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Skyrmions – beyond rigid body quantisation.

Christopher J. Halcrow

In the Skyrme model, nuclei are described as topological solitons known as Skyrmions.
To make contact with nuclear data one must quantise these Skyrmions; most calcu-
lations to date have used rigid body quantisation, where the Skyrmions are allowed
to rotate but remain rigid. The method reproduces some experimental results for
light nuclei but there are some contradictions with data. In this thesis we study a
more sophisticated quantisation scheme where the Skyrmions may deform, called
vibrational quantisation, in the hope of fixing some of these problems.

Vibrational quantisation is applied to the dodecahedral B = 7 Skyrmion, which
models Lithium-7. Using rigid body quantisation, the Skyrme model predicts
a spin 7

2
ground state while in reality the Lithium-7 nucleus ground state has

spin 3
2
. We show that a quantisation which includes a 5-dimensional vibrational

manifold of deformed Skyrme configurations remedies this problem, giving the
correct ground state spin. Further, the model leads to a robust prediction that the
ground state of the nucleus has a larger root mean square matter radius than the
second quantum state, in contrast with standard nuclear models.

We consider the vibrational modes of the tetrahedral B = 16 Skyrmion, to
describe Oxygen-16. Motivated by Skyrme dynamics, a special 2-dimensional
submanifold of configurations is constructed. We study the manifold in detail
by modelling it as a 6-punctured sphere with constant negative curvature. The
Schrödinger equation is solved on the sphere and the results give an excellent fit
to the experimental energy spectrum. The model describes an energy splitting be-
tween certain states with equal spins but opposite parities, which is hard to explain
in other models. We also find the first ever isospin 0, spin-parity 0− state in the
Skyrme model. A method to calculate electromagnetic transition rates between
states is formulated and then applied to our system.

By considering a special type of Skyrme configuration, where a single Skyrmion
orbits a large core, we show that the Skyrme model can reproduce a classical spin-
orbit force due to the structure of the Skyrme fields. We quantise this model to
try and find out if the classical picture holds quantum mechanically.
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Chapter 1

Introduction

In the 1950s Tony Skyrme proposed a radical new model of nuclei which is now
called the Skyrme model. It is a nonlinear field theory of pions which supports
topologically non-trivial solutions called Skyrmions [1]. These are static, spatially
localised field configurations which are labelled by an integer-valued topological
charge, B. They are stable due to the topology of the system. Skyrme’s idea was to
identify these Skyrmions as nuclei, with the topological charge equal to the baryon
number. The simplest Skyrmion has charge one and is spherically symmetric. Its
low energy dynamics are identical to those of a point particle. Moreover when two
B = 1 Skyrmions are widely separated their interaction resemble phenomenological
nucleon-nucleon potentials [2]. Hence Skyrme’s suggestion agrees with some basic
phenomenology of nucleons.

The model looks less conventional as the baryon number is increased. When
multiple charge one Skyrmions are put near each other, they conglomerate into a
single object where individual Skyrmions lose their identity. Finite B nuclei are
described by these unusual objects. For example, the Helium-4 nucleus is modelled
as a cubic Skyrmion. Here, there is no unique way to see where the four composite
nucleons are within the nucleus. This is in stark contrast to many nuclear models
which begin with a system of nucleons interacting via a phenomenological poten-
tial. A key advantage of the Skyrme model is that all interactions and dynamics
are determined by the initial Lagrangian. This only has a few parameters, essen-
tially an energy scale and a length scale. In addition, the theory unifies mesons
and baryons. When Skyrme first proposed the model, these facts were enough
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to generate interest in the topic. Later, Witten showed that baryons in large N
QCD act like solitons based on how their masses scale [3]. More recently Sakai
and Sugimoto [4] rederived Skyrme’s Lagrangian from a holographic QCD model.
These observations, alongside the aforementioned attractive features of the Skyrme
model motivates our study of the theory.

Nuclear models have a long history, dating back to Rutherford’s discovery of
the nucleus in 1909. We shall briefly review some popular models to try and
place Skyrme’s idea in a wider context. In the shell model, nuclei are described
as a collection of nucleons which do not directly interact. Each nucleon only sees
the others through an effective, central potential. This generates a Schrödinger
equation for the nucleons and hence an energy spectrum. By the Pauli exclusion
principle, levels of this spectrum are filled as B is increased. Each level is called
a shell. For special values of B, a shell is filled and the corresponding nucleus
is tightly bound and very stable. These special values are called magic numbers
and give rise to magic nuclei. The excited states of magic (or nearly magic) nuclei
correspond to a single nucleon being excited to a higher energy shell; the spin of
the nucleus is determined by the spin of the single excited nucleon. The shell model
is highly successful near magic nuclei but less successful elsewhere on the nuclear
table. The liquid drop model describes nuclei as charged spheres of liquid. The
excited states correspond to collective motion on the surface of the sphere. The
model successfully reproduces the energy spectrum and transition rates of nuclei
such as Sulphur-32. Another set of ideas are the cluster models. In these, large
nuclei are constructed using smaller nuclei. The Helium-4 nucleus, also known as
the α-particle, has very low binding energy. Hence it is often used as a building
block for larger nuclei. The α-particles are arranged in geometric shapes to create
the larger nucleus and excited states are described by vibrations around the shapes.
These three models have very different physics behind them: individual nucleon
spins, collective motion and clusters are central to each respectively. Given their
contradictory nature the most surprising fact is that they are all successful in
describing certain nuclei. This variety shows the rich and wide range of physics
present in nuclear theory. One aim of this thesis is to show that, when quantised
appropriately, we can make a connection between the Skyrme model and these
conventional yet disparate models.

The Skyrme model is valid in the low energy limit of QCD. Here the quark and
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gluon degrees of freedom are frozen out; instead the mesonic degrees of freedom
are relevant. In fact we will focus on only the lightest mesons: the pions. Hence
the Lagrangian, L, is constructed from the pion fields, π. It is helpful to write
these in terms of an SU(2) valued matrix

U(t,x) = σ(t,x) + iπ(t,x).τ , (1.1)

where τi are the Pauli matrices and σ is an auxiliary field which satisfies

σ2 + π.π = 1 , (1.2)

so that U ∈ SU(2). The low energy Lagrangian inherits Lorentz and chiral sym-
metry from the full theory. Chiral symmetry relates the up and down quarks in full
QCD, giving them equal mass. This leads to a vanishing mass for all the pions and
equal masses for the proton and neutron. The symmetry is only approximately
realised in nature, broken by a small mass difference in the up and down quarks
which leads to a small but non-zero pion mass. Hence in constructing L, one should
begin with a fully chiral symmetric Lagrangian and then add a small pion mass
term to break this symmetry. The Skyrme model has classical field configurations
- the Skyrmions - and their dynamics at its core and so it is essential to construct
a Lagrangian with a well defined time evolution. In practice, this means L must
have at most second order time derivatives. This restriction, along with Lorentz
and approximate chiral symmetry leads us to write down the following Lagrangian

L = −F
2
π

16
Tr (RµR

µ) +
1

32e2
Tr ([Rµ, Rν ][R

µ, Rν ]) +
1

8
m2
πF

2
π Tr(U − 12) , (1.3)

where Rµ = (∂µU)U † is the right current of the Skyrme field, Fπ is the pion decay
constant, e is a dimensionless parameter and mπ is the pion mass. It is more
natural to work in Skyrme units. In these, the energy and length units are Fπ/4e
and 2/eFπ respectively. The Lagrangian becomes

L = −1

2
Tr (RµR

µ) +
1

16
Tr ([Rµ, Rν ][R

µ, Rν ]) +m2 Tr(U − 12) , (1.4)

where m = 2mπ/eFπ is the dimensionless pion mass. The first term in (1.3) has
second order spatial derivatives, and a Lagrangian containing only this term is
called a sigma model. These theories do not support soliton solutions as one can
scale any solution down to a point, which has zero energy. The next term in (1.3),
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commonly called the Skyrme term, prevents the scaling instability seen in sigma
models, allowing for stable soliton solutions.

If the pion mass were zero, the Lagrangian would be invariant under

U → AUBT , (1.5)

where A and B are constant SU(2) matrices. This is full chiral symmetry. A
non-zero pion mass enforces A = B, breaking the SU(2)×SU(2) symmetry down
to an SU(2) symmetry known as isospin symmetry. The pions are the goldstone
bosons associated with this symmetry breaking. With the non-zero pion mass, the
Lagrangian is invariant under

U → AUAT . (1.6)

This transformation is called an isorotation. It continuously cycles the pion fields
into one another. Once quantised, the symmetry gives rise to isospin, the quantity
which distinguishes protons and neutrons. While this is an exact symmetry, the
proton-neutron pair has degenerate energy in the Skyrme model.

The pion mass term has another important consequence. Consider the static
problem, which has Lagrangian

MB =

∫
−1

2
Tr (RiRi)−

1

16
Tr ([Ri, Rj][Ri, Rj])−m2 Tr(U − 12) d

3x . (1.7)

We identify this as the rest mass of the nucleus for a given B. For a configuration
to have finite mass, it must tend to the vacuum (U = 12) at spatial infinity. Hence,
for static configurations with finite energy, we may compactify the sphere at ∞
into a point. This means the target space of the field is R3 ∪ {∞} ∼= S3, the
3-sphere. In addition the pion fields U take values in SU(2) ∼= S3. Hence finite
energy field configurations are maps from S3 → S3. These maps are labelled by an
integer B, the aforementioned topological charge. Although the conserved integer
does not arise from a continuous symmetry, there does exist a topological current

Bµ =
1

24π2
εµνρσTr (RνRρRσ) , (1.8)

which satisfies
B =

∫
B0 d3x ∈ Z . (1.9)
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One may use a Bogomolny bound style argument [5] to show that the energy of a
static field configuration is bounded by the baryon number as

MB ≥ 12π2B . (1.10)

The energy minimisers stay close to this bound, but never saturate it. The B = 1

Skyrmion has energy
M1 ≈ 1.416× 12π2 × 1 (1.11)

when m = 1. As B increases, the solutions become closer to saturating the bound.
In the B →∞ limit we find that

lim
B→∞

MB ≈ 1.238× 12π2 ×B . (1.12)

In nuclear physics, the energy of a nucleus is linearly correlated with its baryon
number. Hence it is natural to identify B with baryon number. One may confirm
this guess by including the Wess-Zumino-Witten term in (1.3). This leads to the
derivation of the Gell-Mann–Nishijima equation

Q =
1

2
B + I3 , (1.13)

where Q is the charge of a configuration and I3 is its isospin projection [6]. This
well known identity confirms B as the baryon number.

The classical binding energy of a Skyrmion is the energy required to pull a
Skyrmion apart into its consistory B = 1 clusters. This is

BM1 −MB . (1.14)

If the inequality (1.10) was saturated for each B, the theory is called BPS. In
these theories there is no classical binding energy. Nuclei have a similar definition
of binding energy, it is the energy required to break a nucleus into individual
protons and neutrons. The binding energy is an important physical quantity for a
given nucleus. We know that α-particles play an important role in nuclear physics;
this is largely due to their particularly small binding energy.

1.1 Classical solutions

The Euler-Lagrange equations for a static field configuration are analytically in-
tractable and we must find solutions numerically, for a given B. Our numerical
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techniques are detailed in Appendix A. Alternatively, one could consider approx-
imate solutions using the rational map [7] or Atiyah-Manton [8] constructions .
We call any static solution, even a local minimum, a Skyrmion and distinguish the
different Skyrmions in the same baryon sector by their symmetry. To visualise the
Skyrmions one could plot the pion vector π = {π1, π2, π3} at each point x. We do
this for the B = 1 and B = 7 Skyrmions in the leftmost plots of Figure 1.1. This
does not give much information about the symmetries of the configuration which
will be important for quantisation. To get this information visually we could plot
a contour of constant energy or baryon density. However, the direction of the pion
field did hold important information. To take account of both aspects we combine
the two visualisation methods. We first colour the vectors of Figure 1.1 depend-
ing on their direction. They are coloured using the Runge colour sphere. The
Skyrmion is white/black when π3 equals ±1 and red, green and blue when π1 + iπ2

is equal to 1, exp(2πi/3) and exp(4πi/3) respectively. This colouring scheme was
originally proposed in [9]. We then colour the energy density contour depending
on the value of π on the surface. This three step process is displayed in Figure
1.1. Looking at the final plot in each case, it is clear that the B = 1 and B = 7

Skyrmions have spherical and dodecahedral symmetries respectively.
The notion of symmetry is slightly complicated by the colouring of the Skyrmions.

We say that a Skyrmion has a symmetry if it is invariant under a physical rotation
followed by an isorotation. The isorotations are simply rotations of the pion field
π. Visually, isorotations are recolourings of the Skyrmion. The B = 1 Skyrmion
has spherical symmetry since any rotation may be compensated by an isorotation.

The B = 2 and B = 3 Skyrmions have toroidal and tetrahedral symmetry
respectively as shown in Figure 1.2. The tetrahedral Skyrmion may be broken
into a B = 1 and B = 2 Skyrmion by pulling on a vertex as seen in Figure 1.3.
This shows how closely the solutions are related despite looking rather different.

The B = 4 Skyrmion has a large classical binding energy due to its highly
symmetric shape - a cube. Once quantised, the B = 4 Skyrmion models the α-
particle, showing that the Skyrme model has links with α-particle models which
are popular in nuclear theory [10]. The α-particle is made from two protons and
two neutrons. This appears to contradict the cubic model. However one may pull
the cube into four B = 1 Skyrmions as in Figure 1.4 by pulling on four of its
vertices, restoring the conventional picture. Note that there is not a unique way
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Figure 1.1: The process of colouring the energy densities of the Skyrme configu-
rations for the B = 1 and B = 7 Skyrmions. We colour the density
contours according to the direction the pion field at that point in space.

Figure 1.2: The B = 2 Skyrmion (left) which has toroidal symmetry and the B = 3

Skyrmion (right) which has tetrahedral symmetry.

Figure 1.3: The B = 3 Skyrmion is pulled apart into the B = 2 Skyrmion and the
B = 1 Skyrmion.
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to do this process. One may pull on the other four vertices instead.

Figure 1.4: The B = 4 Skyrmion may be pulled apart into four B = 1 solutions.
This shows that the cubic solution is related to standard models of the
the 4He nucleus even though it looks radically different at first sight.

The high binding energy of the B = 4 cube makes it a good building block
for larger Skyrmions. The B = 8, B = 12 and B = 16 Skyrmions can all be
understood in terms of cluster configurations of the cubes. The B = 8 Skyrmion
looks like two B = 4 cubes next to one another. The B = 12 sector has two low
lying solutions. One is a triangle of clusters while the other is a chain. These
are shown in Figure 1.5. As B increases the configuration spaces become more
complicated. The B = 16 sector has four known low energy Skyrmions. We
discuss these in detail in Chapter 4. One may use the clusters to construct very
large Skyrmions such as the cubic B = 108 solution discovered in [9] and even a
neutron star [11]. As B tends to infinity, the Skyrmions form a crystal. This looks
like an infinite lattice of B = 4 Skyrmions [12].

Figure 1.5: The lowest energy B = 8 Skyrmion (left), the B = 12 Skyrmion with
D3 symmetry (middle) and the B = 12 Skyrmion with D4 symmetry
(right). The final two are known as the triangular and chain configu-
rations respectively.

Returning to finite B, the B = 5 and 6 Skyrmions are shown in Figure 1.6.
The B = 7 Skyrmion has dodecahedral symmetry and hence has high classical
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binding energy. This is not true of 7Li, which it models. We shall discover why in
Chapter 3.

Figure 1.6: The B = 5 Skyrmion (left) and the B = 6 Skyrmion (right).

The Skyrmions in this section were all calculated using m = 1. When the
pion mass is zero, the solutions change shape. Most significantly, the B = 4

cluster model breaks down. Instead of the configurations seen in Figure 1.5 the
Skyrmions are shell-like in nature [13]. These configurations have large regions
in their centers where sigma is approximately equal to -1. This is energetically
unfavored by the pion mass term explaining the transition from shell-like solutions
to cluster-like ones, as the pion mass is increased.

1.1.1 Modifications

The Skyrmions presented so far are solutions to the standard Skyrme model defined
in (1.3). However the Lagrangian can be modified in a number of ways. The three
modifications we discuss in detail all have the same aim: to decrease the classical
binding energy of the Skyrmions. Real nuclei have binding energies of a few MeV
per nucleon. Classical Skyrmions have a classical binding energy of around 50 MeV
[14]. One could try to remedy this shortcoming by studying a modified Skyrme
model which has smaller classical binding energies.

When constructing the Skyrme Lagrangian we insisted that it must respect
Lorentz and chiral symmetry and have second order time derivatives. There is
another pionic term one can add to the Lagrangian (1.3) with these properties. It
has sixth order spatial derivatives and so is commonly called the 6th order term,
denoted L6. It takes the form

L6 ∝ 2(24π2)2Tr(BµB
µ) =

3

2
Tr
(
[Rµ, R

ν ][Rν , R
λ][Rλ, R

µ]
)
. (1.15)
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The theory given by
LBPS = L6 +mTr(1− U) , (1.16)

is BPS. Hence the energy bound (1.10) is saturated and the Skyrmions have zero
classical binding energy. The solutions are invariant under volume preserving
diffeomorphisms, just like a perfect fluid. To reintroduce a small binding energy,
as is seen experimentally, one can study a theory close to the BPS limit such as

L = εL2 + L6 +mπTr(1− U) , (1.17)

where L2 is the term with only two spatial derivatives from (1.3) and ε is a small
parameter. This idea was put forward by Adam et al. in [15]. In theory, one begins
by studying the model at ε = 0 and finds the Skyrmions of the BPS theory. Then
introducing a small ε should act as a small perturbation. However, in practice
the solutions of the BPS theory are very complicated due to their large symmetry
group. Only the B = 1 solution is known. Since we do not understand the initial
theory, perturbing from it is hopeless. Numerical studies have been able to reach
ε = 0.2 but this is not small enough to reproduce the experimental binding energies
[16].

Alternatively, the binding energy of the Skyrmions may be decreased by altering
the potential term in (1.3). In [16, 17] the authors consider adding the potential

Tr (1− U)4 (1.18)

to the Lagrangian. If this term dominates, the Skyrmions look like point particles
taking positions on a face centred cubic lattice. This model can get close to
reproducing the binding energies of real nuclei. There are many local minima in
each baryon sector and ideally a quantisation scheme should include all of these
solutions. This may make a thorough quantisation of the model prohibitively
difficult. In addition, the Skyrme model is unique due to its conglomerate solutions
where particles lose their individual identity. The point particle model does away
with these unique features of the original Skyrme model.

Another idea is to couple the standard Skyrme model to vector mesons. It
was shown in [18] that if one includes a certain infinite tower of mesons the model
becomes BPS. The more mesons that are included, the closer to a BPS theory it
becomes. The inclusion of the first meson decreases the classical binding energy
of the B = 4 Skyrmion by a factor of four [19].
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All these modifications of the standard Skyrme model are designed to decrease
the classical binding energies of the Skyrmions. However, we will argue that this is
unnecessary. Nuclear binding energies should be compared with quantum binding
energies, not classical ones. By doing a more thorough quantisation of the standard
Skyrme model, as laid out in the next chapter, the binding energies will naturally
decrease.

1.2 Outline of Thesis

This thesis is concerned with quantisation of the Skyrme model. In Chapter 2

we describe rigid body quantisation, which is the most common approach. We
argue that the method has several shortcomings and so we introduce a more so-
phisticated scheme called vibrational quantisation and show how wavefunctions
are constructed in this scheme. Chapter 3 describes a vibrational quantisation of
the B = 7 Skyrmion, which has dodecahedral symmetry. In rigid body quanti-
sation, the B = 7 Skyrmion has a ground state with spin 7

2
. This contradicts

the experimental data: Lithium-7 has a spin 3
2
ground state. The calculation

necessitates the careful study of a five-dimensional vibrational manifold. We cal-
culate the rovibrational wavefunctions on this manifold in two ways. Our first
method emphasises the global symmetries of the system but makes several crude
approximations. In our second approach, we try to take account of several difficult
features of the system such as its anharmonic potential. The ground state of the
system is shown to have spin 3

2
, remedying the previously stated contradiction

between data and the model. In Chapter 4 we describe the Oxygen-16 nucleus
using a vibrational manifold inspired by Skyrme dynamics. Using this manifold
we are able to construct a model which includes several low lying Skyrmions in the
quantisation procedure such as the tetrahedral and flat square configurations. The
inclusion of both resolves some long-standing problems in the study of Oxygen-16

such as the existence of an energy gap between the two low lying spin 2 states. We
also find a spin-parity 0−, isospin 0 state for the first time in the Skyrme model.
To further test our results, a method of calculating the electromagnetic transition
rates between rovibrational states is developed and we compare our results to ex-
perimental data. Chapter 5 contains a more speculative idea. When one Skyrmion
orbits another, its orbital angular momentum is in the same direction as its spin
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due to the structure of the pion fields of the Skyrmions. We propose that this
provides the origin of the spin-orbit force, a physically important term in the shell
model. To do this, we model the Skyrmions as cogwheels and quantise the system.
The conclusions of this thesis are contained in Chapter 6.
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Chapter 2

Skyrmion quantisation

To make contact with nuclear data, one must quantise the Skyrmions. We adopt
a semi-classical approach, assuming the leading order contribution to the physics
is the classical information. For example, the mass of a nucleus should be well
approximated by the classical mass of its corresponding Skyrmion. The first cor-
rections come from quantising the zero modes of the Skyrmions. These are those
transformations which leave the configuration’s energy unchanged: translations,
rotations and isorotations. We will ignore translations throughout this thesis as
nuclear data is presented in the rest frame of the system. The rotation and isoro-
tation zero modes give rise to a conserved angular momentum J and isoangular
momentum I. These give a correction to the mass formula of order ~2. The
Skyrmions can deform into composite parts, as we saw in Figure 1.3. Ideally, we
would also account for these degrees of freedom in the quantisation procedure.
If the deformations can be approximately described by a harmonic potential, the
correction to the mass is of order ~. Finally pion-Skyrmion interactions give rise to
a Casimir energy, also of order ~. Qualitatively, the quantum energy of a Skyrme
configuration from these contributions is

E = MB +
1

2
~
(∑

ω
)

+ ~ C + ~2EJ,I +O
(
~3
)
, (2.1)

where ω represents the frequencies of the vibrational modes, C represents the
Casimir energy and EJ,I represents the contribution from the rotational and isoro-
tational zero modes. The hierarchy of these corrections comes from a semi-classical
point of view. The order of importance is also supported by looking at a large Nc

limit of QCD. We shall now consider each of these quantum contributions in turn.
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2.1 Zero modes

We introduce coordinates to parametrise the Skyrmion’s orientation in rotational
and isorotational space. Each of these spaces is a copy of SO(3) and can be
parametrised by Euler angles. We denote the rotational angles (ψ, θ, φ) and the
isorotational angles (α, β, γ). Our conventions are most easily seen pictorially
as in Figure 2.1. A rotation of the Skyrmion corresponds to three composite
rotations: a rotation of ψ around the axis (0, 0, 1) followed by a rotation of θ
around (1, 0, 0) and finally a rotation of φ around (0, 0, 1). We denote the 3 × 3

rotation matrix RJ . The isorotation is applied to each pion vector in the same
way. We denote the corresponding isorotational matrix as RI . This is related to
the isospin transformation (1.6) as

RI =
1

2
Tr
(
τiAτjA

−1) . (2.2)

With these conventions the B = 1 Skyrmion is invariant under the combined
transformation

α→ α + a, ψ → ψ + a , (2.3)

for any constant a.
Given a static Skyrme configuration U0(x), the related configurations generated

by rotations and isorotations are captured by the formula

U0(x, α, β, γ, ψ, θ, φ) = A(α, β, γ)U0

(
RJ(ψ, θ, φ)x

)
A(α, β, γ)T . (2.4)

The set of Skyrme configurations in (2.4) is called the zero mode configuration
space. There is a quantisation scheme where we only include these configurations.
This is called zero-mode quantisation, originally proposed for soliton models in
[20] and for Skyrmion specifically in [21]. Physically, we allow the Skyrmion to
rigidly rotate but not to deform or interact with the pion field that surrounds it.
Hence this quantisation scheme is often called rigid body quantisation.

We quantise these modes by letting each coordinate depend on time. We then
substitute (2.4) into the Lagrangian (1.3). This gives the reduced Lagrangian

L = MB +
1

2
(a, c).Λ.(a, c)T , (2.5)

where a and c are the classical isoangular and angular velocities given by

aj = −iTr
(
τjA

†Ȧ
)

and cj = iTr
(
τĊC†

)
(2.6)
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Figure 2.1: Our conventions for the Euler angles discussed in the text. Note that
the rotational transformations act on the Skyrme configurations them-
selves and the isorotational transformations act on the pion vectors.

and C is the SU(2) matrix describing rotations, analogous to (2.2). Λ is the
moment of inertia tensor, it takes the form

Λ =

(
U −W
−W T V

)
, (2.7)

with

Uij = −
∫

Tr
(
TiTj +

1

4
[Rk, Ti][Rk, Tj]

)
d3x (2.8)

Wij =

∫
εjlmxlTr

(
TiRm +

1

4
[Rk, Ti][Rk, Rm]

)
d3x (2.9)

Vij = −
∫
εilmεjnpxlxnTr

(
RmRp +

1

4
[Rk, Rm][Rk, Rp]

)
d3x , (2.10)

where Ti = i
2
[τi, U0]U

−1
0 . The classical Hamiltonian is then

H = M +
1

2
(K ,L) .Λ−1. (K ,L)T , (2.11)
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where K and L are the classical body-fixed isoangular and angular momenta
respectively. There are also space-fixed momenta which we denote I and J .

The Hamiltonian (2.11) can be canonically quantised. The momenta become
operators giving rise to the quantum Hamiltonian

Ĥ = MB +
~2

2
(K̂, L̂).Λ−1.(K̂, L̂)T (2.12)

= M +
~2

2
∇2 , (2.13)

where ∇2 is the Laplacian on SO(3) × SO(3). The momentum operators can be
written in terms of the angles defined earlier. For example the third component of
the body-fixed angular momentum operator is

K̂3 = −i~ ∂

∂φ
. (2.14)

The space-fixed third components of the momenta, Ĵ3 = −i~∂ψ and Î3 = −i~∂γ,
each commute with the Hamiltonian; as does L̂.L̂ = Ĵ .Ĵ and K̂.K̂ = Î.Î. Hence
there are four conserved quantities for each energy eigenstate, denoted J3, I3,
J(J + 1) and I(I + 1). The third component J3 takes values between −J and J ,
and similar for I3.

The Schrödinger equation for this Hamiltonian has been extensively studied
[22]. The solutions are Wigner-D functions which are labelled by the four conserved
quantities as well as the body-fixed angular momenta: L3 and K3. Note that while
the Wigner-D functions have definite L3 and K3, the rigid body wavefunctions
generally will not. We denote the rotational Wigner functions DJ

L3,J3
(ψ, θ, φ) and

similar for the isorotational basis. Hence the solutions of the Schrödinger equation
can be written

Ψ =
∑
L3,K3

cL3,K3D
J
L3,J3

(ψ, θ, φ)DI
K3,I3

(α, β, γ) , (2.15)

which we often denote as

|Ψ〉 =
∑
L3,K3

cL3,K3 |J, L3, J3〉 |I,K3, I3〉 . (2.16)

This is the wavefunction of a generalised rigid rotor and its rotational energy is
given by

Erot = −~2

2
〈Ψ|∇2|Ψ〉 . (2.17)
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This formula simplifies significantly if a Skyrmion has a lot of symmetry. For
example, the B = 1 Skyrmion has rotational energy

~2

4Λ′
(J(J + 1) + I(I + 1)) , (2.18)

where Vij = Uij = Wij = Λ′δij. The symmetries of the Skyrmions also give
constraints on the constants cL3,K3 and restrict the allowed values of I and J . We
shall now examine these constraints.

2.1.1 FR constraints

Single Skyrmions model nucleons, which are fermions. Hence a charge B Skyrmion,
being composed of B nucleons, is a boson if B is even and a fermion if B is odd.
If one applies a 2π rotation to the wavefunction (2.16), using the exponent of the
rotation operator, the result should be

e2πin·Ĵ |Ψ〉 = (−1)2B |Ψ〉 , (2.19)

where n is any unit vector.
Finkelstein and Rubinstein realised solitons could be quantised as bosons or

fermions consistently [23]. They first argued that, if the configurations space is not
simply connected, one must look at the covering space of configurations rather than
just the configuration space; in our case SU(2)×SU(2) rather than SO(3)×SO(3).
The fundamental group of SU(2) × SU(2) is Z2 and so loops in the space are
either contractible or not with these two properties forming the elements of the
group Z2. Crucially, the union of two non-contractible loops is contractible. A
2π rotation traces out a closed loop in configuration space. We assume that if
this loop is contractible, the wavefunction should transform trivially under this
rotation operator. If it is not, the wavefunction should pick up a sign. Under
this assumption, one can derive (2.19) [24]. The other consistent quantisation
method would be to insist the wavefunction transforms trivially in both cases.
This would give rise to a theory of just bosons. It has been shown that this leads
to a contradiction for the Skyrme model when the field takes values in SU(3)

[25], but this has not yet been shown for the simpler model we are currently
considering. Hence, we will simply reject this quantisation on physical grounds;
we demand the B = 1 Skyrmion is a fermion. A similar story holds for isospin

17



- the wavefunction (2.16) picks up a factor ±1 (for even or odd B) under a 2π

isorotation. These restrictions tell us that a Skyrmion with even or odd baryon
number B have integer or half-integer spin and isospin respectively.

Each Skyrmion has a symmetry group which is usually non-trivial. The group
acts on the Skyrmion by rotation-isorotation operator pairs. Each combined trans-
formation generates a closed path in configuration space. For consistency, the same
rules as above must apply: if the path is non-contractible the wavefunction picks
up a sign and if it is contractible the wavefunction transforms trivially. For exam-
ple, the cubic Skyrmion is invariant under a 2π/3 rotation about (1, 1, 1) followed
by a 2π/3 isorotation about (0, 0, 1). Hence the wavefunction must satisfy

e2πi/3
3/2(1,1,1)·L̂e2πi/3K̂3 |ψ〉 = (−1)N |ψ〉 , (2.20)

where N is equal to 0 or 1. We call N the Finkelstein-Rubinstein number and
relations of this form Finkelstein-Rubinstein (FR) constraints. We are left to de-
termine N , which can be done in a number of ways. One is to physically pull apart
the Skyrmion and keep track of how the individual Skyrmions, each a fermion,
transform [27]. Another is to approximate the Skyrmion using rational maps [7].
If this can be done, Krusch developed a simple formula to find N [26].

Once we find the FR constraints for all rotation-isorotation transformations
which generate the symmetry group of the Skyrmion, we may calculate the al-
lowed spin states. This tells us the spin of the ground state for a given baryon
number. This is compared to real nuclear data in Table 2.1 for B = 1, . . . 8. We
focus on nuclei with small isospin. The model does quite well, with matches for
all nuclei except B = 5 and B = 7. Note that these are the predictions for zero
mode quantisation – not for the Skyrme model itself. To take any of these results
seriously we must understand when rigid body quantisation is an appropriate ap-
proximation. To do this we will consider a more sophisticated scheme: vibrational
quantisation.
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B Model (J, I) Exp (J, I) Nucleus Match?
1

(
1
2
, 1
2

) (
1
2
, 1
2

)
Proton / Neutron Y

2 (1, 0) (1, 0) Deuteron Y
3

(
1
2
, 1
2

) (
1
2
, 1
2

)
3H / 3He Y

4 (0, 0) (0, 0) 4He Y
5

(
1
2
, 1
2

) (
3
2
, 1
2

)
5He / 5Li N

6 (1, 0) (1, 0) 6Li Y
7

(
7
2
, 1
2

) (
3
2
, 1
2

)
7Li / 7Be N

8 (0, 0) (0, 0) 8Be Y

Table 2.1: A comparison of the predicted spins of the ground state nuclei for each
B for zero-mode quantisation, against experimental data.

2.2 Vibrational modes

In zero mode quantisation we allowed the Skyrmion to rigidly rotate and isorotate.
We will now also let the Skyrmion deform. To do this we must study the space of
deformed Skyrme configurations. A charge B Skyrmion can split into B individual
charge 1 Skyrmions, each of which can move and rotate. Hence the full deformation
space has at least 6B dimensions. If the charge 1 Skyrmions are allowed to de-
form further, by radially expanding and contracting for example, the deformation
space will have more dimensions. The zero modes are physically distinct to the
deformations and hence we may try to separate the two types of transformation.
We do this by defining the centred deformation space which factors out the overall
translations, rotations and isorotations. We call the centred space the vibrational
manifold and denote itM. The full space can be thought of as this manifold with
a fibre containing the zero modes of the Skyrme configuration, R3×SO(3)×SO(3),
attached. The total space is a principle bundle.

To study quantum states including deformations, we must solve the Schrödinger
equation on the total space. If we can put a coordinate s onM and find the metric
g, the kinetic operator for small energies is known. It is the Laplace-Beltrami
operator which is defined in terms of g as

∆ =
1√
|g|
∂i

(√
|g|gij∂j

)
, (2.21)
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where ∂ = ( ∂
∂s
,∇) and ∇ is the gradient on SO(3) × SO(3). The operator ∆

preserves all classical symmetries of the kinetic energy after quantisation. The
potential energy is the static energy of the deformed Skyrme configuration at s.
Hence the Schrödinger equation is(

−~2

2
∆ + V (s)

)
Ψ = EΨ , (2.22)

where Ψ is the total wavefunction. Despite its simple appearance this is a highly
non-trivial equation: the metric is 6B dimensional and generically has few nice
properties; there are FR constraints on M that the wavefunction Ψ musy obey
and the potential is hard to generate and anharmonic. The anharmonicity may be
seen physically. Suppose we pull a B = 3 Skyrmion apart into B = 1 and B = 2

parts as we saw in Figure 1.3. There is little difference between the energy of
the rightmost configuration in Figure 1.3 and the clusters totally separated. The
authors of [32] solved (2.22) on a one-dimensional submanifold of the vibrational
manifold in the B = 2 sector. The calculation provides a much more realistic model
of the Deuteron in the Skyrme model, compared to rigid body quantisation.

To make progress solving (2.22) one must make approximations. We shall try
to gain intuition about the system by assuming M is Euclidean. Moreover, we
take the metric on the full space to be block diagonal so that the kinetic operator
separates into a part which only acts via the rotational coordinates and a part
which only acts via the vibrational ones. The total wavefunction is separable and
takes the form

Ψ =
∑
i

ui(s) |Θ〉i . (2.23)

We call the ui vibrational wavefunctions and the |Θ〉i rotational wavefunctions
or spin states. The total wavefunction is known as the rovibrational wavefunc-
tion. The spin states are exactly those discussed in our analysis of rigid body
quantisation. They satisfy

−∇2 |Θ〉i = EJ,I(s) |Θ〉i , (2.24)

where EJ,I depends on s through its dependence on the moment of inertia tensor
(2.8). The vibrational wavefunctions then satisfy

− ~2

2
∇2
Eu(s) +

(
V (s)− ~2

2
EJ,I(s)

)
u(s) = Evibu(s) . (2.25)
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where ∇2
E is the Laplacian on Euclidean space and we call Evib the vibrational

energy.
We can solve the Schrödinger equation exactly by making two assumptions.

First, that the Skyrmion’s deformation does not greatly alter the moment of inertia
tensor. This amounts to taking EJ,I(s) to be constant. The dependence can be
reinstated later using perturbation theory provided the deformations are small.
Secondly we take V (s) to be harmonic around its minimum (wlog at s = 0),
the minimal energy Skyrmion. Note that these assumptions are justified when
deformations of the Skyrmion are small which is true near the origin ofM. Low
energy states are concentrated near here, and so our analysis may be valid for low
energy states of the system.

The deformations near the Skyrmion at s = 0 may be classified by the irre-
ducible representations (irreps) of the Skyrmion’s symmetry group which we de-
note G0. NowM can be written as a product space, the constitute submanifolds
labelled by the irreducible representations of G0. We may solve the Schrödinger
equation on each submanifold and then combine the solutions. The harmonic
potential can have different frequencies in each submanifold. The ground state vi-
brational wavefunction u0(s) is the ground state harmonic oscillator wavefunction
with energy ∑

A=reps

(
dim of A∑
i=1

1

2
~ωA

)
, (2.26)

where ωA is the frequency of the potential in the submanifold labelled by the irrep
A. The ground state is isotropic in M and concentrated around s = 0. The
rovibrational wavefunction

|Ψ〉 = u0(s) |Θ〉 , (2.27)

is non-zero everywhere onM. Some FR constraints still apply at all points onM,
although they change depending on the symmetry of the Skyrme configuration at
s. In this case, the spin state |Θ〉 must be allowed everywhere on M for (2.27)
to be consistent with the FR constraints since u0(s) is non-zero everywhere on
M. This happens if |Θ〉 is consistent with the FR constraints of the Skyrmion
at s = 0 and if this configuration is the maximally symmetric configuration on
M. This is true if the symmetry group of the vibrational manifold is the same
as the symmetry group of the Skyrmion. Physically, this assumes that when the
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Skyrmion breaks apart, the deformed configurations will all have less symmetry
than the Skyrmion. Overall, the wavefunction (2.27) is concentrated around the
Skyrmion at s = 0 and has the same spin state as found in rigid body quantisation
– the one allowed by the Skyrmion. Hence the wavefunction (2.27) is analogous to
a rigid body wavefunction. In fact one can recover the rigid body scheme by taking
ω → ∞. This freezes out excited modes, leaving just the ground state (2.27). In
this limit the vibrational wavefunction becomes a delta function onM.

Note that since the vibrational wavefunction u0 is isotropic, it transforms triv-
ially under any element of the symmetry group ofM. In (2.27), this wavefunction
is combined with a spin state which transforms simply under the symmetry group
of the Skyrmion: trivially if the element has a positive FR number and it picks up
a sign if the element has a negative FR number. This suggests there is a relation-
ship between the representations of vibrational wavefunctions, spin states and the
allowed rovibrational wavefunctions. We now formalise this relationship.

Suppose the vibrational manifoldM and the Skyrmion have the same symme-
try group, G0. There are three representations of this group which we shall use.
They are

• ρFR : This is the Finkelstein-Rubinstein representation. An element is equal
to +1 or −1 if the Finkelstein-Rubinstein number N , defined in (2.20), is
equal to 0 and 1 respectively.

• ρFRR : For a given spin/isospin pair (J, I) the usual basis of spin/isospin
states is

(|J, J〉 ⊗ |I, I〉 , |J, J〉 ⊗ |I, I − 1〉 , . . . |J,−J〉 ⊗ |I,−I〉) . (2.28)

Now consider an element g ∈ G0 which corresponds to a rotation of θ1 around
the axis n1 followed by an isorotation of θ2 around the axis n2. This acts on
the basis (2.28) as the matrix

MFR
R (g) = eiθ1n1·L̂eiθ2n2·K̂ . (2.29)

Note that the dimension of this matrix depends on the values of J and I.
We can always reduce this representation into

ρFRR = ρFR ⊗ ρR . (2.30)

22



The matrix MR(g) is then equal to

MR(g) = (−1)NMFR
R (g) . (2.31)

• ρv : Suppose we find a degenerate set of vibrational wavefunctions {ui} and
define the vector u = (u1, . . . un). Under an element of the symmetry group
g ∈M ' G0 these transform into each other as

u→Mv(g)u . (2.32)

This defines the representation of the vibrational wavefunctions.

Suppose there is a basis of vibrational wavefunctions with representation ρv and
a basis of spin states with representation ρR. If ρv and ρR are isomorphic we can
find a rovibrational wavefunction that transforms trivially under the combined
rotational-vibrational action. This will satisfy the FR constraints at all points in
M. For example, at the origin ofM, all the vibrational wavefunctions are equal.
Hence the vibrational action is trivial. So, if the combined action is trivial then so
is the operator corresponding to MR. Hence, at the origin of s, the rovibrational
wavefunction transforms as

|Ψ〉 →MFR
R |Ψ〉 = (−1)N |Ψ〉 , (2.33)

as required.
In practice, knowing that a basis of spin states and vibrational wavefunctions

will combine to create a valid rovibrational state does not help construct the state
itself. For example, rather than finding a special subset of spin states which
transform exactly as required, it is often practical to use the basis (2.28). We shall
now show how to construct such states. Suppose there is a basis of vibrational
wavefunctions and a basis of spin states which transform as (2.30) and (2.32)
respectively. We can construct a rovibrational wavefunction of the form

|Ψ〉 =
∑
i

aijui |Θ〉j . (2.34)

To be a valid rovibrational wavefunction, this should transform trivially under the
combined rotational-vibrational action of each element which leavesM unchanged.
This means that

|Ψ〉 =
∑
i

aijui |Θ〉j →
∑
i

aijMR(g)ikukM
−1
v (g)jl |Θ〉l = |Ψ〉 , (2.35)
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which leads to an equation for the coefficients(
MR(g)ikM

−1
v (g)jl − δikδjl

)
aij = 0 , (2.36)

for each element of the group g ∈ G0. This can be turned into a nullspace problem
by defining (ai)j = aij and b = (a1,a2, . . .an). The vector b is then the zero
eigenvector of a matrix, which can be derived from (2.36). There is one of these
constraints for each element of the symmetry group.

For a simple example, consider the B = 3 Skyrmion with tetrahedral symmetry
as seen in Figure 1.2. The tetrahedral group has two generating elements: g3 and
g2 which correspond to a C3 symmetry and a C2 symmetry respectively. For spin
1
2
, isospin 1

2
the spin state basis is four dimensional. If the Skyrmion is orientated

with a vertex which points in the (1, 1, 1) direction and the Skyrmion has white
on the center of its top edge, the spin states transform into each other as

MR(g3) =
1

2


i i i i

−1 1 −1 1

−1 −1 1 1

−i i i −i

 and MR(g2) =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (2.37)

The ground state vibrational wavefunction u0 is the isotropic harmonic oscillator
and so this transforms trivially. Hence, this wavefunction has Mv = 1 for each of
these symmetry elements. So in this case the coefficients aij with i = 1, j = 1, .., 4

are simply the common eigenvalue one eigenvectors of the matrices displayed in
(2.37). There is only one such vector, which is proportional to

(0, 1,−1, 0) . (2.38)

This means that there is exactly one rovibrational wavefunction which can be
constructed using the ground state vibrational wavefunction and has spin 1

2
and

isospin 1
2
. It is

u0(s)

(∣∣∣∣12 , 1

2

〉 ∣∣∣∣12 ,−1

2

〉
−
∣∣∣∣12 ,−1

2

〉 ∣∣∣∣12 , 1

2

〉)
. (2.39)

This obeys the FR constraints on the full vibrational manifold, provided the man-
ifold has at most tetrahedral symmetry.
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The explicit construction of excited states is more complicated, but we can
calculate which spins are allowed rather easily. For a given symmetry group G0,
spin-isospin pair (J, I) and set of vibrational wavefunctions {ui}, one should find
the representations ρR and ρv. These can be decomposed in terms of their irreps
and compared. If the two share any irreps, they may be combined to form a
valid rovibrational wavefunction. We shall see multiple examples throughout this
thesis. Note that rigid body quantisation is equivalent to only allowing vibrational
wavefunctions which transform trivially under all elements of G0: precisely the
ground states of the vibrational problem. Excited states do not have this restriction
and so vibrational quantisation allows many more spin and isospin combinations
than rigid body quantisation.

The binding energy of a vibrationally quantised Skyrmion is significantly dif-
ferent than if we used rigid body quantisation. Suppose we use a scheme where
the Skyrmion is allowed to break into its consistory B = 1 parts. This requires
6B − 9 vibrational modes and hence the energy of the Skyrmion, in a harmonic
approximation, is

EB = MB +
1

2
~ω̄(6B − 9) +

~2

2
EJ,I , (2.40)

where ω̄ is some appropriately averaged frequency. The expression is to be com-
pared to the energy of B single nucleons which is

BE1 = BM1 +B
3~2

8Λ′
. (2.41)

Note that there is no vibrational energy for a B = 1 Skyrmion since it cannot be
broken down any further. Hence, the binding energy of a Skyrmion with charge B
in the vibrational quantisation scheme is 1

2
~ω̄(6B− 9) smaller than it would be in

the rigid body scheme. So, taking account of vibrational modes naturally reduces
the binding energy, bringing the Skyrme model closer to real nuclear data.

We have shown the link between rigid body quantisation and vibrational quan-
tisation. We now focus on their differences which are most apparent when the
symmetry groups of the Skyrmion and M are not equal. In these cases, the vi-
brational picture shows when rigid body quantisation is inappropriate.
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Approximate symmetry

Suppose there is a Skyrmion with an approximate symmetry at s = 0 and that the
symmetry becomes exact at s∗, nearby onM. Here, we imagine that the Skyrme
configuration at s∗ is not necessarily a local minimum of the system. Now let |Θ〉
be a rotational state allowed by the Skyrmion at s = 0 but not at s∗. If one were
to rigidly quantise the Skyrmion, the analogous rovibrational state would be

Ψ = u0(s) |Θ〉 . (2.42)

However, Ψ(s∗) is non-zero and hence the FR constraints at s∗ are not satisfied.
This is a contradiction and so the wavefunction (2.42) is not a valid state. If |Θ〉 was
allowed at s∗ there would be no contradiction. We deduce that to apply rigid body
quantisation to a configuration with approximate symmetry, one should actually
use the FR constraints that arise from the exact symmetry. By this argument,
applying rigid body quantisation to modestly deformed Skyrmions, as in [14], is
invalid.

This analysis is important for quantisation of rotationally deformed Skyrmions.
When a Skyrmion acquires spin it naturally deforms. This affects the symmetries of
the solution as has been studied in [29]. The deformations are small for physically
reasonable spins. Our analysis shows that these small deformations will not greatly
affect the allowed quantum states of the static solution.

Enhanced symmetry

On occasion, a vibrational manifold will contain Skyrme configurations with a
symmetry group not contained in G0. This happens for the B = 3 Skyrmion. The
vibrational manifold contains the mode shown in Figure 2.2, first discovered in
[28]. This mode contains the B = 3 torus which has a continuous symmetry not
shared by the tetrahedron. We say this point has enhanced symmetry. The rovi-
brational wavefunctions must respect the symmetries of this configuration which
bring additional FR constraints into the problem. In the B = 3 case, the tetrahe-
dron allows for a spin 1

2
, isospin 1

2
state but this is not allowed at the torus. Hence,

the rovibrational state with J = I = 1
2
must vanish there. The torus is far away

from the tetrahedron in configuration space and has high energy. Hence the total
wavefunction will already be small at this point and the existence of the torus will
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not greatly alter the energies of the wavefunction. In other cases, the effect will
be large. We shall study such a case in the B = 16 sector during Chapter 3.

Figure 2.2: Two B = 1 Skyrmions are symmetrically shot towards a third lying
between them. The three form a tetrahedron then continue on to
form a B = 3 torus. They emerge from the torus forming the dual
tetrahedron before going off to infinity having regained their original,
spherical form.

In [30] it was proposed to quantise the two Skyrmions of the B = 12 sector
(the triangle and chain, as seen in Figure 1.5) separately, using RB quantisation for
each. Thinking of vibrational quantisation, we know that this is only appropriate
if the configurations are far apart inM. If this were the case, the two vibrational
wavefunctions would have little overlap and be approximately orthogonal. We shall
not comment on whether the triangular and chain configurations are far apart in
M; just point out that one must show that they are to have confidence in the
calculation of [30].

By considering vibrational quantisation we have discovered some rules of thumb
for rigid body quantisation. These are:

• If a Skyrmion has an approximate symmetry, one should quantise as if the
Skyrmion actually has the exact symmetry.

• Rigid body quantisation of a Skyrmion is inappropriate if its vibrational
manifold contains another configuration with enhanced symmetry. The effect
is more important if the enhanced configuration is nearby the Skyrmion in
M and has low energy.

• If Skyrmions are far apart in M, one may apply rigid body quantisation
separately to each configuration.
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Table 2.1 contains the results of rigid body quantisation compared to nuclear
data. The two troubling results were for B = 5 and B = 7. The B = 5 Skyrmion
has D2d symmetry. However, there are other low energy Skyrme configurations
with enhanced symmetry as discussed in [14]. Perhaps a vibrational quantisation
including these configurations would alter the results. The B = 7 is a rather special
Skyrmion due to its large symmetry group. To resolve the incorrect ground state
spin, one must calculate the vibrational wavefunctions carefully. We shall do this
in Chapter 3.

2.3 Casimir energy

Casimir energy takes account of vacuum fluctuations around the Skyrmion. This
is practically and theoretically difficult as the calculation of Casimir energy neces-
sitates renormalisation of the Skyrme model - a non-renormalisable theory. One
must assume that counter terms are small. These difficulties mean that only a
limited amount of work has been done on Casimir energy calculations. In the
B = 1 sector the authors of [31] found the mass correction to the B = 1 Skyrmion
to be around 50% of its classical value. Hence the Casimir contribution is clearly
large. We are mostly interested in energy spectra – specifically the ordering of
states and the gaps between them. We shall assume that the Casimir energy con-
tributes the same zero-point energy to each state in a given baryon sector. With
this assumption, we can compare the energy of states we find, but do not trust
their total energies.

2.4 Summary

In this chapter, we described quantisation of the Skyrme model and saw that
rigid body quantisation leads to results in conflict with nuclear data. Specifically,
it predicts an incorrect spin for the 5He and 7Li ground states. We argue that
vibrational quantisation may resolve these problems as well as lowering the binding
energy of the Skyrmions, another issue of the model. We will consider vibrational
quantisation of the B = 7 Skyrmion in the next chapter. The B = 5 Skyrmion
should be looked at in future work to see if our suggestion works out in detail.
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In addition, we argued that rigid body quantisation is inappropriate when the
vibrational manifold contains a low energy Skyrme configuration with enhanced
symmetry. To find such configurations, a careful study of the vibrational manifold
is required. Hence, these spaces should be carefully studied in future work.
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Chapter 3

Vibrational quantisation of the
B = 7 Skyrmion

This chapter is an extension of the work in the single author paper [33].

Rigid body quantisation of the B = 7 Skyrmion predicts a spin 7
2
ground state

for the 7Be/7Li isodoublet. The dodecahedral symmetry of the B = 7 Skyrmion
rules out low energy states with spin 1

2
, 3

2
and 5

2
. In reality, experimental data

show that all these states exist and the ground state has spin 3
2
. The first excited

state of 7Li has spin 1
2
and lies 0.5 MeV above the ground state while the spin 7

2

state is the second excited state lying 4.6 MeV above. In this chapter we shall see
that the inclusion of vibrational modes in the quantisation procedure resolves this
problem.

The 7Li and 7Be nuclei are special. Among all nuclei with B < 30 they are the
only ones that have an observed spin 7

2
state lying below the lowest spin 5

2
state.

The B = 7 Skyrmion is also special. It has the largest finite symmetry group
of any known Skyrmion with non-zero pion mass. We shall see that this large
symmetry group is the reason why the spin 7

2
state has abnormally low energy.

The 7Li nucleus is usually described using a cluster model [34] which asserts
that the nucleus is made of two interacting clusters. These are an alpha particle
and a tritium nucleus. This model successfully reproduces the energy spectrum
and some electrostatic properties of the nucleus. We shall see that the inclusion of
vibrational modes in Skyrmion quantisation highlights a connection between the
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Skyrme model and the ideas of clustering.
This chapter is organised as follows. In Section 3.1 we study the structure of the

B = 7 Skyrmion and one of its vibrational manifolds. We discuss how one should
include vibrations in the quantisation procedure and the effects of the Finkelstein-
Rubinstein constraints in Section 3.2. Here, we consider the quantisation in two
different schemes, one focusing on the global structure of vibrational space and
one focusing on some complications of the real model such as the anharmonic
potential. We then compare the results of our quantisation with nuclear data
before concluding and discussing further work in Section 3.3.

3.1 A vibrational manifold of the B = 7 Skyrmion

The B = 7 Skyrmion has dodecahedral symmetry as seen in Figure 3.1. There is
D5 symmetry around each face of the Skyrmion and D3 symmetry around each
vertex. These, alongside the additional reflection symmetry, generate the full
symmetry group of the Skyrmion Yh.

The vibrational modes around the Skyrmion were numerically generated and
studied in [35] by considering small perturbations around the B = 7 Skyrmion.
Two low frequency modes were found, one of which had a clear physical inter-
pretation and a clean peak in the power spectrum. We will assume that this is
the lowest energy vibrational mode and exclude all others from our analysis. This
mode generates a vibrational manifold of Skyrme configurations with each point
in the manifold corresponding to a specific deformed Skyrme configuration. Our
aim is to understand the structure of the manifold and to find subspaces where
the Skyrme configurations have some symmetry.

Figure 3.1: A surface of constant baryon density for the B = 7 Skyrmion.
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The vibrational mode we consider has five fold degeneracy and so generates
a 5-dimensional vibrational manifold which we denote V5. Each point v ∈ V5
corresponds to a quadrupole deformation tensor of the Skyrmion, Q(v). There
is a natural mapping from a hyperplane in R6 (isomorphic to V5) to the space of
quadrupole tensors. It is

(v1, v2, v3, v4, v5, v6) 7→

 v1 2−
1
2v6 2−

1
2v5

2−
1
2v6 v2 2−

1
2v4

2−
1
2v5 2−

1
2v4 v3

 , (3.1)

where v satisfies (1, 1, 1, 0, 0, 0) · v = 0 to ensure the quadrupole tensor is trace-
less. We can add vectors on the hyperplane; this is equivalent to adding the
quadrupole tensors in R3. We choose the normalisation so that a unit vector v̂
maps to a quadrupole which satisfies QijQij = 1. Each quadrupole tensor, Q(v),
has an associated symmetry group which acts on R3. Any symmetry shared by
the quadrupole tensor and the B = 7 Skyrmion is a symmetry of the Skyrme
configuration at the point v.

In [35] it was found that the vibration we consider preserves the Skyrmion’s
D5 symmetry along certain lines in V5. Physically, this vibration pulls on two
opposite faces of the dodecahedron and breaks the Skyrmion into three clusters:
a B = 3 torus sandwiched between two B = 2 tori. This can happen in six ways
as there are six pairs of faces on the Skyrmion. Hence there are six special lines
in V5 which preserve D5 symmetry. They are evenly spaced and are aligned with
the vertices of a regular 5-simplex. We must position the 5-simplex in V5 so that
each vertex, va, maps to a quadrupole tensor which is circle invariant around the
axis passing through the Skyrmion faces that are being pulled upon. This ensures
that the Skyrme configuration at va preserves D5 symmetry. We use the Veronese
mapping to help us. This is a map from RP 2 to a 2-dimensional subspace of V5.
Explicitly it takes

(x1, x2, x3) 7→
(
x21 −

1

3
r2, x22 −

1

3
r2, x23 −

1

3
r2, x2x3, x1x3, x1x2

)
. (3.2)

This then maps to a quadrupole via (3.1) which is circle invariant around (x1, x2, x3).
For example, the Skyrmion has D5 symmetry around the axis x1 = (0, 0, 1). This
goes, via the Veronese mapping, to the 6-vector

v1 = (−6−
1
2 ,−6−

1
2 , (2/3)

1
2 , 0, 0, 0) (3.3)
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Figure 3.2: A vibration in V5 which preserves D5 symmetry. The parameter λ
measures the amplitude of the vibration. This figure was generated
using the gradient flow approximation to dynamics. The minimum en-
ergy Skyrmion is at λ = 0. This deforms into a ring-like configuration
for λ < 0 and three clusters for λ > 0.

which maps to the quadrupole

Q1 =

−6−
1
2 0 0

0 −6−
1
2 0

0 0 (2/3)
1
2

 . (3.4)

This is circle invariant around x1 as desired. Repeating this process, we may
generate the vertices of the 5-simplex in V5 from the lines which pass through the
faces of the dodecahedron. This procedure has the corollary that all six vertices of
the 5-simplex lie on the 2-dimensional Veronese surface. We denote the 5-simplex
vertices as va ∈ V5 and the corresponding quadrupole tensors Qa; these are circle
invariant around xa. Any configuration which lies on the line λva ∈ V5, λ ∈ R has
D5 symmetry. The parameter λ is the amplitude of the vibration. For λ > 0 the
Skyrmion deforms as described above: a pair of opposite faces are pulled upon.
When λ < 0 the faces are pushed together and the Skyrmion flattens out. The
full vibration is displayed in Figure 3.2.

We may use the geometry of the 5-simplex to find additional symmetric sub-
spaces in V5. The planes passing through an edge of the simplex can be written
as

µva + νvb , (3.5)

where a 6= b and µ, ν ∈ R. The corresponding quadrupole has a C2 symmetry,
shared with the B = 7 Skyrmion, about the axis xa × xb. This is enhanced to a
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D2 symmetry when µ = ν.
The 5-simplex has 20 triangular faces. A line passing through the centre of a

face takes the form
λ(va + vb + vc) , (3.6)

where a 6= b 6= c. In fact, this line passes through two vertices of the dodecahe-
dron which are dual to each other. Thus there are only ten distinct lines. The
quadrupole tensor derived from (3.6) has only two distinct eigenvalues. Thus it
is circle invariant around the eigenvector of the non-degenerate eigenvalue. This
eigenvector passes through a vertex of the B = 7 Skyrmion which has D3 symme-
try. Thus the Skyrme configurations on these 10 lines in V5 retain D3 symmetry.
Note that, since these quadrupoles are circle invariant, these points in V5 also lie
on the Veronese surface discussed earlier. It is instructive to view the physical
picture. When λ > 0 the three component quadrupole tensors pull on three pairs
of opposite faces. Three faces always surround a vertex of the Skyrmion, as do
the opposite faces; the remaining three pairs form a ring around its centre. The
quadrupole tensors around the vertex sum to give a quadrupole which pulls in the
direction of the surrounded vertex. This is seen in Figure 3.3. When large, this
vibration breaks the Skyrmion into two B = 3 Skyrmions sandwiching a B = 1

Skyrmion. When λ < 0 the faces surrounding the vertex are pushed upon and the
B = 7 Skyrmion breaks into 7 individual B = 1 Skyrmions.

The analysis so far is based on small perturbations around the Skyrmion. We
believe that there will be a bifurcation where the exact symmetries discussed above
will break. For example, the D3 symmetry will break to a C3 symmetry. This
allows the asymptotic configuration in V5 to be a two-cluster system consisting of
a B = 3 and B = 4 Skyrmion. This has lower energy than the three-cluster system
described in the previous paragraph. These are hard to distinguish near the origin
of V5 and so the difference will not be apparent in our analysis. Thus we shall
assume that the Skyrme configuration along this vibration, at large amplitudes,
will be the C3 symmetric 3 + 4 cluster configuration instead of the D3 symmetric
3 + 1 + 3 configuration. The entire vibration is displayed in Figure 3.4.
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Figure 3.3: When three faces of the Skyrmion are pulled equally, a D3 symmetry
remains. The sum of the quadrupoles which pull on the faces of the
Skyrmion give a quadrupole which is circle invariant about the red axis
which passes through a vertex as shown.

Figure 3.4: A vibration in V5 which preserves C3 symmetry. The parameter λmea-
sures the amplitude of the vibration. The minimum energy Skyrmion
is at λ = 0. This deforms into seven individual distorted Skyrmions
for λ < 0 and two clusters for λ > 0.

3.2 Quantisation on the vibrational manifold

Our aim is to quantise the B = 7 Skyrmion taking the lowest energy vibrational
mode into account. The vibrational manifold we quantise on is V5 which has a
fibre at each point containing the rotations and isorotations. We can think of the
full space as a family of Skyrme configurations parametrised by vibrational (v),
rotational (φ, θ, ψ) and isorotational (α, β, γ) coordinates. The angular coordinates
are two sets of Euler angles defined in Chapter 2. To quantise we promote all

35



these parameters, including v, to dynamical degrees of freedom by allowing them
to depend on time. The kinetic energy can be written in terms of the angular and
isoangular velocities defined in (2.6) and the vibrational velocity as

T =
1

2
(v̇,a, c).g(v).(v̇,a, c)T , (3.7)

where g(v) is the metric on the full space, which depends on the Skyrme configu-
ration at v ∈ V5.

With the kinetic energy written in this way, the quantum kinetic operator is

− ~2

2
∆ = −~2

2

1√
|g|
∂i

(√
|g|gij∂j

)
, (3.8)

where |g| is the determinant of the metric. This preserves the classical symmetries
of the kinetic energy after quantisation.

The potential energy, V (v), is the mass (1.7) of the configuration at v. The
Hamiltonian is

H = −~2

2
∆ + V (v) . (3.9)

To find bound states of definite energy we solve the stationary Schrödinger equa-
tion arising from this Hamiltonian,

HΨ = EΨ . (3.10)

The FR constraints on Ψ can be written in terms of the classical symmetries
of the Skyrmion. For example, the B = 7 Skyrmion is invariant under a 2π/5

rotation around the 3-axis followed by a −4π/5 isorotation around the 3-axis in
isospace. In operator form, this C5 symmetry puts the following constraint on the
wavefunction

e
2πi
5
L̂3e−

4πi
5
K̂3Ψ = −Ψ , (3.11)

where L̂3 and K̂3 are the body fixed angular momentum operators defined earlier.
Similarly, the C3 symmetry gives the constraint

e2πi/3n1·L̂eiξn2·K̂Ψ = Ψ . (3.12)

where n1 = (−
√

2
15

(5−
√

5), 0,
√

1
15

(5 + 2
√

5)) is a vector which passes through
one of the dodecahedron’s vertices while ξ and n2 define the isorotation required to
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return the Skyrmion to its original colouring. The FR numbers can be calculated
using the rational map ansatz [7] as set out in [26].

The constraints (3.11) and (3.12) both apply when the Skyrmion has dodeca-
hedral symmetry. This occurs at the origin of V5. For a generic point v there is
no symmetry and thus no constraints. In the previous section we found lines in
V5 which had some symmetry. One set of these preserved D5 symmetry. Thus,
on these lines, only a constraint such as (3.11) applies, as well as an additional
constraint which enhances the C5 symmetry to D5. Another set of lines preserved
C3 symmetry, meaning the wavefunction must satisfy a constraint such as (3.12)
on these.

Now the problem is formulated. To include the lowest vibrational mode when
studying the states of 7Li/7Be we must solve (3.10), an 11-dimensional Schrödinger
equation, subject to (3.11) and (3.12) at s = 0, just a constraint such as (3.11) on
six lines in the vibrational space (representing the D5 preserving directions in V5)
and a constraint such as (3.12) on ten lines. There are further constraints on the
edges of the 5-simplex. To set up and solve this problem fully is too hard and so
we will make some simplifying assumptions.

We approach the problem in two ways. First, we focus on the symmetries
of V5 and solve a simplified problem which is consistent with all FR constraints
discussed above. This relies on the method we developed in Chapter 2. The
calculation allows us to gain an understanding of the structure of the wavefunction
globally but contains many assumptions: a harmonic potential, a separable kinetic
operator and no v dependence on the moments of inertia. We then try to find the
effect on the non-linearity of the potential and the variable moments of inertia by
considering the problem on a 1-dimensional subspace of V5. We call the approaches
the ‘global approach’ and the ‘local approach’ respectively.

3.2.1 A global quantisation

Near the origin of V5 the potential is harmonic and the metric is flat. We will solve
the problem with these assumptions and further that the metric on the full space
has no cross terms, so that g is block diagonal. The total wavefunction takes the
form

|Ψ〉 =
∑
i

u(i)(v) |Θ〉i , (3.13)
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where the vibrational wavefunctions u(i) satisfy the harmonic oscillator Schrödinger
equation in five-dimensions. The potential is

V (v) =
5

6

1

2
~ω2v.v , (3.14)

where we have defined the frequency of the vibration, ω. Note that we are using
the 6-dimensional vector v to describe a 5-dimensional space. The advantage of
this approach is that the symmetry properties of the manifold are simpler. The
ground state solution is

u0(v) ∝ Exp
(
− 5ω

12~
v.v

)
, (3.15)

which has energy 5
2
~ω. The first excited states have degeneracy five. They are of

the form
u
(i)
1 (v) ∝ v.vi Exp

(
− 5ω

12~
v.v

)
i = 1, . . . , 6 (3.16)

where vi are vectors defined in Section 3.1. They point in the direction of a D5

preserving mode in V5. Although there are six vectors vi, there are only five
independent states since

∑
i

u
(i)
1 ∝

(∑
i

vi

)
.v = 0 . (3.17)

These states have energy E = 7
2
~ω.

We can classify the vibrational wavefunctions by the irreducible representations
of the dodecahedral group I. The group has five irreducible representations which
have dimension 1, 3, 3, 4 and 5. We follow the conventions of [35] by naming these
the 1, F1, F2,4 and 5 representations respectively. To find how the vibrational
wavefunctions decompose into irreps, we use character theory. For a given irrep,
each element of the group I is associated with a character,. The character is the
trace of the matrix used to represent the group element, they are invariant under
conjugation and so we only need to know the character for a given conjugacy class
of group elements. There are five conjugacy classes of I, the first just contains
the trivial element. Another is the class of 2π

5
rotations about a face of the do-

decahedron while the set of 4π
5
rotations about the same axes forms another class.

The next is the class of 2π
3

rotations around any axis passing through a vertex of
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Rep e C5 C2
5 C3 C2

1 1 1 1 1 1
F1 3 τ 1− τ 0 -1
F2 3 1− τ τ 0 -1
4 4 -1 -1 1 0
5 5 0 0 -1 1

Table 3.1: The character table of the symmetry group I. The constant τ is equal
to 1

2

(
1 +
√

5
)
.

the dodecahedron. Finally, there is the set of symmetries which correspond to π
rotations. The character table is displayed in Table 3.1.

Any basis of vibrational wavefunctions can be decomposed into subsets which
transform as one of these representations. This is done by analysing how the
wavefunctions transform under elements of I which lie in each conjugacy class. In
fact, it will be sufficient to consider only the C3 and C5 elements. The ground
state wavefunction (3.15) transforms trivially under all symmetries and so it falls
into the irrep 1, also known as the trivial irrep. The excited states are more
complicated. The wavefunctions (3.16) transform simply into each other under
the symmetries of the dodecahedron. Under the C5 element which leaves the top
face invariant, the wavefunctions transform as

C5 : u =



u
(1)
1

u
(2)
1

u
(3)
1

u
(4)
1

u
(5)
1

u
(6)
1


→Mv(g5)u =



1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0





u
(1)
1

u
(2)
1

u
(3)
1

u
(4)
1

u
(5)
1

u
(6)
1


, (3.18)

while a C3 symmetry around the axis v1 + v2 + v3 permutes the wavefunctions as

C3 : u =



u
(1)
1

u
(2)
1

u
(3)
1

u
(4)
1

u
(5)
1

u
(6)
1


→Mv(g3)u =



0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 −1 0 0

0 0 0 0 −1 0





u
(1)
1

u
(2)
1

u
(3)
1

u
(4)
1

u
(5)
1

u
(6)
1


. (3.19)
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We follow the notation of Chapter 2. Suppose the wavefunctions fall into the
representation ρv and let the character of this representation under the symmetry
group element g be denoted χgρv . We know that this six-dimensional space of
excited vibrational wavefunctions contains the combination∑

i

u
(i)
1 = 0 , (3.20)

which transforms trivially under all elements, since it is equal to zero. Hence the
irreducible decomposition of the wavefunctions takes the form ρv = 1⊕ρ′v. Under
the direct sum of representation, the characters of each representation add. Hence
the characters of ρ′v are

χg3ρ′v = Tr(Mv(g3))− 1 = −1 (3.21)

and
χg5ρ′v = Tr(Mv(g5))− 1 = 0 . (3.22)

Comparison with the character table tells us that ρ′v is the irrep 5.
We now combine the vibrational wavefunctions with rotational states. A valid

rovibrational state can be created if the vibrational wavefunctions transform in
the same way as the spin states. Hence, we must classify the spin states in the
same way as we have classified the vibrational states: by decomposing them into
irreducible representations. The transformations C3 and C5 have equivalent trans-
formations which act on the Skyrme configurations in V5 in the form of rotations
and isorotations. These can then be turned into operations on spin states by
exponentiating the transformations. The C5 operator is

R̂g5 = exp
(
i
2π

5
L̂z

)
exp

(
i
6π

5
K̂z

)
, (3.23)

where we have chosen the isorotational angle to be 6π/5 rather than −4π/5 so that
this transformation gives rise to a FR number of +1. Hence, we have automatically
factored out the FR representation mentioned in Chapter 2. The C3 operator is

R̂g3 = exp
(
i
2π

3
n1.(L̂x, L̂y, L̂z)

)
exp

(
i
2π

3
n2.(K̂x, K̂y, K̂z)

)
, (3.24)

where

n1 =

(√
2

15
(5−

√
5), 0,

√
1

15
(5 + 2

√
5)

)
(3.25)
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and

n2 =

(
−
√

2

15
(5 +

√
5), 0,−

√
1

15
(5− 2

√
5)

)
. (3.26)

By considering these operators for a given (J, I) pair, we find a representation of
the spin state whose dimension depends on the spin and isospins being considered.
The characters of the representation for some low spins and isospin are displayed
in Table 3.2.

J/I 1
2
/1
2

3
2
/1
2

5
2
/1
2

7
2
/1
2

χRg5 -1 1− τ τ − 1 1
χRg3 1 -1 0 1

Table 3.2: The characters of the rotation matrices (3.23) and (3.24).

This gives us enough information to decompose each spin, isospin pair. The
decompositions are detailed in Table (3.3).

J/I 1
2
/1
2

3
2
/1
2

5
2
/1
2

7
2
/1
2

Irrep decomposition 4 3⊕ 5 F1 ⊕ 4⊕ 5 1⊕ F1 ⊕ F2 ⊕ 4⊕ 5

Table 3.3: The irreducible decomposition of the spin state.

The spin 7
2
states have a trivial factor and so there is a spin 7

2
state which

transforms trivially under all of these rotation-isorotation operators. This may be
combined with the ground state u0. The total state is of the form

|Ψ〉 = u0(v)

(
√

3

(
|7
2
,
7

2
〉 |1

2
,
1

2
〉 − |7

2
,−7

2
〉 |1

2
,−1

2
〉
)

+
√

7

(
|7
2
,
3

2
〉 |1

2
,−1

2
〉+ |7

2
,−3

2
〉 |1

2
,
1

2
〉
))

, (3.27)

as expected since this state is seen in rigid body quantisation. Further, these
decompositions tell us that the vibrational wavefunctions {u(i)1 }, which fall into
the 5 representation, may be combined with spin 3

2
, spin 5

2
and spin 7

2
states, since

these all have a 5 factor. The spin 3
2
state, |Ψ〉(

3
2
) is vastly more complicated than
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(3.27). We may calculate it using the technique described in Chapter 2. It is of
the form ∑

i,L3,K3

ai,L3,K3u
(i)

∣∣∣∣32 , L3

〉 ∣∣∣∣12 , K3

〉
. (3.28)

Thirty-two of its forty-eight coefficients are non-zero and the analytic expression
for any one of these coefficients is not easily written down. However, we can check
that the rovibrational wavefunction is the correct one by viewing it at specific
points in V5 where its expression simplifies. For example at v = (0, 0, 0, 0, 0, 0) the
wavefunction is

|Ψ〉(
3
2
) ∝

∑
i

u
(i)
1 (v) = 0 . (3.29)

This is necessary as no spin 3
2
, isospin 1

2
states are allowed at the dodecahedron.

At the point v = v1 the wavefunction is proportional to∣∣∣∣32 , 3

2

〉 ∣∣∣∣12 ,−1

2

〉
+

∣∣∣∣32 ,−3

2

〉 ∣∣∣∣12 , 1

2

〉
, (3.30)

which is the state allowed by the D5 symmetry preserved along the line λv1 in V5.
There are similar excited rovibrational states for spin 5

2
and 7

2
.

The lowest energy spin 1
2
, isospin 1

2
state is not permitted on V5. Instead it is

concentrated on a vibrational manifold which transforms as the 4 representation.
Baskerville found such a vibration in [35]. It has frequency ω′ = 0.45 compared to
ω = 0.302 for the vibration corresponding to V5. Hence the spin 1

2
state will have

approximately
∆Ev = ~(ω′ − ω) , (3.31)

more vibrational energy than the excited states discussed above.
We can crudely approximate the energies of the four states mentioned above

using

E =
~2

2V
J(J + 1) +

~2

2U
I(I + 1) +

1

2
~ω(5 + 2k1) +

1

2
~ω′(4 + 2k2) , (3.32)

where V and U are the average value of the spatial and isospatial moment of
inertia tensors of the B = 7 Skyrmion and ki are equal to zero or one, depending
on which state is being considered. To compare this to experimental data we must
calibrate the model. We will do this later. For now, we present the rotational and
vibrational contributions in Table 3.4. We see that one could calibrate the model

42



State Rotational Isorotational Vibration 1 Vibration 2
7
2

~2
2V

7
2
9
2

~2
2U

1
2
3
2

5
2
~ω 2~ω′

3
2

~2
2V

3
2
5
2

~2
2U

1
2
3
2

7
2
~ω 2~ω′

5
2

~2
2V

5
2
7
2

~2
2U

1
2
3
2

7
2
~ω 2~ω′

7
2

~2
2V

7
2
9
2

~2
2U

1
2
3
2

7
2
~ω 2~ω′

1
2

~2
2V

1
2
3
2

~2
2U

1
2
3
2

5
2
~ω 3~ω′

Table 3.4: The approximate energy contributions for each state we discuss in the
text. Here, we separate the approximate rotational, isorotation, vibra-
tional (from V5) and vibrational (from the 4-dimensional vibrational
manifold) energies.

to give a spin 7
2
state which lies above the spin 1

2
state, which could turn lie above

the 3
2
state as required from experimental data. However, our approximations are

rather crude and we don’t have much faith in the numbers of Table 3.4.
Several important issues were not considered in this analysis. Some are:

1. The potential (3.14) is harmonic. However, away from the origin of V5, the
potential flattens out since the Skyrmion separates into individual clusters.
A Morse potential or a numerically generated potential would reflect the
physics more accurately.

2. We estimate the rotational energy by taking the moment of inertia tensor
to be equal to its value at the dodecahedron. As the Skyrmion deforms, the
moment of inertia tensor will change significantly.

3. The metric on V5 was assumed to be flat. This is true near the dodecahedron,
but not away from it.

4. We assumed there were no cross-terms between the vibrational and rotational
parts of the metric on V5. This was unjustified and in other systems the
cross-terms can make a considerable difference to the energies of the states
[51].

5. The spin 1
2
state is concentrated on a vibrational manifold which transforms

as the irrep 4. To estimate the energy of this state, we should attempt to
understand this manifold better.
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In the next section, we will try to take account of the first three points mentioned
here by considering the problem along a special line in V5.

3.2.2 A local quantisation

In the harmonic approach, the potential and the total wavefunctions are isotropic.
In reality, the potential has low energy valleys in certain directions, such as along
the special symmetric lines discussed in Section (3.1). The line preserving C3

symmetry has the lowest asymptotic energy and so it is likely the lowest energy
direction in V5. Hence, in reality the total wavefunction will be concentrated along
these lines. We consider the problem restricted to the C3 symmetric line, which
reduces the difficulty of the problem. The simplicity means that we can take
account of some of the complications neglected in the previous section. In the
harmonic approximation, the vibrational wavefunction restricted to this line is a
one-dimensional harmonic oscillator which satisfies(

−~2

2

d2

ds2
+

1

2
ω2s2 + EJ(0)

)
uh(s) = Euh(s) . (3.33)

We have introduced the coordinate s which parametrises the line. We will study
the related Schrödinger equation but with the anharmonic potential, the variable
moments of inertia and the correction to the flat metric incorporated.

The C3 symmetry present on this line restricts the form of the metric which is
now 7-dimensional. Using the same notation as in Section 2.1 the metric is

g =

Λ 0

0
U −W
−W T V

 , (3.34)

where U , W and V are 3 × 3 matrices and Λ is a scalar. The kinetic energy is
invariant under the action of the symmetry group of the vibration. This restriction
means that, along this line in V5, the cross terms in the metric vanish and the
kinetic energy is separable. The wavefunction takes the form

|Ψ〉 =
∑
i

ui(s) |Θ〉i . (3.35)
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Consider a rotational state with spin J and suppose the rotational energy
contribution EJ(s) satisfies

− ~2

2
∇2ΘJ = EJ(s)ΘJ . (3.36)

Note that the rotational energy contribution is a function of s through its depen-
dence on the moments of inertia which vary as the Skyrmion deforms. Then the
Schrödinger equation

− ~2

2
∆ |Ψ〉+ V (s) |Ψ〉 = E |Ψ〉 , (3.37)

reduces to the 1-dimensional equation(
− ~2

2
√
|g|
∂s

(√
|g|

Λ
∂s

)
+ V (s) + EJ(s)

)
u(s) = Eu(s) . (3.38)

To solve this we must first generate g(s), V (s) and EJ(s). We will do this using
gradient flow.

Gradient flow generates a path of steepest descent in field space. We use the
separated Skyrmion clusters as initial configurations which are then evolved in
gradient flow time τ according to

dπ

dτ
= −δM7

δπ
, (3.39)

where π are the pion fields and M7 is the potential energy (1.7). This flow reduces
the potential energy of the system and ends at a stationary point of field space.
The fields π(τ) approximate the Skyrme configurations along a line in V5. The
solution of (3.39) is beyond analytic calculation and so we must use a numerical
code to calculate the flow. The energy V (τ) and the metric g(τ) are calculated at
numerous points during the process.

The metric at time τ can be expressed in terms of the currents Ri(τ) =

(∂iU)U−1 and Ti(τ) = i
2
[σi, U ]U−1. The moments of inertia and Λ are given
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by

Λ = −
∫

Tr
(
RτRτ +

1

4
[Rτ , Ri][Rτ , Ri]

)
d3x (3.40)

Uij = −
∫

Tr
(
TiTj +

1

4
[Rk, Ti][Rk, Tj]

)
d3x (3.41)

Wij =

∫
εjlmxlTr

(
TiRm +

1

4
[Rk, Ti][Rk, Rm]

)
d3x (3.42)

Vij = −
∫
εilmεjnpxlxnTr

(
RmRp +

1

4
[Rk, Rm][Rk, Rp]

)
d3x . (3.43)

In contrast to Chapter 2, the moments of inertia now depend on τ .
Gradient flow time is an unnatural parameter when the Skyrmion clusters are

widely separated and near the dodecahedral configuration. Thus, once we have
found our quantities numerically we change variables to the geodesic distance, s
[12]. This can be defined in terms of the vibrational kinetic energy by demanding

Tvib =
1

2
ṡ2 =

1

2
Λ(τ)τ̇ 2 , (3.44)

which means that
s(τ) =

∫ τ√
Λ(τ ′) dτ ′ . (3.45)

There are several advantages to this new coordinate. First, the geodesic distance
is related to the cluster separation, r, asymptotically. We can calculate how the
moments of inertia vary with r and this gives an asymptotic check of the numerics.
Additionally we are able to add an analytic tail to the numerically derived potential
and moments of inertia. Further, we may now calculate the harmonic frequency
near the origin of V5 and compare it to what was calculated in [35]. We find the
frequency to be 0.34 compared with 0.302 as found in [35]. These are approximately
the same, showing that the methods are consistent. The small difference is likely
due to the different pion masses used. Finally, the new coordinate simplifies the
Schrödinger equation (3.38). It now reads(

−~2

2

d2

ds2
− ~2

4
∂s log(|g|) d

ds
+ V (s) + EJ(s)

)
u(s) = Eu(s) . (3.46)

From now on, s will refer exclusively to the geodesic distance.
We must generate two gradient flows. For the first (s > 0), the initial configu-

ration for the gradient flow is constructed using a symmetrised product ansatz of
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a B = 3 Skyrmion with a B = 4 Skyrmion. These are orientated as in Figure 3.4.
The second flow (s < 0) begins with seven individual Skyrmions, six arranged in
a hexagon with one in the center. We then patch the flows together at s = 0. The
C3 symmetry constrains the form of the metric. We find that U , V and W are all
diagonal. Further

U11 = U22, V11 = V22, and W11 = W22 , (3.47)

and we have set Λ = 1 by choosing our parameter to be the geodesic distance.
By considering the global wavefunctions derived in Section 3.2.1 restricted to

the line of C3 symmetric configurations in V5, we can discover which spin states
are allowed along the line. The global wavefunctions of Section 3.2.1 are orientated
so that the Skyrmion has manifest D5 symmetry. We can reorient the Skyrmion
(and spin state) to have manifest C3 symmetry by applying a suitable rotation-
isorotation operator to the spin states. Once the global wavefunction has been
restricted and rotated, the spin 7

2
ground state becomes proportional to(

|7
2
,
1

2
〉 |1

2
,
1

2
〉+ |7

2
,−1

2
〉 |1

2
,−1

2
〉
)

+

(
|7
2
,−5

2
〉 |1

2
,
1

2
〉 − |7

2
,
5

2
〉 |1

2
,−1

2
〉
)

(3.48)

+
2√
7

(
|7
2
,
7

2
〉 |1

2
,
1

2
〉 − |7

2
,−7

2
〉 |1

2
,−1

2
〉
)
≡ |Θ〉(1)7

2

+ |Θ〉(2)7
2

+
2√
7
|Θ〉(3)7

2

, (3.49)

which is the state allowed by rigid body quantisation, as expected. Hence our
ansatz for this rovibrational state is

|Ψ〉g7
2

= u
(1)
7
2

(s) |Θ〉(1)7
2

+ u
(2)
7
2

(s) |Θ〉(2)7
2

+
2√
7
u
(3)
7
2

(s) |Θ〉(3)7
2

, (3.50)

with the u(i) equal at s = 0 to satisfy the FR constraint at the dodecahedron. By
a similar method, the ansatz for the vibrationally excited spin 3

2
, 5

2
and 7

2
states

are

|Ψ〉 3
2

= u 3
2
(s)

(∣∣∣∣32 , 1

2

〉 ∣∣∣∣12 , 1

2

〉
+

∣∣∣∣32 ,−1

2

〉 ∣∣∣∣12 ,−1

2

〉)
(3.51)

|Ψ〉 5
2

= u
(1)
5
2

(s)

(∣∣∣∣52 , 1

2

〉 ∣∣∣∣12 , 1

2

〉
+

∣∣∣∣52 ,−1

2

〉 ∣∣∣∣12 ,−1

2

〉)
+

1√
2
u
(2)
5
2

(s)

(∣∣∣∣52 ,−5

2

〉 ∣∣∣∣12 , 1

2

〉
−
∣∣∣∣52 , 5

2

〉 ∣∣∣∣12 ,−1

2

〉)
|Ψ〉e7

2
=

3

2
√

7
v
(1)
7
2

(s) |Θ〉(1)7
2

+
1

2
√

7
v
(2)
7
2

(s) |Θ〉(2)7
2

− v(3)7
2

(s) |Θ〉(3)7
2

.
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Consider the spin 3
2
state (3.51). Inserting this ansatz into the Schrödinger

equation (3.10) we find that u 3
2
satisfies(

~2

2

( V11
2 (U11V11 −W 2

11)
+

3U11

2 (V11U11 −W11)
+

1

U33V33 −W 2
33

(9

4
U33 +

1

4
V33−

3

2
W33

))
−~2

2

d2

ds2
− ~2

4
∂s log(|g|) d

ds
+ V (s)

)
u 3

2
(s) = Eu 3

2
(s) .

(3.52)

We would like to understand the contributions from rotations and vibrations sep-
arately. There is no unique way to split the energy; we choose to define the rota-
tional energy contribution as the rigid body energy of the undeformed Skyrmion,
EJ(0). We may then split the energy E into three parts: the classical mass of
the Skyrmion M7 = V (0), the contribution from the rigid rotation EJ(0), and the
energy contribution from the vibration εvib. We write E = M7 + EJ(0) + εvib and
the Schrödinger equation becomes(

−~2

2

d2

ds2
− ~2

4
∂s log(|g|) d

ds
+ Veff(s)

)
u 3

2
(s) = εvibu 3

2
(s) , (3.53)

where Veff(s) = V (s)−M7 + EJ(s)− EJ(0). Note that Veff(0) = 0. We must now
solve (3.53) numerically. As the potential energy in the direction of negative s is
very high and approximately harmonic where our wavefunctions are concentrated,
the wavefunctions approximately satisfy the harmonic oscillator equation for large
negative s. This gives us a boundary condition on u(s). We then solve equation
(3.53) numerically using a shooting technique, knowing that the wavefunction must
decay asymptotically for large s.

The states made from several spin states are harder to deal with. For example,
the spin 7

2
ground state (3.50) contains three vibrational wavefunctions each satis-

fying a Schrödinger equation such as (3.53), with eigenvalues ε(i)vib. However, these
eigenvalues are all different since the effective potential is different in each case.
Hence the rovibrational wavefunction (3.50) cannot be the true energy eigenstate,
though it is an approximate one. Inclusion of cross terms in the metric, which ap-
pear on the total manifold, would let the states mix giving a consistent formalism.
We approximate the true energy by calculating a weighted average, based on the
relative importance of each term in the harmonic approximation. In this case the
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approximate energy ε̄vib is equal to

ε̄vib =
7

18

(
ε
(1)
vib + ε

(2)
vib +

4

7
ε
(3)
vib

)
. (3.54)

We deal with all the states in this way.

Calibration of the model

Before comparing our results to experimental data we must calibrate the model.
All previous calibrations are based on zero mode quantisation and as such we don’t
necessarily expect our choice of parameters to match previous studies. The vibra-
tional energy contribution is of order ~ while the rotational energy contribution is
of order ~2. Thus the relative energies of the states will be sensitive to the value
of ~.

In Figure 3.5 the quantum energy of each state is plotted (in Skyrme units) for
various values of ~. The most important feature of the plot is that the spin 7

2
state

increases in energy, relative to the other states, as ~ increases. This is because the
spin 7

2
state has the largest rotational energy and the smallest vibrational energy;

rotational effects dominate for large ~ while vibrational effects dominate for small
~. To match experimental data the spin 7

2
state must lie between the spin 3

2
state

and the first spin 5
2
state. This occurs when

60 < ~ < 70 , (3.55)

and as such we demand that ~ lies in this interval. For illustrative purposes we
fix ~ = 65. This is large compared to the parameter choice of [37] and [30] where
the authors use rigid body quantisation. However, it is closer to the value of ~
used by Adkins, Nappi and Witten [21]. In their seminal paper, they quantised
the B = 1 Skyrmion. This has no vibrational corrections and so it makes sense
that a quantisation taking account of vibrational modes (such as ours) should have
similar parameters to theirs.

We are left to choose the value of Fπ, as ~ fixes the dimensionless constant e
through the identity ~ = 2e2. We will consider two alternative calibrations:

(i) Fπ = 60 MeV

(ii) Fπ = 139 MeV.
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Figure 3.5: The quantum energy of each state (in Skyrme units) as a function of
~.

Parameter choice (i) gives a good fit to the size of the gaps in the energy spectrum
but underestimates the total mass of the Skyrmion compared to the total mass
of 7Li. Choice (ii) gives a reasonable value of the total mass but overestimates
the gaps in the spectrum. We have fixed the dimensionless pion mass m to 1

throughout.

Results

We solved the Schrödinger equation (3.53) for all states discussed in Section 3.2.2.
The numerically generated vibrational wavefunctions u(s) for each state is plotted
in Table 3.5. We also note the classical mass of the Skyrmion M7, the energy
contribution from rotations EJ(0) and the contribution from vibrations εvib, as well
as the total energy of each state E. Our results are then compared to experimental
data in Table 3.6 for each calibration (i) and (ii).

The results are promising. All of the states considered are seen experimentally
and we are only missing the spin 1

2
state which we have already discussed. The

ordering is correct and most importantly, the second spin 7
2
state lies between the

spin 3
2
and 5

2
states. The spin 7

2
state in our model has too much energy to be

identified with the experimentally observed state. Hence, this is likely described
by a spin 7

2
state excited in a different vibrational manifold. The size of the gaps

in the energy spectrum are reasonable for calibration (i) and much too large for
calibration (ii).
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State Vibrational wavefunction M7 + EJ(0) + εvib E

|Ψ〉 3
2

-30 -10 10 30 50 70 90

- 1.0

- 0.5

0.5

1.0

985.13 + 10.34 + 20.88 1016.35

|Ψ〉 5
2

-30 -10 10 30 50 70 90

- 1.5

- 1.0

- 0.5

0.5

1.0

1.5

985.13 + 15.91 + 19.09 1020.13

|Ψ〉ground7
2

-30 -10 10 30 50 70 70

0.2

0.4

0.6

0.8

1.0

985.13 + 23.75 + 8.91 1017.79

|Ψ〉excited7
2

-30 -10 10 30 50 70 90

- 1.0

- 0.5

0.5

1.0

985.13 + 23.75 + 22.23 1031.11

Table 3.5: The numerical results for quantisation along the C3 direction. We dis-
play the composite vibrational wavefunctions, classical mass energy con-
tribution, rotational energy contribution and vibrational energy contri-
bution for each spin state considered in the text. All results are in
Skyrme units with ~ = 65.

The remaining unexplained experimental states of the 7Li spectrum have spin
1
2
, 5

2
, 3

2
and 3

2
. These have natural descriptions in our model. The spin 1

2
and

spin 5
2
states are not allowed by the vibration we’ve considered. Instead, they

will be excited in the mode with 4 symmetry. This vibration also accommodates
the second spin 7

2
state. In fact, the three states lie on an approximate rotational

band [38], giving credence to the idea. The excited spin 3
2
states have isospin 3

2
, a

possibility we neglected for simplicity. This would also describe the ground states
of 7B and 7He which have spin 3

2
.

The mass of the 7Li nucleus is 6535 MeV. Calibration (ii) gives the total mass
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Energy relative to ground state (MeV)
State Experiment Calibration (i) Calibration (ii)
|Ψ〉 3

2
0 0 0

|Ψ〉ground7
2

4.63 3.80 8.79

|Ψ〉 5
2

6.68 9.95 23.06

|Ψ〉excited7
2

9.67 38.85 90.01

Table 3.6: A comparison of the experimentally obtained energy spectrum of 7Li
(column 1) with the results from our calculation using Calibration (i)
(column 2) and Calibration (ii) (column 3). The experimental data is
from [38].

of the ground state to be 6195 MeV which is very close to the experimental value.
Calibration (i) gives a much smaller value, only 2674 MeV. There are several
ways this could be remedied. First, we have only taken one of the Skyrmion’s
vibrational modes into account. There are approximately 6B modes, all of which
will contribute to the energy. The Casimir energy contribution is also large, a 50%

correction in the B = 1 sector [31], though does not necessarily alter the structure
of the energy spectrum [39]. Finally, the Lagrangian may be altered to include a
6th order term which can be chosen to contribute positively to the mass. When
this term is the same order as the other terms in the Lagrangian, the Skyrmion
solutions do not change significantly [40]. Thus the calculation in this paper would
not vary greatly except for the total energy. These three factors could combine to
give a reasonable value for the total mass. They also highlight the uncertainty in
calculations of total mass in the Skyrme model.

Inclusion of the C3 vibration has given us a good model of the spin 3
2
, 7

2
and 5

2

states of the 7Li/7Be isodoublet. Further, it brings us closer to the cluster model
of nuclei. This is apparent when we plot the classical baryon density at the second
maximum of the vibrational wavefunctions. The quantum state is an admixture
of different configurations. The leftmost density plotted in Figure 3.6 is a highly
contributing configuration for the excited vibrational wavefunctions. The other
important configuration is on the other side of the vibration. With this classical
picture in mind, the spin 3

2
state exhibits clustering while the spin 7

2
state does

not. This goes against conventional wisdom in the cluster model where the ground
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state is generally the most isotropic.

Figure 3.6: Plots of the baryon density at a maximum value of the vibrational
wavefunctions. The spin 3

2
state is on the left while the spin 7

2
state is

on the right.

3.2.3 The root mean square matter radius

Although the energy spectrum results are promising, they are sensitive to the
calibration of the model. Hence, it would be better to find a result robust to
calibration changes. We saw in Figure 3.6 that the different states appear to have
different sizes and so a statement about the size of the nucleus may be the best
route to find an interesting result. The simplest quantitative measure of the size
of a nucleus is the root mean square (rms) matter radius, 〈rm〉. We can calculate
this for each value of s by taking the square root of

r2m(s) =

∫
|x|2ρ(x, s) d3x∫
ρ(x, s) d3x

, (3.56)

where ρ(x, s) is the energy density of the Skyrme configuration at s. For a given
state, the rms matter radius is then

〈rm〉 = 〈ΨJ | rm(s) |ΨJ〉 =

∫
rm(s)u2J(s)

√
|g| ds , (3.57)

where we have taken the vibrational wavefunctions to be normalised. We find that
the matter radius of the spin 3

2
state, in Skyrme units, is

〈rm〉 3
2

= 2.11. (3.58)

53



Experiments are unable to measure the matter radius directly. However in most
nuclei the matter and charge radii are very similar. Thus we compare (3.58) to
the experimentally determined charge radius, 2.444 fm. The result depends on
our choice of Fπ. Calibration (i) gives a matter radius of 2.43 fm, matching the
experimental value. However calibration (ii) gives a very small radius, 1.05 fm.
Earlier we found that calibration (i) gave a better match to the energy spectrum.
This result adds weight to the idea that it is the better choice. Regardless, ratios
of lengths are independent of Fπ. As such we can compare the matter radii for the
spin 7

2
and spin 3

2
states and have more trust in the result. We find that

〈rm〉 3
2

〈rm〉 7
2

= 1.11 . (3.59)

Thus we predict that the ground state of 7Li is 11% larger than the second excited
state, which has spin 7

2
. The rms charge radius of an excited state is difficult to

measure experimentally. As such there is no data to confirm our prediction. This
is an important signature for the Skyrme model as this prediction is in conflict
with the standard cluster model and shell model predictions.

3.2.4 Comparison with harmonic approximation

We are interested in the difference between the harmonic approximation and the
Schrödinger equation displayed in (3.53). The three aspects we were able to include
by restricting the equation were: the anharmonic potential, the non-flat metric of
V5 and the s dependence of the moments of inertia. We will try and extract the
consequence of each of these effects.

In Figure 3.7, we plot the spin 3
2
vibrational wavefunction u 3

2
against the har-

monic wavefunction. The main difference between the wavefunctions is that the
harmonic wavefunction is equally distributed around s = 0 while u 3

2
is focused

more in the s > 0 region. This is because the potential is much flatter in this
direction, where the Skyrmion splits into the 3 + 4 cluster rather than the high
energy seven-Skyrmion direction. The harmonic wavefunction has around 50%
more energy than u 3

2
, since the true potential flattens out asymptotically. This is

a large difference. In Chapter 2, we discussed calculating the binding energy of
a vibrationally quantised Skyrmion using a harmonic approximation. This result
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Figure 3.7: A comparison between the simple harmonic wavefunction (orange) and
the wavefunction calculated in this chapter (blue). The effective po-
tential is also plotted in green.

shows that a harmonic calculation could vastly overestimate the total quantum
energy of the Skyrmion.

The best way to understand the moment of inertia dependence is to compare
two vibrational wavefunctions with the same spin, such as the spin 5

2
ones. The

spin 5
2
rovibrational wavefunction has the form

u
(1)
5
2

(
|5
2
,
1

2
〉 |1

2
,
1

2
〉+ |5

2
,−1

2
〉 |1

2
,−1

2
〉
)

+
u
(2)
5
2√
2

(
|5
2
,−5

2
〉 |1

2
,
1

2
〉 − |5

2
,
5

2
〉 |1

2
,−1

2
〉
)
.

(3.60)
The vibrational wavefunctions u(1)5

2

and u(2)5
2

have a vibrational energy of 17.3 and

22.7 respectively, in Skyrme units. The second spin 5
2
state has much higher energy.

This can be understood by considering the body-fixed spin classically. The highly
excited state has |L3| = 5

2
. This means that the spin is around the 3-axis. This

gives a large energy contribution since the Skyrmion is prolate in this direction for
positive s, where the vibrational wavefunction is concentrated. The lower energy
spin 5

2
state has |L3| = 1

2
which allows it to rotate about an axis orthogonal to the

prolate one, which gives a much lower energy.
We can find the effect of the flat metric by redoing the calculation of this

section but with the vibrational cross term equal to zero. We plot the spin 3
2

vibrational wavefunction for each of these two cases in Figure (3.8). We see that
the wavefunction with the metric correction included is concentrated more towards
s = 0. The correction is a measure of the distance in configuration space. This
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shows that the flat metric underestimates the distances in V5, though it is a small
correction.

20 40 60 80 100 120 140

- 0.5

0.5

Figure 3.8: A comparison between the wavefunctions when the metric correction is
included. The vibrational wavefunction with the cross-terms included
is denoted u, while the vibrational wavefunction without the cross-term
is v.

Overall, there is a large difference between the wavefunctions in both schemes,
especially their energies. To really understand their differences we should try to
solve the Schrödinger equation on the full 5-dimensional manifold which is beyond
our current techniques.

3.3 Conclusion and outlook

In this chapter we have considered the inclusion of vibrational modes in the quan-
tisation of the B = 7 Skyrmion. We argued that to understand the low lying states
of the 7Li/7Be isodoublet one can truncate to quantisation along a 1-dimensional
line in vibrational space, V5. The space has a rich structure best understood us-
ing the geometry of a 5-simplex. Using this, we picked a special direction in the
space to quantise along. The calculation gives a reasonable energy spectrum, much
closer to the experimental data than had previously been found using rigid body
quantisation. Most importantly, the spectrum can explain all experimentally seen
states and has the spin 7

2
state lying above the spin 3

2
state.

During the quantisation procedure some cluster structure emerged. This brings
the Skyrme model closer to the cluster models which are used widely in nuclear
physics. The advantage of the Skyrme model is that the dynamics of the clusters
are fully determined by the Skyrme Lagrangian. They can merge smoothly into the
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B = 7 Skyrmion or be infinitely separated; our formalism naturally takes account
of all configurations in between.

We predict that the excited spin 7
2
state of 7Li is smaller than the spin 3

2
ground

state. The result depends crucially on the dodecahedral symmetry of the B = 7

Skyrmion. This symmetry appears to persist in modified Skyrme models except
in extreme BPS models [16] [15]. Thus this prediction is an important signature
for soliton models of finite nuclei.

Vibrational modes have the capacity to fix many issues in the Skyrme model
including the high binding energies and small radii found using zero mode quan-
tisation. They also have a fascinating and rich geometric structure. For these
reasons alone, more work should be done to understand the vibrational spaces of
Skyrmions. It is somewhat surprising that their inclusion leads to a resolution of
problems in the B = 7 sector. Hopefully a similar analysis in other sectors can
produce more surprises.
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Chapter 4

A dynamical α-cluster model of 16O

This chapter is based on the calculation presented in the joint paper with C. King
and N. S. Manton [41].

The energy spectrum of the Oxygen-16 nucleus has posed a challenge to nuclear
physicists for decades. Its ground state has spin-parity 0+, as does the first excited
state at 6.05 MeV. We mention this excited state frequently and so we introduce
the notation 0+

e to refer to it. The fact that the two lowest energy states both
have spin 0+ is unusual. Not many nuclei contain this feature in their spectrum
and few models predict such states. There is a spin 3− state at 6.1 MeV which is
thought to lie on a rotational band with the ground state. The band also includes
a spin 4+ state at 10.3 MeV. However, the band does not include a spin 2 state,
hinting at some enhanced symmetry of the nucleus. Instead, the lowest energy
spin 2+ state is at 6.9 MeV. There are many more states, around 100 are known
up to 20 MeV, but knowledge of these low lying states suffices to describe the main
theoretical work on the nucleus.

It was suggested in the 1930s that the nucleus could be described by four α-
particles arranged in a tetrahedron. This is the shape which maximises the number
of short bonds between the particles. Wheeler [42] studied a point particle model
localised around the tetrahedron. By looking at small fluctuations around this
configuration he found a rich spectrum for the nucleus and a simple geometric
interpretation of the states. For example, the ground state wavefunction is focused
about the tetrahedron. We say that the ground state has a tetrahedral nature.

The shell model has also been used to describe the nucleus; the ground state of
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Oxygen-16 is a doubly closed shell and so is spherically symmetric. Although the
structure of the ground state in the shell model appears to contradict the tetra-
hedral configuration of Wheeler; Perring and Skyrme showed that they are in fact
identical descriptions within a simple harmonic approximation [43] . Excitations
in the shell model arise when individual nucleons are excited. The standard shell
model struggles to describe the state 0+

e . Some studies [44] have shown that the
state could be interpreted as a four-particle-four-hole configuration. Although this
configuration has the correct spin-parity, its energy is much larger than 6.05 MeV
[45]. In addition, the shell model cannot reproduce the large E3 transition rate
between the low lying spin 3− state and the ground state. This is part of a wider
problem – the shell model struggles when collective behaviour becomes important.
Elliott showed that one must factor out the center of mass coordinates to study
collective behaviour in the shell model [46, 47]. This helped gain an understanding
of some negative parity states of Oxygen-16 but the same model applied to positive
parity states had limited success. A modern attempt [48] appears to do better,
although the authors fail to find any 0− or 3+ states, both of which exist in the
low lying spectrum.

Recently, more fundamental models have been used to study the nucleus. These
include the lattice ab initio model from Epelbaum et al. [49]. Here, individual
nucleons interact via chiral effective field theory. Their degrees of freedom are
positions on a lattice and the formalism uses powerful Monte Carlo methods to
calculate an energy spectrum and allows the authors to probe the structure of
each quantum state. They find that α-clustering emerges from this single nucleon
model. The ground state of the nucleus is dominated by the tetrahedral config-
uration - in agreement with other models. In contrast, the 0+

e state looks more
like a square arrangement of α-particles. The authors also find that the first spin
2 state is square-like in nature, interpreting it as a rotational excitation of the
spin 0+

e state. We believe this interpretation is problematic. Suppose that the 0+
e

state and first 2+ state lie on a rotational band from the flat square while the 0+

and 3− lie on a rotational band from the tetrahedron. Each band has a gradient
associated to it and the ratio of these gradients is related to the relative sizes of the
configurations. Hence, from the experimental energies we can calculate the size of
the square compared to the tetrahedron. In a simple point particle approximation
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the ratio of the third components of the moment of inertia tensor would be

V square
33

V tet
33

≈ 3 , (4.1)

which seems unreasonably large; a flat square configuration of this size would likely
be unbound. In addition, the lattice ab initio method requires large amounts of
computation time, especially as energies get large. Negative parity also appears
to pose a problem; only positive parity states up to 7 MeV have been discovered
in the model.

Other modern models such as the antisymmetrised molecular dynamics model
[50] also find these geometric cluster configurations arising from a more funda-
mental starting point. This fact, and the work discussed so far, suggests that the
α-cluster model is an essential tool for describing the 16O nucleus. As such, we
shall now review the topic in more detail.

Dennison built on the pioneering work of Wheeler. In [51] he still describes the
nucleus in a simple point particle model and considers harmonic oscillations around
the tetrahedral configuration. In this work the 0+

e state is identified as a breathing
configuration – a vibrational mode which symmetrically stretches the tetrahedron.
It also considers tunnelling energy - this is a contribution caused by a single α-
particle passing through the other three to form the dual tetrahedron. Sensibly,
Dennison ignores the tunneling energy as the corresponding path in configuration
space is of very high energy. However, we will show that a much shallower path to
the dual tetrahedron exists. This will have a large effect on the low lying energy
spectrum so should not be ignored. Later, Robson [52] confirmed that the 3− state
is a rotational excitation of the ground 0+ state by looking at electron scattering off
the nucleus. Form factors between states in a rotational band are simply related,
and Robson showed that the relation holds for these states.

Bauhoff et al. [10] used the cluster model to study the configuration space
of four α-particles. Using a variety of different forces between the particles, they
looked for configurations which minimise the static energy of the system. This,
alongside other calculations [53, 54], found several important configurations be-
sides the tetrahedron. Namely, the flat square (as rediscovered by Epelbaum et
al.), the bent square and the chain. The Skyrme model also reproduces these
configurations [55]. Importantly, since a range of models and forces were used,
the existence of these configurations appears robust. Bauhoff then quantised the
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different configurations as rigid rotors, as was also done in the Skyrme model [56].
This method of quantisation works provided that the shapes are well separated in
configuration space. But this is not true, explaining the poor match with exper-
imental data found in these works. Further searches of α-cluster configurations
took place for nuclei with baryon number 4N [57, 58] showing that these methods
are relevant for a wide range of nuclei.

Some authors attempted to improve the quantisation method described above.
Bertsch and Bertozzi [59] included a one-dimensional family of deformed tetra-
hedra in their quantisation scheme - finding the 0+

e state to be an admixture of
configurations. Onishi and Sheline [60] considered a modified shell model with a
tetrahedral potential, taking the structure of the ground state seriously. Bijker
and Iachello showed that Wheeler and Dennison’s simple model is a particular
limit of the algebraic cluster model [66]. Like Dennison, they suggest the 0+

e state
is of a breathing nature. They also found an analytic expression for the transition
rates between states [62]. The results are promising along the tetrahedral band,
although they struggle to explain the transitions between states of different kinds,
such as the spin 4 state (which is concentrated around the tetrahedron) and the
spin 2 state (a vibrational excitation).

The Oxygen-16 nucleus has been examined by many theorists over the years.
It appears evident that the α-cluster model is vital to describe the nucleus and
that the ground state is tetrahedral in nature. Excited states have been described
by vibrations around the tetrahedron and alternatively as different shapes in the
configuration space, such as the square. There is clear disagreement between the
models. For example, Epelbaum et al. believe the 0+

e state comes from a square
configuration while Bijker and Iachello believe it is of a breathing nature. Our
analysis will take account of vibrations around the tetrahedron and also include
other important configurations such as the square. By including the important
aspects of each model, we hope to clarify the nature of the 0+

e state - and others.

4.1 The B = 16 sector of the Skyrme model

All known Skyrmions in the B = 16 sector can be described as a composition of
four B = 4 Skyrmions. Due to its high classical binding energy, the cubic B = 4

Skyrmion can be used as a building block for larger Skyrmions [55], just as α-
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particles are used to construct large nuclei. Some important Skyrme configurations
have the symmetries of a tetrahedron (Td), square (D4) and bent square (D2).
There is also a chain-like Skyrmion. These four configurations are displayed in
Figure 4.1. In the standard Skyrme model the minimum energy configuration is
the bent square, while the flat square is a local minumum and the tetrahedron is
unstable. However, one may modify the model in a number of ways [15, 16] which
may alter the energies of the configurations.

Figure 4.1: Four low energy configurations in the B = 16 sector.

The symmetries of each configuration give rise to constraints on the allowed
quantum states of the system. In particular, the tetrahedral symmetry leads to
the constraints

e
2iπ
3
√
3
(L̂1+L̂2+L̂3)e

2iπ
3
√
3
(K̂1+K̂2+K̂3) Ψ = Ψ (4.2)

eiπL̂3 Ψ = Ψ , (4.3)

where Ψ is the wavefunction on some configuration space. The flat square has D4

symmetry resulting in

e
iπ
2
L̂3eiπK̂1 Ψ = Ψ (4.4)

eiπL̂1 Ψ = Ψ . (4.5)

The chain also obeys these constraints when aligned appropriately. Finally, the
bent square is the least restrictive shape with constraints encoding the D2 sym-
metry as follows

eiπL̂3 Ψ = Ψ (4.6)

eiπL̂1 Ψ = Ψ . (4.7)

If one were to apply rigid body quantisation to each of these configurations, the
constraints would give rise to a set of allowed spin states. These states, for each
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J Tetrahedron Square Bent Square

0 |0, 0〉 |0, 0〉 |0, 0〉

2 |2, 0〉 |2, 0〉

|2, 2〉+ |2,−2〉

3 |3, 2〉 − |3,−2〉 |3, 2〉 − |3,−2〉

4 |4, 0〉 |4, 0〉

|4, 4〉+
√

14
5
|4, 0〉+ |4,−4〉 |4, 4〉+ |4,−4〉 |4, 2〉+ |4,−2〉

|4, 4〉+ |4,−4〉

5 |5, 4〉 − |5,−4〉 |5, 2〉 − |5, 2〉

|5, 4〉 − |5,−4〉

6 |6, 0〉

|6, 4〉 −
√

2
7
|6, 0〉+ |6,−4〉 |6, 0〉 |6, 2〉+ |6,−2〉√

5
11
|6, 6〉 − |6, 2〉 − |6,−2〉+

√
5
11
|6,−6〉 |6, 4〉+ |6,−4〉 |6, 4〉+ |6,−4〉

|6, 6〉+ |6,−6〉

Table 4.1: The allowed rigid body spin states at each B = 16 Skyrmion for isospin
0.

shape, are given in Table 4.1 up to spin 6. We have set isospin equal to zero for
now.

We shall not use rigid body quantisation in this Chapter but whatever we
do must still be consistent with a rigid body analysis. Note that the tetrahedral
Skyrme configuration does not allow a spin 2 state while the square Skyrmion does
not allow a spin 3 state. Hence the wavefunctions describing these states will have
different structures and to compare them, one must consider a configuration space
which contains both the tetrahedral and square configurations. This is why rigid
body quantisation is not sufficient to describe the low-lying energy spectrum in
the B = 16 sector.
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4.2 The vibrational manifold

We will consider the vibrational manifold containing the configurations described
by four B = 4 Skyrmions. We do not take account of the internal structure of
each cube. So, given the positions of the four particles, they are each rotated to
minimise energy. Physically, we assume the α-particles are in their ground states.
The analysis ignores single particle excitations and will not be able to describe
physical states which arise from these. Single particle excitations of the α-particle
are of order 20 MeV which is higher energy than the states we consider in this
model.

The degrees of freedom of the vibrational manifold are the positions of the
clusters along with the global isorotations of the overall Skyrme configuration,
giving a 15-dimensional manifold. We cannot hope to quantise the system exactly
on such a large space. Instead we concentrate mostly on the configurations near
the tetrahedron. Here, the vibrational manifold separates into three submanifolds
labelled by the irreducible representations (irreps) of the tetrahedral group: the
A, E and F representations. These can be physically realised as follows:

• The A vibration. All particles move in or out symmetrically, stretching
the tetrahedron but keeping its symmetry. This is often referred to as the
breathing mode.

• The E vibration. This two-dimensional manifold includes a mode where the
two uppermost particles move down while the other two move up, making a
deformed tetrahedron with D2 symmetry. There are three of these modes,
since there are three ways to pair the α-particles, but exciting all three modes
equally leaves the original configuration unchanged. Hence the manifold is
two-dimensional. We will study the vibration far beyond the local analysis
discussed here.

• The F vibration. The final irrep is three-dimensional and its manifold in-
cludes a mode where one particle moves away from the other three while
the overall configuration retains C3 symmetry. A thorough study of this
vibration could lead to an understanding of the decay process

16O→12 C + α . (4.8)
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The union of these three submanifolds gives a six-dimensional space. The remain-
ing nine dimensions are simply the zero modes: global translations, rotations and
isorotations.

Labelling the submanifolds by their representations the total vibrational man-
ifold decomposes into

M =MA ×ME ×MF , (4.9)

which is valid near the tetrahedron, where the problem is linear. The global
structure of M is more complicated. The total space is a principle bundle with
base space M, fibred by SO(3)J × SO(3)I × R3. From now on, translations are
neglected. We study each of the submanifolds in turn. The most novel aspect of
the work is contained in our description of the E vibration. We begin with this.

4.3 The E vibration

The global structure of ME is studied by considering a special dynamical mode
which connects the tetrahedron, bent square and flat square. It is shown in Figure
4.2. Initially, two B = 8 Skyrmions are boosted towards each other in an attractive
channel. They deform as they approach and briefly form the tetrahedron which
then flattens out. The Skyrmions scatter through the bent square and the flat
square before continuing on to form the dual bent square and dual tetrahedron.
Finally, the two B = 8 Skyrmions emerge, rotated 90◦ compared to the initial
configuration. It is somewhat analogous to the twisted line scattering in the B = 3

sector [28] with the flat square playing the role of the B = 3 torus.

Figure 4.2: The dynamical mode used to constructME.

The full dynamical mode displayed in Figure 4.2 describes the extension of the
small-amplitude mode of the E vibration described in [42, 51]. Thus, the mani-
foldME, which should contain configurations beyond local perturbations, should
contain this full dynamical mode, including the asymptotics. One may pull the
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tetrahedron into two B = 8 Skyrmions in three different ways. HenceME is a sur-
face which stretches out in six directions, like the surface displayed in Figure 4.3.
Each configuration on this surface has D2 symmetry meaning that if one α-particle
is at x = (x, y, z), the others are at (x,−y,−z), (−x, y,−z) and (−x,−y, z). The
total space we study in this section is ME fibred by SO(3)J × SO(3)I . There
are certain transformations which leave the total space invariant. These are made
from two individual transformations; one on the base spaceME and one which is
a rotation-isorotation pair acting on the Skyrme configuration. For example, one
may apply the transformation (x, y, z)→ (y,−x, z) to the particles onME. This
is undone by a π

2
rotation around the z-axis followed by a π isorotation applied

to the Skyrme configuration. The wavefunctions we consider must transform triv-
ially under the combined action, these will satisfy the FR constraints everywhere
on ME. The D2 symmetries are simply actions on ME and do not require a
rotation-isorotation transformation to undo. Moreover the wavefunctions trans-
form trivially under the D2 symmetries. Hence we may focus on one quarter of
the surface which we denoteMq.

Figure 4.3: A candidate manifold to describe ME. Regions of the same colour
are related by D2 symmetry. The scattering mode displayed in Figure
(4.2) is represented by the thick black line.

To calculate physical observables of the system we must first solve the Schrödinger
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equation (
−~2

2
∆ + V (x)

)
Ψ = EΨ , (4.10)

where ∆ is the kinetic operator onMq×SO(3)J×SO(3)I and V (x) is the potential
energy on Mq, equal to the static energy of the Skyrme configuration at x. To
solve (4.10), a better understanding of ∆ and V (x) is required.

4.3.1 The kinetic operator

The kinetic operator can be understood in terms of the metric on the total space.
The classical kinetic energy must respect the symmetries of the problem which
helps to simplify the metric. The D2 symmetry implies that the kinetic energy
cannot be linear in x. Thus, the metric must be block diagonal and the operator
∆ separates into two parts: one which acts only via vibrational coordinates and
another which acts only via rotational and isorotational coordinates. We denote
this as

∆ = ∆x +∇2 , (4.11)

where ∆x is the operator on Mq while ∇2 is the usual Laplacian on the com-
bined rotational and isorotational space. We model the metric on the manifold
by approximating ME as the 6-punctured sphere with constant negative curva-
ture. This captures several important physical features such as the fact that the
manifold should stretch to infinity asymptotically in six directions and that the
curvature is non-positive everywhere onME.

An n-punctured sphere, with n ≥ 3 is conformally equivalent to a subset of the
complex upper half plane (UHP). Often the mapping is highly complicated and
analytically intractable. However, the large amount of symmetry in our problem
allows us to find the map explicitly. Defining the complex coordinate on the subset
F ∈ C as ζ = η + iε, we can write the map from F to the Riemann sphere, with
coordinates x̂ = (x̂, ŷ, ẑ), as

(x̂, ŷ, ẑ) = |H(ζ)|−2
(
2Re [H(ζ)] , 2Im [H(ζ)] , 1− |H(ζ)|2

)
, (4.12)

where
H(ζ) =

(
Θ(0, 3, ζ)

Θ(1, 3, ζ)

)
(4.13)
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and

Θ(a, n, ζ) = exp
(

2πi

(
1

8
a2ζ +

1

8
a

))
θ̃n

(
π

(
1

4
+
aζ

2

)
, exp (iπζ)

)
(4.14)

and θ̃n are the Jacobi theta functions [63]. There is then a bijection between the
Riemann sphere andME. The conformal equivalence betweenMq and F is shown
graphically in Figure 4.4. We have chosen a particular fundamental domain of the
complex plane. There are infinitely many other choices but the wavefunctions will
satisfy certain constraints along the boundaries of the domain. Hence, it is helpful
to make a choice with as simple boundaries as possible.

∼=

Figure 4.4: The relation between Mq (left) and F (right). Tetrahedral configu-
rations are at the points where three coloured regions meet while the
square configurations are at points where four coloured regions meet.
The scattering mode from Figure 4.2 is represented by the thick black
lines.

In terms of the coordinates on F , the metric simplifies considerably. The kinetic
operator is

−∆x = −ε2
(
∂2

∂η2
+

∂2

∂ε2

)
, (4.15)

which is invariant under any Möbius transformation of ζ. The Schrödinger equa-
tion becomes (

−~2

2
ε2
(
∂2

∂η2
+

∂2

∂ε2

)
− ~2

2
∇2 + V (ε, η)

)
Ψ = EΨ . (4.16)

The problem is separable into vibrational and rotational parts. The rotational
wavefunctions are solutions to the rigid body problem. Hence we may write the

68



total wavefunction as

Ψ =
∑
L3,K3

φL3,K3(ζ) |J, L3〉 |I,K3〉 , (4.17)

where the J3 and I3 labels have been suppressed since they do not affect the energy
of the state. The vibrational wavefunctions φ satisfy(

−~2

2
ε2
(
∂2

∂η2
+

∂2

∂ε2

)
+ EL3,K3(ε, η) + V (ε, η)

)
φL3,K3 = EφL3,K3 , (4.18)

where EL3,K3(ε, η) satisfies

− ~2

2
∇2 |J, L3〉 |I,K3〉 = EL3,K3(ε, η) |J, L3〉 |I,K3〉 . (4.19)

The EL3,K3 contribution is difficult to include in full. Instead we write

EJ(s) =
~2

2Λtet
J(J + 1) + E

(1)
J (ε, η) , (4.20)

and neglect E(1)
J for now. We will reinstate it later using perturbation theory, which

relies on E(1)
J being small. It is zero at the tetrahedron and small nearby. Hence we

have more confidence in this approximation for vibrational wavefunctions which
are concentrated near the tetrahedron. With this approximation, the vibrational
problem becomes (

−~2

2
ε2
(
∂2

∂η2
+

∂2

∂ε2

)
+ V (ε, η)

)
φ = λφ , (4.21)

where we have defined the vibrational energy λ. To solve (4.21) we must find
boundary conditions for φ; these depend on the representation that φ falls into.
To understand the representations we must first understand the symmetries of F
in more detail.

4.3.2 Symmetries of F and Mq

The six-punctured sphere has the symmetry group of an octahedron, O. Hence the
quarter sphere Mq has the symmetry group O/D2

∼= S3, the permutation group
of three objects: in this case the unorientated x, y and z axes. The elements
of S3 can act on the positions of the α-particles, x ∈ Mq. These descend to
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transformations on F which are Möbius maps. Each of these transformations on
the base spaceMq has an equivalent description as a transformation on the fibre.
These are rotation-isorotation pairs which act on the Skyrme configurations. The
explicit rotation-isorotation pairs and Möbius maps are displayed in Table 4.2 for
each element of S3. Note that the rotations are not unique since the system is
invariant under rotations by π about each axis. The isorotations depend on the
Skyrme configuration’s internal structure and how this changes over the manifold.
For example, the flat square at η = ε = 1

2
lies in the x-y plane. It has red on

the face perpendicular to the C4 symmetry axis. In contrast, the flat square at
η = 0, ε = 1 lies in the y-z plane and has green on the C4 symmetry face.

In addition, inversion corresponds to the operation x → −x onME followed
by a π iso-rotation about (0, 0, 1). In terms of the coordinates on F this inversion
is equal to the transformation ζ → −ζ†, which is equivalent to η → −η. The
inversion operator allows us to calculate the parity of a vibrational wavefunction

P̂φ(ζ) = φ(−ζ†) = Pφ(ζ) , (4.22)

where we call P̂ the parity operator on the vibrational space and P the parity.
The group S3 has three irreps called the trivial, sign and standard irreps. Pro-

vided the potential is invariant under all elements of S3, as it should be physically,
the vibrational wavefunctions can be labelled by the representation that they fall
into, as well as parity. Depending on its representation and parity, the vibrational
wavefunctions will have different boundary conditions.

Vibrational wavefunctions in the trivial irrep, denoted φt, are invariant under
any element of S3. Hence for any Möbius transformation M listed in the third
column of Table 4.2, we have that

φt(ζ) = φt(M(ζ)) . (4.23)

This relationship can be used to find boundary conditions for φt. Consider the
points ζ+ and ζ−, lying either side of the curve C as in Figure 4.5. These are
related by a Möbius transformation followed by a parity operation. Explicitly

ζ+ = M(1,3)(ζ0) = − 1

ζ0
= − 1(

−ζ†−
) =

1

ζ†−
. (4.24)
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S3 element Rotation and Möbius map

isorotation pair

(1, 2) π
2
about (0, 0, 1) ζ → ζ − 1

π about (1, 0, 0)

(1, 3) π
2
about (0, 1, 0) ζ → −1

ζ

π about (cos(2π/3), sin(2π/3), 0)

(2, 3) π
2
about (1, 0, 0) ζ → ζ

1−ζ

π about (0, 0, 1)

(1, 2, 3) 2π
3

about (1, 1, 1) ζ → 1
1−ζ

2π
3

about (0, 0, 1)

(1, 3, 2) 4π
3

about (1, 1, 1) ζ → ζ−1
ζ

4π
3

about (0, 0, 1)

Table 4.2: The elements of the symmetry group S3 and how they act onMq and
F .

These relations are detailed graphically in Figure 4.5. From this we deduce that
the wavefunction at these points is related by

φt(ζ+) = φt

(
1

ζ0

)
= φt(ζ0) = φt(−ζ†−) = Pφt(ζ−) , (4.25)

where we have used the fact that φt is in the trivial irrep in the second equality
and applied the parity operator in the fourth equality. Taking the limit where the
points ζ+ and ζ− tend towards the curve C, we find that

∂⊥φt(ζc) = 0 for positive parity (4.26)

φt(ζc) = 0 for negative parity, (4.27)

where ζc ∈ C and ∂⊥ means the derivative perpendicular to C.
The analysis is similar for wavefunctions in the sign irrep, which are denoted

φs. Here, the wavefunction is invariant under 3-cycles but changes sign under
transpositions. Hence (4.25) becomes

φs(ζ+) = φs

(
1

ζ0

)
= −φs(ζ0) = −φs(−ζ†−) = −Pφs(ζ−) , (4.28)
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Figure 4.5: The points ζ+, ζ− and ζ0 which are related by Möbius maps and the
parity transform. The curve C is drawn in red.

and the boundary conditions are

φs(ζc) = 0 for positive parity (4.29)

∂⊥φs(ζc) = 0 for negative parity.

The standard irrep is two-dimensional and hence more complicated. It is most
easily viewed using the three-dimensional natural representation. Here, the three
objects permuted by S3 are the wavefunctions, which are labelled u, v and w. For
example, the wavefunctions cycle as

u→ v → w → u. (4.30)

under the transformation (123). This three-dimensional basis of wavefunctions
contains a trivial one-dimensional subspace since u + v + w transforms trivially
under all elements of S3. We may recover the two-dimensional standard irrep by
fixing the constraint

u+ v + w = 0 . (4.31)
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The boundary conditions are simplest for certain combinations of the wavefunc-
tions. For example

(u+ w)(ζ+) = (u+ w)

(
1

ζ0

)
= (w + u)(ζ0) = P̂ (w + u)(ζ−) , (4.32)

and

(u− w)(ζ+) = (u− w)

(
1

ζ0

)
= (w − u)(ζ0) = −P̂ (u− w)(ζ−) . (4.33)

These two boundary conditions are enough to find all solutions of (4.21) which
transform as the standard irrep. Note that knowing u + w and u − w is enough
to reconstruct u, v and w. The boundary conditions for each representation are
summarised in Table 4.3. In addition, a wavefunction with negative parity must
vanish along the boundary lines η = −1, 0, 1 while a positive parity wavefunction
has vanishing derivative along these. Overall there are six different types of solu-
tion and searching for wavefunctions obeying each of these boundary conditions
generates all possible vibrational wavefunctions.

Representation Parity Boundary condition on C
Trivial + ∂⊥φt = 0

Trivial − φt = 0

Sign + φs = 0

Sign − ∂⊥φs = 0

Standard + ∂⊥(u+ w) = 0

u− w = 0

Standard − u+ w = 0

∂⊥(u− w) = 0

Table 4.3: A summary of the possible boundary conditions for the vibrational
wavefunctions.

4.3.3 The potential

The representation theory and boundary conditions discussed so far do not depend
on a choice of potential. To calculate an energy spectrum of the model, we must
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choose a specific potential. One approach would be to take the static Skyrme
configuration energy at each point on ME. There are two problems with this
approach. First, it is only known how to generate certain Skyrme configurations
such as the tetrahedron. The approach requires an ansatz on the whole of ME,
which does not currently exist. Secondly, the basic Skyrme model can be modified
in many ways. For example, by including a 6th order term in the Lagrangian
[15], altering the Skyrme potential [16] or including Coulomb effects. All these
modifications will lead to changes in the energy of each configuration. So, even if
we could generate all Skyrme configurations onME, their energies are not robust
to changes in the model. However, the discrete symmetries of the Skyrmions and
their dynamics will not change provided the modifications are modest. Hence we
trust the broad ideas from the Skyrme model, such as the symmetries and structure
ofME, but not the details of the potential on the space of configurations.

Instead, we choose a potential which can be solved easily. Cluster models [10]
suggest the tetrahedral configuration should have the lowest energy and so we
put the minimum of the potential there. The square has higher energy and the
asymptotic configurations higher still. A potential which captures these features
is

V (ε, η) = ε2

(
1

2
ω2

(
η − 1

2

)2

+ µ2

)
, (4.34)

where ω and µ are parameters. The expression is only valid in the red region of
F , as displayed in Figure 4.4. The potential is extended into the other regions by
applying the appropriate Möbius maps detailed in Table 4.2. We choose ω =

√
6

and µ = 8
√

2 which gives an energy gap between the tetrahedral and square
configurations of 6.55 MeV, close to the values in [10]. However, note that the
potential is not smooth at the boundaries between coloured regions. Further, it
diverges asymptotically while it should actually flatten out. Our focus is on the low
lying states of 16O which will be concentrated near the low energy configurations.
The asymptotic divergence is a bigger problem if one were to study scattering
states.
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4.3.4 Finding solutions

With the choice of potential (4.34) the Schrödinger equation (4.21) becomes

− ~2

2
ε2
(
∂2

∂η2
+

∂2

∂ε2

)
φ+ ε2

(
1

2
ω2

(
η − 1

2

)2

+ µ2

)
φ = λφ , (4.35)

which can be solved using separation of variables

φ(η, ε) =
∑
n

Xn(η)Yn(ε)
√
ε . (4.36)

The problem only needs to be solved in one region of F , such as the red region,
and then the maps of Table 4.2 may be used to extrapolate the solution to the
other regions. We do the calculation on the red region. For η ∈ [0, 1], the Xn

satisfy (
−~2

2

d2

dη2
+

1

2
ω2

(
η − 1

2

)2

+ µ2

)
Xn(η) = enXn(η) , (4.37)

with X ′n(0) = X ′n(1) = 0 or Xn(0) = Xn(1) = 0 for even and odd parity re-
spectively. The boundary conditions give a constraint on en, leading to a discrete
spectrum. The solutions are known analytically and can be expressed in terms
of confluent hypergeometric functions. For ω, µ = 0 the solutions simplify to
cos
(
nπ
(
η − 1

2

))
and sin

(
nπ
(
η − 1

2

))
with en = ~2n2π2

2
. We can substitute the Xn

into (4.35) to find an equation for the Yn,(
−ε′2 d

2

dε′2
− ε′ d

dε′
+
(
ε′2 +R2

))
Yn(ε′) = 0 . (4.38)

This is a modified Bessel equation with ε′ =
√
enε. We have introduced R which

is related to the total eigenvalue as

λ =
1

4
+R2 . (4.39)

Overall, solutions to the Schrödinger equation (4.35) take the form

φ
(
η +

1

2
, ε
)

=
∞∑
n

a2n 1F1

(
1− (e2n − µ2)/ω

4
;
1

2
;ωη2

)
e−

1
2
ωη2KiR (

√
e2nε)

√
ε

+
∞∑
n

a2n+1 η 1F1

(
3− (e2n+1 − µ2)/ω

4
;
3

2
;ωη2

)
e−

1
2
ωη2KiR (

√
e2n+1ε)

√
ε,

(4.40)

75



where 1F1 (a; b; z) is a confluent hypergeometric function and Kα(x) is the expo-
nentially decaying modified Bessel function. The first sum contains even parity
solutions while the second contains the odd parity ones.

Ignoring the boundary conditions derived in Section 4.3.2, the wavefunction
(4.40) is a solution for all coefficients an and all eigenvalues R. However, the
boundary conditions restrict the allowed values. In practice, one chooses a value
of R and then tries to satisfy the boundary condition by adjusting the coefficients.
This is done by enforcing the constraint on a finite number of points along the
curve C. This gives a set of test coefficients. The same calculation is repeated
using a different set of points. If the newly derived coefficients are different to the
test ones then neither set enforces the boundary condition across the whole of C
and this value of R is discarded. Numerically we restrict the upper limit of the
series to some integer N which is valid becauseKiR

(√
enε
)
∼ e−

√
enε as ε→∞ and

en →∞ as n→∞. We then enforce the constraint at two sets of N points along
the boundary curve C, which reduces the problem to finding two null eigenvectors
of two N ×N matrices. A true eigenvalue R occurs if these eigenvectors are equal.

The lowest energy numerically generated vibrational wavefunctions are dis-
played in Figure 4.6.

Parity

Parity on the vibrational manifold corresponds to the transformation ζ → −ζ†,
as previously discussed. There is also a way to calculate parity in a rigid body
analysis. There, the parity operator for a Skyrme field configuration π(x) is

P̂RB : π(x)→ −π(−x) . (4.41)

If the Skyrme configuration has a reflection symmetry, the parity operator is equiv-
alent to some rotation-isorotation operator R̂p. One can then find the parity of
the state by applying R̂p to the rigid body wavefunction. We call this the intrinsic
parity of a Skyrme configuration for a given spin. For example, the tetrahedron
has positive intrinsic parity for spin 0 and negative intrinsic parity for spin 3. The
flat square has positive intrinsic parity for all even spins. Note that states with no
reflection symmetry have no intrinsic parity. We shall make sure that our notion
of parity on the vibrational manifold is consistent with the intrinsic parity while
we construct the rovibrational states.
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Figure 4.6: The vibrational wavefunctions on F . The plots show the wavefunction
contours from -1 (blue) to +1 (red). Each row contains a different type
of vibrational wavefunction. From top to bottom the wavefunctions fall
into the trivial, sign, standard with positive parity and standard with
negative parity irreps. The wavefunctions are scaled for clarity.
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4.3.5 Rovibrational wavefunctions

We now have enough information to construct rovibrational states. The symme-
tries of Mq each have an equivalent rotation-isorotation transformation, as was
displayed in Table 4.2. The rovibrational states should transform in the same
way under either transformation. This restriction provides constraints on the al-
lowed spin states for a given vibrational wavefunction. Specifically, the constraints
depend on the representation of the wavefunction.

Rovibrational states in the trivial or sign representation are rather simple. For
vibrational wavefunctions in the trivial irrep the corresponding spin states must
transform trivially under all rotations detailed in Table 4.2. These are the states
which transform trivially under all elements of the tetrahedral group. The spin
states which can be combined with sign irrep vibrational wavefunctions pick up a
sign under transposition. Overall, these two possibilities include all tetrahedrally
symmetric spin states, which were calculated and displayed in Table 4.1. States
with positive (negative) intrinsic parity can be combined with trivial (sign) irrep
vibrational wavefunctions. The lowest energy rovibrational states of this kind have
zero isospin; the first three are

φ(a) |0, 0〉
φ(e) (|3, 2〉 − |3,−2〉) (4.42)

φ(a)

(
|4, 4〉+

√
14

5
|4, 0〉+ |4,−4〉

)
,

where we have neglected to write the isospin part of the wavefunction, since it is
trivial in this case. The index of the vibrational wavefunctions refer to the specific
solutions displayed in Figure 4.6. The three wavefunctions (4.42) are concentrated
around the tetrahedron and hence are analogous to the states obtained in rigid
body quantisation. In the rigid body case, the states form an exact rotational band.
In the vibrational scheme, the odd parity vibrational wavefunction φ(e) has slightly
higher energy than its even parity counterpart φ(a) as it is more constrained. Hence
in our model the states will only form an approximate rotational band. Note that
φ(e) vanishes at all flat square configurations. It must do so, as the flat square does
not allow for a spin 3 state. We can construct states with arbitrarily high spin
though we do not, since there is little experimental data known beyond spin 6.
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The first excited state in the trivial rep φ(b) is equally concentrated around the
tetrahedral and square configurations. We identify this, when combined with the
spin 0 rotational state, with the first excited state of the experimental spectrum,
0+
e , at 6.05 MeV. This vibrational wavefunction also gives rise to a spin 4 state with

16.44 MeV and a high energy spin 6 state. Further excited states of the trivial rep
such as φ(c) give rise to more 0+, 4+, 6+, . . . bands. These states all have positive
parity but there are also vibrational wavefunctions in the trivial rep with negative
parity such as φ(d). It might be thought that one cannot combine the state |0, 0〉
with a negative parity vibrational wavefunction since |0, 0〉 has positive intrinsic
parity. However, φ(d) vanishes at all configurations with intrinsic parity: precisely
those with a reflection symmetry. Hence the wavefunction

φ(d) |0, 0〉 (4.43)

is allowed and has spin-parity 0−. This is the first time such a state has been
accommodated in the Skyrme model. Although it appears fortuitous that φ(d)

vanishes at all configurations with a reflection symmetry, it is simply a consequence
of the combination of negative parity with the trivial representation. There are
similar states with spin-parity 4− and 6−. Since the wavefunction φ(d) is heavily
constrained, it has very high energy. Similarly the vibrational wavefunction φ(h),
which lies in the sign rep and has positive parity, may be combined with the spin
state |3, 2〉−|3,−2〉 which has spin-parity 3+. A state with this spin-parity cannot
be obtained in a rigid body analysis. More states, with spin-parity 6+, 7+, . . . may
also be constructed using φ(h).

The lowest energy state with non-zero isospin is

φ(e) |0, 0〉 |1, 0〉 . (4.44)

This isospin 1 wavefunction gives rise to a triplet of states for Oxygen-16, Fluorine-
16 and Nitrogen-16 all with spin-parity 0−. There are then two spin 2, isospin 1
states which take the form

φ(a)
(
|2, 2〉 − i

√
2 |2, 0〉+ |2,−2〉

)
(|1, 1〉+ |1,−1〉) (4.45)

and φ(e)
(
|2, 2〉 − i

√
2 |2, 0〉+ |2,−2〉

)
(|1, 1〉 − |1,−1〉) .

There are further states with higher isospin and higher spin, though these have a
rather large energy.
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Rovibrational states in the standard two-dimensional representation are most
easily presented using a three-dimensional set of spin states |Θ〉i. These are chosen
to transform into each other under the action of S3. We demand they transform
inversely compared to the objects of S3 so that under the element (123) the spin
states permute as

|Θ〉1 → |Θ〉3 → |Θ2〉 .

For spin 2, |Θ〉i are the states with zero projection on the ith axis. They satisfy

L̂i |Θ〉i = 0 and |Θ〉1 + |Θ〉2 + |Θ〉3 = 0 . (4.46)

These are the rotational states required to construct a consistent rovibrational state
from standard irrep vibrational wavefunctions. The lowest energy rovibrational
state of this kind is

|Ψ〉 = u(i) |Θ〉1 + v(i) |Θ〉2 + w(i) |Θ〉3

=

√
3

2
√

2
(u(i) − v(i)) (|2, 2〉+ |2,−2〉)− 3

2
(u(i) + v(i)) |2, 0〉 , (4.47)

where we have rewritten the expression in terms of the usual spin states which
have definite L3 eigenvalues, in the second line. Notice that the rovibrational state
can be expressed in terms of a two-dimensional basis of spin states as would be
expected for the standard irrep. The total wavefunction (4.47) is concentrated
at the flat square configurations. At the flat square which lies in the x-y plane
(ζ = 1

2
+ i1

2
), the vibrational wavefunctions u(i) and v(i) are equal. Hence at this

point the first term in (4.47) vanishes and the total wavefunction is proportional
to |2, 0〉. This must occur since in rigid body quantisation, |2, 2〉 + |2,−2〉 is not
allowed by the flat square while |2, 0〉 is. The rovibrational state (4.47) is analogous
to the known rigid body wavefunction of the flat square with spin 2. Although
some spin 0 rovibrational states, such as the one which includes the vibrational
wavefunction φ(b), contain contributions from the flat square configuration, there
are no spin 0 states which are dominated by the square. Hence, there is no state
in our model analogous to a rigid body state of the square with spin 0. This
highlights a key difference between rigid body quantisation and our scheme; here,
the rotational band of the square only begins at spin 2.

The rotational states |Θ〉i can also be paired with the vibrational wavefunctions
{u(l), v(l), w(l)} which have negative parity and vanish at all the flat squares. Being
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more constrained, the negative parity vibrational wavefunctions have higher energy
than the positive parity ones. Hence there is an energetic splitting between the
two lowest spin 2 states due to their different vibrational wavefunctions.

There are similar states for spin-parity JP = 4±, 5±, 6±, . . .. The lowest energy
spin 4 state is

|Ψ〉 =

√
7

32
(u(i) + v(i)) (|4, 4〉+ |4,−4〉)−

√
1

8
(u(i) − v(i)) (|4, 2〉+ |4,−2〉)

−
√

5

16
(u(i) + v(i)) |4, 0〉 . (4.48)

At the flat square which lies in the x-y plane the wavefunction becomes

|Ψ〉 =

√
7

32
(u(i) + v(i))

(
|4, 4〉 −

√
10

7
|4, 0〉+ |4,−4〉

)
. (4.49)

This is different than what one would obtain from a rigid body analysis where
there would be two distinct states. In fact, the wavefunction (4.49) is not an
eigenfunction of the rotational operator, ∇2 at the flat square. This is because the
rotational term E

(1)
L3,K3

(ζ) was neglected in the Schrödinger equation (4.21).
The higher energy vibrational wavefunctions of the standard irrep, such as u(j),

can also be combined with spin states. In addition there are non-zero isospin states
that fall into the standard irrep such as the spin 0, isospin 1 state(

u+ e
2πi
3 v + e

4πi
3 w
)
|0, 0〉 |1, 1〉+

(
e

5πi
3 u− v + e

πi
3 w
)
|0, 0〉 |1,−1〉 . (4.50)

There are many more states with higher isospin and spin.

4.3.6 Energy spectrum from the E vibration

To find the energy spectrum of our model the rotational energy term E
(1)
J must be

reintroduced. To do so, we calculate the correction

E1 = −~2

2

∫
〈Ψ|∇2|Ψ〉 dζ − ~2

J(J + 1)

2Λtet
, (4.51)

for a given rovibrational wavefunction |Ψ〉. The energy E1 is the correction to the
rotational energy due to the fact that the Skyrme configurations on ME do not
all have an isotropic inertia tensor. To calculate (4.51) we need an ansatz for the
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spatial moment of inertia tensor ΛJ(ζ). We approximate ΛJ by taking each B = 4

Skyrmion to be an extended but localised particle. If their positions x̃ are known,
the moment of inertia tensor may be calculated using the parallel axis theorem.
The mapping (4.12) from F to the Riemann sphere gives a coordinate x̂(ζ) on
the sphere. We then divide by an appropriate factor to describe the asymptotic
behaviour ofME, giving a coordinate x̃ onME. The D2 symmetry ofME implies
that ΛJ is diagonal giving three independent components. For this approximation,
their values in the red region of Figure 4.4 are

Λ11(ζ) =

(
6586

ŷ(ζ)2 + ẑ(ζ)2

1− ẑ(ζ)2
+ 2562

)
Λ22(ζ) =

(
6586

x′(ζ)2 + z′(ζ)2

1− z′(ζ)2
+ 2562

)
(4.52)

Λ33(ζ) =

(
6586

x′(ζ)2 + y′(ζ)2

1− z′(ζ)2
+ 2562

)
= 9148 .

The third component is constant, consistent with the fact that the Skyrme config-
urations have approximately equal extent around the z-axis, along the scattering
line seen in Figure 4.2. To find the moment of inertia tensor in the other regions,
one should permute the denominators in (4.52). The ansatz is measured in Skyrme
length units and matches the moments of inertia of the standard Skyrme model
at the tetrahedral, square and asymptotic configurations.

The low lying rovibrational wavefunctions and their energies are displayed in
Table 4.4. Here, we separate the energy contribution from the vibrational wave-
function, the zeroth order rotational energy and the rotational correction E1. If we
are confident that a state in our model describes an experimentally observed state
we also include this identification in the table. The vibrational and rotational
units are calibrated using the first excited 0+ and the lowest energy 4+ states
respectively.

The data from Table 4.4 is displayed again in graph form in Figure 4.7. This
helps identify the approximate rotational bands that are instructive in interpreting
the results. Note that the gradient of the rotational bands are inversely propor-
tional to the moment of inertia of the configuration where the wavefunction is
concentrated. This means that the tetrahedral rotational band (which connects
the lowest lying 0+, 3−, 4+ states) is steeper than the flat square band (which
connects the lowest 2+ state and the first excited 4+ state).
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JP I Wavefunction Evib E0 E1 E Exp.
0+ 0 (a) 0 0 0 0 0
0+ 0 (b) 6.05 0 0 6.05 6.05
3− 0 (e) 0.18 7.53 -1.24 6.47 6.13
2+ 0 (i) 3.45 3.77 -0.58 6.66 6.92
2− 0 (l) 5.27 3.77 -0.60 8.43 8.87
4+ 0 (a) 0 12.55 -2.20 10.35 10.35
2+ 0 (j) 8.72 3.77 -1.21 11.28 11.52
4+ 0 (i) 3.45 12.55 -3.38 12.62 11.10
2− 0 (m) 11.05 3.77 -1.03 13.78 12.53
2+ 0 (k) 12.22 3.77 -1.28 14.70 –
4− 0 (l) 5.27 12.55 -3.11 14.71 14.3
0+ 0 (c) 14.89 0 0 14.89 –
0− 1 (e) 0.18 15.61 0 15.79 12.80
0− 0 (d) 16.35 0 0 16.35 10.96
4+ 0 (b) 6.05 12.55 -3.24 16.44 –
3− 0 (f) 10.67 7.53 -1.68 16.52 –
5+ 0 (i) 3.45 18.83 -5.39 16.89 –
2+ 1 (a) 0 18.20 -0.61 17.58 –
4+ 0 (j) 8.72 12.55 -3.34 17.94 –
3+ 0 (h) 12.57 7.53 -2.71 17.39 15.79
0+ 1 (i) 3.45 14.43 0 17.89 –
0+ 0 Not displayed 18.78 0 0 18.78 –
5− 0 (l) 5.27 18.83 -4.91 19.19 –
2− 0 (n) 16.92 3.77 -1.22 19.47 –
2+ 0 Not displayed 17.10 3.77 -1.25 19.63 –
0− 1 (l) 5.27 14.43 0 19.71 –
4− 0 (m) 11.05 12.55 -3.85 19.75 –
6+ 0 (a) 0 26.36 -5.45 20.91 21.05
6− 0 (e) 0.18 26.36 -4.34 22.20 –
6+ 0 (i) 3.45 26.36 -4.34 25.47 –
6− 0 (l) 5.27 26.36 -4.48 27.15 –

Table 4.4: The low energy states of our system. We list the spin-parity, isospin, the
vibrational wavefunction used in the construction of the rovbirational
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Table 4.4: state (the labels refer to specific wavefunctions, displayed in Figure
4.6), vibrational energy Evib, 0th order rotational term E0, rotational
correction E1 and total energy E for each state. When an identification
with an experimental state is clear, we also list this. The experimental
data is taken from [64].
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Figure 4.7: The energy spectrum of our model. Calculated states of positive parity
(solid circles) and negative parity (solid triangles) are plotted. Isospin
0 states are coloured red and blue for positive parity and negative
parity respectively while isospin 1 states are coloured cyan. Where the
identification with an experimentally observed state [64] is clear, we
also plot these (hollow symbols).

The lowest lying 0+, 3−, 4+ band is analogous to the tetrahedral band in rigid
body quantisation. The 3− state lies slightly above the band in our model since
φ(e) has more vibrational energy than φ(a). The first excited state of the spectrum
0+
e is identified with the φ(b) wavefunction. This is equally concentrated around the

tetrahedral and square configurations. Our interpretation of the 0+
e state, as an

admixture of configurations, is novel and stands in contrast with other descriptions
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of the nucleus. The work of Epelbaum et al. claims that the state comes just from
a flat square configuration [49]. However, this information is extracted indirectly
from their wavefunction and we are unsure if their analysis would differentiate
between our interpretation and theirs. Hence we do not consider our analysis to
be in conflict with theirs.

The gap between the lowest energy 2+/2− states is 1.77 MeV, close to the
experimental value of 1.96 MeV. The gap is mostly due to the different energies
of the vibrational wavefunctions. In the analysis of [66] the spin 2 states are both
local excitations around the tetrahedron, giving them the same energy. The energy
gap between the states is attributed to a splitting of the rotational energy at a
higher order. However, the gap is ∼ 2 MeV which is rather large for a rotational
perturbation. Instead, we believe that to describe the gap, one must include the
square configuration in the quantisation procedure as we have done.

The first excited state with spin 4+, denoted 4+
e , was given in (4.48). It lies

at 12.62 MeV, 1.52 MeV above the experimental state that it should describe.
The E1 contribution to the state is large, though this correction is meant to be
perturbative. A more careful calculation may improve the result. A model where
the flat square is wider would have a shallower rotational band between the 2+

and 4+
e states, leading to a decrease in energy of the 4+

e state. The lowest energy
4− state is in good agreement with the first experimental 4− state.

There are numerous states with large vibrational but low rotational energies.
The choice of potential (4.34) is only suitable near the low energy configurations
and not appropriate further away – where the excited states are partially concen-
trated. Because of this, the energies of the highly excited states should be treated
with caution. A more realistic potential would flatten out asymptotically, reducing
the energy of all the vibrational wavefunctions though having the biggest effect
on the highly excited ones. With this in mind we have identified the 0− state at
16.35 MeV with the experimentally observed state at 11.0 MeV and hope that a
realistic potential would remedy the large discrepancy in energies. We have some
confidence in our identification as there are few alternative descriptions. It is not
an isospin 1 state, as can be seen by considering the spectra of 16F and 16N. In
general, the shell model struggles to describe 0− states while a local vibrational
analysis gives rise to a state with very high energy [62].

There are many excited spin 2 states in our model. There are also many
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experimentally observed spin 2 states, 27 with energies below 20 MeV. The large
number of states makes it impossible to identify which states from our model
describe which experimentally observed states without further information such
as electromagnetic transition rates. In contrast, there are only three 3+ states
which lie below 20 MeV. The lowest is likely due to the F vibration which we shall
study in the next section. The first excited 3+ state, at 15.79 MeV, is identified
with the state arising from φ(g) which lies at 17.39 MeV. The energy of the state
would be lower if a more realistic potential was used. We previously noted that
the 3+ state was unusual, impossible to find in a rigid body quantisation.

There are many allowed states with high spin. The lowest energy 5+ state comes
from the standard representation wavefunctions {u(i), v(i), w(i)}. As such, it is an
approximate rotational excitation of the flat square. It has an energy of 16.89 MeV,
to be compared with the experimental low lying 5+ state at 14.40 MeV. Although
the energy is too large, we have not yet taken account of rotational deformations.
When a Skyrme configuration acquires spin it naturally deforms. The effect is more
pronounced for larger spins. We can estimate how much deformation is required
to lower the energy of the spin 5 state so that it matches the experimental data by
using the parallel axis theorem. The flat square is made from B = 4 Skyrmions
at the points (±d0,±d0, 0). To reduce the rotational energy of the spin 5 state by
2.5 MeV, the deformed square would have to lie at approximately 1.2(±d0,±d0, 0).
To see if this is reasonable one can study the deformation numerically, as has been
done for isospin deformations [29]. The same effect would lower the energy of the
spin 4+ state at 12.62 MeV which is also too large in our model. Already, it is
clear that rotational deformation is important for states with spin 5 and so we do
not have much confidence in our analysis for states with even higher spin. We do
find two 6− states at 22.20 MeV and 27.15 MeV. No 6− states have been observed
experimentally.

There are also states with non-zero isospin such as (4.50). To calculate their
energy we must estimate the isorotational moment of inertia tensor ΛI . The con-
tribution from each B = 4 cube is approximately additive, regardless of their
position. Hence we take ΛI to be constant everywhere and equal to its value at
the tetrahedron in the Skyrme model. This approximation gives rise to an isospin
1, spin 0 state at 15.79 MeV which overestimates the energy of the first experimen-
tal state with isospin 1, which lies at 12.80 MeV. A modification to the Skyrme
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model such as the inclusion of the 6th order term [15] may change the value of
ΛI . In addition, no one has studied the effect of vibrational quantisation on the
iso-moments of inertia. The other isospin states have higher energy and are hard
to identify with experimental states.

In conclusion, our model of the E vibration provides a good description of
many of the low lying states of 16O. We struggle with highly vibrationally excited
states since our potential is not appropriate for them. In addition, it appears
that we must include rotational deformations in the description of states with
large spin. Hence to describe the spectrum at higher energies we must make some
improvements to the model presented in this chapter.

4.4 The other vibrational modes

4.4.1 The A vibration

TheA vibration is one-dimensional and physically represents the symmetric stretch-
ing of the tetrahedron. It is often referred to as the breather mode. The vibrational
manifold MA is the half-line with parameter r measuring the distance of the α-
particles from the origin. Let r = rt be the configuration at the energy minimising
tetrahedron. The Finkelstein-Rubinstein constraints at r = rt must apply every-
where on the manifold since every configuration onMA has tetrahedral symmetry.
Hence the wavefunctions are of the form

|ΨA〉 = χA(r) |ψ〉 , (4.53)

where χA(r) is the vibrational wavefunction onMA and |ψ〉 is any rotational state
allowed by the tetrahedron as listed in Table 4.1. There are no cross terms in the
metric as the manifold is one-dimensional. The wavefunction χA(r) satisfies the
Schrödinger equation

− ~2

2
χ′′A(r) + V (r)χA(r) = Eχ(r) . (4.54)

The simplest way to model the potential is to treat it as a harmonic well around
rt with frequency ωA. We may find the frequency directly from the Skyrme model
or set it empirically. We do the latter since the Skyrme model can be modified in
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many ways and assume that the first excited state of (4.54) is responsible for the
lowest energy 0+ state not yet described by our model which lies at 12.0 MeV. To
see if this is reasonable, we can consider the energy of the Carbon-12 breathing
mode. This nucleus is described in the Skyrme model as three α-particles arranged
in a triangle [30]. The breathing mode corresponds to the three particles moving
in and out while keeping triangular symmetry. By treating each nucleus as a set
of point particles on springs, we can estimate the energy of this mode for 12C. The
frequency of its breathing mode in this approximation is given by

√
3/2ωA which

gives rise to a state with energy 10.4 MeV. This matches the second experimentally
observed excited state of 12C with spin 0, which lies at 10.3 MeV. This gives us
confidence in the identification of the 12.0 MeV state as a breathing mode of the
tetrahedron.

The rotational energy for a wavefunction with spin J is

〈ΨA|Ĥ|ΨA〉 =

∫
~2χA(r)2

2Λ(r)
J(J + 1)dr , (4.55)

where Λ(r) is the moment of inertia. The expression is simple due to the tetra-
hedral symmetry of the configurations on MA. Each vibrational wavefunction
χA(r) gives rise to an approximate rotational band with spins 0+, 3−, 4+, . . . . The
ground state is focused around r = rt, giving a rotational band with slope approx-
imately equal to the slope of the lowest lying band. The excited wavefunctions
are concentrated away from r = rt and so the configurations have larger moments
of inertia. These give rise to rotational bands with slightly shallower slopes. We
do not calculate the slopes in detail. There are sufficiently many states in the
experimental spectrum to accommodate the excited states of the breathing mode.
However, the large number of excited states makes it difficult to decipher which
experimental state corresponds to which model state.

4.4.2 The F vibration

The F vibration generates a three-dimensional manifold of configurations. These
include the modes where one α-cluster separates from the other three, preserving
C3 symmetry. The manifold MF has A4 symmetry, the alternating group of
four objects. Here the objects are the individual α-particles. The manifold is
significantly more difficult to deal with beyond a harmonic approximation, as was
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done with the E vibration. The main difficulty is that the kinetic operator does
not separate as it does in (4.21). The effect of this is hard to measure. We shall
assume that the cross terms are small and that the potential is harmonic with
frequency ωF as is done in [66]. Other work such as [51] suggests that the cross
terms have a large effect on the energies of the states.

With these approximations the excited wavefunctions on MF are harmonic
oscillator wavefunctions. There is a basis for the first excited states {ψ(i)} with
i = 1, 2, 3, where the wavefunctions transform in the same way as the spatial axes.
Given this basis, a π/2 rotation on the Skyrme configuration is equivalent to the
transformation

(ψ(1), ψ(2), ψ(3))→ (ψ(2),−ψ(1), ψ(3)) . (4.56)

The rovibrational wavefunctions can be found using relations such as these. The
lowest energy state has spin 1− and takes the form(

ψ(1) + iψ(2)
)
|1, 1〉 − i

√
2ψ(3) |1, 0〉+

(
ψ(1) − iψ(2)

)
|1,−1〉 . (4.57)

Note the connection between the structure of the vibrational wavefunctions and
the spin 1 spherical harmonics. There are further states of this kind with spin
2+, 3±, 4±, . . . .

The vibrational energy is estimated using a harmonic approximation while
the moments of inertia are set empirically based on the energy spectrum. These
are crude approximations, owing to our poor understanding of the manifoldMF .
There is an approximate rotational band in the energy spectrum which contains
states with the spins matching those above. It includes an almost degenerate
spin 3 pair which matches the degenerate 3+ and 3− states in our simple model.
Dealing with MF more thoroughly will break the degeneracy. For example, one
may reach the dual tetrahedron by taking one α-particle through the other three,
always preserving C3 symmetry. This will favour positive parity states compared
to negative parity ones, which also happened in the E vibration.

4.4.3 Combining vibrations

Although the analysis so far has focused on each vibrational manifold separately,
the vibrational wavefunctions actually lie on the total space. The ground state
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wavefunction is
|Ψ〉 = φ(a) χA ψ0 |0, 0〉 |0, 0〉 , (4.58)

where the vibrational wavefunctions lie in the E, A and F manifolds respectively.
The expression (4.58) is only true if the metric has no cross terms between the
submanifolds. The individual wavefunctions may be excited in multiple manifolds
at once. To construct such wavefunctions we assume that the metric on our total
space is separable and further, that there are no cross terms between each vibra-
tional manifold. One can find which spins are allowed by looking at the irreducible
decompositions of the product spaces. For example, combining the E and F vi-
brations means looking at vibrational wavefunctions which fall into the E × F

representation. The product space has the irreducible decomposition

E × F = F + F . (4.59)

Hence, wavefunctions which are excited in both the E and F vibrations have the
same spins as wavefunctions excited in just the F vibration, but here there are
twice as many of them. In fact, there is parity doubling. The lowest energy
combined state has spin 1± and takes the form(

uψ(1) + ivψ(2)
)

(|1, 1〉+ |1,−1〉) + i
√

2wψ(3) |1, 0〉 , (4.60)

where {u, v, w} are the vibrational wavefunctions in the standard irrep on ME

and ψ(i) are the vibrational wavefunctions on MF described in the previous sec-
tion. The wavefunction (4.60) is a particularly simple combined state since the
wavefunctions on ME, the wavefunctions on MF and the spin states all trans-
form in a similar way. The vibrational energy of the state is simply the sum of
the vibrational energies of the composite wavefunctions. The rotational energy is
taken to be equal to the rotational energy of the F vibration states. We list the
allowed states up to 18 MeV in Table 4.5. All states have zero isospin. Note that
our approximations, especially regarding the structure of the metric, are crude.
The combined rovibrational wavefunctions are best thought of as a good starting
point for further work.
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JP Rep. E wvfn Evib Erot E Exp.
1− F (a) 6.07 0.86 7.12 7.12

2+ F (e) 6.26 2.58 8.84 9.84

1− E × F (i) 9.52 0.86 10.39 9.59

3− F (a) 6.07 5.16 11.26 11.60

3+ F (e) 6.26 5.16 11.42 11.08

0+ A (a) 12.05 0 12.05 12.05
2− E × F (i) 9.53 2.58 12.11 –
0+ F × F (a) 12.14 0 12.14 –
1+ E × F (j) 11.68 0.86 12.54 13.66

1− F (b) 12.13 0.86 12.81 12.44

1− F × F (e) 12.32 0.86 13.18 13.01

2+ E × F (j) 11.68 2.58 14.26 –
4− F (a) 6.07 8.60 14.67 –
3+/3− E × F (i) 9.53 5.16 14.69 –
2+ F × F (a) 12.14 2.58 14.72 –
4+ F (b) 6.26 8.60 14.86 –
2− F × F (b) 12.32 2.58 14.90 –
1+ E × F (l) 14.79 0.86 15.65 –
3+/3− E × F (j) 11.68 5.16 16.84 –
3− F × F (e) 12.32 5.16 17.3 –
2+ E × F (e) 14.80 2.58 17.38 –
3+ F × F (a) 12.14 5.16 17.48 –

Table 4.5: The allowed spin states which arise from the F and A vibrations and
their estimated energies. We display the spin-parity, representation that
the total wavefunction falls into, vibrational wavefunction from the E
vibration which is used to make the state (the labels refer to the specific
wavefunctions shown in Figure 4.6), vibrational energy Evib, 0th order
rotational term E0, rotational correction E1 and total energy E for each
state. When an identification with an experimental state is clear, we
also list this.
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4.5 The full energy spectrum

The full energy spectrum of our model up to spin 4, alongside all experimentally
known states up to 18 MeV are displayed in Figure 4.8. Further details of these
states can be found in Tables 4.4 and 4.5.
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Figure 4.8: The energy spectrum of the full model. Calculated states of positive
parity (solid circles) and negative parity (solid triangles) are plotted.
Blue and red states arise from our detailed calculation in the E vibra-
tion while purple and green states arise from the F and A vibrations
respectively. Combined state are also coloured purple and isospin 1

states are coloured cyan. Where our model states overlap, we have
shifted some data points to the right. In reality, all points should lie
on the integer valued J(J + 1). The entire experimental spectrum up
to 18 MeV is represented by hollow black symbols, circles have positive
parity while triangles have negative parity.

We discussed the energy spectrum arising from the E vibration in some detail.
Here, we speak more broadly. The model contains more low energy spin 2 states
than any other spin, in agreement with the experimental data. It also contains
several other features seen experimentally: a large gap between the lowest energy
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spin 3 states and the fact that there are few spin 1+ states. The most obvious
contradiction between data and the model is that we predict two low energy spin 4−

states while there is only one seen experimentally. It is experimentally challenging
to separate overlapping states with equal spin and parity, so this may not be a
contradiction. Overall, the results are promising with no serious contradictions
with experimental data. The analysis of this chapter shows that the vibrational
model gives a good description of 16O and serves as an excellent foundation for
further work on the nucleus.

4.6 Electromagnetic transition rates

Electromagnetic transitions measure the rate of γ-ray emissions between states.
Their strength depends on the structure of the nucleus and the nature of its excited
states. A large transition rate indicates collective motion of the nucleus, making it
a good test of models with collective features, such as ours. In the long wavelength
(or low energy of radiation) limit, the reduced transition probability for electric
multipole radiation can be calculated from the expression

B(El, Ji → Jf ) =
2Jf + 1

2Ji + 1

∣∣∣∣∫ d3r 〈Ψf | |ρ(ζ, r,α)rlYl(Ω)| |Ψi〉
∣∣∣∣2 , (4.61)

where r and Ω are space fixed coordinates, 〈 | | means we take the reduced matrix
elements and ρ is the charge density of the Skyrme configuration on M. The
coordinates α are the Euler angles, which live on the fibre of the vibrational
manifold. The configurations defined in Section 4.3 all have α = 0. Note that the
spin states are functions of the Euler angles. The reduced matrix elements take
account of the fact that we must average over all space-fixed angular momenta
projections.

To calculate (4.61) we simplify the formula using the relation

2J ′ + 1

2J + 1

∣∣∣∣∫ d3r 〈JfL3| |ρ(ζ, r,α)Y l(Ω)| |JiL′3〉
∣∣∣∣2 =

∣∣∣∣∣∑
m′

〈J ′L′3lm′|JL3〉 Q̃lm′(ζ)

∣∣∣∣∣
2

.

(4.62)
where 〈J ′L′3lm′|JL3〉 is a Clebsch-Gordon coefficient and

Q̃lm(ζ) =

∫
ρ(ζ, r,0)rlYlm(Ω) d3r . (4.63)
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We prove this formula in Appendix B. The transition rates can then be expressed
solely in terms of the modified multipole functions Q̃lm(ζ) and the vibrational
wavefunctions. To demonstrate how the formalism works we now calculate two
transition rates, focusing on wavefunctions in the E vibration since we understand
these the best.

E4: Trivial to trivial

The simplest transitions are those between states in the trivial representation.
Consider the transition between the states

|Ψi〉 = φ(a)(ζ)

√
5

24

(
|4, 4〉+

√
14

5
|4, 0〉+ |4,−4〉

)
(4.64)

and |Ψf〉 = φ(a)(ζ) |0, 0〉 ,

where φ(a) is normalised so that 〈Ψ|Ψ〉 = 1. The index (a) refers to the specific
vibrational wavefunction displayed in Figure 4.6. In this case the matrix element
(4.61) is

B(E4, 4+ → 0+) =
5

24

∣∣∣∣∣
∫
dζφ(a)(ζ)2

∑
m′

(
〈444m′|00〉+

√
14

5
〈404m′|00〉

+ 〈4− 44m′|00〉

)
Q̃4m′

∣∣∣∣∣
2

=
5

24× 9

∣∣∣∣∣
∫
dζφ(a)(ζ)2

(
Q̃44 +

√
14

5
Q̃40 + Q̃4−4

)∣∣∣∣∣
2

, (4.65)

a rather simple expression. Note that in the rigid body limit, the transition rate
becomes

B(E4, 4+ → 0+) =
5

24× 9

(
Q̃44 +

√
14

5
Q̃40 + Q̃4−4

)
. (4.66)

E2: Doublet to trivial

The transition between the 2+ state at 6.66 MeV and the ground state is more
complicated, since the spin 2 state falls into the standard representation. The
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relevant states for this transition are

|Ψi〉 =
1√
3

(
u(i) |2, 0〉x + v(i) |2, 0〉y + w(i) |2, 0〉

)
=

1

2
√

2
(u(i) − v(i)) (|2, 2〉+ |2,−2〉)−

√
3

2
(u(i) + v(i)) |2, 0〉

and |Ψf〉 = φ(a)(ζ) |0, 0〉 ,

where the vibrational wavefunctions are normalised so that 〈Ψ|Ψ〉 = 1. The tran-
sition is

B(E2, 2+ → 0+) =

∣∣∣∣∣
∫
dζ
u(i) − v(i)

2
√

2
φ(a)

∑
m′

(
〈222m′|00〉 Q̃2m′ + 〈2− 22m′|00〉 Q̃2m′

)
−
√

3

2
(u(i) + v(i))φ(a)

∑
m′

〈202m′|00〉 Q̃2m′

∣∣∣∣∣
2

=

∣∣∣∣∣
∫
dζ

(
1

2
√

10
(u(i) − v(i))

(
Q̃22 + Q̃2−2

)

−
√

3

2
√

5
(u(i) + v(i))Q̃20

)
φ(a)

∣∣∣∣∣
2

.

Note that this formula also holds for the 0+
e state, if φ(a) is replaced with φ(b).

A similar calculation gives the transition between the first 4+ and 2+ states.
We suppress the index of the vibrational wavefunctions in this calculation. Now

|Ψi〉 = φ(ζ)

√
5

24

(
|4, 4〉+

√
14

5
|4, 0〉+ |4,−4〉

)

|Ψf〉 =
1

2
√

2
(u− v) (|2, 2〉+ |2,−2〉)−

√
3

2
(u+ v) |2, 0〉 ,
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and the transition is

B(E2, 4+ → 2+)

=
5

24

∣∣∣∣∣
∫
φ

(
−
√

3

2
(u+ v)

∑
m′

(
〈442m′|20〉+

√
14

5
〈402m′|20〉+ 〈4− 42m′|20〉

)
Q̃2m′

+
1

2
√

2
(u− v)

∑
m′

(
〈442m′|22〉+ 〈442m′|2− 2〉+ 〈4− 42m′|22〉+ 〈4− 42m′|2− 2〉

+

√
14

5
(〈402m′|22〉+ 〈402m′|2− 2〉)

)
Q̃2m′

)
dζ

∣∣∣∣∣
2

=
5

24

∣∣∣∣∣
∫
φ

(
−
√

3√
5

(u+ v)Q̃20 +
1√
10

(u− v)
(
Q̃22 + Q̃2−2

))
dζ

∣∣∣∣∣
2

=
5

6
B(E2, 2+ → 0+) ,

which gives a relationship between the transitions. Several more transition rates
are expressed in this form in Appendix B.

4.6.1 Estimating Q̃

The expressions in the previous section depend on the tensor components Q̃lm

which in turn depends on the charge density ρ. To do actual calculations, an
approximate expression for the baryon density is needed since

ρ(x, ζ) =
1

2
B0(x, ζ) ,

for zero isospin. We estimate the baryon density B0(x, ζ) by treating each B = 4

cube as a point particle. For a single cube, the baryon density takes the form

B0(ζ,x) = 4 δ(3) (x̃ (ζ)− x) , (4.67)

where x̃ is the coordinate onME defined implicitly in (4.52). With this approxi-
mation, the modified multipole tensor takes the form

Q̃lm(ζ) = κl8 r̃lYlm (x̃(ζ), ỹ(ζ), z̃(ζ)) . (4.68)
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We have introduced a length scale κ which converts x̃ to Skyrme units. This is
fixed by calculating the quadrupole at the flat square

Q̃20

(
ζ =

1

2
+ i

1

2

)
= κ2

1

2

∑
i

4

√
5

16π

(
2z̃(ζi)

2 − x̃(ζi)
2 − ỹ(ζi)

2
)

= −
√

80

π
κ2 ,

where i labels the positions of the B = 4 cubes which form the square. In the
Skyrme model, this quadrupole is equal to −42.5, giving κ2 ≈ 2.66. To test our
ansatz, the following multipole at the tetrahedron is calculated

Q̃44 +

√
14

5
Q̃40 + Q̃4−4 = 3κ4

√
7

10π

∑
i=tet

1

2
B0(ζi,x) ≈ −120 . (4.69)

This is to be compared to the result in the Skyrme model: −114.2. The approx-
imation (4.67) is somewhat crude and the quantity (4.69) scales as the fourth
power of length. Despite this, the value −120 is close to the true answer, giving us
confidence in the approximation. Overall, the ansatz for the modified multipole
tensors is

Q̃lm(ζ) =

(
42.5

16

)l
8 r̃lYlm (x̃(ζ), ỹ(ζ), z̃(ζ)) . (4.70)

We can evaluate this expression analytically at any point onME.

4.6.2 Results

The calculated transition rates are displayed in Table 4.6, alongside the experi-
mental data where known. We convert from Skyrme length units to physical units
by fixing the E4 transition to its experimental value.

The strength of the transition rates partially depend on how much the incoming
and outgoing vibrational wavefunctions overlap. Hence the transition between the
4+ and 0+ states is large. However, they also depend on the structure of the
operator and of the rotational part of the wavefunction. For example, the E1
transition between the lowest lying 4+ and 3− states is zero. While their vibrational
wavefunctions do overlap significantly, the structure of the rotational states forbid
the transition. In detail, a term (4.62) is only non-zero if L3 and L′3 are at most l
apart. In the case mentioned above l = 1, but the L3 and L′3 values are all at least
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El Transition Our model (e2fm2)l Experiment (e2fm2)l

E3 3− → 0+ 230 205
E4 4+ → 0+ 378 378
E6 6+ → 0+ 8914 –
E2 2+ → 0+ 16.4 7.4
E2 2+ → 0+

e 23.3 65
E2 4+ → 2+ 13.6 156
E2 4+

e → 2+ 7.7 2.4
E4 4+ → 0+

e 9.6 –
E4 4+

e → 0+ 609 –
E4 4+

e → 0+
e 1614 –

E1 4+ → 3− 0 < 1.2× 10−5

E1 4+
e → 3− 0 < 2.4× 10−5

E1 2+ → 3− 0 < 1.6× 10−5

Table 4.6: A comparison of the transition rates of our model and experimental
data. States with no subscript refer to the ground state of that spin.
State with the subscript Je are the first excited state for the given spin.
All experimental data is taken from [64].

two units apart. Due to results such as this, one cannot rely heavily on intuition
to estimate the transition rates and instead needs a thorough understanding of the
rovibrational wavefunctions’ structure.

The transition rates along the lowest-lying band are in good agreement with the
experimental data. The E6 transition is close to the result obtained in [66] which
is expected since these states have similar descriptions in both models. These
results support the idea that a tetrahedral arrangement of α-particles does indeed
produce the lowest rotational band in the 16O spectrum.

The transition B(E2; 2+ → 0+
e ) is larger than the transition B(E2; 2+ → 0+)

since the 0+
e vibrational wavefunction overlaps more with the spin 2+ wavefunction,

both being large at the flat square configurations. In the experimental data, the
transitions obey this ordering, though the actual values are far from the experimen-
tal results. We cannot describe the large experimental transition B(E2; 4+ → 2+),
though we do get a reasonable result for B(E2; 4+

e → 2+). Naively one might
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assume the second transition rate is very large as both states share the same vi-
brational wavefunction. However, a careful study of the structure of the states
explains why it is small. These mixed results suggest something could be wrong
with the identification of our states, possibly of the spin 4 states. As such, it
seems important to gain more information about these. Hence we have calculated
several E4 transitions involving the spin 4 states. These have not been measured
experimentally as E4 transitions are highly suppressed compared to E2 transitions.

All the E1 transitions which have been calculated are zero. B(E1; 4+ → 3−) is
zero because of the structure of the rotational states and the other E1 transitions
are zero because the total matrix element is odd around η = 1

2
. Their experimental

counterparts are also small and so do not contradict our results.
We have only described transitions between wavefunctions which lie in the E

vibration of the tetrahedron. To include the other vibrations we must estimate
the baryon density in the other manifolds and find concrete expressions for the
wavefunctions on the total space. Once this is done, the formalism is essentially
the same. We have focused on E transitions but M transitions are also seen
experimentally. The M transitions depend on a current j which satisfies

∂ρ

∂t
+ ∇.j = 0 . (4.71)

The obvious candidate for zero isospin is j = B, the spatial component of the
topological current. Though its value can be calculated at static configurations
such as the tetrahedron and flat square, how it varies over M is unclear. If one
can calculate B(ζ), the formalism for M transitions is similar to the formalism
laid out in this section. Finally, we have not calculated the E0 transition between
the first excited 0+ state and the ground state. Physically, the transition occurs
due to the emission of two photons and hence the formalism is more complicated
than for the examples in this section, where only one photon was emitted.

4.7 Conclusions and further work

In conclusion, we have studied a model of Oxygen-16 which describes the nucleus
as four α-particles which are centered around a tetrahedral configuration. The
main novelty in the work is our Skyrme-inspired description of the E vibrational
manifold as the 6-punctured sphere. This goes beyond a local analysis near the
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tetrahedron and includes the flat square configuration in the quantisation proce-
dure. Its inclusion explains the large gap between the lowest energy spin 2 states
which has never been explained in other cluster model calculations. The other
cluster models also have a tendency to have too many states. The algebraic clus-
ter model of [66] describes the 0+ state at 6.05 MeV as a breathing mode but there
is then another 0+ state at roughly 7 MeV, arising from a doubly excited E vibra-
tional wavefunction. This is not seen in the spectrum. The model also contains
three spin 3 states at around 10 MeV while there are actually only two. Our model
does not have the same problem and so appears to most accurately describe the
16O energy spectrum with much of its success owing to the inclusion of the square
configuration. A comparison to other models is harder to make. The lattice ab
initio model has garnered the most attention in the literature, though it has only
obtained states up to 7 MeV so far. Our model is attractive in comparison as we
can extrapolate to large energies.

We studied states with large amounts of vibrational energy, high spin and com-
posite states which lie in multiple vibrational manifolds. These three calculations
were limited by our non-physical potential, the lack of rotational deformation and
our poor understanding of cross-terms in the metric respectively. However, the
way to deal with each of these contributions is known and we hope these issues
can be overcome in future work. In addition we have found the first ever spin-
parity 0−, isospin 0 state in the Skyrme model. Finally, we developed a method to
calculate the electromagnetic transition rates for rovibrational wavefunctions and
these transitions were calculated in our model, with mixed results.

The Skyrme model supports a stable chain-like configuration of α-particles as
seen in Figure 4.1. This is far away from the tetrahedron and flat square in config-
uration space and so the rigid body approximation can be used to study the chain’s
quantum states. This gives rise to a rotational band with spins 0+, 2+, 4+, 6+, . . .

. The chain has a very large moment of inertia and hence can produce states with
high spin and low energy. There is a low-lying spin 6 state at 14.8 MeV which we
fail to explain within our model. It has been suggested that the state comes from
the chain configuration. If this were true, there would be a 0+, 2+, 4+ band leading
up to the state in the experimental data. There is not, which casts doubt upon
the idea. However, rotational deformations may be important for the calculation,
given the large extent of the chain.
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The potential (4.34) diverges asymptotically and is only appropriate near the
low energy configurations. We chose it to make the Schrödinger equation easy
to solve. Physically, the potential should flatten out asymptotically. One can
keep the Schrödinger equation (4.21) separable and model the correct asymptotic
behaviour by using a step potential such as

V (ε, η) =

{
0 ε < ε0

V0 ε ≥ ε0 ,
(4.72)

valid in the red region of F . The Schrödinger equation with this potential can be
solved in a similar way to the Schrödinger equation discussed in Section 4.3.4. We
display the low lying spectrum for the parameters ε0 = 1.5 and V0 = 100 in Figure
4.9. Compared to the spectrum of the system with potential (4.34) as seen in
Figure 4.7, the spin 3− state has more energy relative to the spin 4+ state. This is
because the step potential gives the tetrahedral and square configurations the same
energy. Hence the spin 3− state, having to vanish at all flat square configurations,
gains energy. The spin 2+ state, which is concentrated at the flat squares, becomes
energetically favoured for the same reason. The highly vibrationally excited 0−

state has decreased its energy considerably, as claimed in Section 4.3.6. It now has
energy 13.81 MeV, down from 15.79 MeV, and is much closer to the experimental
0− state at 11.0 MeV.

Ideally the potential should favour the tetrahedron over the flat square config-
uration and flatten out asymptotically as well. It may be impossible to write down
such a potential and keep the Schrödinger equation separable. Hence one would
need to solve the full 2D equation numerically which is certainly within current
computational limits. One could attempt to generate the potential from a more
fundamental point of view. A possibility is to take configuration energies from an
α-cluster model such as the one studied in [10]. Another is to find a way to gen-
erate all the Skyrme configurations on M, which requires a fuller understanding
of the vibrational space of Skyrmions. However, if it were possible, the moments
of inertia, metric on M and potential would all come from a single Lagrangian,
making the proposition very attractive.
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Figure 4.9: The low energy spectrum using the step potential (4.72). Calculated
states of positive (solid circles) and negative (solid triangles) parity are
plotted, alongside the experimental states (hollow shapes) that they
describe.

102



Chapter 5

A Skyrme model approach to the
spin-orbit force

This chapter is based on the joint paper with N. S. Manton [67].

5.1 Introduction

The spin-orbit force is a crucial ingredient in many parts of nuclear physics [68].
In the elementary shell model, nuclei are described as a collection of nucleons
which do not directly interact. They only interact indirectly through an effective
potential which gives rise to a one-particle Hamiltonian and consequently an energy
spectrum. By the Pauli exclusion principle, levels of this energy spectrum are filled
as the baryon number B is increased. For special values of B, the spectrum hits a
gap and the corresponding nucleus is tightly bound and very stable. These special
values are called magic numbers and give rise to magic nuclei. The shell model
works well near these. To obtain the correct magic numbers one must include a
spin-orbit term in the single particle Hamiltonian [69, 70]. This couples the spin
of a nucleon to its orbital angular momentum l. The inclusion of this term breaks
the degeneracy between states with the same value of |l|. States with spin and
orbital angular momentum aligned are energetically favoured.

For a nucleus with a few more nucleons than a magic number we can interpret
its structure physically: a core made from a magic nucleus is surrounded by the
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other nucleons orbiting it. If there is one orbiting nucleon, its spin and orbital an-
gular momentum are aligned in all but two cases, Antimony-133 and Bismuth-209.
As more nucleons are added, other factors such as pairing make the interpretation
more complicated. The spin-orbit force is strongest near the surface of the core
and its physical meaning is lost within the core.

Analogy with atomic physics points to an electromagnetic origin of the spin-
orbit coupling but this turns out to have the wrong magnitude. The correct magni-
tude can be obtained by considering relativistic effects. They lead to a field theory
where nucleons interact via mesons. The system can be solved approximately by
neglecting quantum fluctuations of certain terms [71]. While this technique is
successful, it ignores the structure of nucleons and requires one to fit several pa-
rameters. Ideally these parameters would come from experiment but as the theory
is phenomenological, effective masses and coupling constants must be used [72].

The spin-orbit force is also present in nucleon-nucleon interactions. It couples
the orbital angular momentum to the sum of the spins of the nucleons, and can
also be thought of as coming from meson interactions. The asymptotic form of
the force has been successfully reproduced in the Skyrme model using a product
ansatz which is valid only when the Skyrmions are widely separated [73].

In this chapter we develop an idea in [74] which provides an explanation for
the spin-orbit force at shorter separations, inspired by the Skyrme model. When
two B = 1 Skyrmions are widely separated we can approximate their interaction
using an asymptotic expansion. One finds that among all configurations there
is a special submanifold of maximal attraction between the Skyrmions called the
attractive channel [12]. This is easiest to interpret pictorially: in the attractive
channel the separated Skyrmions have matching colours at the point of closest
contact. Conversely, if the closest colours are opposite the Skyrmions repel.

Configurations tend to line up in the attractive channel in order to minimise
potential energy. This concept remains useful for larger Skyrmions. In fact, in
all of the dynamical modes discussed in this thesis, the Skyrmions remain in the
attractive channel. This can be seen in Figures 3.4 and 4.2. As another example,
consider the configuration in Figure 5.1. Here, a B = 1 Skyrmion is orbiting a
B = 6 Skyrmion. The system is shown in the attractive channel with red on both
Skyrmions at their contact point. To stay in the attractive channel as it orbits,
the B = 1 Skyrmion must take a special orbital path. Specifically, it rolls around

104



the equator of the larger solution completing three full rotations on its axis before
returning to the initial position. The key observation is that the B = 1 Skyrmions’
orbital angular momentum is aligned with its spin. This is exactly what is required
for the spin-orbit force in nuclei with B one more than a magic number, except in
the cases of Antimony-133 and Bismuth-209. It is the classical pion field structure
of Skyrmions that provides the microscopic origin for the coupling. Many other
Skyrmion pairs have paths like this which encourage spin-orbit coupling. The
effect becomes stronger when the Skyrmions are closer together but loses meaning
if they were to merge fully. This is consistent with the fact that the traditional
spin-orbit force is strongest near the surface of the core nucleus.

Figure 5.1: A B = 1 Skyrmion close to a B = 6 Skyrmion. The colours of closest
contact are both red (unseen on the B = 1 solution from this view-
point) so the configuration is in the attractive channel.

We will now try to work out the consequences of this classical spin-orbit cou-
pling when the system is quantised. The usual procedure for quantising one
Skyrmion is to apply rigid body quantisation to the classical minimal energy con-
figuration, as seen in Chapter 2. Quantising the interaction between separated
Skyrmions is more difficult and little progress has been possible on a larger vibra-
tional manifold, apart from the work in this thesis and [32]. Thus, we will only
consider a toy model in two dimensions where we treat the Skyrmions as rigid discs.
This can be thought of in terms of the vibrational manifold picture as follows: we
postulate there is a low energy valley in the vibrational manifold, away from the
energy minimising Skyrmion itself. In this valley, the Skyrme configuration looks
like a B = 1 Skyrmion orbiting a larger Skyrmion. The one-dimensional set of
configurations in this valley are local minima of the vibrational manifold. We will
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begin by carefully considering the simplest system possible: the interaction of two
B = 1 Skyrmions.

5.2 Discs interacting through a contact potential

5.2.1 Two discs of equal size

Our model is based on taking 2D slices of 3D Skyrme configurations, taking our
inspiration from B = 1 Skyrmion interactions. Figure 5.2a shows separated B = 1

solutions in the attractive channel. We can take a 2D slice of this parallel to the
y-z plane and parallel to the x-y plane to give us the systems in Figures 5.2b and
5.2c. We now treat these 2D objects as rigid discs, at fixed separation, interacting
through a potential which depends only on their colouring.

Figure 5.2: (a) Two B = 1 Skyrmions in the attractive channel. (b) The rolling
configuration. (c) The sliding configuration

To remain in the attractive channel the discs in Figures 5.2b and 5.2c must
roll and slide around each other respectively. For now, we will consider the rolling
configuration. Labelling the discs as 1 and 2 we introduce the angular coordinates
as in Figure 5.3. The angles α1 and α2 represent the orientation of the discs with
respect to their own axes. These are measured anti-clockwise and are zero when
white points up, as in Figure 5.2b. The coordinate β labels the orbital orientation
of the discs while r is the (fixed) distance between the disc centres.

Each of the coordinates has range 2π but β → β+π also returns the system to
the attractive channel. As such, the potential must be periodic under full rotations
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Figure 5.3: The angles α1, α2 and β.

of either disc and under half an orbital rotation. It should also only depend on the
colouring: the simplest choice is a cosine potential. Thus, a classical Lagrangian
which describes the system is

L =
1

2
I1α̇

2
1 +

1

2
I2α̇

2
2 +

1

2
µr2β̇2 + k cos (2β − α1 − α2) (5.1)

where I1, I2 are the disc moments of inertia, µ is the reduced mass of the system
and k > 0 is the strength of the potential. The argument of the potential measures
the difference in colour at the closest points. The discs are identical so I1 = I2 = I

and we may write µr2 in terms of I by introducing a dimensionless separation
parameter d and setting µr2 = 4d2I. This simplifies the Lagrangian to

L =
1

2
I
(
α̇2
1 + α̇2

2 + 4d2β̇2
)

+ k cos (2β − α1 − α2) . (5.2)

Classically, the lowest energy solution satisfies 2β−α1−α2 = 0. This forces the
discs into the attractive channel as if they were cogwheels; the first cog rolls around
the second, fixed cog. If they stay in the attractive channel for all time, we can
differentiate this condition to obtain a relation between velocities: 2β̇−α̇1−α̇2 = 0.
Introducing the classical conjugate momenta to the coordinates

s1 = Iα̇1 , s2 = Iα̇2 and l = 4d2Iβ̇ , (5.3)

we can rewrite the above velocity relation as

l − 2d2(s1 + s2) = 0 . (5.4)
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Hence, the classical angular momentum and the sum of spins are aligned. Later we
will see that this combination of spins and angular momentum has an important
role to play in the quantum picture too.

The Lagrangian (5.2) has two linearly independent continuous symmetries.
The first corresponds to all angles increasing by the same amount. This leads to
conservation of total angular momentum

J = I
(
α̇1 + α̇2 + 4d2β̇

)
= s1 + s2 + l . (5.5)

The other conserved quantity is generated by one disc spinning at the same speed
as the other but in the opposite direction. Since this quantity can be interpreted
purely in terms of the colour fields moving, we label it as the total isospin in
analogy with the full Skyrme model. It has the form

I = I (α̇1 − α̇2) = s1 − s2 . (5.6)

We can take advantage of these symmetries by changing coordinates and re-
ducing the problem’s degrees of freedom from three to one. Before doing this,
we should consider the discrete symmetries of the system which occur since the
configuration space is a 3-torus. First let us solve the problem for k = 0 where
the Hamiltonian becomes that of a free particle on a 3-torus. After canonical
quantisation, the Hamiltonian has the form

Ĥ = − 1

2I

(
∂2

∂α2
1

+
∂2

∂α2
2

+
1

4d2
∂2

∂β2

)
, (5.7)

where we have set ~ = 1. The wavefunction has the form

ψfree (α1, α2, β) = ei(s1α1+s2α2+lβ) , (5.8)

with corresponding energy

Efree =
1

2I

(
s21 + s22 +

1

4d2
l2
)
. (5.9)

The quantities s1, s2 and l are the quantum numbers corresponding to the spins
and orbital angular momentum of the free discs. As we are modelling Skyrmions,
the discs are treated as fermions. Thus, the wavefunction picks up a minus sign
under full disc rotations: α1 → α1 + 2π and α2 → α2 + 2π. This means s1 and
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s2 are both half-integers. The system is also invariant under β → β + 2π and as
such l must be an integer. While these quantities do not remain good quantum
numbers when the potential is turned on, they do remain important due to Bloch’s
theorem. This says that there exists a basis of energy eigenstates of the form

ψ (α1, α2, β) = ei(s1α1+s2α2+lβ)u (α1, α2, β) , (5.10)

where u is periodic on the 3-torus, and has the same periodicity as the potential.
This theorem is generally used in an infinite lattice but we are on a torus. As such
s1, s2 and l have discrete allowed values instead of continuous ones. They are also
usually defined up to a vector in the reciprocal lattice, a discrete lattice in 3D.
However we fix their value by insisting that

u (α1, α2, β) |k=0 ≡ 1 . (5.11)

There is one state per cell in the reciprocal lattice. Thus we can understand s1,
s2 and l as labelling a particular lattice cell. We will see later that energy states
from different cells do not cross when the potential is turned on and as such these
labels are good for tracking the energy states as k increases.

To make progress we must now change coordinates to take advantage of the
continuous symmetries from earlier. We introduce new coordinates (γ, ξ, η). Two
of these should give rise to the conjugate momenta corresponding to J and I.
That is

−i ∂
∂ξ

= −i
(

∂

∂α1

+
∂

∂α2

+
∂

∂β

)
(5.12)

−i ∂
∂η

= −i
(

∂

∂α1

− ∂

∂α2

)
. (5.13)

Note that these operators commute with the potential in (5.2). We may define
γ to be the coordinate in the potential. If we also insist on a diagonal quadratic
kinetic term in the Hamiltonian we arrive at a unique coordinate transformationγξ

η

 =

 −1 −1 2
1

2+4d2
1

2+4d2
4d2

2+4d2

1
2

−1
2

0


α1

α2

β

 . (5.14)

This transforms the Hamiltonian to

Ĥ = − 1

2I

(
1 + 2d2

d2
∂2

∂γ2
+

1

2 + 4d2
∂2

∂ξ2
+

1

2

∂2

∂η2

)
− k cos γ . (5.15)
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Since the ξ and η contributions are purely kinetic, the wavefunction has the
form

ψ(γ, η, ξ) = eiJ ξeiIηχ(γ) . (5.16)

Moreover, after applying the coordinate transformation, comparison with (5.8)
and (5.10) tells us that

J = s1 + s2 + l , (5.17)

I = s1 − s2 (5.18)

as in the classical equations (5.5) and (5.6), and that

χ(γ) = eiqγγũ(γ) , (5.19)

where
qγ =

1

2 + 4d2
(
l − 2d2(s1 + s2)

)
(5.20)

and ũ(γ) has period 2π. Once again, we fix qγ so that ũ|k=0 ≡ 1. From earlier,
we find that I and J can take any integer values. The free system now has the
wavefunction

ψfree(γ, η, ξ) = eiJ ξeiIηeiqγγ , (5.21)

with corresponding energy

Efree =
1 + 2d2

2d2I
q2γ +

1

(4 + 8d2)I
J 2 +

1

4I
I2 . (5.22)

For fixed J and I, the allowed values of qγ are separated by integers, though the
fractional part of qγ depends on d and J . Combining everything, the problem
reduces to the Schrödinger equation

−1 + 2d2

2d2I

d2

dγ2
(
eiqγγũ

)
− k cos γ eiqγγũ =

(
E − J 2

(4 + 8d2)I
− I

2

4I

)
eiqγγũ (5.23)

≡ Eγe
iqγγũ . (5.24)

This is the Mathieu equation, which has been extensively studied [76]. We will
now consider it with our physical picture in mind. The energy has separated into
two parts – one depends on J and I and has no k dependence. The other only
depends on the γ sector. The potential does not mix states with different I and
J . Thus, we can fix these values and focus on calculating Eγ.
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We can understand the system when k is small by using perturbation theory.
Note that the dimensionless small quantity is really kI. The energy, to second
order in kI is

Eγ,pert =
1 + 2d2

2d2I
q2γ + (kI)2

d2

(1 + 2d2)I

1

4q2γ − 1
. (5.25)

The most important thing to note is that for fixed J and I, since the allowed values
of qγ are separated by integers, there is a unique state which satisfies 4q2γ − 1 < 0.
Thus there is one state whose energy decreases after perturbation, with |qγ| ≤ 1

2
.

We call states which satisfy this condition energetically favourable. At |qγ| = 1
2

equation (5.25) breaks down and degenerate perturbation theory must be used. It
tells us that the energy spectrum develops a gap at each of these points leaving a
separated energy band for |qγ| < 1

2
which does not touch the rest of the spectrum.

The other degenerate points (|qγ| = 1, 3
2
, 2...) lead to singularities in the per-

turbative energy spectrum at higher orders. Degenerate perturbation theory tells
us, once again, that a gap occurs at each of these points. Thus after perturbation
we are left with an energy spectrum divided into non-touching bands as seen in
Figure 5.4. Degenerate points are identified and as such each band is an integer
long. For example, one of the bands is qγ ∈ [−1,−1

2
] ∪ [1

2
, 1]. Since the allowed

values of qγ are separated by an integer there is exactly one state per band. This
explains why qγ is a good label: due to the gaps in the spectrum we can follow
a free state as k increases without having to worry about crossing except at de-
generate points. Even there, the uncertainty is only between two states and most
degeneracies only occur for special values of d. As such, we won’t consider them
carefully.

For large k we may use a tight binding (tb) limit. This approximation relies
on the wavefunction being concentrated within each unit cell in γ with negligible
overlap. Then the total wavefunction can be written as a sum of isolated wave-
functions which solve Schrödinger’s equation within the unit cell. These isolated
wavefunctions must be the same at each site due to the periodicity of ũ. Bloch’s
theorem allows for the total wavefunction to pick up a phase between cells meaning
the solution of (5.23) is of the form

eiqγγũtb(γ) =
∑
m∈Z

φ(γ − 2πm)e2πiLm , (5.26)

111



Figure 5.4: How the energy spectrum changes after perturbation. Efree is the
spectrum for k = 0; Epert is the spectrum for small kI. The dots
represent an example of an allowed value of qγ. In this case we take
(I,J ) = (0, 1) and d = 1 which gives qγ ≡ 1

3
(mod 1). Note that there

is one allowed state per separated band.

where φ is the isolated wavefunction and L is some constant. The periodicity of ũ
fixes L to be qγ. Thus our total, tight binding wavefunction is

ψtb(γ, ξ, η) = eiJ ξeiIη
∑
m∈Z

φ(γ − 2πm)e2πimqγ . (5.27)

We are left to find φ. Since k is large, we assume that the wavefunction is
concentrated near the minimum of the potential. We can expand the potential
near this point, which gives

− k cos γ ≈ −k
(

1− γ2

2
+
γ4

4!

)
(5.28)

and reduces the Schrödinger equation (5.23) to

− 1 + 2d2

2d2I

d2φ

dγ2
− k

(
1− γ2

2
+
γ4

24

)
φ = Eγφ , (5.29)

where kI is large. If we temporarily ignore the γ4 term in the potential then this
truncated Schrödinger equation is just a simple harmonic oscillator which can be
solved by standard methods. The non-normalised eigenstates are given by

φN(γ) = HN

((
kd2I

1 + 2d2

) 1
4

γ

)
exp

(
−
(

kd2I

4 + 8d2

) 1
2

γ2

)
, (5.30)
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where HN are the Hermite polynomials. We can then use these to find the energies
to O(1) in k. They are

Eγ,n = −k +
√
k

√
1 + 2d2

d2I

(
N +

1

2

)
− 1 + 2d2

32d2I

(
2N2 + 2N + 1

)
+O

(
1√
k

)
.

(5.31)
The O(k) term is from the constant in the potential. The O(

√
k) term is the

usual harmonic oscillator energy, and the O(1) term is the contribution from the
γ4 term in the potential, evaluated by first order perturbation theory. We have
ignored all overlap terms between cells, but these are exponentially suppressed for
large enough k.

Due to the lattice structure, the labels we used for the free states continue to
label the states in the tight binding limit. Since there is no crossing for fixed I and
J , the N th excited free state (which has the label qγ where qγ ∈ [−N+1

2
,−N

2
] ∪

[N
2
, N+1

2
]) flows smoothly to the state labelled by N in the tight binding limit.

This is confirmed by numerical calculations as seen in Figure 5.5, which shows the
analytic and numerical energies as a function of k for the four lowest energy states
for fixed (I,J ) = (0, 1). The eigenvalues Eγ are found using a shooting method.

From the numerical data in Figure 5.5 we see that the analytic expressions
(5.25) and (5.31) have different regions of validity depending on which state we
examine. We can explain this as follows. The large k calculation relied on two
approximations: that the wavefunction is concentrated within a unit cell and that
it is concentrated within a region where we may expand the potential to quartic
order. If we satisfy the second constraint we certainly satisfy the first so we shall
examine the second. The expansion (5.28) is, very roughly, good for |γ| < 2. Thus,
we need the wavefunction to be decaying exponentially there. For large γ, φn is of
the form

φN ∼ γNκ
N
4 exp

(
−γ

2

2
κ

1
2

)
= exp

(
N log γ +

N

4
log κ− γ2κ

1
2

2

)
, (5.32)

where we have defined κ = kd2I
1+2d2

. For the wavefunction to be concentrated within
−2 < γ < 2 we require

N log 2 +
N

4
log κ− 2κ

1
2 < −c , (5.33)
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Figure 5.5: The energy spectrum for (I,J ) = (0, 1) and d = 1 as k varies. As in
Figure 5.4, these values give qγ ≡ 1

3
(mod 1). Our analytic expressions

are represented by the bold lines while numerical results are displayed
as dots. The N th excited free state (and thus the free state in the N th

band) flows to the N th excited state of the tight binding limit.

where c is some positive constant. We see that as N increases we need a larger κ,
and hence kI, for our approximation to be valid, as the numerical results confirm.

The regions of validity of the small k perturbative energy expansion (5.25) can
be explained by calculating the next non-trivial term. It is

k4
(d2I)3

(1 + 2d2)3
20q2γ + 7

(4q2γ − 1)3(4q2γ − 4)
. (5.34)

Away from degenerate points, this goes as k4q−6γ and as such is small for states
with large qγ. This explains why the perturbative energy calculation works for a
larger range of k for states with larger qγ.

The problem has now been solved in both small and large k limits. Thanks to
the lattice structure we can extrapolate the free states to the large k states without
fear of crossing between states. We have found that the energetically favourable
states in the large k limit come from free states which satisfy

|qγ| =
1

2 + 4d2
∣∣l − 2d2 (s1 + s2)

)
| ≤ 1

2
. (5.35)

This is our form of spin-orbit coupling. States with orbital angular momentum
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and spins aligned are more likely to satisfy the inequality while they are less likely
to if they are anti-aligned. Note the connection between the classical minimum
energy condition (5.4) and our energetically favourable state condition (5.35). To
be more definite let us fix the spins of the discs to be ±1

2
. Then s1 + s2 can be 1, 0

or −1. Take s1 + s2 = 1 first. Energetically favoured states satisfy

|l − 2d2| ≤ 1 + 2d2 . (5.36)

Thus these states have orbital angular momentum l ∈ [−1, 1 + 4d2]. As l is
usually positive, spin and orbital angular momentum are usually aligned. The
extreme case, l = −1, corresponds to a degenerate point in the energy spectrum.
Here, our labels lose meaning and we cannot distinguish between the free states
(s1, s2, l) = (1

2
, 1
2
,−1) and (s1, s2, l) = (−1

2
,−1

2
, 1) as the potential is turned on.

Both of these have spin and orbital angular momentum anti-aligned. The result
is essentially the same for s1 + s2 = −1. Here l is always non-positive, except
for the degenerate state. As this example demonstrates, the direction of the spins
is correlated with the direction of the orbital angular momentum for most of the
energetically favoured states. When s1 + s2 = 0 the condition (5.35) reduces to

|l| ≤ 1 + 2d2 . (5.37)

This time there is no spin-orbit coupling as the orbital angular momentum has no
preferred direction. Figure 5.6 displays how the energy spectrum changes as k is
turned on for the lowest energy states which satisfy I = 0 and s1 = 1

2
. We focus

on these states as this is where the spin-orbit force is present in our model. Note
that states with equal |l| in the free case become non-degenerate for positive k,
just as they do in traditional spin-orbit coupling. For this figure, we take I = 1,
d = 0.9, with d not equal to 1 so that we avoid certain degeneracies.

In the large k limit only those states which came from free states with |qγ| ≤ 1
2

are contenders for the ground state. These are then ordered by the I,J energy
contribution. This limit is exactly rigid body quantisation and in the strict limit
the wavefunction is a delta function, the system completely fixed in the attractive
channel. Physically, we expect the true strength of k to be between the two limits
we understand analytically. This is also seen in the traditional spin-orbit force:
the coupling is strong enough that it has an effect on the energy spectrum but
weak enough that an understanding of the spectrum without the force is vital too.
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Figure 5.6: The energy spectrum for some low lying states with various values of
J , with I = 0 and s1 = 1

2
. Each is labelled by their (s1, s2, l;J )

value at k = 0. In all but the extreme case, l = −1, the energetically
favoured states have spin and orbital angular momentum aligned.

We may do an analogous calculation for the sliding configuration from Figure
5.2c. The calculation is very similar to the one above and the main physical con-
sequence is that the energetically favoured states come from free states with small
s1− s2. Thus, the sliding configuration couples the spins. This is what is required
for the tensor force – another key ingredient in nucleon-nucleon interactions. Thus,
our model unifies the spin-orbit force and the tensor force while giving them both
a classical microscopic origin. In the full 3D model both sliding and rolling motion
can occur simultaneously and both need to be taken into account at the same time.

5.2.2 Unequal discs

Consider a generalisation of the system. Now a small disc orbits a larger one as
seen in Figure 5.7, with small and large discs labelled 1 and 2 respectively. Let
the colour field repeat n times along the edge of the large disc. This is a model
for a nucleus with baryon number one more than a magic number, with a single
nucleon orbiting the core. The core is generally a boson and this is how we treat
the large disc. Defining our variables analogously to the variables in the previous
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section and using the initial configuration as in Figure 5.7, the Lagrangian (5.2)
is modified to

L =
1

2
I1α̇

2
1 +

1

2
I2α̇

2
2 +

1

2
µr2β̇2 + k cos ((n+ 1)β − α1 − nα2) . (5.38)

Figure 5.7: A small disc orbiting a large disc.

The classical conserved quantities are now

J = I1α̇1 + I2α̇2 + µr2β̇ = s1 + s2 + l , (5.39)

I = nI1α̇1 − I2α̇2 = ns1 − s2 . (5.40)

We are using the same notation as before: l is the orbital angular momentum
while si is the spin of disc i. The classical minimum energy solution is when the
discs are locked in the attractive channel and thus act like cogwheels. This gives
a condition on the classical momenta of the system as follows

I1I2(n+ 1)l − I2µr2s1 − I1µr2ns2 = 0 . (5.41)

We can change coordinates so that the potential depends on one angle, γ, while
the others are conjugate to J and I. Further, we can insist that the Hamiltonian
splits into two independent sectors (one depending only on J and I, the other
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determined purely by the γ sector) as we did in the previous section. Once again,
this gives a unique coordinate transformationγξ

η

 =

 −1 −n n+ 1
I1I2(n+1)

C
I1I2n(n+1)

C
µr2(I2+I1n2)

C
I1(I2+I2n+µr2n)

C
− I2(I1+I1n+µr2)

C
µr2(I2−I1n)

C


α1

α2

β

 , (5.42)

where C = I1I2(n + 1)2 + I1µr
2n2 + I2µr

2. This, combined with Bloch’s theorem
gives us the form of the wavefunction after canonical quantisation. It is

ψ(γ, η, ξ) = eiJ ξeiIηeiqγγw̃(γ) . (5.43)

where w̃ has period 2π and qγ = (I1I2(n+ 1)l− I2µr2s1− I1µr2ns2)C−1. Since the
small disc is a fermion, s1 must be a half-integer while s2 and l are both integers.
Once again, the allowed values of qγ are separated by an integer. The Schrödinger
equation is now

− C

2I1I2µr2
d2

dγ2
(
eiqγγw̃

)
− k cos γ eiqγγw̃ = Eγe

iqγγw̃ , (5.44)

where the energy of the system is

E = Eγ +
I1n

2 + I2
2C

J 2 +
I2 − I1n

C
IJ +

I1 + I2 + µr2

2C
I2 (5.45)

≡ Eγ + EI,J . (5.46)

This is simply equation (5.23) with an adjusted mass. Thus we may apply all
our analysis from the previous section to this problem; namely we can reuse the
equations (5.25) to (5.31) with the replacement

1 + 2d2

d2I
→ C

I1I2µr2
. (5.47)

The physical consequence is that when k is increased, the energetically favourable
states have small

qγ =
1

I1I2(n+ 1)2 + I1µr2n2 + I2µr2
(
I1I2(n+ 1)l − I2µr2s1 − I1µr2ns2

)
.

(5.48)
Note the relationship between this and the classical condition (5.41).
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To gain more insight we must estimate the moments of inertia. First we assume
that the circumference of the large disc is n times the circumference of the small
one. Then we use the Skyrmion inspired approximation that the radius of a disc
with baryon number B scales as B

1
3 and that its mass scales linearly with B.

Finally, we assume that the discs are touching. These give us I2 and µr2 in terms
of I1 as follows

I2 = n5I1 , µr2 =
2n3

n3 + 1
(n+ 1)2I1 . (5.49)

It follows that
C

I1I2µr2
=

3

2I1

n3 + 1

n3
(5.50)

and
qγ =

1

3(n+ 1)

(
l − 2n3

n2 − n+ 1
s1 −

2

n(n2 − n+ 1)
s2

)
. (5.51)

In (5.41) we saw that the classical minimum energy solution obeyed qγ = 0. Con-
sider spin/orbital angular momentum states which obey this. If we also demand
that the core is inert (s2 = 0) then l scales as 2ns1 for large n. This gives a nat-
ural explanation why orbital angular momentum increases as the size of the core
increases, a relationship obeyed by the first few magic nuclei.

We also see that if s2 is non-zero, its contribution does not have much effect
on the value of qγ; the most important contribution is from the first two terms.
Naively this looks promising: after quantisation, energetically favoured states obey
|qγ| ≤ 1

2
and this can be achieved by having s1 and l aligned. However, the number

of energetically favoured states is rather large. To be concrete, let us fix s1 = 1
2

and s2 = 0 from now on. Then

qγ =
1

3(n+ 1)

(
l − n3

n2 − n+ 1

)
. (5.52)

To satisfy |qγ| ≤ 1
2
we require

l ∈
[
− n3 + 3

2(n2 − n+ 1)
,

5n3 + 3

2(n2 − n+ 1)

]
. (5.53)

Thus, the restriction to energetically favourable states is in fact not very limiting
and the range of allowed values of l grows with n. The centre of this range
corresponds to the classical minimum energy solution, qγ = 0. In the k = 0

limit the states are ordered by |l|. As k increases we become more interested in
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the energetically favoured states. These are ordered, in the extreme large k limit,
by EI,J . In terms of l this quantity is

EI,J =
1

24I1n3(n3 + 1)

(
4l2
(
n2 − n+ 1

)2
+ 4ln3

(
n2 − n+ 1

)
+ n3

(
n3 + 3

))
=

1

24I1n3(n3 + 1)

(
4(n2 − n+ 1)2

(
l +

n3

2(n2 − n+ 1)

)2

+ 3n3

)
. (5.54)

This means that the states are ordered energetically by the magnitude of |l +
n3

2(n2−n+1)
|. From comparison with (5.53) we see that the state with minimal EI,J

lies within the energetically favoured range of l values. Thus the ground state of
the system in the large k limit has spin and orbital angular momentum anti-aligned
as l is negative, going against our classical intuition.

Figure 5.8: Energy for a variety of low lying states of unequal discs with n = 3,
as a function of k. Here all states with s1 = 1

2
, s2 = 0 and l ∈ [−4, 4]

are shown. For large |l| the states with s1 and l aligned are favoured.
However for small |l|, the opposite is true.

Let us consider n = 3 in detail to illustrate these points more concretely. Here,
there are twelve energetically favoured states, with l ∈ [−2, 9]. Two of these have
l and s1 anti-aligned and these two are the lowest energy states in the large k
limit. However, most of the energetically favoured states do have spin and orbital
angular momentum aligned. The energy, as a function of k, of the states with
l ∈ [−4, 4] is plotted in Figure 5.8.
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5.3 Conclusions

The Skyrme model provides a classical microscopic origin for the spin-orbit force
based on the classical pion field structure. In this paper, we have constructed
a model of interacting Skyrmions based on discs interacting through a contact
potential which depends only on their relative colouring. The classical behaviour
resembles a pair of cogwheels and our quantisation of the model has shown that
most low energy states have their spin and orbital angular momentum aligned.
However, the ground state does not.

To make any real predictions from the model we must extend it to three dimen-
sions. This is considerably more difficult as there will be three relative orientations
on which the potential depends, instead of one. There is also work to be done in
the Skyrme model itself. Dynamical solutions of the model which look like a B = 1

Skyrmion orbiting a core have not yet been found.
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Chapter 6

Conclusions and outlook

In this thesis we considered the quantisation of the Skyrme model, beyond the rigid
body approach. We introduced vibrational quantisation, where the Skyrmions are
allowed to deform and the corresponding vibrational modes are quantised. We
argued that vibrational quantisation could solve several long-standing problems
in the Skyrme model. One is that the vibrational modes contribute to the zero-
point energy of the Skyrmion, reducing its binding energy which is much too
large when one uses rigid body quantisation. Another problem is the spin of
the ground state of the B = 5 Skyrmion. The known enhanced symmetry in
the B = 5 vibrational manifold could lead to a reordering of the energy spectrum,
remedying this problem. Both of these were merely suggestions and deserve further
investigation.

In Chapter 3 the B = 7 sector was studied and we showed that the inclusion of
a vibrational mode leads to a correct value of the ground state spin of Lithium-7 in
the Skyrme model. In addition, a robust prediction was made: the ground state of
7Li is larger than the second excited state of the nucleus. Unfortunately, the root
mean square matter radius is very difficult to measure experimentally. Hence, it is
worth considering if this fact has any other physical consequences, such as giving
information about the electromagnetic transition rates. Several states, including
the low lying spin 1

2
state, are excited in a different vibrational mode. To obtain a

complete picture of the nucleus, this mode should also be studied in detail. It has
been looked at in the small oscillation limit in [35]. The B = 7 Skyrmion now has
the correct ground state spin and we have suggested a resolution for the incorrect
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ground state spin of the B = 5 Skyrmion. If this suggestion works out in detail,
we will have resolved the two problems detailed in Table 2.1. Hence, the Skyrme
model may soon be able to successfully describe nuclei for the first eight baryon
numbers.

We then studied the B = 16 sector of the Skyrme model. The Skyrmions
in this sector can be described in terms of composite B = 4 cubes. These are
analogous to α-particles. Using the dynamics of the Skyrme model, we constructed
a manifold of configurations which included the important tetrahedral and square
configurations in a consistent way. We argued that our results give the best match
to data of any model. Further, our work serves as an excellent starting point
for future calculations. Only the E vibration was understood beyond the small
amplitude approximation. Using similar methods to those presented in Chapter 3,
the A and F vibrations may also be understood in a global way. We made several
approximations, such as estimating the energy contribution using perturbation
theory, which could be improved on. Ultimately, one would like an ansatz for
Skyrme configurations on the full vibrational manifold. Given the difficulty of
finding an ansatz for static Skyrmions, this goal will likely require a radical new
idea.

We considered a more speculative idea in the final chapter of the thesis. Here,
we proposed that there is a low energy manifold of Skyrme configurations which
look like a single Skyrmion orbiting a large core. Dynamically, it is energetically
favourable for a single Skyrmion to roll around the core which gives a classical
explanation of the spin-orbit force. However, once we quantised the system, the
lowest energy states were those with spin and orbital angular momentum anti-
aligned; contradicting our classical intuition. We neglected the internal structure
of the core, which may rule out certain spin states. Further, the model will change
significantly in the full 3D case. These should both be considered in future work.
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Appendix A

Numerical techniques

Several times during this thesis, the calculations depended on numerically gener-
ated Skyrme configurations. In this appendix we detail the numerical techniques
used and how they were checked. There were three main numerically challenging
calculations required. They were:

1. To minimise the Skyrme functional in order to find Skyrmions for a given
baryon number, and then calculate properties such as their masses and mo-
ments of inertia.

2. To find how properties such as mass and moments of inertia change as a
Skyrmion deforms. This is needed to generate the metric and potential of
V5, a vibrational manifold of the B = 7 Skyrmion studied in Chapter 3.

3. To generate approximate dynamics of Skyrmions. This is used to explore the
structure of the vibrational manifolds. For example, the modes displayed in
Figures 3.4 and 4.2 are dynamically generated. Since these are used as moti-
vation rather than for explicit calculations, we only require an approximation
to the full dynamics.

We can accomplish all these tasks through the use of gradient flow. This generates
a path in configuration space. One begins with an initial configuration π0 and
evolves it according to

(σ̇, π̇) = −
(
δMB

δσ
,
δMB

δπ

)
. (A.1)
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where MB is the static energy functional (1.7). The energy of the Skyrme config-
uration decreases along this path and the evolution ends at a stationery point in
configuration space. Hence we can find Skyrmions by evolving this flow for a long
time. Low energy dynamics can be approximated by

(σ̈, π̈) = −
(
δM
δσ

,
δM
δπ

)
, (A.2)

where the fields are renormalised after each time step. A more accurate evolution
would include a Lagrange multiplier term. However, since we only require the
qualitative features of the scattering process, this was neglected for simplicity.
The numerical code we developed was able to simulate equations (A.1) and (A.2)
and to calculate static properties of the Skyrme configurations at each point.

To do the numerical calculations, we discretised a cubic grid with a fixed lattice
spacing (usually 0.2 Skyrme length units in this thesis) and calculated spatial
derivatives using 6th order finite differences. We choose 6th order as this allows for
larger lattice spacing and hence fewer lattice points, saving computation time. Our
lattices tend to have around 403 points. The calculations in [29] and [13] use fourth
order derivatives and use lattices with 2013 and 1013 points respectively. These are
much larger than our lattices. Note that 6th order differences are appropriate for
systems whose solutions are rather smooth, such as the standard Skyrme model.
The gradient flow time parameter of (A.1) is discretised using first order finite
differences. For the second order time evolution we use a leapfrog method as
described in [13]. A non-standard aspect of Skyrmion numerics is that the fields
satisfy the constraint

σ2 + π.π = 1 . (A.3)

There are a few ways to implement this. We choose the numerically simple, though
mathematically inelegant, solution of projecting the fields onto the 3-sphere every
few time steps. This is stable provided the fields stay near the 3-sphere which
can be arranged by taking a suitably small time step. We use periodic boundary
conditions whose effect can be reduced by using a large enough box.

Each process begins with an initial Skyrme configuration. These are either
generated from the rational map approximation [7] or by using a symmetrised
product ansatz of existing numerically generated configurations. If the existing
SU(2)-valued configurations are U1 and U2 then the new, composite field is given
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V11 U11 U33

Results from our numerical calculation 665.7 147.7 176.9
Results from [29] 667.6 148.2 177.4

Table A.1: A comparison between the non-zero moments of inertia of the B = 4

Skyrmion from our numerical code and those of the code present in
[29].

V11 V33 U11 U33

Results from our numerical calculation 6165 1065.5 272 301
Results from the parallel axis theorem 6183 1067 271 301

Table A.2: A comparison between the numerically calculated moments of inertia
for the cluster configuration seen in Figure 3.4 and the theoretical val-
ues of the moments of inertia based on the parallel axis theorem.

by

U =
U1U2 + U2U1√

2 + U1U2U
†
1U
†
2 + U2U

†
1U
†
2U1

. (A.4)

This breaks down if the denominator is zero. It was shown in [77] that this does
not occur provided the solutions are well separated.

To test that the code gives appropriate results, we can compare against previous
calculations. The B = 4 Skyrmion’s mass has been calculated in [29], [78] and [9].
These papers give the mass as 5.177, 5.2 and 5.18 respectively. Our numerical code
gives a value of 5.1802. Further, the B = 4 moments of inertia were calculated in
[29]. The values taken from this work and our own code are shown in Table A.1,
terms which are zero or are trivially related to those displayed have been neglected
from the table. The results are similar, giving us confidence in our numerical code.

A check of the product ansatz (A.4) is to calculate the moments of inertia of
a configuration generated using the method. We consider the 3 + 4 configurations
from Figure 3.4. The parallel axis theorem tells us how to estimate the moments of
inertia. This theoretical calculation is compared to the numerically generated val-
ues in Table A.2. The numerical results are in good agreement with the theoretical
calculation.

Since the dynamics defined in (A.2) are an approximation, there is no obvious
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way to check the dynamical evolution is correct. We do reproduce several well
known Skyrmion scatterings such as the 90◦ scattering of B = 1 Skyrmions and
the twisted line scattering seen in Figure 2.2.
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Appendix B

Electromagnetic transition rates

In this appendix we derive some formula to simplify the calculation of the electro-
magnetic transitions. The aim is to calculate matrix elements of the form

B(El, Ji → Jf ) =
2Jf + 1

2Ji + 1

∣∣∣∣∫ d3r 〈Ψf | |ρ(ζ, r,α)rlYl(Ω)| |Ψi〉
∣∣∣∣2 , (B.1)

where ρ is the charge density of the Skyrme configuration at ζ ∈ M, orientated
according to some Euler angles α = (α, β, γ). The Skyrme configurations onME,
orientated as described in the text occur whenα = 0. The integral in (B.1) is taken
over space with Ω being the angular coordinates. The rovibrational wavefunctions
can be expressed as

|Ψ〉 =
∑
i

ui(ζ) |Θ〉i , (B.2)

where |Θ〉i are the standard spin states. Substituting (B.2) into (B.1), we find
that we must evaluate terms of the form

2Jf + 1

2Ji + 1

∣∣∣∣∫ dζ

∫
d3r 〈JfL3| |uf (ζ)ρ(ζ, r,α)Y l(Ω)ui(ζ)| |JiL′3〉

∣∣∣∣2 . (B.3)

Note that (B.3) can be written as

2Jf + 1

2Ji + 1

∣∣∣∣∫ ui(ζ)uf (ζ)

(∫
d3r 〈JfL3| |ρ(ζ, r,α)Y l(Ω)| |JiL′3〉

)
dζ

∣∣∣∣2 , (B.4)
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so that we can momentarily neglect the vibrational wavefunction contribution and
focus on the rotational part. The Wigner-Eckart theorem gives that

2J + 1

2J ′ + 1

∣∣∣∣∫ d3r 〈JL3| |ρ(ζ, r,α)Y l(Ω)| |J ′L′3〉
∣∣∣∣2

=
2J + 1

2J ′ + 1

∣∣∣∣∫ d3r
1

〈J ′J ′3lm|JJ3〉
〈JL3J3| ρ(ζ, r,α)Ylm(Ω) |J ′L′3, J ′3〉

∣∣∣∣2 ,
(B.5)

provided that the Clebsch-Gordon coefficients 〈J ′J ′3lm|JJ3〉 are non-zero.
The expression (B.5) is complicated due to the dependency of the charge density

on α. This can be removed with the help of a useful identity that we shall now
obtain. Consider the charge density, expanded in terms of the spherical harmonics

ρ(ζ, r,0) =
∑
l

(
l∑

m=−l

clm(r)Ylm(θ, φ)

)
. (B.6)

This is valid for Skyrme configurations orientated as defined in the text. The above
expansion transforms simply under rotations. For a Skyrme configurations in an
arbitrary orientation, the charge density is

ρ(ζ, r,α) =
∞∑
l=0

(
l∑

m=−l

clm(r)
l∑

m′=l

Dl
mm′(α, β, γ)Ylm′(θ, φ)

)
. (B.7)

Using the orthogonality of the spherical harmonics in (B.6) we find that

clm(r) =

∫
Ylm(Ω)ρ(ζ, r,0) dΩ . (B.8)

This can then be used to simplify (B.5) as follows∫
d3rρ(ζ, r,α)Ylmr

l =

∫ l∑
m′=−l

rlclm′(r)Dl
mm′(α, β, γ)d3r

=
l∑

m′=−l

∫
rlYlm′(Ω)ρ(ζ, r,0) d3r Dl

mm′(α, β, γ)

≡
∑
m′

Q̃lm′Dl
mm′(α, β, γ) . (B.9)
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where the modified multipole tensor is defined as

Q̃lm(ζ) =

∫
ρ(ζ, r,0)rlYlm(Ω) d3r . (B.10)

With these expressions, we may factor out the Euler angle dependence in the
transition rate formula. Equation (B.5) becomes

2J + 1

2J ′ + 1

∣∣∣∣∣ 1

〈J ′L′3lm|JL3〉
∑
m′

〈JL3J3| Q̃lm′(ζ)Dl
mm′ |J ′L′3, J ′3〉

∣∣∣∣∣
2

(B.11)

=

∣∣∣∣∣ 1

〈J ′J ′3lm|JJ3〉
∑
m′

〈J ′J ′3lm|JJ3〉 〈J ′L′3lm′|JL3〉 Q̃lm′(ζ)

∣∣∣∣∣
2

(B.12)

=

∣∣∣∣∣∑
m′

〈J ′L′3lm′|JL3〉 Q̃lm′(ζ)

∣∣∣∣∣
2

, (B.13)

which can then be used to evaluate specific transition rates. The vibrational
wavefunctions are now reinstated and the final result is

2Jf + 1

2Ji + 1

∣∣∣∣∫ dζ

∫
d3r 〈JfL3| |uf (ζ)ρ(ζ, r,α)Y l(Ω)ui(ζ)| |JiL′3〉

∣∣∣∣2 (B.14)

=

∣∣∣∣∣
∫
ui(ζ)uf (ζ)

∑
m′

〈J ′L′3lm′|JL3〉 Q̃lm′(ζ)dζ

∣∣∣∣∣
2

. (B.15)

Using this result, we can find simple formulae for many transition rates. We will
do so for five transitions. Two simple cases were studied in the main body of the
text.

E3: Sign to trivial

Consider the E3 transition from the spin 3− state at 6.47 MeV to the ground
state. The vibrational wavefunctions fall into the sign and trivial representations
respectively. The relevant wavefunctions are

|Ψi〉 = φ(e)(ζ)

√
1

2
(|3, 2〉 − |3,−2〉) (B.16)

|Ψf〉 = φ(a)(ζ) |0, 0〉 , (B.17)
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where the φ are normalised so that 〈Ψ|Ψ〉 = 1. The transition is

B(E3, 3− → 0+) =
1

2

∣∣∣∣∣
∫
dζφ(e)(ζ)φ(a)(ζ)

∑
m′

(〈323m′|00〉 − 〈3− 23m′|00〉) Q̃3m′

∣∣∣∣∣
2

=
1

14

∣∣∣∣∫ dζφ(e)(ζ)φ(a)(ζ)
(
Q̃32 − Q̃3−2

)∣∣∣∣2 . (B.18)

E1: Trivial to Sign

There is an E1 transition between the spin 4+ at 10.35 MeV and the spin 3− state
at 6.47 MeV. The relevant wavefunctions are

|Ψi〉 = φ(a)(ζ)

√
5

24

(
|4, 4〉+

√
14

5
|4, 0〉+ |4,−4〉

)
(B.19)

|Ψf〉 = φ(e)(ζ)

√
1

2
(|3, 2〉 − |3,−2〉) . (B.20)

The Clebsch-Gordon coefficients in the calculation take the form 〈441m′|32〉 or
〈401m′|32〉. Both of these are zero unless m′ = ±2. However, m′ can only take
values between −1 and 1. So, the transition is zero due to the structure of the
rotational states.

E1: Sign to Doublet

The E1 transition between the 3− state at 6.47 MeV and the 2+ state at 6.66 MeV
is also zero, but for a different reason. The relevant wavefunctions are

|Ψi〉 = φ(e)(ζ)

√
1

2
(|3, 2〉 − |3,−2〉) (B.21)

|Ψf〉 =
1

2
√

2
(u(i) − v(i)) (|2, 2〉+ |2,−2〉)−

√
3

2
(u(i) + v(i)) |2, 0〉 , (B.22)

giving the transition

B(E1, 3− → 2+) =

∣∣∣∣∣
∫ ∑

m′

1

4
(u(i) − v(i))φ(e)

(
〈321m′|22〉 − 〈3− 21m′|2− 2〉

)
Q1m′dζ

∣∣∣∣∣
=

5

4× 21

∣∣∣∣∣
∫

(u(i) − v(i))φ(b)Q̃10 dζ

∣∣∣∣∣
2

(B.23)
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The operator inside the integral is antisymmetric around η = 1
2
, giving a zero

result.
Similarly the E1 transition between the excited 4+ state at 12.62 MeV and the

3− state at 6.47 MeV is

B(E1, 4+
e → 3−) =

1

12

∣∣∣∣∣
∫

(u− v)φ(b)Q̃10 dζ

∣∣∣∣∣
2

=
7

5
B(E1, 3− → 2+)

= B(E1, 2+ → 3−) = 0 . (B.24)

E2: Doublet to Doublet

The transition between two doublet states is slightly more complicated; consider
the first excited 4+ state at 12.62 MeV and the lowest energy 2+ state at 6.66 MeV.
These have wavefunctions

|Ψi〉 =
2√
5

(u |4, 0〉x + v |4, 0〉y + w |4, 0〉)

=

√
7

32
(u+ v) (|4, 4〉+ |4,−4〉)−

√
1

8
(u− v) (|4, 2〉+ |4,−2〉)−

√
5

16
(u+ v) |4, 0〉

(B.25)

|Ψf〉 =
1

2
√

2
(u− v) (|2, 2〉+ |2,−2〉)−

√
3

2
(u+ v) |2, 0〉 . (B.26)
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We neglect the vibrational superscript from now on, for ease of reading. The
transition rate between these states is given by

B(E2, 4+ → 2+)

=

∣∣∣∣∣
∫ ∑

m′

( √
7√

256
(u2 − v2)(〈442m′|22〉+ 〈4− 42m′|2− 2〉)

− 1

8
(u− v)2(〈422m′|22〉+ 〈4− 22m′|2− 2〉)

+

√
3

32
(u2 − v2)(〈422m′|20〉+ 〈4− 22m′|20〉)

−
√

5

128
(u2 − v2)(〈402m′|22〉+ 〈402m′|2− 2〉+

15

64
(u+ v)2 〈402m′|20〉)

)
Q̃2m′dζ

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ ( √

5

4
√

7
(u2 − v2)(Q̃22 + Q̃2−2)−

√
15

12
√

14
(u− v)2Q̃20 +

√
15

3
√

14
(u+ v)2Q̃20

)
dζ

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ ( √

5

4
√

7
(u2 − v2)(Q̃22 + Q̃2−2) +

√
5

14
(2(u+ v)2 − u2 − v2)Q̃20

)
dζ

∣∣∣∣∣
2

.

(B.27)

The final line is rewritten to show the link between the structure of the spherical
harmonics and the structure of the vibrational wavefunctions.

E4: Doublet to trivial

Finally, we calculate the transition between the excited 4+ state at 12.62 MeV and
the ground state (or first excited state). The relevant states are

|Ψi〉 =

√
7

32
(u+ v) (|4, 4〉+ |4,−4〉)−

√
1

8
(u− v) (|4, 2〉+ |4,−2〉)−

√
5

16
(u+ v) |4, 0〉

(B.28)

|Ψf〉 = φ |0, 0〉 , (B.29)
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which leads to the transition

B(E4,4+
2 → 0+)

=

∣∣∣∣∣
∫ ∑

m′

φ

(√
7

32
(u+ v)

(
〈444m′|00〉 −

√
10

7
〈404m′|00〉+ 〈4− 44m′|00〉

)

−
√

1

8
(u− v)(〈424m′|00〉+ 〈4− 24m′|00〉)

)
Q4m′dζ

∣∣∣∣∣
2

=

∣∣∣∣∣
∫
φ

( √
7

12
√

2
(u+ v)

(
Q̃44 −

√
10

7
Q̃40 + Q̃4−4

)
− 1

6
√

2
(u− v)(Q̃42 + Q̃4−2)

)∣∣∣∣∣
2

.

(B.30)
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