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Abstract

The advantages of Bayesian statistical approaches, such as flexibility and the ability to acknowledge uncertainty in all
parameters, have made them the prevailing method for analysing the spread of infectious diseases in human or animal
populations. We introduce a Bayesian approach to experimental host-pathogen systems that shares these attractive
features. Since uncertainty in all parameters is acknowledged, existing information can be accounted for through prior
distributions, rather than through fixing some parameter values. The non-linear dynamics, multi-factorial design, multiple
measurements of responses over time and sampling error that are typical features of experimental host-pathogen systems
can also be naturally incorporated. We analyse the dynamics of the free-living protozoan Paramecium caudatum and its
specialist bacterial parasite Holospora undulata. Our analysis provides strong evidence for a saturable infection function, and
we were able to reproduce the two waves of infection apparent in the data by separating the initial inoculum from the
parasites released after the first cycle of infection. In addition, the parameter estimates from the hierarchical model can be
combined to infer variations in the parasite’s basic reproductive ratio across experimental groups, enabling us to make
predictions about the effect of resources and host genotype on the ability of the parasite to spread. Even though the high
level of variability between replicates limited the resolution of the results, this Bayesian framework has strong potential to
be used more widely in experimental ecology.
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Introduction

The last two decades have seen unprecedented progress in

statistical modelling of epidemic dynamics [1]. However, to our

knowledge these techniques have not been much used in

experimental host-parasite systems, despite their great potential.

Host-pathogen model systems maintained in the laboratory have

for many years played an important role in the study of the

fundamental processes driving the spread of infections in

populations [2,3]. In particular, the validity of mass action to

model disease transmission has been assessed in various systems,

with differing results, but often in isolation from other processes

[4,5]. In systems where other processes such as death, recovery or

multiple routes of transmission are important, horizontal trans-

mission cannot be assessed on its own; instead it is necessary to fit a

complete dynamic model to observed time series [6]. In

experimental systems, such an integrative approach would allow

quantitative assessment of the effects of various ecological or

genetic factors on transmission rates, and would provide the basis

for developing system-specific models for the evolution of hosts

and pathogens.

Despite substantial research efforts in this field over the last

three decades, there is still a wide gap between theoretical and

experimental studies of host-pathogen evolution: mathematical

models have been developed for many years using ad hoc

assumptions about the potential trade-offs faced by hosts or

pathogens. On the pathogen side, it is often assumed that there is a

positive relation between infectivity and virulence [7]. On the host

side, resistance is thought to come at a cost (e.g. survival, fecundity

or tolerance) [8]. Interestingly, both cases involve one trait that

can be measured at the individual level (survival or fecundity), and

one that involves transmission and thus must be measured at the

population level. It is therefore essential to be able to relate

experimental measures at the individual and population levels, as

we will show is possible in our framework.

We seek in this study to tease apart the main components of the

infection cycle in an experimental host-parasite system, and

investigate how environmental and host genetic factors quantita-

tively affect these dynamics. The biological system that we

examine is composed of the free-living protozoan Paramecium

caudatum and its specialist bacterial parasite Holospora undulata [9].

The parasite has a complex infection cycle that alternates between
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two stages that have different horizontal and vertical transmission

abilities and different levels of virulence [10,11]. The complexity

makes this system a good candidate for an integrative modelling

approach because it is very difficult to isolate experimentally the

different processes involved. Our study associates three main

elements: experimental time series data, a mathematical model

that describes the dynamics of the system, and a Bayesian

statistical framework that fits the dynamic model to the data and

characterises the different sources of variability.

An important feature of this approach is our use of information

gathered from separate experiments. Traditionally, such informa-

tion is translated into fixed values for some parameters of the

model, whilst the remaining parameters are estimated from the

new data. Here we use a Bayesian framework, in which

parameters have probability distributions reflecting the uncertain-

ty about their values: the prior distribution encapsulates what is

known about the parameters before seeing (or independently of) the

data currently of interest, whereas the posterior distribution reflects

what is known after taking the data into account. We show how

readily this approach can be applied to experimental ecology and

can accommodate multi-factorial experimental design, multiple

response variables measured over time, sampling error and non-

linear dynamics. Importantly, our approach highlights how much

information is available from a dataset in relation to a mechanistic

model, and allows comparison between alternative models.

Bayesian inference has become the method of choice for fitting

dynamic infection models to time series of case reports [12], and

several authors have explored its use for inference for differential

equations [13], including in the context of experimental infection

dynamics [14]. Our work focuses on the hierarchical structure of

the model, extending the work of Mideo et al. [15], and further

demonstrates the feasibility and flexibility of Bayesian models for

experimental ecology.

The hierarchical structure of the statistical model enables us to

collate evidence efficiently about parameters from all of the

available data into a unified model, allowing the degree of

similarity between treatment regimes to be assessed. Estimating

the variability across various levels of the hierarchy also naturally

provides both population and treatment-level estimates of means

and variances, enabling detection of significant differences

between treatments [16]. Predictions about future treatments

can also be made straightforwardly. Finally, hierarchical models

supplement information on each replicate with information from

other replicates via their joint effect on the estimated population

parameters. This effect is known as ‘borrowing of strength’ [17]

and is particularly useful in settings where only limited replicate-

level data are available, as here. Tying together the analysis of the

different treatment regimes into an overall hierarchical model thus

uses the available data more efficiently and is more informative

than analysing each regime separately.

Methods

2.1 Experimental system
2.1.1 Study organisms. The biological system used consists

of the ciliate protozoan Paramecium caudatum (Ehrenberg 1833)

and its specialist bacterial parasite Holospora undulata (Hafkine

1890). We have developed this system for several years as an

experimental model for investigating host-parasite ecological and

evolutionary dynamics [10,18,19]. Paramecia are free-living

planktonic protozoa, commonly found in fresh water ponds, that

feed on a wide range of bacteria. H. undulata is a Gram-negative

a-proteobacterium that colonises the micronucleus of P.

caudatum. At some point it produces non-dividing, spore-like

particles, which are released into the environment following the

division or the death of host cells and can infect new paramecia.

We refer to these particles as infectious forms, and to the

intracellular replicating stage as reproductive forms. The two

forms can be easily distinguished under the microscope as the

reproductive forms are rod-shaped whereas the infectious forms

have an elongated S-shape. Both forms can be passed on to the

progeny of an infected paramecium when it undergoes clonal

division (vertical transmission), but only the infectious forms can

infect a new host cell following their ingestion (horizontal

transmission).

2.1.2 Experimental setup. A total of 48 experimental

populations of P. caudatum were grown and monitored in parallel

over 34 days, following a full factorial design with three factors: P.

caudatum clone (K4, K6, K8 and K9), food concentration (high or

low) and inoculum (infected with the parasite or uninfected

control). Each combination of treatments was replicated in three

populations. The four P. caudatum clones were full-sibs derived

from the conjugation of two parental clones with complementary

mating types O3 and E3 (provided by T. Wanabe, Tohoku

University, Japan). Bacterial food for paramecia consisted of

Serratia marcenscens (Institut Pasteur, Paris) in a suspension of

Protozoan Pellets (Carolina Biological Supply Company, Burling-

ton, NC) in Volvic mineral water. The high food treatment had a

concentration of 3|106 bacteria per ml and 0.7 mg of food pellets

per ml; the low food treatment was obtained by a 50% dilution of

the former in mineral water. The parasite inoculum of H. undulata

was isolated from a P. caudatum population provided by H. Görtz

(University of Stuttgart, Germany); infected paramecia were

ground mechanically and the released parasites concentrated to

3|104 infectious forms per ml. Further details of the experimental

setup and techniques are given elsewhere [11]. The mock

inoculum was obtained by the same procedure starting from an

uninfected P. caudatum stock.

Each population initially consisted of, on average, 500

uninfected paramecia, to which we added 0.1 ml of either H.

undulata inoculum (for the infected half of the populations) or

mock-inoculum (for the other, non-infected half of the popula-

tions). We started the experiment with small population sizes so

that within a few weeks the paramecia populations would have

grown to their carrying capacity, which, based on preliminary

experiments, we expected to be around 5000 paramecia with the

high food treatment and around 2500 paramecia in the low food

treatment. Every population was sampled twice a week (totalling

11 time points) to assess the number of paramecia and their

infection status (using DNA staining and optical microscopy).

Every sampling event of each population removed a small enough

number of paramecia (between 20 and 40) that their removal can

be ignored in our population dynamic model.

We measured the division rate, survival rate and infection status

on days 3 and 31 by isolating eight paramecia from each

population and keeping them in separate drops of culture medium

for between two to three days [11]. The results from these two sub-

experiments, in combination with other evidence [10,11,20],

guided the choice of prior distributions for the model parameters,

as explained below.

2.2 Mechanistic model
2.2.1 Basic model. We designed a mathematical model,

illustrated by the flow chart diagram in Figure 1A, to capture the

population dynamics of our system. Our aim is to demonstrate the

feasibility of our method for experimental host-pathogen systems

and so we work with a system of ordinary differential equations,

which is the most commonly used modelling framework in ecology

Bayesian Host-Pathogen Dynamics
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and epidemiology. Although H. undulata replicates within parame-

cia, we were not able to estimate bacterial loads experimentally.

We thus categorise infected paramecia as carriers (C) if they only

harbour reproductive forms of the parasite, and as infectious (I) if

they harbour a mixture of reproductive and infectious forms.

Susceptible paramecia (S) become carriers following ingestion of

infectious forms (F), which we assume are released by infectious

paramecia into the medium at a constant rate. We denote by C, I,

S and F the number of organisms of those types, and let

N~SzCzI denote the paramecium population size.

Paramecia divide clonally and we assume populations follow a

logistic growth model with carrying capacity k (equilibrium

population size in the absence of infection). Each host-type

Z[fS,C,Ig reproduces at a rate rZ(1{N=k)Z. Upon division,

infected paramecia pass on their infected status (C or I) to a

fraction (vC or vI ) of their progeny; we refer to this process as

imperfect vertical transmission of the parasite. In line with separate

observations [11], we assume that paramecia containing infectious

forms of the parasite suffer from an additional death rate mI . Free

parasites are released from infectious host cells either during host

division or following their death; for simplicity we modelled this

release as a continuous process with rate lI . The parasite

population decays at a rate EF . There are no observations within

our data regarding the size of the parasite population F and so it is

Figure 1. Compartmental models. (a) without distinction between the inoculum and newly-produced parasites, (b) with distinction.
doi:10.1371/journal.pone.0069775.g001
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not possible to identify the scale l. We thus express the model in

terms of G~F=l.

One of our objectives is to clarify the functional form of the

infection process, which occurs via grazing of non-motile bacteria

by motile paramecia. We consider three alternative forms for the

force of infection v(G,N): classical mass action, v(G,N)~bG; a

G-saturating function, v(G,N)~bG=(1zaGG), which accounts

for the fact that paramecia can ingest only a limited number of

bacteria per unit of time; or an N-saturating function,

v(G,N)~bG=(1zaNN), as might occur for example if only a

limited number of paramecia could predate on the bacteria

because of restrictions in space.

It has been reported [10] that infectious forms of H. undulata are

produced from reproductive forms inside infected paramecia more

rapidly in more dense populations (i.e. closer to carrying capacity).

We therefore assume that the rate of conversion g of carrier hosts

C into infectious ones I increases linearly with population size N:

g(N,r)~max 0,d
N=k{r

1{r

� �
ð1Þ

The conversion rate is zero until the total population N, as a

proportion of the carrying capacity k, reaches a threshold r. For

larger N, the rate increases linearly and is equal to d when N~k.

This reflects a time delay between hosts becoming infected and

maturing into infectious forms. An initial period during which no

infectious forms are created has been observed experimentally

[21].

2.2.2 Two-wave model. Pilot experiments showed two

successive peaks in the number of infected hosts, which we

hypothesised to be the result of the delay in production of

infectious forms. Numerical exploration of the basic model

indicated that it could produce only one wave of infection. This

suggested an extended model in which free infectious forms F are

sub-divided between the inoculum, F1, and the bacteria produced

and released by infected paramecia, F2. In order to allow a delay

in the production of infectious forms which generates the second

wave, we also partition the ‘carrier’ compartment C into C1, the

population of hosts infected by F1, and C2, the population of hosts

infected by F2. Conversion from carrier to infectious occurs at rate

g(N,r1) from C1 to I , and at rate g(N,r2) from C2 to I . As above,

we use G1~F1=l and G2~F2=l to express our model because we

have no observations of the size of the parasite population. Where

relevant, we let C~C1zC2 and F~F1zF2. The system is

described by differential equations (2)–(7) below, and is shown as a

flow diagram in Figure 1B.

dS

dt
~½rSSzrC(1{vC)CzrI (1{vI )I � 1{N=kð Þ{v(G1,N)S

{v(G2,N)S

ð2Þ

dC1

dt
~rCvCC1(1{N=k)zv(G1,N)S{g(N,r1)C1 ð3Þ

dC2

dt
~rCvCC2(1{N=k)zv(G2,N)S{g(N,r2)C2 ð4Þ

dI

dt
~rI vI I(1{N=k)zg(N,r1)C1zg(N,r2)C2{mI I ð5Þ

dG1

dt
~{EG1 ð6Þ

dG2

dt
~I{EG2 ð7Þ

2.3 Statistical model
2.3.1 Observation model. Let x~(x(S),x(C),x(I)) denote the

observed number of host cells in each category in the sampled

population. Further, let xfgij denote the jth sampled population,

measured at time tj , for replicate i of genotype g at food level f

(j~1, . . . ,Mj~11, i~1, . . . ,Mi~3, f ~1, . . . ,Mf ~2,

g~1, . . . ,Mg~4). Denoting the observed total number of host

cells in the sampled population by nfgij~x
(S)
fgijzx

(C)
fgijzx

(I)
fgij , the

sampled host-populations xfgij~(x
(S)
fgij ,x

(C)
fgij ,x

(I)
fgij) are modelled via:

xfgij*Multinomial(pfgij ,nfgij),

j~1, . . . ,Mj~11, i~1, . . . ,Mi~3, f ~1, . . . ,Mf ~2,

g~1, . . . ,Mg~4, where pfgij~(p
(S)
fgij ,p

(C)
fgij ,p

(I)
fgij) denotes the mod-

elled proportion in each state:

p
(Z)
fgij~X

(Z)
fgij =Nfgij , Z[fS,C,Ig:

Here Nfgij~X
(S)
fgijzX

(C)
fgij zX

(I)
fgij , and Xfgij = (X

(S)
fgij , X

(C)
fgij , X

(I)
fgij) is

the modelled total population in each state, given by solving (2)–(7)

at time tj , with replicate-specific parameter vectors hfgi (see below)

and appropriate initial conditions, denoted (X
(S)
fgi0, X

(C1)

fgi0 ,

X
(C2)

fgi0 ,X
(I)
fgi0, X

(G1)

fgi0 , X
(G2)

fgi0 ). The initial values (just after inoculation)

for C1, C2, I and G2 are known to be zero, whereas X
(S)
fgi0 and

X
(G1)

fgi0 are unknown and are assigned appropriate prior distribu-

tions, as described in Section 2.3.3.

Inference on the total host-populations is driven by relating the

observed total number of host cells in the sampled population nfgij

to the modelled total population in each state Nfgij . We might

consider the following assumption: nfgij*Poisson(fNfgij), where f
is the proportion of the total volume sampled to obtain each xfgij .

However, this (implicitly) assumes that the system is entirely

homogenous and that the modelled total population Nfgij is exact.

Realistically, the model for the total population (e.g. (2)–(7)) is an

approximation of reality, and so it is appropriate to allow for some

error:

nfgij*Poisson(ffNfgijzufgijg), ð8Þ

where ufgij represents the difference between Nfgij and the true total

population, and might be assumed to arise from a normal

distribution with zero mean and unknown variance (to be

estimated). Implementation of this model requires estimation of

each individual ufgij term, and the model remains reliant on an

assumption of homogeneity. One alternative is to assume the nfgijs

arise from a negative binomial distribution, (see e.g., [17],

pp. 116–118) but this is cumbersome to implement and estimation

can be slow. We have chosen to use a simpler alternative, which

has given virtually identical results to (8) for the data considered

Bayesian Host-Pathogen Dynamics
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herein:

f{1nfgij*Normal(Nfgij ,s
2
f ),

where s2
f is a food-level-specific, unknown variance parameter.

2.3.2 Model parameterisation. The mechanistic model

contains 13 unknown parameters: r1, r2, b, aG=N , k, d, mI , E,
rS , rC , rI , vC and vI , where aG=N represents either aG or aN as

appropriate. We will specify our prior knowledge regarding each

parameter and express the variation across different replicates and

genotypes in terms of a parameter vector h. We define x~rC=rS

and y~rI=rS because our prior beliefs regarding the reproduction

rates for carriers and infectious hosts (rC and rI respectively) are

more readily expressed in terms of fractions of the rate rS for

susceptible hosts. We also define n~ r2{r1

1{r1
, which we use to impose

the constraint r2wr1 on the thresholds for production of

infectious parasites for the first and second waves, as discussed

below. It was decided to exclude the fidelities of vertical

transmission vC and vI from the set of unknown parameters and

we fix these parameters equal to 0:83 and 0:45 respectively, based

on direct experimental measurement [11]; preliminary analyses of

the model showed that the values of these two parameters have

little effect on the dynamics, and their inclusion in the set of

unknown parameters would likely result in identifiability issues.

This leads to the following vector of 11 unknown parameters:

h~flogit(r1,n),log(b,aG=N ,k,d,mI ,E,rS,x,y)g:

The transformations applied to the parameters enforce positivity

of all parameters, and ensure that 0vr1vr2v1.

2.3.3 Parameter model. Our model estimates a distinct set

of parameters, denoted hfgi , for each replicate i from each

genotype g at each food level f, but we expect that experimental

populations in the factorial design of the experiment under an

identical regime of treatments are more similar than those with

differing treatments. We also expect similiarities between exper-

imental populations that share only part of their treatment regime.

These assumptions can be encapsulated by a Bayesian hierarchical

model in which experimental populations are first grouped

according to food level and then by genotype. We construct a

hierarchical model for the corresponding parameters hfgi for each

experimental population. Specifically we assume that the param-

eters hfgi across replicates i~f1,2,3g for a given food level f and

genotype g are similar, and so we assume they are drawn from a

common distribution:

hfgi*MVN11(mfg,Sh), i~1,2,3:

Here mfg denotes a set of unknown mean parameters for genotype

g at food level f , and Sh denotes the unknown (11|11)

covariance of parameters across replicates.

Similarly, we assume that the parameters mfg for a given food

level f are alike and so are assumed to be drawn from a

distribution that is common to experimental populations with the

same food level f . Specifically, we assume that

mfg*MVN11(wf ,Sm), g~1,2,3,4,

where wf comprises unknown global mean parameters for food level

f , and Sm denotes the unknown (11|11) covariance of genotype-

specific means across genotypes.

Our prior beliefs for the initial conditions X
(S)
fgi0 and X

(G1)
fgi0 , and

the parameters s1, s2, w1, w2, Sh and Sm are shown in Table 1; full

details of the prior distributions assigned are given in Text S1 in

File S1.

2.3.4 Identifiability issues. When fitting a full hierarchical

model for h we found that the parameter estimates for the relative

rates of reproduction x and y were widely divergent from our

prior beliefs. We investigated various approaches for addressing

this issue, and chose the following attractively straightforward and

pragmatic solution (please see Text S2 in File S1 for further

discussion). In this approach, we assume that for each replicate,

within each genotype, the relative rates of reproduction x and y
have marginally independent, as opposed to conditionally

independent (given some unknown mean and variance), priors:

hfgi10*N(qf 10,Qf 10), hfgi11*N(qf 11,Qf 11),

where qf 10 and qf 11 are the prior means, and Qf 10 and Qf 11 are

the prior variances of hfgi10 and hfgi11, which denote the x and y
components of the parameter vector h, respectively.

2.4 Inference
We approximate the posterior distribution of our model using

Markov chain Monte Carlo (MCMC) methods [22], using the

freely available WinBUGS software [23,24], with the system of

differential equations (2)–(7) specified via the WBDiff interface

(www.winbugs-development.org.uk). Using the posterior distribu-

tion, we can formally compare the parameters for different food

levels and genotypes. We describe differences as ‘significant’ if the

95% credible interval for the difference between the relevant

parameters does not include 0. For example, we examine the 95%

credible intervals of the set of contrasts w1{w2, between the mean

parameters of the two food levels.

Results

3.1 Experimental populations
The observed dynamics were highly variable between popula-

tions (Figure 2A). Broadly speaking, every population appeared to

exhibit logistic growth, although some tailed down over the final

week or so. Across all combinations of paramecium clones and

inoculum treatments, populations in low food reached lower

densities than their counterparts in high food level (two to four fold

differences). In addition the data suggest a slight negative effect of

infection in clones K8 and K9 only (Figure 2A).

The dynamics of infection appear to follow three main stages

(Figure 2B): initially infected paramecia contain only reproductive

forms, until the appearance of infectious forms around day 7 or 10;

then a second, transient wave of reproductive forms (carriers)

appear around day 13–17; eventually the non-susceptible popu-

lation is dominated by infectious forms for the last 10–14 days.

These patterns appeared to be consistent with two waves of

infection, one caused by the initial inoculum and a subsequent one

caused by the release of infectious forms by the first cohort of

infected paramecia.

3.2 Model selection
Our first objective was to compare a set of alternative model

structures based on their goodness of fit to the dynamics of each

experimental population and their ability to reproduce qualita-

tively the main features highlighted above. More specifically, we

sought to clarify two aspects of the host-pathogen dynamics: first,

whether the force of infection v(G,N) is best described by mass

Bayesian Host-Pathogen Dynamics
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action or by a saturable function; second, whether separate

variables for inoculum and newly-produced infectious bacteria

helps to reproduce the two waves of infection (see section 2.2). We

thus compared six different models, obtained by combining each

of the three alternative forms for the force of infection v (mass-

action, G-saturating or N-saturating) with either the one-wave or

two-wave modelling framework.

In each case, one million posterior samples were generated

following convergence of the MCMC simulation. Convergence

was assessed by running two Markov chains starting from widely

differing initial values, and by then applying the Brooks-Gelman-

Rubin diagnostic [25,26]; we also assessed convergence informally

by visually examining chain-history plots [17, pp. 71–74] as

illustrated in Figure S1 in File S1. Use of multiple chains also helps

in confirming that the simulation is not getting trapped in local

posterior maxima. To reduce the amount of memory required we

‘‘thinned’’ the samples by saving only every 10th iteration. We

were not able to fit the one-wave, N-saturating model because the

MCMC sampler frequently visited implausible regions of param-

eter space in which the Runge-Kutta [27] numerical differential

equation solver failed to find accurate solutions.

Table 2 shows for each model the posterior mean deviance,

which is a measure of model fit [28], with lower values indicating a

better fit to the observed data. In hierarchical models the deviance

is defined as minus twice the natural logarithm of the joint

probability density of the observed data, according to their

assumed sampling distributions (BUGS computes this automati-

cally). There is a clear preference for two-wave models, and also

for the G-saturating function to describe the rate of infection,

regardless of how many waves of infection are assumed. As

measured by posterior mean deviance, the two-wave G-saturating

model is the most suitable of the models we considered.

The models can be assessed qualitatively by visually comparing

the predicted dynamics with the observations (Figure 3; and Figure

S2 in File S1). The one-wave models fail to account for key

features of the dynamics: the peak in the number of carrier

paramecia (C) after around 20 days is entirely missed by the G-

saturating model, and the mass-action model fails to reproduce the

dynamics of both uninfected (S) and infectious (I) paramecia in the

high-food population. The dynamics of the fitted two-wave models

are more consistent with the observed time series. In particular,

the observations suggest that the magnitude of the second wave of

infection (values of C and I) is much larger than the first wave of

infection in most replicates. While all the fitted models tend to

underestimate the magnitude of the second wave of infection

(Figure 3; and Figure S2 in File S1), the observed difference in

Table 1. Symbols and summaries of prior information for variables used in this study.

Definition Prior range Prior belief Source

S Number of susceptible hosts S(0) in ½80,2000� 0.95 Study design

C1 Number of carrier hosts infected by the inoculum C1(0) set to 0 — Study design

C2 Number of carrier hosts infected by newly-produced parasites C2(0) set to 0 — Study design

I Number of infectious hosts infected by the inoculum I(0) set to 0 — Study design

F1 Number of free parasites from the inoculum — —

F2 Number of newly-produced free parasites — —

G1 Re-scaled variable: G1~F1=l G1(0) in ½100,6000� 0.95 Study design

G2 Re-scaled variable: G2~F2=l G2(0) set to 0 — Study design

rS Replication rate of S (day21) LF ½0:1066,0:3335� 0.95 Control analysis

HF ½0:1633,0:5009� 0.95 Control analysis

rC Replication rate of C (day21) — —

x Relative rate: x~rC=rS ½0:5,2:0� 0.95 [11]

rI Replication rate of I (day21) — —

y Relative rate: y~rI=rS ½0:25,1:5� 0.8 [11]

k Carrying capacity LF ½2261,6295� 0.95 Control analysis

HF ½4832,13350� 0.95 Control analysis

mI Additional death rate of infectious hosts (day21) ½0:05,0:4� 0.67 [11]

r1 1st wave threshold for production of infectious parasites ½0:1,0:5� 0.95 [10]

r2 2nd wave threshold for production of infectious parasites ½r1,1� 1 [10]

b Infection rate

(day22) Vague — —

aN Factor controlling saturation of infection [10{10 , 0.125] 0.95 —

aG Factor controlling saturation of infection [10{10 , 0.1] 0.95 —

d Maximum conversion rate from C to I (day21) Vague — [10]

e Decay rate of free parasites (day21) ½0:1,1:0� 0.5 [20]

vC Fidelity of vertical transmission for carriers Set to 0.83 — [11]

vI Fidelity of vertical transmission for infectious hosts Set to 0.45 — [11]

LF: low food, HF: high food. See Text S1 in File S1 for an explanation of how prior distributions were obtained.
doi:10.1371/journal.pone.0069775.t001
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magnitude between the waves is reproduced most closely by the G-

saturating model.

The models differ considerably in their expectation of the

concentration of free infectious parasites (bottom panels in

Figure 3; and Figure S2 in File S1): in contrast to the G-saturating

models, the mass-action and N-saturating infection models predict

rapid depletion of the inoculum within a few days. Unfortunately

this could not be validated with the data available. The huge dip in

Figure 2. Experimental data. (a) Time series of the number of paramecia in each of the 12 populations of each clone, classified by inoculum and
food level treatments; note the logarithmic scale. (b) Time series of the mean proportions of paramecia in each of the three stages of infection (green:
S, amber: C, brown: I) across all populations.
doi:10.1371/journal.pone.0069775.g002
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the inoculum results from high values of the parasite decay rate E,
up to an order of magnitude above the prior range (posterior

median global estimate for high food treatment: 13.4 with the

mass-action model and 11.7 with the N-saturating model). The

two-wave, G-saturating model gives posterior estimates of e
compatible with the prior range (Table 3 and Figure 4), providing

further support for this model.

In the following we thus focus on the two-wave G-saturating

model because, out of the models we considered, it is the most

consistent with the observed time series, both quantitatively (as

measured by posterior mean deviance) and qualitatively. As shown

in Figure 5 (and Figure S3 in File S1), the Bayesian framework

allows us to produce credible intervals for the predicted dynamics:

although the model fails to capture some of the fluctuations

observed around the end of the experiment, it matches the main

observed patterns very well, while highlighting regions with greater

uncertainty. In addition, the predicted dynamics of carrier hosts

C1 and C2 indicate very little overlap between the two waves of

infection.

To examine the two-wave G-saturating model in more detail we

compared the predicted population sizes (posterior medians) against

the observations and computed standardised residuals for each of

the observed sampled populations. Figure 6A shows predicted vs.

observed population sizes and suggests a good overall performance.

The standardised residuals are also generally within the expected

range (Figure 6B), although some of the susceptible and carrier

populations one day post-inoculation have been somewhat

overestimated and underestimated, respectively (Figure 6C). Here

the model is struggling to account for several early, non-zero carrier

populations. As the model-predicted proportion of carriers is very

small after one day, the implied sampling variation is also small, and

so the standardised residuals are larger than expected. The model

also seems to overpredict slightly the number of carriers around

days 7–10. We feel that the performance is adequate, however,

given the number of data available, which limit the extent to which

the model may be extended.

3.3 Hierarchical parameter estimation
Our second objective was to estimate the parameters of the

model and compare the values across experimental treatments.

We analysed separately the dynamics of the infected and

uninfected populations. By fitting a logistic growth model

(equation (2), with growth rates rC and rI and force of infection

v all set to zero) to the time series from the 24 uninfected

populations, we obtained posterior distributions for the intrinsic

growth rate of uninfected paramecia rS , the initial population size

N0 and the population’s carrying capacity k. Food level had a

clear effect on carrying capacities but no obvious effect on the

intrinsic growth rate. Variability between genotypes was apparent

at both food levels but more pronounced at low food level. The

posterior distributions for rS and k were then used as priors for the

parameters in the infected populations, as described in Text S1 in

File S1. For the infected populations, we summarise the posterior

distributions for the overall parameters of the two-wave, G-

saturating model in Table 3.

The only significant effects for the overall mean parameters over

all genotypes were a positive impact of food supply on the carrying

capacity k and a negative impact on the parasite’s degradation rate

E. Significant food-level effects were also apparent for some

genotypes (but not overall). Figure 4 shows replicate-specific

posterior summaries for the threshold parameter r1, infection rate

b and degradation rate E. There is the suggestion of a negative food-

effect for the infection rate, although this effect is only significant in

genotype K8. Additionally, the first-wave threshold for production

of infectious parasites r1 is lower in high food settings, but this effect

is only significant in genotype K9. For genotype K9, both the factor

controlling saturation of infection a and the additional death rate of

infectious hosts mI are significantly larger in the high food setting.

As explained in section 3.4, the latter effect has implications for the

expected persistence of infection.

Experimental measurements on paramecia isolated from the

same populations had indicated that hosts carrying infectious

forms suffered from reduced survival and replication rates [11].

Posterior estimates of mI

rs
(the death rate as a proportion of the

intrinsic growth rate of uninfected paramecia) for the individual

populations were typically 79% (mean; interquartile range 64–

93%), confirming the high virulence of infectious forms of the

parasite. However, we found no significant reduction in division

rates, as all posterior credible intervals for y contained 1.

3.4 Reproductive ratio
Beyond individual parameter estimates, the Bayesian frame-

work also allows us to estimate composite variables of biological

relevance. One aspect of particular interest in infectious disease

dynamics is the persistence of the pathogen in a closed host

population. In theory, the ability of a pathogen to spread in a

population is governed by its basic reproductive ratio (R0), defined

as the average number of secondary infections caused by a single

infectious agent introduced into a fully-susceptible population of

hosts—a value greater than one is necessary for endemic

persistence. A common property of many systems is that mortality

of hosts, and especially any infection-induced mortality (a trait

known as virulence), reduces R0.

Our model reduces to a simple horizontal transmission model if

we consider the introduction of the pathogen into an uninfected

host population at carrying capacity, setting N~k in (2)–(7) and

ignoring the first wave of infection. The pathogen’s reproductive

ratio can be derived from first principles as R0~
bk
mI E

in this

scenario. This gives posterior median estimates of R0 ranging from

12 to 229 in high food populations, and from 1.6 to 97 in low food

populations (Figure 7A); except for genotype K8, the estimates of

R0 for each genotype are greater in high food than in low food by

one order of magnitude (although these differences are only

statistically significant for genotype K9). Values for K9 in low food

are particularly low, around 2, suggesting that the parasite could

be eliminated by, for example, halving the host carrying capacity.

By varying each parameter in turn, we verified that infection can

spread in model simulations only if the condition bkwmI E is

satisfied. Figure 7B shows one example, highlighting the threshold

in virulence mI .

Table 2. Posterior mean deviance �DD of the six models
considered.

Number of waves Infection function �DD

1 Mass action 6816.3

1 N-saturating (*)

1 G-saturating 6800.2

2 Mass action 6667.8

2 N-saturating 6582.0

2 G-saturating 6544.4

(*) We were not able to fit the one-wave, N-saturating model.
doi:10.1371/journal.pone.0069775.t002

Bayesian Host-Pathogen Dynamics

PLOS ONE | www.plosone.org 8 August 2013 | Volume 8 | Issue 8 | e69775



3.5 Dynamics of the two-wave model
Having selected the two-wave model structure and estimated

parameter values consistent with our dataset and prior beliefs, we

can use the mechanistic model (2)–(7) to make further predictions

about the mechanisms underlying the observed dynamics. Figure 5

clearly shows the two waves of infection generated by the model,

based on the densities of carrier hosts C1 and C2. Numerical

solutions of the model obtained by using the posterior median

parameters for each population give us access to the timing of the

two waves. Figure 8 shows the times when infectious forms from

Figure 3. Model fits for clone K8, replicate A. Each panel shows a different variable (from top to bottom: S, C, I and G) in low food (left) and high
food (right). The dots show experimental data and the lines show the predicted dynamics obtained from each of the five fitted models.
doi:10.1371/journal.pone.0069775.g003
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the first and second waves start to be produced, i.e. respectively

when N=kwr1 and N=kwr2 as per (1). In particular, we see that

the difference D between the delays associated with the first and

second waves of infectious form production varies widely from 3 to

17 days in low food treatment, and from 9 to 16 days in high food

treatment. This difference D provides us with an estimate of the

generation time of infection, complementing the basic reproduc-

tive ratio which holds no information on the speed of infection

spread.

Finally, we can visualise temporal variations in the force of

infection v(G,N), which in the two-wave, G-saturating model, is

equal to bGi=(1zaGGi) for the i-th wave. Figure 9 shows the

Table 3. Food-level-specific posterior medians and 95% intervals (Lower, Upper) for overall parameters of the two-wave, G-
saturating model.

Low food High food

Global Genotype Global Genotype

Median Lower Upper Lower Upper Median Lower Upper Lower Upper

rS day21 0.22 0.14 0.33 0.059 0.78 0.27 0.18 0.41 0.075 1.01

k 3500 2400 5100 1000 12000 8100 5600 12000 2400 27000

r1 0.29 0.17 0.44 0.072 0.67 0.18 0.11 0.30 0.045 0.54

r2 0.64 0.37 0.84 0.20 0.96 0.70 0.47 0.89 0.23 0.98

100b day22 0.068 0.020 0.29 0.0067 0.82 0.021 0.0066 0.068 0.0020 0.21

100aG 0.20 0.025 1.69 0.0016 26 0.19 0.020 1.3 0.0012 19

d day21 4.8 1.6 16 0.55 45 14 4.4 47 1.5 130

mI day21 0.18 0.086 0.36 0.032 0.96 0.19 0.092 0.37 0.033 0.99

e day21 1.2 0.35 4.5 0.087 18 0.16 0.050 0.55 0.012 2.4

‘Global’ intervals reflect the degree of uncertainty in estimating wf. ‘Genotype’ intervals are predictive intervals for the mean parameters (across replicates) of a randomly
chosen genotype: they reflect variability between genotypes as well as uncertainty regarding parameter values.
doi:10.1371/journal.pone.0069775.t003

Figure 4. Posterior median and 95%-credible intervals of parameters for the two-wave, G-saturating model. The parameters r1 , b and E
are shown for each population. Darker grey areas show the prior ranges (see Table 1). A vague prior is assigned to b.
doi:10.1371/journal.pone.0069775.g004
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temporal variations in the forces of infection for both waves, based

on the parameters’ posterior medians for each of the 24

experimental populations. In most populations, the second wave

of infection generates a visible increase in the force of infection

around day 20, following the release of newly produced infectious

forms. In addition, the fitted models predict that all populations

have settled to a steady state by day 34. Interestingly, in most

populations the force of infection at steady state is very close to the

initial value, with the exception of genotype K9 in low food.

Figure 5. Posterior 95%-credible intervals for clone K8, replicate A, in high food. The dots show experimental data and the lines show the
predicted dynamics for the two-wave, G-saturating model. In the central panel on the right-hand side, the red line shows the predicted dynamics of
C1 and the blue line the predicted dynamics of C2.
doi:10.1371/journal.pone.0069775.g005
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Discussion

Our study illustrates how a Bayesian statistical framework can

be combined with dynamic models to provide extensive analysis of

complex longitudinal experimental data. We repeatedly sampled

48 experimental populations of paramecia over 34 days, to assess

their size and the proportion of hosts infected with reproductive or

infectious forms of the parasite. The populations combined two

food levels (high or low), two inoculum types (with or without

parasite), four P. caudatum genotypes, and each of the resulting 16

treatments was replicated three times. We developed a series of

mathematical models that describe different plausible mechanisms

for the processes of infection in this system, and aimed to assess

their respective abilities to reproduce the experimental data.

Instead of fitting models to individual datasets, as is often done

when dealing with repeated sampling, we modelled the whole data

using a hierarchical statistical model. This approach estimates

parameters for each individual population, and also by genotype

and food level (Table 3). The ‘borrowing of strength’ effect

inherent in hierarchical statistical models means that these

estimates efficiently synthesise all information that is available:

information on each replicate is augmented by information from

other replicates. Although hierarchical Bayesian frameworks have

been used to fit dynamic models for the within-host dynamics of

infection to longitudinal time-series in experimental [15] and

clinical [29] studies, this is one of the first applications to

experimental epidemiology.

Our first point concerns the very structure of the infection

dynamic model. Gilligan et al. [30] combined a logistic growth

model and direct transmission to assess the functional form of the

transmission rate from a series of experiments on potato plants.

However, their simple statistical model (least square minimisation)

did not allow comparison of parameter estimates across experi-

mental treatment. This particular issue was one of the motivations

for the use of a hierarchical model in the present study. Here, we

were able to model explicitly an infection process that included

logistic population growth, horizontal infection via free particles,

vertical transmission to progeny, and a latency period influenced

Figure 6. Assessment of model adequacy for the two-wave, G-saturating model. (a) Predicted population sizes (posterior medians) against
observed population size for each host-type in each replicate. (b) Standardised residuals against predicted population sizes (posterior medians) for
each host-type in each replicate. (c) Standardised residuals against number of days post-inoculation. The residuals are jittered horizontally around
each observation day to reduce overplotting.
doi:10.1371/journal.pone.0069775.g006
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by population dynamics. The Bayesian framework allowed us to

compare alternative hypotheses about two key processes: first, we

showed that horizontal transmission is limited by host grazing

ability; second, we were able to distinguish the relative contribu-

tions of the initial inoculum from parasites released by infected

hosts later on. In addition, we used the fitted mechanistic model to

infer the range of values of two important epidemiological

quantities across experimental treatments: the parasite’s basic

reproductive ratio and the generation time of infection.

While most host-pathogen models assume transmission by

direct contact between infectious and susceptible hosts, we

included explicitly the free-living stage of the bacterial parasite.

This led us to model infection as a predation process, which is a

better representation of the biology of this system. Even though we

did not measure the density of free bacteria experimentally, there

appeared to be enough information in the data to discriminate

between alternative infection models. In line with our understand-

ing of the biology, the model with highest support (out of the

models considered) assumes that the rate of infection is limited by

the density of hosts, which can be interpreted as a finite rate of

grazing by the paramecia. While similar findings are common in

studies of predators [31,32], the implications of grazing functional

responses for the dynamics of infection by food-borne pathogens

have only recently started to be explored [33,34].

There remain several open questions about the dynamics of the

system. In particular, there was not enough information in the

available data to investigate potential effects of host density on the

rate of release of infectious parasites. Although we know that this

release can take place during host replication and following host

death, further experiments would be required to quantify the

relative importance of these two routes. In principle, as the

Figure 7. Persistence of infection for the two-wave, G-
saturating model. (a) Posterior medians and 95%-credible intervals

of R0~
bk
mI E

for every experimental population; red: high food, blue: low

food. (b) Equilibrium values of S, C and I (obtained by running
numerical simulations of the model for 5000 days) across a range of
values of the virulence mI , shown here for genotype K8 in high food,
replicate A. The vertical dashed line shows the position of the predicted
threshold, m�I ~bk=E, corresponding to R0~1.
doi:10.1371/journal.pone.0069775.g007

Figure 8. Predicted times to conversion for the two-wave, G-
saturating model. The predicted time to conversion from C1 to I
(horizontal axis) and from C2 to I (vertical axis) is shown for every
population. These were obtained from numerical solutions the model,
using the posterior median parameter values. The diagonal lines
represent isoclines of the difference D between the delays associated
with the first and second waves of infectious form production.
doi:10.1371/journal.pone.0069775.g008
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population size nears the carrying capacity we might expect that

the replication rate would decrease but that the death rate would

increase, making it difficult to predict the net effect on parasite

production. We hope to be able to use our calibrated model to

help with the design of new experiments that could address these

questions.

The hierarchical statistical model allowed us to assess variation

in parameter values across experimental groups. Our initial

motivation was to test the effects of food supply on the population

dynamics of a host-pathogen system. Various empirical studies

have highlighted two conflicting effects of food availability on host-

pathogen dynamics [35]: limited nutrient supply can affect host

defences, hence benefitting the parasite; on the other hand,

parasites rely on resources from their hosts and may therefore

suffer from low food supply. As expected, the strongest effect of

food levels in our experiment was a positive impact on the host’s

carrying capacity. In addition, we found that both the infection

rate b and the parasite’s degradation rate E were generally higher

in low food treatments (Figure 4). Both effects could be due to

higher feeding rates of paramecia on parasites when food is

scarce. In order to determine the net effect of food level on the

parasite, we determined the posterior distributions of the basic

reproductive ratio R0 for each population, which revealed a

strongly positive effect of food availability on the pathogen’s ability

to spread in most host genotypes. The only exception was host

genotype K8, for which variations in all four parameters that

determine R0 resulted in very similar values for both food levels.

Besides, the low values of R0 for clone K9 in low food suggest a

substantial risk of the parasite failing to establish when introduced

in a new host population with a low food concentration. An

important caveat is that the basic reproductive rate, which by

definition is restricted to the first cycle of infection, takes only

horizontal transmission into account. Vertical transmission is an

essential feature of this particular parasite, enabling it to persist at

a high prevalence.

In conclusion, this study demonstrates how mechanistic models

can be fitted to a multi-factorial experimental dataset, using a

hierarchical Bayesian framework, to make inference on infection

dynamics. A wide range of experimental systems could benefit

from this approach, which allows the integration of information

from other experiments into prior parameter distributions, the

generation of posterior parameter distributions within and across

experimental treatments, and the comparison of multiple mech-

anistic models allowing predictions on fundamental biological

processes. The freely available WinBUGS software, which can

be easily combined with the widely used R program, provides a

user-friendly interface for the implementation of the whole

framework.

Supporting Information
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Figures S1–S3.
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