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Abstract

The subject of this thesis is a class of fast inpainting methods (image or video) based on the idea of filling
the inpainting domain in successive shells from its boundary inwards. Image pixels (or video voxels) are
filled by assigning them a color equal to a weighted average of either their already filled neighbors (the
“direct” form of the method) or those neighbors plus additional neighbors within the current shell (the
“semi-implicit” form). In the direct form, pixels (voxels) in the current shell may be filled independently,
but in the semi-implicit form they are filled simultaneously by solving a linear system. We focus in this
thesis mainly on the image inpainting case, where the literature contains several methods corresponding to
the direct form of the method - the semi-implicit form is introduced for the first time here. These methods
effectively differ only in the order in which pixels (voxels) are filled, the weights used for averaging, and
the neighborhood that is averaged over. All of them are very fast, but at the same time all of them leave
undesirable artifacts such as “kinking” (bending) or blurring of extrapolated isophotes.

This thesis has two main goals. First, we introduce new algorithms within this class, which are aimed
at reducing or eliminating these artifacts, and also target a specific application - the 3D conversion of
images and film. The first part of this thesis will be concerned with introducing 3D conversion as well
as Guidefill, a method in the above class adapted to the inpainting problems arising in 3D conversion.
However, the second and more significant goal of this thesis is to study these algorithms as a class. In
particular, we develop a mathematical theory aimed at understanding the origins of artifacts mentioned.
Through this, we seek is to understand which artifacts can be eliminated (and how), and which artifacts
are inevitable (and why). Most of the thesis is occupied with this second goal.

Our theory is based on two separate limits - the first is a continuum limit, in which the pixel width
h→ 0, and in which the algorithm converges to a partial differential equation. The second is an asymptotic
limit in which h is very small but non-zero. This latter limit, which is based on a connection to random
walks, relates the inpainted solution to a type of discrete convolution. The former is useful for studying
kinking artifacts, while the latter is useful for studying blur. Although all the theoretical work has
been done in the context of image inpainting, experimental evidence is presented suggesting a simple
generalization to video.

Finally, in the last part of the thesis we explore shell-based video inpainting. In particular, we intro-
duce spacetime transport, which is a natural generalization of the ideas of Guidefill and its predecessor,
coherence transport, to three dimensions (two spatial dimensions plus one time dimension). Spacetime
transport is shown to have much in common with shell-based image inpainting methods. In particular,
kinking and blur artifacts persist, and the former of these may be alleviated in exactly the same way as
in two dimensions. At the same time, spacetime transport is shown to be related to optical flow based
video inpainting. In particular, a connection is derived between spacetime transport and a generalized
Lucas–Kanade optical flow that does not distinguish between time and space.
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Chapter 1

Introduction

Image (video) inpainting refers to the filling in of a region in an image (video) where information is
missing or needs to be replaced (due to, for example, an occluding object), in such a way that the result
looks plausible to the human eye. Hereafter, we use “inpainting” as a blanket term to refer to either image
or video inpainting - in either case, we refer to the region to be filled as the inpainting domain. Since the
seminal work of Bertalmio et al. [11], inpainting has become increasingly important, with applications
ranging from removing an undesirable or occluding object from a photograph, to painting out a wire in
an action sequence, to 3D conversion of film [37], as well as 3D TV and novel viewpoint construction
[15, 42, 23] in more recent years. See [29] for a recent survey of image inpainting techniques, as well as
[3] for a survey of video inpainting.

In this thesis we focus on a simple class of inpainting methods (image or video) in which the inpainting
domain is filled in concentric shells. At each iteration, a given pixel (or voxel, in the case of video) in
the current shell is “filled” by assigning it a color equal to a weighted average of the colors of either
its already filled neighbors (we call this the direct method), or of those neighbors as well as unknown
neighbors within the same shell (we call this the semi-implicit extension or the semi-implicit form, as it
involves solving a linear system) - see Figure 1.1 for an illustration of shell based inpainting and Figure 1.2
for an illustration of the difference between the direct method and the semi-implicit extension. Examples
of the direct method that have appeared in the literature prior to this thesis are Telea’s Algorithm [64],
coherence transport [12], and coherence transport with adapted distance functions [44]. The literature
now contains one additional method, Guidefill [37], which was created as part of this thesis. Chapter 4 of
this thesis will be devoted to a description of Guidefill, which is designed for inpainting as it applies to a
specific application, namely the 3D conversion of images or film. 3D conversion refers to the generation
of a right and left eye stereo pair of images (videos) given the image (video) corresponding to just one
eye, or possibly corresponding to some other vantage point (in industry, it is common to assume that the
original camera position is half way between the final left and right eye stereo pair). We will cover 3D
conversion in some detail in Chapter 3 - see also [59, Chapter 9] and [10, Chapters 12 and 14]. Although
designed for 3D conversion of images or video, in the latter case Guidefill operates on a frame by frame
basis, and therefore is most appropriately thought of as an image inpainting algorithm. Frame by frame
inpainting, while adequate for some situations (for example, a foreground object occluding a static or
slowly moving background), has an obvious disadvantage from the point of view temporal coherence.
Since the frames are inpainted independently of one another, there is nothing to ensure that they vary
smoothly when viewed through time. Near the end of the thesis (Chapter 7) we will explore spacetime
transport, a generalization of Guidefill aimed at overcoming this. Spacetime transport is conceptually
similar to Guidefill, but rather than inpainting each frame independently it treats the video as a whole.
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(a) Original image. (b) After filling 7 shells. (c) After filling 20 shells. (d) After filling 31 shells.

Figure 1.1: Shell-based inpainting: Here we illustrate the shell-based inpainting of an image including
an undesirable human to be removed. In (a), we see the original image, including a human that is gradually
eroded in (b)-(d) as we fill more and more shells. In this case the inpainting method is Guidefill [37],
and the application is disocclusion for 3D conversion, which means that the human does not need to be
removed entirely. Guidefill ensures isophotes are extrapolated in the correct direction by adapting its
weights to the image content - a similar strategy to coherence transport [12] before it. See Chapter 3 of
this thesis, [37], [59, Chapter 9], or [10, Chapters 12 and 14] for more details on this application.

(a) The direct method: the color of a given pixel
(highlighted in red) on the current inpainting domain
boundary (blue) is computed as a weighted sum of its
already known neighbors in the filled portion of the im-
age (pale yellow). Pixels included in the sum are high-
lighted in green.

(b) The semi-implicit extension: the color of a
given pixel (highlighted in red) on the current inpainting
domain boundary (blue) is given implicitly as a weighted
sum of its already known neighbors in the filled portion
of the image (pale yellow), as well as unknown neigh-
boring pixels on the current boundary. Pixels included
in the sum are highlighted in green.

Figure 1.2: The direct method and its semi-implicit extension: In this illustration, the filled
portion of an image is highlighted in pale yellow, and the current inpainting domain is highlighted in both
grey and blue, the former denoted pixels in the interior of the inpainting domain and the latter, pixels
on its current boundary. The boundary is the “shell” that is currently being filled - note that the filled
(known) portion of the image consists not only of the original undamaged region, but also of previously
filled shells. At this stage, the grey and blue pixels are both unknown. In the direct method (a), the
color of a given pixel (highlighted in red) is computed directly as a weighted average of pixels within a
given neighborhood (outlined in white) that are already known. In the semi-implicit extension, the sum
also includes pixels on the current boundary of the inpainting domain, but not pixels in its interior. This
results in a linear system that needs to be solved, but this can be done relatively cheaply (see Section
6.2) and has benefits in terms of artifact reduction (see Section 6.6).
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(a) An example video inpainting prob-
lem. Readable pixels are highlighted in
yellow, the shell currently being filled
(that is, the current boundary of the in-
painting domain) is highlighted in blue,
and the interior of the inpainting do-
main is transparent.

(b) An example 3D averaging neighbor-
hood, in this case the 3D discrete solid
ball of radius three voxels, which we de-
note by Bε,h(x) (note the bold).

(c) The corresponding 2D averaging
neighborhood, the 2D discrete ball of
radius three pixels, which we denote by
Bε,h(x).

Figure 1.3: Shell-based inpainting in 3D: One approach to shell-based video inpainting is to inpaint
each frame independently, as a sequence of image inpainting problems. Another approach, which we
illustrate here, treats the video as a solid cube of voxels, with an inpainting domain that is a 3D solid.
In (a), we illustrate an example inpainting problem with the readable voxels highlighted in yellow, the
current boundary of the inpainting domain highlighted in blue, and the interior of the inpainting domain
transparent. In any given iteration, all pixels in the current boundary are filled by taking a weighted
average over their already filled neighbors (or those neighbors plus neighbors in the same shell, if we use
the semi-implicit form) within a 3D neighborhood, such as the one shown in (b). For reference, we also
show the corresponding 2D averaging neighborhood in (c). Although more expensive computationally
and potentially much more memory intensive, this approach comes with significant advantages, including
the improved temporal stability gained by averaging over a 3D region.

That is, the video is now treated as a solid cube of voxels, and both the inpainting domain and averaging
neighborhood are now 3D solids. Each shell in the inpainting process now resembles a discretized two
dimensional surface - see Figure 1.3 for an illustration. In addition to designing new algorithms, this thesis
also studies the theoretical properties of this class of algorithms as a whole. This is done in Chapter 6,
and represents the bulk of the work in this thesis. However, for the sake of simplicity, our analysis only
covers image inpainting. Shell-based video inpainting in the sense of Figure 1.3 is something that we
hope to explore theoretically in the future. In summary, this thesis therefore aims to do three things:

1. To introduce new algorithms within this class (Chapter 4 and Chapter 7).

2. To introduce 3D conversion as an application, and show how these methods may be adapted to this
application (Chapter 3).

3. To develop a mathematical theory of these algorithms as a class, and prove general statements
about them (Chapter 6).

One of the algorithms developed in this thesis, Guidefill (Chapter 4), has been accepted for publication
in SIIMS (a preprint can be found here [37]). The other, spacetime transport, will be published but is
not yet ready. The theory presented in Chapter 6 will also be published, and a preprint can be found
here [36].
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1.1 Background on Image and Video Inpainting

Image inpainting methods can loosely be categorized as exemplar-based and geometric. Exemplar-based
methods generally operate by copying pieces of the undamaged portion of the image (typically small
square patches) into the inpainting domain, in such a way as to make the result appear seamless. Examples
include [22], [69], [5]. Exemplar-based methods also operate behind the scenes in Photoshop’s famous
Content-Aware Fill tool. These methods excel at interpolating texture across large gaps, but may produce
artifacts in structure dominated images with strong edges, or be needlessly expensive if the inpainting
domain is thin.

Geometric image inpainting methods aim to smoothly extend image structure into the inpainting
domain, typically using partial differential equations or variational principles. Continuation may be
achieved by either interpolation or extrapolation. Examples of methods based on interpolation include
the seminal work of Bertalmio et al. [11], TV, TV-H−1, Mumford-Shah, Cahn-Hilliard inpainting [18, 13],
Euler’s Elastica [46, 19], as well as the joint interpolation of image values and a guiding vector field in
Ballester et al. [6]. These approaches are typically iterative and convergence is often slow, implying that
such methods are usually not suitable for real-time applications. Telea’s algorithm [64] and coherence
transport [12, 44] (which can be thought of as an improvement of the former) are based on extrapolation
and visit each pixel only once, filling them in order according to their distance from the boundary of
the inpainting domain. These latter two methods belong to the class of inpainting methods considered
in this thesis. Unlike their iterative counterparts, shell-based geometric methods have the advantage of
being very fast.

Geometric methods are designed to propagate structure, but fail to reproduce texture. Similarly,
exemplar-based approaches excel at reproducing texture, but are limited regarding their ability to prop-
agate structure. A few attempts have been made at combining geometric and exemplar-based methods,
such as Cao et al. [17], which gives impressive results but is relatively expensive.

Video inpainting adds an additional layer of complexity, because now temporal information is available,
which is exploited by different algorithms in different ways. For example, when inpainting a moving object
in the foreground, one can expect to find the missing information in nearby frames - this type of strategy
is utilized in for example [38]. Another strategy is to generalize exemplar-based image inpainting methods
to video by replacing 2D image patches with 3D spacetime cubes. This approach is taken in [49, 50],
which also present a generalized patchmatch algorithm for video. While producing impressive results, this
method is also very expensive, both in terms of runtime and memory requirements. Finally, the authors
of [35] present a strategy for video inpainting of planar or almost-planar surfaces, based on inpainting a
single frame and then propagating the result to neighboring frames using an estimated homography. To
the best of our knowledge, no geometric video inpainting methods have been proposed in the literature.

Despite their fast runtime, simple methods such as the shell based geometric approach considered
in this thesis have fallen somewhat out of fashion within the academic community in recent years, as
sophisticated exemplar-based approaches have become faster. However, beyond their fast runtime, these
methods carry a secondary advantage in terms of fast implementation time. This latter consideration,
which tends to be undervalued in academia, has a significant impact on which algorithms get implemented
in industry - in fact, it was while working in industry at the start of my PhD that I first encountered these
methods. However, unless implemented carefully, they are known to produce disturbing visual artifacts
that limit their applicability - we discuss these artifacts in detail in Section 2.2. While simple changes
are often enough to eliminate or minimize these effects, without an analysis of why they occur in the first
place, it is difficult to know which changes to make. More significantly, without careful analysis, it is not
clear which artifacts can be eliminated and which are inevitable. In order to properly understand these
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issues, we feel that an in depth analysis is warranted. Therefore, one of the main objectives of this thesis
is to fill a gap in the analysis of these methods with the aim of understanding the origins of the artifacts
they produce and to what extent they are avoidable. In other words, our objective is to understand the
limits of these algorithms in order to push them to their maximum potential.

1.2 The story of this PhD

(a) Left eye (original image). (b) Right eye (constructed image).

(c) Closeup of right eye view including cracks to be filled
(red).

(d) Closeup of right eye view after cracks have been filled.

Figure 1.4: 3D conversion of a painting: conversion of the painting Oshiokuri hato tsuusen no zu
(1805), by the Japanese artist Hokusai (more famous for Great Wave off Kanagawa), into stereo 3D. The
left eye view is the original painting, while the right eye view is synthetic, generated by myself using a
pipeline analoguous to the one I encountered during my time working at Gener8 - details of this pipeline
are provided in Chapter 3. The synthesized right eye view contains disoccuded areas not visible in the
original painting that need to be inpainted - a few of these are shown in (c), while the same area post
inpainting is shown in (d). Like the artists at Gener8, I did this using a variety of inpainting methods,
combined with a considerable amount of touching up by hand for the more difficult areas. The result in
anaglyph 3D is shown in Figure 1.6.

My PhD began rather unconventionally. After picking inpainting as PhD topic, but before doing any
work on it, I was convinced by a friend to take a break in order to work with him at Gener8, a company
specializing in the 3D conversion of Hollywood films. Examples of recent films converted in whole or in
part by Gener8 include Maleficent, Thor, and Guardians of the Galaxy [1]. Inpainting comes up as one
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(a) Original image. (b) After filling 10 shells. (c) After filling 20 shells. (d) After filling 30 shells.

Figure 1.5: Kinking artifacts and Erodefill: Inpainting a human using Erodefill (uniform weights and
a 5× 5 pixel box neighborhood). In this case, weights are not adapted to the image content and extrapo-
lated isophotes kink in the direction of the normal to the inpainting domain boundary. Telea’s algorithm
[64], despite its somewhat more complex choice of weights, suffers from nearly identical problems.

step in a pipeline that also includes problems such as camera parameter estimation and segmentation.
During my time at Gener8, inpainting was done by teams of artists who used a toolbox of algorithms to
get a rough solution which they would then touch up by hand. This touching up was necessary because
the algorithms available to the artists almost never yielded results meeting the high standards required
for film. My job was to develop inpainting algorithms which, rather than giving these artists a perfect
solution, instead provided them with another tool that would enable them to spend less time touching
up. Guidefill [37], which was designed during my time at Gener8, was designed based on discussions with
artists about the type of algorithm they would like to have.

Gener8 was also where I became familiar with the shell-based inpainting framework that is the subject
of this thesis. The programmers there had implemented a series of shell-based image inpainting methods
(equivalently, frame by frame video inpainting methods), all of which were essentially variants of Telea’s
algorithm [64] (which they were unaware of) in order to solve the inpainting problem arising in their
3D conversion pipeline. This type of algorithm was attractive to them because it is fast and simple to
implement, while generally adequate for their application (where inpainting domains are typically very
thin). The simplest of these methods, which they called “Erodefill”, was implemented by my friend
Russell MacKenzie in an afternoon. It filled the inpainting domain on a frame by frame basis, assigning
each pixel on the boundary of the inpainting domain a color equal to the average color of the already
filled neighbors within a 5 × 5 pixel box. While sufficient for inpainting simple backgrounds of either
uniform or slowly varying color, it was observed that Erodefill produced an odd “kinking” behaviour
- isophotes extrapolated into the inpainting domain would change direction and become parallel to the
normal vector of the inpainting domain boundary - regardless of their orientation outside of the inpainting
domain (see Figure 1.5). My first assignment was to figure out why, and to modify Erodefill to eliminate
this behaviour. In fact, as we will discuss in Section 2.3, this phenomenon had already been studied by
Bornemann and März [12]. I had heard Tom März speak at Cambridge, so I was vaguely aware of their
work, and I thought that completing my first assignment would amount to little more than downloading
the code März had made available on the web. However, after a couple of test problems, it became clear
that coherence transport wasn’t free of kinking artifacts either.

Coherence transport, which will be discussed in more detail in the review of shell-based inpainting
methods in Section 2.5, operates roughly as follows: A given pixel x on the current boundary of the
inpainting domain is assigned a color equal to a weighted average of its already filled neighbors within a
discrete ball of radius ε centered at x. This ball is denoted by Bε,h(x), and consists of those pixels distance
at most ε from x (here h denotes the width of one pixel). An example with ε = 3h has been illustrated in
Figure 1.3(c). In this, coherence transport is no different from Telea’s algorithm [64] which came before
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Figure 1.6

Figure 1.7: The 3D conversion problem from Figure 1.4 in anaglyph 3D (anaglyph 3D glasses required).

it. The key innovation of coherence transport is that if there are no edges in the undamaged region
approaching x, then the weights should correspond to a smooth blur, but if an edge with orientation
g is approaching x, then it should be extrapolated parallel to g into the inpainting domain. The idea
is to accomplish this by combining a robust procedure for measuring g with carefully selected weights
designed to favor extrapolation in the direction of g.

However, computer experiments suggested that coherence transport could only successfully accomplish
this when g was of the form g = λ(y − x) for some y ∈ Bε,h(x) and some λ ∈ R (see Section 2.3 and
Figure 2.6). Intuitively, it seemed that the problem might be resolved if the discrete ball Bε,h(x) was
replaced with a rotated discrete ball B̃ε,h(x) which was constructed in such a way that g = λ(y− x) for
some y ∈ B̃ε,h(x) was always true - see Figure 2.9(b). However, since the elements of such a rotated ball
would in general lie between pixel centers, it became necessary to define what I called “ghost pixels” -
virtual pixels lying between pixel centers whose color was defined based on bilinear interpolation of their
“real pixel” neighbors. This change did indeed appear to solve the problem, at least provided the angle
between g and the inpainting domain boundary is not too shallow (Figure 2.6(c)). The desire to extend
the method to handle even these very shallow angles eventually led to semi-implicit extension, which
is able to resolve this issue (Section 6.6). Guidefill thus began as a simple modification of coherence
transport incorporating the use of ghost pixels. However, the methods quickly diverged as more issues
in need of resolution presented themselves (see Section 4.3.1) and as the desires of the artists became
incorporated. For example, one of the main things the artists asked for was an intuitive interface for
influencing the result of inpainting. This eventually led to a system where edges to be extrapolated are
first represented as splines which the artist can adjust. Inpainting then proceeds once the artist has
indicated they are happy with the splines. Eventually, it made more sense to think of Guidefill as a
separate method.

When I left Gener8, it was still unclear to me why coherence transport created the kinking artifacts
I had observed, or why the use of ghost pixels was able to resolve them. Neither of these things was
explained by the mathematical theory presented by Bornemann and März in [12], which analyzed shell-
based geometric inpainting methods by studying their behaviour in a high resolution and vanishing
viscosity continuum limit, where they reduce to a transport partial differential equation (PDE). While
I was still at Gener8, my colleagues and I disagreed over the reasons for this. The programmers, who
were most comfortable with discrete mathematics and generally distrustful of PDEs and the continuum
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Figure 1.8: Graphical distinction between two possible continuum limits of shell-based in-
painting algorithms: One way of understanding the shell-based framework studied in this thesis is via
a continuum limit in which the pixel width h and averaging radius ε both go to 0, that is, (h, ε)→ (0, 0).
However, this limit is not unique and exhibits path dependence. The path in green corresponds to the
high-resolution and vanishing viscosity proposed by Bornemann and März [12], where first h → 0 and
then ε→ 0. The path in red corresponds to a “fixed ratio” continuum limit studied in this thesis, where
(h, ε)→ (0, 0) along the diagonal ε = rh, where r ∈ N is a fixed integer representing the averaging radius
measured in pixels.

in general, believed that it is because information is lost when one passes from the discrete world of real
images into the idealized continuum. I was not convinced, and after my return to Cambridge I began
to develop my own mathematical theory. Eventually I realized that the programmers were right, but
also wrong. They were right because the failure of [12] was indeed due to a loss of information when
one passes to the continuum. However, they were also wrong, because they falsely attributed this to an
irreconcilable difference between the continuous and the discrete, rather than an accident of the particular
way in which the limit in [12] is carried out. The reality is that all the kinking artifacts we had observed
can be explained in the continuum, one just needs to take the limit differently.

Bornemann and März’s continuum limit, which is based on first taking the pixel width h → 0 and
then the averaging radius ε→ 0, is not unique. This should come as no surprise - one of the first things
that second year calculus students are taught is that when taking a limit of the form (x, y) → (x0, y0),
one should expect the result to depend on the path along which you approach (x0, y0). This is exactly
what is happening here. Bornemann and März’s original limit, which is illustrated as the green path
in Figure 1.8, takes a different value from the limit approached along the red path, which represents an
alternative “fixed ratio” limit studied in this thesis. This limit is so named because the ratio r = ε/h is
fixed along this path.

Much of my PhD became an exploration of this alternative limit, which is able to explain a great
deal about kinking artifacts and their resolution. However, this limit turned out still not to be the entire
story, as it was inadequate for exploring blur artifacts. For this, one needs yet another limit - specifically,
an asymptotic limit where the pixel width h is very small, but not yet 0. The systematic study of these
two limits as well as their relationship to Bornemann and März’s original limit eventually blossomed into
the contents of Chapter 6. The takeaway messages are as follows:

• Bornemann and März’s original continuum limit loses the most information, and is sufficient only
for explaining some kinking artifacts.

• My alternative fixed ratio is in the middle - it retains enough information to uncover the fine
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structure of kinking artifacts, but can only hint at the existence of blur artifacts.

• The asymptotic limit loses the least information, and is able to explain both kinking and blur
artifacts with high accuracy.

One of the most interesting aspects of these three limits is their differing predictions regarding ghost
pixels and the semi-implicit extension. Specifically, Bornemann and März’s original limit predicts no
difference at all between the use of coherence transport with the original discrete ball Bε,h(x) and its
rotated counterpart B̃ε,h(x), as well as no difference at all between the direct method and the semi-
implicit extension. The fixed ratio limit, on the other hand, predicts three distinct limits that behave
very differently from the point of view of kinking artifacts (Section 6.6.2), and that are shown to be in
excellent agreement with experiments (Section 6.8). However, the fixed ratio limit isn’t precise enough to
capture blur artifacts. In particular, there is some evidence in the literature (in the context of inpainting
based on optical flow, which we discuss in Chapter 7) that replacing bilinear interpolation with higher
order interpolation schemes can result in the reduction of blur [38, Section 4.5.1]. This suggests that blur
may be reduced if the bilinear interpolation scheme used in the definition of ghost pixels is replaced with
a higher order scheme. However, the fixed ratio limit is the same for all interpolation schemes satisfying a
few properties that we list in Section 5.1, the most critical being that the interpolation scheme preserves
polynomials of degree one (that is, the interpolant of a degree one polynomial relative to a given lattice
is the polynomial back). To analyze the potential merits of redefining ghost pixels based on alternative
interpolants, a new tool is needed, and the asymptotic limit seems a like a good candidate. However, this
is beyond the scope of this thesis.

Chapter 6 provides a fairly comprehensive account of the kinking artifacts that arise in these methods
and their resolution. This is done analytically using the fixed ratio continuum limit. At the same time,
the asymptotic limit is able to make accurate predictions regarding blur artifacts, but does not currently
help us to resolve them (Section 6.7). Unfortunately, despite its ability to make accurate predictions, we
are not currently able to prove that the methods studied in this thesis converge to the asymptotic limit.
The reasons for this are technical and are explained in Section 6.7. For the time being, convergence to
the asymptotic limit remains a conjecture and the main piece of unfinished business in my PhD.

For the sake of fairness, I should mention that while the two limits I propose in this thesis as alter-
natives to Bornemann and März’s high-resolution vanishing viscosity are able to capture fine behaviour
that is missed by the latter, this comes at a price. The price is that to make our analysis tractable, we
are forced to work within a far more restrictive setting than they do, with greater simplifying assump-
tions. Due to this, it is also true that, conversely, there are phenomena their model is able to explain
which ours misses completely. In particular, the high-resolution vanishing viscosity limit provides a good
theoretical framework for analyzing shocks (another type of artifact that we will discuss in Section 2.2),
see in particular [45]. Our analysis, on the other hand, ignores this completely. Therefore, we see the
different models as being complementary, each with their own strengths and weaknesses.

After Guidefill was in use for some time at Gener8, it became clear that the main limitation of the
method was that when applied to video, it lacks temporal stability. That is, since frames are filled
independently, there is nothing to ensure that pixel colors change smoothly over time, meaning that the
results may appear to “jitter” when viewed through time. The final portion of my PhD was devoted
to spacetime transport, a shell-based video inpainting algorithm that treats the video as a whole as in
Figure 1.3, rather than inpainting frame by frame. The current “shell” of the inpainting domain becomes,
essentially, a discretized 2D surface, while the “neighborhood” of a pixel that gets averaged over becomes
a 3D solid. Spacetime transport is the subject of Chapter 7. However, this portion of the thesis is much
less comprehensive than earlier sections, and no supporting theory is provided.
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1.3 Organization and style

Here we describe the organization of the chapters, including the organization of the sections within each
chapter. The chapters themselves do not have a section devoted to their internal organization. Some of
the bigger chapters conclude with a section entitled “conclusions”. Some of what is said there will be
reiterated in an abridged form in the final chapter. A detailed discussion of future research directions is
deferred until the final chapter, and so the body of the thesis will not discuss this beyond making the
occasional remark.

Chapter 2 provides a detailed description of both the inpainting framework studied in this thesis as well
as its limitations (including the artifacts it is known to produce), both of which we have already discussed
informally in Chapter 1. Existing methods and related research are reviewed, and the difference between
our analytical approach with earlier approaches is described clearly. The internal breakdown is as follows:

• The opening paragraphs give a quantitative description of the framework including pseudo code.

• Sections 2.1 and 2.2 describe the advantages and known problems (artifacts) of the framework.

• Section 2.3 provides a review of related work.

• Section 2.4 describes how our theoretical approach differs from previous approaches.

• Section 2.5 provides a description of the main inpainting methods within this framework.

Chapter 3 provides an overview of 3D conversion, with an emphasis on inpainting as a subproblem of
the 3D conversion pipeline. Two possible pipelines are discussed, but the one arising in film, which is
of primary interest in this thesis, is stressed. The reason for this is that Guidefill, which is discussed in
Chapter 4, is designed for the film pipeline. It is not designed for the other pipeline (used mainly for 3D
TV and other applications where the demands on visual quality are lower), which leads to an inpainting
problem with different mathematical properties. A review is made of existing methods for inpainting as
it applies to 3D conversion, however, it is unfortunately rather one-sided because Guidefill is as far as we
know the only method in the literature explicitly designed for the film pipeline. The internal breakdown
is as follows:

• Section 3.1 provides an overview of the two main 3D conversion pipelines.

• Section 3.2 discusses related work on inpainting for 3D conversion.

• Section 3.3 describes in detail the 3D conversion pipeline relevant to film. The other pipeline is also
sketched in more detail, and some of its disadvantages are discussed.

Chapter 4 describes in detail Guidefill, an inpainting algorithm for 3D conversion of film that was
designed as part of this thesis. The internal breakdown is as follows:

• Section 4.1 describes the design of Guidefill, the problem it aims to solve, and some of its properties.

• Section 4.2 gives a high-level overview of the different components of the algorithm.

• Sections 4.3, 4.4, 4.5, and 4.6 describe the components of the algorithm in detail. These are (re-
spectively) the generation of the guide field, the use of ghost pixels for overcoming kinking artifacts,
Guidefill’s pixel ordering strategy (smart order), and a description of some GPU implementation
considerations. Section 4.3.1 also discusses an issue that arises in coherence transport from the use
of the modified structure tensor.
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• Section 4.7 gives a proof of the convergence of coherence transport and Guidefill to the fixed
ratio continuum limit proposed in this thesis (under some simplifying assumptions) and discusses
the consequences of this result. This is a preview of the much more general (and more difficult)
convergence proof in Chapter 6.

• Section 4.8 analyzes the time complexity and processor complexity of Guidefill as a parallel algo-
rithm.

• Section 4.9 contains numerical experiments, aimed both at demonstrating the viability of Guidefill
as an inpainting method for 3D conversion, and at validating the complexity analysis of the previous
section.

• Section 4.10 draws some conclusions.

Chapter 5 describes in detail the semi-implicit form of the algorithm and introduces the concept of
equivalent weights. The internal breakdown is as follows:

• Section 5.1 explains how to convert between weighted sums of ghost pixels and equivalent sums
over real pixels with modified weights, and establishes a list of properties satisfied by these modified
weights.

• Section 5.2 uses the result of the previous section to derive an explicit formula for the linear system
arising in the semi-implicit extension, which is shown to be strictly diagonally dominant. A simple
iterative method is proposed for its solution, which is proven to be equivalent to damped Jacobi or
successive over-relaxation (SOR).

• Section 5.2.2 discusses the semi-implicit form of Guidefill, introduces some changes to its pixel
ordering strategy, and provides numerical evidence that this form of the algorithm alleviates certain
kinking artifacts present in the direct form.

Chapter 6 is the longest chapter and contains most of our analysis. The internal breakdown is as follows:

• Section 6.1 describes the simplifying assumptions under which our subsequent analysis takes place.

• Section 6.2 derives sharp bounds on the convergence rates of damped Jacobi and SOR for semi-
implicit Guidefill. SOR is shown to converge extremely quickly.

• Sections 6.3 and 6.4 are the longest and most difficult portion of the thesis. It is here that conver-
gence of the class of inpainting methods under scrutiny to our proposed fixed ratio limit is proven.
Bounds on rates of convergence are also given, which are later shown experimentally to be sharp in
most situations (Appendix A.10).

• Section 6.5 fills a gap in the literature by also proving convergence (taking the limit a different way)
to März and Bornemann’s original high-resolution vanishing viscosity limit. Conditions are derived
under which the two limits coincide.

• Section 6.6 uses the results from Sections 6.3 and 6.4 to prove results about kinking artifacts.
First, a fundamental distinction is proven between the direct and semi-implicit forms of the class of
algorithm under study. Next, in Section 6.6.2 the continuum limits of coherence transport, Guidefill,
and semi-implicit Guidefill are derived. Kinking behaviour (or lack thereof) is then studied for each
algorithm.
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• Section 6.7 introduces the asymptotic limit, which is used to explain and predict blur artifacts.
Convergence to the asymptotic limit is left as a conjecture, but a sketch of the proof is given, with
an explanation of where the technical problems come up and how they might be resolved.

• Section 6.8 contains numerical experiments backing up the theoretical results of this chapter. Ad-
ditional experiments are given in Appendices A.9 and A.10.

• Section 6.9 summarizes and draws some conclusions.

Chapter 7 introduces spacetime transport, a shell-based video inpainting method that is inspired by
Guidefill, but rather than inpainting frame by frame, treats the video as a 3D solid of voxels. Spacetime
transport is shown to have elements in common with the shell-based image inpainting methods we have
seen so far, as well as optical flow based video inpainting. However, a significant difference between
spacetime transport and Guidefill is that in the former, both the guide field and the video are inpainted
based on two separate shell-based approaches. In the case of Guidefill, the computation of the guide field
is done based on splines and is not shell-based. The internal breakdown is as follows:

• Section 7.1 introduces optical flow based video inpainting, and provides a review of some optical
flow based algorithms. Sections 7.1.1 and 7.1.2 note parallels with two dimensional shell based
image inpainting, and discuss the known issue of blur in optical flow based algorithms.

• Sections 7.2 and 7.3 describe spacetime transport in detail, explaining how the components of
Guidefill generalize to three dimensions (for example, ghost pixels become ghost voxels) and pro-
viding pseudo code. The Section 7.4 briefly discusses voxel ordering strategies for both stages of
inpainting, while Section 7.5 goes over some implementation considerations.

• Section 7.6 makes a connection between spacetime transport and Lucas–Kanade optical flow.

• Section 7.7 shows by way of examples how kinking and blur artifacts generalize to 3D. It is shown
that the same strategies that worked in 2D for resolving kinking artifacts also work in 3D. Blur
artifacts are shown to persist and are possibly a more serious problem than before. In this section
ground truth values are given for the guide field.

• Section 7.8 provides a few examples of the full spacetime transport algorithm, where the guide field
is not given and must be computed. Some of the additional difficulties this entails are discussed.

• Section 7.9 summarizes and draws some conclusions.

Chapter 8 summarizes the findings of the thesis, discusses open questions, and sketches possible direc-
tions for future research. The internal breakdown is as follows:

• Section 8.1 summarizes the thesis and sketches directions for future research.

• Section 8.2 singles out the three most promising future research directions and discusses them in
more detail.

Appendices: This thesis also contains a number of appendices. These include additional numerical
results and implementation details that were considered too disruptive or not important enough to include
in the main text, as well as details of proofs that were either too long, too tangentially related to the
main ideas, or simply not interesting enough to justify including in the main text. The breakdown is as
follows:
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• Appendix A.1 contains further justification for Remark 2.5.1.

• Appendix A.2 contains additional details of GPU implementation of Guidefill.

• Appendix A.3 contains additional discussion of the algorithmic complexity of Guidefill.

• Appendix A.4 contains 3D conversion results from Guidefill in anaglyph 3D, which certain readers
(in possession of a pair of anaglyph 3D glasses) may find interesting.

• Appendix A.5 briefly discusses GPU architecture in more detail.

• Appendix A.6 contains proofs of the properties of ghost pixels and equivalent weights that we listed
in Section 5.1.

• Appendix A.7 contains the proof of Theorem 6.5.1, which proves convergence to März and Borne-
mann’s original high-resolution vanishing viscosity limit.

• Appendix A.8 derives an explicit formula for the kinking behaviour of coherence transport in terms
of an object we call the “angular spectrum” of a discrete set, which is defined.

• Appendix A.9 contains a list of the examples used in the numerical experiments given in Section
6.8.

• Appendix A.10 contains a series of additional numerical experiments testing the tightness of bounds
on the rates of convergence to the fixed ratio limit given in Theorem 6.3.1.

1.4 Notation

• h = the width of one pixel.

• Z2
h := {(nh,mh) : (n,m) ∈ Z2}.

• Given v ∈ R2, we denote by Lv := {λv : λ ∈ R} the line through the origin parallel to v.

• Given x ∈ R2, we denote by θ(x) ∈ [0, π) the counter-clockwise angle Lx makes with the x-axis.
θ(x) can also be thought of as the counterclockwise angle x makes with the x-axis, modulo π.

• Given v ∈ R2, we denote by v⊥ the counterclockwise rotation of v by 90◦.

• Ω = [a, b]× [c, d] and Ωh = Ω ∩ Z2
h are the continuous and discrete image domains.

• Dh = D
(0)
h ⊂ Ωh is the (initial) discrete inpainting domain.

• D(k)
h ⊆ D(0)

h is the discrete inpainting domain on step k of the algorithm.

• Bh ⊂ Ωh\Dh is the set of “bystander pixels” (defined in Section 3.3.1) that are neither inpainted
nor used for inpainting.

• D ⊂ Ω := {x ∈ Ω : ∃y ∈ Dh s.t. ‖y− x‖∞ < h} is the continuous inpainting domain.

• D(k) is the continuous inpainting domain on step k of the algorithm, defined in the same way as D.

• B ⊂ Ω is the continuous bystander set, defined in terms of Bh in the same way as D.

• u0 : Ωh\Dh → Rd is the given (discrete) image. In an abuse of notation, we also use u0 to denote
an assumed underlying continuous image u0 : Ω\D → Rd.

27



• uh : Ωh → Rd is the inpainted completion of u0.

• g(x) is the guidance vector field used by coherence transport and Guidefill.

• Bε(x) the solid ball of radius ε centered at x.

• Aε,h(x) ⊂ Bε(x) denotes a generic discrete (but not necessarily lattice aligned) neighborhood of
radius ε surrounding the pixel x and used for inpainting.

• Supp(Aε,h(x)) ⊂ Z2
h denotes the set of real pixels needed to define Aε,h(x) biased on bilinear

interpolation.

• Bε,h(x) = {y ∈ Ωh : ‖x − y‖ ≤ ε}, the discrete ball of radius ε centerd at x and the choice of
Aε,h(x) used by coherence transport.

• r = ε/h the radius of Bε,h(x) measured in pixels.

• B̃ε,h(x) = R(Bε,h(x)), where R is the rotation matrix taking (0, 1) to g(x), the choice of Aε,h(x)
used by Guidefill.

• N (x) = {x + y : y ∈ {−h, 0, h} × {−h, 0, h}} is the 9-point neighborhood of x.

• Given Ah ⊂ Z2
h, we define the dilation of Ah by

Dh(Ah) = ∪x∈AhN (x).

If h = 1 we write D instead of D1.

• Given Ah ⊂ Z2
h, we define the discrete (inner) boundary of Ah by

∂Ah := {x ∈ Ah : N (x) ∩ Z2
h\Ah 6= ∅}.

For convenience we typically drop the word “inner” and refer to ∂Ah as just the boundary of Ah.

• O denotes the zero matrix.

• Given c ∈ R, we define {y ≤ c} := {(x, y) ∈ R2 : y ≤ c}.

• Given x, y ∈ R, we define x ∧ y := min(x, y).

1.4.1 3D-specifc notation

Here we list notation specific to the 3D case considered in Chapter 7. In some cases, such as Bε,h(x)
versus Bε,h(x), we use bold to explicitly distinguish a 3D object from its 2D counterpart. In other cases,
however, we rely on the reader to work out based on context what we mean. This should not be difficult
as all of the 3D content is in one chapter.

• Z3
h := {(nh,mh, lh) : (n,m, l) ∈ Z3}.

• Ω = [a, b]× [c, d]× [e, f ] and Ωh = Ω ∩ Z3
h are the continuous and discrete video domains.

• Dh = D
(0)
h ⊂ Ωh is the (initial) discrete inpainting domain.

• u0 : Ωh\Dh → Rd is the given (discrete) video.

• uh : Ωh → Rd is the inpainted completion of u0.
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• G(x) : Dh → R3×3 is the guide field of symmetric positive semi-definite matrices used by spacetime
transport.

• Bε(x) the solid ball 3D ball of radius ε centered at x.

• Aε,h(x) ⊂ Bε(x) denotes a generic discrete (but not necessarily lattice aligned) 3D neighborhood
of radius ε surrounding the voxels x and used for inpainting.

• Bε,h(x) = {y ∈ Ωh : ‖x− y‖ ≤ ε}, the discrete 3D ball of radius ε centerd at x.

• λ1 ≥ λ2 ≥ λ3 ≥ 0 and {v1,v2,v3} denote the eigenvalues and eigenvectors of G.

• B̃ε,h(x) = R(Bε,h(x)), where R = [v1v2v3] is the rotation matrix aligning the coordinate vectors
e1, e2, e3 with the eigenvectors of G.

• N (x) = {x + y : y ∈ {−h, 0, h} × {−h, 0, h} × {−h, 0, h}} is the 27-point neighborhood of x.

• Given Ah ⊂ Z3
h, we define the discrete boundary of Ah by

∂Ah := {x ∈ Ah : N (x) ∩ Z3
h\Ah 6= ∅}.
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Chapter 2

Framework and Motivation

In this chapter we describe in detail our general framework, as well as its advantages and disadvantages,
for the case of image inpainting (equivalently, frame by frame video inpainting). We will not return to
video inpainting in the sense of Figure 1.3 until Chapter 7. As already stated, the class of methods
under scrutiny in this thesis fill the inpainting domain in successive shells from the boundary inwards,
as was illustrated in Figure 1.1. In the direct form of the method, the color of a given pixel x due to
be filled is computed as a weighted average of its already filled neighbors within a discrete neighborhood
Aε,h(x) ⊂ Bε(x). In the semi-implicit extension (which is the subject of Chapter 5), this sum also
includes unknown pixels within the current shell, resulting in a linear system (Figure 1.2). We will cover
the resulting linear system in detail in Section 5.2, where we also propose an iterative method for its
solution, the convergence of which is analyzed in Section 6.2. The direct method as well as this proposed
iterative solution to the semi-implicit extension are illustrated in Algorithm 1 with pseudo code (the blue
code indicates the parts relevant to the semi-implicit extension). The neighborhood Aε,h(x) need not be
axis aligned and may contain “ghost pixels” lying between pixel centers - see Figure 2.1 for an illustration.
As explained in Section 1.2, ghost pixels are helpful for reducing kinking artifacts (see Figure 2.4), and
the color of a given ghost pixel is defined as the bilinear interpolation of its four real pixel neighbors, but
is undefined if one or more of them has not yet been assigned a color. We denote by Supp(Aε,h(x)) ⊂ Z2

h

the set of real pixels needed to define Aε,h(x) in this way. Here h and ε denote respectively the width
of one pixel and the radius of the bounding disk Bε(x) ⊃ Aε,h(x). The averaging weights wε are non-
negative and are allowed to depend on x, but must scale proportionally with the size of the neighborhood
Aε,h(x), like so:

wε(x,y) = ŵ

(
x, y− x

ε

)
(2.0.1)

for some function ŵ(·, ·) : Ω × B1(0) → [0,∞]. Note that we will sometimes write wr or w1 in place of
wε - in this case we mean (2.0.1) with ε replaced by r or 1 in the denominator on the right hand side.
As the algorithm proceeds, the inpainting domain shrinks, generating a sequence of inpainting domains
Dh = D

(0)
h ⊃ D

(1)
h ⊃ . . . ⊃ D

(K)
h = ∅. We will assume the non-degeneracy condition∑

y∈Aε,h(x)∩(Ω\D(k))

wε(x,y) > 0 (2.0.2)

holds at all times, this ensures that the average (2.0.3) in Algorithm 1 is always well defined. One trivial
way of ensuring this is by having strictly positive weights ŵ, which all the methods considered do (see
Section 2.5). At iteration k, only pixels belonging to the current boundary ∂D(k)

h are filled, but moreover
we fill only a subset ∂readyD

(k)
h ⊆ ∂D

(k)
h of pixels deemed to be “ready” (In Section 2.5 we will review
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the main methods in the literature and give their “ready” functions).

Algorithm 1 Shell Based Geometric Inpainting
uh = damaged image, initialized to 0 on inpainting domain.
Ω = [a, b]× [c, d] = continuous image domain.
Ωh = Ω ∩ Z2

h = discrete image domain.
D

(0)
h = initial inpainting domain.

∂D
(0)
h = initial inpainting domain boundary.

semiImplicit = false, unless we use the semi implicit extension (Section 5.2).
for k = 0, . . . do

if D(k)
h = ∅ then
break

end if
∂readyD

(k)
h = {x ∈ ∂D(k)

h : ready(x)}
uh = FillBoundary(uh, D(k)

h , ∂readyD
(k)
h )

D
(k+1)
h = D

(k)
h \∂readyD

(k)
h

if semiImplicit then
u

(0)
h = uh
for n = 1, 2, . . . (until convergence) do

u
(n)
h = FillBoundary(u(n−1)

h , D(k+1)
h , ∂readyD

(k)
h )

end for
end if

∂D
(k+1)
h = {x ∈ ∂D(k+1)

h : N (x) ∩ (Ωh\D(k+1)
h ) 6= ∅}.

end for

function uh = FillBoundary(uh, Dh, ∂Dh)
for x ∈ ∂Dh do

compute Aε,h(x) = neighborhood of x.
compute non-negative weights wε(x,y) ≥ 0 for Aε,h(x).
if ready(x) then

uh(x) =
∑

y∈(Aε,h(x)\{x})∩(Ω\D) wε(x,y)uh(y)∑
y∈(Aε,h(x)\{x})∩(Ω\D) wε(x,y) (2.0.3)

end if
end for

end function
See (4.5.3) for a definition of the ready function for Guidefill. Coherence transport and Guidefill use the
neighborhoods Aε,h(x) = Bε,h(x), Aε,h(x) = B̃ε,h(x) respectively - see Figure 2.9. They also both use the
same weights (2.5.2). Blue text is only relevant for the semi-implicit extension we introduce in Section
5.2.

The main inpainting methods in the literature of the general form given by Algorithm 1 are (in
chronological order) Telea’s Algorithm [64], coherence transport [12], coherence transport with adapted
distance functions [44], and Guidefill [37]. As we will see, these methods essentially differ only in the
choice of weights (2.0.1), the choice of fill order as dictated by the “ready” function, and the choice of
neighborhood Aε,h(x). We will review these methods in Section 2.5.

Remark 2.0.1. It is worth mentioning that this class of algorithms is nearly exactly the same as the
“generic single-pass algorithm” first systematically studied by Bornemann and März in [12]. The two
main differences are

1. They assume Aε,h(x) = Bε,h(x), while we allow for greater flexibility.

2. They consider only the direct form of Algorithm 1, not the semi-implicit extension.
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Figure 2.1: Illustration of a generic set Aε,h(x) containing ghost pixels: In this illustration the
overlaid grid is the lattice Z2

h with pixel centers at its vertices. The elements of a generic Aε,h(x) are
represented as red dots - they do not need to occupy pixel centers, but they must all lie within distance
ε of x. Ghost pixels are defined based on bilinear interpolation of their real pixel neighbors. Here we
have highlighted in green the squares whose vertices are the real pixels needed to define the colors of the
ghost pixels in Aε,h(x). We call this set of real pixels Supp(Aε,h(x)). Note that while Aε,h(x) ⊂ Bε(x),
this inclusion is not in general true of Supp(Aε,h(x)).

Beyond this, they also phrase things in terms of a pre-determined fill order, rather than a “ready” function,
but the former may easily be seen, mathematically at least, to be a special case of the latter (Section 2.5).

Remark 2.0.2. When Algorithm 1 is adapted for 3D conversion (as it is in the case of Guidefill, which
we cover in Chapter 4) it must be modified to include the use of a bystander set Bh ⊆ Ωh\Dh of pixels
that are neither inpainted nor used for inpainting. The bystander set Bh is explained in Chapter 3, which
covers 3D conversion, in Section 3.3.1. The net effect is that the update formula (2.0.3) must be modified
slightly to

uh(x) =
∑

y∈(Aε,h(x)\{x})∩(Ω\(D∪B)) wε(x,y)uh(y)∑
y∈(Aε,h(x)\{x})∩(Ω\(D∪B)) wε(x,y) (2.0.4)

where B is the continuous bystander set defined in Section 1.4. However, for the sake of simplicity, in
this thesis outside of Chapters 3 and 4 we assume Bh = ∅.

2.1 Advantages of Algorithm 1

The main appeal of Algorithm 1 is its simplicity and parallelizability, which enable it to run very fast. A
second advantage, first noted by Bornemann and März [12], is the stability property

min
y∈B

u0(y) ≤ uh(x) ≤ max
y∈B

u0(y) for all x ∈ Dh, (2.1.1)

(which holds channelwise) where u0 : Ωh\Dh → Rd is the given image and B is the band of width ε pixels
surrounding ∂Dh. This property holds because we have chosen non-negative weights summing to one.
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(a) Inpainting problem (in-
painting domain in yellow).

(b) Inpainting with Telea’s
algorithm.

(c) Inpainting with coher-
ence transport.

(d) Red channel cross-section for Telea’s algorithm. (e) Red channel cross-section for coherence transport.

Figure 2.2: Instabilities in Telea’s algorithm: In this example we consider the inpainting problem
shown in (a) consisting of a line separating a region of dark blue from a region of dark red. We inpaint both
using Telea’s algorithm (b) and coherence transport (c). Coherence transport obeys the stability property
(2.1.1) and hence the brightness of the inpainted solution remains bounded above by the brightness on
the exterior of the inpainting domain. This is not true of Telea’s algorithm, which exhibits bright spots
outside the the original color range. These are not visible in Figure 2.4, because the brightness of each
color channel is already saturated, and Telea’s algorithm uses clamping to prevent the solution from going
outside the admissible color range. This is further illustrated in (d)-(e), where we plot horizontal cross
sections of the red channel of each inpainted solution. These slices are located ten rows of pixels above
the midpoint of the inpainting domain.

Remark 2.1.1. Although we have presented Telea’s algorithm [64] as an example of Algorithm 1, this is
not strictly true as its update formula (2.5.1) (see Section 2.5) contains a gradient term that, after it has
been approximated with finite differences, effectively violates the rule of non-negative weights summing to
one. This means that Telea’s algorithm does not satisfy the stability property (2.1.1), as we illustrate in
Figure 2.2.

2.2 Disadvantages and artifacts

The main disadvantage of Algorithm 1 is obviously loss of texture, and in cases where texture is important,
these methods should not be used. However, beyond loss of texture, inpainting methods of the general
form given in Algorithm 1 can also introduce a host of of other artifacts, which we list below.

• “kinking” of isophotes where extrapolated isophotes change direction at the boundary of the
inpainting domain - see Figure 2.4 and Figure 2.5.
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(a) Coherence transport with default onion shell ordering.
Isophotes are cut off.

(b) Guidefill with smart pixel ordering is able to make a
successful connection (März’s adapted distance functions
[44] would also do the job).

(c) Guidefill’s smart pixel ordering is not able to prevent a
shock in this case because of incompatible boundary con-
ditions.

(d) Guidefill with onion
shell ordering results in a
cut off picture frame that
ends abruptly.

(e) Guidefill with smart
ordering connects the pic-
ture frame, but creates a
shock.

Figure 2.3: Cut off isophotes and shocks: Because Algorithm 1 fills the inpainting domain from
many directions at once, “cut off isophotes” or shocks can sometimes be formed. In (a), this is due to
the (superimposed) fill order, which is the default onion shell ordering and a bad choice in this case. In
(b), we have a chosen a new fill order better adapted to the image and the problem is solved in this case.
However, the shock in (c) is due to incompatible boundary conditions and it is unlikely any special fill
order could solve the problem. If (c) seems a little contrived, consider the “real life” examples (d)-(e).
In (d), we inpainted using Guidefill with the default onion shell ordering, resulting in the picture frame
being cut off. In (e) we used Guidefill’s build in smart order, which successfully completes the picture
frame, but creates a shock in the middle. This shock is due to incompatible lighting conditions at either
end of the inpainting domain, which is outlined in red.

• “blurring” of isophotes where edges that are sharp in the undamaged region may blur when
extended into the inpainting domain - see Figure 2.4 and Figure 2.5.

• “cutting off” of isophotes where isophotes extrapolated into the inpainting domain end abruptly
- see Figure 2.3.

• formation of shocks where sharp discontinuities may form in the inpainting domain - see Figure
2.3.

• bright or dark spots that are only a problem if the stability condition (2.1.1) is violated, as it is
for Telea’s algorithm. See Figure 2.2 and Figure 2.5.

2.3 Related work

Here we discuss briefly discuss related work on this class of methods, both in terms of the progression of
newer methods reducing the artifacts discussed in the previous section, and mathematical analysis. We
include Guidefill in the discussion even thought it was developed as part of this thesis. This is because it
fits into the discussion very naturally, and failing to do so would detract from the readers understanding
of the issues that motivate our theoretical work in Chapter 6.
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(a) Inpainting problem
with θ = 63◦.

(b) Telea’s algorithm. (c) coherence transport. (d) Guidefill.

(e) Inpainting problem
with θ = 73◦.

(f) Telea’s algorithm. (g) coherence transport. (h) Guidefill.

(i) Midpoint cross-sections for θ = 63◦. (j) Midpoint cross-sections for θ = 73◦.

Figure 2.4: A tale of two inpainting problems: In (a)-(d), a line making an angle of θ = 63◦ with the
horizontol is inpainted using each of Telea’s algorithm [64], coherence transport, [12, 44], and Guidefill
[37] (the inpainting domain is shown in yellow). In this case the radius of Aε,h(x) is ε = 3px, and since
63◦ ≈ arctan(2) ≈ 63.44◦ is close to one of the “special directions” in which coherence transport can
extend isophotes successfully for this value of ε (see Figure 2.6), both coherence transport and Guidefill
make a successful connection. In (e)-(h) we change the angle of the line slightly to θ = 73◦. This isn’t
one of coherence transport’s admissable directions for ε = 3px, so it fails to make the connection, while
Guidefill continues to have no problems, at the expense of some blurring. Telea’s algorithm, on the other
hand, propagates in the direction of the normal to the inpainting domain boundary regardless of the
undamaged image content, and thus fails to make the connection in both cases while also introducing
significant blur. In (i)-(j), we examine horizontal cross sections (of the red channel) of all three methods
at the midpoint of the inpainting domain. Here, a disadvantage of Guidefill in terms of blur becomes
more apparent - coherence transport by contrast produces a much sharper result. The reasons for this
are explored in Section 6.7.
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2.3.1 Artifact reduction

(a) Damaged image with inpainting
domain in red.

(b) The result of Telea’s algorithm
[64].

(c) Closeup of (b). Note
the bright spots and dis-
connected isophotes.

(d) Further closeup of (b),
with blurry, disconnected
isophotes circled in red and a
bright spot circled in blue.

(e) The result of coherence transport
[12].

(f) Closeup of (d) - note
the better reconstruction
of 金.

Figure 2.5: Blurring, kinking, and bright spots with Telea’s algorithm: Even for problems such
as (a) where the inpainting domain is very thin, Telea’s algorithm (b)-(d) still creates strong blurring
artifacts and fails to connect isophotes effectively. Also, due to the presence of the gradient term in
(2.5.1), Telea’s algorithm violates the stability condition (2.1.1) and as a result can “overshoot” when
filling pixels close to edges in the filled area, where the (numerical) gradient changes rapidly. This leads
to the bright spots near the reconstructed金 in (c)-(d). In this case coherence transport (e)-(f) is a much
better choice.

Broadly speaking, there has been incremental progress as follows: Telea’s algorithm [64], the earliest
variant to appear in the literature, suffers from strong artifacts of every type. In particular, the weights
make no attempt to take into account the orientation of undamaged isophotes in Ωh\Dh, and the result
shows strong kinking artifacts (see Figure 2.4). Bornemann and März identified and sought to address
this problem with coherence transport [12], which proposed carefully chosen weights that are proven (in
a high resolution and vanishing viscosity limit) to extend isophotes in any desired guidance direction g
not parallel to the inpainting domain boundary. This was combined with a method aimed at robustly
measuring the orientation of isophotes at the boundary, so that a suitable g allowing for a seamless
transition could be found. The problem of “kinking” ostensibly resolved, in a follow up work März
proposed coherence transport with adapted distance functions [44] designed to minimize the problem of
“cut off” isophotes and shocks. This was accomplished by recognizing that artifacts such as the incomplete
line in Figure 2.3(a) are often the byproduct of a suboptimal fill order such as the one superimposed (in
this case the default onion shell ordering). The situation can often be corrected as in Figure 2.3(b),
by using an ordering better adapted to the image such as the one illustrated there. Rather than filling
pixels in an order proportional to their distance from the boundary, i.e. having the ready function in
Algorithm 1 always return “true”, März proposed a number of ways of generating improved orderings
based on non-Euclidean distance from boundary maps. At the same time, recognizing that the presence
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(a) Inpainting problem with Dh col-
ored yellow and outlined in black.

(b) Superposition of multiple inpaint-
ings of (a) using coherence transport
with guidance direction g sweeping
out an arc from 1◦ up to 179◦. In
this case ε = 3px and Bε,h(0) is su-
perimposed.

(c) Now Guidefill is used instead
of coherence transport, but all pa-
rameters including ε = 3px and
µ = 100 are kept the same. This
time we superimpose the dilated ball
Dh(Bε,h(0)). New points are shown
in grey.

Figure 2.6: Special directions: For a given guidance direction g = (cos θ, sin θ), coherence transport
[12, 44] can successfully extrapolate isophotes parallel to g only if g = λv, for some v ∈ Bε,h(0). This is
illustrated in (b), where have solved the inpainting problem posed in (a) multiple times using coherence
transport with ε = 3px with a sequence of guidance directions gk = (cos θk, sin θk) (with θk ranging from
1◦ up to 179◦ in increments of one degree), combined the results (specifically, we took a weighted average
of all 179 solutions in which the weight of a given pixel decreases exponentially as its color moves away
from pure red), and superimposed Bε,h(0) (the parameter µ in (2.5.2) is µ = 100). Instead of a smoothly
varying line sweeping through the upper half plane and filling it with red, we see a superposition of
finitely many lines, each passing through some v ∈ Bε,h(0). When we repeat the experiment in (c) using
Guidefill [37], we see that it is not free of problems either. In this case Guidefill can extrapolate along
g = (cos θ, sin θ) so long as 0 < θc ≤ θ ≤ π − θc < π, where θc is a critical angle, and we get a red cone
bounded on either side by θc. Here we have superimposed the dilated ball Dh(Bε,h(0)), and it is evident
that θc is in some way related to this dilation - this will be explained in Section 6.6.1.

of shocks was related to the “stopping set” [44] of the distance map, März was able to exert some measure
of control over those as well, if not prevent them entirely. Guidefill [37] brought the focus back to the
reduction of kinking artifacts, by noting that coherence transport is actually only able to propagate along
a given guidance vector g if it points in one of a finite set of special directions - see Figure 2.6(b).

Whereas previous improvements to Algorithm 1 had focused first on improving the choice of weights,
then the fill order (equivalently the choice of ready function), Guidefill proposed for the first time to
change the averaging neighborhood Aε,h(x), which until now had always been the discrete ball Bε,h(x)
(Figure 2.9(a)). Specifically, it proposed to replace Aε,h(x) = Bε,h(x) with Aε,h(x) = B̃ε,h(x), where
B̃ε,h(x) is the rotated discrete ball shown in Figure 2.9(b), aligned with the guidance direction g. Since
Aε,h(x) is in this case no longer axis aligned, it contains what the authors called “ghost pixels” lying
between pixel centers, which they defined based on bilinear interpolation. This small change enabled
Guidefill to propagate along most guidance directions, but it too has problems when the angle between
g and the boundary to the inpainting domain is too shallow - see Figure 2.6(c). However, Guidefill pays
a price for its reduction in kinking artifacts in the form of an increase in blur artifacts. See Figure 2.4,
where coherence transport produces a sharp extension of image isophotes, albeit possibly in the wrong
direction, whereas Guidefill extrapolates in the right direction, but the extrapolation suffers from blur.
Guidefill also proposed its own “smart order” computed on the fly as an alternative to März’s adapted
distance functions, but this does not have any serious advantage in terms of the quality of the results.
Either approach will do for preventing “cut off” isophotes.
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2.3.2 Related theoretical work

(a) An inpainting problem with
incompatible boundary conditions.
The inpainting domain Dh is in grey,
and the skeleton Σ is drawn in black.

(b) Inpainting using Guidefill. A
shock is formed on the skeleton set
Σ shown in (a).

(c) Inpainting by solving the second
order elliptic equation −ε∆u+ux = 0
with ε = 10−7. Shocks are prevented,
but the solution (using GMRES) be-
comes much more expensive.

Figure 2.7: Creation of shocks by Algorithm 1: When Algorithm 1 is used to inpaint problems
with incompatible boundary conditions, such as the problem illustrated in (a) of inpainting a stripe that
is red on one end and green on the other, the result may contain shocks as in (b). These shocks can
be understood by adopting the framework proposed in [12, 45], where the output of Algorithm 1 under
a high resolution and vanishing viscosity limit is shown to be equivalent to the solution of a first order
transport equation on D\Σ, where Σ is a set of measure zero containing any potential shocks. Ballester et
al. [6] suggested overcoming this problem by adding a diffusive term −ε∆u to the transport equation and
taking ε→ 0. As can be seen in (c), in this case the formation of shocks is prevented, but the algorithm
becomes much more expensive, in this case requiring several minutes for GMRES [56] to converge on a
200× 200px inpainting domain (Guidefill by contrast took only 60ms).

Algorithm 1 has been studied by Bornemann and März in high-resolution and vanishing viscosity double
limit where first h → 0 and then ε → 0. They study the direct form of Algorithm 1, but their analysis
applies equally well to the semi-implicit form, and the limit obtained is identical. Under this limit,
Algorithm 1 becomes a first order (possibly non-linear) transport equation boundary value problem

∇u(x) · c(x, u) = 0 for x ∈ D\Σ, u
∣∣∣
∂D

= u0

∣∣∣
∂D
, (2.3.1)

where u0 denotes the given data in the undamaged region, and Σ is a set of measure zero related to a
distance map prescribing the order in which pixels are filled. The above equation is linear (c independent
of u) if the weights wε are independent of the inpainted solution uh (as is the case in Guidefill, for
example, see Chapter 4) - or nonlinear (c depends on u) if wε is allowed to depend on uh (as it does
in coherence transport). This transport equation is then analyzed from two perspectives. Firstly, its
well-posedness (which is non-trivial, due to the unusual boundary conditions) is studied [12, 45], where it
is shown that (2.3.1) is well posed on D\Σ, but not on the bigger set D. This analysis is then related to
cut off isophotes and shocks as illustrated in Figure 2.3, which are shown to occur within the exceptional
set Σ. These ideas also play a role in coherence transport with adapted distance functions, which aims
to control the position of Σ within D via a suitable manipulation of the fill order in order to minimize
these artifacts.

Bornemann and März appear to be the first to perform an in depth study the well-posedness of
(2.3.1) and its relationship to the formation of shocks. However, this problem was arguably anticipated
by Ballester et al. [6], who considered both the joint interpolation of image values and a guiding vector
field, as well as the propagation of image values along a known vector field. In the latter case, they noted
that their approach is equivalent to (2.3.1) with Σ = ∅ and c independent of u, which they note does
not have an obvious solution. Indeed, the integral curves of c(x), each with a beginning and endpoint
on ∂D, may have incompatible values of u0 at those endpoints (indeed, this is exactly the reason for
the formation of shocks). To resolve this issue they suggested, among other things, adding a diffusive
term −ε∆u to (2.3.1) to make it well posed, and then taking ε→ 0. This approach not only resolves the
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well-posedness, it also prevents the formation of shocks, as illustrated in Figure 2.7(c), where we solve the
resulting nonsymmetric linear system with ε = 10−7 using GMRES (the Generalized Minimum RESidual
method for nonsymmetric linear systems) [56]. However, the resulting increase in runtime is substantial.

(a) ε = 1, h = 1
4 . (b) ε = 1, h = 1

8 . (c) ε = 1, h = 1
16 . (d) ε = 1, h = 1

32 .

(e) ε = 1, h = 0. (f) ε = 1
2 , h = 0. (g) ε = 1

4 , h = 0. (h) ε = 1
8 , h = 0.

(i) ε = 1, h = 1
4 . (j) ε = 1

2 , h = 1
8 . (k) ε = 1

4 , h = 1
16 . (l) ε = 1

8 , h = 1
32 .

Figure 2.8: Two distinct continuum limits: In this thesis we study two separate continuum limits of
Algorithm 1, illustrated here for Aε,h(x) = Bε,h(x). The first, illustrated in (a)-(h), is the high-resolution
vanishing viscosity double limit proposed by Bornemann and März [12], in which h→ 0 (a)-(d) and then
ε→ 0 (e)-(h). The second is the fixed-ratio limit single limit (ε, h)→ (0, 0) with r = ε

h fixed proposed in
our previous work [37], illustrated in (i)-(l) for r = 4. We will prove that while they are both valid limits
of Algorithm 1, they predict very different behaviour. Moreover, we will see that the predictions of the
latter correspond much more closely than the former to the actual behaviour of Algorithm 1, especially
when r is small (which it typically is in applications - [12] recommends r between 3 and 5, for example).
See Theorems 6.3.1 and 6.5.1, as well as Sections 6.6.2 and 6.8.2.

In addition to their well-posedness analysis, Bornemann and März also used the continuum model
(2.3.1) for studying kinking artifacts. In particular, they showed that for Telea’s algorithm, the resulting
transport direction c(x) is always normal to the boundary of the inpainting domain, while for coherence
transport, it can be made to point parallel to the guideance direction g, so long as the latter is not
parallel to ∂D. As we have seen in Figure 2.6 and Figure 2.4, the former conclusion is consistent with
numerical experiments, but the latter is not. While useful, something is missing in Bornemann and
März’s continuum limit.
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2.4 An alternative continuum limit

One of the key ideas of this thesis is to instead study Algorithm 1 through a fixed ratio continuum limit
in which (h, ε)→ (0, 0) along the ray ε = rh. The non-negative integer r is simply the radius of Aε,h(x)
measured in pixels and will play a key role in our analysis. In words, our limit takes h→ 0 while keeping
the size of the neighborhood Aε,h(x) constant, as measured in pixels. Figure 2.8 illustrates the difference
between our fixed ratio limit and Bornemann and März’s high-resolution vanishing viscosity limit. Al-
though both are perfectly valid mathematically, our fixed ratio limit captures fine details in the behaviour
of Algorithm 1 that the other limit glosses over. For example, Bornemann and März’s continuum limit
is identical for coherence transport, Guidefill, and the semi-implicit extension of Guidefill, whereas we
obtain three distinct limits. Their limit predicts no kinking artifacts for any of these algorithms, unless
the guidance direction g is exactly parallel to ∂D, whereas our limit predicts that this is only true of
semi-implicit Guidefill. Our limit depends on r, and we will see that as r → ∞, we recover Bornemann
and März’s original limit. The fine behaviour uncovered by our limit is thus most significant when r is a
small integer.

To uncover even finer behaviour, in this thesis we also consider an asymptotic limit in which h/ε = r

is constant, and h is small but positive. This will be critical for analyzing blur artifacts (Chapter 6,
Section 6.7).

2.4.1 Motivation for ghost pixels.

In Section 5.1 we will prove that any weighted sum over a set Aε,h(x) of ghost pixels is equivalent to
a sum over the real pixels in Supp(Aε,h(x)) with equivalent weights. While this makes ghost pixels in
some sense redundant, they are useful concept. Specifically, in Theorem 6.3.1 we will prove that the
fixed ratio continuum limit described above and illustrated in Figure 2.8 is a partial differential equation
with coefficients that depend continuously on the weights wε and on the elements of Aε,h(x). It will be
desirable to control this limit by making suitable choices for wε and Aε,h(x), and this is easier if the
elements of the latter may be varied continuously.

2.5 Review of main methods

Here we briefly review the main inpainting methods of the general form sketched in Algorithm 1.

Telea’s algorithm. The earliest algorithm (to our knowledge) appearing in the literature and of the
form sketched in Algorithm 1, Telea’s algorithm [64] is also the only such algorithm to use a different
formula for uh(x) than the expression (2.0.3) appearing in Algorithm 1 (see Remark 2.1.1). Instead
of computing uh(x) a weighted average of uh(y) evaluated at nearby already filled pixels y, it takes a
weighted average of the predictions that each of these pixels makes, based on linear extrapolation, for
uh(x). That is,

uh(x) =

∑
y∈Bε,h(x)∩(Ωh\D(k)

h
) wε(x,y)(uh(y) +∇huh(y) · (x− y))∑

y∈Bε,h(x)∩(Ωh\D(k)
h

) wε(x,y) , (2.5.1)

where ∇huh(y) denotes the centered difference approximation to the gradient of uh at y, that is

∇huh(y) := 1
2 (uh(y + e1)− uh(y− e1), uh(y + e2)− uh(y− e2)) .

As we have already noted in Remark 2.1.1, this approach has a disadvantage in that it results in the loss
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of the stability property (2.1.1). Moreover, the “predictions”

upredicted(x) := uh(y) +∇huh(y) · (x− y)

can become highly inaccurate when y is on an edge Ωh\D(k)
h , leading to significant over or undershooting,

visible as bright or dark spots as in Figure 2.2 and Figure 2.5. Perhaps in recognition of this, the gradient
term was dropped from (2.5.1) in all subsequent algorithms. The weights in this case are

wε(x,y) = dir(x,y) · dst(x,y) · lev(x,y),

where

dir(x,y) := x− y
‖x− y‖ ·N(x), dst(x,y) := d2

0
‖x− y‖2 , lev(x,y) := T0

1 + |T (y)− T (x)| ,

and T (x) denotes the Euclidean distance from x to the (original) boundary of the inpainting domain,
and N(x) = ∇hT (x) (estimated based on central differences). T is precomputed using the fast marching
method. Telea’s algorithm uses the default onion shell ordering, that is “ready(x) ≡ true”.

Coherence transport. Coherence transport [12] improves upon Telea’s algorithm by adapting the
weights in order to encourage extrapolation of isophotes in the direction of their tangent. This is done
by calculating a “local coherence direction” g(x) in terms of a modified structure tensor. Coherence
transport calculates the color of a given pixel to be filled using the formula (2.0.3) in Algorithm 1 with
weights

wε(x,y) = 1
‖y− x‖ exp

(
− µ

2

2ε2 (g⊥(x) · (y− x))2
)
, (2.5.2)

and with Aε,h(x) = Bε,h(x) - see Figure 2.9(a) and Figure 2.9(c). Like Telea’s algorithm, coherence
transport uses the default onion shell ordering, that is “ready(x) ≡ true”.

Coherence transport with adapted distance functions. In a subsequent work [44], März made
improvements to coherence transport by replacing the default onion shell ordering with one based on a
variety of non-Euclidean distance functions. One such distance function defines an “active boundary”
Γh ⊆ ∂Dh defined by

Γh := {∂Dh : 〈g(x),N(x)〉2 > γ}

where γ > 0 is a small constant. The non-Euclidean distance to boundary T ∗h is then computed as the
Euclidean distance to the active boundary. The algorithm is modified so that at any given iteration, only
a subset of boundary pixels are filled - namely those minimizing T ∗h . That is

ready(x) = true⇔ x ∈ argminy∈∂Dh T
∗
h (y).

This adaptation leads to improvements in the long range extrapolation of isophotes, as in Figure 2.3.

Guidefill. Guidefill [37] is a recent inpainting algorithm designed to address, among other things,
the kinking issues in Figure 2.6(b) and Figure 2.4. While coherence transport is able to extrapolate
along guidance direction g(x) only if g(x) = λ(v− x) for some v ∈ Bε,h(x) (see Figure 2.6(b)), Guidefill
replaces the lattice aligned discrete ball Bε,h(x) with the rotated discrete ball B̃ε,h(x) aligned with the local
transport direction g(x), so that g(x) = λ(v− x) for some v ∈ B̃ε,h(x) is always true. The rotated ball
B̃ε,h(x) contains “ghost pixels” lying between pixel centers which are defined using bilinear interpolation.
See Section 5.1 for a deeper discussion of ghost pixels, as well as Figure 2.9(a)-(b) for an illustration of
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(a) Aε,h(x) = Bε,h(x). (b) Aε,h(x) = B̃ε,h(x). (c) Illustration of the (normalized)
weights (2.5.2) for µ = 10.

Figure 2.9: Neighborhoods and weights for coherence transport and Guidefill: Here we illustrate
the neighborhoods Aε,h(x) and weights (2.5.2) used by coherence transport and Guidefill. In each case
ε = 3px and g(x) = (cos 73◦, sin 73◦). Coherence transport (a) uses the lattice-aligned discrete ball
Aε,h(x) = Bε,h(x), while Guidefill (b) uses the rotated discrete ball Aε,h(x) = B̃ε,h(x). The ball B̃ε,h(x)
is rotated so that it is aligned with the line L (shown in red) passing through x parallel to g(x). In general
B̃ε,h(x) contains “ghost pixels” lying between pixel centers, which are defined using bilinear interpolation
of their “real” pixel neighbors. Both use the same weights (2.5.2) illustrated in (c). The parameter µ
controls the extent to which the weights are biased in favor of points lying on or close to the line L.

Bε,h(x) and B̃ε,h(x). Guidefill uses the same weights (2.5.2) as coherence transport (illustrated in Figure
2.9(c)) and similarly to the latter’s extension [44], it has a way of automatically determining a good fill
order. Unlike coherence transport which computes g(x) concurrently with inpainting, Guidefill computes
a guide field g(x) : Dh → R2 prior to inpainting. The guide field is computed based on splines which the
user may adjust in order to influence the results. It is used to automatically compute a good fill order
by computing for each x ∈ ∂Dh a confidence C(x) ∈ [0, 1] inspired by Criminisi et al. [22] and given by

C(x) =
∑

y∈B̃ε,h(x)∩(Ω\D(k)) wε(x,y)∑
y∈B̃ε,h(x) wε(x,y) , (2.5.3)

and then only filling those pixels for which C(x) > c, where c ∈ (0, 1) is a small constant. That is

ready(x) = 1(C(x) > c) (2.5.4)

Guidefill was designed for use as part of a 3D conversion pipeline, and as such makes use of a set Bh
of “bystander pixels” which are neither inpainted nor may be used for inpainting. However, this is
not relevant to our current investigation and we will assume Bh = ∅ throughout. As shown in Figure
2.6(c) - Guidefill is able to largely, but not completely, eliminate kinking artifacts. It was in the hope of
overcoming this that we designed the semi-implicit version of Algorithm 1 discussed in Section 5.2.

Remark 2.5.1. Note that we have deliberately excluded the point x from the update formula (2.0.3) in
Algorithm 1, even if the set Aε,h(x) contains x. This is not done in any of the methods [64, 12, 44, 37] we
have just discussed, but it makes no difference to them or any other variant of the direct form of Algorithm
1, because the subroutine FillRow only involves sums taken over Aε,h(x)∩(Ω\D(k)), which never contains
x. However, the semi-implicit extension of Algorithm 1 expresses uh(x) as a sum of uh(y) over a set of
points that might include x. This creates problems with weights such as (2.5.2) for which wε(x,x) =∞.
See Appendix A.1 for further details.
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Chapter 3

3D Conversion

The increase in demand over the past decade for 3D content has resulted in the emergence of a multi-
million dollar industry devoted to the conversion of 2D films into stereo 3D. This is partly driven by the
demand for 3D versions of old films, but additionally many current filmmakers are choosing to shoot in
mono and convert in post production [60]. Examples of recent films converted in whole or in part include
Maleficent, Thor, and Guardians of the Galaxy [1].

Mathematically, 3D conversion amounts to constructing the image or video shot by a camera at the
perturbed position p+ δp and orientation O + δO, given the footage at (p,O).

3.1 Two primary conversion pipelines.

There are essentially two pipelines for achieving this. The first pipeline assumes that each frame of video
is accompanied by a depth map (and hence is more applicable to footage from RGB-D cameras). The
new viewpoint is generated by “warping” the original footage based on the given depth map and known
or estimated camera parameters - see [15] for an excellent recent overview. This pipeline has applications
including 3D TV and free-viewpoint rendering [74, 28]. However, it is not typically used in the movie
industry - this is for a number of reasons (including, for example, the fact that much of what is being
converted are older movies created before RGB-D cameras were invented) - see [73, 60] for more details
and discussion.

In this thesis we focus on a second pipeline, which is of greater interest in film. This pipeline does
not assume that a depth map is given. Instead, it is based on teams of artists generating a plausible 3D
model of the scene, reprojecting the original footage onto that model from a known or estimated camera
position, and then rerendering the scene from a novel viewpoint. Unlike the previous pipeline this one
involves a step whereby teams of artists create masks for every relevant object in the original scene.
Crucially, these masks include occluded parts of objects - see Figure 3.1(c). We go over this pipeline in
detail in Section 3.3.

One thing both pipelines have in common is a hole-filling or disocclusion step whereby missing infor-
mation in the form of RGB values visible from (p+ δp,O + δO) but not from (p,O) is “inpainted”. This
step is considered one of the most technical and time-consuming pieces of the pipeline [60]. However,
while the disocclusion step arising in the first pipeline has received a lot of attention in the literature,
see for example [15, 72, 71, 28, 74, 39, 53, 23, 42, 48] to name a few, the disocclusion step arising in the
second pipeline relevant to film has received far less attention. To the best of our knowledge our paper
[37] (created as part of this thesis) is the first paper to address it directly. While related, these two dis-
occlusion problems have important differences. Most significantly, the fact that our pipeline comes with

45



an explicit mask for every scene object - even occluded parts - and the fact that we have a full 3D model
instead of just a single depth map from a single viewpoint, has two major consequences. Firstly, while
the methods above need to inpaint both the color information at the new view and the corresponding
new depth map, we get the depth map at the new viewpoint for free. This is important because most of
the methods in the literature either devote quite a bit of effort to inpainting the depth map [15], or else
do so based on rough heuristics [72, 71, 28, 74, 39, 53, 23, 42, 48], which, as noted in [15, Sec. II.C.], tend
to fail. Secondly, these masks give an explicit segmentation of the scene into relevant objects both in the
old viewpoint and the new one. The methods in the other pipeline, by contrast, have access to neither.
This means that we, unlike the above approaches, always know which pixels to use for inpainting and
do not have to worry about (for example) inpainting a piece of the foreground into the background. By
contrast, all of the above methods have to rely on imperfect heuristics to guess based on the depth map
which pixels belong to which object - see [15, Sec. II.B.].

Additionally, in our pipeline, the inpainting is done by teams of artists armed with a “toolbox” of
inpainting algorithms. These algorithms provide a starting point which artists may then touch up by
hand. Hence interactive speeds and the ability for the user to influence the results of inpainting, which
may not be a priority in the other pipeline, are important in ours.

3.2 RelatedWork on Disocclusion Inpainting for 3D Conversion

Over the past decade considerable attention has been given in the literature to the design of algorithms
for automatic or semi-automatic 3D conversion - at least for the first pipeline based on depth maps. As
we have already stated, the pipeline used in film, on which we focus in this thesis, has received little to
no attention. Nevertheless, we review here briefly the work on 3D conversion using the first pipeline. In
regards to the hole filling step, there is great variability in how it is handled. At one extreme are cheap
methods that inpaint each frame independently using very basic rules such as clamping to the color of the
nearest useable pixel [39], or taking a weighted average of the closest useable pixels along a small number
(8 − 12) of fixed directions [74, 28]. Slightly more sophisticated is the approach in [53] which applies a
depth-adapted variant of Telea’s algorithm [64]. These methods are so basic that they do not appear to
inpaint the depth map. In the midrange are a variety of methods based on first inpainting the depth map,
and then applying a depth aided variant of Criminisi’s method - examples include [71, 72, 23, 42, 48, 15],
see also [15] for an overview of the state of the art. Unfortunately, until recently most of these approaches
have been limited in the sense that too little attention has been given to the depth inpainting step, which
is done based on crude heuristics, while most of the attention is given to the subsequent color inpainting
step. To our knowledge, [15] is the first paper to acknowledge this gap in the literature, and addresses it
with a sophisticated approach to depth inpainting.

Finally, at the most expensive extreme are methods taking temporal information explicitly into ac-
count, such as [20] which copies spacetime patches into the inpainting domain via a process similar to
Criminisi et al.

3.3 A 3D Conversion Pipeline for Film

Here we briefly review a 3D conversion pipeline commonly used in film - see for example [73] for a more
detailed description. The pipeline relevant to us involves three main steps (typically done by separate
teams of specialized artists) which must be completed before inpainting can proceed:

1. If camera data (including position, orientation and field of view) is not known, it must be estimated.
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Intermediate data generated in a 3D conversion pipeline prior to inpainting: (a)
original image, (b) rough 3D geometry, (c) object masks including occluded areas, (d) projection of an
object mask onto the corresponding object geometry, (e) example labeling of pixels in the new view
according to object and visibility (in this case the object in question is the wall, white pixels are visible
from both viewpoints, red are visible from the new viewpoint but occluded in the original view, grey are
occluded in both views), and (f) the generated new view with red “cracks” requiring inpainting.

This process is often called “match-move” and is typically done with the aid of semi-automatic
algorithms based on point tracking [58, 25].

2. Accurate masks must be generated for all objects and for every frame, including occluded areas (See
Figure 3.1(c)) . This is typically done to a subpixel accuracy using editable Bézier splines called
“roto”. These masks play three important roles:

(a) generating the depth discontinuities visible from the new viewpoint(s).

(b) generating the scene segmentation in the old viewpoint.

(c) generating the scene segmentation in the new viewpoint(s).

These masks need to be as accurate as possible [60].

3. A plausible 3D model of the scene must be generated (see Figure 3.1(b) for an example). This
will effectively be used to generate the “smooth” component of the depth map as viewed from the
new viewpoint(s) and does not have to be perfect. It is however very important that each object’s
mask generated in the previous step fits entirely onto its geometry when projected from the assumed
camera position, as in Figure 3.1(d). For this reason 3D geometry is typically designed to be slightly
larger than it would be in real life [73].

4. For each object, a multi-label mask must be generated assigning a label to each pixel in the new
view as either:

• belonging to the object and visible from the original viewpoint, or
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(a) Detail from “Bust”:
A complex hole involving
several objects at multiple
depths.

(b) Segmentation of the
new view available to our
pipeline.

(c) Midground structure
cut off by “bleeding” of
the background into the
midground, when (b) is
not taken into account.

(d) Our result.

Figure 3.2: Importance of the pixel labeling step: Unlike our pipeline, which has an explicit scene
segmentation (b) available to it from the new viewpoint, the depth map based pipeline does not have this
information and must rely on heuristics. As noted in [15], these heuristics tend to fail for complex holes
involving multiple objects at different depths, such as (a). Most methods in the literature (especially those
based on scanlines such as [72, 71, 53]) with the exception of [15] itself (a very recent paper designed to
cope with these situations) would struggle to correctly inpaint this hole and would likely produce artifacts
similar to (c), where the midground structure is cut off by “bleeding” of background into the midground.
Our pipeline does not have this problem as it is able to take advantage of the segmentation in (b).

• belonging to the object and occluded in the original viewpoint, but visible in the new viewpoint,
or

• belonging to the object and occluded in both the original and new viewpoints, or

• belonging to another object.

See Figure 3.1(e) for an example where the four labels are colored white, red, grey, and black
respectively, and the object in question is the background.

Once these components are in place, the original footage, clipped using the provided masks, is projected
onto the geometry from the assumed camera position and orientation. The new view is then generated by
rendering the 3D scene from the perspective of a new virtual camera. This new view, however, contains
disoccluded regions - formerly hidden by geometry in the old view - which must be inpainted (see Figure
3.1(f)). Inpainting then proceeds on an object by object basis, with each object inpainted separately.

3.3.1 Bystander Pixels

In most image inpainting algorithms it is assumed that all pixels in Ωh\Dh may be used for inpainting.
However, for this application, each object is inpainted separately, so some of the pixels in Ωh\Dh belong
to other objects (according to the labelling in step 4) and should be excluded. Failure to do so will result
in “bleeding” artifacts, where, for example, a part of the background is extended into what is supposed
to be a revealed midground object - see Figure 3.2(c).

Pixels which are neither inpainted nor used as inpainting data are called “bystander pixels”, and the
set of all such pixels is denoted by Bh. Pixels in Ωh\(Dh ∪Bh) are called “readable”.

3.3.2 An Alternative Pipeline

Here we briefly review the depth-map based pipeline that has so far received the most attention in the
literature. We will go over some of the heuristics employed and give a simple example to show how these
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heuristics can fail. Please also see [15], which covers the same issues we raise but in more detail, and
aims at overcoming them.

The general setup is that we have an initial image/video frame u0 with an accompanying depth map
d0 taken from a known camera position, and we wish to know the image/video frame u′0 from a new
virtual camera position. The key idea is that of a warping function W, constructed from the known
camera positions and parameters, that determines where a pixel x in u0 at depth d0(x) “lands” in u′0. u′0
and d′0 are then constructed by applyingW to all pixels in u0, d0 (note that some care may be required as
in general W(x, d0(x)) may lie between pixel centers). It is typically assumed that the camera positions
are related by a translation orthogonal to the optical axis and parallel to the horizon so thatW is a simple
horizontal translation. The result is a new image u′0 and depth map d′0 with “gaps” due to disocclusion.

The main disadvantage of this approach is that it has access to neither a depth map of the new view
nor a segmentation thereof, whereas we have both. When confronted with a complex hole as in Figure
3.2(a), our pipeline also has access to the segmentation in Figure 3.2(b), and hence while it does not know
what RGB values a given pixel in the hole is meant to have, it at least knows which object it belongs to.
Without this information, algorithms in this pipeline instead have to make guesses based on heuristics.
One common approach is to first inpaint the depth map based on heuristics, then use the inpainted depth
map to guess which pixels belong to which objects. For depth map inpainting, a very common heuristic,
used in, for example, [72, 71], is to divide the inpainting domain in horizontal scanlines. Each scanline
is then filled with a constant depth value that may be that of the endpoint with the greater depth [71],
or the minimal extrema of depth patch statistics centered at the endpoints of the scanline as well as
their inverse images under the warping function W [72]. In [53], the authors do not inpaint the depth
map, but divide the inpainting domain into horizontal scanlines as usual, declaring the endpoint with
greater depth “background” and hence useable for inpainting, while discarding the other endpoint. These
approaches will work for most of the hole in Figure 3.2(a), but all of them will incorrectly cut off the
vertical plate leg as in Figure 3.2(c). Another approach, used in, for example, [42], is to inpaint using a
modified variant of Criminisi that assigns higher priority to pixels with greater depth. This approach is
also likely to fail to extend either leg of the plate, since as an object lying in the midground, it will be
given a lower priority than background pixels.

In fact, of the approaches currently in the literature, the only one likely to give the correct result in
this case is [15], which was designed to address this gap in the literature by incorporating an explicit
structure propagation step. By contrast, our algorithm, taking advantage of the segmentation in Figure
3.2(b), produces the result in Figure 3.2(d).
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Chapter 4

Guidefill

In this chapter we cover in detail the Guidefill algorithm designed as part of this thesis. As Guidefill was
already discussed from a high level in Chapter 2, there will be a slight redundancy here - in particular a
few figures and one equation from Chapter 2 will appear again. We felt this was better than forcing the
reader to flip back. We will also restate a few things, in order to make the chapter more self contained.
We begin by summarizing the unique contributions and aims of Guidefill.

4.1 Summary of contributions and objectives

First, Guidefill is the next logical step in the progression of algorithms sketched in Section 2.3, aimed at
incrementally reducing the artifacts listed in Section 2.2. This aspect of the algorithm has already been
discussed.

Second, Guidefill is also an adaptation of the shell-based framework presented in Chapter 2 to the 3D
conversion pipeline for film presented in Section 3.3. While any of the disocclusion algorithms reviewed in
Section 3.2 for the alternative pipeline discussed in Section 3.3.2 could be adapted to this pipeline, they are
not designed to take advantage of its particular characteristics. In particular, none of them are designed
to take advantage of the scene segmentation available in our pipeline, and with the possible exception of
the recent high-quality approach [15], this is likely to lead to needless “bleeding” artifacts when pixels
from the wrong object are used for inpainting, as seen in Figure 3.2(c) (see also the discussion in [15,
Sec. II.C]). Therefore, Guidefill also repressents an attempt to create an inpainting algorithm designed to
take advantage of this extra information explicitly, which it does by making use of the set of “bystander
pixels” not to be used for inpainting (Section 3.3.1).

Third, even if the methods from Section 3.2 were adapted to our pipeline, what appears to be missing is
an algorithm suitable for the “middle ground” of cases where Telea’s algorithm and coherence transport
are inadequate, but exemplar-based approaches are needlessly expensive. In particular, because the
inpainting domains in 3D conversion tend to be thin “cracks” (see Figure 3.1), there are many situations
in which one can safely ignore texture. Guidefill attempts to fill that middle ground.

Fourth, Guidefill is designed to meet a demand in the 3D conversion industry for an interactive
inpainting algorithm in which the user has the ability to influence the results of inpainting.

In summary, Guidefill is a fast, geometric, user guided inpainting algorithm intended for use by artists
for the hole-filling step of 3D conversion of film. It is designed with two primary objectives in mind:

• The method retains interactive speeds even when applied to the HD footage used in film.

• Although the method is automatic, the artist is kept “in the loop” with a means of possibly adjusting
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the result of inpainting that is intuitive (that is, they are not simply adjusting parameters).

The first of these goals is accomplished via an efficient GPU implementation based on a novel algorithm
for tracking the boundary of the inpainting domain as it evolves. Since our method only operates on
the boundary of the inpainting domain in any given step, knowing where the boundary is means that
we can assign GPU processors only to boundary pixels, rather than all pixels in the image. For very
large images (

√
N � p, where N denotes the number of pixels in the inpainting domain, and p denotes

the number of available processors), our tracking algorithm leads to a time and processor complexity
of T (N,M) = O(N logN), P (N,M) = O(

√
N +M) respectively (where N + M is the total number of

pixels in the image), versus T (N,M) = O((N +M)
√
N), P (N,M) = O(N +M) without tracking - see

Theorem 4.8.1 and Theorem 4.8.2. Moreover, for moderately large problems (
√
N / p and N +M � p)

the gains are larger - T (N,M) = O(
√
N logN) with tracking in this case.

The second goal is accomplished by providing the user with automatically computed splines showing
how key image isophotes are to be extended. These splines may be edited if necessary. In this regard,
our algorithm is not unlike Sun et al. [63] and Barnes et al. [7], both of which allow the user to similarly
promote the extension of important structures by drawing them onto the image directly. However, both
of these approaches are exemplar-based, the former of is relatively expensive and the latter, while less
expensive, is limited to linear edges. As far as we know our method is the first geometric method to give
the user this type of control over the results of inpainting.

Guidefill is intended as a practical tool that is fast and flexible, and applicable to many, but not all,
situations. It is not intended as a black box capable of providing the correct result in any situation given
enough time. Our method was originally designed for the 3D conversion company Gener8 and a version
of it is in use by their stereo artists.

Similarly to many state of the art 3D conversion approaches we treat the problem frame by frame.
An extension that uses temporal information is explored in Chapter 7.

4.1.1 Relationship to coherence transport

Guidefill is inspired by the coherence transport algorithm [12, 44], but improves upon it by correcting
some of its shortcomings. In particular, both methods proceed by measuring the orientation of image
isophotes in the undamaged region near the inpainting domain and then extrapolating them into the
inpainting domain. However, in the case of coherence transport both of these steps have problems.
Firstly, the procedure for measuring the orientation g of isophotes in the undamaged region is inaccurate
and leads to “kinking” in the extrapolation. See Figure 4.3 as well as Section 4.3.1 for a discussion of
this problem and our resolution. Second, as we have seen in Figure 2.6, once fed a desired extrapolation
direction g (which may or may not be accurate based on the last point), coherence transport instead
extrapolates along a direction g∗ such that g∗ 6= g unless g points in one of a small number of special
directions. The result is a secondary “kinking” effect of extrapolated isophotes, which was illustrated in
Figure 2.4. This behaviour is explored in Section 4.4 and rigorously analyzed in Chapter 6, Theorem
6.3.1. We also present a “teaser” version of Theorem 6.3.1 in Section 4.7, where a special case is proven
(Theorem 4.7.1). As already discussed in Section 2.3 and 2.5, Guidefill resolves this issue by introducing
the concept of ghost pixels - virtual pixels lying between pixel centers and defined based on bilinear
interpolation. However, our ability to transport along these additional directions comes at a price in the
sense that our method introduces some blurring into extrapolated edges. This blurring is most significant
for low resolution images and wide inpainting domains, but appears to be minimal for HD images and
narrow inpainting domains. A theoretical investigation of these issues is deferred until Section 6.7.

In summary, coherence transport has the following drawbacks:
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(a) Automatically generated splines. (b) After user adjustment. (c) Closeup of the resulting guide
field.

Figure 4.1: Generating the guide field g (c) based on splines automatically generated by Guidefill (a)
and edited by the user (b).

1. Users may need to tune parameters in order to obtain a good result.

2. Extrapolated isophotes may “kink” due to inaccurate computation of the guidance direction g (see
Figure 4.3 and Section 4.3.1).

3. Even if g is computed correctly, extrapolated isophotes may still “kink” if g does not belong to a
finite set of special directions (see Figures 4.4, 4.5, 4.7 and Sections 4.4, 4.7).

4. The method is a black box with no artist control.

5. The quality of the result can be strongly influenced by the order in which pixels are filled - see Figure
4.6. This is partially addressed in [44], where several methods are proposed for pre-computing
improved pixel orderings based on non-Euclidean distance functions. However, these methods all
either require manual intervention or else have other disadvantages - see Section 4.5.

Guidefill is aimed at overcoming these difficulties while providing an efficient GPU implementation (the
implementation of coherence transport in [12, 44] was sequential, despite the inherent parallelizability of
the method), in order to create a tool for 3D conversion providing intuitive artist control and improved
results.

4.2 Overview

The main idea behind Guidefill is to generate, possibly based on user input, a suitable vector field
g : Dh → R2 to guide the inpainting process, prior to inpainting. The vector field g, which we call the
“guide field”, is generated based on a small set of curves carrying information about how key image edges
in Ωh\(Dh ∪ Bh) should be continued into Dh. These curves provide an intuitive mechanism by which
the user can influence the results of inpainting (see Figure 4.1).

Coherence transport also utilizes a vector field g(x), but it is calculated concurrently with inpainting.
Precomputing the guide field ahead of time is an advantage because the guide field contains information
that can be used to automatically compute a good pixel ordering, avoiding artifacts such as Figure 4.6. At
step k of our algorithm, given any pixel x ∈ ∂activeD

(k)
h due to be filled, our algorithm decides based on

g(x) whether to allow x to be filled, or to wait for a better time. Our test amounts to checking whether
or not enough pixels have already been inpainted in the area pointed to by g(x), and is discussed in
greater detail in Section 4.5.
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(a) Aε,h(x) = Bε,h(x). (b) Aε,h(x) = B̃ε,h(x). (c) Illustration of the (normalized)
weights (4.2.1) for µ = 10.

Figure 4.2: Illustration of the neighborhoods Aε,h(x) and weights (4.2.1) used by coherence transport
and Guidefill. In each case ε = 3px and g(x) = (cos 73◦, sin 73◦). Coherence transport (a) uses the
lattice-aligned discrete ball Aε,h(x) = Bε,h(x), while Guidefill (b) uses the rotated discrete ball Aε,h(x) =
B̃ε,h(x). The ball B̃ε,h(x) is rotated so that it is aligned with the line L (shown in red) passing through x
parallel to g(x). In general B̃ε,h(x) contains “ghost pixels” lying between pixel centers, which are defined
using bilinear interpolation of their “real” pixel neighbors. Both use the same weights (4.2.1) illustrated
in (c). The parameter µ controls the extent to which the weights are biased in favor of points lying on
or close to the line L.

The method begins with the user either drawing the desired edges directly onto the image as Bézier
splines using a GUI, or else by having a set of splines automatically generated for them based on the
output of a suitable edge detection algorithm run on Ωh\(Dh ∪ Bh). In the latter case, the user may
either accept the result or else use it as a starting point which they may improve upon by editing and/or
removing existing splines as well as drawing new ones. This is illustrated in Figure 4.1.

Next, the idea is to choose g(x) to be 0 when x is far away from any splines (e.g. more than a
small number of pixels, around ten by default), and “parallel” to the splines when x is close. Details are
provided in Section 4.3.

The purpose of the guide field is to ensure that the inpainting will tend to follow the splines wherever
they are present. To accomplish this, at step k of our algorithm a given pixel x ∈ ∂activeD

(k)
h due to be

inpainted is “filled” by assigning it a color equal to a weighted average of its already filled neighbors, with
weights biased in favor of neighboring pixels y such that y− x is parallel to g(x). This is accomplished
using the weight function

wε(x,y) = 1
‖y− x‖ exp

(
− µ

2

2ε2 (g⊥(x) · (y− x))2
)
, (4.2.1)

(introduced in coherence transport [12]) where µ > 0 is a positive parameter and ε > 0 is the radius
of the neighborhood Aε,h(x). However, whereas the sum in coherence transport is taken over the filled
portion of the discrete ball Aε,h(x) = Bε,h(x) aligned with the image lattice, we sum over the available
“pixels” within a rotated ball Aε,h(x) = B̃ε,h(x) aligned with the local guide direction g(x) - see Figure
4.2 for an illustration. The color uh(x) is then computed based in Algorithm 1 from Chapter 2, taking
Aε,h(x) = B̃ε,h(x) and using weights (4.2.1), but with the update formula (2.0.3) replaced by (2.0.4) which
incorporates the bystander set Bh from Section 3.3.1, as discussed in Remark 2.0.2. Coherence transport
“fills” a pixel using exactly the same formula (minus the use of Bh), except that now Aε,h(x) = Bε,h(x).

Unlike in coherence transport, however, our neighbourhood Aε,h(x) = B̃ε,h(x) is not axis aligned
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(unless g(x) is parallel to e1 or e2), and this means that in general we have to evaluate uh between
pixel centers, which we accomplish by extending the domain of uh at step k from Ωh\(D(k)

h ∪ Bh) to
Ω\(D(k) ∪B) using bilinear interpolation. That is, we define

uh(x) =
∑
y∈Ωh

Λy,h(x)uh(y) for all x ∈ Ω\(D(k) ∪B), (4.2.2)

where {Λy,h}y∈Ωh denotes the basis functions of bilinear interpolation. Note that the continuous sets
B and D(k) have been defined so that they include a one pixel wide buffer zone around their discrete
counterparts, ensuring that bilinear interpolation is well defined outside D(k) ∪ B. The reason for the
introduction of B̃ε,h(x) is to avoid a “kinking” phenomena whereby isophotes given a guidance direction
g(x) instead extrapolate along g∗(x) 6= g(x). This is discussed in detail in Section 4.4 and Section 4.7.
But first we describe our process of spline detection and the generation of the guide field, and how this
is done in such a way as to avoid a second “kinking” phenomena in the computation of g(x) itself.

Remark 4.2.1. Note that although the weights (4.2.1) have a pole at y = x, because uh(x) is expressed
as a weighted average of its already filled neighbors, the weights wε(x,y) are never evaluated at y = x
and so this has no effect.

4.3 Automatic Spline Detection and Creation of the Guide Field

The goal of the automatic spline detection is to position splines as straight lines in areas near the active
boundary of the inpainting domain where we have detected a strong edge. These splines are lengthened
so that they extend into the inpainting domain, and may be edited by the user before being used to
construct the guide field.

A one pixel wide ring R is computed a small distance from ∂activeDh in the undamaged area Ωh\(Dh∪
Bh) (as we will see in the next subsection, this dilation of R from ∂activeDh is crucial for obtaining an
accurate orientation of extrapolated isophotes).

We then run a version of Canny edge detection [16] on an annulus of pixels containing the ring, and
check to see which pixels on the ring intersect a detected edge. Portions of the annulus not labelled as
belonging to the current object are ignored. For those pixels which do intersect a detected edge, we draw
a spline in the direction of the edge beginning at that pixel and extending linearly into the inpainting
domain.

The direction of the edge is calculated based on the structure tensor [68]

Jσ,ρ := gρ ∗ (∇uσ ⊗∇uσ) where uσ := gσ ∗ uh, (4.3.1)

(and where gσ is a Gaussian centered at 0 with variance σ2, ⊗ denotes the tensor product, ∇ denotes
the centered difference approximation to the gradient, and ∗ denotes convolution) evaluated at the point
xbase ∈ R. By xbase, we mean a pixel on the annulus R intersecting one of the edges detected by
Canny edge detection. It is called xbase because it is the base point from which we will draw a spline
extending into Dh. In practice the above convolutions are truncated to windows of size (4σ+1)2, (4ρ+1)2

respectively, so in order to ensure that Jσ,ρ(xbase) is computed accurately we have to ensure R is far
enough away from Dh∪Bh that neither patch overlaps it. Note that our approach is different from that of
coherence transport [12, 44] (and later adopted by Cao et al. [17]) which proposes calculating a modified
structure tensor directly on ∂activeDh. As we will show shortly, the modified structure tensor introduces
a kinking effect and so we do not use it. Once Jσ,ρ(xbase) has been calculated for a given spline Γ, we

55



assign Γ a direction based on the vector gΓ

gΓ := ± tanh
(
λ+ − λ−

Λ

)
v−,

where (λ±,v±) are the maximal and minimal eigenpairs of Jσ,ρ(xbase) respectively, Λ is a constant that
we fix at Λ = 10−5 by default, and the sign of gΓ is chosen in order to point into Dh. Then, the guide
field g at a point x ∈ Dh is computed by first finding the spline Γx closest to x, and then applying the
formula

g(x) = gΓxe
− d(x,Γx)2

2η2

where d(x,Γx) is the distance from x to Γx and η > 0 is a constant that we set at η = 3px by default.
In practice, if d(x,Γx) > 3η we set g(x) = 0.

4.3.1 Kinking Artifacts Created by the Modified Structure Tensor and their
Resolution

Coherence transport operates by computing for each x ∈ ∂Dh a local “coherence direction” g(x) rep-
resenting the orientation of isophotes in Ωh\(Dh ∪ Bh) near x. Inspired by the success of the structure
tensor (4.3.1) as a robust descriptor of the local orientation of complete images, but also noting that
Jσ,ρ(x) is undefined when x ∈ ∂Dh, the authors proposed the following modified structure tensor

Ĵσ,ρ(x) :=

(
gρ ∗

(
1Ωh\(D(k)

h
∪Bh)∇vσ ⊗∇vσ

))
(x)(

gρ ∗ 1Ωh\(D(k)
h
∪Bh)

)
(x)

where vσ :=
gσ ∗

(
1Ωh\(D(k)

h
∪Bh)uh

)
gσ ∗ 1Ωh\(D(k)

h
∪Bh)

, (4.3.2)

which has the advantage that it is defined even for x ∈ ∂Dh (note the use of vσ as opposed to uσ in (4.3.2).
This notation was introduced in [12] because uσ is already defined in (4.3.1)). The authors provide
no theoretical justification for Ĵσ,ρ(x) but instead argue that it solves the problem “experimentally”.
However, closer inspection shows that the modified structure tensor is an inaccurate description of the
orientation of undamaged isophotes near x when the latter is on or near ∂Dh. We illustrate this using
the simple example of inpainting the lower half plane given data in the upper half plane consisting of
white below the line y = x and grey above it (Bh = ∅ in this case). We take σ = 2, ρ = 4. This is
presented in Figure 4.3(a), where the inpainting domain is shown in red and where we also show two
square neighborhoods of size (4σ+ 1)2, both centered at points on the line y = x, but with one center at
point A on ∂Dh, and the other at point B ∈ Ωh\Dh, which is far away enough from Dh that neither it
nor the larger neighborhood of size (2ρ+ 1)2 (not shown) overlap with Dh. The core problem lies in the
“smoothed” version vσ of u, which for pixel A is computed based on a weighted average of pixel values
only in the top half of the box above y = 0. Ideally, vσ sitting on the line y = x should be half way
between grey and white. However, as the weights are radially symmetric and the “angular wedge” of the
partial box centered at A contains far more grey pixels than it does white, at pt A we end up with a
color much closer to grey. This results in a curvature of the level curves of vσ that can be seen in Figure
4.3(b). The result is that the modified structure tensor at point A has an orientation of 57◦ (off by 12◦),
whereas the regular structure tensor, which is defined at point B since point B is far enough away from
Dh to be computed directly, predicts the correct orientation of 45◦. Figure 4.3(c)-(d) show the results
of inpainting using respectively the minimal eigenvalue of modified structure tensor at point A and the
structure tensor at point B as the guidance direction. This is why in Section 4.3 we backed our splines
up from the inpainting domain and computed their orientation using the structure tensor rather than the
modified structure tensor.
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(a) Points A, B and
their respective neighbor-
hoods of size (4σ + 1)2.

(b) The isocontours of vσ
used to compute the modi-
fied structure tensor (4.3.2)
bend near point A.

(c) Inpainting using
Guidefill with g cal-
culated at pt A using
the modified structure
tensor (4.3.2).

(d) Inpainting using
Guidefill with g cal-
culated at pt B using
the ordinary structure
tensor (4.3.1).

Figure 4.3: Kinking induced by the modified structure tensor. Consider the simple problem shown in
(a) of extending a 45◦ line into the inpainting domain (red). A first step is to measure the orientation
of this line, which coherence transport proposes to do directly on ∂Dh, at point A, using the modified
structure tensor Ĵσ,ρ (4.3.2) (with σ = 2, ρ = 4). However, as can be seen in (b), the level lines of vσ, a
smoothed version of u computed as an intermediate in (4.3.2) (as noted in the text, the notation vσ was
introduced in [12] because the ordinary structure tensor (4.3.1) already defines a uσ), bend in the vicinity
of ∂Dh. The resulting guidance direction gA (computed at A using the modified structure tensor) makes
an angle of 57◦ with the horizontal, off by 12◦ from the correct value of 45◦ obtained by evaluating the
ordinary structure tensor (4.3.1) at B. (c)-(d) show the results of inpainting using Guidefill with guidance
directions gA and gB respectively.

Remark 4.3.1. In some ways our spline-based approach resembles the earlier work by Masnou and Morel
[46] and later Cao et al. [17] in which level lines are interpolated across the inpainting domain by joining
pairs of “compatible T-junctions” (level lines with the same grey value intersecting the boundary with
opposite orientations). This was done first as straight lines [46] , and later as Euler spirals [17]. An
O(N3) algorithm was proposed in [17] for joining compatible T -junctions, where N is the number of such
junctions. This could be beneficial in situations such as Figure 4.1(a)-(b), where a similar process was
done by hand in the editing step.

However, our situation is different because we no longer have a simple interpolation problem - in
particular, instead of an inpainting domain surrounded on both sides by useable pixels, we now typically
have Dh with usable pixels on one side, and bystander pixels on the other (for example, pixels belonging
to some foreground object as in Figure 3.1(f)). In some cases we might get around this by searching the
perimeter of Dh ∪Bh, as opposed to just the perimeter of Dh, for compatible T-junctions. However, this
will not always work. For example, consider the problem of inpainting a compact object in the midground
partially occluded by something in the foreground. In this case the usable pixels Ωh\(Bh ∪Dh) may be a
small island entirely surrounded by Bh ∪Dh. In such cases our problem is clearly no longer interpolation
but extrapolation, and it doesn’t make sense to talk about joining compatible T-junctions.

Nevertheless, following the definition of “compatibility” given in [17], one way of incorporating this
idea would be to declare two splines S1 and S2 based at x(1)

base and x(2)
base “compatible” if

(∇uσ(x(1)
base) · TR(x(1)

base))(∇uσ(x(2)
base) · TR(x(2)

base)) < 0,

where uσ is given by (4.3.1) and TR(x) denotes the unit positively oriented tangent vector to the ring R
evaluated at x ∈ R. Compatible splines could then be further tested by comparing patches around the base
of each, with the patches rotated according to the orientation of the spline. Those with a high match score
could be tentatively joined, with the user given the option to accept or reject this. However, this is beyond
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(a) Coherence transport (θ = 90◦). (b) Guidefill (θ = 90◦).

(c) Coherence transport (θ = 73◦). (d) Guidefill (θ = 73◦).

Figure 4.4: Connecting broken lines using coherence transport (left column) and Guidefill (right column).
When the line to be extrapolated is vertical (θ = 90◦), both methods are successful. However, when the
line is rotated slightly (θ = 73◦) coherence transport causes the extrapolated line to “kink”, whereas
Guidefill continues to produce a successful connection. A theoretical explanation for this phenomena is
provided in Theorem 4.7.1 and illustrated in Figure 4.7.

(a) Ghost pixels disabled. (b) Ghost pixels turned on.

Figure 4.5: The effect of ghost pixels on a non-synthetic example (ε = 3px, µ = 50). When ghost pixels
are disabled, the extrapolated isophotes are unable to smoothly curve as only finitely many transport
directions are possible.

the scope of the present work.

4.4 Resolving Additional Kinking Artifacts using Ghost Pixels

The last section showed how coherence transport can cause extrapolated isophotes to “kink” due to an
incorrect measurement of the guidance direction g, and how this is overcome in Guidefill. In this section,
we briefly go over a second kinking effect that can occur even when g is known exactly, and how Guidefill
overcomes this as well. More details and a theoretical explanation are provided by our continuum analysis
in Section 4.7.

Figure 4.4 illustrates the use of coherence transport and Guidefill - each with ε = 3px and µ = 50 - for
connecting a pair of broken lines. In each case both methods are provided the correct value of g. When
the line to be extrapolated is vertical (θ = 90◦), both methods are successful. However, when the line is
rotated slightly (θ = 73◦) coherence transport causes the extrapolated line to “kink”, whereas Guidefill
makes a successful connection. This happens because coherence transport is trying to bias inpainting in
favor of those pixels y in the partial ball Bε,h(x)∩ (Ωh\(D(k) ∪B)) sitting on the line L passing through
x in the direction g(x), but in this case Bε,h(x) contains no such pixels (other than x itself, which is
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(a) Onion shell order
(synthetic).

(b) Smart order (syn-
thetic).

(c) Onion shell order
(non-synthetic).

(d) Smart order (non-
synthetic).

Figure 4.6: Importance of Pixel Order. When pixels are filled in a simple “onion shell” order (i.e. filled as
soon as they appear on the boundary of the inpainting domain), this creates artifacts including “clipping”
of isophotes. Our smart order (4.5.3) avoids this by using information from the pre-computed guide field
to automatically decide when pixels should be filled.

excluded as it hasn’t been inpainted yet) - see Figure 4.2(a). Instead coherence transport favors the
pixel(s) closest to L, which in this case happens to be y = x + (0, h). Since y− x is in this case parallel
to (0, 1), isophotes are extrapolated along g∗(x) = (0, 1) instead of along g(x) as desired. This implies
that inpainting can only be expected to succeed when g(x) is of the form g(x) = (λn, λm) for λ ∈ R,
n,m ∈ Z and n2 +m2 ≤ 9.

We resolve this problem by replacing Bε,h(x) with the rotated ball of ghost pixels B̃ε,h(x), which is
constructed in order to contain at least one “pixel” on L besides x, as illustrated in Figure 4.2(b).

In Figure 4.5 we also illustrate the importance of ghost pixels on the non-synthetic example with
a smoothly varying guide field shown in Figure 4.1. When ghost pixels are not used, the extrapolated
isophotes are unable to smoothly curve as only finitely many transport directions are possible. The result
is a break in the extrapolated isophote. On the other hand, when ghost pixels are turned on we get a
smoothly curving isophote with no break.

4.5 Automatic Determination of a Good Pixel Order (Smart
Order)

Figure 4.6(a) and 4.6(c) shows the result of inpainting using an “onion shell” fill order (where pixels are
filled as soon as they appear on the boundary of the inpainting domain), for a synthetic and non-synthetic
example. In these cases extrapolated lines are cut off due to certain pixels being filled too early. Figure
4.6(b) and 4.6(d) show the same examples using our improved fill order defined by the ready function
(4.5.3).

Review of pixel ordering strategies in the literature. There are at least three pixel ordering
strategies for shell based inpainting methods currently in the literature. Sun et al. [63] proposed having
the user draw critical curves over top of the image, and then filling patches centered on those curves first.
März [44] suggested calculating non-standard distance from the boundary functions, and then filling
pixels in an order based on those functions. Finally, Criminisi et al. [22] computes for each p ∈ ∂Dh

a patch priority function P (p) as a product of a confidence term C(p) and a data term D(p), that is
P (p) = C(p)D(p) where

C(p) =
∑

q∈Ψp∩(I\Ω) C(q)
|Ψp|

and D(p) =
|∇I⊥p · np|

α
, (4.5.1)

where Ψp denotes the patch centered at p, ∇⊥Ip is the orthogonal gradient to the image I at p, α = 255,
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and np denotes the inward facing unit normal to the current boundary of the inpainting domain.
Patches are then filled sequentially, with the highest priority patch filled first (note that after a patch

has been filled, the boundary has now changed, and certain patch priorities must be recomputed).

Our approach. The approach of März [44] based on distance maps might seem the most natural -
and indeed there are very simple ways one might imagine constructing a distance map given our already
known splines and guide field. For example, distance could grow more “slowly” along or close to splines,
while growing at the normal rate far away from splines where the guide field is zero. However, we chose
not to go to this route because we wanted to avoid the extra computational effort involved in computing
such a map.

Instead, our approach most closely resembles the approach in Criminisi et al. [22]. For each x ∈
∂activeDh, we compute the ratio

C(x) =
∑

y∈B̃ε,h(x)∩(Ω\(D(k)∪B)) wε(x,y)∑
y∈B̃ε,h(x) wε(x,y) , (4.5.2)

where wε(x,y) is the weight function (4.2.1) depending implicitly on g. The ratio C measures what
fraction of ghost pixels in B̃ε,h(x) have been filled, weighted according to their importance, and plays
a role similar to the confidence term in (4.5.1). However, because our definition of C(x) also implicitly
depends on the guide field g(x), it will be small when not much information is available in the direction
g(x), even if the majority of the ghost pixels in B̃ε,h(x) have already been filled. In this sense it also
plays a role analogous to the data term in (4.5.1), which tries to ensure that the angle between ∇⊥Ip and
np is not too large. However, unlike Criminisi et al. [22], our algorithm is parallel and not sequential.
Therefore, instead of every iteration filling the pixel x ∈ ∂Dh with the highest value of C(x), at every
iteration we fill all pixels x ∈ ∂Dh for which C(x) is greater than a threshold. That is, we define

ready(x) = 1(C(x) > c) (4.5.3)

where c > 0 is some small user supplied constant (c = 0.05) by default.

Possible extensions. Unlike [22], which assigns high priority to pixels with a large gradient, (4.5.3)
does not take into account the size of ‖g(x)‖. The result is that areas where g = 0 fill concurrently with
areas where ‖g‖ > 0. However, if one wanted to obtain an algorithm along the lines of Sun et al. [63]
where the region with ‖g‖ > 0 filled first, one would only have to add a data term

D(x) = ‖g(x)‖

and then modify (4.5.3) as
ready(x) = 1(D(x) > c2)1(C(x) > c1), (4.5.4)

where c1 = c = 0.05 by default. For c2, one would take c2 = 0 initially, until it was detected that the
entire region ‖g‖ > 0 had been filled, after which point one could revert back to (4.5.3).

4.6 GPU Implementation

Here we sketch two GPU implementations of Guidefill, differing in how they assign GPU threads to
pixels in Ωh. In Section 4.8 we will analyze the time and processor complexity of these algorithms, and
show that they belong to different complexity classes. The motivation behind these algorithms is the
observation that a typical HD image contains millions of pixels, but the maximum number of concurrent
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threads in a typical GPU is in the tens of thousands1. Hence, it can be advantageous to ensure that GPU
threads are only assigned to the subset of pixels being currently worked on.

1. Guidefill without tracking. This implementation assigns one GPU thread per pixel in Ωh,
regardless of whether or not that pixel is currently being worked on. This implementation is
simplest, but for the reason above does not scale well to very large images.

2. Guidefill with tracking. This implementation maintains a list of the coordinates of every pixel
in ∂activeDh, which it updates every iteration using a method that requires O(|∂activeDh|) threads
to do O(log |∂activeDh|) work each. This extra overhead means a longer runtime for very small
images, but leads to massive savings for large images as we can assign GPU threads only to pixels
in ∂activeDh.

Implementation details of both methods can be found in Appendix A.2.

4.7 Continuum Limit

Here we present a special case of the analysis in Section 6.3. The statement of the main result of that
section, Theorem 6.3.1, is quite general and the proof is more than ten pages long, which is unfortunate
in that some of the underlying simplicity is obscured. Here we build intuition by presenting a special
case that is less abstract - we also prove only a special case within the special case, which may be tackled
in roughly half a page. We briefly go over consequences of this result relevant to explaining the kinking
artifacts observed in coherence transport and their resolution in Guidefill using ghost pixels, as well as
Guidefill’s tendancy to introduce blur, as noted in Figure 2.4 and the discussion of Section 2.3. This can
be thought of as a preview of Sections 6.6.2 and 6.7 which cover these issues in greater detail.

We consider the fixed ratio continuum limit of uh introduced in Section 2.4, where h → 0 with
r := ε/h ∈ N, the radius of the neighborhood Aε,h(x) measured in pixels, fixed. Recall that this is
different from the limit considered in [12], where first h → 0 and then ε → 0 - see Remark 4.7.4. Our
objective is to assume enough complexity to explain the phenomena we have observed, but otherwise to
keep our analysis as simple as possible. We aim to prove convergence of uh, when computed by inpainting
using coherence transport or Guidefill with guidance direction g, to u obeying a (weak) transport equation

∇u · g∗r = 0, (4.7.1)

where g∗r 6= g in general (indeed this inequality is the source of our observed “kinking”). We will define
convergence relative to discrete Lp norms defined shortly by (6.3.5), and we will see that convergence is
always guaranteed for p < ∞, but not necessarily when p = ∞. We then connect this latter point back
to the issue of blurring raised in Section 2.3, but a full investiagation of blur has to wait until Section
6.7.

Assumptions. We assume a constant guide direction

g(x) := g,

as this is all that is required to capture the phenomena in question. We assume no bystander pixels
(B = ∅), and that the image domain Ω, inpainting domain D, and undamaged region U := Ω\D are all
simple rectangles

Ω = (0, 1]× (−δ, 1] D = (0, 1]2 U = (0, 1]× (−δ, 0]
1For example, the GeForce GTX Titan X is a flagship NVIDIA GPU at the time of writing and has a total of 24

multiprocessors [2] each with a maximum of 2048 resident threads [52, Appendix G.1].
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equipped with periodic boundary conditions at x = 0 and x = 1. We discretize D = (0, 1]2 as an N ×N
array of pixels Dh = D ∩ Z2

h with width h := 1/N . We assume that h < δ/r so that ε < δ. Given
fh : Dh → R, we introduce the following discrete Lp norm for p ∈ [0,∞]

‖fh‖p :=
( ∑

x∈Dh

|fh(x)|ph2) 1
p , ‖fh‖∞ := max

x∈Dh
|fh(x)|. (4.7.2)

We similarly define Ωh = Ω∩Z2
h, Uh = U ∩Z2

h, and assume that the pixels are ordered using the default
onion shell ordering, so that at each iteration D(k)

h = {(ih, jh) : j > k}Ni=1.

Regularity. In Section 6.3 we will consider general boundary data u0 : U → Rd with low regularity
assumptions, including but not limited to nowhere differentiable boundary data with finitely many jump
discontinuities. Here, we limit ourselves to piecewise C2 boundary data because this is the case most
relevant to image processing. To be more precise, we assume that u0 is C2 everywhere on U except for
on a (possibly empty) finite set of smooth curves {Ci}Ni=0 where N ≥ 0. We assume that the Ci intersect
neither themselves nor each other, and moreover that within 0 < x ≤ 1, −δ < y ≤ 0 each Ci can be
parametrized as a smooth monotonically increasing (or monotonically decreasing) function y = fi(x) each
of which makes a non-zero angle with the line y = 0 (that is, if fi(x∗) = 0, then f ′i(x∗) 6= 0).

Weak Solution. As we have allowed discontinuous boundary data u0, the solution to (6.3.1) given
boundary data u0 must be defined in a weak sense. Since we have assumed a constant guidance direction
g(x) := g and due to the symmetry of the situation, the resulting transport direction g∗r will also be
constant (we will prove this), so this is simple. So long as g∗r · e2 6= 0, we simply define the solution to
the transport problem (6.3.1) with boundary conditions u(x, 0) = u0(x, 0), u(0,y)=u(1,y) to be

u(x, y) = u0(x− cot(θ∗r)y mod 1, 0) (4.7.3)

where the mod 1 is due to our assumed periodic boundary conditions and where

θ∗r = θ(g∗r) ∈ (0, π)

is the counterclockwise angle between the x-axis and a line parallel to g∗r .

Theorem 4.7.1. Let the image domain Ω, inpainting domain D, undamaged region U , as well as their
discrete counterparts, be defined as above. Similarly, assume the boundary data u0 : U → Rd obeys the
regularity conditions above, in particular that it is C2 except for on a finite, possibly empty set of smooth
curves {Ci}Ni=1, N ≥ 0 with the assumed properties.

Assume Dh is inpainted using Algorithm 1, with neighbourhood

Aε,h(x) ∈ {Bε,h(x), B̃ε,h(x)},

(that is, either the neighborhood used by coherence transport or the one used by Guidefill). Let wε(x,y)
be given by (4.2.1) with guidance direction g(x) := g constant. Suppose we fix r := ε/h ∈ N, assume
r ≥ 2 (that is, the radius of Aε,h(x) is at least two pixels) and let h → 0. Define the transport direction
g∗r by

g∗r =
∑

y∈A−r wr(0,y)y∑
y∈A−r wr(0,y) A−r := {(y1, y2) ∈ 1

h
Aε,h(0) : y2 ≤ −1}. (4.7.4)

Note that A−r depends only on r. Also note that we have written wr to mean the weights (4.2.1) with ε
replaced by r. Let u : (0, 1]2 → Rd denote the weak solution (6.3.3) to the transport PDE (6.3.1) with
transport direction g∗ and with boundary conditions u(x, 0) = u0(x, 0), u(0,y)=u(1,y).
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Then u exists and for any p ∈ [1,∞] and for each channel2 of u, uh we have the bound

‖u− uh‖p ≤ Kh
1
2p (4.7.5)

if {Ci} is non-empty and
‖u− uh‖p ≤ Kh. (4.7.6)

independent of p otherwise (that is, if u0 is C2 everywhere). Here K is a constant depending only on u0

and r.

Remark 4.7.2. The transport direction g∗r predicted by Theorem 4.7.1 has a simple geometric interpre-
tation. It is the average position vector or center of mass of the set A−r with respect to the normalized
weights wr (4.2.1). This is true regardless of whether or not A−r is axis aligned. For coherence transport
and Guidefill, we give the set A−r the special names b−r and b̃−r respectively. For g 6= 0 they are given by

b−r := {(n,m) ∈ Z2 : n2 +m2 ≤ r2,m ≤ −1}

b̃−r := {nĝ +mĝ⊥ : (n,m) ∈ Z2, n2 +m2 ≤ r2, nĝ · e2 +mĝ⊥ · e2 ≤ −1}.

where ĝ := g/‖g‖ (if g = 0 we set b̃−r = b−r ). These sets can be visualized by looking at the portion of the
balls in Figure 4.2(a)-(b) below the line y = −1. The limiting transport directions for coherence transport
and Guidefill - denoted by g∗c.t. and g∗g.f. respectively - are then given by

g∗c.t. =
∑

y∈b−r wr(0,y)y∑
y∈b−r wr(0,y) and g∗g.f. =

∑
y∈b̃−r wr(0,y)y∑
y∈b̃−r wr(0,y) . (4.7.7)

Although these formulas differ only in the replacement of a sum over b−r with a sum of over b̃−r , this
difference is significant, as is explored in Figure 4.7.

Proof. Here we prove the easy case where u0 is C2 everywhere and Aε,h(x) contains no ghost pixels, that
is Aε,h(x) ⊂ Z2

h. The case where Aε,h(x) contains ghost pixels lying between pixel centers and for u0 with
lower regularity is covered in Section 6.3. We also only prove the case p =∞, as p <∞ follows trivially
since the bound is independent of p in this case. We use the notation x := (ih, jh) interchangeably
throughout.

First note that the symmetry of the situation allows us to rewrite (2.0.3) in Algorithm 1 as

uh(x) =
∑

y∈A−r wr(0,y)uh(x + yh)∑
y∈A−r wr(0,y) .

Next we note that A−r is nonempty, which follows from our assumption Aε,h(x) ∈ {Bε,h(x), B̃ε,h(x)} and
r ≥ 2 (we leave it as an exercise to the reader that no matter how we rotate B̃ε,h(x), this is always true).
Since A−r 6= ∅, it follows that g∗r (4.7.4) is defined, and moreover g∗r · e2 6= 0. This was the condition we
needed to ensure that u is defined.

Now that we know u exists, let us define eh := uh − u. Then it suffices to prove

|eh(x)| ≤ Kh (4.7.8)

for all x ∈ Dh, where K > 0 is a constant independent of x. To prove this, we make use of the fact
that since u0 is C2, u is as well and so there is a D > 0 s.t. ‖Hu‖2 ≤ D uniformly on (0, 1]2, where Hu

2Remember, u, u0, and uh are all vector valued. We could have made this more explicit by writing u(i)−u(i)
h

in (4.7.5),
(4.7.6) to emphasize that it holds channel-wise for each i = 1, . . . , d, but felt that this would lead to too much clutter.
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denotes the Hessian of u and ‖ · ‖2 is usual operator norm induced by the vector 2-norm (moreover, this
D depends only on u0). We will use this to prove the stronger condition that for any 1 ≤ i, j ≤ N we
have

|eh(ih, jh)| ≤ jDr2h2, (4.7.9)

from which (4.7.8) follows with K = Dr2 since j ≤ N = 1/h.
We proceed by induction, supposing that (4.7.9) holds for all (i′h, j′h) with 1 ≤ i′ ≤ N and j′ < j

(the base case j = 0 is obvious). Applying our inductive hypothesis and expanding u to second order we
obtain:

|eh(ih, jh)| ≤
∑

y∈A−r wr(0,y)|eh(x + yh)|∑
y∈A−r wr(0,y) +

∣∣∣∣∣
∑

y∈A−r wr(0,y)u(x + yh)− u(x)∑
y∈A−r wr(0,y)

∣∣∣∣∣
≤ (j − 1)Dr2h2 +

∣∣∣∣∣∇u(x) ·
∑

y∈A−r wr(0,y)yh∑
y∈A−r wr(0,y)

∣∣∣∣∣+Dr2h2

= jDr2h2 + |h∇u(x) · g∗r︸ ︷︷ ︸
=0

|,

where we have used the fact that when x = (ih, jh) and y ∈ A−r , then (x + yh) is of necessary form
(i′h, j′h) with 1 ≤ i′ ≤ N and j′ < j needed for our inductive hypothesis to hold.

4.7.1 Kinking artifacts

Theorem 4.7.1 provides us with a theoretical basis from which to understand the kinking phenomena
discussed in Section 4.4 and its resolution using Ghost pixels. This is accomplished by analyzing the
relationship between the phase θ∗r = θ(g∗r) of the theoretical limiting transport direction and the phase
θ = θ(g) of the guidance direction. If θ∗r = θ, then there is no kinking - otherwise, there is. Figure 4.7
illustrates this by plotting the phase θ(g∗c.t.) and θ(g∗g.f.) of the theoretical limiting transport directions
of coherence transport and Guidefill respectively (4.7.7) as a function of the phase θ(g) of the guidance
direction g. The cases ε = 3h and ε = 5h are considered (coherence transport [12] recommends ε = 5h
by default) with µ→∞. For coherence transport we have θ(g∗r) 6= θ(g) except for finitely many angles,
explaining the kinking observed in practice. On the other hand, for Guidefill we have θ(g∗r) = θ(g) for
all angles greater than a minimum value. This will be covered in greater detail in Section 6.6.2, where
we also consider the semi-implicit form of Guidefill (which obeys θ∗r = θ unless θ is a multiple of π).

Remark 4.7.3. In order to understand the kinking of Guidefill shown in Figure 4.7(c)-(d) at small
angles for g 6= 0 and µ� 1, it is helpful to consider the decomposition

B̃ε,h(x) = `ε,h(x) ∪ (B̃ε,h(x)\`ε,h(x)) where `ε,h(x) := {x + εkĝ}rk=−r ,

where ĝ := g/‖g‖, and where r := ε/h ∈ N as usual. If `ε,h(x)∩ (Ωh\(D(k)
h ∪Bh)) 6= ∅, that is, if `ε,h(x)

contains readable ghost pixels, then under the assumptions of Theorem 4.7.1 one may readily show that
g∗g.f. given by (4.7.7) obeys g∗g.f. = g. The kinking observed for small angles in Figure 4.7(c)-(d) occurs
when `ε,h(x) contains no readable pixels, that is

`ε,h(x) ∩ (Ωh\(D(k)
h ∪Bh)) = ∅. (4.7.10)

In practice, the smart order proposed in Section 4.5 is likely to detect this situation. Since the weights
(4.2.1) concentrate most of their mass in `ε,h(x) when µ is large, in this case we can expect the confidence
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(a) Coherence transport, r = 3. (b) Coherence transport, r = 5.

(c) Guidefill, r = 3. (d) Guidefill, r = 5.

Figure 4.7: The theoretical limiting curves θ∗r = θ(g∗c.t.) (coherence transport (a)-(b)) and θ∗r = θ(g∗g.f.)
(Guidefill (c)-(d)) as a function of θ = θ(g), with g∗c.t. and g∗g.f. given by (4.7.7), and where g is the
desired guidance direction fed into the weights (4.2.1). We set r := ε/h = 3, 5 and consider µ → ∞.
The ideal curve θ∗r = θ is highlighted in red. The limiting guide directions g∗c.t. and g∗g.f. are related
by (4.7.4) to the weights (4.2.1) as well as the distribution of sample points within Aε,h(x). Coherence
transport makes the choice Aε,h(x) = Bε,h(x), leading to the “kinking” observed in (a)-(b), where θ∗r 6= θ
for all but finitely many angles. The choice Aε,h(x) = B̃ε,h(x) made by Guidefill is largely able to avoid
this and exhibits no kinking for all angles greater than a critical minimum - see Remark 4.7.3 as well as
Section 6.6.2 for more details.
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term (4.5.2) to be small and the smart order test (4.5.3) will tell the algorithm to delay the filling of x.
If at a later iteration (4.7.10) no longer holds, (4.5.3) should be satisfied and inpainting can resume with
no kinking.

Remark 4.7.4. The limiting transport direction g∗r predicted by Theorem 4.7.1 is similar to the transport
direction predicted by März in [12] (Theorem 1). However, as already stated, while März considered the
double limit where h→ 0 and then ε→ 0, we consider the single limit (h, ε)→ (0, 0) with r = ε/h fixed.
The result is that whereas [12] obtains a formula for g∗ as an integral over a (continuous) half-ball, our g∗r
is a finite sum over a discrete half-ball. In particular, when Aε,h(x) = Bε,h(x) as in coherence transport,
the following predictions are obtained for the limiting transport direction of coherence transport (note that
we write wr and w1 to mean the weights (4.2.1) with ε replaced by r and 1 respectively):

g∗märz =

∫
y∈B−1 (0) w1(0,y)ydy∫

y∈B−1 (0) w1(0,y)
g∗ours =

∑
y∈b−r wr(0,y)y∑
y∈b−r wr(0,y) ,

where

B−1 (0) := {(x, y) ∈ R2 : x2 + y2 ≤ 1 and y < 0}

b−r := {(n,m) ∈ Z2 : n2 +m2 ≤ r2 and m ≤ −1}.

Our discrete sum g∗ours predicts the kinking observed by coherence transport in practice, whereas the
integral g∗märz does not.

4.7.2 Blur

Theorem 4.7.1 does not allow us to explain the origins of blur artifacts - for that we will need the
asymptotic limit introduced in Section 6.7. However, the Lp convergence result in Theorem 4.7.1 for
piecewise C2 boundary data does imply that blur has to become less significant for higher resolution
images. In particular, Figure 2.4 suggests that the most significant blur artifacts consist of the smoothing
out of what should be sharp jump discontinuities over a non-zero blur radius. Theorem 4.7.1 implies that
this blur radius must go to zero as h → 0, otherwise we not converge in Lp for p < ∞. See Section 6.7
and in particular Figure 6.14 for more details.

4.8 Algorithmic Complexity

In this section we analyze the complexity of the two implementations of Guidefill sketched in Section
4.6 as parallel algorithms. Specifically, we analyze how both the time complexity T (N,M) and processor
complexity P (N,M) vary with N = |Dh| and M = |Ωh\Dh|, where a time complexity of T (N,M) and
processor complexity of P (N,M) means that the algorithm can be completed by O(P (N,M)) processors
in O(T (N,M)) time per processor. See for example [55, Ch. 5] for a more detailed discussion of the time
and processor complexity formalism for parallel algorithms.

We assume that Guidefill is implemented on a parallel architecture consisting of p processors working
at the same time in parallel. We further assume that when Guidefill attempts to run P > p parallel
threads such that there are not enough available processors to comply, the P threads are run in dP/pe
sequential steps. In reality, GPU architecture is not so simple - see for example [52, Ch. 4] for a discussion
of GPU architecture, and for example, [43] for a more realistic theoretical model. We do not consider
these additional complexities here.
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In Theorem 4.8.1 we derive a relationship between the time and processor complexities T (N,M),
P (N,M) and the number of iterations K(N) required for Guidefill to terminate. This relationship is
valid in general but does not allow us to say anything about K(N) itself. Next, in Theorem 4.8.2 we
establish bounds on K(N) under two simplifying assumptions. Firstly, we assume that the inpainting
domain is surrounded entirely by readable pixels - that is (∂outerDh)∩Bh = ∅. In particular, this means
that we assume the inpainting domain does not include the edge of the image and is not directly adjacent
to pixels belonging to another object (such as an object in the foreground). Secondly, we assume that
the smart ordering of Section 4.5 is turned off. We also include a discussion in Appendix A.3 of what to
expect in the general case. Our analysis considers only the filling step of Guidefill after the guide field
has already been constructed.

Theorem 4.8.1. Let N = |Dh|, M = |Ωh\Dh| denote the problem size and let T (N,M) and P (N,M)
denote the time complexity and processor complexity of the filling step of Guidefill implemented on a
parallel architecture as described above with p available processors. Let K(N) denote the number of iter-
ations before Guidefill terminates. Then the processor complexity of Guidefill with and without boundary
tracking is given by

P (N,M) =

O(N +M) without tracking

O(
√
N +M) with tracking

while the time complexity is given by

T (N,M) =

O(K(N)) if P (N,M) ≤ p

O((N +M)K(N)) if P (N,M) > p
without tracking

T (N) =

O((
√
N +K(N)) log(N)) if P (N,M) ≤ p

O((N +K(N)) log(N)) if P (N,M) > p
with tracking.

Proof. For the case of no boundary tracking Guidefill allocates one thread per pixel in Ωh, hence
P (N,M) = O(|Ωh|) = O(N + M). In this case if |Ωh| := N + M < p, then each thread fills only
one pixel, and hence does O(1) work. On the other hand, if N + M > p, each thread must fill dN+M

p e
pixels. It follows that

T (N,M) ≤
K(N)∑
k=1

⌈
N +M

p

⌉
≤

K(N) if N +M < p

2
p (N +M)K(N) otherwise.

.

Guidefill with tracking allocatesO(|∂D(k)
h |) threads per iteration of Guidefill, each of which doO(log |∂D(k)

h |)
work. This is because, as stated in Section 4.6, the boundary is updated over a series of O(log |∂D(k)

h |)
parallel steps. In order to keep the processor complexity at O(

√
N +M), we assume that in the un-

likely event that more than
√
N +M threads are requested, then Guidefill runs them in O

(⌈
|∂D(k)

h
|√

N+M

⌉)
sequential steps each involving

√
N +M processors. We therefore have, for

√
N +M < p

T (N,M) ≤
K(N)∑
k=1

(
|∂D(k)

h |√
N +M

+ 1
)
C log |∂D(k)

h | ≤ C log(N)
K(N)∑
k=1

(
1 +

|∂D(k)
h |√

N +M

)

where the factor C > 0 comes from the hidden constants in the Big O notation. But we know that
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{∂D(k)
h }

K(N)
k=1 forms a partition of Dh, so that

∑K(N)
k=1 |∂D

(k)
h | = N . Therefore

T (N,M) ≤ C log(N)
(
K(N) + N√

N +M

)
≤ C(

√
N +K(N)) log(N).

An analogous argument with
√
N +M in the denominator replaced by p handles the case P (N,M) >

p.

Theorem 4.8.2. If we make the same assumptions as in Theorem 4.8.1 and if we further suppose
(∂outerDh) ∩ Bh = ∅ and that the smart order test from Section 4.5 is turned off, then we additionally
have

K(N) = O(
√
N) (4.8.1)

so that, in particular, we have T (N,M) = O(
√
N), T (N,M) = O(

√
N log(N)) for Guidefill without and

with tracking given sufficient processors, and
T (N,M) = O((N+M)

√
N), T (N,M) = O(N log(N)) respectively when there is a shortage of processors.

Proof. Now assume (∂outerDh)∩Bh = ∅ and (4.5.3) is disabled. Then after k iterations all pixels x such
that N (k)(x) ∩ Ωh\Dh 6= ∅ will have been filled, where

N (k)(x) =
⋃

y∈N (k−1)(x)

N (y), N (1)(x) = N (x).

Therefore, if Dh has not be completely filled after k iterations, there must exist a pixel x∗ ∈ Dh such
that N (k)(x∗) ⊆ Dh. However, it is easy to see that |N (k)(x∗)| = (2k + 1)2. But since |Dh| = N , after
k = d

√
N/2e iterations N (k)(x∗) will contain more pixels than Dh itself, and cannot possibly be a subset

of the latter.
This proves that Guidefill terminates in at most d

√
N/2e iterations, and hence K(N) = O(

√
N).

4.9 Numerical Experiments

In this section we aim to validate our method as a practical tool for 3D conversion, and also to validate
the complexity analysis of Section 4.8. We have implemented Guidefill in CUDA C and interfaced with
MATLAB. Our experiments were run on a laptop with a 3.28GHz Intel i7 − 4710 CPU with 20GB of
RAM, and a GeForce GTX 970M GPU3.

4.9.1 3D Conversion Examples

We tested our method on a number of HD problems, including the four photographs shown in Figure
4.8 and the video illustrated in Figure 4.9. The photographs were converted into 3D by building rough
3D geometry and creating masks for each object, as outlined in Section 3.3. For the movie, we used a
computer generated model with existing 3D geometry and masks4, as generating these ourselves on a
frame by frame basis would have been far too expensive (indeed, in industry this is done by teams of
artists and is extremely time-consuming). One advantage of this approach is that it gave us a ground
truth to compare against, as in Figure 4.9(k). Additional results in anaglyph 3D are provided in Appendix

3The experiments involving nl-means and nl-Poisson are an exception. Because the implementation available online does
not support Windows, these experiments had to be done on a separate Linux machine with a 3.40GHz Intel i5− 4670 CPU
with 16GB of RAM. As a comparison, we measured the time to solve a 500× 500 Poisson problem to a tolerance of 10−6

using the conjugate gradient method in MATLAB, which took 8.6s on our Windows laptop, and 5.2s on the Linux box.
4Downloaded from http://www.turbosquid.com/ in accordance with the Royalty Free License agreement.
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A.4 (anaglyph glasses required). Timings for Guidefill are given both with and without the boundary
tracking as described in Section 4.6.

As has been noted in Section 3.2, the literature abounds with depth-guided variants of Criminisi’s
method [22] designed for the disocclusion step arising in 3D conversion using the depth-map based pipeline
discussed in Section 3.3.2 (see for example [71, 72, 23, 42, 48, 15]), but not for the pipeline relevant to us.
In particular, none of these methods are designed to make explicit use of the bystander set Bh available
to us and instead rely on heuristics. In Section 3.3.2 Figure 3.2, we have shown a simple example where
with the exception of [15] these heuristics are likely fail. Adapting these methods to our pipeline where
depth-map inpainting is unnecessary would require considerable effort and fine tuning. Therefore, rather
than comparing with these methods, we considered it more natural to compare with our own “bystander-
aware” variant of Criminisi, adapted in an extremely simple way to incorporate the set Bh. We simply
modify Criminisi’s algorithm by setting the priority equal to 0 on ∂D(k)

h \∂activeD
(k)
h and restricting the

search space to patches that do not overlap Ωh\(Dh ∪Bh). However, we acknowledge that many of these
methods also make further optimizations to Criminisi et al. from the point of view of running time -
for example [15] incorporates the running time improvements originally published in their earlier work
[14]. We also could have based our “bystander-aware” Criminisi on the improvement in [14], however,
instead we note that the running time published in [15] is about 1500px/s, which is still much slower
than Guidefill, especially for high-resolution problems (see Table 4.1).

For the photographs, in addition to our “bystander-aware” Criminisi, we also compare the output
of Guidefill with four other inpainting methods: coherence transport [12, 44], the variational exemplar-
based methods nl-means and nl-Poisson from Arias et al. [5], and Photoshop’s Content-Aware fill. For
the movie, we compare with the exemplar-based video inpainting method of Newson et al. [50, 49].
However, generating “bystander-aware” versions of all of these methods would have been a significant
undertaking, so we arrived at a compromise. To avoid bleeding-artifacts like Figure 3.2(c), we first ran
each method using Dh ∪Bh as the inpainting domain, giving the results shown. However, as this led to
an unfair running time due to the need to fill Bh, we then ran each method again using only Dh as the
inpainting domain, in order to obtain the given timings. All methods are implemented in MATLAB +
C (mex) and are available for download online5.

Figure 4.9 shows a few frames of a 1280px × 960px × 101fr video, including the inpainting domain
and the results of inpainting with both Guidefill and Newson’s method. With the exception of a few
artifacts such as those visible in Figure 4.9(j), Newson’s method produces excellent results. However, it
took 5hr37min to run, and required more than 16GB of RAM. In comparison Guidefill produces a few
artifacts, including the incorrectly completed window shown in Figure 4.9(e). In this case the failure is
because the one pixel wide ring described in Section 4.3 fails to intersect certain edges we would like to
extend. However, Guidefill requires only 19s (if boundary tracking is employed, 31s if it is not) to inpaint
the entire video and these artifacts can be corrected as in Figure 4.9(f). However, due to the frame
by frame nature of the computation, the results do exhibit some flickering when viewed temporally, an
artifact which Newson’s method avoids.

Timings for the images are reported in Table 4.1, with the exception of Content-Aware fill which is
difficult to time as we do not have access to the code. We also do not provide timings for Bystander-Aware
Criminisi, nl-means, and nl-Poisson for the “Pumpkin” and “Planet” examples as the former ran out of
memory while nl-means and nl-Poisson did not finish within two hours. However, for the “Pumpkin”
example we do provide the result of nl-Poisson run on a small region of interest. Results are given in
Figures 4.10, 4.11, and 4.13. We do not show the output of every method and have included only the

5Coherence transport: http://www-m3.ma.tum.de/bornemann/InpaintingCodeAndData.zip, Criminisi’s method: https:
//github.com/ikuwow/inpainting_criminisi2004, nl-means and nl-Poisson: http://www.ipol.im/pub/art/2015/136/,
Newson’s method: http://perso.telecom-paristech.fr/~gousseau/video_inpainting/.
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(a) Wine. (b) Bust.

(c) Pumpkin. (d) Planet.

Figure 4.8: Example photographs used for 3D conversion, of different sizes (a) 528 × 960px (b) 1500 ×
1125px (c) 4000× 4000px (d) 5000× 5000px.

70



Table 4.1: Timings of different inpainting algorithms used in the conversion of the four examples in Figure
4.8. The inpainting domains of “Wine”, “Bust”, “Pumpkin”, and “Planet” contain 15184px, 111277px,
423549px, and 1160899px respectively. “Guidefill n.t.” refers to Guidefill without boundary tracking,
“B.A.C.” stands for Bystander-Aware Criminisi and “C.T.” refers to coherence transport.

C.T. B.A.C. nl-means nl-Poisson Guidefill n.t. Guidefill
Wine 340ms 1 min 40s 41s 2min11s 233ms 261ms
Bust 2.13s 37min 23min 1hr 10min 1.34s 559ms

Pumpkin 15.7s − − − 6.66s 1.14s
Planet 28.5s − − − 4.27s 923ms

most significant.
The first example, “Wine”, is a 528 × 960px photo. Timings are reported only for the background

object, which has an inpainting domain containing 15184px. Figure 4.12 shows the detected splines for the
background object and illustrates the editing process. Results are shown in Figure 4.10 in two particularly
challenging areas. In this case the highest quality results are provided by nl-means and nl-Poisson, but
both are relatively slow. Bystander-Aware Criminisi and Content-Aware fill each produce noticeable
artifacts. Guidefill also has problems, most notably in the area behind the wine bottle, where the picture
frame is extended incorrectly (this is due to a spline being too short) and where additional artifacts
have been created next to the Chinese characters. These problems, however, are mostly eliminated by
lengthening the offending spline and editing some of the splines in the vicinity of Chinese characters as
illustrated in Figure 4.12. Guidefill is also the fastest method, although in this case the gains aren’t as
large as for bigger images.

The second example “Bust” is a 1500 × 1125px image. Timings are reported only for inpainting the
background object, which has an inpainting domain containing 111277px, and results are shown in Figure
4.11(a)-(f). In this case we chose to edit the automatically detected splines, in particular rotating one that
was crooked. Once again, the nicest result is probably nl-Poisson, but an extremely long computation
time is required. All other algorithms, including Bystander-Aware Criminisi and nl-means which are not
shown, left noticeable artifacts. The fully automatic version of Guidefill also leaves some artifacts, but
these are largely eliminated by the adjustment of the splines. The exception is a shock visible in the
inpainted picture frame in Figure 4.11(f). As we noted in Section 2.3.2, shock artifacts are an unfortunate
feature of the class of methods under consideration.

Our third example “Pumpkin” is a very large 4000 × 4000px image. Timings are reported only for
the pumpkin object, which has an inpainting domain containing 423549px. Results are shown in Figure
4.11(g)-(l). We ran nl-Poisson on only the detail shown in Figure 4.11(g), because it did not finish within
two hours when run on the image as a whole. In this case we edited the automatically detected splines
as shown in Figure 4.1(a)-(b). In doing so we are able to recover smooth arcs that most fully automatic
methods would struggle to produce. Guidefill in this case is not only the fastest method by far, it also
produces the nicest result. In this example we also see the benefits of our boundary tracking algorithm,
where it leads to a speed up by a factor of 2 − 3. The gains of boundary tracking are expected to be
greater for very large images where the pixels greatly outnumber the available processors.

Our final example is a fun example that illustrates how 3D conversion may be used to create “impos-
sible” 3D scenes. In this case the image is a 5000×5000px “tiny planet” panorama generated by stitching
together dozens of photographs. The choice of projection creates the illusion of a planet floating in space
- however, a true depth map would appear as an elongated finger, as in reality the center of the sphere
is only a few feet from the camera, while its perimeter is at a distance of several kilometers. In order to
preserve the illusion we created fake spherical 3D geometry. See Appendix A.4 for the full 3D effect -
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(a) Frame 0 (pre inpainting). (b) Frame 26 (pre inpainting). (c) Frame 100 (pre inpainting).

(d) Frame 26 detail. (e) Guidefill (pre edit). (f) Guidefill (post edit). (g) Newson’s Method.

(h) Frame 100 detail. (i) Guidefill (no edit). (j) Newson’s Method. (k) Ground Truth.

Figure 4.9: Comparison of Guidefill (19s with tracking, 31s without) and Newson’s method (5hr37min) for
inpainting the “cracks” (shown in red) arising in the 3d conversion of an HD video (1280px×960px×101fr).
Guidefill produces artifacts such as the incorrectly extrapolated window in (e), but these can be corrected
as in (f) and it is several orders of magnitude faster than Newson’s method (which also required more
than 16GB of RAM in this case). The latter produces very high quality results, but is prohibitively
expensive and still produces a few artifacts as in (j), which the user has no recourse to correct. A
disadvantage of Guidefill is a flickering as the video is viewed through time due to the frames being
inpainted independently.
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(a) Detail one. (b) Coherence transport - note the
bending of the picture frame.

(c) nl-means - good result, but slow.

(d) nl-Poisson - Chinese characters
are a solid block.

(e) Content-Aware Fill - distorted
picture frame.

(f) Guidefill (before spline adjust-
ment) - numerous issues.

(g) Guidefill (after adjustment) - is-
sues are mostly resolved.

(h) Detail two. (i) Bystander-Aware Criminisi - a
piece of the picture frame is used to
extrapolate the drawing.

(j) nl-Poisson - good result, but slow. (k) Guidefill (before spline adjust-
ment) - extension of drawing does not
look natural.

(l) Guidefill (after adjustment) -
more believable extrapolation.

Figure 4.10: Comparison of different inpainting methods for the “Wine” example. Two challenging areas
are shown. 73



(a) Detail of “Bust”. (b) Coherence transport. (c) Content-Aware Fill.

(d) nl-Poisson. (e) Guidefill (before spline adjust-
ment).

(f) Guidefill (after adjustment).

(g) Detail of “Pumpkin”. (h) Coherence transport. (i) Content-Aware Fill.

(j) nl-Poisson. (k) Guidefill (before spline adjust-
ment).

(l) Guidefill (after adjustment).

Figure 4.11: Comparison of different inpainting methods for the “Bust” and “Pumpkin” examples. Note
the shock visible in the inpainted picture frame in (f), as discussed in Section 2.3.2.
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(a) (b) (c) (d)

Figure 4.12: Stages of spline adjustment for the “Wine” example: (a) The automatically detected splines
for the background object. (b) Undesirable splines are deleted. (c) Deleted splines are replaced with
new splines, drawn by hand, which form a plausible extension of the disoccluded characters. (d) Some
of the remaining splines on the painting in the upper right corner are edited to form a more believable
extension.

(a) Detail of “Planet”. (b) Content-Aware Fill. (c) coherence transport. (d) Guidefill (no spline
adjustment).

Figure 4.13: Comparison of different inpainting methods for the “Planet” example. In this case geometric
methods leave noticeable artifacts and exemplar-based methods like Content-Aware Fill are a better
choice.
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(a) Time Complexity (b) Processor Complexity

Figure 4.14: Experimental time complexity T (N) and processor complexity P (N) of Guidefill
with and without boundary tracking: The continuum inpainting problem Ω = [0, 4] × [0, 1], D =
[0.4, 3.96]× [0.2, 0.8] was discretized at a variety of resolutions leading to inpainting domains with N :=
|Dh| varying from N ≈ 104px up to N ≈ 106px. Results are given on a loglog scale to emphasize the
approximate power law T (N) ≈ ANα, P (N) ≈ BNβ . A least squares fit gives α = 1.1, β = 1.0 without
tracking, and α = 0.54, β = 0.5 with tracking (see Section 4.6 for a review of these terms). The superior
scaling law of Guidefill with tracking kicks in around N ≈ 2 ·105. Processor complexity is compared with
the maximum number of resident threads (green line).

here we show only a detail in Figure 4.13. In this example the inpainting domain is relatively wide and
the image is dominated by texture. As a result, geometric methods are a bad choice and exemplar-based
methods are more suitable.

4.9.2 Validation of Complexity Analysis

As stated in Section 4.8, our analysis assumes that Guidefill is implemented on a parallel architecture
consisting of p identical processors acting in parallel. In reality, GPU architecture is more complex than
this, but as a rough approximation, we assume p = 20480, the maximum number of resident threads
allowed for our particular GPU. See Appendix A.5 for a deeper discussion.

In order to explore experimentally the time and processor complexity of Guidefill, we considered the
continuum problem of inpainting the line 0.45 ≤ y ≤ 0.55 across the inpainting domain D = [0.4, 3.96]×
[0.2, 0.8] with image domain Ω = [0, 4] × [0, 1]. This continuum problem was then rendered at a series
of resolutions varying from as low as 280 × 70px all the way up to 4000 × 1000px. The resulting series
of discrete inpainting problems were solved using Guidefill. For simplicity, smart order was disabled and
splines were turned off. In each case, we measured the execution time T (N) of Guidefill as well as the
maximum number of requested threads P (N), with and without tracking. Results are shown in Figure
4.14 - note the loglog scale. In Figure 4.14(b) we have also indicated the value of p for comparison - note
that for Guidefill without tracking we have P (N)� p for all but the smallest problems, but for Guidefill
with tracking we have P (N) < p up until N ≈ 2× 105.

Based on Theorem 4.8.1 and Theorem 4.8.2 for Guidefill without tracking we expect T (N) ∈ O(N1.5)
for all N , but for Guidefill with tracking we expect
T (N) ∈ O(N0.5 log(N)) for N up to about 105px (where P (N) ≈ p), with somewhat worse performance
as N grows larger, converging to O(N log(N)) when P (N)� p. To test these expectations we assume a
power law of T (N) ≈ ANα and solve for α using least squares. The results are α = 0.54 and α = 1.10
for Guidefill with and without tracking respectively. Assuming a similar power law P (N) ≈ BNβ gives
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β = 1.0, β = 0.5 for Guidefill without and with tracking respectively. These results suggest that the
analysis in Section 4.8 does a reasonable job of predicting the rough behaviour of our method in practice.

4.10 Conclusions

We have presented a fast inpainting method suitable for use in the hole-filling step of a 3D conversion
pipeline used in film, which we call Guidefill. Guidefill is non-texture based, exploiting the fact that the
inpainting domains in 3D conversion tend to be in the form of a thin “crack” such that texture can often
be neglected. Its fast processing time and its setup allowing intuitive, user-guided amendment of the
inpainting result render Guidefill into a user-interactive inpainting tool. A version of Guidefill is in use
by the stereo artists at the 3D conversion company Gener8, where it has been used in major Hollywood
blockbusters such as Mockingjay, Pan, and Maleficent. In those cases where it is suitable, especially scenes
dominated by structure rather than texture and/or thin inpainting domains, Guidefill produces results
that are competitive with alternative algorithms in a tiny fraction of the time. In practice, Guidefill
was found to be particularly useful for movies with many indoor scenes dominated by structure, and less
useful for movies taking place mainly outdoors, where texture dominates. Because of its speed, artists
working on a new scene may apply our method first. If the results are unsatisfactory, they can edit the
provided splines or switch to a more expensive method.

In addition to its use as an algorithm for 3D conversion, Guidefill belongs to a broader class of fast
geometric inpainting algorithms also including Telea’s Algorithm [64] and coherence transport [12, 44].
Similarly to these methods, Guidefill is based on the idea of filling the inpainting domain in shells
while extrapolating isophotes based on a transport mechanism. However, Guidefill improves upon these
methods in several important respects, including the elimination of two forms of kinking of extrapolated
isophotes. In one case this is done by summing over a non-axis aligned ball of “ghost pixels”, which as
far as we know has never been done in the literature.

We have also presented a theoretical analysis of our method and methods like it, by considering a
relevant continuum limit. Our limit, which is different from the one explored in [12, Theorem 1], is able
to theoretically explain some of the advantages and disadvantages of both our method and coherence
transport. In particular, our analysis predicts a kinking phenomenon observed in coherence transport
in practice but not accounted for by the analysis in [12]. It is also to explain how our ghost pixels are
able to fix this problem, while also shedding light on a new problem that they introduce - the progressive
blurring of the extrapolated signal. Nonetheless, our analysis predicts that this latter effect becomes less
and less significant as the image resolution increases, and our method is designed with HD in mind. More
details of our analytic framework are explored in Chapter 6.

In order to make our method as fast as possible, we have implemented it on the GPU where we consider
two possible implementations. A naive implementation, suitable for small images, simply assigns one
GPU thread per pixel. For our second implementation, we propose an algorithm to track the inpainting
interface as it evolves, facilitating a massive reduction in the number of threads required by our algorithm.
This does not lead to speed up by a constant factor - rather, it changes the complexity class of our method,
leading to improvements that become arbitrarily large as N = |Dh| increases. In practice we observed a
slight decrease in speed (compared with the naive implementation) for small images (N . 105px), and
gains ranging from a factor of 2− 6 for larger images.

A current disadvantage of our method is that temporal information is ignored. In particular, splines
are calculated for each frame separately, and inpainting is done on a frame by frame basis without
consideration for temporal coherence. As a result of the former, artists must perform separate spline
adjustments for every frame. In practice we find that only a minority of frames require adjustment,
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however one potential direction for improvement is to design a system that proposes a series of animated
splines to the user, which they may then edit over time by adjusting control points and setting key frames.
Further, a procedure for enforcing temporal coherence, if it could be implemented without significantly
increasing the runtime, would be beneficial. These ideas are discussed more in Chapter 7, where we
introduce spacetime transport, a 3D generalization of Guidefill that takes temporal information into
account.
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Chapter 5

The Semi-implicit Extension

In this chapter we go over the semi-implicit form of Algorithm 1 described in Chapter 2 and illustrated
in Figure 1.2. We begin in Section 5.1 by introducing the concept of equivalent weights, which will allow
us to transform any weighted sum of the colors of a set of ghost pixels into an equivalent weighted sum
of the colors of a related set of real pixels, with modified weights. This will allow us in Section 5.2 to
write down an explicit expression for the linear system arising in the semi-implicit form of Algorithm 1.
Next, in Section 5.2.1 we propose a simple iterative method for solving this linear system (the blue text
in Algorithm 1), and prove that it is equivalent to damped Jacobi or successive over-relaxation (SOR).
In Section 5.2.2 we discuss the semi-implicit extension of Guidefill. Convergence analysis of our proposed
iterative method, for the semi-implicit form of Guidefill, is given in Proposition 6.2.1 of Chapter 6.

5.1 Ghost pixels and equivalent weights

Because ghost pixels are defined using bilinear interpolation, any sum over a finite set of ghost pixels
A(x) can be converted into a sum over an equivalent set of real pixels with equivalent weights1, that is∑

y∈A(x)

w(x,y)uh(y) =
∑

y∈Supp(A(x))

w̃(x,y)uh(y)

where Supp(A(x)) denotes the set of real pixels needed to define uh(y) for each y ∈ A(x) and w̃ denotes
a set of equivalent weights. This works because each uh(y) is itself a weighted sum of the form

uh(y) =
∑

z∈Z2
h

Λz,h(y)uh(z),

where {Λz,h}z∈Z2
h
denote the basis functions of bilinear interpolation associated with the lattice Z2

h.
This is illustrated in Figure 5.1(a)-(b), where we show a heat map of the weights (2.5.2) over the set
B̃ε,h(x)\{x} for µ = 50 and ε = 3px, as well as a similar heat map of the modified weights over
Supp(B̃ε,h(x)\{x}) ⊆ Dh(Bε,h(x)). Note that even though B̃ε,h(x)\{x} does not contain the point
x, the support of this set does. This will be important in Section 5.2. Here we briefly list some properties
of equivalent weights, including an explicit formula. A proof is sketched, but details are deferred to
Appendix A.6.

1note that here we mean a general family of finite sets A(x) ∈ R2 and general weights w(x,y). We do not mean the
specific family of sets Aε,h(x) or the specific weights wε(x,y), which have special properties.
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(a) Heatmap of weights (2.5.2) over
B̃ε,h(x)\{x}.

(b) Heatmap of equivalent weights
over Supp(B̃ε,h(x)\{x}).

(c) Heatmap of equivalent weights
over Dh(Bε,h(x)).

Figure 5.1: Ghost pixels and equivalent weights: Because ghost pixels are defined using bilinear
interpolation, any weighted sum over a set of ghost pixels Aε,h(x) is equivalent to a sum with equivalent
weights over real pixels in the set Supp(Aε,h(x)), defined as the set of real pixels needed to define each
ghost pixel y in Aε,h(x). We illustrate this in (a)-(c) using Guidefill with ε = 3px, g = (cos 77◦, sin 77◦),
and µ = 100. In (a), the (normalized) weights (2.5.2) are visualized as a heat map over B̃ε,h(x)\{x}.
In (b), we show the equivalent weights over Supp(B̃ε,h(x)\{x}) ⊆ Dh(Bε,h(x)) (this containment comes
from (5.1.7) in Remark 5.1.2). Note that even though B̃ε,h(x)\{x} does not contain the point x, the
support of this set does. In (c), we visualize the equivalent weights over the set Dh(Bε,h(x)), which is
strictly larger than Supp(B̃ε,h(x)\{x}). For reference, we include the line parallel to g in green.

Properties of equivalent weights Properties 1-3 deal with a general finite set A(x) and general
weights w(x,y), while properties 4-6 deal with the specific set Aε,h(x) ⊂ Bε(x) and the specific weights
wε(x,y) obeying (2.0.2).

1. Explicit formula:
w̃(x, z) =

∑
y∈A(x)

Λy,h(z)w(x,y) (5.1.1)

2. Preservation of total mass: ∑
y∈A(x)

w(x,y) =
∑

y∈Supp(A(x))

w̃(x,y). (5.1.2)

3. Preservation of center of mass (or first moment):∑
y∈A(x)

w(x,y)y =
∑

y∈Supp(A(x))

w̃(x,y)y. (5.1.3)

4. Inheritance of non-negativity:

w̃ε(x, z) ≥ 0 for all z ∈ Supp(Aε,h(x)). (5.1.4)

5. Inheritance of non-degeneracy condition (2.0.2):∑
y∈Supp(Aε,h(x)∩(Ω\D(k)))

w̃ε(x,y) > 0. (5.1.5)
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6. Universal support: For any n ∈ Z, we have

Supp(Aε,h(x) ∩ {y ≤ nh}) ⊆ Dh(Bε,h(x)) ∩ {y ≤ nh} ⊆ Bε+2h,h(x) ∩ {y ≤ nh}. (5.1.6)

where {y ≤ nh} := {(x, y) ∈ R2 : y ≤ nh}, and where Dh is the dilation operator defined in our
section on notation.

Proof. Most of these properties are either obvious or are derived based on a simple exercise in changing
the order of nested finite sums. Properties (5.1.2) and (5.1.3) are slightly more interesting - they follow
from the fact that the bilinear interpolant of a polynomial of degree at most one is just the polynomial
again. Note that an analogous formula for preservation of the second moment does not hold, because a
quadratic function and its bilinear interpolant are not the same thing. The last identity is based on an
explicit formula for the support of a point. Details are provided in Appendix A.6.

Remark 5.1.1. Although we have explicit formula (5.1.1) for the equivalent weights which will occasion-
ally be useful, most of the time it is more fruitful to think about them in the following way: To compute
w̃ε(x,y) for some real pixel y, loop over the ghost pixels z such that y ∈ Supp(z). Then, each such z
redistributes to w̃ε(x,y) a fraction of its weight wε(x, z) equal to the proportion of uh(y) that went into
uh(z).

Remark 5.1.2. An obvious corollary of the universal support property (5.1.6) is that we also have the
containment

Supp(Aε,h(x)) ⊆ Dh(Bε,h(x)) ⊆ Bε+2h,h(x). (5.1.7)

Figure 5.1 illustrates an example where this containment is strict, and in fact it is not hard to show that
this holds in general. However, (5.1.6) is tight enough for our purposes in this thesis.

5.2 Semi-implicit extension of Algorithm 1

Here we present a semi-implicit extension of Algorithm 1, to our knowledge not previously proposed in the
literature, in which instead of computing uh(x) for each x ∈ ∂readyD

(k)
h independently, we solve for them

simultaneously by solving a linear system. We call our method semi-implicit in order to distinguish it from
fully implicit methods in which the entire inpainting domain {uh(x) : x ∈ Dh} is solved simultaneously, as
is typically the case for most inpainting methods based on PDEs or variational principles, e.g. [11, 19, 13].
Specifically, we solve

Lu = f where u = {uh(x) : x ∈ ∂readyD
(k)
h }. (5.2.1)

and f is a vector of length |∂readyD
(k)
h |. The explicit entries of L are written in terms of the equivalent

weights w̃ε introduced in Section 5.1. Defining

S
(k)
ε,h (x) := Supp(Aε,h(x)) ∩ ∂readyD

(k)
h ,

it follows that L couples each x ∈ ∂readyD
(k)
h to its immediate neighbors in S(k)

ε,h (x). In particular, we
have

(Lu)(x) =
(

1− w̃ε(x,x)
W

)
uh(x)−

∑
y∈S(k)

ε,h
(x)\{x}

w̃ε(x,y)
W

uh(y), (5.2.2)
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where W is the total mass and can be computed in one of two ways, using either the original weights wε
or the equivalent weights w̃ε, exploiting preservation of mass (5.1.2):

W :=
∑

y∈S(k)
ε,h

(x)∪
(
Supp(Aε,h(x))∩(Ωh\D(k)

h
)
) w̃ε(x,y) (5.2.3)

=
∑

y∈(Aε,h(x)\{x})∩(Ω\D(k))

wε(x,y). (5.2.4)

Generally, (5.2.4) is more convenient to work with than (5.2.3), but (5.2.3) combined with the inherited
non-degeneracy condition (5.1.5) tells us that∑

y∈S(k)
ε,h

(x)

w̃ε(x,y) < W,

because the latter implies that a non-zero proportion of the total weight goes into the known pixels in
Supp(Aε,h(x)) ∩ (Ω\D(k)

h ) rather than the unknown pixels in S(k)
ε,h (x). From this it immediately follows

that L is strictly diagonally dominant - a property we will use later. To compute f , we do not need the
concept of equivalent weights. We have

f(x) =
∑

y∈(Aε,h(x)\{x})∩(Ω\D(k))

wε(x,y)
W

uh(y). (5.2.5)

5.2.1 Solving the linear system

Designing maximally efficient methods for solving (5.2.1) is beyond the scope of this thesis - our main
purpose lies in understanding the effect of this extension on the continuum limit that we will derive
later. Therefore, we consider only two very simple methods: damped Jacobi and SOR (successive over-
relaxation). These are natural choices for a number of reasons. First, since L is strictly diagonally
dominant, these methods are both guaranteed to converge [67, Theorem 3.10, pg. 79], at least in the case
ω = 1, where they reduce to Jacobi and Gauss-Seidel. Second, at least for the semi-implicit extension
of Guidefill, the performance of SOR is already satisfactory, (see Section 6.2, Proposition 6.2.1). Third,
both methods can be implemented with minimal changes to the direct form of Algorithm 1. In fact,
changing the variable “semiImplicit” from “false” to “true” in Algorithm 1 and executing the “FillBound-
ary” subroutine in parallel is equivalent to solving (5.2.1) using damped Jacobi, with underrelaxation
parameter

ω∗ =
(

1− w̃ε(x,x)
W

)
≤ 1. (5.2.6)

Similarly, executing the “FillBoundary” subroutine sequentially results in SOR with the same underre-
laxation parameter. We will prove this in a moment in Proposition 5.2.2, however first we build intuition
with Remark 5.2.1. Note that ω∗ is typically very close 1, so these methods are very similar to plain
Jacobi and Gauss-Seidel.

Remark 5.2.1. The reason Algorithm 1 with “semiImplicit” set to “true” results in damped Jacobi/SOR,
rather than plain Jacobi/Gauss-Seidel, is because even though the update formula (2.0.3) for the nth
iterate u(n)

h (x) is expressed as a sum of the (n− 1)st iterate evaluated at ghost pixels that do not include
x, some of those ghost pixels may indirectly depend on u(n−1)

h (x) because they are defined using bilinear
interpolation. The result is that the nth iterate u(n)

h (x) depends on u
(n−1)
h (x), which is true of damped

Jacobi/SOR but not of Jacobi/Gauss-Seidel.
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(a) Original inpaint-
ing problem, inpainting
domain in yellow.

(b) Inpainting with Guide-
fill.

(c) Inpainting with semi-
implicit Guidefill, 5 SOR
iterations per shell.

(d) Inpainting with semi-
implicit Guidefill, 50
damped Jacobi iterations
per shell.

Figure 5.2: Semi-Implicit Guidefill and Shallow Inpainting Directions: In (a), a line makes a
very shallow angle of just 2◦ with the inpainting domain, shown in yellow. This line is then inpainted
using first Guidefill (b) and then the semi-implicit extension thereof (c). The latter uses 5 iterations of
SOR per shell to solve the linear system (5.2.1) arising in every shell (in this case, the original image is
2000× 2000px, so there are 1000 shells). Visually identical results can be obtained using damped Jacobi,
but more than 100 iterations per shell are required - see Proposition 6.2.1. Both methods use relaxation
parameter ω = ω∗ (5.2.6) and are given g = (cos 2◦, sin 2◦), µ = 100, ε = 3px, and use the default onion
shell ordering (smart-order is turned off). Guidefill kinks while its extension does not. In (d), we see the
result of failing to solve the linear system (5.2.1) to sufficient accuracy by applying too few iterations
of damped Jacobi. In this case only 50 iterations per shell are used and the extrapolated line gradually
fades away.

Proposition 5.2.2. Changing the boolean “semiImplicit” to true in Algorithm 1 is equivalent to solv-
ing (5.2.1) with damped Jacobi if “FillBoundary” is executed in parallel, and to SOR if it is executed
sequentially. In either case, the relaxation parameter is given by

ω∗ =
(

1− w̃ε(x,x)
W

)
.

Proof. First, note that the Jacobi iteration for solving the linear system (5.2.1) may be written as

ũ
(n+1)
h (x) = 1

1− w̃ε(x,x)
W

 ∑
y∈S(k)

ε,h
(x)\{x}

w̃ε(x,y)
W

u
(n)
h (y) + f


with f defined as in (5.2.5). By comparison, repeated (parallel) executation of
FillBoundary(D(k+1)

h , ∂D
(k)
h ) is equivalent (after applying the definition of equivalent weights) to

u
(n+1)
h (x) =

∑
y∈S(k)

ε,h
(x)

w̃ε(x,y)
W

u
(n)
h (y) + f

= w̃(x,x)
W

u
(n)
h (x) +

∑
y∈S(k)

ε,h
(x)\{x}

w̃ε(x,y)
W

u
(n)
h (y) + f

= (1− ω∗)u(n)
h (x) + ω∗ũ

(n+1)
h (x),

which is a definition of damped Jacobi. The proof for SOR is analogous.
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5.2.2 Semi-implicit Guidefill

In this thesis we particularly interested in the extension of Guidefill since, as illustrated in Figure 5.2 and
as we will prove in Section 6.6.2, it is able to overcome the issue of kinking that we saw with Guidefill
for shallow angles in Figure 2.6 (and see again in 5.2(b)). In Section 6.2 we will analyze the convergence
of damped Jacobi and SOR for solving the linear system (5.2.1) arising in this method - see Proposition
6.2.1 in particular. Special attention will be paid to the parameter value ω = ω∗ (5.2.6) that naturally
arises from the implementation we have proposed in Algorithm 1 (blue text). First, however, we note that
beyond changing the boolean variable “semiImplicit” to “true” in Algorithm 1, this extension performs
optimally only if we also change the definition of the “ready” function. If we didn’t do this, whenever
a very shallow line such as the one in Figure 5.2 was encountered, the ready function would tell us not
to try to inpaint it. This is because (4.5.3) takes into account only information about pixels that have
already been filled, but now uh(x) is constructed using information from its neighbors in ∂D(k)

h that are
being filled at the same time. The modified “ready” function must reflect this. The idea is to allow
ready(x) to depend on pixels belonging to the current shell, but only if those pixels are also “ready” to
be filled. Thus, just like the colors of pixels in the current shell are now coupled together, the binary
values {ready(x) : x ∈ ∂D(k)

h } are coupled as well.
First, let us fix some notation. We define D̃(k+1)

h = D
(k)
h \∂D

(k)
h , that is, the inpainting domain as it

would be on the next step if all of ∂D(k)
h were filled (clearly D(k)

h ⊇ D̃(k)
h , as we never fill more than ∂D(k)

h

on iteration k). Then we denote the continuous version of D̃(k+1)
h by D̃(k+1), defined in the usual way

as in the notational section. Next, defining a pixel that has already been filled to be “ready” by default,
and a ghost pixel to be “ready” if and only if the real pixels needed to define it are all “ready”, we write
the modified confidence C∗(x) in terms of ready(y) for y neighboring x as

C∗(x) =
∑

y∈B̃ε,h(x)∩(Ω\D̃(k+1)) wε(x,y)ready(y)∑
y∈B̃ε,h(x) wε(x,y)

= C(x) +
∑

y∈B̃ε,h(x)∩(D(k)\D̃(k+1)) wε(x,y)ready(y)∑
y∈B̃ε,h(x) wε(x,y)

= C(x) + ∆C(x, r)

where C(x) is defined by (4.5.2) and r : ∂D(k)
h → {0, 1} is defined by

r(x) = ready(x).

Finally the “ready” function at x is coupled to that of its neighbors by

ready(x) = 1(C(x) + ∆C(x, r) > c) (5.2.7)

Let ∂0
readyD

(k)
h , ∂readyD

(k)
h denote the portion of ∂D(k)

h that is “ready” to be filled, according to standard
and semi-implicit Guidefill respectively. Then, since ∆C(x, r) ≥ 0, we clearly have

∂0
readyD

(k)
h ⊆ ∂readyD

(k)
h ⊆ ∂D(k)

h .

In other words, semi-implicit Guidefill will always agree with Guidefill that a pixel is ready to be filled, but
may decide that other pixels Guidefill believes are not ready to be filled are actually ready. In Algorithm
2 we propose a simple, iterative, and parallel algorithm to solve for ∂readyD

(k)
h , at least approximately.

Note that in iteration 0, we have ∆C(x, r) ≡ 0, so that C∗(x) = C(x) and hence after one iteration
∂readyD

(k)
h = ∂0

readyD
(k)
h (that is, it is the same as the set of ready pixels determined by standard,
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Algorithm 2 Semi-Implicit Guidefill’s ready function

r : ∂D(k)
h → {0, 1}, initialized to 0 everywhere.

∂readyD
(k)
h = {x ∈ ∂D(k)

h : r(x) = 1}.
maxIt : maximum number of iterations.
k = 0.
while |∂readyD

(k)
h | keeps growing and k < maxIt do

for x ∈ ∂D(k)
h do

if C(x) + ∆C(x, r) > c then
r(x) = 1.

end if
end for
∂readyD

(k)
h = r−1({1}).

k = k + 1
end while

non-implicit Guidefill). In subsequent iterations ∂readyD
(k)
h can only grow, but it must stop growing

within finitely many iterations, even if we set maxIt = ∞, since |∂D(k)
h | < ∞. We will not attempt to

prove that the ∂readyD
(k)
h output by Algorithm 2 is equal the ∂readyD

(k)
h defined by (5.2.7). In the

present work we do not analyze the benefits of this modified “ready” function - this will be the subject
of future work.
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Chapter 6

Analysis

This chapter contains our core analysis, firstly of the convergence properties of semi-implicit Guidefill,
then of the convergence of both Algorithm 1 and its semi-implicit extension to a continuum limit as
(h, ε) → (0, 0) along the ray ε = rh, then finally how under certain additional hypotheses we can also
converge to the original high-resolution and vanishing viscosity limit proposed by Bornemann and März
(h→ 0 first and then ε→ 0). In Section 4.7.1, we will apply our results to explain some of the artifacts
discussed in Section 2.2. We begin with some symmetry assumptions that will hold throughout the
chapter.

6.1 Symmetry assumptions

We will assume throughout that the inpainting domain D is the unit square
(0, 1]× (0, 1] while the image domain is Ω = (0, 1]× (−δ, 1] equipped with Dirichlet or periodic boundary
conditions at x = 0 and x = 1, and no condition at y = 1. We denote the undamaged portion of the
image by

U := (0, 1]× (−δ, 0] Uh := U ∩ Z2
h. (6.1.1)

We discretize D = (0, 1]2 as an N ×N array of pixels Dh = D ∩ (h · Z2) with pixel width h := 1/N . In
order to ensure that the update formula (2.0.3) is well defined, we need ε + 2h < δ, which we achieve
by assuming h < δ

r+2 (this follows from the inclusion (5.1.7) ). We assume that the default onion shell
ordering is used, so that

∂D
(k)
h = {(jh, kh)}Nj=1.

We also assume that the sets Aε,h(x) are translations of one another, and the weights wε(x,y) depend
only on y−x

ε , that is

wε(x,y) = ŵ

(
y− x
ε

)
For coherence transport and Guidefill this means that the guidance direction g is a constant.

Remark 6.1.1. We make the above assumptions not because we believe they are necessary, but because
they enable us to make our analysis as simple as possible while still capturing the phenomena we would like
to capture. In particular, the above two assumptions on the weights wε and neighborhood Aε,h(x) ensure
that the matrix L given by (5.2.1) is either Toeplitz or circulant (depending on the boundary conditions),
and also ensures that the random walk we connect Algorithm 1 to in Section 6.3 has i.i.d. (independent
identically distributed) increments. Without these simplifications, our already lengthy analysis would

87



become even more technical. Numerical experiments in Section 6.8 suggest that these assumptions can be
weakened, but proving this is beyond the scope of the present work.

These assumptions give us a high level of symmetry with which we may rewrite the update formula
(2.0.3) of Algorithm 1 in the generic form

uh(x) =
∑

y∈a∗r
wr(0,y)uh(x + hy)∑
y∈a∗r

wr(0,y) (6.1.2)

where
a∗r =

(
1
h
Aε,h(0)\{0}

)
∩ {y ≤ δ},

and δ = −1 for the direct method, while δ = 0 for the semi-implicit extension. In particular, for coherence
transport we have a∗r = b−r for the direct method and a∗r = b0r for the extension, where

b0r := {(n,m) ∈ Z2 : 0 < n2 +m2 ≤ r2,m ≤ 0}. (6.1.3)

b−r := {(n,m) ∈ Z2 : n2 +m2 ≤ r2,m ≤ −1}. (6.1.4)

Similarly, for Guidefill, we have a∗r = b̃−r for the direct method and a∗r = b̃0r for the semi-implicit extension,
where

b̃0r := {nĝ +mĝ⊥ : (n,m) ∈ Z2, 0 < n2 +m2 ≤ r2, nĝ · e2 +mĝ⊥ · e2 ≤ 0}

b̃−r := {nĝ +mĝ⊥ : (n,m) ∈ Z2, n2 +m2 ≤ r2, nĝ · e2 +mĝ⊥ · e2 ≤ −1},

and ĝ := g/‖g‖ (if g = 0 we set b̃−r = b−r ). The sets b−r , b0r, b̃−r , b̃0r may be visualized by looking at the
portion of Figure 2.9(a)-(b) on or below the lines y = 0 and y = −1 respectively. Also important are the
dilated sets b̄0r = D(b0r) ∩ {y ≤ 0} and b̄−r = D(b−r ) ∩ {y ≤ −1}. These sets are given explicitly by

b̄0r := {(n+ ∆n,m+ ∆m)

: (n,m) ∈ b0r, (∆n,∆m) ∈ {−1, 0, 1} × {−1, 0, 1},m+ ∆m ≤ 0} (6.1.5)

b̄−r := {(n+ ∆n,m+ ∆m)

: (n,m) ∈ b−r , (∆n,∆m) ∈ {−1, 0, 1} × {−1, 0, 1},m+ ∆m ≤ −1}. (6.1.6)

This is because the universal support property (5.1.6) gives us the inclusion

Supp(a∗r) ⊆

b̄−r ⊆ b
−
r+2 if we use the direct form of Algorithm 1.

b̄0r ⊆ b0r+2 if we the semi-implicit extension,
(6.1.7)

which will be critical later. The sets b̄−r and b̄0r are illustrated in Figure 6.1.

Definition 6.1.2. We call the set a∗r and the weights {wr(0,y) : y ∈ a∗r} the stencil and stencil weights
of a method. The center of mass of a∗r is defined in the following two equivalent ways:

C.M. =
∑

y∈a∗r
wr(0,y)y∑

y∈a∗r
wr(0,y) =

∑
y∈Supp(a∗r) w̃r(0,y)y∑
y∈Supp(a∗r) w̃r(0,y) .

Here w̃r denote the equivalent weights from Section 5.1, and the above identity follows from (5.1.2) and
(5.1.3). The center of mass of a∗r will play a critical role both in the continuum limit of Algorithm 1
(where it is the transport direction of the resulting transport PDE) and in the connection to random walks
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(a) Illustration of b̄−r for r = 3. (b) Illustration of b̄0
r for r = 3.

Figure 6.1: Visualization b̄−r and b̄0r: Here we illustrate the sets
b̄−r := D(b−r ) ∩ {y ≤ −1} and b̄0r := D(b0r) ∩ {y ≤ 0} in the case r = 3. These sets are defined explicitly
in (6.1.4) and (6.1.5), and D is the dilation operator defined in the notation section. These sets are
important because depending on whether we use the direct form of Algorithm 1 or its semi-implicit
extension, Supp(a∗r) is always contained in one or the other. See (6.1.7) in the text.

(where, after multiplication by h, it is the mean of the increments of the walk).

Under these assumptions, the matrix L from (5.2.1) is independent of k (that is, we solve the same
linear system for every shell), and moreover L becomes a Toeplitz matrix (Dirichlet boundary conditions)
or circulant matrix (periodic boundary conditions). For a given pixel x at least r + 2 pixels away from
the boundary at x = 0 and x = 1, that is x ∈ {(jh, kh) : r + 2 ≤ j ≤ N − r − 2}, it takes on the form

(Lu)(x) =
(

1− w̃r(0,0)
W

)
uh(x)−

∑
y∈sr\{0}

w̃r(0,y)
W

uh(x + hy), (6.1.8)

where by (6.1.7) we have

sr = Supp(a∗r) ∩ (Z× {0}) ⊆ {−(r + 2)e1,−(r + 1)e1, . . . , (r + 1)e1, (r + 2)e1}.

If x is not at least r + 2 pixels away from the boundaries, then the formula changes in the usual way for
Toeplitz and circulant matrices - we assume the reader is familiar with this and no further discussion is
needed. Under the same assumptions the vector f becomes

f =
∑

y∈Supp(a∗r)\(Z×{0})

w̃r(0,y)
W

uh(x + hy)

where Supp(a∗r)\(Z× {0}) ⊆ b−r+2. We also define

W̃ :=
r+2∑

j=−r−2
w̃r(0, je1) and w̃0,0 := w̃r(0,0). (6.1.9)
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For a given point x ∈ ∂D(k)
h , (again, assuming x is far enough from the boundary) the ratio W̃

W gives
the fraction of the mass of the stencil (Definition 6.1.2) centered at x that gets “leaked” to the unknown
pixels in ∂D(k)

h , while w̃0,0
W gives the fraction that gets leaked to x. Together, these give a measure of the

diagonal dominance of L, as we have ∑
j 6=i |Lij |
|Lii|

= W̃ − w̃0,0

W − w̃0,0
.

The smaller this ratio is, the stronger the diagonal dominance of L, and the faster damped Jacobi and
SOR can be expected to converge - see Proposition 6.2.1 for explicit formulas.

For semi-implicit Guidefill with guidance direction g = (cos θ, sin θ), it can be shown that L becomes
a lower triangular matrix in the limit µ→∞, provided we order unknowns left to right if cos θ > 0 and
right to left otherwise (see the proof of Proposition 6.2.1). This gives us a hint that Gauss-Seidel and
SOR might be very effective for the solution of (5.2.1) in this case, and indeed Proposition 6.2.1 confirms
this.

6.2 Convergence rates of damped Jacobi and SOR for semi-
implicit Guidefill

Here we derive tight bounds on the convergence rates of damped Jacobi and SOR for solving (5.2.1) in the
semi-implicit extension of Guidefill described in Section 5.2, under the symmetry assumptions discussed
above, and in the limit µ → ∞ (recall that µ is the parameter from the weights (2.5.2) controlling the
extent to which weights are biased in favor of pixels in the directions ±g). We will prove that in each
case the parameter value ω = 1 is optimal, but also pay special attention to the case ω = ω∗ given by
(5.2.6), since this is the value of ω that our proposed implementation of the semi-implicit extension in
Algorithm 1 uses. We consider general ω mainly in order to demonstrate that the choice ω = ω∗, while
not optimal, is close enough to optimal not to matter in practice.

We will assume that D = (0, 1]2 with Dirichlet boundary conditions, as this simplifies our analysis of
SOR - for damped Jacobi, we could just as easily have assumed periodic boundary conditions. We will
measure convergence rates with respect to the induced infinity norm, which obeys the identity

‖A‖∞ = Nmax
i=1

N∑
j=1
|aij | (6.2.1)

for any N ×N matrix A. Note that the iterates of the error e(0), e(1), . . . associated with any stationary
iterative method with iteration matrix M obey the bounds

‖e(n)‖ ≤ ‖M‖n‖e(0)‖ and R(e) := n

√
‖e(n)‖
‖e(0)‖

≤ ‖M‖ (6.2.2)

for any vector norm ‖ · ‖ and induced matrix norm. We will be interested in these identities in the
particular case that the vector norm is ‖ · ‖∞, and the stationary iterative method is damped Jacobi or
SOR. Here

e(n) := uh − u(n)
h

denotes the difference between the exact solution to (5.2.1), found by first solving (5.2.1) to machine
precision, with the approximate solution at iteration n.
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Proposition 6.2.1. Suppose semi-implicit Guidefill with guidance direction
g = (cos θ, sin θ) is used to inpaint the square [0, 1)2 under the assumptions above, using either damped
Jacobi or SOR to solve (5.2.1). Suppose that in the case of SOR, ∂D(k)

h = {kh}k∈Z is ordered from left
to right if cos θ ≥ 0 and from right to left otherwise. Let L be as in (5.2.2) and define L = D − L − U ,
where D, −L, and −U are the diagonal, strictly lower triangular, and strictly upper triangular parts of
L respectively. Let Jω and Gω denote the iteration matrices of damped Jacobi and SOR respectively with
relaxation parameter ω, that is

Jω = I − ωD−1L Gω = (I − ωD−1L)−1((1− ω)I +D−1U).

Let r = ε/h and define θc = arcsin(1/r). Define, for θc ≤ θ ≤ π − θc,
j∗ = b 1

sin θ c ≤ r. Let W be the total weight (5.2.4), let W̃ and w̃0,0 be as in (6.1.9). Then, in the limit as
µ→∞, we have

W =
r∑
j=1

1
j
, w̃0,0 = (1− sin θ)(1− | cos θ|)

W̃ =


∑r
j=1

1
j − r sin θ if θ ∈ (0, θc] ∪ [π − θc, π)∑j∗

j=1
1
j − j

∗ sin θ if θ ∈ (θc, π − θc)
.

and

‖Jω‖∞ = |1− ω|+ ω

(
W̃ − w̃0,0

W − w̃0,0

)
for ω ∈ (0, 2)

‖Gω‖∞ = |1− ω|
1− ω W̃−w̃0,0

W−w̃0,0

for ω ∈ (0, 1],

where ‖·‖∞ is the induced infinity matrix norm (6.2.1). The optimal ω ∈ (0, 2) is in both cases independent
of θ and equal to ω = 1, where we obtain

‖J1‖∞ =


1− r sin θ∑r

j=1
1
j−(1−sin θ)(1−| cos θ|)

if θ ∈ (0, θc] ∪ [π − θc, π)

1−
∑r

j=j∗+1
1
j+j∗ sin θ∑r

j=1
1
j−(1−sin θ)(1−| cos θ|)

if θ ∈ (θc, π − θc).

‖G1‖∞ = 0.

Proof. First we fix some notation. Suppose we are on iteration k of semi-implicit Guidefill and let x := x
(k)
0

denote a fixed but arbitrary member of ∂D(k)
h . The pixel x(k)

0 is coupled by (5.2.1) to its immediate
neighbors x(k)

j for −r− 2 ≤ j ≤ r+ 2, and also depends on the pixels x(k−δ)
j := x + h(j, δ) ∈ ∂D(k−δ)

h for
(j, δ) ∈ b−r+2 which appear in the right hand side of (5.2.1) within the vector f .

Next, note that since µ → ∞, the weights wr have vanished on all of b̃0r except for the line of ghost
pixels

`−r := {−jg}rj=1.

For convenience, we enumerate `−r as `−r := {pj}rj=1 where pj = −jg. Each pj receives weight

wj := 1
j
.
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Figure 6.2: Illustration of the position of the line `−r relative to the current shell ∂D(k)
h and

previous shell ∂D(k−1)
h : Here we visualize the line `−r := {−jg}rj=1 ⊆ b̃−r when g = (cos θ, sin θ) with

0 < θ < θc = arcsin(1/r). In this case `−r fits entirely into the space between ∂D(k)
h and ∂D(k−1)

h . For
convenience, we enumerate `−r as `−r := {pj}rj=1 where pj = −jg. We write the current pixel of interest
x as x(k)

0 for convenience, and its unknown neighbors in ∂D(k)
h as x(k)

j for −r − 2 ≤ j ≤ r + 2, while its
already filled neighbors (we only show the ones in ∂D(k−1)

h ) are denoted by x(k−δ)
j := x+h(j, δ) ∈ ∂D(k−δ)

h

for (j, δ) ∈ b−r+2.

This situation is illustrated in Figure 6.2 for the case 0 < θ < θc, where `−r fits entirely into the space
between ∂D(k)

h and ∂D(k−1)
h .

To compute the entries of L, we follow the idea of Section 5.1 and consider how the weight wj of each
ghost pixel pj gets distributed to its real pixel neighbors. For example, in Figure 6.2, the weight w1 of
p1 gets redistributed amongst the four pixels x(k)

0 , x(k)
−1 , x

(k−1)
0 , and x(k−1)

−1 .
How exactly this weight gets redistributed is for the most part not something we need to know

precisely. For example, it is already clear from Figure 6.2 that if 0 < θ ≤ π
2 , then none of the weight of

any of the pj make it into any of x(k)
1 , x(k)

2 , x(k)
3 . . .. Similarly, if π2 ≤ θ < π, no weight makes it to any

of x(k)
−1 , x

(k)
−2 , x

(k)
−3 . . .. This means that, given our assumed ordering of pixels within each layer ∂D(k)

h , we
already know that L is a lower triangular matrix. Hence L = L, U = O. Therefore, Gω takes on the
simplified form

Gω = (1− ω)(I − ωD−1L)−1.

We begin with ‖Gω‖∞, the harder case. In this case, defining

A := I − ωD−1L,

we have
‖Gω‖∞ = |1− ω|‖A−1‖∞ (6.2.3)

We know L = D − L is strictly diagonally dominant, so the following computation shows that A is as
well, provided 0 < ω ≤ 1: ∑

j 6=i
|Aij | =

|ω|
|Dii|

∑
j 6=i
|Lij | < |ω| ≤ 1 = |Aii|.

Hence, the following classical bound due to Jim Varah [66, Theorem 1] applies:

‖A−1‖∞ ≤
1

minNi=1 ∆i(A)
where ∆i(A) :=

∣∣|Aii| −∑
j 6=i
|Aij |

∣∣.
Since A is a Toeplitz matrix with band width r + 2 and at the same time a lower triangular matrix , we
know that ∆i(A) is the same for all i ≥ r+ 3, but increases somewhat for i ≤ r+ 2 as there are fewer off
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diagonal terms (due to our assumed Dirichlet boundary conditions). In particular, the first row has no
off diagonal terms, so we have ∆1(A) = A11 = 1. It follows that

∆1(A) ≥ ∆2(A) ≥ . . . ≥ ∆r+3(A) = ∆r+4(A) = . . . = ∆N (A).

Choosing row N as a representative row for convenience gives

‖A−1‖ ≤ 1
∆N (A) .

However, the identity
‖A−1‖−1 = inf

x

‖Ax‖
‖x‖

(valid for any induced norm) means that in particular, for the vector e containing r+ 2 zeros followed by
N − r − 2 ones, that is

e = (0, . . . , 0︸ ︷︷ ︸
r+2

, 1, . . . , 1︸ ︷︷ ︸
N−r−2

),

we have

‖A−1‖−1
∞ ≤

‖Ae‖∞
‖e‖∞

= Nmax
i=1

∣∣∣∣∣∣
N∑
j=1

Aijej

∣∣∣∣∣∣ = Nmax
i=r+3

∣∣∣∣∣∣|Aii| −
∑
j 6=i
|Aij |

∣∣∣∣∣∣ = ∆N (A).

where we have used the fact that for all i we have Aii > 0 and Aij ≤ 0 for j 6= i. The vector e was chosen
deliberately in order to avoid the first r + 2 rows of A, which we have already said are different due to
boundary conditions. Hence

‖A−1‖∞ ≥
1

∆N (A)

as well, and having proven the bound in both directions we conclude

‖A−1‖∞ = 1
∆N (A) . (6.2.4)

Remark 6.2.2. It appears that Varah’s bound [66, Theorem 1] should generalize to equality not only
in our case, but to general strictly diagonally dominant Toeplitz matrices obeying Aii > 0 for all i and
Aij ≤ 0 whenever j 6= i, using a very similar argument. However, this generalization does not appear in
[66] and we have been unable to find it in the literature.

The next step is to compute ∆N (A). To that end, note that by definition A = I − ωD−1L obeys
Aii = 1 for all i and

Aij = −ω

(
w̃r(0,(j−i)e1)

W

)
(

1− w̃r(0,0)
W

) = −ω w̃r(0, (j − i)e1)
W − w̃r(0,0) for max(i− r − 2, 1) ≤ j < i.

by (6.1.8). Here W are the total weight and equivalent weights w̃r defined in Section 6.1. Hence

∆N (A) =

∣∣∣∣∣1− ω
∑−1
j=−r−2 w̃r(0, je1)
W − w̃r(0,0)

∣∣∣∣∣ =
∣∣∣∣1− ω(W̃ − w̃0,0

W − w̃0,0

)∣∣∣∣ ,
where W̃ and w̃0,0 are defined as in (6.1.9). Combining the above with (6.2.3) and (6.2.4) we finally
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obtain
‖Gω‖∞ = |1− ω|

1− ω
(
W̃−w̃0,0
W−w̃0,0

)
as claimed. We leave deriving expressions forW , W̃ , and w̃0,0 until the end. First we derive an expression
for ‖Jω‖∞ in terms of these three quantities. Since U = O we have

Jω = I − ωD−1L = I − ωD−1(D − L) = (1− ω)I + ωD−1L.

By definition we have

‖Jω‖∞ := Nmax
i=1

N∑
j=1
|(Jω)ij |.

So long as i ≥ r + 3, this sum becomes

N∑
j=1
|(Jω)ij | = |1− ω|+ ω

(
W̃ − w̃0,0

W − w̃0,0

)
.

If i ≤ r + 2, then this sum includes fewer terms and is potentially smaller. Hence

‖Jω‖∞ = |1− ω|+ ω

(
W̃ − w̃0,0

W − w̃0,0

)
.

Our remaining task is to derive the claimed expressions forW , W̃ , and w̃0,0. The easiest isW . By (5.2.4)
we have

W =
r∑
j=1

wj =
r∑
j=1

1
j
.

It is also not difficult to compute w̃0,0, which represents fraction of the mass w1 = 1 of the point p1 that
gets redistributed back to x(k)

0 (see Figure 6.2). Since p1 sits h sin θ units below ∂D
(k)
h and h(1 − sin θ)

units above ∂D(k−1)
h , and either h cos θ units to the left x(k)

0 and h(1−cos θ) units right of x(k)
−1 if 0 ≤ θ ≤ π

2
or h| cos θ| units right of x(k)

0 and h(1− | cos θ|) units left of x(k)
1 otherwise, it follows that

w̃0,0 = (1− sin θ)(1− | cos θ|)w1 = (1− sin θ)(1− | cos θ|).

For W̃ , we split into cases. If 0 ≤ θ ≤ θc or π − θc ≤ θ ≤ π, then `−r fits entirely between ∂D
(k)
h and

∂D
(k−1)
h , as in Figure 6.2. If θc < θ < π − θc, then only p1 up to pj∗ fit (recall the definition of j∗ from

the statement of the proposition). As a result, in the first case every pj for 1 ≤ j ≤ r contribute mass to
W̃ . In the second case, only the first j∗ contribute. Each contributing pj is situated hj sin θ units below
∂D

(k)
h and h(1 − j sin θ) units above ∂D(k−1)

h . Hence each contributing pj contributes (1 − j sin θ)wj
towards W̃ . Hence, in the first case we have

W̃ =
r∑
j=1

(1− j sin θ)1
j

=
r∑
j=1

1
j
− r sin θ,

while in the second we have

W̃ =
j∗∑
j=1

1
j
− j∗ sin θ.

Our final claim on the expressions for ‖J1‖∞ and ‖G1‖∞ and the optimality of ω = 1 is now a simple
exercise and is left to the reader.
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Corollary 6.2.3. For the special case of

ω∗ =
(

1− w̃0,0

W

)
=
(

1− (1− sin θ)(1− | cos θ|)∑r
j=1

1
j

)

that is, the parameter value equivalent to running Algorithm 1 with “semiImplicit” set to true, we obtain

‖Gω∗‖∞ = w̃0,0

W − W̃k + w̃0,0

=


(1−sin θ)(1−| cos θ|)

r sin θ+(1−sin θ)(1−| cos θ|) if θ ∈ (0, θc] ∪ [π − θc, π)
(1−sin θ)(1−| cos θ|)∑r

j=j∗+1
1
j+j∗ sin θ+(1−sin θ)(1−| cos θ|)

if θ ∈ (θc, π − θc).

‖Jω∗‖∞ = W̃k

W
=


1− r sin θ∑r

j=1
1
j

if θ ∈ (0, θc] ∪ [π − θc, π)

1−
∑r

j=j∗+1
1
j+j∗ sin θ∑r

j=1
1
j

if θ ∈ (θc, π − θc).

See Figure 6.3 for a plot of ‖Gω∗‖∞ and ‖Jω∗‖∞ as a function of θ for r = 3.

Proof. This follows from direct substitution of ω∗ given by (5.2.6) into Proposition 6.2.1.

Remark 6.2.4. Although our choice of ω∗ is non-optimal, it is convenient to implement and the difference
in performance is negligible. For example, even for the optimal value ω = 1, for Jacobi we have ‖J1‖∞ → 1
as θ → 0 or θ → π. At the same time, for SOR we have ‖Gω∗‖∞ ≤ 0.06 (Figure 6.3) for all θ and all
r ≥ 0 (it follows trivially from Corollary 6.2.3 that ‖Gω∗‖∞ is decreasing function of r for each fixed θ)
- while not quite as good as the optimal value ‖G1‖∞ ≡ 0, it is more than satisfactory and moreover, we
have ‖Gω∗‖∞ → 0 as θ → 0 or θ → π. As we will see in Section 6.6.1, it is precisely these shallow angles
where the semi-implicit extension has an advantage over the direct method. Unfortunately, however,
Guidefill was designed to be a parallel algorithm but SOR is a sequential. While ideally we would like
a method to solve the linear system (5.2.1) that is both fast and parallel, this is beyond the scope of the
present work.

6.3 Convergence of Algorithm 1 to a continuum limit

Our objective in this section is to prove that the direct and semi-implicit forms of Algorithm 1 both
converge to a continuum limit u when we take (h, ε) → (0, 0) along the path ε = rh. Before we can do
that, we need to define what that limit is, in what sense uh converges to it, and to lay out our assumptions
regarding the regularity of u0. We also describe a property which, if satisfied, will allow us to connect
our limit with the one studied by Bornemann and März in [12] (we also show that all methods considered
in this thesis have this property). When u0 is smooth, convergence is straightforward to prove - we did
so in [37, Theorem 1] for the direct form of Algorithm 1 using a simple argument based on Taylor series.
However, in this thesis we are interested in a more general setting where u0 may not be smooth and
Taylor series may not be available. Instead of Taylor series, our main tool will be a connection to stopped
random walks. We will explain this connection briefly before continuing on to the main result of this
section. Throughout this section we assume for convenience that u0 and uh are both greyscale images,
that is u0 : Ω\D → R, uh : Ωh → R. In the color case u0 : Ω\D → Rd, uh : Ωh → Rd one may easily
show that our results hold channel-wise.
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(a) (b)

(c) (d)

Figure 6.3: Convergence rates of damped Jacobi and SOR for semi-implicit Guidefill: As
noted in Section 5.2, the implementation of semi-implicit Guidefill outlined in Algorithm 1 (blue text) is
equivalent to solving the linear system (5.2.1) iteratively using damped Jacobi (parallel implementation)
or SOR (sequential implementation), with relaxation parameter ω∗ given by (5.2.6). Here we compare
the experimentally measured convergence rates of this implementation (r = 3, g = (cos θ, sin θ) and
µ = 100) with the theoretical bounds on ‖Jω∗‖∞ and ‖Gω∗‖∞ from Corollary 6.2.3. Specifically, (a)
and (c) confirm experimentally the first bound in (6.2.2) in the cases M = Jω∗ and M = Gω∗ , that is,
damped Jacobi and SOR with relaxation parameter ω∗, for the case θ = 2◦. The inpainting problem
in this case is the same as in Figure 5.2(a), and all the parameters of semi-implicit Guidefill are the
same. The “exact” solution uh was found by first solving (5.2.1) to machine precision. In each case, we
measured convergence rates only within the first “shell” of the inpainting problem. Next, (b)-(d) confirm
experimentally the second bound in (6.2.2), as a function of θ. The inpainting problem is the same as
the one in Figure 2.6(a), and all parameters are the same. In this case we vary θ from 1◦ up to 179◦ in
increments of one degree, in each case iteratively solving (5.2.1) (again, only for the first shell), computing
R(e), and comparing with ‖Jω∗‖∞ and ‖Gω∗‖∞. Note the excellent performance of SOR in comparison
with damped Jacobi.
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Definition of the continuum limit. We wish to prove convergence of the direct and semi-implicit
forms of Algorithm 1 to a continuum limit u given by the transport equation

∇u · g∗r = 0, u
∣∣∣
y=0

= u0

∣∣∣
y=0

u
∣∣∣
x=0

= u
∣∣∣
x=1

(6.3.1)

Because of the assumptions we have made in Section 6.1, g∗r will turn out to be a constant equal to the
center of mass of the stencil a∗r with respect to the stencil weights {wr(0,y) : y ∈ a∗r} (Definition 6.1.2),
that is

g∗r =
∑

y∈a∗r
wr(0,y)y∑

y∈a∗r
wr(0,y) . (6.3.2)

As we will allow discontinuous boundary data u0, the solution to (6.3.1) must be defined in a weak sense.
However, since g∗r is a constant, this is simple. So long as g∗r · e2 6= 0, we simply define the solution to
the transport problem (6.3.1) to be

u(x) = u0(Πθ∗r
(x)), where Πθ∗r

(x, y) = (x− cot(θ∗r)y mod 1, 0). (6.3.3)

We call Πθ∗r
: D → ∂D the transport operator associated with (6.3.3). The mod 1 is due to our assumed

periodic boundary conditions and
θ∗r = θ(g∗r) ∈ (0, π)

is the counterclockwise angle between the x-axis and the line Lg∗r := {λg∗r : λ ∈ R}.

Modes of convergence (discrete Lp norms). Given fh : Dh → R, we introduce the discrete L∞

norm
‖fh‖∞ := max

x∈Dh
|fh(x)| (6.3.4)

and the discrete Lp norm
‖fh‖p :=

( ∑
x∈Dh

|fh(x)|ph2) 1
p . (6.3.5)

These norms will be used to measure the convergence of uh to the continuum limit u.

Convergence of center of mass. There is one additional property which, if satisfied, will enable us to
connect our limit with the one studied by Bornemann and März. Specifically, if a method obeys

lim
r→∞

g∗r
r
→ g∗ ∈ R2 with rate at least O(r−q) for some q > 0, (6.3.6)

then it is possible to make sense of a (generalized version) of Bornemann and März’s limit. Moreover,
as we will see in Section 6.5, the vector g∗ is the transport direction obtained in their limit. When
Aε,h(x) = Bε,h(x) as in Telea’s algorithm and coherence transport, or Aε,h(x) = B̃ε,h(x) as in Guidefill,
it is easy to see that this condition is satisfied. In fact, if a∗r ∈ {b−r , b0r, b̃−r , b̃0r} we have

lim
r→∞

g∗r
r

= lim
r→∞

∑
y∈a∗r

ŵ
(
0, y

r

) y
r

1
r∑

y∈a∗r
ŵ
(
0, y

r

) 1
r

→

∫
y∈B−1 (0) ŵ(0,y)ydy∫
y∈B−1 (0) ŵ(0,y)dy

(where ŵ is the function we assumed existed in (2.0.1)), because the LHS can be interpreted as a Riemann
sum for the RHS. We also know, by an elementary argument in quadrature, that the convergence rate is
O(r−1) or better, so q = 1 in this case. In fact, it is straightforward to show that the integral on the RHS
of the above equation is the same for coherence transport, Guidefill, and semi-implicit Guidefill. In other
words, the original limit of Bornemann and März is the same for all three of these methods. However,
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Figure 6.4: Regularity assumptions: The inpainting domain D = (0, 1]2 together with data region
U = (0, 1] × (−δ, 0]. The image data u0 has high regularity when restricted to each of the sets Ui but
has (possibly) lower regularity on U as a whole due to problems within finitely many triangles Ti (where
we might have, for example, jump discontinuities in u0 or its derivatives, if they exist). In particular, we
have u0 ∈ W s,∞(Ui) for all i and for some s > 0 but only u0 ∈ W s′,∞(U) for some 0 ≤ s′ ≤ s, where
W s,∞(Ui), W s′,∞(U) denote the fractional sobolev spaces described in the text.

our limit predicts that they behave very differently - see Section 6.6.2.

Regularity of the boundary data

Our goal is to prove convergence under very weak regularity conditions on u0. In particular, our analysis
should include the case that u0 is piecewise smooth, as this case is particularly relevant to images. Indeed
we actually develop an even more general setting that includes piecewise smooth u0 as a special case.

Specifically, we consider u0 that belongs to the fractional Sobolev space W s,∞(Ui) where 0 < s <∞,
when restricted to each of a series of subsets {Ui}Ni=1 ⊆ U such that U\{Ui}Ni=1 is “small” in some sense,
while belonging to a potentially lower regularity fractional Sobolev space W s′,∞(U) for some 0 ≤ s′ ≤ s

when considered on U as a whole. Note that for s′ > 0 we have the identity W s′,∞(U) = Cs
′,s′−bs′c(U)

- see also [51] for a review of fractional Sobolev spaces. While most authors avoid defining W s′,∞(U) in
the case s′ = 0, for the purposes of this thesis we define

W 0,∞(U) = L∞(U). (6.3.7)

This will enable us to seamlessly incorporate the case of u0 that is piecewise continuous, which is of
particular interest. With this definition for every s ≥ 0 the space W s,∞(U) is a Banach space with norm
‖ · ‖W s,∞(U) such that any u0 ∈W s,∞(U) obeys the Hölder property

‖∂αu0(x)− ∂αu0(y)‖ ≤ ‖u0‖W s,∞(U)‖x− y‖s−bsc (6.3.8)

for all multi-indices α s.t. |α| = bsc. This property will be one of the key tools of our analysis in this
section.

Detailed Assumptions. We assume that the strip U = (0, 1]× (−δ, 0] contains M closed triangles {Ti}Mi=1

with tips touching the x-axis at M points xi := (xi, 0) with 1 ≤ i ≤ M as in Figure 6.4. Each Ti is
defined by the inequality

Ti = {(x, y) ∈ (0, 1]× [−δ, 0] : y ≤ −L|xi − x|}
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Figure 6.5: Close up of one of the triangles Ti: The source of the problems in Ti may be, for example,
a curve Ci such that the regularity condition (6.3.8) with exponent s fails if x and y lie on opposite sides
of Ci (in which case it still holds with exponent s′ ≤ s). In this case Ti is the “bounding cone” of Ci,
ensuring that it intersects D in a simple way.

for some constant L > 0. We label the region between triangles Ti−1 and Ti as Ui, where T0 := TM .

We assume that u0 ∈W s,∞(Ui) for each Ui, but has a smaller Sobolev exponent s′ < s on (0, 1]×(−δ, 0]
as a whole. The Ti can be thought of as “bounding cones” of a series of curves Ci intersecting ∂Ω at {xi},
such that u0 has lower regularity on each Ci. For example, these curves might be places where either u0

or ∇u0 (if it exists) have jump discontinuities.

The assumption Ci ⊂ Ti ensures that each Ci intersects ∂Ω “nicely”. In particular, if Ci is smooth,
this means that the angle between the tangent to Ci at xi and ∂D is bounded away from 0 (however, our
assumption does not require that Ci be smooth). See Figure 6.5.

Connection to stopped random walks. Note that the update formula (6.1.2) gives a relationship
between uh(x) and its immediate neighbors in a∗r , which for now we assume obeys a∗r ⊆ b−r or a∗r ⊆ b0r (if
this is not the case we can apply the method of equivalent weights from Section 5.1). Now suppose we
modify (6.1.2) iteratively by repeated application of the following rule: for each y ∈ a∗r , if
x+hy ∈ Dh, replace uh(x+hy) in the RHS of (6.1.2) with the RHS of a version of (6.1.2) where the LHS
is evaluated at x +hy (in other words, we are substituting (6.1.2) into itself). Otherwise, if x +hy ∈ Uh,
we are already in the undamaged portion of the image, and we may replace uh(x + hy) with u0(x + hy).
Repeat this procedure until uh(x) is entirely expressed as a weighted sum of u0

∣∣∣
Uh

, that is

uh(x) =
∑

y∈Uh

ρ(y)u0(y), (6.3.9)

for some as of yet unknown weights ρ. Denoting x := (nh,mh), then for the direct form of Algorithm 1
this procedure will terminate after m steps, as in this case (6.1.2) expresses uh(x) in terms of neighbors
at least h units below it. On the other hand, for the semi-implicit extension, (6.3.9) has to be interpreted
as a limit.
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(a) k = 0 (b) k = 4 (c) k = 17 (d) k = 40

Figure 6.6: Connection to Stopped Random Walks: Here we illustrate the connection between the
elimination procedure described in the text and stopped random walks. In (a) the pixel x (colored black)
is expressed as a weighted average (2.0.3) of its neighbors in in b−r (colored in red). In this case we use the
direct form of Algorithm 1 with r = 3 and uniform weights (which is why each neighbor in b−r is the same
shade of red). In (c)-(d) we have applied k = 4, k = 17, and k = 40 steps of our elimination procedure
(which essentially consists of substituting (2.0.3) into itself repeatedly - details in the text), and uh(x) is
now expressed as weighted sum of uh(y) for whichever pixels y are colored red, with darker shades of red
indicating greater weight. Since the stencil weights {wr(0,y)

W : y ∈ b−r } are nonegative and sum to one,
this is procedure is related to a stopped random walk Xτ := (Xτ , Yτ ) started from x with stopping time
τ = inf{n : Yn ≤ 0}. Specifically, after k steps of elimination we have uh(x) =

∑
y∈Ωh ρXτ∧k(y)uh(y),

where ρXτ∧k is the density of Xτ∧k := x + h
∑τ∧k
i=1 Zi, a random walk with increments Zi i.i.d. taking

values in b−r with density P (Zi = y) = wr(0,y)
W . Since b−r is below the line y = −1, the density of ρXτ∧k

necessarily moves at least one pixel downwards each iteration, and since x is only 40 pixels above y = 0,
by k = 40 it the entire density is below y = 0 and the walk terminates. This process is illustrated in
(b)-(d), where we see the density after 4 steps (b), 17 steps (c), and the final stopped density (d). Note
that as Xτ has increments of size at most rh, the density ρXτ

necessarily lies between the lines y = −rh
and y = 0 (outlined in blue). The purpose of this procedure is to express the color of a given pixel x
deep inside the inpainting domain entirely in terms of the colors of known pixels below y = 0.

This elimination procedure has a natural interpretation in terms of stopped random walks. Since
the weights {w(0,y)

W }y∈a∗r are non-negative and sum to 1, we can interpret them as the density of a two
dimensional random vector Z := (V,W ) taking values in b−r or b0r . Moreover, defining the random walk

Xj := (Xj , Yj) = (nh,mh) + h

j∑
i=1

Zi (6.3.10)

with {Zi} i.i.d. and equal to Z in distribution, and defining

τ = inf{j : Xj ∈ Uh} = inf{j : Yj ≤ 0}, (6.3.11)

then after k steps of elimination, we have

uh(x) =
∑

y∈Ωh

ρXj∧τ (y)uh(y),

where ρXj∧τ denotes the density of Xj∧τ . Denoting the mean of Z by (µx, µy) note that by (6.3.2) we
have the equivalence

(µx, µy) = g∗r .

In other words, the mean of Z is precisely the transport direction of our limiting equation (6.3.1). The
condition g∗r · e2 6= 0, which we needed for (6.3.1) to be defined, implies µy < 0. In the nomenclature
of random walks, this means that Xk has negative drift in the y direction, while τ is the first passage
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time through y = 0. Fortunately, this type of random walk and this type of first passage time have been
studied and are well understood. See for example [32, Chapter 4], [33], [31], [30]. The book [32] also
provides an good overview of stopped random walks in general. In particular, we know immediately that
τ is a stopping time, P (τ =∞) = 0, and τ has finite moments of all orders [32, Chapter 3, Theorems 1.1
and 3.1]. It follows that

uh(x) =
∑

y∈Uh

ρXτ (y)u0(y) = E[u0(Xτ )]. (6.3.12)

This insight is central to our convergence argument and will also play a central role when we analyze
smoothing artifacts in Section 6.7. See Figure 6.6 for an illustration of these ideas.

Theorem 6.3.1. Let the continuous inpainting domain D and undamaged area U , as well as their
discrete counterparts Dh, Uh be as described in Section 6.1. Suppose we inpaint Dh using the direct
form of Algorithm 1 or the semi-implicit extension, and denote the result by uh : Dh → R. Assume the
assumptions of Section 6.1 hold and let a∗r and {wr(0,y) : y ∈ a∗r} denote the stencil and stencil weights
respectively (defined in Definition 6.1.2) of our inpainting method. Let u denote the weak solution to the
transport equation (6.3.1), with transport direction equal to the center of mass of our stencil with respect
to the stencil weights, that is

g∗r =
∑

y∈a∗r

w(0,y)
W

y where W =
∑

y∈a∗r

w(0,y).

Suppose the boundary data u0 : U → R obeys the regularity assumptions above, and let {Ui}Mi=1 be as
defined above and illustrated in Figure 6.4. Then for any p ∈ [0,∞] we have

‖u− uh‖p ≤ K · (rh)
(
s′
2 + 1

2p

)
∧ s2∧1

(the case p = ∞ is included by defining 1/∞ := 0) where K is a constant depending only on u0, U ,
{Ui}Mi=1, r

g∗r ·e2
and θ∗r . Moreover, K depends continuously on θ∗r and r

g∗r ·e2
, is a monotonically increasing

function of r
g∗r ·e2

, and K →∞ as θ∗r → 0 or θ∗r → π.

Remark 6.3.2. Here we list some notable special cases of Theorem 6.3.1, together with their associated
convergence rates:

Uniform regularity: If u0 ∈ Ck,α(U), then

‖u− uh‖p ≤

K · (rh) k+α
2 if k ∈ {0, 1}

K · (rh) if k ≥ 2.

In other words, the rate of convergence depends smoothly on the regularity of u0 up until the C2 level,
beyond which additional smoothness has no effect. Note also that in this case the rate of convergence is
independent of p.

Piecewise smooth: If u0 ∈ Ck,α(U\{Ci}Mi=1) where k ≥ 1 and {Ci}Mi=1 are a series of curves such that
Ci ⊆ Ti for each i as in Figure 6.5, but u0 is discontinuous on U as a whole, then we have

‖u− uh‖p ≤ K · (rh)
1
2p .

Thus, in the piecewise smooth case our rates of convergence are independent of the regularity of u0 on
U\{Ci}Mi=1 so long as it is at least C1, but now depend on p. In particular, the convergence rate is a
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monotonically decreasing function of p, and we converge in Lp for every 1 ≤ p <∞, but not necessarily
in L∞.

Piecewise Hölder continuous: If u0 ∈ C0,α(U\{Ci}Mi=1) but discontinuous on U as a whole (where {Ci}Mi=1

are the same as in the previous example), then we have

‖u− uh‖p ≤

K · (rh)α2 if 1 ≤ p ≤ 1
α

K · (rh)
1
2p if 1

α < p ≤ ∞.

In this case the convergence rate is independent of p for 1 ≤ p ≤ 1
α , but is the same as the previous

example for p > 1
α .

6.4 Proof of Theorem 6.3.1

First a note on notation. Let us define for convenience x̂ = Πθ∗r
(x), so that the solution to (6.3.1) may

be more compactly written as
u(x) = u0(x̂).

For brevity, even though Xτ , x̂, and τ depend implicitly on x = (nh,mh), we do not write this dependence
down explicitly. We will also adopt the notation that if X = (X1, X2) and X denote vector and scalar
valued random variables respectively, then

‖X‖Lp := E[‖X‖p]
1
p and ‖X‖Lp := E[|X|p]

1
p ,

where ‖X‖ := ‖X‖2 denotes the euclidean norm of X. The identity

‖X‖Lp ≤ ‖X1‖Lp + ‖X2‖Lp (6.4.1)

(which follows trivially from the identity ‖X‖2 ≤ ‖X‖1 and the triangle inequality with respect to the
norm ‖ · ‖Lp) will occasionally be useful. Finally, note that by the linearity of expectation, we have

‖u− uh‖p = ‖E[u0(Xτ )− u0(x̂)]‖p (6.4.2)

Roadmap. Our proof consists of six stages, which we go through before proceeding. Stages 1-5 assume
that a∗r ⊆ b−r or a∗r ⊆ b0r for simplicity. Stage 6 generalizes to arbitrary a∗r .

1. Stage 1: Obtain bounds, as a function of h, on the rate at which Xτ is concentrating around its
mean E[Xτ ], as well as the rate that E[Xτ ] itself is converging to x̂. For technical reasons, we will
require in particular bounds on ‖Xτ − E[Xτ ]‖L4 . In effect what is happening is that

ρXτ
→ δx̂ in D′(U) as h→ 0,

where δx̂ denotes the Dirac delta distribution centered at x̂ (see Figure 6.7). Formally speaking,
we have

uh(x) =
∑

y∈Uh

ρXτ
(y)u0(y) =

∫
U
u0(y)dµXτ

(y)→ 〈δx̂, u0〉 = u0(x̂),

where µXτ
denotes the measure associated with the density of Xτ . We will not attempt to make

this argument rigorous, and mention it only for the sake of building intuition. For this part of the
proof, known results from [32, Chapter 4] will save us some effort.
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(a) h = 1e− 2. (b) h = 1e− 3. (c) h = 1e− 4. (d) h = 1e− 5.

Figure 6.7: Theorem 6.3.1 through the lense of distribution theory: Theorem 6.3.1 says that for
x ∈ Dh, uh(x) → u0(x̂) in Lp as h → 0 for every p ∈ [1,∞] if u0 is continuous, but possibly not in L∞
if u0 contains discontinuities. Here x̂ = Πθ∗r

(x) is the transport operator (6.3.3) applied to x. One way
of understanding this is via the identity uh(x) =

∑
y∈Uh ρXτ

(y)u0(y) (6.3.12). As we will see in Section
6.7, for each fixed x ∈ Dh, the x-coordinate Xτ of the stopped random walk Xτ started from x converges
in distribution to a Gaussian gσ(h) with mean x̂ and h-dependent variance σ(h)2, such that gσ(h) itself
is converging to a one dimensional Dirac delta distribution centered at x̂ as h → 0. At the same time,
since Xτ can only overshoot y = 0 by distance at most rh, it follows that the density of Xτ lies entirely
between the lines y = −rh and y = 0. These two facts together imply that Xτ converges in distribution
as h → 0 to a two dimensional Dirac delta distribution centered at x̂. Hence we expect uh(x) → u0(x̂),
at least when x̂ is a continuity point of u0 (if x̂ is not a continuity point, then we need to apply the
theory of distributions with discontinuous test functions - see for example [24] - and we do not expect
uh(x) → u0(x̂) in general). We illustrate this in (a)-(d), which show plots of gσ(h) for Guidefill with
r = 3, g = (cos 45◦, sin 45◦) and µ → ∞ for various values of h. We fix x = (0.5, 1) so that x̂ = (0.5, 0)
(remember the periodic boundary conditions).

2. Stage 2: Use the assumed regularity of u0 to obtain bounds on
|E[u0(Xτ )− u0(x̂)]|. In particular, we will obtain:

(a) A bound that holds for any starting position x of the random walk Xτ , and depends only on
‖Xτ − E[Xτ ]‖L4 and ‖E[Xτ ]− x̂‖.

(b) A tighter bound that holds assuming E[Xτ ] and x̂ both belong to one of the well behaved sets
Ui (see Figure 6.4), and depends not only on
‖Xτ −E[Xτ ]‖L4 and ‖E[Xτ ]− x̂‖, but also on the “rogue event” that even though x̂ ∈ Ui and
E[Xτ ] ∈ Ui, we nonetheless have Xτ /∈ Ui.

3. Stage 3: Partition D into bands {Bi}Mi=1 and sub-bands B̃i ⊂ Bi such that the area of the
complement Bi\B̃i goes to zero as h → 0, and such that the starting position x ∈ B̃i guarantees
E[Xτ ] ∈ Ui and x̂ ∈ Ui. See Figure 6.8 for an illustration.

4. Stage 4: Bound the probability of the rogue event from stage 2, under the assumption that the
starting position x ∈ B̃i for some 1 ≤ i ≤M .

5. Stage 5: Substitute the bounds from the previous four stages into (6.4.2) to obtain a bound for
‖u− uh‖p.

6. Stage 6: Generalize to arbitrary a∗r containing ghost pixels by exploiting the idea of equivalent
weights from Section 5.1.

Steps 1 and 4 will occasionally require us to use some elementary results from martingale theory, including
Wald’s first identity and Azuma’s inequality. For a review of martingale theory, see for example [70].

Stage 1. Throughout this stage we will be using the following Theorem from [32, Chapter 1]:
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Theorem 6.4.1. Suppose E[|X1|r] <∞ for some 0 < r <∞, E[X1] = 0, and define the stopped random
walk Sτ =

∑τ
i=1Xi, where {Xi} are i.i.d. Then

E[|Sτ |p] ≤ BpE[|X1|p]E[τ
p
2 ].

where Bp is a constant depending only on p.

The result of this stage is the following lemma:

Lemma 6.4.2. Let Xτ := (Xτ , Yτ ) = x + h
∑τ
i=1 Zi = (nh,mh) + h

∑τ
i=1(Vi,Wi) with {Zi} i.i.d. as

above. Then
(i) ‖E[Xτ ]− x̂‖ ≤ rh.
In addition, there is a constant C > 0 dependent only on µy

r and θ∗r such that
(ii) ‖Xτ − E[Xτ ]‖L4 ≤ C

√
rh.

Moreover, C →∞ as θ∗r → {0, π} or
µy
r → 0.

Proof. The idea of the proof is to combine repeated application of Theorem 6.4.1 with geometric obser-
vations of the situation at hand - specifically, the fact that |Zi| ≤ r means that Xτ can overshoot y = 0
by a distance of at most rh. First, note that since E[τ ] <∞, Wald’s first identity

E[Xτ ] = (nh,mh) + E[τ ](µxh, µyh)

is applicable. This implies that the ray joining (nh,mh) with E[Xτ ] is parallel to the ray from (nh,mh)
to x̂. At the same time, since |Xk+1 −Xk| ≤ rh, it follows that E[Xτ ] “overshoots” x̂ by a distance of
at most rh, from which we immediately have

‖E[Xτ ]− x̂‖ ≤ rh.

This proves the first claim. For the second claim, first note that by (6.4.1), we have

‖Xτ − E[Xτ ]‖L4 ≤ ‖Xτ − E[Xτ ]‖L4 + ‖Yτ − E[Yτ ]‖L4 ≤ ‖Xτ − E[Xτ ]‖L4 + rh, (6.4.3)

where we have used the overshooting observation again to obtain the bound
|Yτ − E[Yτ ]| ≤ rh. Thus it suffices to bound ‖Xτ − E[Xτ ]‖L4 . To do so, we are going to use Theorem
6.4.1. This means we are going to need an estimate for E[τ2], and our first task is to find one. To that
end, first note that for any 1 ≤ p <∞ we have

‖µyτ − µyE[τ ]‖Lp ≤ ‖
τ∑
i=1

Wi − τµy‖Lp + ‖(m+
τ∑
i=1

Wi)− (m+ E[τ ]µy)‖Lp .

The second term on the RHS is exactly 1
h‖Yτ − E[Yτ ]‖Lp , and is bounded above by r since, by our

overshooting observation, Yτ and E[Yτ ] both must lie in the interval [−rh, 0]. For the first term, applying
Theorem 6.4.1 and noting E[|W1|p] ≤ rp gives ‖

∑τ
i=1Wi − τµy‖Lp ≤ (Bp)

1
p rE[τ

p
2 ]

1
p , from which it

follows that
‖τ − E[τ ]‖Lp ≤

1
|µy|

[
(Bp)

1
p rE[τ

p
2 ]

1
p + r

]
≤ 1
|µy|

[(Bp)
1
p + 1]rE[τ

p
2 ]

1
p (6.4.4)

Since τ ≥ 1. Next, we take p = 2 and square both sides to obtain

E[τ2]− E[τ ]2 ≤ 1
|µy|2

[(B2) 1
2 + 1]2r2E[τ ].
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But, since −rh ≤ E[Yτ ] = mh+ E[τ ]µyh ≤ 0, it follows that

E[τ ] ≤ m+ 1
|µy|

≤ 2N
|µy|

= 2
|µy|h

.

After some short algebra this gives

E[τ2] ≤
(

4 + 2[(B2) 1
2 + 1]2r2

µ2
y

)
1

|µy|2h2 .

Next, note that

‖Xτ − E[Xτ ]‖Lp = ‖(nh+ h

τ∑
i=1

Vi − (nh+ E[τ ]µx)‖Lp

≤ h‖
τ∑
i=1

Vi − τµx‖Lp + h|µx|‖τ − E[τ ]‖Lp .

The first term in the RHS we bound with another application of Theorem 6.4.1, together with the
observation E[|V1|p] ≤ rp. For the second term we already have the bound (6.4.4). Together we get

‖Xτ − E[Xτ ]‖Lp ≤
(

(Bp)
1
p + |µx|
|µy|

(1 + (Bp)
1
p )
)
rhE[τ

p
2 ]

1
p .

Setting now p = 4 and applying our bound on E[τ2] gives

‖Xτ − E[Xτ ]‖L4 ≤
[
(B4) 1

4 + |µx|
|µy|

(1 + (B4) 1
4 )
] [

4 + 2(1 + (B2) 1
2 )2 r2

|µy|2

] 1
4 √

rh.

Since rh < 1 it follows that rh <
√
rh. Combining the above bound with (6.4.3) gives

‖Xτ − E[Xτ ]‖L4 ≤ C
√
rh

as claimed, with

C := 1 +
(

(B4) 1
4 + cot(θ∗r)(1 + (B4) 1

4 )
)(

4 + 2(1 + (B2) 1
2 )2 r2

|µy|2

) 1
4

.

Stage 2. The previous stage established quantitative bounds on the rate at which Xτ is concentrating
around its mean, while its mean converges to x̂. The next step is to use the regularity of u0 to express
the rate at which |E[u0(Xτ ) − u0(x̂)]| is tending towards zero in terms of these rates, as well as the
probability of a “rogue” event (which we denote by Ecs) that E[Xτ ] and x̂ each belong to one of the
well behaved sets Ui from Figure 6.4, but Xτ does not. Specifically, our bound will depend on P (Ecs)

1
2 ,

and it was in order to obtain a power of 1
2 that we needed the fourth moment of Xτ - if we had only

the variance, we would end up with a power that depends on the regularity constants 0 ≤ s′ ≤ s. This
is accomplished by the following lemma, which, although we have stated it in a slightly more general
setting with a general random vector X taking values in a general convex set Ω ⊂ R2, general convex sets
{Ui}Mi=1 contained within Ω, a general function u : Ω → R, a general norm ‖X − E[X]‖Lp′ with p′ ≥ 4,
and a general point x̂ ∈ Ω, we will ultimately be applying this lemma only to Xτ , Ω = U , p′ = 4, and
{Ui} and x̂ as described above.
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Lemma 6.4.3. Let Ω ⊂ R2 be convex and suppose u ∈W s′,∞(Ω), and in addition u ∈W s,∞(Ui) (s ≥ s′)
for each of a finite collection of convex sets {Ui}Mi=1 where each Ui ⊆ Ω. Let x̂ ∈ Ω and let X be a random
vector taking values in Ω. Define

1. Cu,Ω := ‖u‖W s′,∞(Ω),

2. Cu,Ω,{Ui} := max
{
‖u‖W s′,∞(Ω), ‖u‖W s,∞(U1), . . . , ‖u‖W s,∞(UM )

}

Then for any p′ ≥ 1 we have

1.

|E[u(X)− u(x̂)]| ≤ Cu,Ω

{
(‖X− E[X]‖Lp′ )s

′∧2 + ‖E[X]− x̂‖s′∧1
}
,

Next, suppose x̂ ∈ Ui, E[X] ∈ Ui for some 1 ≤ i ≤ M . Denote by Es the event that X ∈ Ui as well.
Then for any p′ ≥ 4 such that ‖X− E[X]‖Lp′ ≤ 1 we have

2.

|E[u(X)− u(x̂)]| ≤ Cu,Ω,{Ui}
{

(‖X− E[X]‖Lp′ )
s∧2

+ 2(‖X− E[X]‖Lp′ )
s′∧2P (Ecs)

1
2 + ‖E[X]− x̂‖s∧1},

Proof. First let us define for convenience

x∗ := E[X], x∗Es := E[X|Es], x∗Ecs := E[X|Ecs ].

For both statements, the first step is to divide the expectation into two pieces.

|E[u(X)− u(x̂)]| ≤ |E[u(X)− u(x∗)]|+ |u(x∗)− u(x̂)| := Π1 + Π2.

To prove statement one, we apply the Hölder condition (6.3.8) to find
Π2 ≤ Cu,Ω‖x∗ − x̂‖s′∧1. Hence it suffices to prove Π1 ≤ Cu,ΩE[‖X−E[X]‖p′ ]

s′∧2
p′ . We proceed by cases.

If s′ < 1, then

Π1 ≤ Cu,ΩE[‖X− x∗‖s
′
] ≤ Cu,ΩE[‖X− x∗‖p

′
]
s′
p′ = Cu,ΩE[‖X− x∗‖p

′
]
s′∧2
p′ .

where we have used Jensen’s inequality together with the concavity of x
s′
p′ on [0,∞) for the second

inequality. On the other hand, if s′ ≥ 1, then ∇u exists and by Taylor’s theorem u(X) − u(x∗) =
∇u(z) · (X− x∗) where z = (1− t)x∗ + tX for some t ∈ [0, 1]. Therefore

Π1 = |E[∇u(z) · (X− x∗)]| = |E[(∇u(z)−∇u(x∗)) · (X− x∗)] + E[∇u(x∗) · (X− x∗)]|.

But
E[∇u(x∗) · (X− x∗)] = ∇u(x∗) · E[X− x∗] = ∇u(x∗) · (x∗ − x∗) = 0,
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therefore

Π1 = |E[(∇u(z)−∇u(x∗)) · (X− x∗)]|

≤ E[‖∇u(z)−∇u(x∗)‖‖X− x∗‖]

≤ Cu,ΩE[‖z− x∗‖(s
′−1)∧1‖X− x∗‖]

≤ Cu,ΩE[‖X− x∗‖s
′∧2]

≤ Cu,ΩE[‖X− E[X]‖p
′
]
s′∧2
p′ ,

where we have used the Cauchy-Schwarz inequality on line two, the Hölder condition (6.3.8) together
with the convexity of Ω on line three, the bound
‖z− x∗‖ ≤ ‖X− x∗‖ on line four, and Jensen’s inequality again on line five.

For the second statement, the idea is to split the expectation up as a sum of conditional expectations
conditioning on Es and Ecs , apply the corresponding regularity estimates, and express the results in
terms of the conditional moments of X. Then, using the contractive property of conditional expectation,
namely

E[‖E[X|Y ]‖p
′
] ≤ E[‖X‖p

′
]

valid for all random variables Y adapted to the same sigma algebra as X and all p′ ≥ 1, we can eliminate
the conditional moments. We do not use the contractive property itself, but rather two identities which
may be easily derived from it. In particular, let A ∈ σ(X) and define x∗A = E[X|A]. Then for any p′ ≥ 1

‖x∗A − x∗‖p
′
P (A) ≤ ‖E[X− x∗|A]‖p

′
P (A) + ‖E[X− x∗|Ac]‖p

′
P (Ac) (6.4.5)

= E[‖E[X− x∗|1A]‖p
′
]

≤ E[‖X− x∗‖p
′
],

and a similar manipulation gives

E[‖X− x∗‖p
′
|A]P (A) ≤ E[‖X− x∗‖p

′
]. (6.4.6)

Similarly to part one, we have Π2 ≤ Cu,Ω,{Ui}‖x∗ − x̂‖s∧1, since x∗, x̂ ∈ Ui. It remains to prove

Π1 ≤ Π∗1 := Cu,Ω,{Ui}E[‖X− E[X]‖p
′
]
s∧2
p′

+ 2Cu,Ω,{Ui}E[‖X− E[X]‖p
′
]
s′∧2
p′ P (Ecs)

1
2 .

We split Π1 up as

Π1 = |E[u(X)− u(x∗)]|

= |E[u(X)− u(x∗)|Es]P (Es)

+ E[u(X)− u(x∗)|Ecs ]P (Ecs)|

:= |Π1,1 + Π1,2|

and proceed by cases. First assume 0 ≤ s′ ≤ s < 1. Then, by a manipulation identical to the case s′ < 1
in part one, we have

Π1,1 ≤ Cu,Ω,{Ui}(E[‖X− x∗‖p
′
|Es])

s∧2
p′ P (Es)
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and
Π1,2 ≤ Cu,Ω,{Ui}(E[‖X− x∗‖p

′
|Ecs ])

s′∧2
p′ P (Ecs).

We therefore have

Π1 ≤ Cu,Ω,{Ui}(E[‖X− x∗‖p
′
|Es]P (Es))

s∧2
p′ P (Es)1− s∧2

p′

+ Cu,Ω,{Ui}(E[‖X− x∗‖p
′
|Ecs ]P (Ecs))

s′∧2
p′ P (Ecs)

1− s′∧2
p′

≤ Cu,Ω,{Ui}E[‖X− x∗‖p
′
]
s∧2
p′ + Cu,Ω,{Ui}E[‖X− x∗‖p

′
]
s′∧2
p′ P (Ecs)

1
2

≤ Π∗1.

Where we have used (6.4.6) and p′ ≥ 4 on line three. Next suppose 0 ≤ s′ ≤ 1 but s ≥ 1. Then ∇u exists
on Ui and has norm bounded by Cu,Ω,{Ui}, and hence whenever X ∈ Ui we can find a z = tx∗+(1−t)X ∈
Ui for some t ∈ [0, 1] such that u(X) = ∇u(z) · (X − x∗), by Taylor’s theorem and the convexity of Ui.
Therefore

Π1,1 ≤ |E[(∇u(z)−∇u(x∗)) · (X− x∗)|Es]P (Es)

+ ∇u(x∗) · E[X− x∗|Es]P (Es)|,

For the first term we can apply an argument that is identical to the case s′ ≥ 1 in part one. However,
unlike in part one, the second term does not vanish as our expectation is now conditional. We obtain

Π1,1 ≤ (E[‖X− x∗‖p
′
|Es]P (Es))

s∧2
p′ P (Es)1− s∧2

p′ + ‖∇u(x∗)‖‖x∗Es − x∗‖P (Es)

≤ Cu,Ω,{Ui}E[‖X− x∗‖p
′
]
s∧2
p′ + ‖∇u(x∗)‖‖x∗Ecs − x∗‖P (Ecs)

≤ Cu,Ω,{Ui}E[‖X− x∗‖p
′
]
s∧2
p′ + Cu,Ω,{Ui}E[‖X− x∗‖p

′
]

1
p′ P (Ecs)

1− 1
p′ .

Where we have used the manipulation

x∗EsP (Es) + x∗EcsP (Ecs) = x∗ = x∗P (Es) + x∗P (Ecs)

⇒ (x∗ − x∗Es)P (Es) = (x∗Ecs − x∗)P (Ecs). (6.4.7)

together with (6.4.6) on line two, and (6.4.5) on line three. The final trick is to note that since E[‖X−
x∗‖p′ ] ≤ 1 and s′ ≤ 1, we have E[‖X − x∗‖p′ ]

1
p′ ≤ E[‖X − x∗‖p′ ]

s′∧2
p′ . Hence, bounding Π1,2 in exactly

the same way as in the previous case, we have

Π1 ≤ Cu,Ω,{Ui}E[‖X− x∗‖p
′
]
s∧2
p′ + 2Cu,Ω,{Ui}E[‖X− x∗‖p

′
]
s′∧2
p′ P (Ecs)

1
2 ≤ Π∗1,

where we have used p ≥ 4 again to write P (Ecs)
1
p′ ≤ P (Ecs)

1
2 . Finally, we consider 1 ≤ s′ ≤ s. In this

case ∇u exists everywhere and applying Taylor’s theorem twice we have

Π1 = |E[(∇u(z1)−∇u(x∗)) · (X− x∗)|Es]P (Es)

+ E[(∇u(z2)−∇u(x∗)) · (X− x∗)|Ecs ]P (Ecs)

+ ∇u(x∗) ·
{

(x∗Es − x∗)P (Es) + (x∗Ecs − x∗)P (Ecs)
}
|,︸ ︷︷ ︸

=0 by (6.4.7)
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Figure 6.8: Illustration of the stopped random walk Xτ as well as the subdivision of D into
bands: The inpainting domain D = (0, 1]2 is partitioned into bands {Bi}Mi=1, such that each band
Bi := Π−1

θ∗r
((xi, xi+1] × {0}), where Πθ∗r

is the transport map (6.3.3). With in each band we identify a
subband B̃i, of width dependent on h, such that if Xτ starts in B̃i, then E[Xτ ] ∈ Ui and x̂ ∈ Ui. As
h → 0, the area of Bi\B̃i goes to zero. At the same time we illustrate an example stopped random
walk Xτ started from x (blue curve) as well the relationship between x, E[Xτ ] and x̂ = Πθ∗r

(x). The
orthogonal distances ∆(x) from x to ∂B̃i and δ(Xτ ) from Xτ to the ray from x to x̂ are also illustrated.
Note that x̂ is always on the line y = 0, whereas Xτ and E[Xτ ] will typically overshoot it. However, they
can only overshoot by distance at most rh. That is, Xτ and E[Xτ ] must always sit between the lines
y = −rh and y = 0. Note that Pythagorean theorem implies ∆(x) ≤ 1 regardless of where x is placed in
D and regardless of the number and position of the bands.

where z1 = t1x∗ + (1 − t1)X ∈ Ui, z2 = t2x∗ + (1 − t2)X ∈ Ui for some t1, t2 ∈ [0, 1] (again, by the
convexity of Ui). Applying an argument almost identical to the previous step, we then obtain

Π1 ≤ Cu,Ω,{Ui}(E[‖X− x∗‖p
′
|Es]P (Es))

s∧2
p′ P (Es)1− s∧2

p′

+ Cu,Ω,{Ui}(E[‖X− x∗‖p
′
|Es]P (Ecs))

s′∧2
p′ P (Ecs)

1− s′∧2
p′

≤ Cu,Ω,{Ui}E[‖X− x∗‖p
′
]
s∧2
p′ + Cu,Ω,{Ui}E[‖X− x∗‖p

′
]
s′∧2
p′ P (Ecs)

1
2

≤ Π∗1,

where we have used (6.4.6) and p′ ≥ 4 on line three.

Stage 3. In this stage our objective is to partitionD into a series of bands {Bi}Mi=1 and sub-bands B̃i ⊂ Bi
such that the area of the complement Bi\B̃i goes to zero as h → 0, and such that the starting position
x ∈ B̃i guarantees E[Xτ ] ∈ Ui and x̂ ∈ Ui. Each band Bi is associated with the interval (xi, xi+1]× {0}
(see Figure 6.4 for a reminder of what xi is) and is equal to its inverse image under the transport map
Πθ∗r

: D → (0, 1] × {0} given by (6.3.3). Within each band Bi we define a sub-band B̃i given by the
inverse image of (x+

i , x
−
i+1]×{0} under Πθr , where x+

i := xi+(L+ r)h and x−i+1 := xi+1− (L+ r)h. Note
that the width of B̃i is dependent on h, even though our choice of notation does not make this obvious.
As usual, we denote by Bi,h, B̃i,h the intersection of these bands with Dh. The set B̃i,h is significant
because we know x̂, E[Xτ ] ∈ Ui if x ∈ B̃i,h. This situation is illustrated in Figure 6.8.

Stage 4. In stage two we gave a bound for |E[u0(Xτ )− u0(x̂)]|, valid when E[Xτ ] and x̂ each belong to
one of the well behaved sets Ui, that depends on ‖E[Xτ ] − x̂‖ and ‖Xτ − E[Xτ ]‖Lp′ for p′ ≥ 4, as well
as the probability of the event Ecs , a “rogue” event where even though E[Xτ ] and x̂ each belong to Ui,
the stopped random walk Xτ nevertheless lands outside Ui. In stage three we broke D into a series of
bands {Bi}Mi=1 and sub-bands B̃i ⊂ Bi such that the starting position x ∈ B̃i guarantees E[Xτ ] ∈ Ui and
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x̂ ∈ Ui. We already have bounds on ‖E[Xτ ]− x̂‖ and ‖Xτ −E[Xτ ]‖L4 from stage one. What remains is
to bound P (Ecs). We will accomplish this in two steps using elementary arguments based on martingales
and Azuma’s inequality. In step one, we show that τ is bounded above by a constant (dependent on h)
with a high probability. In step two, we show that so long as τ is smaller than this constant, then Xτ is
unlikely to drift very far from E[Xτ ]. We then put these facts to together to bound P (Ecs).

Step 1. P
(
τ > d 2

|µy|he
)
≤ exp

(
− 1

4 r
|µy|

rh

)
.

Proof. We define
Mk := Yk∧τ − (τ ∧ k)µyh−mh

which the reader may verify is a zero mean martingale with bounded increments

|Mk+1 −Mk| ≤ rh.

Next we note that for any k the following events are equal:

{τ ≥ k} = {Yτ∧k ≥ 0} = {Mk ≥ −(k ∧ τ)µyh−mh} = {Mk ≥ −kµyh−mh}.

Therefore {
τ ≥

⌈
2
|µy|h

⌉}
=
{
M⌈ 2

|µy|h

⌉ ≥ −⌈ 2
|µy|h

⌉
µyh−mh

}
⊆
{
M⌈ 2

|µy|h

⌉ ≥ 1
}

where we have used the inequality

−
⌈

2
|µy|h

⌉
µyh−mh =

⌈
2
|µy|h

⌉
|µy|h−mh ≥ 2−mh ≥ 1.

Noting that M0 = 0 we apply Azuma’s inequality to find

P

(
τ >

⌈
2
|µy|h

⌉)
≤ P

(
M⌈ 2

|µy|h

⌉ ≥ 1
)

≤ exp

− 1
2
⌈

2
|µy|h

⌉
r2h2

 ≤ exp
(
− 1

4 r
|µy|rh

)
.

Step 2. Let ∆(x) denote the orthogonal distance from x to ∂B̃i (see Figure 6.8). Then

P (Ecs) ≤ 3 exp
(
− ∆(x)2

4 r
|µy|rh

)
.

Proof. This time we define
Mk := (Xτ∧k − x) · (− sin θ∗r , cos θ∗r).

Once again, Mk is a zero-mean martingale with bounded increments
|Mk+1 −Mk| ≤ rh obeying M0 = 0. Moreover, if τ ≤ k, then |Mk| has a geometric interpretation as
the orthogonal distance δ(Xτ ) from Xτ to the line passing through the points x and x̂. In addition, we
clearly have Xτ /∈ Ui only if δ(Xτ ) > ∆(x), where ∆(x) denotes the orthogonal distance from x to ∂B̃i.
See Figure 6.8 for an illustration. Hence we have the containment

Ecs ∩ {τ ≤ k} ⊆ {|Mk| > ∆(x)}.
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Applying Azuma’s inequality again gives, for any k ∈ N,

P (|Mk| > ∆(x)) ≤ 2 exp
(
− ∆(x)2

2kr2h2

)
.

At the same time, for any integer k ∈ N we have

P (Ecs) ≤ P (Ecs ∩ {τ ≤ k}) + P (Ecs ∩ {τ > k}) ≤ P (|Mk| > ∆(x)) + P (τ > k).

Taking k = d 2
|µy|he, substituting the above bound as well as the one from Step 1 gives

P (Ecs) ≤ 2 exp
(
− ∆(x)2

4 r
|µy|rh

)
+ exp

(
− 1

4 r
|µy|rh

)
≤ 3 exp

(
− ∆(x)2

4 r
|µy|rh

)
,

since ∆(x) ≤ 1 (this follows trivially from the Pythagorean theorem - see Figure 6.8).

Stage 5. We are now ready to prove our main result, which we do assuming p <∞ (the case p =∞ is
treated as a limit). The idea is to split ‖u− uh‖p, which is defined as a sum over Dh, into separate sums
over the bands {Bi,h} defined in stage three. Within in each band we split further into a sum over B̃i,h
and Bi,h\B̃i,h, that is

‖u− uh‖p = ‖E[u(Xτ )− u(x̂)]‖p

≤
M∑
i=1

{
‖E[u(Xτ )− u(x̂)]1Bi,h\B̃i,h‖p

+ ‖E[u(Xτ )− u(x̂)]1B̃i,h‖p
}
. (6.4.8)

This stage is itself divided into three steps, where first to derive a bound for
‖E[u(Xτ ) − u(x̂)]1Bi,h\B̃i,h‖p, then derive one for ‖E[u(Xτ ) − u(x̂)]1B̃i,h‖p, and then put the bounds
together. Step one is by far the hardest.

Step 1: A bound for ‖E[u(Xτ )− u(x̂)]1Bi,h\B̃i,h‖p.

On each B̃i,h, we can apply our estimate from statement two of Lemma 6.4.3 from Stage 2.

‖E[u(Xτ )− u(x̂)]1B̃i,h‖p ≤ Cu0,U,{Ui}

∥∥∥( {‖Xτ − E[Xτ ]‖L4}s∧2

+ 2 {‖Xτ − E[Xτ ]‖L4}
s′∧2

4 P (Ecs)
1
2

+ ‖E[Xτ ]− x̂‖s∧1
)

1B̃i,h
∥∥∥
p

Substituting in our estimates of ‖Xτ − E[Xτ ]‖L4 and ‖E[Xτ ]− x̂‖ from Stage 1 gives

‖E[u(Xτ )− u(x̂)]1B̃i,h‖p ≤ Cu0,U,{Ui}(C + 1)(rh) s2∧1 + 2(rh) s
′

2 ∧1‖P (Ecs)1B̃i,h‖p,

where we have used rh < 1 to bound (rh)s∧1 ≤ (rh) s2∧1. Our next job is to bound ‖P (Ecs)1B̃i,h‖p,
which we do by applying our bound from stage four and then making an argument based on numerical
quadrature to replace the sum in ‖ · ‖p with an integral that is easier to evaluate. Specifically, let us
define

f(x) = exp
(
−p∆(x)2

4 r
|µy|rh

)
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for convenience (f is one third of the bound on P (Ecs) we derived in stage 4). Then

‖P (Ecs)1B̃i,h‖p ≤ 3‖f(x)1B̃i,h‖p

≤ 3
(∫

B̃i

f(x)dx + max
x∈B̃i

‖∇f(x)‖h+ max
x∈B̃i

|f(x)|h
) 1
p

.

This is because ‖f(x)1B̃i,h‖
p
p can be interpreted as a Riemann sum for

∫
B̃i
f(x)dx. The two error terms

on the left come respectively from the error in the rectangle rule and error in the approximation of our
non-rectangular domain by squares. One may readily show |f(x)| ≤ 1 while

‖∇f(x)‖h ≤ ‖∇f(x)‖rh ≤ e−
1
2 p

1
2√

2 r
|µy|

√
rh.

At the same time, changing coordinates to (u, v) with u parallel to ∂B̃i and v perpendicular one easily
obtains ∫

B̃i

f(x)dx ≤ | csc(θ∗r)|
∫ ∞
−∞

2 exp
(
− pv2

4 r
|µy|rh

)
dv = 4| csc(θ∗r)|

√
πr

p|µy|
(rh) 1

2 ,

where the factor of | csc(θ∗r)| has appeared because this is the length of each side of ∂B̃i (see Figure 6.8).
Putting it together gives

‖P (Ecs)1B̃i,h‖p ≤ Ap(rh)
1
2p ,

where Ap is given by

Ap = 3

1 + e−
1
2 p

1
2√

2 r
|µy|

+ 2| csc(θ∗r)|
√

πr

p|µy|

 1
p

≤ 3

1 + e−
1
2√

2 r
|µy|

+ 2| csc(θ∗r)|
√

πr

|µy|

 e
1
2e := A,

and where we have used 1 ≤ p to pull out a common factor of p 1
2 , applied the bound p

1
2p ≤ e

1
2e , and

noticed that what is left over is maximized at p = 1. Thus we have

‖P (Ecs)1B̃i,h‖p ≤ A(rh)
1
2p ,

where A is a constant depending only on r
|µy| and θ

∗
r . Finally, we obtain the bound

‖E[u(Xτ )− u(x̂)]1B̃i,h‖p ≤ Cu0,U,{Ui}(C + 1)(rh) s2∧1 + 2A(rh)
(
s′
2 + 1

2p

)
∧(1+ 1

2p )

≤ max(Cu0,U,{Ui}(C + 1), 2A)(rh)
s
2∧
(
s′
2 + 1

2p

)
∧1
. (6.4.9)

Step 2: A bound for ‖E[u(Xτ )− u(x̂)]1B̃i,h‖p.

This step is easier. Applying statement one of Lemma 6.4.3 from Stage 2 this time, and substituting in
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our results from stage one as before gives

‖E[u(Xτ )− u(x̂)]1Bi,h\B̃i,h‖p ≤ Cu0,U

∥∥∥( {‖Xτ − E[Xτ ]‖L4}s
′∧2

+ ‖E[Xτ ]− x̂‖s
′∧1
)

1Bi,h\B̃i,h
∥∥∥
p

≤ Cu0,U (C + 1)(rh) s
′

2 ∧1‖1Bi,h\B̃i,h‖p

It remains to bound ‖1Bi,h\B̃i,h‖p. But

‖1Bi,h\B̃i,h‖p = (|Bi,h\B̃i,h|h2)
1
p = (2(L+ r)Nh2)

1
p ≤ 2(L+ 1)(rh)

1
p ≤ 2(L+ 1)(rh)

1
2p ,

hence
‖E[u(Xτ )− u(x̂)]1Bi,h\B̃i,h‖p ≤ 2Cu0,U (C + 1)(L+ 1)(rh)

s′
2 + 1

2p . (6.4.10)

Step 3: Putting the bounds together.

Combining (6.4.8), (6.4.9), and (6.4.10), we at last obtain

‖u− uh‖p ≤ K∗(rh)
s
2∧
(
s′
2 + 1

2p

)
∧1
, (6.4.11)

where K∗ is the constant

K∗ = max(Cu0,U,{Ui}(C + 1), 2A, 2Cu0,U (C + 1)(L+ 1))

which depends only on u0, U , {Ui}, r/|µy|, and θ∗r as claimed. Moreover, K is a monotonically increasing
function of r

|µy| and K
∗ →∞ as θ∗r → 0 or |µy| → 0 as claimed.

Stage 6. The previous five stages all assumed that a∗r ⊆ b−r or a∗r ⊆ b0r so that we could exploit the
connection between Algorithm 1 and stopped random walks. Now all that remains is to generalize to
arbitrary stencils a∗r possibly containing ghost pixels. This follows easily from the idea of equivalent
weights from Section 5.1.

Now assume a∗r is arbitrary. By (6.1.7) we have Supp(a∗r) ⊆ b0r+2, we know that (6.4.11) holds with
r replaced by r+ 2, where u is the solution to the transport equation (6.3.1) with transport direction g∗r
given in terms of Supp(a∗r) and the equivalent weights w̃r. But we have already noted in Definition 6.1.2
that it doesn’t matter whether the center of mass is calculated in terms of the original weights wr and
stencil a∗r , or the equivalent weights w̃r and modified stencil Supp(a∗r). Hence we have

g∗r =
∑

y∈Supp(a∗r) w̃r(0,y)y∑
y∈Supp(a∗r) w̃r(0,y) =

∑
y∈a∗r

wr(0,y)y∑
y∈a∗r

wr(0,y)

as claimed.

We are now almost done. All that remains is some tidying up of the constant in (6.4.11), which we
are forced to do since we had to replace r with r + 2. Specifically, we know

‖u− uh‖p ≤ K
(
r + 2
|µy|

)∗
((r + 2)h)

s
2∧
(
s′
2 + 1

2p

)
∧1

where we have written down the dependence of K∗ on r
|µy| explicitly. Since K∗ increases monotoni-

cally with r
|µy| , and since (·)

(
s′
2 + 1

2p

)
∧1 is itself a monotonically increasing function, we can replace all
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occurrences of r + 2 with 3r. This gives

‖u− uh‖p ≤ 3K
(

3 r

|µy|

)∗
(rh)

s
2∧
(
s′
2 + 1

2p

)
∧1
.

We certainly have K
(

r
|µy|

)∗
≤ 3K

(
3 r
|µy|

)∗
, so we now define

K = 3K
(

3 r

|µy|

)∗
to obtain our final constant that works for both ghost pixels and real pixels.

6.5 Convergence to März’s limit

In the previous section we proved convergence of the inpainted function uh to the fixed ratio continuum
limit u given by the weak solution (6.3.3) to the transport problem (6.3.1), as h→ 0 with r = ε/h fixed.
In [12], März and Bornemann also considered convergence of Algorithm 1 (which they called “the generic
single pass algorithm”) to a continuum limit, under a high resolution and vanishing viscosity double limit
where first h → 0 and then ε = rh → 0. Their limit, which we refer to here as umärz, is also expressed
as the solution to a transport equation, but with different coefficients. As already stated in Section 6.3,
if the additional condition (6.3.6) is satisfied, then we can draw a connection between these limits. We
have also already stated that coherence transport, Guidefill, and semi-implicit Guidefill all satisfy (6.3.6)
and converge to the same limit umärz, in this case with transport direction given by

g∗ =

∫
B−1 (0) w1(0,y)ydy∫
B−1 (0) w1(0,y)dy

where as before B−1 (0) is the unit disk intersected with the lower half plane and w1(0,y) are the weights
(2.5.2) used by all three methods with ε = 1. Note that g∗ depends implicitly on the parameter µ in
the weights (2.5.2). Let us make this explicit for a moment by writing g∗µ in place of g∗. Then, if
g = (cos θ, sin θ) with θ ∈ [0, π) denotes the guidance direction, we have from [12, pg. 14, equation (14)]

lim
µ→∞

θ(g∗µ) =

θ if θ 6= 0
π
2 if θ = 0

(6.5.1)

where θ(g∗µ) denotes as usual the counterclockwise angle that the line
Lg∗µ := {λg∗µ : λ ∈ R} makes with the x-axis. In other words, the continuum limit from [12] predicts no
kinking unless g is exactly parallel to ∂Dh, and moreover, predicts that the three methods listed above
exhibit exactly the same behaviour as µ→∞. This is not what is observed in practice and we will draw
very different conclusions in Section 6.6.2. We have three objectives:

1. To rigorously establish convergence of uh to umärz, which was treated as a “formal limit” in [12],
at least under the simplifying assumptions of Section 6.1. In fact, although umärz was treated as
an iterated double limit in [12], we will see that uh → umärz in the single simultaneous limit where
h → 0 and ε → 0 at the same time, but with a nuance. It is not in general enough that h and ε
separately vanish - in general they do so in such a way that their ratio r = ε/h diverges.

2. To show that for r � 1, the two limits u and umärz are similar, i.e. u→ umärz.
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3. To argue that when r ∈ N is small (say close to r = 5, the recommended default value in [12]),
our limit u typically does a better job of capturing the behaviour of uh than umärz does, i.e.
‖uh − u‖p � ‖uh − umärz‖p.

The following Theorem accomplishes objectives 1-2. Objective 3 is discussed in Remark 6.5.2 and sup-
ported numerically in Section 6.8.

Theorem 6.5.1. Suppose g∗ = limr→∞
g∗r
r exists and converges with rate at least O(r−q) as in (6.3.6),

for some q > 0. Let umärz(x) := u0(Πθ∗(x)) denote the weak solution to the transport equation (6.3.1)
with g∗r replaced by g∗, and Πθ∗ the transport operator defined as in (6.3.3) but with θ∗r = θ(g∗r) replaced
by θ∗ = θ(g∗). Assume h ≤ r−q. Then under the same conditions as in Theorem 6.3.1 we have the bound

‖uh − umärz‖p ≤ K1 · (rh)( s′2 + 1
2p )∧ s2∧1 +K2r

−q{s∧(s′+ 1
p )∧1} (6.5.2)

where K1 > 0, K2 > 0 are constants depending only on θ∗ = θ(g∗), g∗ · e2, u0, U , and {Ui}Mi=1 (where
{Ui}Mi=1 are the sets illustrated in Figure 6.4). Moreover, The dependence on θ∗ and g∗ · e2 is continuous
but K1 and K2 diverge as θ∗ → 0 or θ∗ → π. Additionally, we have

‖u− umärz‖p → 0 as r →∞ (6.5.3)

for all 1 ≤ p <∞ if s′ = 0 and for p =∞ as well if s′ > 0.

Proof. Appendix A.7.

Remark 6.5.2. Theorem 6.5.1 implies our claim in objective one, because the bound (6.5.2) implies that
if ε = rh→ 0 and r →∞, then uh converges to umärz in Lp. This does not, however, mean that r →∞
is required. In Section 6.6.2, we will see that there are many ways for (6.5.3) to be satisfied. We will see
examples where:

• ‖u− umärz‖p → 0 as r →∞, but remains strictly positive for all r.

• ‖u− umärz‖p > 0 for all r < R and then u = umärz for all r ≥ R.

• u = umärz independent of r.

Hence the bound (6.5.2) is not in general tight and r → ∞ is a sufficient but not necessary condition.
This means that our third objective, which is to argue that when r is a small integer then

‖uh − u‖p � ‖uh − umärz‖p

is not in general true. However, numerical experiments in Section 6.8.2 provide strong numerical evidence
that it does hold in many cases. Finally, objective two is clearly implied by (6.5.3).

6.6 Kinking artifacts and the continuum limit

In this section we apply our analysis, in particular Theorem 6.3.1, in order to explain:

1. The kinking artifacts listed in Section 2.2 and illustrated in Figures 2.6, 2.4.

2. The differences between the direct form of Algorithm 1 and its semi-implicit extension in terms of
coping with these artifacts.
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(a) Repeat of the experiment in Figure 2.6 for Guidefill
with r = 3, with Conv(−b̄−r ) superimposed.

(b) Repeat of the experiment in Figure 2.6 for semi-
implicit Guidefill with r = 3, with Conv(−b̄0

r) superim-
posed.

Figure 6.9: Convex hulls and transport directions: An immediate corollary of Theorem 6.3.1 is that
the limiting transport direction g∗r lies in the convex hull of b̄−r for the direct form of Algorithm 1, and
the convex hull of b̄0r for the semi-implicit extension. Since Conv(b̄−r ) contains only a cone of directions
while Conv(b̄0r) contains the full arc from 0 to π, this explains why Guidefill (and more generally all
direct methods of the general form given by Algorithm 1) fails for shallow angles, while this is not true
of the semi-implicit extension. To illustrate this, we have repeated the experiment from Figure 2.6 using
Guidefill (a) and semi-implicit Guidefill (b), while superimposing the sets Conv(−b̄−r ) and Conv(−b̄0r)
respectively (we have negated the sets for convenience which we can do since g∗r and −g∗r define the
same transport equation). Note that in the case of semi-implicit Guidefill, the lines appear to be getting
fainter as θ(g∗r) → 0 and θ(g∗r) → π. This likely has two causes. For one, the angular footprint of the
red dot in Figure 2.6(a), i.e. the width of the dot multiplied by sin θ∗r (which tells you how much of the
dot is “visible” from direction θ∗r) is going to zero. Secondly, we will see in Section 6.7 (see in particular
Figure 6.16) that semi-implicit Guidefill has blur artifacts that become arbitrarily bad as θ(g∗r) → 0 or
θ(g∗r)→ π. Nevertheless, Figure 5.2 demonstrates that semi-implict Guidefill can successfully extrapolate
lines with θ very close to 0 without serious issues of faintness. All parameters are the same as in Figure
2.6.

First we prove a fundamental distinction between the direct form of Algorithm 1 and the semi-
implicit extension. Then we go on to look at the limiting transport directions associated with three
specific methods: coherence transport, Guidefill, and semi-implicit Guidefill.

6.6.1 The direct form Algorithm 1 kinks, the semi-implicit extension need
not

An immediate corollary of Theorem 6.3.1 is that the direct form of Algorithm 1 is limited in terms
of what directions it can extrapolate along, while this is not true of the semi-implicit extension. This
follows from the geometric interpretation of the limiting transport direction g∗r as the center of mass of the
stencil a∗r with the respect to the stencil weights {wr(0,y)/W : y ∈ a∗r}. Specifically, since the original
weights {wr(0,y)

W }y∈a∗r are non-negative and sum to one, by the preservation of total mass (5.1.2) and
inheritance of non-negativity (5.1.4) properties of equivalent weights, the same is true of the equivalent
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weights { w̃r(0,y)
W }y∈Supp(a∗r). Hence

g∗r =
∑

y∈Supp(a∗r)

w̃r(0,y)
W

y ∈ Conv(Supp(a∗r)),

where Conv(Supp(a∗r)) denotes the convex hull of Supp(a∗r). But by (6.1.7) we have

Supp(a∗r) ⊆

b̄−r if we use the direct form of Algorithm 1

b̄0r if we use the semi-implicit extension
(6.6.1)

where b̄0r and b̄−r are the dilated sets defined by (6.1.5) and (6.1.6) respectively. It follows that g∗r has
to lie in the convex hull of b̄−r if the direct form of Algorithm 1 is used, or the convex hull of b̄0r if the
semi-implicit form is used instead. That is

g∗r ∈

Conv(b̄−r ) if we use the direct form of Algorithm 1.

Conv(b̄0r) if we the semi-implicit extension.
(6.6.2)

This in turn immediately implies that if we use the direct form of Algorithm 1, then θ(g∗r) is restricted
to the cone

θc ≤ θ(g∗r) ≤ π − θc (6.6.3)

where
θc = arcsin

(
1
r

)
(6.6.4)

is the smallest possible angle one can make given the restriction (6.6.2), while for the semi-implict method
we have

0 < θ(g∗r) < π (6.6.5)

where the angles θ = 0 and θ = π are omitted not because of the restriction (6.6.2), but because Theorem
6.3.1 does not apply in either case (indeed, the continuum limit u given by (6.3.1) is not even defined).
The cone (6.6.3) is exactly what we saw in Figure 2.6(c). At the same time, the lack of restrictions
implied by (6.6.5) is consistent with our experience in Figures 5.2 and 6.3, where semi-implicit Guidefill
was able to successfully extrapolate lines making an angle as small as 1◦ with the inpainting domain
boundary for r = 3, well under the critical angle θc = arcsin( 1

3 ) ≈ 19.5◦ where standard Guidefill breaks
down. Figure 6.9 illustrates this result.

6.6.2 Limiting Transport Directions for Coherence Transport, Guidefill, and
semi-implicit Guidefill

Here we derive formulas for the limiting transport directions of coherence transport, Guidefill, and semi-
implicit Guidefill in the limit as µ→∞. For convenience, in this section we rescale the limiting transport
direction g∗r by a factor of W =

∑
y∈a∗r

wr(0,y), giving

g∗r =
∑

y∈a∗r

wr(0,y)y. (6.6.6)

This is more convenient to work with and defines the same transport equation. In fact, the ability to
rescale g∗r by any λ 6= 0 without changing the underlying transport equation is a tool that we will use
repeatedly in our arguments throughout this section. To make the dependence of the transport direction
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(a) Coherence transport, r = 3. (b) Coherence transport, r = 5.

(c) Guidefill, r = 3. (d) Guidefill, r = 5.

(e) Semi-implicit Guidefill r = 3. (f) Semi-implicit Guidefill r = 5.

Figure 6.10: Limiting transport direction θ∗r = θ(g∗r) as a function of the guideance direction
θ = θ(g) for the three main methods: The theoretical limiting curves θ∗r = F (θ) obtained for
coherence transport (a)-(b), Guidefill (c)-(d), and semi-implicit Guidefill (e)-(f). The desired curve F (θ) =
θ is highlighted in red. Coherence transport exhibits a staircase pattern with F (θ) 6= θ for all but finitely
many θ, Guidefill obeys F (θ) = θ for all θ ∈ (θc, π − θc) where θc is the critical angle (6.6.4), and
semi-implicit Guidefill obeys F (θ) = θ for all θ 6= 0.
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on µ explicit, within this section we write this direction as g∗r,µ, and define

g∗r := lim
µ→∞

g∗r,µ.

In order to resolve the ambiguity that g∗r and −g∗r define the same transport equation, we will frequently
be taking angles modulo π. This is reflected in the definition we have selected for θ(v) - recall that this
refers to the angle that the line Lv = {λv : λ ∈ R} makes with the x-axis, and hence always lies in the
range [0, π). We define g = (cos θ, sin θ), θ∗r,µ := θ(g∗r,µ), θ∗r := θ(g∗r) and consider the function θ∗r = F (θ).
Our main concern is to determine when θ∗r = θ (no kinking) and when θ∗r 6= θ (kinking). Results are
illustrated in Figure 6.10.

Coherence Transport. We have already stated in Section ?? and illustrated in Figure 2.6 that
coherence transport in the limit µ → ∞ kinks unless g = λv for some v ∈ Bε,h(0) and some λ ∈ R.
Under the assumptions of Section 6.1, a more precise statement is that coherence transport in the limit
µ→∞ fails to kink if and only if g = λv for some v ∈ b−r and λ ∈ R. Before we prove this, let us make
some definitions. We define the angular spectrum of b−r as

Θ(b−r ) := {θ1, θ2, . . . , θn : each θi = θ(y) for some y ∈ b−r }. (6.6.7)

In other words, Θ(b−r ) is the collection of angles modulo π that are representable using members of b−r
(or which elements of the projective space RP1 are representable, to be more mathematically precise),
see Figure 6.11 for an illustration. The angular spectrum may be similarly defined in the obvious way
for more general sets, and we do so in Appendix A.8. We will show that for coherence transport, when
0 < θ < π, we either have

θ∗r ∈ Θ(b−r ) or θ∗r = θi + θi+1

2 for two consecutive θi, θi+1 ∈ Θ(b−r ).

To begin, note that in this case (6.6.6) becomes

g∗r,µ :=
∑

y∈b−r

e−
µ2

2r2
(y·g⊥)2 y

‖y‖ ,

where b−r is the discrete half ball (6.1.4). Denote by Ψ the set of minimizers of |y ·g⊥| for y ∈ b−r , meaning
that |y · g⊥| := ∆ ≥ 0 for all y ∈ Ψ and |y · g⊥| > ∆ for all y ∈ b−r \Ψ. After rescaling by e

µ2

2r2
∆2

, the
transport direction g∗r,µ becomes

g∗r,µ =
∑
y∈Ψ

y
‖y‖ +

∑
j∈b−r \Ψ

e−
µ2

2r2 {(y·g⊥)2−∆2} y
‖y‖

→
∑
y∈Ψ

y
‖y‖ as µ→∞. (6.6.8)

Note that |y · g⊥| represents the distance from the point y to the line through the origin Lg. Thus
computing the set Ψ is equivalent to finding the set of points in b−r closest to a given line through the
origin. In Appendix A.8 we prove that as θ sweeps out an arc from 0 to π, for all but finitely many θ the
set Ψ is a singleton, containing a sequence of lone minimizers that we enumerate (in order of occurrence)
as y1,y2, . . .yn′ (for some finite n′). Now, it turns out that n′ = n and moreover for every θi ∈ Θ(b−r )
we have

θi = θ(yi)

119



Figure 6.11: Illustration of the angular spectrum: The angular spectrum Θ(b−r ) tells us which angles
(modulo π), are representable using elements of b−r . Here we have illustrated Θ(b−r ), measured in degrees,
for r = 1, 2, . . ..

(a) (b)

Figure 6.12: Closest points and shallowest angles: We claim that the closest point in the set b−r ⊂ Z2

to a given line Lg (g = (cos θ, sin θ)) is always one of the two points casting the shallowest angle with Lg
on either side, as illustrated in (a) for θ = 53◦, r = 4. This statement does not hold if b−r is replaced with
a generic A ⊂ Z2, as demonstrated by the counterexample A = {(1, 2), (4, 6), (6, 4)} and θ = 45◦ in (b).

(Appendix A.8, Proposition A.8.3). In other words, we have a 1-1 correspondence between (singleton)
minimizers of |y · g⊥| and the angular spectrum Θ(b−r ). Moreover, it can be shown that if θi < θ < θi+1

for some θi, θi+1 ∈ Θ(b−r ), then either Ψ = {yi} (for θ close to θi) or Ψ = {yi+1} (for θ close to θi+1) or
Ψ = {yi,yi+1} if θ = θi,i+1, where θi,i+1 ∈ (θi, θi+1) is a critical angle given by

θi,i+1 = θ(yi + yi+1) for 1 ≤ i ≤ n− 1.

For convenience, we also define θ0,1 = 0 and θn,n+1 = π. Since one can also prove Ψ = {y1} for
0 := θ0,1 < θ < θ1 and Ψ = {yn} for θn < θ < θn,n+1 := π, with this notation we have the general result

Ψ =


{yi} if θi < θ < θi,i+1 for some i = 1, . . . , n

{yi,yi+1} if θ = θi,i+1 for some i = 1, . . . , n− 1

{yi+1} if θi,i+1 < θ < θi+1 for some i = 0, . . . , n− 1
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(Appendix A.8, Proposition A.8.4 - note that we have carefully excluded θ0,1 := 0 and θn,n+1 = π from
the middle case). In words, this means that the element(s) of b−r closest to the line Lg are also the
member(s) of b−r that cast the shallowest angles with Lg from above and below. This statement is not
true if b−r is replaced with a generic subset of Z2 - see Figure 6.12. The remaining cases are θ = θi ∈ Θ(b−r )
and θ = 0. We deal with the former first - in the first case we have

Ψ = {y ∈ b−r : θ(y) = θi},

a set containing up to r members, all of which are parallel to each other and to g. In order to make these
ideas more concrete, Example 6.6.1 gives explicit expressions for Θ(b−r ) and Ψ in the case r = 3. Also, in
Appendix A.8 Remark A.8.7, we give an algorithm for computing Θ(b−r ) and Y (b−r ) := {y1,y2, . . . ,yn}
for any r.

Example 6.6.1. When r = 3 we have

Θ(b−3 ) := {θ1, θ2, θ3, θ4, θ5, θ6, θ7}

= {arctan(1/2), π4 , arctan(2), π2 ,
π

2 + arctan(1/2), 3π
4 ,

π

2 + arctan(2)}.

For 0 < θ ≤ π
2 , (we omit π

2 < θ < π for brevity) the set of minimizers Ψ is given by

Ψ =



{(−2,−1)} := {y1} if 0 < θ < θ1,2.

{(−2,−1), (−1,−1)} := {y1,y2} if θ = θ1,2.

{(−1,−1)} := {y2} if θ1,2 < θ < θ2.

{(−1,−1), (−2,−2)} := {y2, 2y2} if θ = θ2.

{(−1,−1)} := {y2} if θ2 < θ < θ2,3.

{(−1,−1), (−1,−2)} := {y2,y3} if θ = θ2,3.

{(−1,−2)} = {y3} if θ2,3 < θ < θ3,4.

{(−1,−2), (0,−1)} = {y3,y4} if θ = θ3,4.

{(0,−1)} := {y4} if θ3,4 < θ < θ4.

{(0,−1), (0,−2), (0,−3)} := {y4, 2y4, 3y4} if θ = θ4.

where θ0,1 = 0, θ1,2 = arctan(2/3), θ2,3 = arctan(3/2), θ3,4 = arctan(3).

When Ψ is a singleton set, that is Ψ = {yi} for some 1 ≤ i ≤ n, (6.6.8) becomes g∗r = yi
‖yi‖ and we have

θ(g∗r) = θ

(
yi
‖yi‖

)
= θi

On the other hand, if θ = θi ∈ Θ(b−r ), g∗r is a sum of vectors all parallel to one another and to g, and we
get θ∗i = θi again. This is the lone case in which coherence transport doesn’t kink. Next, at the transition
angles θi,i+1 where Ψ = {yi,yi+1}, we have g∗r = yi

‖yi‖ + yi+1
‖yi+1‖ , so that

θ(g∗r) = θ

(
yi
‖yi‖

+ yi+1

‖yi+1‖

)
= θi + θi+1

2 ,

where we have used the observation (proved in Appendix A.8, Observation A.8.5) that θ(v + w) =
θ(v)+θ(w)

2 holds for all unit vectors v,w ∈ S1. Finally, suppose θ = 0. Here we have Ψ = {(i,−1) :
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−r + 1 ≤ i ≤ r − 1}, giving
g∗r = e2 for θ = 0

after rescaling. In summary, for θ ∈ [0, π) we then have

θ∗r =


π
2 if θ = 0

θi if θi−1,i < θ < θi,i+1 for some i = 1, . . . n
θi+θi+1

2 if θ = θi,i+1 for some i = 1, . . . n

(6.6.9)

See Figure 6.10(a)-(b) for an illustration of (6.6.9) for r = 3 and r = 5. In Appendix A.8, Corollary A.8.6
we prove a generalization of this result that applies if, for example, the discrete ball used by coherence
transport is replaced with a discrete square.

Remark 6.6.2. Since θ∗r = θ if and only if θ ∈ Θ(b−r ), and since the latter is generated by vectors with
integer coordinates, it follows that for fixed θ = arctan(x), we have θ∗r = θ for all r sufficiently large if x
is rational and θ∗r 6= θ for all r if x is irrational. In light of (6.5.1) and Theorem 6.5.1, this means that
in the former case we have u = umärz for all r sufficiently large, but in the latter case ‖u−umärz‖p → 0
for all 1 ≤ p <∞, but we always have u 6= umärz for generic boundary data u0.

Guidefill. In this case (6.6.6) becomes

g∗r,µ :=
∑

y∈b̃−r

e−
µ2

2r2
(y·g⊥)2 y

‖y‖ ,

where b̃−r is given by (6.1.4). It is useful to patition b̃−r into a disjoint union of sets `−k such at each `−k is
the collection of points in b̃−r distance k from the line Lg = {λg : λ ∈ R}, that is

`−k = {ng +mg⊥ ∈ b̃−r : m = ±k}.

Since the weights (2.5.2) exponentially decay with distance from Lg, then so long as `−0 is non-empty, we
expect the contribution of the other `−k to vanish. For Guidefill, `−0 can be explicitly parametrized as

`−0 := {ng ∈ b̃−r : ng · e2 ≤ −1}

= {ng : n = −r, . . . ,−dcsc θe}.

For `−0 to be non-empty, we need dcsc θe ≤ r, which occurs only if θc ≤ θ ≤ π − θc, where θc is the same
critical angle (6.6.4) from Section 6.6.1. If `−0 6= ∅, we have

g∗r,µ =
∑

y∈`−0

y
‖y‖ +

r∑
k=1

∑
y∈`−

k

e−
µ2

2r2
k2‖g‖2 y

‖y‖

→
∑

y∈`−0

y
‖y‖ as µ→∞.

=
−dcsc θe∑
n=−r

ng

= g after rescaling.

Hence we transport in the correct direction in this case.
One the other hand, if `−0 = ∅ but θ 6= 0, then the weights (2.5.2) concentrate all their mass into `−1 ,
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with all other `−k vanishing. Unfortunately, unlike `0, the set `−1 is not parallel to g so we expect kinking
in this case. In general `−1 can consist of two parallel components on either side of `−0 . But in this case,
since `−0 lies entirely above the line y = −1, we know `−1 consists of just one component and we can write
it explicitly as

`−1 = {ng− sgn(cos θ)g⊥ : n = −r + 1, . . . ,−1}

(remember that g⊥ denotes the counterclockwise rotation of g by 90◦). After rescaling by e
µ2

2r2
‖g‖2 we

obtain

g∗r,µ =
∑

y∈`−1

y
‖y‖ +

r∑
k=2

∑
y∈`−

k

e−
µ2

2r2
(k2−1)‖g‖2 y

‖y‖

→
∑

y∈`−1

y
‖y‖ as µ→∞.

=
( −1∑
n=−r+1

n√
1 + n2

)
g− sgn(cos θ)

( −1∑
n=−r+1

1√
1 + n2

)
g⊥

= g + sgn(cos θ)αrg⊥ after rescaling.

where

αr =
∑r−1
n=1

1√
1+n2∑r−1

n=1
n√

1+n2

.

Finally, if θ = 0 we have b̃−r = b−r and we obtain g∗r = e2 as for coherence transport. Defining ∆θr =
arctan(αr), for θ ∈ [0, π) we obtain

θ∗r =



π
2 if θ = 0

θ + ∆θr if 0 < θ < θc

θ if θc ≤ θ ≤ π − θc
θ −∆θr if π − θc < θ < π.

(6.6.10)

In other words, aside from exceptional case θ = 0, we have θ∗r = θ for the “well behaved” range of values
θc ≤ θ ≤ π − θc, but θ∗r jumps by a constant angle ∆θr near θ = 0 and θ = π. The first few values of
∆θr are ∆θ3 ≈ 35.8◦, ∆θ4 ≈ 30.0◦, ∆θ5 ≈ 25.9◦. See Figure 6.10(c)-(d) for an illustration of (6.6.10) for
r = 3 and r = 5.

Remark 6.6.3. Since θc = arcsin(1/r) → 0 as r → ∞, it follows that for each fixed θ ∈ (0, π) we have
θ∗r = θ and hence u = umärz for all r sufficiently large. On the other hand, since θc > 0, αr > 0 for all
r, we never have θ∗r = θ independent of θ for any fixed r. There are always angles we can’t reach.

Semi-implicit Guidefill. The analysis of semi-implicit Guidefill is the same as for Guidefill except
that the set b̃−r is replaced by b̃0r. Defining `0k as the collection of points in b̃0r distance k from the line
Lg = {λg : λ ∈ R} as before, we find that in this case

`00 := {ng ∈ b̃r : ng · e2 ≤ 0}

is never empty. In fact, for 0 ≤ θ < π we have

`00 =

{ng : −r ≤ n ≤ −1} if 0 < θ < π

{ng : −r ≤ n ≤ r, n 6= 0} if θ = 0.
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If θ > 0, we proceed as before and find

g∗r,µ =
∑
y∈`00

y
‖y‖ +

r∑
k=1

∑
y∈`0

k

e−
µ2

2r2
k2‖g‖2 y

‖y‖

→
∑
y∈`00

y
‖y‖ as µ→∞.

=
−1∑

n=−r
ng

= g after rescaling.

However, if θ = 0, this argument doesn’t work because the elements of `00 all cancel each other out. In
fact, in this case we have

g∗r,µ =
∑
y∈`00

y
‖y‖︸ ︷︷ ︸

=0

+
∑

y∈b−r

e−
µ2

2r2
(y·g⊥)2 y

‖y‖︸ ︷︷ ︸
the g∗r,µ from coherence transport.

.

Hence, in this case g∗r = e2 yet again, just like for Guidefill and coherence transport. In general, for
0 ≤ θ < π, we have

θ∗r =

π
2 if θ = 0

θ if 0 < θ < π
(6.6.11)

In other words, semi-implicit Guidefill kinks only if g is exactly parallel to boundary of the inpainting
domain. See Figure 6.10(e)-(f) for an illustration of (6.6.11) for r = 3 and r = 5 (the curves are of course
the same, since (6.6.11) is independent of r).

Remark 6.6.4. In contrast to Guidefill and coherence transport, (6.6.11) tells us that for semi-implicit
Guidefill in the limit µ → ∞ we have θ∗r = θ for all θ ∈ (0, π), independent of r. This is in fact exactly
the same prediction (6.5.1) (albeit under stronger simplifying assumptions) that März and Bornemann
obtained for coherence transport in their own continuum limit umärz as µ →∞ (6.5.1). So in this case
we have u = umärz independent of r. We have in some sense come full circle - the original predictions
of [12] for coherence transport under their high resolution and vanishing viscosity limit are the same as
ours for semi-implicit Guidefill under our fixed ratio limit.

6.7 Asymptotic limit and blur

In this section we utilize the connection between Algorithm 1 and stopped random walks to explore
the origins of blur artifacts. The main idea is that the continuum limit studied in Theorem 6.3.1 -
while useful for studying kinking artifacts - is inadequate for studying blur. For the latter, one instead
needs to consider an asymptotic limit where h is very small but still non-zero. This is accomplished by
leveraging a central limit theorem for the type of stopped random walk relevant to us, which states that
a suitably rescaled version of our stopped random walk (or more precisely, its x-coordinate) is converging
in distribution to a standard normal distribution as h→ 0. Since we have the identity

uh(x) =
∑

y∈Uh

ρXτ (y)u0(y), (6.7.1)
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this suggests that uh can be related to a mollified version of u0, with a Gaussian mollifier. This idea is
made precise in Conjecture 6.7.1, and is supported by numerical experiments (Figures 6.13 and 6.15).
However, because the central limit theorem we utilize gives no rates of convergence, Conjecture 6.7.1
remains a conjecture - its rigorous proof will be the subject of future work. Before elaborating on these
ideas, we first provide some motivation with a closer look at our Lp convergence rates from Theorem
6.3.1, and a case in which they can be tightened - what we call degenerate stencils. If Conjecture 6.7.1
is true, then degenerate stencils give a sufficient condition under which blur artifacts can be avoided.
However, they also tend to increase kinking artifacts, so there is an apparent trade-off (recall from Figure
2.4 that coherence transport kinks but doesn’t blur, while Guidefill blurs but doesn’t kink).

6.7.1 Degerate stencils and Lp convergence rates

The first clue that blur artifacts might be present in uh comes from Theorem 6.3.1, where we see con-
vergence to u in Lp for every p ∈ [1,∞) but not necessarily in L∞. This is consistent with blur that is
present for every h > 0 but becomes less and less pronounced as h→ 0. A clue that these artifacts might
be in some cases be avoidable comes from the fact that if the stencil weights put all of their mass into a
single y ∈ a∗r (we call such weights degenerate), as occurs in coherence transport with g = (cos θ, sin θ)
for all but finitely many θ (Section 6.6.2), then the bounds in Theorem 6.3.1 can be tightened. This is
because the random walk Xτ has become deterministic. All terms related to variances or probabilities
are killed off, and the bound immediately changes to

‖u− uh‖p ≤ K(rh)s∧(s
′+ 1

p )∧1. (6.7.2)

In some cases, dependent on the boundary data u0 : Uh → Rd, it is even possible to prove convergence in
L∞ for u0 with jump discontinuities.

6.7.2 An asymptotic limit for Algorithm 1

The ideas in this section rely on the book [32], which covers the asymptotic distribution functions of
certain stopped random walks. Recall that we have the identity (6.7.1), where ρXτ

is the probability
density function of the stopped random walk Xτ = x + h

∑j
i=1 Zi. The steps {Zi} = {(Vi,Wi)} are i.i.d.

and take values in Supp(a∗r) ⊆ b̄−r (if we use the direct version of Algorithm 1) or Supp(a∗r) ⊆ b̄0r (if we
use the semi-implicit extension) with probability density

P (Zi = y) = w̃r(0,y)
W

, (6.7.3)

where w̃r are the equivalent weights defined in Section 5.1. Denote the mean of Zi := (Vi,Wi) by (µx, µy)
and let τ given by (6.3.11) be the first passage time through y = 0. The bound µy < 0 is guaranteed
(otherwise, the transport equation (6.3.1) is not well posed), and hence Xτ has negative drift in the
y-direction. As we have already stated in Section 6.3, this type of random walk is well understood [32,
Chapter 4], [33], [31], [30]. The way to understand blur artifacts is to recognize that ρXτ

is a mollifier
of sorts and moreover, because these types of stopped random walks obey a central limit theorem [32,
Chapter 4, Theorem 2.3], ρXτ

is asymptotically approaching a Gaussian mollifier. In fact, if Conjecture
6.7.1 is correct, then the precise form of mollification is identical to the definition of discrete mollifaction
presented in applications such as [47, Section 3], in the context of stabilizing noisy data for the purposes
of numerical differentiation, and in [9] for more general applications. The mollifier is also equivalent to
the one proposed in [47, Section 2].
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(a) Original inpainting problem. D =
[0, 1]2 is 200 × 200px and shown in
yellow.

(b) Inpainting with Guidefill, µ =
100, r = 3, g = e2.

(c) Inpainting with Guidefill, µ =
100, r = 3, g = e1.

(d) Slice of the result from (c) at y = 0.1, compared
with the theoretical curve from Conjecture 6.7.1.

(e) Slice of the result from (c) at y = 1.0, compared
with the theoretical curve from Conjecture 6.7.1.

Figure 6.13: Transport is not the whole story: In this experiment, the problem shown in (a) of
inpainting D = [0, 1]2 (200×200px) given data on [0, 1]× [−0.3, 0) is solved using Guidefill with µ = 100,
r = 3 and g = (cos θ, sin θ) for θ = π

2 (b) and θ = 0 (c). Theorem 6.3.1 and the subsequent analysis of the
limiting transport direction for Guidefill in Section 6.6.2 (Figure 6.10 and (6.6.10)) suggests that these
two situations are in some sense the same, as they are both converging to the same transport equation
(6.3.1) with the same transport direction g∗r = e2. However, one case yields a clean extrapolation while
the other suffers from heavy blur. This means the continuum limit of Algorithm 1 presented in Theorem
6.3.1, while useful, is inadequate for studying blur artifacts. Instead of a continuum limit, Conjecture
6.7.1 proposes an asymptotic limit where h is very small but non-zero. As we illustrate here, this limit
is able to make quantitative predictions that are in excellent agreement with blur artifacts measured
in practice. In (c)-(d) we compare horizontal slices of (c) at y = 0.1 and y = 1 respectively with the
predictions of Conjecture 6.7.1. In this case the predictions are accurate to within an error of 1/255, the
minimum increment of an image on our machine.
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(a) (b)

(c) (d)

Figure 6.14: Signal degradation and Lp convergence of Guidefill: The continuum problem of
inpainting the line tan(73◦) − 0.1 ≤ y ≤ tan(73◦) + 0.1 with image domain Ω = [−1, 1] × [−0.5, 0.5]
and inpainting domain D = [−0.8, 0.8]× [−0.3, 0.3] is rendered at a variety of resolutions and inpainted
each time using Guidefill. Examining cross-sections of uh at y = 0.3 (on the boundary of Dh), y = 0.25
(just inside), and y = 0 (in the middle of Dh) we notice a gradual deterioration of the initially sharp
signal. If Conjecture 6.7.1 is correct, then this deterioration is to be expected, as uh(x) is related to
a mollified version of u0 with a Gaussian mollifier gσ(h). This does not contradict our Lp convergence
results in Theorem 6.3.1, since σ(h) → 0 as h → 0 (it does, however, shed some light on why Theorem
6.3.1 can establish convergence in Lp for every p < ∞ but not in L∞ in general). Here we see directly
how decreasing h leads to less and less loss of signal. Another perspective is that since Guidefill is based
on iterated bilinear interpolation, we should expect this effect as iterated bilinear interpolation is known
to lead to signal degradation [57, Sec. 5]. However, despite this we have less degradation in higher
resolution images, even though we have applied more bilinear interpolation operations.
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(a) Original inpainting problem (Dh in yellow). (b) Inpainted using semi-implicit Guidefill with peri-
odic boundary conditions.

(c) Boundary data at y = 0. (d) y = tan(10◦) ≈ 0.18.

(e) y = 2 tan(10◦) ≈ 0.35. (f) y = 3 tan(10◦) ≈ 0.53.

Figure 6.15: Numerical evidence for Conjecture 6.7.1: Similarly to Figure 6.13, here we consider
again the problem of inpainting D = [0, 1]2 given data on [0, 1]× [−0.3, 0). This time u0 consists of a line
making a an angle of 10◦ with the horizontal, but the slice u0(x, 0) is the same step as in Figure 6.13. This
time Dh is 1000 × 1000px. Inpainting is done using semi-implicit Guidefill (r = 3, g = (cos 10◦, sin 10◦)
µ = 100). In (c) we show the initially sharp signal at y = 0, while (d)-(f) compare horizontal slices
at y = tan(10◦) ≈ 0.18, y = 2 tan(10◦ ≈ 0.35 and y = 3 tan(10◦) ≈ 0.53 with the predictions of
Conjecture 6.7.1. Even though in this case u0 is not independent of y, we ignore this and use (6.7.4) for
our predictions, once again obtaining a very good prediction. Compared with Figure 6.13, notice that
despite the fact that h has decreased by an order of magnitude, our loss of signal is much more rapid.
This is consistent with the divergence σ(h)→∞ as θ → 0 we will encounter later in Figure 6.16.
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Conjecture 6.7.1. Let the inpainting domain D and undamaged area U , as well as their discrete coun-
terparts Dh, Uh be as described in Section 6.1. Let u0 : U → Rd denote as usual the undamaged portion of
the image, and assume u0 is non-negative and bounded, that is, there is an M > 0 such that 0 ≤ u0 ≤M
on U . Suppose we inpaint Dh using Algorithm 1 or its semi-implicit extension, and denote the result
by uh : Dh → Rd. Assume the assumptions of Section 6.1 hold and let a∗r denote the stencil of our
inpainting method. Let Zi = (Vi,Wi) taking values in Supp(a∗r) with mean (µx, µy) denote the increments
of the random walk described above, with probability density given by (6.7.3). Let Πθ∗r

: D → ∂D denote
the transport operator defined in (6.3.3) (recall that that the transport direction g∗r obeys g∗r = (µx, µy)).
Then, if u0 : U → Rd is independent of its y-coordinate, we have as h→ 0

uh(x, y) = (u0

∣∣∣
y=0
∗ gσ(h))(Πθ∗r

(x, y)) + o(1) (6.7.4)

where u0

∣∣∣
y=0
∗ gσ(h) denotes the discrete mollification of u0

∣∣∣
y=0

with mollifier gσ(h) defined for any
x ∈ (0, 1] by (

u0

∣∣∣
y=0
∗ gσ(h)

)
(x) :=

N∑
i=1

[∫ ih

(i−1)h
gσ(h)(x− t)dt

]
u0

∣∣∣
y=0

(ih).

and where gσ(h) is a one dimensional Gaussian kernel with h-dependent variance given by

σ(h)2 = γ2yh

|µy|3
where γ2 = Var(µxW1 − µyV1) (6.7.5)

Moreover, for general u0 we have as h→ 0

uh(x, y) = (ũ0 ∗ gσ(h))(Πθ∗r
(x, y)) + o(1), (6.7.6)

where ũ0 : ∂Dh → Rd obeys ũ0(ih) =
∑0
j=−r−1 αj(x)u0(ih, jh) where for each (ih, 0) ∈ ∂Dh we have

0 ≤ αj(ih) ≤ 1 and
∑0
j=−r−1 αj(ih) = 1 (in other words, for each ih, ũ0(ih) is a convex combination of

u0(ih, 0) and the r + 1 pixels directly below it).

Proof Idea: Although proving this conjecture is beyond the scope of our current work, we briefly sketch
how a proof might go and where the technical challenges arise. First, note that it suffices to prove claim
two, as the first claim is then a special case. Our first job is to define ũ0. To that end, note that

uh(x, y) =
N∑
i=1

0∑
j=−r−1

ρXτ
(ih, jh)u0(ih, jh)

=
N∑
i=1

ρXτ (ih)
0∑

j=−r−1
ρYτ |Xτ (jh|ih)u0(ih, jh)︸ ︷︷ ︸

:=ũ0(ih)

.

This definition of ũ0 obeys the claimed properties since αj(ih) := ρYτ |Xτ (jh|ih) obeys 0 ≤ αj(ih) ≤ 1
and

∑0
j=−r−2 αj(ih) = 1 for all i = 1, . . . N as claimed. Next, define x̂(x, y) := Πθ∗r

(x, y) for convenience.
Fix y > 0 . Our goal is to show that for any ε > 0 for h sufficiently small we have

|uh(x, y)− (ũ0 ∗ gσ(h))(x̂(x, y))| < ε.
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To that end, note that

|uh(x, y)− (ũ0 ∗ gσ(h))(x̂(x, y))| =

∣∣∣∣∣
N∑
i=1

ũ0(ih)
[
ρXτ (ih)−

∫ ih

(i−1)h
gσ(h)(x̂− t)dt

]∣∣∣∣∣ . (6.7.7)

It follows from [32, Chapter 4, Theorem 2.3] that

ρXτ (ih)−
∫ ih

(i−1)h
gσ(h)(x̂− t)dt→ 0

as h → 0, at a rate independent of ih = x. However, unfortunately, no quantitative rate of convergence
is given - without this we cannot prove that the RHS of (6.7.7) goes to 0 (since the number of terms
in the RHS diverges to infinity as h → 0 while the terms themselves shrink to 0, a convergence rate is
needed to quantify the balance between these competing effects). In the future, we hope to derive rates
ourselves, so that we can upgrade Conjecture 6.7.1 to a theorem.

Remark 6.7.2. Conjecture 6.7.1 says that uh(x, y), which we already know from Theorem 6.3.1 converges
as h→ 0 to the solution of the transport equation (6.3.1), can also be viewed asymptotically for small but
non-zero h as a solution to the same transport equation but where the boundary data has been mollified
by a Gaussian kernel gσ(h). Moreover, the degree of mollification (6.7.5) increases as we move further
into the inpainting domain (that is, σ(h) increases) and decreases as h→ 0 (σ(h) decreases). In fact, we
have already observed in Figure 6.7 that gσ(h) is converging as h→ 0 to a Dirac delta distribution.

6.7.3 Angular dependence of blur artifacts

Conjecture 6.7.1 proposes an asymptotic relationship between uh(x, y) and the convolution of u0(x, 0) with
a Gaussian kernel of h-dependent variance σ(h)2 given by (6.7.5). Although currently only a conjecture
and valid only valid asymptotically as h → 0, Figures 6.13 and 6.15 suggest that the conjecture is not
only valid but gives an extremely good approximation even for very small images (The example in Figure
6.13 is only 200× 200px). Conjecture 6.7.1 has three takeaway messages:

• Blur gets worse as one moves further into the inpainting domain and (e.g. y increases) - Figures
6.13 and 6.15.

• Blur gets better as h→ 0 - Figure 6.14.

• Blur is non-existent if the stencil weights are degenerate - that is, put all of their mass into a single
real pixel y (since in this case Zi is deterministic and all variances are 0).

All three of these observations are consistent with experience. The third point in particular explains why
coherence transport, which has a degenerate stencil in the limit µ→∞ for all but finitely many θ = θ(g)
(Section 6.6.2), does not appear to suffer from blur artifacts at all, e.g. Figure 2.4. However, it also
predicts that for those few special angles where coherence transport puts its mass into more than one
y ∈ b−r , it will blur just like everything else (experiments, which we omit for the sake of space, confirm
this).
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Figure 6.16: Angular variation of blurring artifacts: Here we plot the angular dependence of the
variance σ2(h) from the asymptotic blur kernel gσ(h) in Conjecture 6.7.1, for the three methods coherence
transport, Guidefill, and semi-implicit Guidefill. We fix with r = 3, take µ→∞, vary g = (cos θ, sin θ),
and plot σ2(h) as a function of θ. We fix y = 1 and h = 0.01. Note that for coherence transport,
σ2(h) = 0 for all but finitely many angles, explaining the methods apparent lack of blur artifacts (Figure
2.4). These special angles correspond precisely to the jumps in Figure 6.10(a), where coherence transport
puts its mass into more than one y ∈ b−r (Section 6.6.2). Note also that while σ(h)2 remains bounded for
Guidefill, for the semi-implicit extension it grows arbitrarily large as θ → 0 or θ → π. Note also that all
three methods agree at θ = 0 and θ = π, just like they did in Section 6.6.2. Note the log scale.

What is less clear from (6.7.5) is how σ(h)2 depends on g = (cos θ, sin θ), as γ2

|µ3
y|

can be quite complex
in general (certainly for semi-implicit Guidefill at least, where |µy| = g∗r · e2 can get arbitrarily close to
0, we expect severe blur artifacts for shallow angles). Figure 6.16 illustrates the angular dependence of
σ(h) as a function of θ ∈ [0, π] with y = 1 and h = 0.01 fixed, for the three main methods of interest
- coherence transport, Guidefill, and semi-implicit Guidefill (note the log scale). In every case we have
r = 3 and µ = 100.

Remark 6.7.3. Figure 6.16 suggests a trade-off of sorts between kinking artifacts and blur artifacts.
If Conjecture 6.7.1 is true, then semi-implicit Guidefill, the only method considered so far capable of
avoiding kinking artifacts unless g = (cos θ, sin θ) is exactly parallel to the inpainting domain, that is
g∗r = g unless θ ∈ {0, π}, pays a price for this ability with blurring artifacts that become arbitrarily bad
as θ → 0 or θ → π. At the opposite extreme, coherence transport suffers from no blur at all for all but
finitely many angles, but also kinks (that is g∗r 6= g) for all but finitely many angles (Figure 2.6). Guidefill
is in the middle: g∗r = g so long as θ is not too shallow, and blur exists but remains bounded. It remains
to be seen whether a method be completely free of both kinking and blur artifacts, but it seems unlikely. A
more modest goal would be to design a method which like semi-implicit Guidefill suffers from no kinking
artifacts, but for which σ(h) defined by (6.7.5) remains bounded for all θ, like Guidefill. Whether or not
this is possible also remains to be seen, and is something we would like to investigate in the future.
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(a) Original Inpainting problem, inpainting
domain shown in yellow.

(b) Inpainting using coherence transport
with g = (cos 45◦, sin 45◦), r = 3, µ = 40.

Figure 6.17: Stretching a dot into a line: In (a) we have an inpainting problem consisting of a red
dot on a blue background, with the inpainting domain in yellow. In (b), we see the result of inpainting
using coherence transport with µ = 40, r = 3, and g = (cos 45◦, sin 45◦). The dot is now stretched into a
line, the orientation of which may be measured to deduce g∗r .

6.8 Numerical Experiments

In this section we have three objectives:

1. To compare the limiting transport directions derived in Section 6.6.2 for coherence transport, Guide-
fill, and semi-implicit Guidefill as µ→∞ with the orientation of extrapolated isophotes when the
algorithm is run in practice.

2. To check experimentally our claim in Section 6.5 that when r is a small integer, our limit u typically
does a better job of capturing the behaviour of uh than umärz does, that is ‖uh − u‖p � ‖uh −
umärz‖p.

3. To verify our bounds in Theorem 6.3.1 and check that they are tight. Further, we wish to see whether
or not our results continue to hold if some of our simplifying assumptions are relaxed (specifically,
Guidefill with a constant guidance direction g replaced by a smoothly varying transport field g(x)).

We will perform one experiment for each objective, but for the sake of space, Experiment III is deferred
to Appendix A.10. For Experiments II and III, we will experiment using a variety of boundary data
u0 satisfying the hypotheses of Section 6.3, as well as a few different inpainting methods that are each
special cases of Algorithm 1. These are presented in detail in Appendix A.9.

6.8.1 Experiment I: Validation of limiting transport directions for coherence
transport, Guidefill, and semi-implicit Guidefill.

In this experiment we compare the limiting transport directions derived in Section 6.6.2 for coherence
transport, Guidefill, and semi-implicit Guidefill as µ→∞ with the orientation of extrapolated isophotes
in an actual inpainted image uh obtained in practice with finite µ. In each case we choose as our boundary
data the image shown in Figure 6.17(a), consisting of a red dot on a blue background, with the inpainting
domain shown in yellow. We run each algorithm with

g = (cos(k◦), sin(k◦))

for k = 0, 1, . . . , 90, with µ = 40 fixed and for various values of r. The dot is then stretched into a line as
in Figure 6.17(b), the orientation of which gives g∗µ,r and which can be measured numerically.

Results are shown in Figure 6.18 for r = 3 and r = 5. The top row (a)-(c) gives the theoretical curves
for r = 3, with the actual measured results in the row underneath (d)-(f). The third row (g)-(i) gives the
theoretical curves for r = 5, while the final row (j)-(l) gives corresponding real measurements. While we
see some smoothing out of the jump discontinuities in the case of coherence transport, this is expected
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(a) Coherence transport, theoretical
curve, r = 3.

(b) Guidefill, theoretical curve, r =
3.

(c) Semi-implicit Guidefill, theoreti-
cal curve, r = 3.

(d) Coherence transport, actual re-
sult, r = 3.

(e) Guidefill, actual result, r = 3. (f) Semi-implicit Guidefill, actual re-
sult, r = 3.

(g) Coherence transport, theoretical
curve, r = 5.

(h) Guidefill, theoretical curve, r =
5.

(i) Semi-implicit Guidefill, theoreti-
cal curve, r = 5.

(j) Coherence transport, actual re-
sult, r = 5.

(k) Guidefill, actual result, r = 5. (l) Semi-implicit Guidefill, actual re-
sult, r = 5.

Figure 6.18: Validation of limiting transport directions for coherence transport, Guidefill, and
semi-implicit Guidefill: Here we compare the limiting transport directions θ∗r = θ(g∗r) as a function of
θ = θ(g) derived in Section 6.6.2 for coherence transport, Guidefill, and semi-implicit Guidefill as µ→∞
with the orientation of extrapolated isophotes in the inpainting problem shown in Figure 6.17(a) (where
µ = 40). The top row (a)-(c) gives the theoretical curves for r = 3, with the actual measured results in
the row underneath (d)-(f). The third row (g)-(i) gives the theoretical curves for r = 5, while the final
row (j)-(l) gives corresponding real measurements.
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as one can easily show that the convergence to θ∗ = limµ→∞ θ∗r,µ is pointwise but not uniform, becoming
arbitrarily slow in the vicinity of the jumps. On the other hand, for Guidefill and semi-implicit Guidefill
we see excellent agreement with theory even in the vicinity of jump discontinuities. This is to be expected
as well, since one can easily show that the relevant limits are uniform in this case.

6.8.2 Experiment II: Comparison of convergence rates to both continuum
limits

Our second experiment explores the relationship between ‖uh − u‖p and
‖uh−umärz‖p, for uh such that the limit umärz exists, and under the assumption that we are not in the
trivial case u = umärz. From Section 6.5 we have the bound

‖u− umärz‖p ≤ K1 · (rh)( s′2 + 1
2p )∧ s2∧1 +K2r

−q{s∧(s′+ 1
p )∧1}. (6.8.1)

If this bound is tight, then when r is a small integer and h is small, we expect ‖uh−u‖p � ‖uh−umärz‖p.
At the same time, Theorem 6.5.1 shows that u → umärz as r → ∞, so we expect ‖uh − u‖p ≈ ‖uh −
umärz‖p when r is large. Figure 6.19 tests this by plotting ‖uh − u‖p and ‖uh − umärz‖p as a function
of r with h fixed and for various choices of p, and for a few choices of boundary data u0 and inpainting
methods from Appendix A.9. Specifically, the boundary data u0 is given by (A.9.1) for various values of
s and s′, and the weights and neighborhoods are as in Example 1 and Example 2 from Appendix A.9.
The results confirm our expectations. For the sake of space, we only show a few illustrative examples.

6.9 Conclusions

In this chapter we have presented a detailed analysis of the class of geometric inpainting algorithms
introduced in Chapter 2. Methods in the literature falling within this framework include

• Telea’s Algorithm [64].

• Coherence Transport [12, 44].

• Guidefill [37].

A subtle but important point about the above methods is that pixels in the current inpainting boundary
are filled independently. Noting this, we proposed in this thesis a semi-implicit extension (or semi-
implicit form) of these methods in which pixels in the current shell are instead filled simultaneously by
solving a linear system. An implementation of the semi-implicit form equivalent to solving this linear
system using damped Jacobi or successive over-relaxation (SOR) was highlighted in blue in Algorithm 1
(the equivalence was proven in Proposition 5.2.2). The matrix associated with the linear system was in
Chapter 5, where it was shown to be strictly diagonally dominant. In the same chapter, a semi-implicit
version of Guidefill was introduced. In this chapter, a theoretical convergence analysis was presented for
the semi-implicit extension of Guidefill, where we showed that SOR converges extremely quickly. This
analysis is backed up by numerical experiments. We also presented in some detail additional features of
semi-implicit Guidefill relating to how the method decides on a good order to fill pixels, but this is not
the main focus of our work.

One obvious question is whether or not the semi-implicit extension makes any difference. Our theo-
retical analysis of kinking and blur artifacts in this chapter shows that it does. Our analysis proves that
within the class of algorithms under scrutiny, kinking artifacts will always be present unless one uses the
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(a) Example 1, h = 2−10, u0 given by (A.9.1) with s = 2,
s′ = 0, L1 norm.

(b) Example 2, h = 2−10, u0 given by (A.9.1) with s =
s′ = 0.5, L2 norm.

(c) Example 1, h = 2−13, u0 given by (A.9.1) with s = 2,
s′ = 0, L1 norm.

(d) Example 2, h = 2−13, u0 given by (A.9.1) with s =
s′ = 0.5, L2 norm.

Figure 6.19: Quantitative comparison of the Lp distance between uh and its two continuum
limits: Plots of ‖uh− u‖p (starred line) and ‖uh− umärz‖p (dotted line) as a function of r for h = 2−10

(top row) and h = 2−13 (bottom row) fixed. In each case u0 is given by (A.9.1) for different values of s′
and s. In the the left column we have s = 2, s′ = 0, w(·, ·) is given by März’s weights (2.5.2) with µ = 10,
g = (cos 20◦, sin 20◦) as in Appendix A.9, Example 1, and error is measured using the L1 norm. In the
right column we have s = s′ = 0.5, w(·, ·) is given by the offset Gaussian (A.9.3) as in Appendix A.9,
Example 2, and error is measured using the L2 norm. In every case we have ‖uh−u‖p � ‖uh−umärz‖p
when r is small. This sheds some light on why our continuum limit u appears to much more closely
match the actual inpainted solution uh than the alternative limit umärz does. Results for other values
of s and s′ as well as different choices of norm are similar but omitted.
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semi-implicit extension. However, our analysis also shows that the semi-implicit extension tends to make
blur artifacts a little bit worse.

As discussed in Section 2.2, all of the algorithms listed above are known to create some disturbing
visual artifacts, and the main objective of our analysis is to understand why these occur and whether
or not they are inevitable. We focus specifically on kinking artifacts and blur artifacts. Other artifacts
including the formation of shocks and extrapolated isophotes that end abruptly are discussed but not
analyzed, as they have already been studied elsewhere [12, 45] and are well understood. Our analysis is
based on two key ideas:

• A continuum limit, which we use to explain kinking artifacts.

• A connection to the theory of stopped random walks, which we use both to prove convergence to
our continuum limit, and to explore blur artifacts.

Similarly to the earlier work of Bornemann and März [12], our continuum limit is a transport equation.
However, as discussed in Section 2.4 our limit process is different and so are the coefficients of the
resulting transport equation. Moreover, numerical experiments show that our transport equation is
a better reflection of the behaviour of Algorithm 1 (the direct form and our proposed semi-implicit
extension) in practice, capable of accurately predicting kinking phenomena that is not captured by the
alternative continuum limit proposed in [12]. The second core idea of our analysis, which is to relate
Algorithm 1 and its extension to stopped random walks, is critical for two reasons. Firstly, it allows us
to prove convergence to our continuum limit even for boundary data with low regularity, such as (finitely
many) jump discontinuities. By contrast, the analysis in [12] assumes smooth boundary data, which is
an unrealistic assumption for images. Secondly, this connection is central to our analysis of blur artifacts,
which we analyze based not on a continuum limit where h→ 0, but rather an asymptotic limit where h
very small but nonzero. While we have not (yet) been able to prove convergence to this asymptotic limit,
it allows us to make quantitative predictions that are in excellent agreement with numerical experiments,
even for relatively low resolution images (e.g. Figure 6.13 which is only 200 × 200px). Our analysis
operates in a highly idealized setting (Section 6.1), but our conclusions are far reaching. In particular,
we prove the following:

1. The rate of convergence to our continuum limit depends on the regularity of the boundary data,
and convergence is slower for boundary data with lower regularity. Thus, our continuum limit u
does a better job of approximating the actual inpainted image uh when the boundary data u0 is
smooth (Theorem 6.3.1).

2. The difference between our continuum limit and the one proposed in [12] is most significant when
the radius r of the averaging neighborhood Aε,h(x) (measured in pixels) is small, and goes to zero
as r →∞ (Theorem 6.5.1).

3. In the direct form of Algorithm 1, kinking artifacts will always be present. That is, certain isophotes
cannot be extended into the inpainting domain without bending (Section 6.6.1).

4. This is not true of the semi-implicit extension of Algorithm 1. In particular, semi-implicit Guidefill
can extrapolate isophotes with any orientation1, and moreover is able to do so efficiently by using
SOR to solve the required linear system (Section 6.6.1, Section 6.6.2, Corollary 6.2.3).

The following results, which we do not prove, are implied by Conjecture 6.7.1 if it is true:
1that is, unless the isophotes are exactly parallel to the boundary of the inpainting domain. But in this case extrapolation

is not defined.
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1. Blur artifacts exhibit an angular dependence, which for semi-implicit Guidefill becomes arbitrarily
bad as the angle an extrapolated isophote makes with the boundary of the inpainting domain goes
to zero. Thus, semi-implicit Guidefill pays a heavy price (on top of the need to solve a linear system
for every shell) for its ability to successfully extrapolate such isophotes (Conjecture 6.7.1, Figure
6.16).

2. Blur artifacts become less significant as the resolution of the image goes up, and get worse the
further into the inpainting domain you extrapolate (Conjecture 6.7.1).

3. Methods that put all of their weight into a single pixel exhibit no blur, but can only extrapolate
without kinking in finitely many directions (Remark 6.7.3).

The last of these conclusions suggest that there is an apparent trade off between kinking artifacts and
blur artifacts, however, this is something that requires additional investigation. Our inability to prove
Conjecture 6.7.1 is due to a result on stopped random walks from [32] - that our result depends on -
failing to give rates of convergence. In the future we hope to derive those rates ourselves so that we can
prove or disprove this conjecture.

Beyond proving Conjecture 6.7.1, there are a number of interesting new directions this analysis could
take in the future. These are discussed in Chapter 8.
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Chapter 7

Spacetime Transport: A 3D
Generalization

In this second to last chapter, we discuss a generalization of the ideas of coherence transport and Guidefill
to shell-based video inpainting of the form illustrated in Figure 1.3. The framework is now exactly the
same as the one given for shell-based image inpainting in Algorithm 1, except that the underlying objects
are now 3D. Please refer to Section 1.4.1 for a list of 3D specific notations.

Our generalization, which we call spacetime transport, aims to preserve, as much as possible, the
speed of frame by frame shell-based approaches like Guidefill, while improving temporal coherence. At
the same time, it makes a connection between shell-based image inpainting and what is called optical
flow based video inpainting.

7.1 Optical flow based video inpainting

One of the important differences between image and video inpainting is that for the latter, in many
cases where either the inpainting domain or the background is in motion, the missing information in a
given frame can be found in some other frame. This is illustrated in Figure 7.1, where in (a)-(c) we
have a ball-shaped inpainting domain moving in front of a static background, while in (d)-(f) we have a
background moving relative to a stationary inpainting domain.

The connection between frames is encapsulated in the idea of optical flow, which assigns to each pixel
x in frame t of a video a vector v(x, t) ∈ R2 representing the displacement from the underlying object at
pixel x in frame t to its new location in frame t + ∆t. Optical flow is calculated by first assuming that
the brightness of the underlying object is constant, that is

u(x, t) = u(x + v(x, t), t+ ∆t). (7.1.1)

Second, one assumes that the unknown displacement v(x, t) is small enough that one may expand the
above equation to first order, yielding the optical flow equations

∇u(x, t) · v(x, t)− ∂u

∂t
(x, t) = 0, (7.1.2)

(where we have assumed ∆t = 1 for convenience, as is typically done). Note that the above equation is
overdetermined as there are two unknowns (the two components of v) for every pixel. To obtain a unique
optical flow, additional constraints must be added, which different algorithms accomplish in different
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(a) Fauve: frame 1 (b) Fauve: frame 50 (c) Fauve: frame 100

(d) Shanghai tower: frame 1 (e) Shanghai tower: Frame 51 (f) Shanghai tower: Frame 101

Figure 7.1: Moving inpainting domain or background: In cases where the inpainting domain and
background are in motion relative to one another, the missing information in a given frame can often be
found in another frame. This is illustrated in (a)-(c), where we see sample frames from a video consisting
a ball shaped inpainting domain in motion relative to a static background, and in (d)-(e), where we have
a moving background and a stationary inpainting domain.

ways. Here we discuss only one approach based on least squares (Section 7.6). See [8] for an overview of
optical flow techniques. The concept of optical flow is illustrated in Figure 7.2, where we have provided
the ground truth optical flow for the two examples shown in Figure 7.1.

There are a number of video inpainting methods in the literature based on optical flow. In this
chapter, we focus on a specific optical flow based inpainting strategy consisting of two steps:

1. Estimate the optical flow on the exterior of the inpainting domain using an algorithm of choice,
and then inpaint the optical flow into the inpainting domain.

2. Use the inpainted optical flow to inpaint the video (this is typically, but not always, done based on
some form of transport along the optical flow vector field).

These two steps are essentially independent problems, and there is great variability in how each is handled.
For example, [38] completes step 1 using a Bayesian framework to estimate the most likely optical flow
in the occluded area, then inpaints each frame sequentially by taking a weighted average of “motion
corrected” versions of earlier frames. These “motion corrected” frames are estimates for the current
frame created by processing earlier frames using the inpainted optical flow. In [61] an exemplar-based
approach, using 3D spacetime “patches” of optical flow data, is first used to inpaint the optical flow, while
the video inpainting itself is done utilizing a graph model constructed from the inpainted optical flow.
The authors of [62] inpaint the optical flow frame by frame using Telea’s algorithm [64], then inpaint
the video using a frame by frame variant of Criminisi’s algorithm [22] constrained to be consistent with
the inpainted optical flow. They also propose a convenient user guided mask definition procedure (for
defining the inpainting domain), based on user drawn scribbles transported along the optical flow field.

Remark 7.1.1. There are other video inpainting algorithms making use of optical flow that do not consist
of the above two steps. For example, [40] is a recent high-quality exemplar-based approach that inpaints
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(a) Fauve: frame 1 (b) Fauve: frame 50 (c) Fauve: frame 100

(d) Shanghai tower: frame 1 (e) Shanghai tower: Frame 51 (f) Shanghai tower: Frame 101

Figure 7.2: Optical Flow: Ground truth optical flow for the two examples in Figure 7.1. In each case,
the optical flow is piecewise constant. In (a)-(c), we have vn ≡ 0 on the stationary background, while
vn ≡ (12, 0) on the inpainting domain, which moves at a rate of 12 pixels per frame (we represent this
as a pure red, since the flow is purely in the x-direction). In (d)-(f), we have vn ≡ 0 on the stationary
inpainting domain, while vn ≡ (0,−3) on the moving background, which moves down by three pixels
every frame (we represent this by pure green as the flow is purely in the y direction).

the optical flow and the video simultaneously by minimizing a global energy, using “patches” that are 3D
parallelepipeds of spacetime skewed based on the optical flow. However, for the purposes of this chapter,
when we say “optical flow based video inpainting”, we mean an algorithm based on the above two steps.

7.1.1 Parallels with shell-based image inpainting

There are parallels between the two steps of optical flow based video inpainting and the two steps of shell-
based image inpainting common to coherence transport and Guidefill. In the case of image inpainting,
the first step is the determination of the orientation of image isophotes in the exterior of the inpainting
domain, done using the structure tensor in the case of Guidefill, and the modified structure tensor in
the case of coherence transport. This is analogous to the computation of an optical flow field on the
exterior of the (video) inpainting domain in optical flow based video inpainting. Indeed, as we will show
in Section 7.6, there is a form of Lucas–Kanade optical flow that is calculated in terms of the structure
tensor. Next, the guide field used by both coherence transport and Guidefill is analogous to the inpainted
optical flow. This connection is more obvious in the case of Guidefill, where the guide field is computed
on its own as a separate step, similarly to the separate optical flow inpainting step. Finally, the color
inpainting step done using the guidance field in shell-based image inpainting is analogous to the color
inpainting step based on the inpainted optical flow in optical flow based video inpainting, particularly
when the latter is done based on an explicit transport mechanism (that is, based on some procedure for
enforcing or at least encouraging constant color along the integral curves of the inpainted optical flow
field).
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7.1.2 Blur artifacts in optical flow based video inpainting

Something else that shell-based image inpainting and optical flow based video inpainting have in common
is blur artifacts. In the latter case, these arise because the optical flow is rarely integer-valued, meaning
that pixel centers in a given frame are typically mapped to locations between pixel centers in nearby
frames. This necessitates some form of interpolation which, as a number of authors have noted, leads to
progressive blur. For example, [38] first noted that when bilinear interpolation is used “after a few frames
the image in the region of the [inpainting domain] rapidly loses its detail”, and proposed to use windowed
sinc or bicubic interpolation instead. However, these schemes both involve negative weights and can lead
to instabilities, as the authors themselves note. They are thus combined with heuristics for clamping to
zero small weights deemed likely to lead to instabilities. In [57], the authors note that while higher order
interpolation schemes are helpful, the problem persists. They propose a more sophisticated approach
based on defining a convective derivative, and then alternating between forward and backward difference
schemes based on this derivative. This leads to further improvements, but still does not completely
resolve the issue of blur. Blur artifacts in the case of shell or transport based image inpainting have
already been discussed in Section 6.7.

7.2 Spacetime transport - intuitive idea

We know from Chapter 6 that shell-based inpainting, at least in the 2D case and under a suitable
continuum limit, is equivalent to inpainting based on transport along a guidance field g(x) ∈ R2. Based
on this observation, the idea of spacetime transport is to combine shell-based image inpainting and optical
flow based video inpainting into a unified framework based on the idea of transporting along a general
spacetime vector

g(x) = gx(x)ex + gy(x)ey + gt(x)et,

(where ex, ey, and et are the unit vectors along the x, y, and time dimensions respectively) that reduces
to an optical flow vector in cases (such as those illustrated in Figure 7.1) where this approach makes
sense. When this doesn’t make sense, as in the case of an inpainting domain and background that are
not in motion relative to one another, the temporal component of g should become zero so that the
method reduces to extrapolation of spatial isophotes. Like coherence transport and Guidefill, spacetime
transport is shell-based and operates by taking weighted averages. The connection to transport is only
made explicit in the continuum limit. On the one hand, spacetime transport can be seen as a natural
generalization of coherence transport and Guidefill to three dimensions - this is the perspective we present
over the next several sections, which cover the components of spacetime transport in detail. However,
at the same time, spacetime transport can be seen as inpainting based on a generalized Lucas–Kanade
optical flow that doesn’t distinguish between time and space. This latter interpretation is explored in
Section 7.6.

7.3 Detailed Discussion

Like coherence transport, a core idea of spacetime transport is to first obtain information about uh in
the undamaged region Ωh\Dh based on a structure tensor Jσ,ρ, with the weights used for inpainting
then adapted based on the structure tensor. The structure tensor Jσ,ρ is defined in terms of the discrete
gradient ∇uh in the same way as in Section 4.3. However, now ∇uh is a vector with three components
instead of two, so Jσ,ρ is now a 3 × 3 symmetric positive semi-definite matrix, with three eigenvalues
λ1 ≥ λ2 ≥ λ3 ≥ 0 (we denote the corresponding eigenvectors by {v1,v2,v3}), rather than the two in
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(a) Aε,h(x) = Bε,h(x). (b) Aε,h(x) = B̃ε,h(x).

Figure 7.3: Lattice aligned and rotated discrete 3D balls: When spacetime transport uses as its
averaging neighborhood Aε,h(x) the discrete axis aligned 3D ball of voxel centers shown in (a), it suffers
from kinking artifacts analogous to those of coherence transport. Similarly to Guidefill, better results are
obtained by using the rotated ball of ghost voxels in (b), which has been rotated into alignment with the
orthonormal basis of eigenvectors {v1,v2,v3} of the guidance tensor G.

the case of coherence transport and Guidefill. Coherence transport and Guidefill each have two cases of
interest involving the eigenvalues λ1 ≥ λ2 ≥ 0 (eigenvectors {v1,v2}) and two desired behaviours for the
corresponding weights wε(·, ·), namely

1. λ1 ≈ λ2 : weights should be homogeneous, not favoring any direction.

2. λ1 � λ2: weights should be biased in favor of (ghost) pixels lying on the line parallel to v2.

By contrast, spacetime transport has three cases and three desired behaviours:

1. λ1 ≈ λ2 ≈ λ3 : weights should be homogeneous, not favoring any direction.

2. λ1 � λ2 ≈ λ3: weights should be biased in favor of (ghost) voxels lying on the plane spanned by
v2 and v3.

3. λ1 ≈ λ2 � λ3 or λ1 � λ2 � λ3: weights should be biased in favor of (ghost) voxels lying on the
line parallel to v3.

We will see in the next section one way of adapting the weights (2.5.2) used by coherence transport
and Guidefill in order to produce this behaviour. At the same time, since we anticipate some form of the
kinking artifacts present in 2D to persist in 3D, we also adapt the rotated ball B̃ε,h(x) of ghost pixels
used by Guidefill into the present setting. Specifically, we use as our averaging neighborhood Aε,h(x) the
rotated 3D ball of ghost voxels B̃ε,h(x) aligned with the local orthonormal coordinate frame {v1,v2,v3}
defined by the eigenvectors of the structure tensor. If one instead uses the unrotated discrete ball of
voxel centers Bε,h(x), then kinking artifacts are produced, just like in the 2D case. See Figure 7.3 for
an illustration of the rotated and unrotated 3D balls B̃ε,h(x) and Bε,h(x), as well as Section 7.7 for a
discussion of kinking artifacts in 3D. As we will see, due to the temporal component that is now involved,
these artifacts manifest themselves as, among other things, abrupt changes in the velocity of moving
objects. Just like in the 2D cases, the use of B̃ε,h(x) is not in general enough to prevent these artifacts.
In general, it must be combined with the solution of the linear system arising in the semi-implicit form
of the algorithm.
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7.3.1 Weights

Let us denote by dL(x) and dΠ(x) the distance from x ∈ R3 to the line Lv3 and plane Πv2,v3 respectively.
That is,

dL(x) = ‖x× v3‖ dΠ(x) = |det([x,v2,v3])|. (7.3.1)

We generalize the weights (2.5.2) used by coherence transport and Guidefill as follows:

wε(x,y) =
exp

(
−µL(x)2

2ε2 dL(y− x)2 − µΠ(x)2

2ε2 dΠ(y− x)2
)

‖y− x‖ . (7.3.2)

In order to achieve our stated objectives, we need µL(x)� 0 when λ2 � λ3 and µL(x) ≈ 0 when λ2 ≈ λ3,
while µΠ(x)� 0 when λ1 � λ2 and µΠ(x) ≈ 0 when λ1 ≈ λ2. This gives us

1. λ1 ≈ λ2 ≈ λ3 : weights should be homogeneous, not favoring any direction.

wε(x,y) ≈ 1
‖y− x‖ .

2. λ1 � λ2 ≈ λ3: weights should be biased in favor of (ghost) voxels lying on the plane spanned by
v2 and v3.

wε(x,y) ≈
exp

(
−µΠ(x)2

2ε2 dΠ(y− x)2
)

‖y− x‖ .

3. λ1 ≈ λ2 � λ3 or λ1 � λ2 � λ3: weights should be biased in favor of (ghost) voxels lying on the
line parallel to v3.

wε(x,y) ≈
exp

(
−µL(x)2

2ε2 dL(y− x)2
)

‖y− x‖ .

There are various ways we could design the functions µL(x) and µΠ(x) that are consistent with the above
constraints. We use

µL(x) = µ tanh
(
|λ1 − λ3|

Λ1,3

)
tanh

(
|λ2 − λ3|

Λ2,3

)
µΠ(x) = µ tanh

(
|λ1 − λ3|

Λ1,3

)[
1− tanh

(
|λ2 − λ3|

Λ2,3

)]
where µ ≥ 0, Λ1,3 > 0 and Λ2,3 > 0 are parameters. We take µ = 50, Λ1,3 = 10−3/ arctanh(0.99), and
Λ2,3 = 10−8/ arctanh(0.99) by default. The parameters Λ1,3 and Λ2,3 were determined experimentally -
see Remark 7.3.1. This particular choice satisfies the above constraints, but also obeys

µL(x) + µΠ(x) = tanh
(
|λ1 − λ3|

Λ1,3

)
,

that is, added together µL and µΠ measure the overall spread of the eigenvalues of G. Note that we
could replace the denominator with ‖y − x‖p for any p ∈ [0, 2] without having a serious impact on the
behaviour of the method or its theory. In particular, since the weights remain integrable over B1(0) for
any p ∈ [0, 2], a limit in the style of Bornemann and März’s high-resolution vanishing viscosity should
exist in this case. We have chosen p = 1 for the sake of consistency with the 2D case.

Remark 7.3.1. The parameter value Λ1,3 = 10−3/ arctanh(0.99) was selected because it was noted that
an edge with a jump in brightness by the maximum value of 1 (we are assuming all color channels lie in
[0, 1]) translated into a maximum eigenvalue of about 10−3 for the structure tensor with σ = ρ = 2px,
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which are the values we use by default. For other values of ρ and σ, or if the image is dominated by weak
edges, one may want to use a different value of Λ1,3. On the other hand, Λ2,3 = 10−8/ arctanh(0.99) was
selected so that weights would remain baised in favor of the line Lv3 as often as possible, reverting over to
bias in favor of the whole plane Πv1,v3 only the vectors v2, v3 very nearly form a degenerate eigenspace.

Algorithm 3 Spacetime transport
uh = damaged video, initialized to 0 on inpainting domain.
Ω = [a, b]× [c, d]× [e, f ] = continuous video domain.
Ωh = Ω ∩ Z3

h = discrete video domain.
σ = pre-smoothing blur kernel radius for structure tensor.
ρ = post-smoothing blur kernel radius for structure tensor.
D

(0)
h = initial inpainting domain.

D̃
(0)
h = Dilate(D(0)

h ,max(4σ, 4ρ)) = the extended inpainting domain, obtained from D
(0)
h by dilating

outwards by a distance of max(4σ, 4ρ) voxels.
∂D

(0)
h = initial inpainting domain boundary.

∂D̃
(0)
h = initial extended inpainting domain boundary.

G = guidance tensor, equal to the structure tensor on Ωh\D̃(0)
h and initialized to O on D̃(0)

h .
innerIt = number of inner iterations for computing guidance tensor.
semiImplicit = false, unless we use the semi implicit extension.
G = FillGuidanceTensor(G, D̃(0)

h , ∂D̃(0)
h , innerIt, semiImplicit)

uh = FillVideo(uh, G, D̃(0)
h , ∂D̃(0)

h , semiImplicit)

Like coherence transport and Guidefill, the weights described in this section will be used to fill the
inpainting domain in successive shells. However, in spacetime transport this occurs in two shell-based
waves, where first the guide field is inpainted and then the video itself (the reasons for this are explained
in the next section). This is illustrated with pseudo code in Algorithms 3-6, which cover respectively the
algorithm from a high level, the subroutines devoted to filling the guide field and the video, and finally
the subroutine for filling generic data (guide field or video) within the current shell.

Remark 7.3.2. The derivation of the weights wε(x,y) given by (7.3.2) was done under the assumption
that G(x) is a positive semi-definite matrix. This is certainly true on Ωh\D̃h, where the guide field G
coincides with the 3D structure tensor. However, for our weights to continue to make sense within D̃h,
we need to make sure that our procedure for inpainting yields a guide field that is symmetric positive
semi-definite. We will see shortly in Lemma 7.3.3 that it does. This is due to a generalization of the
stability property (2.1.1) from Section 2.1.

7.3.2 The guidance tensor field

There are various ways we might generalize Guidefill’s guide field to the present 3D case - moreover, due to
the modular nature of the algorithm, these may be interchanged without affecting the other components of
the algorithm. One method would be to compute the guide field concurrently with inpainting in the same
way as is done for coherence transport, based on a generalized modified structure tensor. However, as we
have already in Section 4.3.1, this leads to additional kinking artifacts, and one may easily verify that
the obvious generalization suffers from the same type of problem. Another approach, following Guidefill,
would be to calculate the guide field based on animated splines that are computed automatically, but
may be edited by the user - this time both spatially and temporally. Specifically, in this case, the user
would specify not only the control points of each spline, but also how these points move over time. This
could be done by specifying the position of each control point at each of a sequence of key frames. This is
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something that would be interesting to explore in the future, however, for now we do something simpler,
following neither coherence transport nor Guidefill.

Our basic idea is to note that, as pointed out in Section 4.3.1, the structure tensor Jρ,σ(x) is only
defined for x sufficiently far enough away from the inpainting domain that the spacetime patch P∆(x),
a cube of size (2∆ + 1)3 voxels centered at x, where ∆ = max(4σ, 4ρ), does not overlap the inpainting
domain (P∆(x) is the neighborhood used for pre and post blurring in the computation of the structure
tensor). We formalize this by defining the extended inpainting domain D̃h by

D̃h := ∪x∈DhP∆(x). (7.3.3)

Then, Jρ,σ is well defined on Ωh\D̃h, and the first step of spacetime transport is to extend it to all of Ωh
by inpainting. Like for Guidefill, we refer to the result as the “guide field”. Unlike Guidefill, however, the
guide field, which we denote by G(x), is a tensor field rather than a vector field.

We inpaint using exactly the same procedure as we will later use for inpainting the video - i.e. a shell
based approach using the weights from Section 7.3.1. However, since these weights themselves depend
on G(x), we end up with an implicit relationship even in the direct form of the method. Specifically, in
this case we get:

G(x) =
∑

y∈B̃G(x),ε,h(x)∩(Ω\D(k)) wG(x),ε(x,y)G(y)∑
y∈B̃G(x),ε,h(x)∩(Ω\D(k)) wG(x),ε(x,y) , (7.3.4)

where we have highlighted the implicit dependence of the neighborhood B̃ε,h(x) and weights wε on G(x)
by writing them as B̃G(x),ε,h(x) and wG(x),ε(x,y). We solve the above non-linear equation using the fixed
point iteration

G(0)(x) = O, G(n+1)(x) =

∑
y∈B̃

G(n)(x),ε,h(x)∩(Ω\D(k)) wG(n)(x),ε(x,y)G(y)∑
y∈B̃

G(n)(x),ε,h(x)∩(Ω\D(k)) wG(n)(x),ε(x,y) for n = 1, 2, . . . (7.3.5)

We do not attempt to prove that the above iteration converges to the desired solution (or at all), or make
any attempt at the analysis of a convergence rate. We simply note that empirically, it does converge and
the convergence is very rapid - we fix the number of iterations at five by default. Proving this analytically
is something we may consider in the future.

One important feature of the inpainting procedure (7.3.5) is that it enjoys a “generalized stability
property” extending Bornemann and März’s stability property (2.1.1) to matrices. This is formalized
in the following lemma which states, among other things, that if the guide tensor field G is symmetric
positive semi-definite on Ωh\D̃h, then after inpainting using (7.3.5) it is symmetric positive semi-definite
within D̃h as well. As noted in remark 7.3.2, this is a requirement for the weights (7.3.2) derived in
Section 7.3.1 to make sense.

Lemma 7.3.3. Suppose G : Ωh\D̃h → R3×3 is a matrix valued function such that G(x) is symmetric
positive semi-definite for each x ∈ Ωh\D̃h. Suppose G is extended to Ωh by inpainting based on (7.3.5).
Then the inpainted function G : Ωh → R3×3 has the property that G(x) is symmetric positive semi-definite
for every x ∈ Ωh. Moreover

max
x∈Ωh

‖G(x)‖ = max
x∈Ωh\D̃h

‖G(x)‖

for any induced matrix norm ‖ · ‖.

Proof. One easily verifies that if {αi}Ni=1 are non-negative weights summing to 1 and {Ai}Ni=1 are sym-
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metric positive semi-definite matrices in Rn×n, then

A =
N∑
i=1

αiAi

is symmetric positive semi-definite as well, and obeys

‖A‖ ≤ Nmax
i=1
‖Ai‖

for any induced matrix norm ‖·‖. The claim is now an easy exercise in induction, noting that the iteration
formula (7.3.5) is executed finitely many times and is based on non-negative weights summing to 1.

Algorithm 4 Guidance Tensor inpainting

function G = FillGuidanceTensor(G, D̃(0)
h , ∂D̃(0)

h , innerIt, semiImplicit)
for k = 0, . . . do

if D̃(k)
h = ∅ then
break

end if
∂readyD̃

(k)
h = {x ∈ ∂D̃(k)

h : readyGuide(x)}.
G = FillBoundary(G, G, D̃(k)

h , ∂readyD̃
(k)
h ,innerIt).

D̃
(k+1)
h = D̃

(k)
h \∂readyD̃

(k)
h .

if semiImplicit then
G(0) = G
for n = 1, 2, . . . (until convergence) do

G(n) = FillBoundary(G(n−1), G(n−1), D̃(k+1)
h , ∂readyD̃

(k)
h , readyGuide, innerIt)

end for
end if

∂D̃
(k+1)
h = {x ∈ ∂D̃(k+1)

h : N (x) ∩ (Ωh\D̃(k+1)
h ) 6= ∅}.

end for
end function

In the semi-implicit case, this iteration becomes an inner loop within a larger iterative method to
solve the bigger system of equations relating G(x) to its unknown neighbors G(y) with y ∈ ∂D(k)

h . This
is illustrated in Algorithms 3, 4, and 5, where just like in Algorithm 1, we use damped Jacobi (parallel
implementation) and SOR (sequential implementation) to solve the larger linear system. However, unlike
in 2D, we have chosen not to devote a section to explicitly deriving the matrix components of this linear
system, nor to analyzing the convergence of damped Jacobi and SOR for its solution. While this could
likely be done with little effort, there would probably be large overlap with the 2D case and it seems
unlikely that the results would be very different. Therefore we have instead simply assumed that just
like in the 2D case, a couple of iterations of SOR per shell will solve the system to sufficient accuracy,
and have designed Algorithms 3 to 6 based on this assumption. Numerical experiments suggest that this
assumption is valid.

Another thing that we do not do in the 3D case is prove convergence to a continuum limit - either a
high-resolution vanishing viscosity one like März and Bornemann proposed, or a fixed ratio limit like the
one studied in this thesis for the 2D case. This would also likely be quite easy to do, and there would
again likely be significant overlap with the proof in the 2D case. For now, when we investigate kinking
artifacts in Section 7.7, we will instead argue based on symmetry that the problem is essentially two
dimensional, and use our existing results from Chapter 6, which appear to be adequate. Generalizing the
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results of Chapters 5 and 6 to three dimensions (or perhaps d-dimensions) is something we may consider
in the future.

Algorithm 5 Video inpainting

function uh = FillVideo(uh, G, D̃(0)
h , ∂D̃(0)

h , semiImplicit)
for k = 0, . . . do

if D(k)
h = ∅ then
break

end if
∂readyD

(k)
h = {x ∈ ∂D(k)

h : readyVid(x)}.
innerIt = 1.
uh = FillBoundary(uh, G, D(k)

h , ∂readyD
(k)
h , readyVid, innerIt).

D
(k+1)
h = D

(k)
h \∂readyD

(k)
h

if semiImplicit then
u

(0)
h = uh
for n = 1, 2, . . . (until convergence) do

u
(n)
h = FillBoundary(u(n−1)

h , G, D(k+1)
h , ∂readyD

(k)
h , readyVid, innerIt)

end for
end if

∂D
(k+1)
h = {x ∈ ∂D(k+1)

h : N (x) ∩ (Ωh\D(k+1)
h ) 6= ∅}.

end for
end function

Algorithm 6 Fill Boundary Subroutine
function v = FillBoundary(v, G, Dh, ∂Dh, ready, innerIt) // here “v” refers to generic data to
be inpainted, which could be uh or G, and ready refers to a generic “ready” function, which could be
either readyGuide or readyVid.

for x ∈ ∂Dh do
for i = 1, . . . innerIt do

compute B̃ε,h(x) from G(x).
compute non-negative weights wε(x,y) ≥ 0 for B̃ε,h(x) using (7.3.2).
if ready(x) then

v(x) =
∑

y∈(B̃ε,h(x)\{x})∩(Ω\D) wε(x,y)v(y)∑
y∈(B̃ε,h(x)\{x})∩(Ω\D) wε(x,y) (7.3.6)

end if
end for

end for
end function

7.4 Voxel Ordering Strategies

The implementation of spacetime transport presented in Algorithms 3 to 6 is based on two “ready”
functions, namely “readyGuide” and “readyVid”, intended for the guide field and video inpainting steps
respectively. The latter of these, “readyVid”, is defined in exactly the same way as the “ready” function
for Guidefill (Section 4.5) and semi-implicit Guidefill (Section 5.2.2), but with B̃ε,h(x) replacing B̃ε,h(x),
and requires no further discussion.

However, “readyVid” relies on the guide field being already known, which obviously is not the case in
the guide field inpainting step, and hence something different must be done for “readyGuide”. For now,
consider only two simple options:
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1. readyGuide ≡ “true”,

2. readyGuide(x) = 1(x + ∆ ∈ Ωh\D̃(k)) where ∆ ∈ {±ex,±ey,±et}.

Choice one is the standard onion shell approach, while choice two forces the pixel ordering to follow a
particular coordinate direction. In the future we would like to look into more sophisticated ordering
strategies.

7.5 Implementation considerations

In its current form, spacetime transport is implemented sequentially in C++ with a MATLAB interface,
and is not very efficient. It would be highly beneficial if it could be parallelized (at least in places) and
run on the GPU. At a minimum, the computation of the structure tensor on the exterior of the extended
inpainting domain is both expensive and completely parallelizable, so this part of the algorithm should be
moved to the GPU in the future. However, it would be ideal to also do the inpainting itself on the GPU.
This poses some challenges not present in image inpainting because of the large memory requirements of
video. One approach, which would at the same time enforce a pixel ordering, would be to send the video
to the GPU in packets of up to a few dozen “slices” at a time. These could be slices of constant t (that
is frames) but could also be slices of constant x or y. One could then either pick a direction with which
to pass through the video (for example forward or backwards through time, or from left to right through
space), and send the frames to the GPU as they are needed. At any given time the GPU would need to
have enough frames in the vicinity of the frame it is currently working on so that the solid ball B̃ε,h(x)
is always defined. Possibly multiple passes in different directions could be made, and the results fused
together based on some criterion for selecting the “best” voxels from each pass. However, this is just one
possible strategy - it is likely that several suitable strategies exist, each with their own tradeoffs.

7.6 Connection with Lucas–Kanade optical flow

We have already seen how the use of the 3D structure tensor in spacetime transport arises as a natural
generalization of the ideas of coherence transport and Guidefill. Now we give another perspective based
on generalizing the ideas of the Lucas-Kanada optical flow algorithm in a way that does not single out
the time dimension as special.

As stated in Section 7.1, the optical flow equation (7.1.2) requires additional constraints in order to
define a unique optical flow. One way of doing this is the Lucas–Kanade method [41] which is based on
least-squares, or weighted least squares. In this approach, rather than trying to solve (7.1.2) at each pixel
x exactly, one defines v(x, t) to be the minimizer of the sum

∑
y∈P (2)

δ
(x)

wy

(
∇u(y, t) · v(x, t)− ∂u

∂t
(y, t)

)2
,

where P (2)
δ (x) is the two dimensional image patch of size (2δ + 1)2 centered at x, and wy is the non-

negative weight of the equation corresponding to pixel y, typically chosen as wy = f(‖x − y‖) for some
decreasing non-negative function f . The solution is the least squares equation

v(x, t) = −

 ∑
y∈P (2)

δ
(x)

wy∇u(y, t)⊗∇u(y, t)


−1 ∑

y∈P (2)
δ

(x)

wy
∂u

∂t
(y, t).
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If one chooses as weights the Gaussian wy = gρ(‖y − x‖), and replaces ∇u(y, t) with the pre-blurred
gradient ∇uσ(y, t) (4.3.1) used in Section 4.3 in the computation of the two dimensional image structure
tensor J (2)

σ,ρ (x), then this becomes:

v(x, t) = −
[
J (2)
σ,ρ (x)

]−1 ∑
y∈P (2)

δ
(x)

wy
∂u

∂t
(y, t).

In other words, there is an explicit connection between the two dimensional structure tensor of images,
and a particular way of computing optical flow.

To see how these ideas generalize to spacetime transport, let us again start from the constant brightness
assumption (7.1.1), rephrased in terms of the guidance direction g(x) ∈ R3 as

u(x + g(x)) = u(x),

where x ∈ R3 now denotes a video voxel. Expanding to first order as before, we obtain the transport
equation

∇u(x) · g(x) = 0.

Now let us apply the same ideas as before, but replacing the two dimensional image patch P (2)
δ (x) with

the three dimensional spacetime cube P (3)
δ (x) of size (2δ + 1)3 voxels centered at x. That is, let us seek

to minimize the sum ∑
y∈P (3)

δ
(x)

wy (∇uσ(y) · g(x))2
, (7.6.1)

where x ∈ R3,y ∈ R3 are now voxels, uσ = gσ ∗ u as usual, and ∇uσ is a vector in spacetime with three
components. We add the constraint ‖g(x)‖ = 1 in order to avoid the trivial solution, set wy = gρ(‖y−x‖)
as before, and as before we have replaced ∇u(y) with the pre-blurred gradient ∇uσ(y). Then, applying
the method of Lagrange multipliers yields the eigenvalue problem

J (3)
σ,ρ (x)g(x) = λg(x),

where J (3)
σ,ρ (x) is exactly the three dimensional spacetime structure tensor introduced in Section 7.3. This

is a necessary but not a sufficient condition - it is not necessarily the case that all of the eigenvectors of
J (3)
σ,ρ (x) minimize (7.6.1). In fact, substituting the above eigenvalue equation into (7.6.1) yields∑

y∈P (3)
δ

(x)

wy (∇uσ(y) · g(x))2 =
∑

y∈P (3)
δ

(x)

wy (g(x) · ∇uσ(y)) (∇uσ(y) · g(x))

= g(x) ·
∑

y∈P (3)
δ

(x)

wy (∇uσ(y)⊗∇uσ(y)) g(x)

= g(x) · J (3)
σ,ρ (x)g(x)

= λ. since ‖g(x)‖ = 1.

We see then that it is the minimal eigenvector v3 of J (3)
σ,ρ (x) that satisfies the above minimization problem,

and which can be thought of as a generalized optical flow direction.
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(a) Inpainting problem in Example 1. (b) Result using spacetime transport
without ghost voxels.

(c) Result using spacetime transport
with ghost voxels.

Figure 7.4: Kinking in 3D: Here we represent the inpainting problem presented in Example 1, as well
as its solution using spacetime transport with and without ghost voxels, as 3D solids. In (a), the original
video to be inpainted (consisting of a red ball moving against a white background) is represented by
rendering the white pixels transparent, the red pixels as a red solid, and the inpainting domain as a grey
solid. In (b) and (c) we see the results of inpainting without and with ghost voxels respectively, with
G = I − g ⊗ g and g = 1√

17 (1, 0, 1) given (here g represents the velocity of the ball as a unit vector
in spacetime). In this case r = 3 and µ̃ = 40. When ghost voxels are not used, the inpainted ball,
represented here as a tilted cylinder, kinks to 90◦. However, when ghost voxels are used the inpainted
cylinder maintains the correct slope. See also Figure 7.5.

7.7 Kinking and blur artifacts in 3D

Just like shell based algorithms in 2D, spacetime transport suffers from kinking and blur artifacts as we
illustrate here with a few examples. For simplicity, for now we assume that the guide field is constant
and given, of the form G = I −g⊗g for some unit vector g ∈ R3. This gives λ1 = λ2 = 1, λ3 = 0, where
v3 = g and v1, v2 are any orthonormal basis for the plane orthogonal to g. This puts us into case 3 from
Section 7.3.1, that is, weights are biased in favor of ghost voxels on the line parallel to g. We have with
µΠ = 0 (to machine precision), µL = µ tanh(1/ΛL) := µ̃, so that

wε(x,y) =
exp

(
− µ̃2

2ε2 dL(y− x)2
)

‖y− x‖2 .

Rather than computing µ̃ in terms of µ and ΛL, for these examples it is simpler to specify it directly. In
all our examples, g will represent either the velocity vector of a moving object or the optical flow induced
by a moving camera. We focus on this simple setting first before moving onto the more complex scenario
where G is computed based on inpainting the structure tensor using (7.3.4).

Example 1: A slow ball (320px ×240px ×1001fr)
In this example, a red ball moves from left to right at a speed of one pixel every four frames for a total
of 1001 frames. It is occluded by the square [101, 215] × [76, 162] ⊂ [1, 320] × [1, 240] from frame 430 to
570. This is illustrated in Figure 7.4(a) where we represent the inpainting problem as a 3D solid, with
the white background voxels rendered transparent, the inpainted domain represented by a grey solid, and
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(a) Video to be
inpainted: frame
1.

(b) Video to be
inpainted: frame
427.

(c) Video to be
inpainted: frame
428.

(d) Video to be
inpainted: frame
569.

(e) Video to be
inpainted: frame
570.

(f) Video to be
inpainted: frame
1001.

(g) Video to be
inpainted: frame
428.

(h) Inpainting
without ghost
voxels: frame
525.

(i) Inpainting
without ghost
voxels: frame
543.

(j) Inpainting
without ghost
voxels: frame
558.

(k) Inpainting
without ghost
voxels: frame
566.

(l) Inpainting
without ghost
voxels: frame
571.

(m) Inpainting
with ghost
voxels: frame
428.

(n) Inpainting
with ghost
voxels: frame
456.

(o) Inpainting
with ghost
voxels: frame
484.

(p) Inpainting
with ghost
voxels: frame
514.

(q) Inpainting
with ghost
voxels: frame
542.

(r) Inpainting
with ghost
voxels: frame
570.

Figure 7.5: Kinking viewed through time: Here we explore again the inpainting problem presented in
Example 1 (inpainting domain in grey), this time by presenting a few representative frames of the video
to be inpainted (a)-(f), the result of inpainting using spacetime transport without ghost voxels (g)-(l),
and the result with ghost voxels (m)-(r). All parameters are the same as in Figure 7.4. When viewed
through time, what appeared in Figure 7.4 as the kinking of a slanted cylinder becomes a moving ball
that abruptly stops, remains motionless from frames 427 to 525, disintegrates and teleports 36 pixels to
the right over the next 40 frames, and then remains motionless again for a short period before continuing
at its original speed. On the other hand, when ghost voxels are used the ball continues at the correct
speed but now suffers from blur artifacts. For reference, we have outlined the inpainting domain in black.

the moving ball represented by a red slanted cylinder. It is further illustrated in Figure 7.5(a)-(f) where
we present a few representative frames of the video to be inpainted in (a)-(f). The visualization using 3D
solids was created using VoxelPlotter1.

In this case g = 1√
17 (1, 0, 4), and we inpaint setting ε = 3h (that is, r = 3) and µ̃ = 40. The problem is

essentially 2D dimensional (since the y component of g is zero) and since the boundary of the inpainting
domain is locally plane shaped, it is reasonable to assume that the kinking behaviour will reduce down to
the 2D case covered in Theorem 6.3.1 and Section 6.6. In order to save the reader the trouble of flipping
back to Chapter 6, we have reprinted the relevant graphs in Figure 7.10.

In this case, the ball strikes the inpainting domain boundary in a location where it is locally a flat
plane parallel to the xy-plane. The angle with the boundary is of arctan(4) ≈ 76◦, which means that if
we do not use ghost voxels then we expect to kink to a 90◦, as in Figure 7.10(a). On the other hand,
with ghost voxels we expect to get the correct extrapolation. This is indeed exactly what happens, as
is easiest to see in Figure 7.4(b) and Figure 7.4(c). In these examples we have converted the inpainted
video, which contains not only red and white pixels but various shades of pink (due to blurring), into
a solid. This is done in the same way as before but after first clamping shades of pink to either red or
white, depending on which color they are closest to.

1Voxelplotter is a Matlab plugin available at https://www.mathworks.com/matlabcentral/fileexchange/
50802-voxelplotter, used here in accordance with the terms of the license.
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(a) Inpainting problem in Example 2,
first inpainting domain.

(b) Result of inpainting without ghost
voxels.

(c) Result of inpainting with ghost
voxels.

(d) Inpainting
without ghost
voxels: frame 15.

(e) Inpainting
without ghost
voxels: frame 16.

(f) Inpainting
without ghost
voxels: frame 20.

(g) Inpainting
without ghost
voxels: frame 36.

(h) Inpainting
without ghost
voxels: frame 49.

(i) Inpainting
without ghost
voxels: frame 52.

(j) Inpainting
with ghost
voxels: frame 15.

(k) Inpainting
with ghost
voxels: frame 16.

(l) Inpainting
with ghost
voxels: frame 20.

(m) Inpainting
with ghost
voxels: frame 36.

(n) Inpainting
with ghost
voxels: frame 49.

(o) Inpainting
with ghost
voxels: frame 52.

Figure 7.6: Horizontal kinking: Here we illustrate the inpainting problem presented in Example 2
with the first inpainting domain, which consists of an occluding square present in all frames. This is
represented in (a) as a grey solid. In this case the ball, which appears as a strongly slanted cylinder in
3D, is bent into a horizontal bar when ghost voxels are not used, as in (b). In (c) we see the result using
ghost voxels, where a successful connection is made. We further illustrate this in (d)-(i) and (j)-(o), which
show a few representative frames of the result without ghost voxels (a)-(i) and with ghost voxels (j)-(o).
The frames (j)-(o) illustrate an issue with blur in the solution using ghost voxels that is not evident from
the 3D visualization. Once again the inpainting domain is outlined for reference.

This is also illustrated temporally in Figure 7.5(g)-(l) (no ghost voxels) and Figure 7.5(m)-(r) (ghost
voxels) for a few representative frames. When viewed through time, the “kinking” behaviour of the
solution without ghost voxels manifests itself as an abrupt change in the speed of the ball, combined with
a disintegration and teleportation effect. In this case the ball stops - between frames 428 and 525, as well
as between frames 566 and 571, the ball does not move. At the same time between frames 543 and 558
the ball seems to disintegrate and reconstruct itself 36 pixels to the right. On the other hand, with ghost
voxels we see that the ball continues at the correct speed but becomes progressively blurrier as we near
the center of the inpainting domain before becoming gradually less blurry as we near the opposite side.

Example 2: A fast ball (320px ×240px ×71fr)

In this example, the same red ball moves left to right, but with a speed of 4 pixels per frame, and now
the video is only 71 frames long. We consider two inpainting domains. The first, illustrated in Figure
7.6(a), is the square [111, 202]× [79, 166] ⊂ [1, 320]× [1, 240] appearing in every frame of the video. The
second, illustrated in 7.7(a), is the square [79, 237] × [59, 177] ⊂ [1, 320] × [1, 240] which appears from
frame 21 to frame 39. The guidance direction in this case is g = 1√

17 (4, 0, 1), and ε = 3h (that is, r = 3)
and µ̃ = 40 as before. In the first case the ball strikes the boundary of the inpainting domain in a place
where it is parallel to the yt-plane, making an angle of arctan(4) ≈ 76◦ with the plane. Once again this
results in kinking to 90◦ relative to the boundary, which manifests itself as a stretching of the ball into a
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(a) Inpainting problem in Example 2, second inpainting
domain.

(b) Result of inpainting without ghost voxels.

(c) Result of inpainting with ghost voxels. (d) Result of inpainting with ghost voxels and semi-
implicit extension.

Figure 7.7: The semi-implicit extension in 3D: Here we illustrate an example where ghost voxels
on their own are not enough to resolve kinking artifacts. This time we illustrate in (a) the inpainting
problem from Example 2 with the second inpainting domain, where an occluding rectangle appears for
18 frames before vanishing. In this case the ball makes a very shallow angle with the inpainting domain
at its point of entry, so that the direct form of spacetime transport, both without (b) and with ghost
voxels (c), fail to produce to the correct extrapolation. Only (d), which uses ghost voxels together with
5 iterations of SOR per shell to solve the linear system arising in the semi-implicit form of spacetime
transport is able to produce a satisfactory result.

horizontal bar, as illustrated in 3D in Figure 7.6(b), and through time in Figure 7.6(d)-(i). When viewed
through time, the ball first stretches into a bar, then disappears (frame 36), before re-emerging as a bar
that pinches off into a ball that then continues at its original speed. Once again, the use of ghost voxels
alleviates this problem but creates some blur, as shown in 7.6(c) and Figure 7.6(j)-(o).

In the second case, the ball now strikes the inpainting domain in a location where it is locally parallel
to the xy-plane. This time the angle relative to the plane is arctan( 1

4 ) ≈ 14◦. Since this angle is smaller
than the critical angle ∆θ3 ≈ 35.8◦ at which Guidefill fails for r = 3 (Section 6.6.2 and Figure 7.10(b)),
in this case we expect the direct form of spacetime transport to kink both with and without ghost
voxels. Indeed, this is exactly what is observed in Figure 7.7(b) and Figure 7.7(c) - in fact, the result
with ghost voxels is worse. However, as in the 2D case, the situation is resolved using the semi-implicit
extension. Figure 7.7(d) illustrates the semi-implicit form of spacetime transport using 5 iterations of
SOR to approximate the solution to the resulting linear system. As expected, in this case a successful
connection is made.
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(a) Original video with inpainting do-
main in red: frame 1.

(b) Original video with inpainting do-
main in red: frame 51.

(c) Original video with inpainting do-
main in red: frame 101.

(d) Inpainted video with r = 3 and
ghost voxels on: frame 1.

(e) Inpainted video with r = 3 and
ghost voxels on: frame 51.

(f) Inpainted video with r = 3 and ghost
voxels on: frame 101.

(g) Inpainted video with r = 4 and
ghost voxels off: frame 1.

(h) Inpainted video with r = 4 and
ghost voxels off: frame 51.

(i) Inpainted video with r = 4 and ghost
voxels off: frame 101.

Figure 7.8: A blurry Shanghai tower: In this example we illustrate the problem of inpainting a
stationary rectangle blocking a video where the camera pans up the Shanghai tower. In (a)-(c), we see
the original inpainting problem, with the occluding rectangle. The camera moves up 3 pixels per frame, so
g = 1√

10 (0,−3, 1). In (d)-(f) we see the results of inpainting using spacetime transport with G = I−g⊗g
given, µ̃ = 40, r = 3, and ghost voxels turned on. The result is recognizable but suffers from heavy blur.
In (g)-(i), the radius is increased to r = 4 and ghost voxels are turned off. Since g (after rescaling by√

10) belongs to the discrete integer ball of radius 4, in this case we have no kinking artifacts and also
no blur. For reference, the inpainting domain is outlined in yellow.

Example 3: The Shanghai tower (500px ×350px ×101fr)
Our third example illustrates not a moving object but a moving camera and is meant to highlight blur
artifacts rather than kinking artifacts. In this case the camera pans up the Shanghai tower at a rate of
three pixels per frame, so that g = 1√

10 (0,−3, 1). The inpainting domain, illustrated in red in Figure
7.8(a)-(c), is a stationary rectangle blocking the middle of video. The result of inpainting with spacetime
transport with r = 3, µ̃ = 40, and ghost voxels turned on is illustrated in Figure 7.8(d)-(f). In this case
the result appears correct but suffers from significant and highly noticeable blur that destroys the texture
of the video. In 7.8(g)-(i) we are able to resolve this issue in this case by setting r = 4 and turning ghost
voxels off. Since (0,−3, 1) =

√
10g belongs to the discrete ball of radius 4, the problem is resolved in this

case. However, this fix is unlikely to generalize.
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(a) Original video inpainting problem. (b) Video inpainting using the in-
painted guide field (e).

(c) Video inpainting using the inpainted
guide field (f).

(d) Auxillary guide inpainting problem. (e) Inpainting the guide field using one
iteration of (7.3.5).

(f) Inpainting the guide field using two
iterations of (7.3.5).

Figure 7.9: Video and guide field inpainting: In this example, a ball moves diagonally through a
video with a square shaped inpainting domain, as shown in (a). Inpainting then proceeds in three steps.
First, we compute the exhilary inpainting problem in (d), where we used the undamaged video data in (a)
to construct the guidance tensor field on the exterior of the extended inpainting domain (7.3.3) (to create
this visualization, the guide field at a voxel x is first visualized as an RGB triplet as in Figure 7.11 - low
intensity voxels are clamped down to black, which is rendered transparent, while high intensity voxels are
rendered as a solid). Next, we inpaint the guide field. In (e), we see the result of inpainting the guide field
using a single iteration of (7.3.5). In this case the guide field, which should follow the intended direction
of motion of the ball, instead make a sharp turn. The third step is the use the inpainted guide field to
inpaint the video. When the inpainted guide field (e) is used for video inpainting as in (b), the result is
that the inpainted ball has a large “bite” taken out of it. In (f), we now inpaint the guide field using two
iterations of (7.3.5). This is a big improvement, and leads in (c) to a much better reconstruction of the
video. See also Figure 7.11.

Remark 7.7.1. The issue of blur experienced by spacetime transport is not unlike that discussed in Section
7.1.2 for optical flow based video inpainting. Since those authors had noted that bilinear interpolation leads
to blur, and ghost voxels are based on trilinear interpolation, it does not come as a surprise that spacetime
transport suffers from blur. In the future, it would be interesting to investigate alternative definitions of
ghost pixels and ghost voxels based on other forms of interpolation. However, not just any interpolation
scheme will do - in order to simultaneously ensure that kinking artifacts remain resolved, we need to
consider schemes that lead to the same fixed ratio continuum limit as bilinear (trilinear) interpolation.
One way of doing this is to consider only interpolation schemes that satisfy the properties of ghost pixels
listed in Section 5.1 (or, in the 3D case, the generalization of these properties).

7.8 Examples including guide field computation

In the previous section we went over kinking and blur artifacts that can occur within spacetime transport
even when the method is given ground truth values for the guide field. Having covered that, we now
explore the computation of the guide field itself. As discussed in Section 7.3.2, the guide field is computed
by first calculating the structure tensor Jσ,ρ on the exterior of the extended inpainting domain (7.3.3),
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and then inpainting using (7.3.5). All examples compute the structure tensor using σ = ρ = 2px, and fix
r = 4.

(a) Coherence transport, theoretical curve, r = 3. (b) Guidefill, theoretical curve, r = 3.

Figure 7.10: Reprint of Theoretical Curves for coherence transport and Guidefill: Reprint
of the theoretical kinking curves for coherence transport and Guidefill with r = 3. Section 7.7 contains
various kinking examples for spacetime transport which, although we do not prove this, appear to be
governed by this same curves. We place them here again for the reader’s convenience.

In Figure 7.9 and Figure 7.11, we return to the fast moving ball from Example 2 in the last section.
The ball now moves 4px right and 2px down every frame, that is g = 1√

17 (4,−2, 1), however, now the
guide field is no longer a specified constant, rather it is computed by the fixed point iteration (7.3.5).
The convergence of this iteration is illustrated in 7.9(d)-(f) (the guide field is visualized as a solid in this
case), where we see respectively the guide field to be inpainted including the extended inpainting domain
(7.3.3) in grey, the result of inpainting using one iteration of (7.3.5) (which is shown to be inadequate),
and the result of two iterations, which already yields a satisfactory result. This is also illustrated in
rows one and three Figure 7.11, where we see representative frames of the inpainted guide field using
one and two iterations respectively of (7.3.5). The guide field is color coded so that the RGB triplet
of a given voxel x is parallel to the componentwise absolute value of the minimal eigenvector of G(x),
while the magnitude ‖(R,G,B)‖ is proportional to tanh(|λ1 − λ3|/Λ1,3). The corresponding inpainted
videos with one and two iterations are shown in rows two and four of Figure 7.11 respectively, as well
as Figure 7.9(b)-(c) where they are represented as a solid. When only one iteration of 7.3.5 is used, the
inpainted guide field makes a sharp turn immediately upon entering the inpainting domain, resulting in
poor reconstruction of the moving ball - see Figure 7.9(b) and 7.11)(g)-(l). However, just one additional
iteration yields a dramatic improvement and the resulting inpainted video 7.11)(s)-(x) is already about
as good as Example 2 in the last section, where ground truth values for the guide field were provided.

Remark 7.8.1. In Section 4.3.1, we discussed inaccuracies in the structure tensor that arise when it is
computed too close to the inpainting domain, leading us to define the extended inpainting domain. Similar
inaccuracies arise when the structure tensor is computed within max(4ρ, 4σ) voxels of the boundary of the
video domain - this is visible in Figure 7.11(a) and Figure 7.11(f), as well as 7.11(m) and Figure 7.11(r).
Really, the extended inpainting domain should also include all voxels within distance max(4σ, 4ρ) of the
video domain boundary - if the guide field is needed in these areas, it should be inpainted. This issue is
more significant in the next example.

Next, we return to the example of the Shanghai tower, first with the original rectangular inpainting
domain appearing in every frame (Figure 7.12), then later with a modified version that only appears
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(a) Inpainted
guide field
(k = 1): Frame
2.

(b) Inpainted
guide field
(k = 1): Frame
21.

(c) Inpainted
guide field
(k = 1): Frame
36.

(d) Inpainted
guide field
(k = 1): Frame
41.

(e) Inpainted
guide field
(k = 1): Frame
51.

(f) Inpainted
guide field
(k = 1): Frame
69.

(g) Inpainted
video (k = 1):
Frame 2.

(h) Inpainted
video (k = 1):
Frame 21.

(i) Inpainted
video (k = 1):
Frame 36.

(j) Inpainted
video (k = 1):
Frame 41.

(k) Inpainted
video (k = 1):
Frame 51.

(l) Inpainted
video (k = 1):
Frame 69.

(m) Inpainted
guide field
(k = 2): Frame
2.

(n) Inpainted
guide field
(k = 2): Frame
21.

(o) Inpainted
guide field
(k = 2): Frame
36.

(p) Inpainted
guide field
(k = 2): Frame
41.

(q) Inpainted
guide field
(k = 2): Frame
51.

(r) Inpainted
guide field
(k = 2): Frame
69.

(s) Inpainted
video (k = 2):
Frame 2.

(t) Inpainted
video (k = 2):
Frame 21.

(u) Inpainted
video (k = 2):
Frame 36.

(v) Inpainted
video (k = 2):
Frame 41.

(w) Inpainted
video (k = 2):
Frame 51.

(x) Inpainted
video (k = 2):
Frame 69.

Figure 7.11: Video and guide inpainting viewed temporally: Here we provide further illustration of
the example in Figure 7.9 with a selection of frames from both the inpainted guide field and the inpainted
video, using k = 1 and k = 2 iterations of (7.3.5). The guide field is color coded so that the RGB triplet
of a given voxel x is parallel to the componentwise absolute value of the minimal eigenvector of G(x),
while the magnitude ‖(R,G,B)‖ is proportional to tanh(|λ1−λ3|/Λ1,3). The first and second rows show
the inpainted guide field and video respectively when one iteration of (7.3.5) is used in the construction
of the guide field. The third and fourth rows do the same but now two iterations of (7.3.5) are used. For
reference, the inpainting domain is outlined in black in the video examples, and the extended inpainting
domain is outlined in yellow in the guide field inpainting examples.
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from frame twenty onwards (Figure 7.13). In this case we illustrate the guide field by representing the
normalized minimal eigenvector of the guidance tensor as an RBG triplet (taking its componentwise
absolute value as negative color values are not defined). We know the ground truth motion camera
motion (down by three pixels per frame), and hence the correct answer is a bluish green with three parts
green to one part blue. However, as noted in Remark 7.8.1, when the structure tensor is computed fewer
than max(4σ, 4ρ) voxels from ∂Ωh, the structure tensor is inaccurate. These inaccuracies in the guide
field are clearly visible in 7.12(a). On the exterior of the inpainting domain these have settled down by
about frame eleven, where we see a nearly pure shade of bluish green with (R,G,B) = (0,242,80), which
is what we want. However, in the first example where the inpainting domain stretches all the way down
to frame one, these first eleven frames contain inaccuracies that are then inpainted, meaning that the
first eleven frames of the inpainting domain are full of garbage values. These garbage values are then
propagated upwards through the inpainting domain, not fully disappearing until frame 61. Thus, in this
case, the inpainted solution contains artifacts all the way up until frame 61. Beyond that, the result
appears the same as in Figure 7.8(g)-(i), at least up until the final frames where we once again encounter
inaccuracies in the guide field because we are within nine voxels of ∂Ωh. As illustrated in Figure 7.13,
in the second case where the first twenty frames are unoccluded, this problem is largely alleviated. The
exception is the final few frames, for the reasons we have just discussed. To avoid blur artifacts, in this
example we used ghost voxels when inpainting the guide field but disabled them when inpainting the
video itself.

7.9 Conclusions

This chapter introduced spacetime transport, a natural generalization of the ideas of coherence transport
and Guidefill to three dimensions (two space plus one time). Spacetime transport is a kind of hybrid
between shell-based image inpainting and a form of optical flow based video inpainting, possessing features
of both classes of algorithms. For example, we have seen experimentally in Section 7.7 that kinking
artifacts present in shell-based image inpainting, as well as their resolution based on ghost pixels and
the semi-implicit extension, carry over into three dimensions essentially unchanged (although we have
not proved this). Blur artifacts also carry over, but can now be seen as fitting into a bigger picture
as a known problem with optical flow based inpainting (Section 7.1.2). At the same time, when the
minimal eigenvector v3 of the guidance tensor has a nonzero timelike component, spacetime transport is
essentially equivalent to a form of optical flow based video inpainting. However, unlike optical flow based
inpainting, v3 may be entirely spatial, and this means that spacetime transport can be thought of as
inpainting based on a type of generalized optical flow that doesn’t distinguish between time and space.

However, spacetime transport is still very much a work in progress. In its present form, it suffers from
serious blur artifacts that render traditional optical flow based algorithms a better choice. This needs
to be fixed, and we have already mentioned one possible strategy in Remark 7.7.1. It is also unclear if
the current method for inpainting the guide field is the best one. The alternative that we mentioned in
passing based on animated splines might be better. But even if we do stick with this strategy, more work
needs to be done, especially in terms of voxel ordering strategies. Another issue that remains undecided
is the best way to parallelize the algorithm (in whole or in part) as discussed in Section 7.5.

It is unclear whether the way we adapt our weights in the case λ1 � λ2 ≈ λ3 has any benefit. In this
case it seems evident that no preference should be given to the direction v2 over the direction v3, and
so we bias weights in favor of the plane Πv2,v3 as opposed to the line Lv3 . However, despite exploring
relevant examples such as a line or square in uniform motion (where the isosurfaces of uh are planes), we
have yet to see any significant impact of this feature. In the future it may be scrapped.
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(a) Inpainted guide field: frame 2. (b) Inpainted guide field: frame 6. (c) Inpainted guide field: frame 11.

(d) Inpainted video: frame 2. (e) Inpainted video: frame 6. (f) Inpainted video: frame 11.

(g) Inpainted guide field: frame 21. (h) Inpainted guide field: frame 63. (i) Inpainted guide field: frame 100.

(j) Inpainted video: frame 21. (k) Inpainted video: frame 63. (l) Inpainted video: frame 100.

Figure 7.12: Boundary issues with the structure tensor: Here we redo the inpainting problem
from Example 3 of Section 7.7 (illustrated in Figure 7.8), but calculate the guide field numerically rather
than using a provided ground truth value. The guide field at a given pixel x in this case is visualized
as an RBG triplet equal to the componentwise absolute value of the normalized minimal eigenvector of
G(x). The inpainted guide field is presented for a selection of frames in rows one and three, while the
corresponding inpainted video is presented in rows two and four. In this case we expect the guide field to
appear pure bluish green - three parts green to one part blue, as the camera moves down by three pixels
per frame. This is more or less true on the exterior of the extended inpainting domain (highlighted in
yellow) by about frame ten, but the earlier frames contain inaccuracies due to their proximity to ∂Ωh, as
discussed in Remark 7.8.1. In this example the inaccuracies in the early frames are inpainted and then
propagated into later frames, only fully disappearing by frame 63. The result is artifacts in the inpainted
video (inpainting domain highlighted in yellow) prior to frame 63. These artifacts disappear after frame
63 but reemerge in the final few frames as we are once again too close to ∂Ωh for the structure tensor
to be computed accurately. To avoid blur artifacts we have used ghost voxels when inpainting the guide
field but disabled them when inpainting the video itself.
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(a) Inpainted guide field: frame 2. (b) Inpainted guide field: frame 11. (c) Inpainted guide field: frame 26.

(d) Inpainted video: frame 2. (e) Inpainted video: frame 11. (f) Inpainted video: frame 26.

(g) Inpainted guide field: frame 51. (h) Inpainted guide field: frame 76. (i) Inpainted guide field: frame 100.

(j) Inpainted video: frame 51. (k) Inpainted video: frame 76. (l) Inpainted video: frame 100.

Figure 7.13: Alleviating boundary issues with a new inpainting domain: Here we repeat the
experiment in Figure 7.12, but modify the inpainting domain so that it doesn’t appear until frame 20. This
prevents the propagation of garbage values present in the guide field in earlier frames from propagating
into later frames as we saw in Figure 7.12. In this case the inpainted solution is indistinguishable from
the one in Figure 7.8, where ground truth values for G(x) were provided, at least up until the final few
frames where we once again encounter problems. In practice, one does not get to choose the inpainting
domain, so a better solution is to avoid calculating the structure tensor close to ∂Ωh and inpaint this
area instead. As in the last example, to avoid blur artifacts we have used ghost voxels when inpainting
the guide field but disabled them when inpainting the video itself.
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Finally, there is significant analytical work left to do regarding spacetime transport. First, the analysis
of Chapter 6 should be generalized to this setting. This is unlikely to be difficult but it is worth doing.
More interesting, and potentially more challenging, would be to explore analytically the effect of different
forms of interpolation in the definition of ghost voxels, and to analytically prove the convergence properties
of our fixed point iteration for computing the guide field.
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Chapter 8

Summary and Outlook

This thesis has been about two things - the design of specific inpainting algorithms within a framework,
and the analysis of the framework itself. On the design side of things, we have operated both in two
dimensions with Guidefill in Chapter 4, and three dimensions with spacetime transport in Chapter 7.
Analytically, we have limited ourselves to the 2D case (Chapter 6), but we have provided evidence that
much of our analysis carries over into three dimensions (Section 7.7).

In this final chapter, we will begin in Section 8.1 with a review of the three main parts of the thesis
and give a brief description of potential future research directions. Then in Section 8.2 we will single out
what we consider to be the three most interesting directions for future research and discuss them in more
detail.

8.1 Thesis review and directions for future research

Part I: The first part of this thesis, after introducing the problem in Chapter 2, was concerned with
Guidefill. Guidefill, as we have seen, is an algorithm for solving the inpainting problem arising in the 3D
conversion of film. It was designed for a specific 3D conversion pipeline used in film, which we introduced
in Chapter 3. I designed it while working at Gener8, a company specializing in the 3D conversion of
Hollywood films. Guidefill is influenced by coherence transport [12, 44], but improves upon it while at
the same time adapting to the unique needs of inpainting for 3D conversion. Guidefill has a number
of strengths. First, it corrects two types of kinking artifacts present in coherence transport. In one
case this is accomplished through the introduction of ghost pixels, in the other, by eliminating the use
of the modified structure tensor (Section 4.3.1). Second, it puts the artist in the loop with adjustable
splines controlling the output of the algorithm. Third, it has fast execution times enabled by parallelizing
the algorithm on the GPU and using a novel boundary tracking algorithm to efficiently allocate GPU
processors to pixels. However, Guidefill also has a serious drawback from the point of view of temporal
stability, since video frames are inpainted independently. This flaw was the motivation behind spacetime
transport, which was discussed near the end of the thesis in Chapter 7. Spacetime transport (which is
still a work in progress) has the potential to improve upon Guidefill in terms of temporal coherence and
also has a natural connection to optical flow. This connection enables it to take advantage of situations
such as inpainting a moving object where the information occluded in one frame is available in another.
However, as discussed in Section 7.5, it comes with its own challenges in terms of an efficient GPU
implementation.

In the future, it would be interesting to explore a “temporally smoothed” Guidefill that is a compromise
between Guidefill and spacetime transport. In this algorithm, frames would still be inpainted one at a
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time, but they would be sent to the GPU in packets in such a way that the current frame always has
a “cushion” of frames on either side. This cushion would need to be big enough that the 3D solid ball
B̃ε,h(x) is always “full” for each pixel x in the current frame. That is, the cushion needs to be wide
enough that the color of every voxel in B̃ε,h(x) is defined. The current frame would be inpainted in
exactly the same way as in Guidefill, with the guide field still computed using only information present
in the current frame, but the averaging would now be done over the 3D ball B̃ε,h(x) that includes pixel
values from neighboring frames, rather than the 2D ball B̃ε,h(x), that only includes values from the
current frame. Such an algorithm would not have the connection to optical flow that spacetime transport
enjoys, but would gain improved temporal coherence at minimal additional cost. This avoids some of the
implementation challenges of spacetime transport and may be faster and good enough for certain cases.
Further improvements to temporal stability could be gained via some procedure for enforcing temporal
continuity into the guide field itself (as opposed to just the video derived from it). This could be as simple
as replacing the guide field in a given frame with a weighted average of it plus the guide field in previous
frames, but there are many possibilities to explore. Finally, another idea would be to combine one or
both of these with a procedure whereby instead of computing splines independently for every frame, they
are instead calculated for a small number of user specified frames and then propagated to neighboring
frames using optical flow or some other method. As we have already stated in Chapter 7 it would also
be interesting to explore something like this in the context of spacetime transport.

Part II: The second part of this thesis was concerned with analysis. This began as an attempt to
understand the origins of the kinking behaviour of coherence transport, and why the use of ghost pixels
in Guidefill was able largely to correct it. This initial goal was accomplished by analyzing the framework
considered in this thesis using the fixed ratio continuum limit proposed in Section 2.4, as opposed to
Bornemann and März’s high-resolution vanishing viscosity limit, as had been done previously. Later it
was noticed that Guidefill also produced kinking artifacts when the angle between the guide direction
g and the inpainting domain boundary is small. The semi-implicit extension was introduced to correct
this, and the fixed ratio limit was able to explain the difference in behaviour between the direct and
semi-implicit forms of different algorithms. In particular, it was proven in Section 6.6.1 that the direct
form of any method within the inpainting framework considered must exhibit kinking artifacts. At the
same time, it was proven that the semi-implicit form of Guidefill only kinks if the guidance direction g
is exactly parallel to the boundary of the inpainting domain (at least under the simplifying assumptions
under which our analysis operates). Interestingly, this prediction is exactly the same as the one that the
high-resolution vanishing viscosity limit makes for coherence transport.

The analysis of the fixed ratio limit was originally done assuming smooth boundary data, as we have
done in Theorem 4.7.1. However, as this assumption is far from realistic when it comes to images, this
analysis was later generalized in Theorem 6.3.1 to include boundary data with very low regularity, such
as boundary data with jump discontinuities or boundary data that is nowhere differentiable. As a result,
Theorem 6.3.1 is by far the most technically challenging piece of the thesis, with a lengthy proof broken up
into several sections. Since Taylor series (the main tool in the proof of Theorem 4.7.1) were not available,
the proof was instead accomplished by exploiting a connection to stopped random walks. Theorem 6.3.1
not only proves convergence but also gives convergence rates, which depend on both the regularity of
the boundary data and the choice of Lp norm used to measure to convergence. This result is interesting
in and of itself, and it also hints at the existence of blur artifacts, which are the other major topic of
our analysis. However, to analyze blur artifacts fully, we need to use the asymptotic limit, which also
comes from the connection to stopped random walks. Unfortunately, for technical reasons at present, we
are unable to prove convergence to the asymptotic limit. Although convergence is supported by strong
numerical evidence in Section 6.7, this is left as a conjecture (Conjecture 6.7.1) for now. Proving this
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conjecture is at the top of the agenda for future research, however, there are also a number of other
questions we would like to explore:

1. Does there exist an algorithm within the framework we have described that avoids blur artifacts
and kinking artifacts at the same time? If not, is it at least possible to design an algorithm that, like
semi-implicit Guidefill, avoids kinking artifacts so long as the guidance direction g = (cos θ, sin θ)
obeys θ 6= 0, but for which the severity of blur as a function of θ remains bounded? Could this be
done, for example, by replacing the bilinear interpolation used to define ghost pixels with a more
sophisticated interpolation scheme?

2. While we have already shown in Proposition 6.2.1 that SOR (with an appropriate ordering of
unknowns) is particularly effective for solving the linear system arising in semi-implicit Guidefill,
is this generically true regarding the semi-implicit extension of any inpainting method within the
class under investigation? Moreover, SOR is not ideal because it is sequential whereas Guidefill
was designed to be a parallel algorithm. Does another method exist which maintains the fast
convergence rate of SOR, but can be implemented in parallel? One possibility is the scheduled
Jacobi method [4].

3. Is our semi-implicit extension of Algorithm 1 the best way of avoiding kinking artifacts? In our
analysis, we have assumed that the radius of our averaging neighborhood remains fixed. Another
possibility, based on the observation that as r increases, (direct) Guidefill can successfully ex-
trapolate shallower and shallower angles (Section 6.6.2), is to use the direct form of Guidefill but
dynamically resize B̃ε,h(x) as needed.

4. What happens if the semi-implicit version of Algorithm 1 is generalized to a fully-implicit extension
in which pixel colors are computed as a weighted average not only of their (known) already filled
neighbors in Aε,h(x) ∩ (Ω\D(k)) and (unknown) neighbors within the same shell ∂D(k)

h , but of all
neighbors in Aε,h(x)? Are there additional benefits in terms of artifact reduction and, if so, can
the resulting linear system be solved efficiently enough to make this worthwhile?

Part III: The last part of the thesis is concerned with spacetime transport, a 3D generalization of
Guidefill. Spacetime transport is based on filling the inpainting domain in concentric 3D shells of voxels,
assigning colors to voxels based on a weighted average over a 3D rotated ball of ghost voxels. The weights
are calculated based on a guide field of 3 × 3 symmetric positive semi-definite (s.p.s.d.) matrices that
are computed by first computing the 3D structure tensor (which is s.p.s.d.) outside of the extended
inpainting domain (7.3.3), and then extending it inside by inpainting (using an inpainting method that
preserves the s.p.s.d. property). The behaviour of the weights at a given voxel depends on the spectrum
of the guidance tensor at that voxel. When all eigenvalues are of a similar size, the weights are radially
symmetric. If there is one large eigenvalue and two smaller, nearly equal eigenvalues, then the weights
are biased in favor of the plane spanned by the eigenvectors corresponding to these smaller eigenvalues.
Finally, if there is a unique minimal eigenvalue much smaller than the other two, then the weights are
biased in favor of the line defined by the minimal eigenvector. It is in this last case that spacetime
transport is connected to optical flow, since as we show in Section 7.6, the minimal eigenvector of the 3D
structure tensor is related to a kind of generalized Lucas–Kanade optical flow. However, we also argue
in Section 7.1.1 that shell-based image inpainting and optical flow based video inpainting are connected
as well.

In the future it would be interesting to explore the connection between shell-based inpainting and
optical flow based video inpainting more deeply. In particular, it would be interesting to see whether
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or not an exchange of ideas could be fruitful. For example, in the context of optical flow based video
inpainting, it is known that interpolation schemes that are more sophisticated than bilinear interpolation
leads to a reduction in blur artifacts. Could this idea be applied to ghost pixels, to reduce the blur not
only in spacetime transport, but also in Guidefill? Going in the other direction, it would be interesting
to see whether or not the analytical framework we have developed in Chapter 6 for shell-based image
inpainting could be generalized to incorporate optical flow based video inpainting, and whether this could
lead to new insights. At the same time, it would be interesting to apply our procedure for inpainting the
guide tensor field based on a fixed point iteration to the inpainting of optical flow fields and to see if there
are any advantages to this. In particular, it would be interesting to see how it compares to approaches
such as the one in [62] which inpaints the optical flow using Telea’s algorithm [64].

8.2 Details on the most promising future research directions

We would like to conclude this thesis with a list of what we consider to be the three most promising
directions for future research, including a sketch of an action plan for each. These are listed in order
according to how important we perceive them to be, and according to the order in which we plan to
attack them.

1. Develop the asymptotic limit further and use it to create a unified framework for
analyzing blur: First, Conjecture 6.7.1 should be proven (or disproven, as the case may be). Assuming
it is true, after it has been proven Conjecture 6.7.1 should be generalized to three dimensions so that it
can be applied to spacetime transport and other 3D shell-based inpainting algorithms. Ideally, it should
also be applicable to some of the schemes used in optical flow based video inpainting. Once this is done,
the asymptotic limit should be used to systematically search for an interpolation strategy that minimizes
blur. In the context of Guidefill and spacetime transport, this would amount to seeking alternative
definitions of ghost pixels (voxels) based on other interpolation strategies. Hopefully, a similar approach
could be used to find good interpolants for optical flow based inpainting. However, as many higher order
interpolation strategies use negative weights, it would be ideal if a method could be found for getting
past the current restriction of the asymptotic limit to non-negative weights summing to 1. However, since
eliminating this restriction would break the connection between Algorithm 1 and stopped random walks
upon which the asymptotic limit is based, it is not immediately clear how to go about this.

2. Complete spacetime transport: This action item is listed second because I believe the previous
item has to be completed first (at least in part). This is because spacetime transport in its current form
suffers from serious blur artifacts that must be corrected before it can be a viable method. Aside from this,
the fixed ratio limit should be generalized to 3D so that it can be used to study spacetime transport from a
theoretical point of view. A theoretical justification should also be given for the fixed point iteration used
to inpaint the guide field, and alternative inpainting strategies should be explored. Experimentation needs
to be done regarding the best GPU implementation strategy. Besides the strategy sketched in Section
7.5 based on sweeping through the video (potentially multiiple times) along the different coordinate
directions, another strategy would be to send the video to the GPU shell by shell, with only the current
shell and those it depends on inside the GPU at any given time. Due to the potentially irregular shape
of the shells, some preprocessing might need to be done before they are sent to the GPU, such as first
“flattening” each shell into an image. Spacetime transport should be developed in parallel with related
strategies such as “temporally smoothed Guidefill” discussed above in Section 8.1, and published together.

3. Develop and study a fully implicit form of Algorithm 1: Currently, our framework computes
the color of a given pixel (voxel) x on the inpainting domain boundary as a weighted average of either
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its already filled neighbors within Aε,h(x) (or Aε,h(x) in 3D), as in the direct form of the method, or
these neighbors plus additional unknown neighbors within the same shell in the semi-implicit form. A
third option should be added to this in which the color of x is computed as a weighted average of all
neighbors in Aε,h(x) (or Aε,h(x)). This option would be called the fully implicit form and would involve
a linear system coupling together not just those pixels (voxels) within the current shell, but all pixels
(voxels) within the inpainting domain. The fixed ratio continuum limit of this new form of the algorithm
should be derived, and its properties studied. Since the coupling structure of the unknowns now allows
information to travel in all directions, rather than just from the boundary inwards, a possible advantage of
this approach is the elimination of shock artifacts. Numerical experiments should be done to see whether
or not this is true, and if other advantages exist. If advantages exist and are sufficiently compelling,
an efficient numerical solution should be sought. Whether or not the gains are ultimately worth the
additional computational cost, this last piece of the puzzle is needed to complete the story of what is
possible within this framework.
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Appendix A

Appendix

A.1 Punctured sums

Here we provide further justification for our exclusion of the point x from the update formula (2.0.3) in
Algorithm 1 as mentioned in Remark 2.5.1. As we mentioned there, this makes no difference to the direct
form of Algorithm 1, because the subroutine FillRow only involves sums taken over Aε,h(x) ∩ (Ω\D(k)),
which never contains x. However, the semi-implicit extension of Algorithm 1 expresses uh(x) as a sum of
uh(y) over a set of points that might include x. The reason we deliberately exclude x is because, as the
following proposition shows, if wε(x,x) < ∞, it doesn’t matter, but if wε(x,x) = ∞, it wreaks havoc.
Moreover, the weights (2.5.2) which we wish to study do have the property that wε(x,x) =∞.

Proposition A.1.1. Suppose x ∈ B for some finite set B ⊂ R2, and suppose there exist non negative
weights w : B ×B → [0,∞], finite everywhere except possibly at (x,x). Then if w(x,x) <∞, we have

uh(x) =
∑

y∈B w(x,y)uh(y)∑
y∈B w(x,y) =

∑
y∈B\{x} w(x,y)uh(y)∑

y∈B\{x} w(x,y) .

On the other hand, if w(x,x) =∞, we have an indeterminate expression

uh(x) = ∞
∞
.

Proof. The proof is an exercise in cancellation and left to the reader.

A.2 Details of the GPU Implementation

Some care is required in order to obtain a maximally efficient GPU implementation. In particular, some
thought needs to go into how to assign threads to pixels, as well as how to cut down on memory accesses
when working with ghost pixels. Here we go over two optimizations which together can lead to a speedup
by an order of magnitude or more.

Efficient Implementation of Ghost Pixels. The core of our algorithm is the computation of uh(x)
as a weighted sum of uh(y) over all “available” ghost pixels y in the rotated ball B̃ε,h(x) in Figure 2.9(b).
Since ghost pixels are computed based on bilinear interpolation (4.2.2) of their (up to) four nearest
neighbors1 in Ωh, being available means that all of the relevant neighbors have already been “filled”. The

1If a ghost pixel happens to lie exactly on the vertical or horizontal line joining two pixel centers, then only two neighbors
are required.
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naive approach to checking availability, therefore, requires up to four memory accesses per ghost pixel.
We reduce this to one (effective) memory access by taking advantage of the ability of most graphics

cards to perform bilinear interpolation in hardware2. Specifically, we flag pixels as “filled” by writing a
zero into their alpha channel. If a pixel is not filled, then we ensure that the alpha channel is at least
1. Since the bilinear interpolant of a non-negative function is zero at a point if and only if it is also zero
at all neighboring (contributing) lattice points, we can determine if a ghost pixel y is available simply
by evaluating the alpha channel at y using (hardware based) interpolation. If the result is zero, y is
available - otherwise, it is not. Experiments indicate that this small change leads to a speed up by a
factor of roughly four.

Boundary Tracking for Efficient Assigment of Threads to Pixels.
While early GPU programming languages such as GLSL leave programmers writing image processing

code with little explicit control over the correspondence between threads and pixels, modern languages
like CUDA and OpenCL assume no a priori connection between the two. These languages simply assign
each thread a unique index (either an integer or tuple of integers) and leave it up to the programmer
to decide how these indices map to pixels. This flexibility may be exploited for additional performance
gains.

A naive approach is to assign one thread per pixel. However this is inefficient as only the boundary
pixels are actually being updated. Since a typical HD image contains millions of pixels but the maximum
number of concurrent threads in a typical GPU is in the tens of thousands3, this approach wastes a great
deal of time in which the GPU is busy processing pixels that do not actually change.

A better approach is to assign threads only to pixels on the boundary of the inpainting domain, by
maintaining a list of the coordinates of all boundary pixels. This list is updated every iteration by a
parallel algorithm that requires each of O(|∂Dh|) threads to do logarithmic work.

Our algorithm is based on the observation that every boundary pixel at step k of Guidefill either was
also a boundary pixel at step k−1, or else has an immediate neighbor that was. More precisely, if D(k−1)

h

and D(k)
h denote the inpainting domain at steps k− 1 and k respectively, then we can construct ∂D(k)

h as
follows: For each x ∈ ∂D(k−1)

h , if x ∈ D(k)
h then we insert x into ∂D(k)

h . On the other hand, if x /∈ D(k)
h ,

then we iterate through the eight immediate neighbors in N (x) and add to ∂D(k)
h all neighbors which

belong to D(k)
h . This will result in a list which contains all pixels in the new boundary, but additionally

contains some duplicates as a given pixel in ∂D(k)
h will in general be the neighbor of more than one pixel

in ∂D
(k−1)
h . These duplicates may then be eliminated using a standard parallel algorithm such as the

one presented in [65, Ch. 10].
Rather than eliminate duplicates in post processing, we use a slightly more complex variant of the

above approach that prevents duplicates before they occur. This is explained in the next short Section.
Details of the boundary update step. For the boundary update step we use an algorithm like the
one described above but designed to eliminate duplicates before they occur. Specifically, every time we
encounter a pixel x ∈ ∂D(k−1)

h \∂D(k)
h with a neighbor y ∈ N (x)∩D(k)

h , before inserting y into ∂D(k)
h we

iterate over N (y) looking for a third pixel x′ ∈ ∂D(k−1)
h \∂D(k)

h such that x′ 6= x. In this case we know
that both x and x′ will try to insert y into ∂D(k)

h . To prevent duplicates we only allow whichever of the
two comes first in the lexicographic ordering of pixels from left to right and top to bottom to perform
the insertion.

2Experiments indicate that bilinear interpolation in hardware (implemented in CUDA as a single texture lookup at a
non-pixel center) is about four times fasters than making four separate texture lookups at each of the nearest pixel centers
and then performing the interpolation in software. However, we have been unable to find a reference explaining why this is
so.

3For example, the GeForce GTX Titan X is a flagship NVIDIA GPU at the time of writing and has a total of 24
multiprocessors [2] each with a maximum of 2048 resident threads [52, Appendix G.1].
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For the insertion itself, we initialize ∂D(k)
h as an empty array with space for at least eight times the

number of pixels in ∂D(k−1)
h . Each pixel x ∈ ∂D(k−1)

h is allocated eight “slots” in ∂D(k)
h - one for each

of its neighbors in N (x). Each time x inserts a y ∈ N (x) into ∂D(k)
h , it places it into one of these eight

slots - all unused slots are filled with null entrees. These may be removed at the end using O(|∂D(k)
h |)

processors and O(log |∂D(k)
h |) operations per processor using a standard algorithm such as [54, Chapter

36].

Termination conditions for the main loop. When Guidefill is run without boundary tracking (i.e.
by allocating one thread per pixel in the image), the number of unfilled pixels is not automatically known
and must be periodically computed - we do this every ten iterations using the “count_ if” function that
comes with the CUDA Thrust library. To prevent the algorithm possibly getting trapped in an infinite
loop, if two successive computations of |Dh| return the same number, the “smart order” condition (4.5.3)
is turned off for one iteration. The number of unfilled pixels |Dh| is then computed again - if it has
now decreased, execution continues as usual, otherwise the program terminates. Termination also occurs
if |Dh| = 0. Termination conditions for Guidefill with boundary tracking are the same but with |Dh|
replaced by |∂Dh|. In this case there is no need for a separate mechanism to compute |∂Dh| as it is
already computed every iteration concurrently with the boundary update.

Algorithms SM1 and SM2 provide pseudocode for Guidefill with and without boundary tracking.

Algorithm 7 Guidefill Without Boundary Tracking
uh = image/video frame.
B = bounding box of inpainting domain.
M = countUnfilledPixels(B).
k = 1.
while M > 0 do

threads ← Allocate a thread for each pixel in B.
for thread in threads do

x = pixel pointed to by thread.
if not boundaryPixel(x) then

return
end if
if not readyToBeFilled(x) and smart order on then

return
end if
Fill(x) and flag x as filled.

end for
if Mod(k,10)== 0 or smart order is off then

M = countUnfilledPixels(B).
end if
if M has not changed and smart order is turned on then

turn off smart order for one iteration.
else if M has not changed and smart order is off then

exit
end if
k ← k + 1.

end while

Algorithm SM3 provides pseudocode for the boundary update step.
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Algorithm 8 Guidefill With Boundary Tracking
uh = image/video frame.
Γ = findInpaintingDomainBoundary(uh).
while Γ 6= ∅ do

threads ← Allocate a thread for each pixel in Γ.
for thread in threads do

x = pixel pointed to by thread.
if not readyToBeFilled(x) and smart order on then

return
end if
Fill(x) and flag x as filled.

end for
update(Γ) and count unfilled pixels
if no pixels were filled and smart order is turned on then

turn off smart order for one iteration.
else if no pixels were filled and smart order is off then

exit
end if

end while

Algorithm 9 Boundary Update
Require: |Γ(k+1)| ≥ 8|Γ(k)|.

Γ(k) = current boundary.
Γ(k+1) = new boundary.
threads ← allocate one thread per pixel in Γ(k).
for thread in threads do

i← Index(thread).
x = Γ(k)[i].
if x ∈ D(k+1) then

Γ(k+1)[8 ∗ i] = x.
for j = 1 to 7 do

Γ(k+1)[8 ∗ i+ j]=NULL.
end for

else
for yj ∈ N (x)\{x} do

if yj /∈ D(k+1)
h \Γ(k) then

Γ(k+1)[8 ∗ i+ j]=NULL.
else

canAdd = true.
for z` ∈ N (yj)\{yj} do

if z` ∈ Γ(k) and Order(z`) < Order(x) then
canAdd = false.

end if
end for
if canAdd then

Γ(k+1)[8 ∗ i+ j] = yj .
else

Γ(k+1)[8 ∗ i+ j]=NULL.
end if

end if
end for

end if
end for
Γ(k+1) ←removeNullEntrees(Γ(k+1)).
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A.3 Algorithmic Complexity in the General case

This short section is meant to complement the complexity analysis in Section 4.8, by discussing what
happens when we relax some of the assumptions of Theorem 4.8.2. If we relax anything, then Theorem
4.8.2 ceases to be true in general. For example, if we eliminate the assumption that Bh is surrounded by
readable pixels then K(N) is no longer bounded above by d

√
N/2e and is instead given by

K(N) = max
x∈Dh

min
y∈Ωh\(Dh∪Bh)

dG(x,y),

where dG(x,y) is equal to the length of the shortest path in the graph G with vertex set V = Ωh\Bh and
where each vertex x ∈ V is connected to each of its (up to eight) neighbors in N (x) ∩ V. This can be
as bad as O(N) - consider, for example, an inpainting domain that is one pixel tall and N pixels wide,
with just a single readable boundary pixel on one side and all other pixels within an annulus of width ε
pixels surrounding the inpainting domain non-readable. If we take that one pixel away, then the runtime
becomes infinite4. On the other hand, if we retain the assumption (∂outerDh) ∩Bh = ∅ but turn on the
smart order, we run into similar problems. The case where both assumptions are relaxed is even more
complicated, but is related to the case of relaxing only one or the other by the following proposition:

Proposition A.3.1. Let K(N) denote the number of iterations required for
Guidefill to terminate, and let Ksmart(N) ≤ K(N) denote the last iteration on which the smart order
test (4.5.3) causes the filling of a pixel to be delayed. Let K∗(N) denote the number of iterations for
Guidefill to terminate if the smart order test is disabled. Then

K(N) ≤ Ksmart(N) +K∗(N) (A.3.1)

Proof. After Ksmart(N) iterations, we will have filled a subset V∗ ⊆ Dh of pixels and the smart order
test (4.5.3) will no longer have any effect. The number of remaining iterations is therefore given by

Kremaining(N) = max
x∈Dh\V∗

min
y∈(Ωh\(Dh∪Bh))∪V∗

dG(x,y)

≤ max
x∈Dh

min
y∈Ωh\(Dh∪Bh)

dG(x,y)

= K∗(N).

Although each of the quantities on the RHS of (A.3.1) is difficult to bound in general, we can obtain
rough estimates under modest assumptions. In particular, as long as the splines are laid out in a reasonable
way with one endpoint in the readable portion of the image Ωh\(Dh ∪ Bh) and the other in Dh, such
that none of the splines overlap the non-readable pixels in Bh and they are all spaced far enough apart
that they do not cross or otherwise interact, then we expect that

Ksmart(N) . length in pixels of the longest spline.

At the same time, we expect that the inpainting domains arising in 3D conversion will typically consist
mostly of horizontal line segments with a readable pixel at one end and a non-readable pixel at the other.
Exceptions can and do occur, and it is also possible to have “cracks” with unreadable pixels on either

4In practice we implement checks to detect this case and terminate the algorithm.
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side, however, so long as these cracks are not too deep we can expect

K∗(N) . width in pixels of Dh at its widest point.

Excluding situations such as a very long and thin inpainting domain with a spline running down the
entirety of its length, we typically expect both of these quantities to be much smaller than N , so that

K(N) ≤ Ksmart(N) +K∗(N)� N

in most cases in practice.

A.4 Results in Anaglyph 3D

In the Chapter 4 Section 4.9, we showed some examples of the left or right eye view produced by our
method. Here we show in Figures A.1, A.2, and A.3 both eyes together in anaglyph 3D (note that
anaglyph 3D glasses are required). Since the inpainted area is only visible in one eye, small artifacts may
be less noticeable. See also the anaglyph videos included in the supplementary material. Unlike before
we do not crop our output.

A.5 Brief discussion of GPU Architechure

Here we briefly give more justification of our choice p = 20480, the maximum number of resident threads,
in Section 4.9.2. NVIDIA GPUs contain a small number of multiprocessors, each of which issue one or
two instructions to each of a small number of warps of 32 threads every clock cycle. For our particular
GPU, this limits the number of threads that can receive instructions in a given clock cycle to 1280, 5

in comparison with a maximum of 20480 threads that can be resident in the GPU at any given time6.
However, because instructions take anywhere from tens to hundreds of clock cycles to execute, a GPU can
keep a much larger number of threads “active” by issuing instructions to other warps in the intervening
time. For simplicity, we assume in our analysis that p is equal to the maximum number of resident
threads, that is p = 20480.

510 multiprocessors times 4 warp schedulers per multiprocessor times 32 threads per warp.
610 multiprocessors times 2048 maximum resident threads per multiprocessor.
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(a) Coherence transport. (b) nl-Poisson. (c) Criminisi.

(d) Content-Aware Fill. (e) Guidefill (pre spline adjustment). (f) Guidefill (post spline adjustment).

Figure A.1: Anaglyph 3D output of the “Wine” 3D conversion example, using various methods for the
inpainting step. Since the inpainted area is only visible in one eye, artifacts may be less noticeable.
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(a) Coherence transport. (b) nl-Poisson.

(c) Content-Aware Fill. (d) Criminisi.

(e) Guidefill (pre spline adjustment). (f) Guidefill (post spline adjustment).

Figure A.2: Anaglyph 3D output of the “Bust” 3D conversion example, using various methods for the
inpainting step. Since the inpainted area is only visible in one eye, artifacts may be less noticeable.
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Figure A.3: 3D conversion to create an illusion. Anaglyph 3D output of the “Planet” 3D conversion
example, using fake spherical geometry to enhance the illusion of a tiny planet floating in space. Inpainting
is done with Photoshop’s Content-Aware Fill in this case.
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A.6 Properties of Ghost Pixels and Equivalent Weights

In this appendix we prove the six properties of ghost pixels and equivalent weights listed in Section 5.1.
These properties all follow from the definition of uh(y) when y is a ghost pixel, namely

uh(y) =
∑

z∈Supp({y})

Λz,h(y)uh(z),

where {Λz,h}z∈Z2
h
denote the basis functions of bilinear interpolation associated with the lattice Z2

h, and
where Supp(A) denotes the set of real pixels needed to define a set A of ghost pixels using bilinear
interpolation. Note that if y ∈ A, then

Λz,h(y) = 0 for all z /∈ Supp(A). (A.6.1)

The following explicit formula for Supp({(x, y)}) (which comes from the definition of bilinear interpola-
tion) will occasionally be useful.

Supp({(x, y)}) =
{(⌊x

h

⌋
h,
⌊y
h

⌋
h
)
,
(⌈x
h

⌉
h,
⌊y
h

⌋
h
)
,
(⌊x
h

⌋
h,
⌈y
h

⌉
h
)
,
(⌈x
h

⌉
h,
⌈y
h

⌉
h
)}

. (A.6.2)

First we prove property one.

1. Explicit formula:
w̃(x, z) =

∑
y∈A(x)

Λy,h(z)w(x,y)

Proof. This follows straightforwardly from the definition of ghost pixels, the property (A.6.1), and a few
exchanges of finite sums.

uh(x) =
∑

y∈A(x)

w(x,y)uh(y)

=
∑

y∈A(x)

w(x,y)
∑

z∈Supp({y})

Λz,h(y)uh(z)

=
∑

y∈A(x)

w(x,y)
∑

z∈Supp(A(x))

Λz,h(y)uh(z)

=
∑

z∈Supp(A(x))

 ∑
y∈A(x)

Λz,h(y)w(x,y)

︸ ︷︷ ︸
:=w̃(x,z)

uh(z)

Next, instead of proving properties two and three, we prove a stronger result from which they both
follow.

1.(a) Preservation of degree 1 polynomials: Suppose f(y) is a (scalar valued) polynomial of degree at
most 1, that is f(y) = a+ b · y for some a ∈ R and b ∈ R2. Then∑

y∈A(x)

w(x,y)f(y) =
∑

y∈Supp(A(x))

w̃(x,y)f(y).

Proof. This follows from the fact that the bilinear interpolant of a polynomial of degree at most 1 is just
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the polynomial back. That is, ∑
z∈Supp({y})

Λz,h(y)f(z) = f(y).

This is obvious and we do not prove it. We will also use (A.6.1) once.

∑
y∈A(x)

w(x,y)f(y) =
∑

y∈A(x)

w(x,y)

 ∑
z∈Supp({y})

Λz,h(y)f(z)


=

∑
y∈A(x)

w(x,y)

 ∑
z∈Supp(A(x))

Λz,h(y)f(z)


=

∑
z∈Supp(A(x))

 ∑
y∈A(x)

Λz,h(y)w(x,y)

 f(z)

=
∑

z∈Supp(A(x))

w̃(x, z)f(z).

2. Preservation of total mass. ∑
y∈A(x)

w(x,y) =
∑

y∈Supp(A(x))

w̃(x,y).

Proof. Special case of 1.(a), p(y) ≡ 1.

3. Preservation of center of mass (or first moment).∑
y∈A(x)

w(x,y)y =
∑

y∈Supp(A(x))

w̃(x,y)y.

Proof. Apply 1.(a) to each component of f(y) = y.

4. Inheritance of non-negativity:

w̃ε(x, z) ≥ 0 for all z ∈ Supp(Aε,h(x)).

Proof. This is immediate from the non-negativity of the original weights {wε}, the non-negativity of the
basis functions {Λy,h}, and the explicit formula (5.1.1).

5. Inheritance of non-degeneracy condition (2.0.2).∑
y∈Supp(Aε,h(x)∩(Ω\D(k)))

w̃ε(x,y) > 0.

Proof. Apply preservation of total mass to (2.0.2).

6. Universal Support. For any n ∈ Z, we have

Supp(Aε,h(x) ∩ {y ≤ nh}) ⊆ Dh(Bε,h(x)) ∩ {y ≤ nh} ⊆ Bε+2h,h(x) ∩ {y ≤ nh}.
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where {y ≤ nh} := {(x, y) ∈ R2 : y ≤ nh}, and where Dh is the dilation operator defined in our section
on notation.

Proof. Let (x, y) ∈ Aε,h(x) ∩ {y ≤ nh}. Then x2 + y2 ≤ ε2 and y ≤ nh. Hence
(⌊
x
h

⌋
h,
⌊
y
h

⌋
h
)
∈ Bε,h(x),

and by (A.6.2) we have

Supp({(x, y)}) ⊆ N
((⌊x

h

⌋
h,
⌊y
h

⌋
h
))
⊆ Dh(Bε,h(x)),

Where N (x) denotes the nine-point neighborhood of x ∈ Z2
h defined in the notation section. But since

we also know y ≤ nh, we have
⌈
y
h

⌉
h ≤

⌈
nh
h

⌉
h ≤ nh, and hence applying (A.6.2) again we conclude

Supp({(x, y)}) ⊆ {y ≤ nh}

as well. Since (x, y) ∈ Aε,h(x) ∩ {y ≤ nh} was arbitrary, the first inclusion follows. For the second
inclusion, note that every element of Dh(Bε,h(x)) ∩ {y ≤ nh} is of the form (x, y) = y + ∆y where
y ∈ Bε,h(x) and ∆y ∈ {−h, 0, h} × {−h, 0, h}. Hence

‖(x, y)‖ = ‖y + ∆y‖ ≤ ‖y‖+ ‖∆y‖ ≤ ε+
√

2h < ε+ 2h.

At the same time we have y ≤ nh, so (x, y) ∈ Bε+2h,h(x) ∩ {y ≤ nh} as claimed.

A.7 Proof of Theorem 6.5.1

We begin by breaking the error up into pieces as

‖uh − umärz‖p ≤ ‖uh − u‖p + ‖u− umärz‖p,

where u is our proposed limit (6.3.3). We will then separately prove

‖uh − u‖p ≤ K1 · (rh)( s′2 + 1
2p )∧ s2∧1

‖u− umärz‖p ≤ K2r
−q{s∧(s′+ 1

p )∧1}

for constants K1 > 0, K2 > 0 with the claimed properties. Taken together, these two inequalities prove
the first claim (6.5.2). For the second claim (6.5.3), just the second is enough.

Step 1: Bounding ‖uh − u‖p: This step is straightforward. By Theorem 6.3.1 we know

‖uh − u‖p ≤ K · (rh)( s′2 + 1
2p )∧ s2∧1

where K(θ∗r , r
g∗r ·e2

) > 0 depends on u0, U , and {Ui}Mi=1 (which are fixed) and continuously on r
g∗r ·e2

and
θ∗r (which are not fixed in this case). By assumption, g∗r

r → g∗ as r → ∞. Moreover, by continuity we
know there is a η > 0 s.t. |g

∗
r ·e2
r − g · e2| < η and |θ∗r − θ∗| < η implies

K

(
θ∗r ,

r

g∗r · e2

)
≤ K

(
θ∗,

1
g∗ · e2

)
+ 1.

We simply apply our assumption g∗r
r → g∗ to find an R such that r > R implies that the bounds involving
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η are satisfied, and then define

K1 = max
{

Rmax
r=1

{
K

(
θ∗r ,

r

g∗r · e2

)}
,K

(
θ∗,

1
g∗ · e2

)
+ 1
}
.

All the claimed dependency properties of K1 follow from the analogous properties of K.

Step 2: Bounding ‖u−umärz‖p: This step is a little more work, but also straightforward. We begin by
relating |u−umärz| to | cot θ− cot θr|, which in turn is related to ‖g∗r

r −g∗‖. Indeed, it is straightforward
to show

| cot θ − cot θr| ≤
r

|g∗r · e2|

∥∥∥∥g∗r
r
− g∗

∥∥∥∥ ≤ Cr−q,
where

C = max
{

R′max
r=1

{
r

g∗r · e2

}
,

1
g∗ · e2

+ 1
}
·D,

and where D is the hidden constant in our assumption of the O(r−q) convergence of g∗r
r to g∗, and where

r > R′ implies r
g∗r ·e2

< 1
g∗·e2 + 1 (similarly to before, R′ exists since we assume g∗r

r → g∗). Note that
1

g∗·e2 →∞ as θ∗ → 0 or θ∗ → π, and so C does as well. Next, first note that

|u(x)− umärz(x)| = |u0(Πθ∗r
(x))− u0(Πθ∗(x))| for all x ∈ D.

where Πθ∗r
, Πθ∗ are the usual transport operators defined by (6.3.3). Then note that we have the bound

|Πθ∗r
(x)−Πθ∗(x)| ≤ | cot θ∗r − cot θ∗| ≤ Cr−q.

This estimate will play the same role as our estimate on the moments of Xτ in the proof of Theorem
6.3.1.

Next, similarly to the proof of Theorem 6.3.1, we divide D into bands. This time, however, we have
two separate sets of bands {Bi}Mi=1 and {B̂i}Mi=1, each of which individually partition D. The bands Bi
are the same as in the proof of theorem 6.3.1, while the bands B̂i are the same as Bi except that the
transport operator Πθ∗r

has been replaced with Πθ∗ . That is,

Bi := Π−1
θ∗r

((xi, xi+1]) and B̂i := Π−1
θ∗ ((xi, xi+1]).

As usual we define Bi,h := Bi ∩ Ωh and B̂i,h := B̂i ∩ Ωh. It will be convenient in a moment to have
an estimate of ‖B̂i,h\Bi,h‖p (for ‖B̂i,h ∩ Bi,h‖p, the trivial bound ‖B̂i,h ∩ Bi,h‖p ≤ 1 suffices). To that
end, note that the set difference B̂i\Bi is a triangle with a base of length | cot θ∗ − cot θ∗r | and a height
of 1. At the same time ‖B̂i,h\Bi,h‖pp = |B̂i,h\Bi,h|h2 can be thought of as a Riemann sum approximating
Area(B̂i\Bi). It is elementary to show that this Riemann sum overestimates the area by at most 2h.
Hence

‖B̂i,h\Bi,h‖pp ≤ Area(B̂i\Bi) + 2h = 1
2 | cot θ∗ − cot θ∗r |+ 2h ≤

(
C

2 + 2
)
r−q,

and therefore

‖B̂i,h\Bi,h‖p ≤
(
C

2 + 2
) 1
p

r−
q
p ≤

(
C

2 + 2
)
r−

q
p ,
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since we have assumed h ≤ r−q. Proceeding now as in the proof of Theorem 6.3.1, we note that

‖u− umärz‖p ≤
M∑
i=1

{
‖(u− umärz)1B̂i,h\Bi,h‖p + ‖(u− umärz)1B̂i,h∩Bi,h‖p

}
≤ Cu0,U,{Ui}

M∑
i=1

{
| cot θ∗ − cot θ∗r |s

′∧1‖1B̂i,h\Bi,h‖p

+ | cot θ∗ − cot θ∗r |s∧1‖1B̂i,h∩Bi,h‖p
}

≤ Cu0,U,{Ui}

M∑
i=1

{
Cr−q(s

′∧1) · ‖1B̂i,h\Bi,h‖p + Cr−q(s∧1) · ‖1B̂i,h∩Bi,h‖p
}

≤ Cu0,U,{Ui}

M∑
i=1

{
C

(
C

2 + 1
)
r−q(s

′+ 1
p )∧(1+ 1

p ) + Cr−q(s∧1) · 1
}

≤ MCu0,U,{Ui}C

(
C

2 + 1
)(

r−q{(s
′+ 1

p )∧(1+ 1
p )} + r−q(s∧1)

)
≤ 2MCu0,U,{Ui}C

(
C

2 + 1
)
r−q{(s

′+ 1
p )∧s∧1}

:= K2r
−q{(s′+ 1

p )∧s∧1}.

That K2 also satisfies the claimed properties follows from its relationship to Cu0,U,{Ui} and C.

A.8 Additional details on coherence transport and the angular
spectrum

In Section 6.6.2 we related the limiting transport direction g∗r = limµ→∞ g∗µ,r of coherence transport to
the angular spectrum Θ(b−r ) of b−r defined by (6.6.7). More precisely, first we connected g∗r to the set of
minimizers Ψ within b−r of the orthogonal distance to the line Lg = {λg : λ ∈ R}, where g is the guidance
direction of coherence transport. Then we claimed that Ψ and Θ(b−r ) are related. Now is the time to
prove that claim. We will do this in Proposition A.8.3 not just for b−r , but for a general finite subset
A ⊆ Z2 ∩{y ≤ −1}. To do this, however, first we generalize the concept of angular spectrum to a general
subset A ⊆ Z2.

Definition A.8.1. Given A ⊆ Z2 we define the angular spectrum of A by

Θ(A) = {θ ∈ [0, π) : θ = θ(y) for some y ∈ A\{0}} (A.8.1)

If A is finite it follows that Θ(A) is as well, and we write

Θ(A) = {0 ≤ θ1 < θ2 < . . . < θn < π}.

See Figure A.4(b) for an illustration of Θ(A) in the case A = b−r .

Once again we have defined Θ(A) modulo π to reflect the fact that g∗r and −g∗r define the same
transport equation. The characterization of Θ(A) is of interest in and of itself and has been studied for
A = br by the likes of Erdös [27] and many others, see for example [21] (they, however, do not define it
modulo π).
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Remark A.8.2. The point of generalizing the concept of angular spectrum and generalizing Proposition
A.8.3 from b−r to a general A ⊆ Z2 ∩{y ≤ −1} is so that we can show (Corollary A.8.6) that our kinking
results for coherence transport from Section 6.6.2 continue to hold, essentially unchanged, if coherence
transport is modified to sum over a discrete square, for example, rather than a discrete ball.

Proposition A.8.3. Let A ⊆ Z2 ∩ {y ≤ −1} obey |A| < ∞, and let Θ(A) = {θ1, θ2, . . . , θn} denote
the angular spectrum of A, and assume n = |Θ(A)| ≥ 2 in order to avoid degenerate cases (that is, the
elements of A do not all sit on a single line through the origin). Let gθ = (cos θ, sin θ) and denote by
Ψθ the set of minimizers of |g⊥θ · y| over y ∈ A (that is, the point(s) in A minimizing the orthogonal
distance to the line Lgθ . Given y ∈ A, we say that y is a singleton minimizer if there is some θ ∈ [0, π)
for which Ψθ = {y}. Let Y := {y1,y2, . . . ,yn′} denote the set of all singleton minimizers, ordered so
that θ(yi) ≤ θ(yi+1) for all i = 1, . . . n′ − 1. Then n′ = n,

Θ(A) = {θ(y1), θ(y2), . . . , θ(yn)},

and moreover θi = θ(yi) for all i = 1, . . . , n. Finally, each singleton minimizer yi is the shortest vector
in A such that θ(y) = θi, that is for every y ∈ A such that θ(y) = θi, we have ‖y‖ ≥ ‖yi‖.

Proof. Let θi ∈ Θ(A). Our main objective is to show that θi = θ(yi). To achieve that, it suffices to show
that the sets Θ(A) and {θ(y1), θ(y2), . . . , θ(yn′)} are equal, since from here it follows that n′ = n, and
then the desired identity follows from the ordering property θ(yi) ≤ θ(yi+1) for all i = 1, . . . , n− 1. Our
secondary objective, to show that yi is the shortest vector in A obeying θ(y) = θi is something that will
be proved along the way.

For the first step, the inclusion Θ(A) ⊇ {θ(y1), θ(y2), . . . , θ(yn′)} is obvious and follows from the
definition of Θ(A). Hence it suffices to prove

Θ(A) ⊆ {θ(y1), θ(y2), . . . , θ(yn′)}. (A.8.2)

Still fixing θi ∈ Θ(A), by definition we have θi = θ(y) for some y ∈ A. In fact, we have θi = θ(y) for all
y ∈ Ψθi , which in this case is a set of vectors that are all scalar multiples of gθi and hence all of which
obey |g⊥θi · y| = 0. Define the functions ∆(θ) and δ(θ) by

δ(θ) := max
y∈Ψθ

|g⊥θ · y|

∆(θ) :=

miny∈A\Ψθ |g⊥θ · y|. if A\Ψθ 6= ∅

δ(θ) otherwise.

Then δ(θ) and ∆(θ) each depend continuously on θ. Moreover, it is straightforward to show that ∆(θi) >
δ(θi) = 0, since we have assumed |Θ(A)| ≥ 2 (this condition could only ever be violated if all elements
of A were scalar multiples of one another). By continuity, it follows that for |θ− θi| sufficiently small we
have δ(θ) < ∆(θ), which means that Ψθ ⊆ Ψθi . But for |θ− θi| ≤ π

2 and for y ∈ Ψθi , we have the explicit
formula

|g⊥θ · y| = ‖y‖ sin |θ − θi|.

This is obviously minimized by whichever y∗ ∈ Ψθi is shortest - i.e. ‖y∗‖ ≤ ‖y‖ for all y ∈ Ψθi . Moreover,
since A is contained in the lower half plane we know this minimizer is unique. Hence Ψθ = {y∗}, which
makes y∗ a singleton minimizer. Since θi = θ(y∗), this proves the desired inclusion (A.8.2), and we have
already proven our secondary claim on the length of y∗ being minimal.
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Figure A.4: Proving that the point casting the shallowest angle on Lg from above is also the
point minimizing the orthogonal distance from above: Given yi ∈ A ⊆ Z2 ∩ {y ≤ −1} and line
Lg = {λg : λ ∈ R}, g = (cos θ, sin θ) passing through the origin, we define the (open) triangles Ti, T̃i to
be the unique pair of open triangles with one side parallel to Lg, another side horizontal, and a third side
equal to the ray from the origin to yi. A symmetry-based argument in Proposition A.8.4 shows that,
under modest hypotheses on A, the triangle Ti contains a lattice point (element of Z2) if and only if T̃i
does.

Our next claim was a formula for Ψ valid when θi < θ < θi+1 for two consecutive members θi, θi+1 ∈
Θ(A), when 0 := θ0,1 < θ < θ1, and when θn < θ < θn,n+1 := π. Proposition A.8.4 derives this formula,
under the assumption that A can be described a union of discrete rectangles on or below the line y = −1
and straddling the line x = 0. This includes the case A = b−r , but also covers a number of other cases, as
mentioned in Remark A.8.2. Credit for this proposition goes to Dömötör Pálvölgyi, who had the critical
idea of using a symmetry based argument [26].

Proposition A.8.4. Let A ⊆ Z2 ∩ {y ≤ −1} be a finite union of discrete rectangles of the form

A =
K⋃
k=1

[ak, bk]× [ck, dk] ∩ Z2

where −∞ < ak ≤ 0 ≤ bk <∞, −∞ < ck ≤ dk ≤ −1 for all k. Let

Θ(A) := {θ1, θ2, . . . , θn}

denote the angular spectrum of A, let g = (cos θ, sin θ), and let Y = {y1,y2, . . . ,yn} be the set of singleton
minimizers defined in Proposition A.8.3 of |g⊥ ·y| over A as θ varies from 0 to π. For each 1 ≤ i ≤ n−1,
define the transition angle θi,i+1 ∈ (θi, θi+1) by

θi,i+1 = θ(yi + yi+1).
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Define also θ0,1 := 0 and θn,n+1 = π for convenience. Then

Ψ =


{yi} if θi < θ < θi,i+1 for some i = 1, . . . , n

{yi,yi+1} if θ = θi,i+1 for some i = 1, . . . , n− 1

{yi+1} if θi,i+1 < θ < θi+1 for some i = 0, . . . , n− 1

Proof. The bulk of the work is to prove that if θi < θ < θi+1, then

Ψθ := argminy∈A |g⊥ · y| ⊆ {yi,yi+1}.

Once this is established, since we evidently have Ψθ = {yi}, Ψθ = {yi+1} for θ sufficiently close to θi and
θi+1 respectively, it follows that that

Ψθ =


{yi} if θ < θc

{yi,yi+1} if θ = θc

{yi+1} if θ > θc.

where θc is defined by |g⊥ ·yi| = |g⊥ ·yi+1|. One can readily show this is equivalent to θc = θ(yi+yi+1).
To prove that Ψθ := argminy∈A |g⊥ · y| ⊆ {yi,yi+1} as claimed, consider the open triangles Ti, T̃i

defined in terms of yi as shown in Figure A.4, as well as open triangles Ti+1, T̃i+1 defined in the same
way in terms of yi+1. The triangles Ti and Ti+1 each have empty intersection with A, as yi and yi+1 are
the elements of A that cast the shallowest angles on Lg from above and below. To prove Ψθ ⊆ {yi,yi+1},
we need to show that yi and yi+1 are also the two closest points in A to Lg. This amounts to proving
that the triangles T̃i and T̃i+1 have empty intersection with A as well.

To show this, first note that our assumptions on A imply that the intersection of each of our four
triangles with A is equal to their intersection with Z2 as a whole (because A has no “holes”). Second,
note that the map

F(x) = yi − x

is a bijection of the plane taking Ti to T̃i such that F(Z2) = Z2. Hence T̃i contains a lattice point if and
only if Ti does. But

Ti ∩ Z2 = Ti ∩A = ∅

by assumption, and so
T̃i ∩ Z2 = T̃i ∩A = ∅

as well. This proves the claim for T̃i and the proof for T̃i+1 is analogous. The remaining cases 0 := θ0,1 <

θ < θ1 and θn < θ < θn,n+1 := π are straightforward and left as an exercise.

Proposition A.8.4 has a couple of straightforward corollaries. The first is our claim from 6.6.2 that
Ψ is a singleton set for all but finitely many θ. This is obvious from the statement of the proposition
(which gives an expression for Ψ for all but finitely many θ) and requires no proof. The second corollary
generalizes our formula for θ∗r from Section 6.6.2, and uses the following observation, which we also used
in Section 6.6.2 and owe a proof of.

Observation A.8.5. Let v, w be unit vectors in S1. Then

θ(v + w) = θ(v) + θ(w)
2 .
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Proof. This is simplest if we work in complex arithmetic, that is, we write v = eiψ and w = eiφ for some
ψ, φ ∈ [0, 2π). However, by symmetry we may assume v = 1 (otherwise rotate the plane). Hence, it
suffices to prove

1 + eiφ

|1 + eiφ|
= ei

φ
2 .

But this follows from the following simple manipulation:

1 + eiφ = ei
φ
2 (e−i

φ
2 + ei

φ
2 ) = 2 cos

(
φ

2

)
ei
φ
2 .

The following corollary shows that coherence transport-like algorithms, which use the same weights but
replace Bε,h(x) with a different set of pixels (a finite union of discrete rectangles) exhibit similar kinking
behaviour in the limit µ→∞.

Corollary A.8.6. Suppose we inpaint D = (0, 1]2 using Algorithm 1 with boundary data u0 : U → Rd

and suppose the symmetry assumptions of Section 6.1 hold as usual. Assume our stencil a∗r is of the form

a∗r =
K⋃
k=1

[ak, bk]× [ck, dk] ∩ Z2

where −∞ < ak ≤ 0 ≤ bk <∞, ck ≤ dk ≤ −1 for all k. Let

Θ(a∗r) := {θ1, θ2, . . . , θn}

denote the angular spectrum of a∗r, let g = (cos θ, sin θ), assume we use as stencil weights the weights
of März (2.5.2), and denote by g∗µ,r the limiting transport direction from Theorem 6.3.1. Let g∗r =
limµ→∞ g∗µ,r and define θ∗r := θ(g∗r). Then

θ∗r =


π
2 if θ = 0

θi if θi−1,i < θ < θi,i+1 for some i = 1, . . . n
θi+θi+1

2 if θ = θi,i+1 for some i = 1, . . . n

(A.8.3)

Proof. This follows from Proposition A.8.4 and observation A.8.5 in exactly the same way as when showed
this for the special case a∗r = b−r in Section 6.6.2.

We conclude this appendix with a remark on a practical algorithm for computing the angular spectrum
Θ(A) given A ⊆ Z2 satisfying the hypotheses of Proposition A.8.3. This algorithm was used to generate
the theoretical limiting curves for θ∗r for coherence transport in Section 6.6.2.

Remark A.8.7. Given A ⊆ Z2 satisfying the hypotheses of Proposition A.8.3, a simple algorithm for
computing the angular spectrum Θ(A) and singleton minimizers Y is as follows:

1. Starting with Y ∗ = ∅, go through each y ∈ A and find the unique y′ ∈ A such that θ(y) = θ(y′)
and y′ is of minimal length. If y′ is not already in Y ∗, add it.

2. For each y ∈ Y ∗, compute θ(y). Sort Y ∗ according to θ(y). The sorted list Y ∗ is now equal to Y ,
and the sorted list of angles is Θ(A).
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A.9 List of Examples

In this appendix we describe in detail the examples used in some of the numerical experiments in Section
6.8.

Boundary Data. Our first objective is to build boundary data satisfying the assumptions listed in Section
6.3 and illustrated in Figure 6.4. To that end, we let U = (0, 1] × (−δ, 0] as usual and define the sets
{Ui}2i=1 as

U1 := [0, 0.25)× (−δ, 0] ∪ (0.75, 1]× (−δ, 0] U2 := (0.25, 0.75)× (−δ, 0]

for some δ > (r+2)h. Next, to test that our bounds in Theorem 6.3.1 are sharp, what we would like to do
is build a family F of boundary data u0, parameterized by 0 < s, 0 ≤ s′ ≤ s, such that u0 ∈W ν,∞(Ui) for
i = 1, 2 iff ν ∈ [0, s] and u0 ∈ W ν′,∞(U) iff ν′ ∈ [0, s′]. We will almost, but not quite be able to do this.
Specifically, if s ∈ N, we will instead have u0 ∈ W ν,∞(Ui) for i = 1, 2 iff ν ∈ [0, s). However, we do not
expect this detail to have a serious impact on our convergence rates (indeed, our numerical experiments
in Appendix A.10 - with a few possible exceptions - suggest that it doesn’t matter). To accomplish this we
set

u0(x, y) = ws(x) +Hs′(x) (A.9.1)

where ws is Fourier series

ws(x) =
∞∑
n=1

2−sn cos(2nπx), (A.9.2)

which for 0 < s ≤ 1 is an example of a nowhere-differentiable Weierstrass function [34]. The other
component Hs′ is the (possibly smooth) step function

Hs′(x) := 1− 1
(
x ≤ 1

4

)
tanh

(
20
[

1
4 − x

])s′
− 1

(
x ≥ 3

4

)
tanh

(
20
[
x− 3

4

])s′
.

See Figure A.5 for an illustration of ws and Hs′ for various values of s and s′. The following Lemma
establishes that u0 given by (A.9.1) has the claimed regularity properties.

Lemma A.9.1. Let 0 < s, 0 ≤ s′ ≤ s. Let u0 := ws + Hs′ be defined as in (A.9.1) and illustrated in
Figure A.5. Then u0 ∈ W ν,∞(Ui) for i = 1, 2 iff ν ∈ [0, s] if s /∈ N, and iff ν ∈ [0, s) if s ∈ N. At the
same time, u0 ∈W ν′,∞(U) iff ν′ ∈ [0, s′].

Proof. It suffices to prove that ws ∈W ν,∞(U) for i = 1, 2 iff ν ∈ [0, s] if s /∈ N, and iff ν ∈ [0, s) if s ∈ N,
while Hs′ ∈ W ν′,∞ iff ν′ ∈ [0, s′]. The claims involving Hs′ follow from the fact that this function is
C∞ everywhere except x = 0.25 and x = 0.75, along with the identity tanh(x) ≤ xα for all x ≥ 0 iff
0 ≤ α ≤ 1. The details are left as an exercise.

On the other hand, the regularity of ws has been studied for 0 < s ≤ 1 by a number of authors. In
particular, our claim for 0 < s < 1 follows from [34, Theorem 1.31], while for s = 1 it is an easy corollary
of a statement on [34, Pg. 311]. The case s > 1 is not typically considered, but it is a simple exercise
to show that in this case ws ∈ W s,∞((0, 1]) whenever s /∈ N, and ws ∈ W s−ε,∞((0, 1]) for all ε > 0 if
s ∈ N. To see this, note that if s /∈ N and bsc = n ∈ N, then the nth derivative of the partial sums in
(A.9.2) converges uniformly by the Weierstrass M-test. Thus the nth derivative of ws exists - moreover,
it is related in a simple way to the Weirstrass function ws−bsc (in some cases with sines replacing the
cosines, but this makes no difference), and hence w(n)

s ∈ W s−bsc,∞((0, 1])). The argument for s ∈ N is
similar.

Neighborhood and weights. We consider three separate pairings of neighborhoods Aε,h and weights
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(a) Hs′ (x) (b) ws(x)

Figure A.5: Building boundary data with desired smoothness properties: Our boundary data
u0(x, y) = ws(x) + Hs′(x) is a sum of two components. The first component Hs′ is smooth everywhere
with the exception of two isolated points, while the second component ws has uniform (but potentially
very low) regularity. When s′ = 0, the first component Hs′ is a step function. When 0 < s ≤ 1, the
second component ws is an example of a nowhere differentiable Weierstrass function [34]. See Lemma
A.9.1.

wε(·, ·).

Example 1: Coherence Transport with constant transport direction

In this case we choose as our weights wε(x,y) März’s weights (2.5.2) and neighborhood Vε,h(x) =
Bε,h(x), that is, we use the same neighborhood and weights as in coherence transport. We fix g =
(cos(20◦), sin(20◦)) and test two different values of µ, namely µ = 10 and µ = 50.

Example 2: Gaussian weights with a box neighbourhood

In this example for our weights we choose the offset Gaussian

wε(x,y) = exp
(
−5
∥∥∥∥x− y

ε
+
(

1
2 ,

1
2

)∥∥∥∥2
)
. (A.9.3)

and as a neighborhood Aε,h(x) we use the discrete square

Aε,h(x) = x + {−rh, (−r + 1)h . . . (r − 1)h, rh)}2.

Example 3: Guidefill with a smoothly varying Transport Field

In this example we consider Guidefill - that is Aε,h(x) = B̃ε,h(x) and wε(·, ·) given by (2.5.2) - with
the spatially varying transport field

g(x, y) =
(

4xy
1 + 2y2 , 1

)
. (A.9.4)

We fix r = 3 and µ = 50. Assuming our results continue to hold in this case, from the discussion in
Section 6.6.2 for µ sufficiently large we expect

g∗r(x, y) = g(x, y)
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Figure A.6: A smoothly varying guideance field: Characteristic curves of the smoothly varying
transport field g(x, y) given by (A.9.4). The transport operator Π(x) follows the characteristic passing
through x backwards to image data located on the boundary of the inpainting domain at (0, 1]× {0}.

to machine precision provided g(x, y) never makes an angle shallower than θc = arctan( 1√
10 ) with the

x-axis. Indeed, in this case we can easily check that

inf
(x,y)∈(0,1]2

θ(g(x, y)) = arctan
(

5
4
√

2

)
> θc.

In this case we know that the characteristics of g(x, y) = g∗r(x, y) are the level curves of the function
f(x, y) = x/(1 + 2y2) (See Figure A.6). This allows us to write the transport operator in this case
explicitly as

Π(x, y) =
(

x

1 + 2y2 , 0
)
.

The continuum limit is then given in terms of our boundary data u0 by u(x) = u0(Π(x)) as usual.

A.10 Experiment III : Verifying Theorem 6.3.1

Our final experiment aims to verify the correctness of bounds in Theorem 6.3.1, and to check if they are
tight.

For each of the examples listed above we first derive the continuum limit u predicted Theorem 6.3.1,
then compute uh for a sequence of grids with resolution h = 2−n with r = 3 fixed. We then look at the
ratio

Rh := −1
log 2 log

(
‖u− u2h‖p
‖u− uh‖p

)
. (A.10.1)

Assuming the bounds in Theorem 6.3.1 are asympototically tight, we expect

Rh −→
h→0

α where α := s

2 ∧
(
s′

2 + 1
2p

)
∧ 1 (A.10.2)
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for stencil weights that are non-degenerate (assign mass to more than one y ∈ a∗r), and

α = s ∧
(
s′ + 1

p

)
∧ 1 (A.10.3)

otherwise (recall (6.7.2) and the discussion at the start of Section 6.7).
Examples 1 to 3 all use non-degerate stencil weights, with the exception of example 1 with µ = 50,

where the weights are degenerate to machine precision. We therefore expect convergence rates given by
(A.10.3) in this case and by (A.10.2) in every other case. Although Theorem 6.3.1 is not technically
applicable to Example 3 due to the presence of spatially varying weights, we include this example as a test
to see if our bounds continue to hold in this case. It appears that they do.

Table A.1 provides a comparison of Rh with the expected convergence rate α for a variety of choices
of s, s′ and p, and for neighborhoods and neighborhood weights given by Examples 1 and 3. Results for
Example 2 and for additional values of s and s′ are analogous but omitted.

Table A.1 suggests that our bounds are tight asymptotically as h→ 0, with the resolution required to
enter the asymptotic regime apparently dependent on the regularity of u0. In particular, when u0 is very
rough (e.g. s = 0.5, s′ = 0) we need to use a grid with |Ωh| greater than a billion before Rh and α agree
to a one decimal place. At the opposite extreme, when u0 very smooth (e.g. s = s′ = 2) we enter the
asymptotic regime much earlier. In nearly every case the experimental rate Rh, possibly after some initial
oscillations, monotically approaches the predicted value α (albeit rather slowly in some cases). There are,
however, two exceptions, namely the case of coherence transport with µ = 10 and g = (cos 20◦, sin 20◦)
applied to the boundary data (A.9.1) parameterized by s = 1 and s′ = 0.5, with p ∈ {2,∞}. In these
two cases we start above the expected α and then shoot past it. This may, we concede, have something
to do with the exceptional nature of the case s ∈ N pointed out in Lemma A.9.1. Or it may be that in
these cases we need h to be extremely small before we enter the asymptotic regime. In any event, the
overall message appears to be that the rates from Theorem 6.3.1 correspond well to experimental rates
measured in practice. Also note that our results do not appear to depend on whether or not we use the
constant weights as in Example 1 or the smoothly varying weights from Example 3. This suggests that
the hypotheses of Theorem 6.3.1 can be weakened, which is something we aim to do in the future.
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Table A.1: Comparison of experimental convergence rate Rh (A.10.1) with the theoretical rate predicted
by Theorem 6.3.1, for a variety of choices of neighborhoods Aε,h(x), weights wε(·, ·), boundary data u0,
and norms ‖ · ‖p. In each case our boundary data is the function (A.9.1) parametrized by s and s′. For
weights we use März’s weights (2.5.2), with either g = (cos(20◦), sin(20◦)) fixed or g(x, y) given by the
smoothly varying transport field (A.9.4). We consider µ = 10 and µ = 50 - the latter case leads to
degenerate stencil weights and a bigger α (notice, for example, s = s′ = 0.5 for µ = 10 vs µ = 50). As
a neighborhood we use either the discrete ball Bε,h(x) used in coherence transport or the rotated ball
B̃ε,h(x) used by guidefill.

Aε,h(x) w(·, ·) u0 ‖ · ‖p R2−9 R2−11 R2−13 R2−15 R2−17 α

Bε,h(x)

µ =
10, g
con-
stant

s = 0.5
s′ = 0

p = 1 0.408 0.344 0.309 0.289 0.278 0.25
p = 2 0.392 0.318 0.281 0.265 0.257 0.25
p =∞ 0.126 0.07 0.036 0.019 0.009 0

s = 0.5
s′ =
0.5

p = 1 0.408 0.336 0.299 0.28 0.27 0.25
p = 2 0.402 0.323 0.284 0.266 0.257 0.25
p =∞ 0.253 0.181 0.228 0.235 0.239 0.25

s = 1.0
s′ =
0.5

p = 1 0.735 0.606 0.554 0.53 0.521 0.5
p = 2 0.701 0.574 0.509 0.492 0.49 0.5
p =∞ 0.437 0.308 0.255 0.237 0.232 0.25

s = 2
s′ = 1

p = 1 0.932 0.95 0.968 0.98 0.988 1
p = 2 0.825 0.831 0.816 0.794 0.775 0.75
p =∞ 0.57 0.573 0.551 0.528 0.514 0.5

µ =
50, g
con-
stant

s = 0.5
s′ =
0.5

p = 1 0.497 0.494 0.497 0.499 0.5 0.5
p = 2 0.5 0.493 0.496 0.498 0.5 0.5
p =∞ 0.477 0.472 0.494 0.494 0.499 0.5

s = 1
s′ = 0

p = 1 0.92 0.937 0.947 0.954 0.96 1
p = 2 0.564 0.522 0.507 0.502 0.501 0.5
p =∞ 0.072 0.021 0.005 0.001 0 0

s = 1
s′ = 1

p = 1 0.946 0.949 0.953 0.958 0.963 1
p = 2 0.94 0.946 0.952 0.958 0.962 1
p =∞ 0.882 0.864 0.907 0.916 0.928 1

s = 2
s′ = 0

p = 1 1.003 1.001 1 1 1 1
p = 2 0.517 0.504 0.501 0.5 0.5 0.5
p =∞ 0.019 0.005 0.001 0 0 0

B̃ε,h(x)
µ =
50, g
smooth

s = 0.5
s′ = 0

p = 1 0.366 0.349 0.329 0.308 0.29 0.25
p = 2 0.357 0.323 0.298 0.277 0.263 0.25
p =∞ 0.164 0.102 0.092 0.07 0.054 0

s = 1
s′ = 0

p = 1 0.58 0.529 0.507 0.501 0.5 0.5
p = 2 0.345 0.278 0.258 0.253 0.251 0.25
p =∞ 0.134 0.034 0.014 0.012 0.006 0

s = 1
s′ = 1

p = 1 0.724 0.6 0.533 0.509 0.503 0.5
p = 2 0.726 0.586 0.522 0.503 0.499 0.5
p =∞ 0.687 0.476 0.485 0.493 0.496 0.5

s = 2
s′ = 2

p = 1 1.001 0.997 0.997 0.997 0.998 1
p = 2 0.964 0.984 0.993 0.997 0.998 1
p =∞ 0.955 0.99 0.995 0.994 0.994 1
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