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ABSTRACT

This file contains all the supplementary material regarding the experimental trials described and carried out in the manuscript
“A quantum-inspired classifier for clonogenic assay evaluations”. In the first section, detailed descriptions of the extracted
texture features are provided. In the second section, we show the experimental results obtained for each of the four cell lines
MDA-MD-231, U87-MG, MCF7, and U251, by considering the best performing image feature. The third section is devoted to
show the performance of the Helstrom Quantum Classifier (HQC) on a new unseen test set. Finally, in the last section we
summarize the full results of the whole experiment, for all the investigated cell lines and image features.

S1. The extracted Haralick’s features
We start from the assumption that biomedical images contain information phenotype of the underlying physiopathology, which
is not always easily identifiable by simple ‘visual’ inspection. These information can be revealed through quantitative analysis,
by extracting the so called ’descriptors’ in order to make it possible to acquire further knowledge on the dominion. The
Gray-Level Co-occurrence Matrix (GLCM) computation is the first step to obtain the features.

Formally, let a GLCM with size L×L, where L represents the maximum number of gray-levels according to a given
quantization scheme, denote the second-order joint probability function p(i, j) of an image region (where i, j ∈ [0,1, . . . ,L−1]
represent a gray-level pair) after the normalization by the total number of pixels. These descriptors are generally called
Haralick’s features1, 2.

Given a squared window of size ω×ω pixels sliding over the whole image3, we computed the following GLCM-based
features (with i, j ∈ [0,1, . . . ,L−1]):

• contrast ∈ [0,(L−1)× (L−1) yields a measure of the intensity contrast between neighboring pixels:

contrast(i, j) =
L−1

∑
i=0

L−1

∑
j=0
|i− j|2 · p(i, j), (1)

contrast= 0 for a constant image;

• correlation ∈ [−1,1] indicates the degree of correlation between a pixel and its neighbor:

correlation(i, j) =
∑

L−1
i=0 ∑

L−1
j=0 (i−µx)( j−µy) · p(i, j)

σxσy
, (2)

where: µx = ∑i ∑ j i · p(i, j), µy = ∑i ∑ j j · p(i, j), σx = ∑i ∑ j(i−µx) · p(i, j), and σy = ∑i ∑ j( j−µy) · p(i, j) (with ∑i and
∑ j denoting ∑

L−1
i=0 and ∑

L−1
j=0 , respectively). This feature is 1 or −1 for a perfectly positively or negatively correlated

image, respectively;
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• energy ∈ [0,1] calculates the sum of squared elements in the GLCM:

energy(i, j) =
L−1

∑
i=0

L−1

∑
j=0

p(i, j)2, (3)

energy = 1 for a constant image;

• homogeneity ∈ [0,1] Returns a value that measures the closeness of the distribution of elements in the GLCM to the
GLCM diagonal:

homogeneity(i, j) =
∑

L−1
i=0 ∑

L−1
j=0 p(i, j)

(1+ |i− j|)
, (4)

homogeneity = 1 for a diagonal GLCM.

S2. Experimental results
This section is divided into four groups, one for each cell line MDA-MD-231, U87-MG, MCF7 and U251, respectively. Each
group contains two reports, the first shows: (1) the balanced accuracy score over 30 datasets (for the best performing image
feature) for the HQC and the 18 competing classifiers, obtained by hypertuning the hyperparameters of each classifier in order
to optimize the balanced accuracy score; (2) heatmaps of a classifier outperforming (“wins”) over another classifier ("losses")
out of the 30 datasets (for the best performing image feature); and (3) a table showing the averaged balanced accuracy score
over the 30 datasets for each of the six image features, RGB, L*u*v*, contrast, correlation, energy and homogeneity. The
second report is the analogous of the first, where the role of the balanced accuracy is replaced by the AUROC score. All
performance evaluation is performed using the test set. The aim of the experimental procedure is to find the most informative
image feature in discriminating a pixel between a colony or a background, i.e., the image feature which maximizes the value of
the balanced accuracy and the AUROC scores, respectively.

S2.1. Cell line MDA-MD-231

Fig. 2.1.1 | Balance accuracy score of 19 classifiers across 30 homogeneity image feature datasets for cell line
MDA-MD-231.
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Fig. 2.1.2 | Percentage of datasets where model A (“Wins”) outperformed model B (“Losses”) out of 30 homogeneity
image feature datasets for cell line MDA-MD-231 (balanced accuracy score).
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Fig. 2.1.3 | AUROC score of 19 classifiers across 30 homogeneity image feature datasets for cell line MDA-MD-231.

Fig. 2.1.4 | Percentage of datasets where model A (“Wins”) outperformed model B (“Losses”) out of 30 homogeneity
image feature datasets for cell line MDA-MD-231 (AUROC score).
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S2.2. Cell line U87-MG

Fig. 2.2.1 | Balance accuracy score of 19 classifiers across 30 homogeneity image feature datasets for cell line
U87-MG.
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Fig. 2.2.3 | AUROC score of 19 classifiers across 30 homogeneity image feature datasets for cell line U87-MG.

Fig. 2.2.4 | Percentage of datasets where model A (“Wins”) outperformed model B (“Losses”) out of 30 homogeneity
image feature datasets for cell line U87-MG (AUROC score).
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S2.3. Cell line MCF7

Fig. 2.3.1 | Balance accuracy score of 19 classifiers across 30 L*u*v* image feature datasets for cell line MCF7.
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Fig. 2.3.2 | Percentage of datasets where model A (“Wins”) outperformed model B (“Losses”) out of 30 L*u*v*
image feature datasets for cell line MCF7 (balanced accuracy score).
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Fig. 2.3.3 | AUROC score of 19 classifiers across 30 L*u*v* image feature datasets for cell line MCF7.

Fig. 2.3.4 | Percentage of datasets where model A (“Wins”) outperformed model B (“Losses”) out of 30 L*u*v*
image feature datasets for cell line MCF7 (AUROC score).
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S2.4. Cell line U25145

Fig. 2.4.1 | Balance accuracy score of 19 classifiers across 30 homogeneity image feature datasets for cell line U251.
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Fig. 2.4.2 | Percentage of datasets where model A (“Wins”) outperformed model B (“Losses”) out of 30 homogeneity
image feature datasets for cell line U251 (balanced accuracy score).
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Fig. 2.4.3 | AUROC score of 19 classifiers across 30 homogeneity image feature datasets for cell line U251.

Fig. 2.4.4 | Percentage of datasets where model A (“Wins”) outperformed model B (“Losses”) out of 30 homogeneity
image feature datasets for cell line U251 (AUROC score).
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S3. Performance of HQC on a new unseen test set (for the best image feature for each
cell line)
In this sub-experiment the trained HQC model was tested on a new unseen test set extracted from the remaining 99.8% of
the datasets. This experiment was done by randomly selecting 10 datasets (out of the 30 datasets) from the best performing
image feature for each of the four cell lines. We show a comparison of the performance on this new unseen test set against the
performance on the test set from the 0.2% random sample used in the main experiment.
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S4. Experimental results - extended version
This section contains tables showing the experimental results for the balanced accuracy and AUROC scores for the six image
features RGB, L*u*v*, contrast, correlation, energy and homogeneity, for each of the four cell lines MDA-MD-231, U87-MG,
MCF7 and U251 respectively.
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