1331, 1164.

MP: $51-53^{\circ} \mathrm{C}$

LCMS Method: Col1-MeCN-FAST

${ }^{1} \mathrm{H}$ NMR

${ }^{1} \mathbf{H}$ NMR (${ }^{11} \mathrm{~B}$ decoupled)

${ }^{13}$ C NMR

${ }^{11}$ B NMR (normal glass)

Synthesis of 6-BH3 and 6

$\mathrm{NaH}(60 \%$ in mineral oil, $255 \mathrm{mg}, 6.38 \mathrm{mmol})$ was flushed with nitrogen. THF (10 mL) was added and the mixture was cooled to $0^{\circ} \mathrm{C}$. Then diethyl-2-butylmalonate $(1.45 \mathrm{~mL}$, 6.52 mmol) was added dropwise (the solution became clear after the addition). $\mathbf{5}-\mathbf{B H}_{3}$ ($718 \mathrm{mg}, 3.13 \mathrm{mmol}$) was added as a solid. After 1 hour of stirring, the cooling bath was removed. The mixture was heated at $60^{\circ} \mathrm{C}$ for 4 hours and after cooling to RT, water (20 mL) was added and the mixture was extracted with dichloromethane $(4 \times 30 \mathrm{~mL})$. The organic phase was dried over MgSO_{4} and the solvents were removed under reduced pressure. A combiflash of the residue on silica (Celite loading, $\mathrm{PE} / \mathrm{EtOAc}, \mathrm{EtOAc}: 0 \% \rightarrow 50 \%$) provided after drying in vacuum oven overnight products $\mathbf{6}-\mathbf{B H}_{3}(655 \mathrm{mg}, 60 \%$ yield) and $\mathbf{6}$ (219 mg , 21% yield) as transparent dense liquids ($\mathbf{6}-\mathbf{B H}_{3}$ crystalise upon storage in freezer over a couple of weeks).

LCMS Method: Col1-MeCN-SLOW

Compound 6-BH ${ }_{3}$:
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.{ }_{3}, \mathbf{4 0 0} \mathbf{~ M H z}, 298 \mathbf{K}\right): \delta 8.42-8.40(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ (dd, $J=8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.06(\mathrm{~m}, 4 \mathrm{H}), 3.00-2.11(\mathrm{br}, 3 \mathrm{H}), 2.66(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.91-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.11-$ $1.03(\mathrm{~m}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{1} \mathbf{H}$ NMR (CDCl ${ }_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}$, ${ }^{11} \mathrm{~B}$ decoupled): $\delta 8.42-8.40(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.08(\mathrm{~m}, 4 \mathrm{H}), 2.66(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.55$ $(\mathrm{s}, 3 \mathrm{H}), 1.92-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $6 \mathrm{H}), 1.15-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}^{2}$ ($\left.\mathrm{CDCl}_{3}, \mathbf{1 0 1} \mathbf{~ M H z}, 298 \mathrm{~K}\right): \delta 171.4,147.1,145.1,139.6,138.8,124.9,61.1,57.2$, $32.8,32.2,31.7,26.1,25.1,22.8,14.00,13.8$.
${ }^{11} \mathrm{~B}$ NMR ($\mathbf{C D C l}_{3}$, $128 \mathbf{M H z}, 298 \mathrm{~K}$, normal glass): $\delta-12.4(\mathrm{~d}, J=79 \mathrm{~Hz})$
HR-MS: Calculated for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{BN}_{2} \mathrm{O}_{4} \quad\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}\right]^{+}$389.2612, found: 389.2627 ($\Delta=3.9 \mathrm{ppm}$)

FT-IR (thin film): 2959, 2935, 2872, 2371, 1725, 1619, 1484, 1463, $1444 \mathrm{~cm}^{-1}$.
MP: $37-40^{\circ} \mathrm{C}$
Compound 6:
${ }^{1} \mathbf{H}$ NMR (CDCl ${ }_{3}$, $\left.\mathbf{4 0 0} \mathbf{~ M H z , ~} 298 \mathrm{~K}\right): \delta 8.38-8.36(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (dd, $J=8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.71(\mathrm{~m}$, $4 \mathrm{H}), 1.55-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.06-0.98(\mathrm{~m}, 2 \mathrm{H})$, $0.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}^{1}$ NMR (CDCl $\left.{ }_{3}, \mathbf{1 0 1} \mathbf{~ M H z}, 298 \mathrm{~K}\right): ~ \delta 171.5,149.8,147.3,136.8,135.6,123.1,60.9,57.2$, $32.9,31.9,31.5,25.9,25.4,22.7,13.9,13.7$.

HR-MS: Calculated for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 336.2175$, found: 336.2173 ($\Delta=0.6 \mathrm{ppm}$)
FT-IR (thin film): 2958, 2935, 2872, 1725, 1575, 1478, 1463, $1423 \mathrm{~cm}^{-1}$.

6- $\mathrm{BH}_{3}:{ }^{1} \mathrm{H}$ NMR

6- BH_{3} : ${ }^{1} \mathrm{H}$ NMR (${ }^{11} \mathrm{~B}$ decoupled)

6-BH3: ${ }^{13} \mathrm{C}$ NMR

6- BH_{3} : ${ }^{11} \mathrm{~B}$ (normal glass)

6: ${ }^{1} \mathrm{H}$ NMR

6: ${ }^{13} \mathrm{C}$ NMR

Synthesis of $\mathbf{m B 3}-\mathrm{BH}_{3}$ and $\mathbf{m B 3}$

$\mathrm{NaH}(60 \%$ in mineral oil, $300 \mathrm{mg}, 7.5 \mathrm{mmol})$ was flushed with nitrogen and DMF $(6 \mathrm{~mL})$ was added. The mixture was cooled to $0^{\circ} \mathrm{C}$ and urea ($1.18 \mathrm{~g}, 19.6 \mathrm{mmol}$) was added. After 2 hours of stirring, $\mathbf{6}-\mathrm{BH}_{3}(646 \mathrm{mg}, 1.85 \mathrm{mmol})$ in DMF (7 mL) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred overnight at RT and a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added with cooling to $0^{\circ} \mathrm{C}$. Water (10 mL) was added and the mixture was extracted with dichloromethane $(3 \times 40 \mathrm{~mL})$. The collected organic phase was dried over MgSO_{4} and the solvents were removed under reduced pressure ($60^{\circ} \mathrm{C},<14 \mathrm{mBar}$). A combliflash of residue on silica (Celite loading, PE/EtOAc, EtOAc: $0 \% \rightarrow 100 \%$) provided after drying in vacuum oven overnight products $\mathbf{m B 3}-\mathrm{BH}_{3}(350 \mathrm{mg}, 60 \%$ yield) and $\mathbf{m B 3}$ ($117 \mathrm{mg}, 21 \%$ yield) as white crystalline solids.

LCMS Method: Col3-MeCN-FAST

Compound $\mathbf{m B 3}-\mathrm{BH}_{3}$:
${ }^{1} \mathbf{H}$ NMR (CD $\left.\mathbf{C O D}_{\mathbf{3}} \mathbf{O D}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 8.42(\mathrm{~s}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}$, $J=8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.09(\mathrm{br}, 3 \mathrm{H}), 2.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.58-$ $1.50(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.13(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{1} \mathbf{H}$ NMR (CD $\mathbf{H}_{\mathbf{3}} \mathbf{O D}, 400 \mathrm{MHz}, 298 \mathrm{~K},{ }^{11} \mathbf{B}$ decoupled): $\delta 8.42(\mathrm{~s}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53(\mathrm{dd}, J=8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 4 \mathrm{H})$, $1.58-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.13(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (CD ${ }_{3} \mathbf{O D}$, $101 \mathrm{MHz}, 298 \mathrm{~K}$): $\delta 174.9,151.2,148.4,146.4,141.0,140.6,126.5$, 56.7, 40.1, 38.6, 33.1, 28.1, 27.1, 23.6, 14.0.
${ }^{11} \mathrm{~B}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 128 \mathrm{MHz}, 298 \mathrm{~K}$, normal glass): $\delta-12.6$

HR-MS: Calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BN}_{3} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]+316.1832$, found: 316.1844 ($\Delta=3.8 \mathrm{ppm}$)

FT-IR (thin film): 3326, 3104, 2959, 2931, 2860, 2368, 1753, 1699, 1619, 1585, 1486, 1441, 1421, 1384, 1335, 1336, $1321 \mathrm{~cm}^{-1}$.

MP: $>161^{\circ} \mathrm{C}$ (decompose and produce gas)

Compound mB3:
This product is characterised below.

mB3-BH3: ${ }^{1} \mathrm{H}$ NMR (${ }^{11} \mathrm{~B}$ decoupled)

mB3- BH_{3} : ${ }^{13} \mathrm{C}$ NMR

mB3- BH_{3} : ${ }^{11} \mathrm{~B}$ (normal glass)

Synthesis of mB3

To a mixture of $\mathbf{m B 3}-\mathbf{B H}_{3}(274 \mathrm{mg}, 0.86 \mathrm{mmol})$ and methanol (15 mL) [note: not dissolved even at RT$]$ at $0^{\circ} \mathrm{C}, \mathrm{HCl}$ (conc., $100 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) was added. After 15 minutes, the cooling bath was removed and the mixture was stirred at RT until full conversion was reached (2 hours), which was checked by LCMS. A saturated solution of $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$ was added ($\mathrm{pH}>8$) and then a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ was added ($\mathrm{pH}<7$). The mixture was extracted with dichloromethane $(4 \times 50 \mathrm{~mL})$, dried over MgSO_{4}, the solvents were removed under reducer pressure. A combiflash of the residue on silica (Celite loading, $\mathrm{PE} / \mathrm{EtOAc}$, EtOAc: $0 \% \rightarrow 100 \%$) provided after drying in vacuum oven overnight the title compound ($170 \mathrm{mg}, 65 \%$ yield) as a white crystalline solid.
${ }^{1} \mathbf{H}$ NMR (CD $\mathbf{3}$ OD, $\left.400 \mathrm{MHz}, 298 \mathrm{~K}\right)$: $\delta 8.37$ - 8.35 (m, 2H), 7.67 - 7.64 (m, 1H), 7.35 (ddd, $J=8.0,5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.50(\mathrm{~m}, 2 \mathrm{H})$, $1.33-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (CD ${ }_{3} \mathbf{O D}$, $101 \mathrm{MHz}, 298 \mathrm{~K}$): δ 175.0, 151.4, 150.0, 147.8, 139.0, 138.2, 125.2, 56.9, 40.0, 39.0, 33.4, 28.1, 27.4, 23.7, 14.0.

HR-MS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 304.1661$, found: 304.1668 ($\Delta=2.3 \mathrm{ppm}$)
FT-IR (thin film): 3222, 3103, 2959, 2930, 2859, 1698, 1596, 1580, 1413, 1385, 1357, $1325 \mathrm{~cm}^{-1}$.

MP: $184-186{ }^{\circ} \mathrm{C}$
EA: Required for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$: C 63.35, H 6.98, N 13.85; found: C 62.92, H 7.09, N 13.66.

LCMS Method: Col3-MeCN-FAST

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

Synthesis of 7

To a solution of 3-(pyridin-4-yl)propan-1-ol (1.29 g, 9.4 mmol) and $\mathrm{NEt}_{3}(4 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$ was added methanesulfonyl chloride ($1.2 \mathrm{~mL}, 15.5 \mathrm{mmol}, 1.6 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$ in small parts over the period of 90 minutes. The still-cool solution was washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine (25 mL), dried with MgSO_{4} and solvents were removed under reducer pressure (at no more than $30^{\circ} \mathrm{C}$). A combiflash of the residue on silica gel (PE/EtOAc, EtOAc: $0 \% \rightarrow 100 \%$) provided the title compound as transparent oil $(1.53 \mathrm{~g}, 77 \%$ yield $)$.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 8.50(\mathrm{dd}, J=4.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, 2 H), $4.22(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}^{\text {NMR (}} \mathbf{C D C l}_{3}, 101 \mathrm{MHz}, 298 \mathrm{~K}$): δ 149.9, 149.2, 123.7, 68.5, 37.4, 30.9, 29.6.
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

Synthesis of 7-BH3

$7(1.53 \mathrm{~g}, 7.11 \mathrm{mmol})$ was flushed with nitrogen. Then THF (10 mL) was added and the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$. To this solution, $\mathrm{BH}_{3} \cdot{ }^{\bullet} \mathrm{SMe}_{2}(4.0 \mathrm{~mL}, 2.0 \mathrm{M}$ solution in THF, 8 mmol) was added dropwise at $-78^{\circ} \mathrm{C}$. After 30 minutes of stirring, the cooling bath was removed. After stirring at RT for 2.5 hours, the mixture was cooled again to $-78^{\circ} \mathrm{C}$ and methanol (3 mL) was added dropwise. After 10 minutes, the cooling bath was removed and the mixture was allowed to heat to room temperature and then solvents were removed under reduced pressure. A combiflash of the residue on silica (Celite loading, PE/EtOAc; EtOAc: $0 \% \rightarrow 100 \%$) provided the title compound ($1.44 \mathrm{~g}, 88 \%$ yield) as transparent oil, which crystalise upon standing in the freezer over a couple of days/weeks to form a white solid.
${ }^{1} \mathbf{H}^{\text {NMR }}\left(\mathbf{C D C l}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 8.47(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.25(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{br}, 3 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K},{ }^{11}$ B decoupled): $\delta 8.47(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34$ (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.14$ - 2.07 (m, 2H).
${ }^{13} \mathbf{C N M R}^{\mathbf{1}}$ (CDCl ${ }_{3}, \mathbf{1 0 1} \mathbf{~ M H z , ~} 298 \mathrm{~K}$): δ 153.7, 147.3, 125.3, 68.0, 37.5, 31.0, 29.2.
${ }^{11} \mathbf{B}$ NMR ($\mathbf{C D C l}_{3}, 128 \mathbf{M H z}, 298 \mathrm{~K}$, normal glass): $\delta-12.7(\mathrm{~d}, J=86 \mathrm{~Hz})$.
HR-MS (ESI): Calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{BNO}_{3} \mathrm{~S}$ [M-H] ${ }^{+}$228.0866, found: 228.0855 ($\Delta=4.7 \mathrm{ppm}$)

FT-IR (thin film): $3021,2938,2361,2312,2282,1631,1349,1170 \mathrm{~cm}^{-1}$.
MP: $58^{\circ} \mathrm{C}$ (melts and decomposes)
LCMS Method: Col3_MeCN_FAST_5\%-35\%

${ }^{1} \mathrm{H}$ NMR

${ }^{1} \mathrm{H}$ NMR (${ }^{11} \mathrm{~B}$ decoupled)

${ }^{11}$ B NMR (normal glass)

Synthesis of 8-BH $\mathbf{B H}_{3}$ and 8

$\mathrm{NaH}(60 \%$ in mineral oil, $334 \mathrm{mg}, 8.35 \mathrm{mmol})$ was flushed with nitrogen. THF (10 mL) was added and the mixture was cooled to $0^{\circ} \mathrm{C}$. Then diethyl-2-butylmalonate $(1.9 \mathrm{~mL}$, 8.54 mmol) was added dropwise. After 30 minutes of stirring $\mathbf{7 - B H} \mathbf{3}$ ($631 \mathrm{mg}, 2.76 \mathrm{mmol}$) was added as a solid. The mixture was heated at $60^{\circ} \mathrm{C}$ for 5 hours and then after cooling to RT, water (20 mL) was added and the mixture was extracted with dichloromethane $(3 \times 50 \mathrm{~mL})$. The organic phase was dried over MgSO_{4} and the solvents were removed under reduced pressure. A combiflash of the residue on silica (Celite loading, PE/EtOAc, EtOAc: $0 \% \rightarrow 50 \%$) provided after drying in vacuum oven overnight products $\mathbf{8}-\mathbf{B H}_{3}(472 \mathrm{mg}, 49 \%$ crude yield) as transparent oil and $\mathbf{8}(110 \mathrm{mg}, 23 \%$ crude yield) as yellowish oil. (Both products contained an additional impurity and were used in the next reactions without further purification.)

LCMS Method: Col1-MeCN-SLOW

Compound 8-BH ${ }_{3}$:
${ }^{1} \mathrm{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 8.46(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.22-4.10(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.33-$ $1.25(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.13-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K},{ }^{11} \mathrm{~B}$ decoupled): $\delta 8.46$ (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29 (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.21-4.10(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.83(\mathrm{~m}$, $4 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.12-1.05(\mathrm{~m}, 2 \mathrm{H})$, 0.88 (t, J = $7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}^{\mathbf{N a}}$ NR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z , ~} 298 \mathrm{~K}\right): \delta 171.5,155.0,147.2,146.8,125.2,121.7,61.2,57.2$, 35.2, 32.3, 31.8, 26.1, 24.3, 22.8, 14.1, 13.8 .
${ }^{11}$ B NMR (CDCl ${ }_{3}$, $128 \mathbf{M H z}, 298 \mathrm{~K}$, normal glass): $\delta-13.0(\mathrm{~d}, J=93 \mathrm{~Hz})$.
MS: $389.26\left[\mathrm{M}+\mathrm{CHC}_{3} \mathrm{CN}-\mathrm{H}\right]^{+}$
FT-IR (thin film): 2959, 2935, 2872, 2362, 2308, 2280, 1725, 1630, 1562, 1504, 1463, 1439, $1367,1258,1200,1169,1086,1024 \mathrm{~cm}^{-1}$.

Compound 8 :
${ }^{1} \mathrm{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 8.48(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.19-4.12(\mathrm{~m}, 4 \mathrm{H}), 2.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.34-$ $1.24(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.11-1.03(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z}, 298 \mathrm{~K}\right): \delta 171.7,150.7,149.7,123.8,61.1,57.3,35.2,32.0$, 31.6, 26.1, 24.6, 22.9, 14.1, 13.9.

MS: $336.22[\mathrm{M}+\mathrm{H}]^{+}$
FT-IR (thin film): 2958, 2936, 2872, 1728, 1601, 1464, 1415, 1367, 1257, 1200, $1160 \mathrm{~cm}^{-1}$.

8-BH3: ${ }^{1}{ }^{1}$ NMR

8- BH_{3} : ${ }^{1} \mathrm{H}$ NMR (${ }^{11} \mathrm{~B}$ decoupled)

8- $\mathrm{BH}_{3}:{ }^{13} \mathrm{C}$ NMR

8- $\mathrm{BH}_{3}:{ }^{11} \mathrm{~B}$ (normal glass)

8: ${ }^{\mathbf{1}} \mathbf{H}$ NMR

Synthesis of pB3

NaH (60% in mineral oil, $57 \mathrm{mg}, 1.4 \mathrm{mmol}$) was flushed with nitrogen and DMF (2 mL) was added. The mixture was cooled to $0^{\circ} \mathrm{C}$ and urea ($197 \mathrm{mg}, 3.28 \mathrm{mmol}$) was added. After 90 minutes of stirring, $\mathbf{8}(102 \mathrm{mg}, 0.30 \mathrm{mmol})$ in DMF (4 mL) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred for 5 days at RT and a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added with cooling to $0^{\circ} \mathrm{C}$. Water (10 mL) was added and the mixture was extracted with dichloromethane $(3 \times 50 \mathrm{~mL})$. The collected organic phase was dried over MgSO_{4} and the solvents were removed under reduced pressure ($60^{\circ} \mathrm{C},<14 \mathrm{mBar}$). A combliflash of residue on silica (Celite loading, PE/EtOAc, EtOAc: $0 \% \rightarrow 100 \%$) provided after drying in vacuum oven at $40^{\circ} \mathrm{C}$ overnight the title product ($350 \mathrm{mg}, 50 \%$ yield) as a white crystalline solid.
${ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathbf{O D}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 8.40$ (dd, $J=4.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.25 (dd, $J=4.5$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.51$ $(\mathrm{m}, 2 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (CD $\left.{ }_{3} \mathbf{O D}, 101 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 175.0,153.3,149.9,125.6,56.9,40.1,39.0,35.6$, 28.1, 26.5, 23.7, 14.0.

HR-MS (ESI): Required for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 304.1656$, found: 304.1644 ($\Delta=3.91 \mathrm{ppm}$).
FT-IR (thin film): 3226, 3100, 2959, 2930, 2858, 1723, 1701, 1607, 1417, 1384, 1357, 1260, $1217 \mathrm{~cm}^{-1}$.

MP: $174-176{ }^{\circ} \mathrm{C}$
EA: Required for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$: $\mathrm{C} 63.35, \mathrm{H} 6.98, \mathrm{~N} 13.85$; found: C $62.67, \mathrm{H} 7.01, \mathrm{~N} 13.44$.
LCMS Method: Col3_MeCN_FAST_5\%-35\%

${ }^{13} \mathrm{C}$ NMR

S3: UV-vis-NIR titrations

S3.1 General

The UV-vis-NIR titrations were recorded on a Cary 60 UV-Vis machine (Agilent Technologies) at 298 K . Freshly opened CHCl_{3} (HPLC quality, stabilised with amylene) was used as a solvent and was filtered over basic alumina plug before use. A host solution with known concentration was prepared and fraction of this solution was transferred into a glass cuvette. Then, a guest solution with known concentration was prepared. A change of UV-visNIR absorption upon addition of aliquots of guest solution was followed. The observed changes of UV-vis-NIR absorbance were analysed using a purpose-written fitting macro in Microsoft Excel. A 1:1 binding isotherm was used to fit the experimental data assuming that all six porphyrin units of c-P6 coordinate a pyridine ligand and act identically and independently. The experiments were measured at least two times on at least two different days with freshly prepared solutions in order to eliminate possible systematic errors. The results are stated as average values and errors are quoted as two times the standard deviation.

S3.2 Two component titrations

Figure S1. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathbf{p P y}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound $\mathbf{c - P 6}$ in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 833 nm (circles) and calculated values (line) based on a $1: 1$ binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

Figure S2. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathbf{m B 3}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound $\mathbf{c - P 6}$ in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 842 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of c-P6 act identically and independently.

Figure S3. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathbf{p B 3}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound $\mathbf{c - P 6}$ in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 831 nm (circles) and calculated values (line) based on a $1: 1$ binding isotherm assuming that the six porphyrin units of c-P6 act identically and independently.

Figure S4. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathbf{m A 1}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound c-P6 in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 831 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of c-P6 act identically and independently.

Figure S5. UV-vis-NIR titration ($\mathrm{CHCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{m A 2}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound $\mathbf{c - P 6}$ in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 836 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of c-P6 act identically and independently.

Figure S6. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of pA1 to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound $\mathbf{c - P 6}$ in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 852 nm (circles) and calculated values (line) based on a $1: 1$ binding isotherm assuming that the six porphyrin units of c-P6 act identically and independently. A 1:1 binding isotherm struggles to describe the experimental data correctly, but the concentration of ligand for half bound is $7 \mu \mathrm{M}$ and the best fit for a 1:1 binding isotherm was used to compare this ligand with other systems.

Figure S7. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathbf{p A 2}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound \mathbf{c}-P6 in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 843 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of c-P6 act identically and independently.

S3.3 Three component titrations fitted with a 1:1 isotherm

Figure S8. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of \mathbf{A} and $\mathbf{m B 3}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound $\mathbf{c - P 6}$ in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 831 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of c-P6 act identically and independently.

Figure S9. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of \mathbf{A} and $\mathbf{p B 3}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound $\mathbf{c - P 6}$ in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 831 nm (circles) and calculated values (line) based on a $1: 1$ binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

Figure S10. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of \mathbf{B} and $\mathbf{m A 1}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound c-P6 in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 831 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

Figure S11. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of \mathbf{B} and $\mathbf{m A 2}$ to \mathbf{c}-P6. UV-vis-NIR spectra are shown on the left with the spectrum of unbound $\mathbf{c - P 6}$ in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 836 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

Figure S12. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of \mathbf{B} and $\mathbf{p A 1}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound $\mathbf{c - P 6}$ in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 852 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

Figure S13. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of \mathbf{B} and $\mathbf{p A 2}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound $\mathbf{c - P 6}$ in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 843 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

Figure S14. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of \mathbf{C} and $\mathbf{m A 1}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound c-P6 in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 831 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

Figure S15. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of \mathbf{C} and $\mathbf{m A 2}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound \mathbf{c}-P6 in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 836 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

Figure S16. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of \mathbf{C} and pA1 to c-P6. UV-vis-NIR spectra are shown on the left with the spectrum of unbound $\mathbf{c - P 6}$ in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 852 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

Figure S17. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of \mathbf{C} and $\mathbf{p A 2}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound $\mathbf{c - P 6}$ in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 843 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

Figure S18. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of $\mathbf{m B 3}$ and $\mathbf{m A 1}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound c-P6 in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 835 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

Figure S19. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of $\mathbf{m B 3}$ and $\mathbf{m A 2}$ to $\mathbf{c}-\mathbf{P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound \mathbf{c}-P6 in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 838 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

Figure S20. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of $\mathbf{m B 3}$ and $\mathbf{p A 1}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound $\mathbf{c - P 6}$ in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 831 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

Figure S21. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of $\mathbf{m B 3}$ and $\mathbf{p A 2}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound c-P6 in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 842 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

Figure S22. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of $\mathbf{p B 3}$ and $\mathbf{m A 1}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound $\mathbf{c - P 6}$ in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 831 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

Figure S23. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of $\mathbf{p B 3}$ and $\mathbf{m A 2}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound $\mathbf{c - P 6}$ in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 837 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

Figure S24. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of $\mathbf{p B 3}$ and $\mathbf{p A 1}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound $\mathbf{c - P 6}$ in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 834 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

Figure S25. UV-vis-NIR titration $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}\right)$ of a $1: 1$ mixture of $\mathbf{p B 3}$ and $\mathbf{p A 2}$ to $\mathbf{c - P 6}$. UV-vis-NIR spectra are shown on the left with the spectrum of unbound c-P6 in thick black line and the end spectrum in red thick line. On the right are shown the experimental data at 835 nm (circles) and calculated values (line) based on a 1:1 binding isotherm assuming that the six porphyrin units of $\mathbf{c - P 6}$ act identically and independently.

S3.4 Three component titrations fitted with an All-or-Nothing 1:3:3 isotherm

The titrations were analysed via non-linear regression using a global analysis multiple regression to model the entire spectrum simultaneously (ReactLab EQUILIBRIA software by Jplus Consulting). This allowed us to determine both the binding constants directly (expressed as $\log \left(K_{\mathrm{f}}\right)$) and the spectra of the species involved in the equilibrium processes (if not already known). The absorption spectra in the window $600-950 \mathrm{~nm}$ was used. The titrations were fit to a model where all ligands bind in one step (all-or-nothing) and one model where the ligands bind stepwise in pairs (stepwise). Graphical illustrations of the fits to both models at multiple wavelengths are shown below.

mB3+mA1

mB3+mA2

mB3+pA1

mB3+pA2

pB3+mA1

pB3+mA2

pB3+pA1

pB3+pA2

S3.5 Three component titrations fitted with a Stepwise 1:3:3 isotherm

ReactLab EQUILIBRIA software was also used to fit the titration data to a model where the ligands bind stepwise in pairs as indicated below (stepwise). Graphical illustrations of the fits at multiple wavelengths are shown below.

mB3+mA1

Reactants	Reaction Type	Products	Label	Parameters $\log K / \beta$	\pm	Fit p
M + A+B	=	MAB		13.55	0.034	
$M A B+A+B$	=	MA2B2		12.56	0.003	
MA2B2+A+B	=	MA3B3		11.16	0.053	

mB3+mA2

Reactants	Reaction Type	Products	Label	Parameters $\log K / \beta$	\pm	Fit b
M + A+B	=	MAB		12.88	0.019	
$\mathrm{MAB}+\mathrm{A}+\mathrm{B}$	=	MA2B2		11.96	0.016	
MA2B2+A+B	=	MA3B3		11.64	0.037	

mB3+pA1

mB3+pA2

	Reactants	Reaction Type	Products	Label	Parameters $\log K / \beta$	\pm	Fit p
	M + A+B		MAB		13.12	0.013	
	$\mathrm{MAB}+\mathrm{A}+\mathrm{B}$		MA2B2		12.32	0.007	
	MA2B2+A+B	=	MA3B3		11.38	0.009	

pB3+mA1

pB3+mA2

pB3+pA1

pB3+pA2

Reactants	Reaction Type	Products	Label	Parameters $\log K / \beta$	\pm	Fit p
M $+\mathrm{A}+\mathrm{B}$	=	MAB		13.98	0.030	
$M A B+A+B$	=	MA2B2		12.95	0.010	
MA2B2+A+B	=	MA3B3		11.75	0.016	

S3.6 Statistical Analysis of Quality of Fit to Different 1:3:3 Models

The statistical significance of the difference in the quality of the fit to the two different 1:3:3 models was tested using two statistical analyses: the extra sum-of-squares F-test and Akaike's information criterion. ${ }^{3}$ The F-test compares the difference in sum-of-squares (SSQ) between a null-hypothesis and an alternative hypothesis with respect to the number of data points and the number of variable parameters used to fit the model. The sum-of-squares is calculated by taking all the deviations of the fit from the data points at each wavelength (residuals), squaring them, and adding them all together. The simpler model is used as the null-hypothesis and can then only be rejected if the alternative hypothesis with more variable parameters gives a significant improvement. The two models have to be nested, meaning that the null hypothesis is a special case of the alternative hypothesis. In this analysis, the number of data points minus the number of fitted parameters is called degrees of freedom (DoF). The value of F is calculated as the relative difference in SSQ divided by the relative difference in DoF using equation S1.

$$
\begin{equation*}
F=\frac{\mathrm{SSQ}_{\text {null }}-\mathrm{SSQ}_{\text {alternative }}}{S S Q_{\text {alternative }}} / \frac{\text { DoF }_{\text {null }}-\text { DoF }_{\text {alternative }}}{\text { DoF }_{\text {alternative }}} \tag{S1}
\end{equation*}
$$

The closer the ratio F is to 1 , the more likely it is that the null hypothesis is correct and the improvement of the SSQ value in the alternative hypothesis is simply due to the higher flexibility of the fit. To interpret the significance of the F-test, its p-value has to be calculated.

Akaike's information criterion (AIC) is an alternative approach to comparing models which does not require the models to be nested and does not rely on p-values or the concept of statistical significance. The logic is not one of hypothesis testing, so you do not state a null hypothesis. Rather, the method lets you determine which model is more likely to be correct and quantify how much more likely. For each model, an AICc score is calculated using equation S2.

$$
\begin{equation*}
A I C_{c}=\mathrm{N} \cdot \ln \left(\frac{S S Q}{N}\right)+2 K+\frac{2 K(K+1)}{N-K-1} \tag{S2}
\end{equation*}
$$

Where N is the number of data points and K is the number of variable parameters. The model which has the lowest AICc score is more likely to be correct. How much more likely it is to be correct depends on the absolute difference and can be calculated as the evidence ratio (equation S3).

$$
\begin{equation*}
\text { evidence ratio }=\frac{1}{\mathrm{e}^{-0.5 \cdot \Delta \mathrm{AIC}_{c}}} \tag{S3}
\end{equation*}
$$

The evidence ratio is the probability that the model with the lower AICc value is correct divided by the probability that the model with the higher AICc value is correct.

The number of data points is the total number of recorded spectra and the number of fitted parameters is the sum of the number of fitted spectra of species in solution and the number of fitted binding constants. For the all-or-nothing model there is one binding constant and two fitted spectra ($\boldsymbol{c}-\mathbf{P 6}$ and $\boldsymbol{c}-\mathbf{P 6} \cdot \mathbf{A}_{\mathbf{m} \mathbf{B 3}}$), so the number of variable parameters is 3 . For the stepwise model, there are three binding constants and four fitted spectra $(\boldsymbol{c}-\mathbf{P 6}, \boldsymbol{c}-\mathbf{P 6} \cdot \mathbf{A B}, \boldsymbol{c}$ $\mathbf{P 6} \cdot \mathbf{A}_{2} \mathbf{B}_{2}$ and $\boldsymbol{c}-\mathbf{P 6} \cdot \mathbf{A}_{\mathbf{m B 3}}$), so the number of variable parameters is 7 .

For the F-test analysis, the all-or-nothing model was used as the null hypothesis and the stepwise model was used as the alternative hypothesis. The p-values were calculated using an automatic calculator on the website
https://www.socscistatistics.com/pvalues/fdistribution.aspx.

The details are provided below. In all cases, the p-value is less than 0.0015 and the evidence ratio is greater than 80 indicating that the stepwise model is most appropriate and that the increase in goodness of fit cannot be explained by the increase in parameters.

mB3+mA1	F-test			Akaike's Criterion	Information
	SSQ	DoF	var. para.		AICc
all-or-nothing	$1.76 \mathrm{E}-02$	13	3		-101.01
stepwise	2.90E-03	9	7		-109.85
difference	$1.47 \mathrm{E}-02$	4			8.84
relative difference	5.06	0.44			
N	16.00				
F	11.40				
p-value	0.001426			evidence ratio	83
mB3+mA2	F-test			Akaike's Criterion	Information
	SSQ	DoF	var. para.		AICc
all-or-nothing	5.26E-02	12.00	3		-76.60
stepwise	$2.54 \mathrm{E}-03$	8.00	7		-100.27
difference	5.01E-02	4.00			23.66
relative difference	19.74	0.50			
N	15.00	12.00			
F	39.48				
p-value	0.000026			evidence ratio	137455
mB3+pA1	F-test			Akaike's Criterion	Information
	SSQ	DoF	var. para.		AICc
all-or-nothing	2.14E-02	13.00	3		-97.87
stepwise	2.84E-03	9.00	7		-110.21
difference	$1.86 \mathrm{E}-02$	4.00			12.34
relative difference	6.55	0.44			
N	16.00				
F	14.73				
p-value	0.00055			evidence ratio	477
mB3+pA2	F-test			Akaike's Criterion	Information
	SSQ	DoF	var. para.		AICc
all-or-nothing	5.89E-02	13	3		-74.91
stepwise	$9.31 \mathrm{E}-04$	9	7		-115.32
difference	5.80E-02	4			40.40
relative difference	62.31	0.44			
N	15.00				
F	124.62				
p-value	<0.00001			evidence ratio	593209999

pB3+mA1	F-test			Akaike's Criterion	Information
	SSQ	DoF	var. para.		AICc
all-or-nothing	4.02E-02	13.00	3		-87.80
stepwise	$1.51 \mathrm{E}-03$	9.00	7		-120.29
difference	3.87E-02	4.00			32.50
relative difference	25.61	0.44			
N	16.00				
F	57.61				
p-value	<0.00001			evidence ratio	11397107
pB3+mA2	F-test			Akaike's Criterion	Information
	SSQ	DoF	var. para.		AICc
all-or-nothing	3.46E-02	12.00	3		-82.92
stepwise	$2.42 \mathrm{E}-03$	8.00	7		-101.00
difference	3.21E-02	4.00			18.08
relative difference	13.30	0.50			
N	15.00				
F	26.59				
p-value	0.000113			evidence ratio	8442
pB3+pA1	F-test			Akaike's Criterion	Information
	SSQ	DoF	var. para.		AICc
all-or-nothing	4.06E-02	13.00	3		-87.61
stepwise	2.48E-03	9.00	7		-112.38
difference	3.82E-02	4.00			24.77
relative difference	15.41	0.44			
N	16.00				
F	34.67				
p-value	0.000018			evidence ratio	238747
pB3+pA2	F-test			Akaike's Criterion	Information
	SSQ	DoF	var. para.		AICc
all-or-nothing	3.86E-02	13.00	3		-88.42
stepwise	$2.81 \mathrm{E}-03$	9.00	7		-110.38
difference	3.58E-02	4.00			21.96
relative difference	12.77	0.44			
N	16.00				
F	28.74				
p-value	0.000039			evidence ratio	58757

S4: DOSY Spectrum

Figure S26. ${ }^{1} \mathrm{H}$ NMR DOSY spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of a 1:3:3 mixture of \boldsymbol{c}-P6 $(0.16 \mathrm{mM}), \mathbf{p B 3}$ and $\mathbf{~ m A 2}(0.48 \mathrm{mM})$.

S5: Molecular Modelling

The structure of \mathbf{T} from the X-ray structure of $\mathbf{c - P 6} \cdot \mathbf{T}$ was used as a template to determine the positions of the six pyridines when they are bound to the porphyrin nanoring. The side chain H -bonding groups required for rosette formation were then built onto the six pyridine fragments. A conformational search was carried out using the OPLS3 force field in MacroModel implemented in the Schrödinger Suite 2016-4. Calculations were carried out with no solvent and with no cut-off for non-covalent interactions, but the coordinates of the nitrogen atoms and carbon atoms in the position 4 were constrained, allowing the pyridine units to rotate around their axes but not to move (Figure S27). Figure S28 shows an example of the outcome: the lowest energy structure obtained for $\mathbf{m B 3}_{3} \cdot \mathbf{m A 2}_{\mathbf{3}}$ is the H -bonded rosette.

Figure S27. Using T as a framework for construction of rosette models. The coordinated of the atoms in red were constrained for the calculations.

Figure S28. Top and side views of the lowest energy structure of $\mathbf{m B 3} \mathbf{3}^{\bullet} \cdot \mathbf{m A}_{\mathbf{3}}$ rosette system from a conformational search, where the coordinates of the nitrogen atoms and carbon atoms in the position 4 of pyridine units were constrained (the alkyl groups of both barbituratepyridines and pyrimidine-pyridines were replaced by hydrogen atoms in the calculations). Hydrogen atoms that do not contribute to H -bonding are not shown for clarity; colouring: $\mathbf{m B}_{3}$ in red, $\mathbf{m A}_{\mathbf{2}}$ in blue, green dashed line is the H -bond.

The pyridine groups from the lowest energy structure obtained using molecular mechanics were superimposed on the positions of the pyridine groups in the X-ray crystal structure of c$\mathbf{P 6} \cdot \mathbf{T}$, and the resulting structure was optimised using the semi-empirical PM6 method as implemented in Gaussian 09.4 In this way, it was possible to find structures of the rosette motif bound inside the porphyrin nanoring for several ligand combinations, and the results are shown in Figure S29.
a)

b)

c)

d)

Figure S29. Top and side views of the PM 6 -optimised structures of H -bonded rosettes bound inside the porphyrin nanoring (a) $\mathbf{c - P 6} \cdot \mathbf{m B} 3_{3} \cdot{ }^{\bullet} \mathbf{m A} 1_{3}$, (b) $\mathbf{c - P 6} \cdot \mathbf{m B 3}_{3} \cdot \mathbf{m A} 2_{3}$, (c) \mathbf{c} -
 pyridines and 3,5-bis(t-butyl)phenyl on c-P6 were replaced by hydrogen atoms in the calculations). Hydrogen atoms that do not contribute to H-bonding are not shown for clarity. Colouring: c-P6 in black with highlighted Zn atoms in yellow, barbiturate-pyridines in red, pyrimidine-pyridines in blue, green dashed line is the H -bond.

It was also possible to obtain a model of rosette-like structure of $\mathbf{c - P 6} \cdot \mathbf{m B} \mathbf{3}_{6}$ using the same approach (Figure S30).

Figure S30. Top and side views of the PM6-optimised structure of $\mathbf{c - P 6} \cdot \mathbf{m B 3} \mathbf{3}_{6}$ (zinc centres in yellow and H -bonding interactions in green). Alkyl groups on mB3 and the 3,5-bis(tbutyl)phenyl groups on c-P6 were replaced by hydrogen atoms in the calculations, and hydrogen atoms that do not contribute to H -bonding are not shown for clarity.

S6: References

1) Motloch, P., Hunter, C. A. Org. Biomol. Chem. 2020, 18, 1602-1606.
2) (a) Hoffmann, M.; Kärnbratt, J.; Chang, M.-H.; Herz, L. M.; Albinsson, B.; Anderson, H. L. Angew. Chem. Int. Ed. 2008, 47, 4993-4996. (b) Sprafke, J. K.; Kondratuk, D. V.; Wykes, M.; Thompson, A. L.; Hoffmann, M.; Drevinskas, R.; Chen, W.-H.; Yong, C. K.; Kärnbratt, J.; Bullock, J. E.; Malfois, M.; Wasielewski, M. R.; Albinsson, B.; Herz, L. M.; Zigmantas, D.; Beljonne, D.; Anderson, H. L. J. Am. Chem. Soc. 2011, 133, 17262-17273.
3) Motulsky, H. J.; Christopoulos, A. Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. (Chapters 21-23). 2003, GraphPad Software Inc., San Diego CA, www.graphpad.com.
4) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc.: Wallingford, CT, USA, 2009.
