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Abstract: The lymphatic vasculature is a key player in progression of many cancers, with 

lymphangiogenesis at the primary tumour and tumour-draining lymph nodes (TDLNs) 

associated with poor patient prognosis. As well as providing a highway for metastatic 

tumour cells, recent reports propose lymphatics as modulators of immunity, highlighting a 

need for greater understanding of immune regulation by lymphatics. The specific role of 

lymphatic endothelial cells (LECs) in this context, particularly in TDLNs, is unknown. As 

TDLNs are immune hubs, yet anti-tumour immune responses are often ineffective, this 

thesis aimed to investigate functional changes to lymphatics in TDLNs and the role of 

TDLN-derived LECs in anti-tumour immunity. I hypothesised that factors from the tumour 

microenvironment alter functionality of TDLN-LECs from early stages of tumour 

development. I further hypothesised that these changes would promote immune 

tolerance, with this thesis exploring specific impact on dendritic cell (DC) mediated 

immunity. Using the B16-F10 melanoma model, this work confirmed expansion of TDLN-

LECs prior to metastasis and demonstrated transcriptional reprogramming of immune-

associated pathways in LECs isolated from early TDLNs. This was accompanied by 

differentially localized migratory DCs, clustered at lymphatic subcapsular sinuses. In vitro 

using co-culture assays revealed mature DCs undergo prolonged interactions with LECs 

conditioned with B16-F10 tumour-conditioned media, suggesting a change in the physical 

interactions occurring in vivo in early TDLNs. Additionally, we investigated possible 

mechanistic contributors, demonstrating using in vitro and in vivo blockade and knockout 

models, a role for lymphatic expressed Podoplanin in DC interactions and migration. 

Prolonged physical interactions were further found to facilitate antigen transfer from 

ovalbumin-loaded LECs to DCs yet inhibit DC priming of T-cells, with DCs found capable 

of acquiring TDLN-LEC archived antigen in vivo. These results show that in lymph nodes 

conditioned by factors derived from the tumour microenvironment, prolonged physical 

interactions between LECs and DCs impact DC migration and T-cell priming. As immune 

tolerance is a key feature of the tumour microenvironment, this work has highlighted 

lymphatics as key modulators of the anti-tumour immune response. Furthermore, this 

work provides new insight into lymphatic involvement during tumour development, 

identifying lymphatics as a potential target for early intervention therapies.  



3 

 

i. Declaration  

 

This dissertation is the result of my own work and includes nothing, which is the 

outcome of work done in collaboration except as declared in the Preface and specific 

in the text.  

 

It is not substantially the same as any that I have submitted, or, is being concurrently 

submitted for a degree or diploma of other qualification at the University of Cambridge 

or any other University or similar institution except as declared in the Preface and 

specified text.  

 

I further state that no substantial part of my dissertation has already been submitted, 

or, is being concurrently submitted for any such degree, diploma, or other qualification 

at the University of Cambridge or any other University or similar institution except as 

declared in the Preface and specified in the text.  

 

It does not exceed the prescribed work limit of 60,000 words for the Clinical Medicine 

and Clinical Veterinary Medicine Degree Committee.  

 

 

 

 
 

 

Miss. Jennifer Nicole Harris 

 
 
 
 
 

 

 

 

 

 



4 

 

ii. Acknowledgements   

 
First and foremost, I would like to thank my PhD supervisor Dr Jacqui Shields, who 

not only has given me the opportunity to work in her lab for the past few years but has 

also been incredibly supportive and helpful. From experimental design to 

conversations about cycling and running – you have genuinely been a friend as well 

as a mentor.  

 

Secondly, I would like to thank every single Agent of S.H.I.E.L.D who have been best 

friends as well as colleagues, thank you so much for always being there – Luisa Pedro, 

Matthew Lakins, Angela Riedel, Hafsa Munir, Ehsan Ghorani, James Jones, Sarah 

(Dave) Davidson, Jake Cridge, Carlo Zimarino, Rebecca White, Bastian Schmied, Lisa 

Haas, Jonathan Swietlik, Garrett Beeghly and Will Moody. I would also like to thank 

Emma Kerr, Frances Turrell, Eleanor Heaton, Annalise Katz-Summercorn and Jason 

Crawte for always being there as a friend to have a laugh with and to turn to in tough 

times. Finally, Nadeera de Silva – I wish you had been here to share this PhD 

rollercoaster with us; you are forever missed. 

 

Thirdly, I would like to thank Thilo Richter who has been my best friend and partner 

throughout, supporting me and helping me through all the late nights, long weekends 

and celebratory wins along the way - I love you so very much. Alongside all those at 

Darwin College and beyond, especially BarComm, Alki, Gaby and Joana, you have 

been my Cambridge bedrock through the happiest and toughest moments of this PhD, 

and without you all, I’m not sure how I would have coped – many many thanks.   

 

Last but not least, I would like to thank my beautiful family. Coming to the University 

of Cambridge was always an ambition of mine and you have all sacrificed a lot to allow 

me to fulfil that goal. From that life-changing moment in 2004, right up to current day, 

you have all been nothing other than a gift. My support network and my constant – I 

thank you from the bottom of my heart for being the best family a woman could ask 

for. So, Josephine Harris-Cook, Rachel Harris, Bex-Harris Cook, Arwyn Harris-Cook, 

Maisie Double-Cook and Leo Double-Cook – I love you all and I am forever grateful 

and indebted.   



5 

 

iii. List of presentations and prizes awarded at scientific meetings 

 
Poster presentations 
 

• Cambridge Immunology Network PhD & Post-Doc Day, Cambridge, June 
2016 

 

• Hutchison / MRC Research Centre Annual Retreat, Cambridge, November 
2015 and November 2017 
 

• BMS-UKCAS Conference, Birmingham, April 2017  
 

• 1st Crick International Cancer Conference, London, September 2017 
 
 
 
Oral presentations 
 

• Hutchison / MRC Research Centre Lunchtime Seminar, Cambridge, May 
2016  
 

• Hutchison / MRC Research Centre Annual Retreat, Cambridge, December 
2016 

 
 
 
Prizes  
 

• Best Oral Presentation at the Hutchison / MRC Research Centre Annual 
Retreat, Cambridge, December 2016 
 

• Poster Prize at the joint British Microcirculation Society (BMS) and UK Cell 
Adhesion Society (UKCAS) conference, Birmingham, April 2017 

 
 
 
Other Attended Conferences 
 

• Cambridge Cancer Centre Annual Symposia, Cambridge, June 2014, 
2015, 2016, 2017 
 

• Cancer Research UK Cambridge Institute Annual International 
Symposium, Cambridge, March 2015 
 

• 2nd AstraZeneca-MedImmune Cambridge Cancer Science Symposium, 
Cambridge, September 2015 

 



6 

 

Table of Contents 

Abstract 2 

i. Declaration 3 

ii. Acknowledgements 4 

iii. List of presentations and prizes awarded at scientific meetings 5 

Table of Contents 6 

List of Figures 8 

List of Tables 11 

Abbreviations 13 

 

CHAPTER 1 15 

INTRODUCTION 15 
1. General Introduction 16 
1.1. Overview of lymphatics in cancer 16 
1.2. Structure and function of the lymphatic system 17 
1.3. The role of lymphatics in inflammation 31 
1.4. The role of lymphatics in cancer 36 
1.5. Summary 43 
1.6. Hypothesis and Aims 44 

 

CHAPTER 2 46 

METHODS 46 
2. Methods 47 
2.1. Cell Culture 47 
2.2. Isolation of primary murine cell populations 48 
2.3. In vivo mouse studies 50 
2.4. RNA Isolation, Amplification and Quantification 58 
2.5. Microarray Hybridisation and Data Normalisation 61 
2.6. Quantitative real-time polymerase chain reaction (qRT-PCR) 62 
2.7. Dendritic Cell and Antigen Presenting Cell PCR Array 63 
2.8. Flow Cytometry analysis of primary and cell line populations 67 
2.9. Immunofluorescent Imaging (IF) 68 
2.10. Functional Assays 72 
2.11. Statistical Analysis 78 

 

CHAPTER 3 82 

RESULTS 82 
3. Functional characterisation of lymphatics from melanoma TDLNs 83 
3.1. Introduction 83 
3.2. Methods 84 
3.3. Results 89 
3.4. Discussion 114 

 

 

 

 



7 

 

CHAPTER 4 118 

RESULTS 118 
4.  Determining the interactions between DCs and LECs in TDLNs 119 
4.1. Introduction 119 
4.2. Methods 121 
4.3. Results 126 
4.4. Discussion 164 

 

CHAPTER 5 171 

RESULTS 171 
5.  Determining the role of lymphatic-DC cross-talk in T-cell priming in TDLNs  172 
5.1. Introduction 172 
5.2. Methods 174 
5.3. Results 179 
5.4. Discussion 216 

 

CHAPTER 6 220 

DISCUSSION 220 
6. General Discussion 221 
6.1. Project rationale and overview 221 
6.2. Lymphangiogenesis in the tumour microenvironment 222 
6.3. Modulation of DC migration in TDLNs mediated by Podoplanin positive          

lymphatics 225 
6.4. Lymphatics as modulators of antigen-mediated immune priming 230 
6.5. Driving factors involved in altered lymphatic and DC behaviour in the tumour 

microenvironment 232 
6.6. Summary and Future Perspectives 234 
Bibliography 238 

 

APPENDICES 262 
Appendix 1 – Altered gene targets in TDLN-derived LECs 263 
Appendix 2 – Gene targets altered in Day 4 and Day 11 TDLN-derived LECs 264 
Appendix 3 – Gene ontology pathways for altered genes 265 
Appendix 4 – Altered canonical pathways and associated gene targets 267 
Appendix 5 – Manual categorisation of canonical pathways 269 
Appendix 6 – Altered Immunity associated gene targets 272 
Appendix 7 – Flow cytometry gating for profiling dendritic cells 273 
Appendix 8 – Flow cytometry gating for profiling LECs in vitro 274 
Appendix 9 – Flow cytometry gating for in vitro OVA assays 275 
Appendix 10 – Optimisation of the in vitro antigen transfer assay 276 
Appendix 11 – FACS gating for isolating TRITC immune cells 277 
Appendix 12 – Flow cytometry gating strategy for profiling lymph node cells 278 

 

 
 

 
 



8 

 

List of Figures  

 
CHAPTER 1 - INTRODUCTION 
  
Figure 1.1 
 

Hierarchal organisation of lymphatics in the periphery 

Figure 1.2 
 

Lymphatic endothelial cells junctions 

Figure 1.3 
 

Journey of lymph through the lymphatic and blood system 

Figure 1.4 Structure and organisation of the lymph node 
 

Figure 1.5 Mechanisms of lymphangiogenesis and metastasis in the 
tumour microenvironment 

  
CHAPTER 2 - METHODS 
  
Figure 2.1 
 

Agarose gels for genotyping of mouse lines 

Figure 2.2 Schematic of in vivo B16-F10 mouse model  
 

Figure 2.3 
 
 
Figure 2.4 

Amelanotic tumours and pigmentation in BrafV600E/Pten mice. 
 
In vivo model of tracking tumour-derived dendritic cells 
 

Figure 2.5 Schematic of experimental murine set-up for microarray 
samples 
 

Figure 2.6 
 

96-well format for PCR Profiler Arrays 

Figure 2.7 Dermal sheet preparation from whole ears derived from 
C57BL/6 mice  

  
CHAPTER 3 – RESULTS 
  
Figure 3.1 
 

Method of quantifying lymphatic coverage in lymph nodes 

Figure 3.2 Lymph node and lymphatic expansion in TDLNs of B16-F10 
tumours  
 

Figure 3.3 
 

Lymphatic networks expand in TDLNs over time 

Figure 3.4 Lymphatic expansion occurs at the subcapsular sinus and in 
medullary regions of TDLNs 
 

Figure 3.5 Whole lymph node coverage of LYVE-1 is significantly 
increased in late TDLNs 
 

Figure 3.6 Lymphatic expansion occurs in peritumoural regions of 
melanoma tumours 
 

Figure 3.7 TDLN-derived LECs undergo time-specific transcriptional 
changes 
 

Figure 3.8 Immune signatures and key endothelial pathways are 
deregulated in TDLN-derived LECs  



9 

 

 
Figure 3.9 Immunity pathways are highly represented in early and late 

TDLNs, relative to other canonical pathways  
 

Figure 3.10 
 

Specific Immunity pathways with altered gene expression 
profiles in TDLNs 
 

Figure 3.11 Genes associated with Immunity, with altered gene 
expression profiles in TDLNs 
 

Figure 3.12  Verification of LN-LEC RNA expression trends of junctional 
molecules 
 

Figure 3.13 
 

CCL21 protein expression is unaltered in early TDLNs  

Figure 3.14 Podoplanin protein expression is upregulated on early TDLN-
derived LECs  
 

Figure 3.15 Microarray identified gene targets of interest correlate with 
dendritic cell marker, Itgax, in human melanoma 

  
CHAPTER 4 – RESULTS 
  
Figure 4.1 
 

Schematic outlining methods of quantifying TRITC+ cells  

Figure 4.2 Schematic outlining methods of quantifying morphological 
features of DCs 
 

Figure 4.3 
 

Migratory TRITC+ DCs cluster in outer regions of early 
TDLNs in association with subcapsular lymphatics  
 

Figure 4.4 Increased clustering of migratory TRITC+ DCs in outer 
regions of early TDLNs 
 

Figure 4.5 Gating strategy for dendritic cell profiling in TDLNs from 
TRITC painted tumours 
 

Figure 4.6  Lymph node cellularity and dendritic cell counts is increased 
in early TDLNs 
 

Figure 4.7 Altered profiles of TRITC+ dendritic cell subpopulations in 
early TDLNs   
 

Figure 4.8  
 

In vitro LECs express canonical lymphatic markers and 
lymphatic transcription factor, PROX-1 
 

Figure 4.9 
 

Schematic of in vitro dendritic cell assays used to assess 
lymphatic interactions 
 

Figure 4.10 Enhanced adhesion of dendritic cells to TCM-conditioned 
LECs in vitro 
 

Figure 4.11 Altered dendritic cell morphology upon co-culture with TCM-
conditioned LECs in vitro 
 

Figure 4.12 Perturbed transmigration of dendritic cells across TCM-
conditioned LECs in vitro 



10 

 

 
Figure 4.13 
 

Perturbed motility of dendritic cells across TCM-conditioned 
LECs in vitro 
 

Figure 4.14 Microarray data of gene targets involved in immune cell 
interactions 
 

Figure 4.15 
 

Immunofluorescent imaging of TRITC+ DCs in the 
subcapsular sinus of LNs  
 

Figure 4.16 
 

Enhanced Podoplanin expression in LECs treated with TCM 
for 48hrs in vitro 
 

Figure 4.17 
 

Podoplanin blockade inhibits DC adhesion to LECs in vitro, 
in resting conditions 
 

Figure 4.18  CLEC-2 expression is expressed in DCs derived from spleen 
and lymph node.  
 

Figure 4.19 
 

In vivo Podoplanin blockade does not alter migratory DC 
localisation in LNs 
 

Figure 4.20 
 

Podoplanin blockade does not significantly alter DC counts in 
early TDLNs 
 

Figure 4.21 
 

Podoplanin blockade does not significantly alter total counts 
of migratory TRITC DC infiltrate in early TDLNs 

  
Figure 4.22 
 

Podoplanin blockade does not significantly alter the 
percentage of migratory TRITC DC infiltrate in early TDLNs 
 

Figure 4.23 
 

Characterisation of lymphatic networks and Podoplanin 
expression in ear dermis from PDPN-FL mice  
 

Figure 4.24 
 

Dendritic cell composite and lymph node cellularity is altered 
in PDPN-FL homozygous mice  
 

Figure 4.25 
 

Migratory dendritic cell infiltrate is altered in PDPN-FL 
homozygous mice 
 

Figure 4.26 
 

Podoplanin expression is perturbed in lymph nodes and ear 
dermis from heterozygous and homozygous PDPN-FL mice 
 
 

  
CHAPTER 5 – RESULTS 
  
Figure 5.1 
 

Method of TRITC quantification within T-cell zones 

Figure 5.2 Migratory DCs are delocalised in T-cell zones of early TDLNs 
 

Figure 5.3 Migratory DCs are clustered at the edge of B-cell follicles in 
Day 4 TDLNs 
 

Figure 5.4 
 

Migratory DCs are clustered at the Tcell-Bcell margin in Day4 
TDLNs 
 



11 

 

Figure 5.5 
 

OVA uptake and processing by LECs in vitro 

Figure 5.6 
 

Schematic showing in vitro model of antigen transfer  

Figure 5.7 
 

Gating strategy for flow cytometry analysis of OVA transfer  

Figure 5.8 LEC-derived antigen is transferred to physically interacting 
DCs 
 

Figure 5.9 No change in antigen transfer between TCM-conditioned 
LECs and DCs 
 

Figure 5.10 Gating strategy for quantification of OT-1 CD8+ T-cell 
proliferation and viability 
 

Figure 5.11 OT-1 T-cells do not proliferate in the presence of LEC-primed 
DCs  
 

Figure 5.12 Flow cytometry gating strategy used to identify FITC-OVA 
localisation in TDLNs 
 

Figure 5.13 Antigen is taken-up primarily by LECs in NDLNs and TDLNs 
 

Figure 5.14 Antigen localises to LYVE-1 positive regions in Day 4 TDLNs  
 

Figure 5.15 Flow cytometry gating strategy used to identify DQ-OVA 
processing in TDLNs 
 

Figure 5.16 LECs efficiently process antigen in NDLNs and early TDLNs  
 

Figure 5.17 No difference in antigen processing by CD11c+ DCs between 
control NDLNs and early TDLNs  
 

Figure 5.18 
 

Migratory DCs process drained antigen in LNs 

Figure 5.19 
 

Migratory DCs are activated and mature in early TDLNs 

Figure 5.20 No change in PD-L1 and PD1 expression in immune 
compartments between NDLNs and early TDLNs 
 

Figure 5.21 
 

Altered T-cell profiles in TDLNs across time 

  
CHAPTER 6 – DISCUSSION 
  
Figure 6.1 LN expansion and transformation during tumour 

development 

 

 

 

 



12 

 

List of Tables  

CHAPTER 2 - METHODS 
  
Table 2.1 
 

PCR mastermix components used for genotyping 

Table 2.2 
 

PCR program used for genotyping 

Table 2.3 
 

Primers used for genotyping of mouse lines 

Table 2.4 
 

PCR programs for amplification  

Table 2.5 
 

qRT-PCR program for ABI StepOnePlusTM Cycler 

Table 2.6 Reverse transcription mix for first strand cDNA 
synthesis for PCR Profiler Arrays 
 

Table 2.7 
 

Amplification PCR programs for PCR Profiler Arrays 

Table 2.8 qRT-PCR program for ABI StepOnePlusTM Cycler for 
PCR Profiler Arrays 
 

Table 2.9 
 

Buffer and reagent recipes  

Table 2.10 
 

Antibodies for flow cytometry  

Table 2.11 
 

Antibodies for immunofluorescent imaging 

Table 2.12 
 

Fluorescently conjugated secondary antibodies  

 
 
 

 

 

 

 

 

 

 



13 

 

Abbreviations 

ANOVA Analysis of variance  

APC Antigen presenting cell 

BEC Blood endothelial cell 

BSA Bovine serum albumin 

CAF Cancer associated fibroblasts 

CAM Cell adhesion molecule 

CCM Control conditioned media 

CCL CC-type chemokine ligand 

CXCR CXC-type chemokine receptor 

CXCL CXC-type chemokine ligand 

CCR CC-type chemokine receptor 

DAPI 4”,6-diamidino-2-phenylindole 

DAMP Danger associated molecular pattern 

DC Dendritic cell 

ECM Extracellular matrix 

FACS Flow assisted cell sorting 

FBS  Foetal bovine serum 

FRC Fibroblast reticular cell 

FSC SSC Forward side scatter Side scatter 

ICAM Intracellular adhesion molecule 

IDO Indoleamine-2,3-dioxygenase 

IL Interleukin 

GSEA Gene set enrichment analysis 

HEV High endothelial venule 

KEGG Kyoto Encyclopedia of Genes and Genomes  

LEC Lymphatic endothelial cell  

LN Lymph node 

LN-LECs Lymph nodes lymphatic endothelial cells 

LYVE-1 Lymphatic endothelial hyaluronan receptor-1 

MHC  Major histocompatibility complex 

NDLN Non-draining lymph node 

OVA Ovalbumin  

PAMP Pathogen associated molecular pattern 

PD-L1  Programmed death ligand-1 

PDPN Podoplanin 

PFA Paraformaldehyde 

PLVAP Plasmalemma vesicle-associated protein 

PROX-1 Prospero-related homeobox-1 

ROI Region of interest 

RNA Ribonucleic acid 

qRT-PCR Quantitative real-time polymerase chain reaction  

SCS Subcapsular sinus 

SEM Standard error of the mean  

SEMAs Semaphorins 

SMCs Smooth muscle cells 

TCGA The Cancer Genome Atlas 



14 

 

TCM Tumour-conditioned media 

TDLN Tumour-draining lymph node 

TLR Toll-like receptor 

VCAM Vascular cell adhesion molecule 

VEGF Vascular endothelial growth factor  

VEGF-R3 Vascular endothelial growth factor receptor-3 

Hr(s) Hour(s) 

Min(s) Minute(s) 

Mg(s) Milligram(s) 

Ml(s) Millilitre(s) 

ng Nanogram 

µg Microgram 

µl Microlitre 

µM Micromolar  

% Percentage  

 
 
 

 

 

 

 

 

 

 

 

 

 

 



15 

 

 

 

 

CHAPTER 1 

 

INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 



16 

 

1. General Introduction 

 

1.1. Overview of lymphatics in cancer 
 

Lymphatic vasculature plays a critical role in tumour progression in many cancers. 

Until recently, lymphatics were considered to be passive bystanders serving as 

avenues for tumour metastasis. The lack of reliable markers of lymphatic endothelial 

cells (LECs) hindered accurate discrimination of lymphatic vasculature from blood 

vasculature, and this was compounded by the scarcity of suitable experimental 

models. Over the past decade however, significant progress has been made in the 

field of lymphatic biology in the context of physiology, pathology and immunology. 

Within the tumour microenvironment, we now know lymphatics to be active 

participants, contributing not only to tumour development at the primary site and 

tumour metastasis, but also to the anti-tumour immune response. The adaptive 

functions and changes occurring in lymphatics at the primary site and distal tumour-

draining lymph nodes remain undefined and hence there is a renewed focus on 

lymphatics in cancer research. With much to be discovered and defined in terms of 

specific mechanistic contributions to tumour progression and avenues for targeting, 

outstanding questions include: how do LECs respond and adapt to factors derived 

from the tumour microenvironment? What are the driving stimuli? And what are the 

functional consequences? Recent studies have begun to answer some of these 

questions by transcriptionally profiling lymphatics from the primary tumour site to 

understand better how factors derived from the tumour microenvironment alter 

lymphatic phenotype and function. Studies have identified significant changes 

pertaining to immune-associated receptors and tight junction molecules, in lymphatics 

isolated from murine fibrosarcomas1 and identified a distinct gene signature, in 

collecting lymphatic vessels from metastatic VEGF-D-expressing tumours, with 

changes to cell surface markers, secreted factors and ECM proteins described2. 

These two studies demonstrated that factors derived from the tumour 

microenvironment likely have multiple effects on lymphatics depending on their site, 

be it capillaries at the primary tumour or larger collecting vessels. Thus, is would be 

entirely feasible to propose that factors derived from the tumour microenvironment are 

also likely to alter lymphatics in a manner specific to tumour-draining lymph nodes 
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(TDLNs). Collectively, this highlights a need for better understanding of how 

lymphatics adapt within the tumour microenvironment and what their role is within 

TDLNs. The following literature review will outline our current understanding of 

lymphatic biology in health and disease and introduce emerging roles of lymphatics 

and mechanisms of lymphatic involvement within the tumour microenvironment. 

 

1.2. Structure and function of the lymphatic system  
 

The lymphatic system comprises of a network of capillaries, collectors, nodes and 

ducts, which primarily function to maintain tissue fluid homeostasis. Lymphatic vessels 

operate closely with the blood vasculature, collecting protein-rich exudates from blood 

vessels. Once in the connective tissue compartment these exudates are referred to 

as interstitial fluid or pre-lymph, and the subtle movement of this fluid, through the 

interstitium towards lymphatics, interstitial flow. Disruption to this finely tuned balance 

of vessel leakage and drainage can result in fluid accumulation and pathologies such 

as lymphedema. Throughout the lymphatic system distinct molecular patterns and 

morphologies exist to support location-specific functions. The following will outline the 

structure and function of lymphatic vasculature focusing on lymph composition, the 

role of lymphatic endothelial cells and lymph node morphology.   

 

1.2.1. Structure and organisation of lymphatic vasculature   
 

The lymphatic system comprises a hierarchal structure of initial, pre-collecting, 

collecting lymphatic vessels and lymph nodes (Figure 1.1a). Initial lymphatics are 

small blind-ended (30-80µm diameter) vessels with thin walls generated by loosely 

connected, overlapping LECs, commonly referred to as ‘primary valves’3. LECs are 

attached to surrounding elastic fibers in the ECM via anchoring filaments4. Upon 

elevated interstitial pressure, initial lymphatics respond to the need for drainage via 

the anchoring filaments, which “pull” due to the expanding interstitium. This in turn 

opens adjacent LECs permitting interstitial fluid to enter6,7 (Figure 1.1b). 
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Figure 1.1. Hierarchal organisation of lymphatics in the periphery.  The lymphatic network 
in the periphery comprises of a hierarchal structure of initial, pre-collecting and collecting 
lymphatic vessels, with lymph lying downstream. Initial lymphatics are blind-ended vessels 
with incomplete basement membrane, which permit easy access to interstitial fluid and 
migrating immune cells. Pre-collecting lymphatics exhibit similar characteristics and drain 
lymph towards larger collecting lymphatics, which are similar to blood vessels, with a complete 
basement membrane that provides vessel support and play a role in formation and 
maintenance. Assisting in movement of lymph in pre-collecting and collecting lymphatics are 
smooth muscle cells (SMCs), which act as the motor unit for lymphatic drainage. Their 
contractile properties provide rhythmic contractions, which represent the principal mechanism 
for lymphatic flow. Valves throughout the collecting lymphatics then assist in directional flow. 
Throughout the system, anchoring filaments, which LECs use to attach to the surrounding 
elastic fibers in the ECM, provide structural support (A). They further assist by opening 
adjacent LECs to permit fluid entry when the tissue is under high interstitial pressure by 
contracting (B). Adapted from Stacker et al., Nat Rev Cancer (2014)5. 
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In contrast to blood vessels, initial and pre-collecting lymphatic vessels have a 

discontinuous basement membrane and no supporting smooth muscle cells (SMCs), 

with occasional valves found in pre-collecting vessels (Figure 1.1a). Collecting 

lymphatics, however, adhere to more conventional vasculature characteristics with 

continuous basement membrane, intraluminal valves dispersed between functional 

units, called lymphangions, and associated SMCs to assist in the peristaltic, 

unidirectional flow of lymph8,9,10. 

 

1.2.2. Characterisation of lymphatic endothelial cells  
 

Despite lymphatic vasculature being observed as early as the 17th century and 

documented in 190211,12, the lack of specific lymphatic markers hampered accurate 

characterisation of LECs. Since then, lymphatic markers such as podoplanin (PDPN), 

lymphatic endothelial hyaluronan receptor-1 (LYVE-1)13,14 prospero-related 

homeobox-1 (PROX-1)15 and vascular growth factor receptor-3 (VEGFR-3)16 have 

been identified enabling the isolation and characterisation of LECs, and exploration of 

lymphatic function in health and disease17,18. Further characterisation via microarray 

identified over 400 differentially expressed genes in cultured lymphatic and blood 

endothelial cells. Amongst these genes, distinct sets of cytokines, chemokines, 

receptors, adhesion molecules and cytoskeletal proteins were identified, with PROX-

1 found to be a cell fate determinant – driving transcription of LEC-specific targets 

such as vascular endothelial growth factor-C (VEGF-C) and VEGFR-319,20, prior to 

budding of the earliest lymphatic vessels during embryonic development. PROX-1 

knockout models highlighted defects in lymphangiogenesis21 and reprogramming of 

LECs into blood endothelial cells (BECs)15,22). Original microarray datasets have also 

been revisited and new differential markers identified, such as melanoma cell 

adhesion molecule expressed on BECs, and collectin placenta-12 expressed on 

LECs23.  

 

More in depth characterization of LECs using murine ear wholemounts revealed 

distinct junctional characteristics that discriminate between initial and collecting 

lymphatics. Whilst all lymphatic vessels examined expressed typical lymphatic 

markers LYVE-1, PROX-1, CD31 and VE-Cadherin, the distribution of VE-Cadherin 



20 

 

differed3. In initial lymphatics, VE-Cadherin was observed in discontinuous hotspots 

interspersed between CD31, whereas in collecting LECs, expression of VE-Cadherin 

was continuous, and the terms “button” and “zipper” junctions respectively were 

coined (Figure 1.2). Unlike “zipper” junctions which are a general characteristic of 

vascular endothelium, “button” junctions are unique to initial lymphatic capillaries. VE-

Cadherin in both initial and collecting vessels also localised with typical junctional 

molecules Occludin, Claudin-5, Zonulin-1, ESAM, and Jam-A3. Confirming these 

observations, Murfee et al., (2007) showed CD31 and VE-Cadherin expression was 

discontinuous in initial lymphatics, with terminal lymphatics exhibiting lower CD31 

expression and smaller junctional gaps between neighbouring cells24. Little is known 

of the precise functional differences in lymphatics across the broader network, but it is 

likely that variance in expression of certain markers contributes to functional 

distinction. 

 

As well as variance in expression based on LEC locality, transmural flow (across the 

endothelial barrier), as occurs when fluid enters initial lymphatics has been shown to 

stimulate delocalisation of CD31 and VE-Cadherin, and decrease their expression at 

both RNA and protein levels25. Identified as endothelial-specific flow sensors in blood 

endothelial cells, CD31 and VE-Cadherin are already known to modulate endothelial 

cell remodelling and junctional integrity in response to shear stress26,27; hence these 

results suggest similar mechanisms occur in lymphatic vessels.  
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Figure 1.2. Lymphatic endothelial cells junctions. Representative image of lymphatic 
vessels in murine ear dermal sheets, stained for lymphatic marker, LYVE-1 (1:300), and 
imaged using confocal microscopy at 20x magnification. Scale bar represents 100µm (A). 
Blind-ended initial lymphatics and pre-collecting lymphatic vessels have similar junctional 
organisation, with “button” junctions between flap-like lymphatic endothelial cells. These 
contain proteins of adheren and tight junctions and enable free-fluid flow between 
neighbouring cells. In contrast, collecting lymphatics have continuous “zipper” junctions, which 
are less permeable to prevent fluid loss of lymph in collecting lymphatics (B). Adapted from 
Baluk et al., J Exp Med (2007)3. 
 

 

Variability in junctional molecule expression across the lymphatic network may also 

be induced by other factors. VEGF has been shown to disrupt endothelial barrier 

function through the activation of VEGF-R2, which in turn mediates phosphorylation 

of a serine motif in the intracellular tail of VE-Cadherin in a Rac/Src-dependent 

manner28,29. This resulted in ß-arrestin2 dependent internalization of phosphorylated 
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VE-Cadherin via clathrin-coated vesicles and consequent junctional disassembly. To 

demonstrate its requirement in VE-Cadherin internalization, shRNA against ß-

arrestin2 protected against VEGF-induced permeability29. Furthermore, blocking VE-

Cadherin with neutralizing antibodies increased pulmonary metastasis of CT29 

carcinoma cells in mice, and significantly fewer metastatic lesions were observed in 

Src-deficient mice28. This supports previous findings showing pharmacological 

inhibition of Src attenuates VEGF-dependent endothelial permeability but does not 

affect VEGF-mediated angiogenesis30. In addition to VEGF family members, a number 

of other regulators have been identified, including TGF-ß and MMP-931,32 RhoA and 

Rac33,34,35,36, ß-catenin and p120-catenin37,38,34.  

 

Collectively, these studies have contributed to the progressive understand of 

lymphatic biology, identifying network arrangements, key lymphatic markers and 

important functional characteristics. Lymphatics are still however relatively overlooked 

compared to blood vessels and more research is needed to explore further the role of 

lymphatic identifying markers and how these functional molecules respond in health 

and disease.  

 

1.2.3. Lymph Composition  
 

The predominant role of lymphatics is to maintain tissue fluid homeostasis. Protein 

rich interstitial fluid crosses the endothelial barrier, governed by junctional molecules 

such as CD31 and VE-Cadherin, and enters the lymphatics. Once within lymphatic 

vessels interstitial fluid, now referred to as lymph, flows into progressively larger 

collecting vessels onto lymph nodes throughout the body. Lymph enters lymph nodes 

through afferent lymphatics and exists through efferent vessels, draining through 

sequential lymph nodes (Figure 1.3). This is a critical process due to the contents of 

the lymph carried by lymphatics to the lymph node. Proteomic analyses have identified 

lymph to be enriched with extracellular matrix components, metabolic and catabolic 

substrates, cell debris, products of tissue growth and remodelling, and a pool of self-

antigens39,40,41,42,43. Lymph also carries peripheral tissue-derived immune cells, with 

the first observations of immune cells in lymph described in 197044. Transporting 
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immune cells from the periphery to lymph node is an important feature of lymphatic 

vasculature, explored further in Section 1.2.5.    

 

Once the lymph has drained through sequential lymph nodes, it returns to the blood 

via the thoracic duct into the left and right subclavian veins, which deliver the lymph 

into the vena cava and ultimately back to the blood circulation (Figure 1.3). Overall, 

this process serves as the means by which our immune system continuously samples 

the periphery, and since lymph nodes are key centres for priming of immune 

responses, lymphatics hence directly assist in immune surveillance through the supply 

of antigen and immune cell-rich lymph. The structure and role of the lymph node is 

explored further in the next section (Section 1.2.4).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 1.3. Journey of lymph through the lymphatic and blood system. Interstitial fluid 
entering peripheral lymphatics, referred to as lymph, flows through lymphatic vessels via a 
daisy-chain of lymph nodes. Arrow indicative of direction of flow. This is a critical step in 
mounting an immune response, as it facilitates lymph node sampling of the lymph’s content, 
such as antigen. Lymph returns to the blood circulatory system via the largest lymphatic vessel 
in the body, the thoracic duct (*).  
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1.2.4. Lymph Node Morphology and Function  
 

With over 500 lymph nodes dispersed throughout the human body, lymph nodes are 

secondary lymphoid organs essential for draining lymph carried from the periphery by 

lymphatic vessels. The primary role of lymph nodes is to provide a centre for leukocyte 

activation and mobilization, assisting in effective immune surveillance and optimal 

immune responses through the drainage of peripheral material and antigen-loaded 

APCs.  

 

To enable these functions, the lymph node relies on a high degree of structural 

organization and compartmentalisation (Figure 1.4a). This structure is critical for 

disseminating lymph across the node and ensuring immune cell organisation optimal 

for mounting an immune response. The lymphatics form a key component of the lymph 

node with lymphatic tissue present in afferent and efferent lymphatic vessels, the 

subcapsular sinus (SCS), the cortex, and the medulla (Figure 1.4b). This network of 

lymphatic sinuses allows lymph to infiltrate the lymph node and access the zones 

containing diverse immune populations. Lymph entering via afferent lymphatic 

vessels, first traverses the subcapsular sinus (SCS), whereby LECs line both the 

ceiling and floor of the capsule. From there lymph permeates the lymph node via 

cortical sinuses into medullary sinuses and leaves via the efferent lymphatic vessels. 

Size-exclusive properties of LECs at the subcapsular sinus, ensures that large 

molecules within the lymph do not have direct access to the lymph node. Instead small 

molecules (<70kDa), such as chemokines and antigens are permitted to rapidly cross 

the endothelium and reach the T-cell and B-cell follicles through the conduit 

system67,56. This characteristic is shared by all lymphatic tissue in the lymph node and 

is crucial in supporting antigen sampling in a controlled manner. The manner to which 

this size-exclusion barrier is altered in health and disease and in particular in the 

context of the tumour microenvironment and metastasis, is yet to be elucidated. 

Components of the lymph can also be sampled actively by LECs and particularly by 

interspersed CD169+ macrophages, shown to uptake lymph-derived exosomes68, 

dead tumour cells69, viral particles70 and antigen immune complexes71. The medullary 

sinuses, also lined by lymphatic endothelium and medullary macrophages complete 

the network by which lymph bathes the lymph node. From here, lymph egresses via 

efferent lymphatic vessels.  
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In addition to the lymphatic infrastructure, the lymph node cortex and paracortex 

regions are comprised of specific T-cell zones and B-cell follicles interspersed with 

high endothelial venules (HEVs). These HEV portals provide further access points for 

migratory immune cells, with ingress and egress both occurring at these sites72,73,74. 

Access to these regions is permitted by collagen conduits lined with fibroblast reticular 

cells (FRCs), which provide physical highways for migratory immune cells to crawl 

along, and further directional cues, in the form of chemokine gradients75,76,77.  

 

In particular, chemokines CCL19, CCL21 and CXCL13 have been identified as the 

main stromal cell-derived factors that guide migration and localisation of lymphocytes 

within the node. CCL21 in particular is of key importance to the migration of DCs from 

the edge of the lymph node to the inner regions of the lymph node. LECs secrete 

CCL21, which acts as a directional cue for DCs expressing the CCL21-receptor, 

CCR7. This is assisted by expression of chemokine scavenger, CCRL1, which 

promotes the establishment of a gradient in favour of lymph node66 (Figure 1.4c). In 

addition to guiding DCs, CCL19 and CCL2178,79 control motility and migration of naive 

T-cells, and retention of cells in T-cell zones. CXCL13 is however essential for homing 

of naïve B-cells to B-cell follicles80, although the chemical cues for B-cell retention are 

yet to be defined. The mechanistic role of lymphatics in immune trafficking from 

periphery to lymph node is explored further in Section 1.2.5. 

 

This tier of structural organisation, held together by guiding chemokines, is the 

foundation of mounting an effective immune response. To mount an adaptive immune 

response, interactions between naïve T-cells and APCs such as DCs must occur. 

CCR7 is a critical to this interaction, with expression of CCR7 on mature DCs guiding 

them, not only across the subcapsular sinus, but then onto FRC conduits into T-cell 

zones, where they come across awaiting naïve T-cells81. Expressed by T-cells, CCR7 

guides CD62L+ naïve and central memory T-cells into the T-cell cortex of lymph nodes 

via HEVs where they come across antigen-bearing dendritic cells. In order to become 

activated by an APC, T-cells constantly recirculate from the blood to a lymph node and 

survey the lymph node until it encounters an APC expressing antigen peptide 

displayed on MHC molecules, that it can bind to82. This physical engagement, known 

as the formation of an immunological synapse, can last for over an hour and initiates 

an activation and proliferation programme that drives expansion of antigen-specific T-
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cells83. Conversely, effective initiation of this programme has also been reported to 

require multiple transient interactions84. Once activated, T-cells proliferate in the lymph 

node for 3-7 days and acquire egress receptors that allow them to exit the lymph node 

and traffic to the inflamed peripheral tissue in question85. Loss of CCR7 expression 

and S1P signalling are both well understood to govern the process of egress from the 

lymph node back into the circulation86. 
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Figure 1.4. Structure and organisation of the lymph node. Lymph nodes are highly 
organised lymphoid organs, with three main regions – the subcapsular sinus, the medulla and 
the cortex. The subcapsular sinus encapsulates the node and is predominantly comprised of 
lymphatic endothelial cells and CD169+ macrophages. In addition to filtering cellular entry the 
subcapsular sinus (SCS) also controls entry of antigen and other soluble factors through 
permeable features of the lymphatic lining (dashed line). Incoming migratory immune cells and 
peripheral material enters the node via afferent lymphatics and other immune cells, such as 
naïve T-cells, enter through high endothelial venules (H). This is assisted by chemokine cues, 
which guide immune cells into the node from afferent lymphatics (grey arrows). Incoming 
immune cells traffic to their relative locations within the node via fibroblast reticular cell (FRC) 
collagen-rich conduits. A critical region for T-cell accumulation is the paracortex, which is the 
primary location for T-cell priming by antigen-loaded DCs. This interaction results in an 
immune response being mounted. The outer cortex is the site of B-cell antigen searching, 
comprised of B-cells and follicular DCs clustered into follicles. Upon exit, egressing immune 
cells leave the lymph node through the medulla and efferent lymphatic vessels, as well as high 
endothelial venules (A). Lymphatics are a key compositional element of the lymph node, with 
LYVE-1 expressing LECs found in the medulla and subcapsular sinus, acting to disseminate 
arriving lymph throughout the node, as visualised using confocal microscopy (B). Lymphatics 
at the subcapsular sinus, specifically function to ensure arriving immune cells from the 
periphery, e.g. DCs, can enter the lymph node. This is achieved from establishing a chemokine 
gradient which promotes migration from the subcapsular sinus ceiling (SCS-C) to the 
subcapsular sinus floor (SCS-F). With the appropriate chemotactic cues, DCs are able to 
transmigrate across LEC monolayers, which form the lining of the SCS-C and SCS-F, entering 
the inner lymph node (LN) space (C). Adapted from Girard et al., Nat Rev Immunol (2012)72. 
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1.2.5. LECs as mediators of immune cell trafficking 
 
 
Recent findings from investigations into DC trafficking, demonstrate that migration into 

and within lymphatics occurs in stages55,63. Firstly, haptotactic migration of chemokine 

receptor-expressing DCs, guided by lymphatic-derived chemokines, attracts DCs 

towards initial lymphatic vessels. Secondly, DCs physically dock to LECs through 

adhesion to CAMs; a process also supported by chemokines62. Thirdly, DCs enter 

initial lymphatic vessels by squeezing through flaps between neighbouring LECs3,58 

with the characteristic discontinuous basement of initial lymphatics leaving physical 

gaps for entering cells270. Recent research has further found that once within initial 

lymphatic vessels, DCs proceed to actively crawl along the vessels, with bidirectional 

patrolling behaviour described62,63. The role of chemokines and CAMs in these initial 

stages of migration has been well documented and is described below. The final stage 

of migration is a passive process, whereby immune cells that reach the downstream 

collecting lymphatic vessels are subject to rapid lymph flow which transports 

peripheral-derived immune cells to lymph nodes within 6hrs to 24hrs62,220,271. Within 

these collecting lymphatic vessels, valves prevent backwards flow of lymph, similarly 

to the role of valves in blood vessels, further assisting in the movement of immune 

cells along the lymphatic vessels.  

 

As stated above, chemokines are essential for directional migration of immune cells. 

Two lymphatic-derived chemokines, CCL19 and CCL21, are well-documented in 

lymph node homing through interactions with their receptor CCR7, expressed on 

migratory immune cell populations. Evidence for CCL21 in DC migration in particular, 

was first determined by tracking DC migration from footpads to draining lymph nodes 

in the presence of administered CCL21-neutralising antibody279. Administration of 

CCL21-neutralising antibody blocked migration of skin-derived DCs by 50%, 

demonstrating a critical role for CCL21 in DC lymph node homing279. It was later 

revealed that murine CCL21 exists in two isoforms, CCL21-A (CCL21-serine) and 

CCL21-B (CCL21-leucine), whereby CCL21-A was found in both peripheral 

lymphatics and lymphoid tissue lymphatics, whereas CCL21-B was found exclusively 

in peripheral lymphatics280,281. Recent work has been focused on identifying 

mechanisms of how CCL21 expression is regulated and how lymphatic-derived 

CCL21 guides DC migration.  
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In initial lymphatics, CCL21 is produced and secreted by LECs, which binds the 

basement membrane62,63 and heparan sulfates in the interstitium272. This creates an 

immobilised gradient which guides CCR7-expressing cells, such as DCs, through the 

interstitium towards lymphatic vessels. A positive feedback loop has also been 

described, with the physical interaction of DCs with LECs shown to induce calcium-

dependent secretion of CCL21 to extracellular sites57. Secreted CCL21 was found to 

localise to endothelial cell-to-cell junctions, demonstrating a role in transmigration of 

DCs across lymphatic endothelium57. The secretion of CCL21 has also been shown 

to be an inflammation inducible mechanism, with intracellular CCL21 rapidly secreted 

in a calcium-dependent manner, by LECs upon exposure to the inflammatory cytokine, 

TNF-57,231. CCL21 deficient mice not only demonstrated perturbed migration, but also 

dendritic cell maturation and T-cell priming functionality was seen to be perturbed 

proposing additional roles in dendritic cell immunity230. The role of CCL21 in migration 

of DCs at the lymph node is described later in this section. 

 

Other soluble factors have been reported to govern immune cell migration, with 

Semaphorin-3A and Semaphorin-7A found to be critical for chemokine-driven dendritic 

cell lymph node homing, transmigration and associated cytoskeletal 

rearrangements223. Semaphorins however also regulate T-cell and neutrophil 

immunity, with Class-3, 4 and 7 Semaphorins described to modulate neutrophil 

migration224,225,226 and Semaphorin-6D and -3A shown to regulate T-cell activation and 

proliferation227. Interestingly, Semaphorins can also act on endothelial cells, with 

Semaphorin-6A and -6D driving VEGF-mediated angiogenesis228 and Semaphorin-3F 

regulating lymphatic endothelial cell migration229.  

 

In addition to establishing chemotactic cues for immune cell migration, LECs express 

many molecules to facilitate tethering of migrating immune cells. During inflammation, 

DC entry into the lymphatics and downstream LNs is dependent on up-regulation and 

engagement of adhesion molecules ICAM-1 and VCAM-1 on LECs25,45. Specifically, 

inflammatory cytokines TNF-, and myeloid derived IFN-γ, have been described as 

key regulators of CAM expression45,46,47,48. TNF-mediated, integrin-dependent 

trafficking has also been described for neutrophil and T-cell migration into and along 

lymphatic vessels49,50,51. More recent research has also demonstrated a role for 
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lymphatic marker, LYVE-1, in DC docking to lymphatic endothelium. Here, in vitro and 

ex vivo studies demonstrated that DCs dock to the basolateral surface of lymphatic 

vessels through interactions between DC-expressed hyaluronan and LYVE-1 to form 

‘transmigratory cups’ around the migrating cell52. CD31 has also been cited as a critical 

adhesion molecule in the transmigration of human dendritic cells across lymphatic 

endothelium59. Conversely, Jam-C is a negative regulator of immune cell migration, 

with blockade resulting in increased DC migration to draining lymph nodes and 

reduced monocyte infiltration into inflamed tissues60,61. Other membrane bound 

molecules involved in immune cell trafficking include, the OX-2 membrane 

glycoprotein, CD200, and Chemerin receptor, CMKLR1. Endothelium-expressed 

CD200 binds immune cell receptor CD200-R, is regulated by LPS during tissue 

inflammation and facilitates immune cell adhesion232. The role of Chemerin is variable 

and not well understood; studies have reported actions on both endothelial cells and 

immune cells to promote angiogenesis and transmigration via enhanced affinity 

association with VCAM-1233, with chemerin receptor found to be expressed on both 

endothelial cells and trafficking immune cells234. 

 

Having arrived at the lymph node, recent evidence demonstrates that immune cell 

migration across the subcapsular sinus can occur via conventional paracellular 

modes, or transcellular migration via the formation of transcellular pores comprised of 

Plasmalemma vesicle-associated protein (PLVAP) and F-actin56. In vivo work 

conducted using PLVAP-deficient mice observed hyperpermeability at the lymphatic 

subcapsular sinus, with loss of antigen filtration and augmentation of lymphocyte entry 

to the lymph node. As wild-type immune cells traverse the sinus with similar efficacy 

as CCR7 knockout cells53, this is the first to document a mechanism for immune cell 

migration across the lymph node sinus. However, whether this protein is also important 

for immune cell entry to lymphatic vessels at the periphery is unknown. CCL21 is also 

critical for lymph node entry, with LECs and FRCs within the lymph node secreting the 

chemokine, assisting in directional migration across the lymph node. LECs lining the 

ceiling of the subcapsular sinus also express chemokine scavenger, ACKR4, also 

known as CCRL1, which mops-up CCL21 and establishes a chemokine gradient 

across the subcapsular sinus, in favour of lymph node entry66. CCRL1 knockout mice 

exhibit a significant reduction in the number of migratory CD103+ DCs in draining 

lymph nodes, showing its specific importance for migration of skin-derived DCs65. This 
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has been further reported to occur in the dermis, with dermal LECs expressing CCRL1, 

enabling the scavenging of CCL1965 and thus facilitating egress of dermal migratory 

dendritic cells from the skin, in a CCL19-dependent manner65; this further supports 

entry and transmigration into initial lymphatics. Recent work has also identified stromal 

marker, Podoplanin, as critical for dendritic cell mobility within lymph nodes, describing 

CLEC-2 ligand interaction to induce cytoskeletal rearrangements and promote 

crawling along reticular networks77. 

 

Lymphatics therefore, provide not only a means of maintaining interstitial homeostasis 

through tissue fluid drainage, but also act as a critical component of the immune 

system as conduits for antigen sampling and immune cell trafficking, via secretion of 

guidance cues and essential tethering molecule expression to facilitate transmigration. 

 

1.3. The role of lymphatics in inflammation 

 

1.3.1. Lymphangiogenesis in inflamed tissues  
 

Further to their role in immune cell trafficking, the role of lymphatics during 

inflammation has been an area of investigation. Lymphangiogenesis is considered to 

be a critical part of the initiation and resolution of inflammation, with the expansion of 

lymphatic networks at sites of inflammation and in draining lymph nodes 87,88,89. The 

VEGF family has been identified as dominant drivers, with VEGF-A/C/D all capable of 

inducing lymphangiogenesis through ligation of their cognate receptors, VEGFR-2/3, 

expressed on the surface of LECs90.  

 

Macrophages are a significant source of VEGF-C/D91,92 with reports of high expression 

by CD11b+ macrophages93 and M2 subtypes94. Macrophages have further been 

shown to act as direct lymphatic vessel precursors, with CD11b+ macrophages 

forming tube-like structures and expressing LYVE-1 and Podoplanin93. Macrophages 

also migrate to draining lymph nodes, whereby production of VEGF-A induces 

localised lymphangiogenesis95. Beyond the macrophage, neutrophils are implicated in 

lymphatic expansion, driving inflammatory lymphangiogenesis through production of 

active VEGF-A and VEGF-D in experimental models of inflammation96. In addition, 
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resident B-cell and FRC populations drive VEGF-A/C mediated lymphangiogenesis in 

lymph nodes97,98. Intrinsic NF-kappaB signalling has also been shown to up-regulate 

expression of VEGFR-3 on the surface of LECs, promoting lymphatic responsiveness 

to lymphangiogenic factors99.  

 

As well as growth factors, a number of cytokines have been reported as regulators of 

lymphangiogenesis during inflammation with TNF- found to drive vessel remodelling 

and lymphangiogenesis in vivo in M.pulmonis-infected mice269 and pro-inflammatory 

cytokine IL-33 found to promote proliferation, migration and tube formation in LECs in 

vitro268. Cytokines IL-4 and IL-13 has also been found to inhibit lymphatic vessel 

formation and down-regulate LEC-specific markers PROX-1 and LYVE-1 in ex-vivo 

and in-vitro experiments101.  

 

The precise function of lymphangiogenesis at the site of inflammation is considered 

primarily to be a homeostatic response that ensures drainage of excessive tissue fluid, 

which accumulates by enhanced blood vessel permeability. Indeed, in the case of 

lymphatic dysfunction, aberrant lymphatic vasculature is associated with tissue 

swelling and fluid accumulation, also known as lymphedema102,103. Its other defined 

role in inflammation is in immune modulation, as enhanced lymphatic drainage also 

increases the delivery rate of antigen and antigen-bearing DCs to draining lymph 

nodes. As previously described, exposure to antigen and antigen-bearing DCs is 

absolutely critical for the initiation of an immune response, hence expanded lymphatic 

networks facilitate this during inflammation. 

 

1.3.2. Lymphatics as innate responders to inflammatory stimuli  
 

As well as responding to inflammatory stimuli through lymphangiogenesis, LECs 

express a wide range of immune receptors that opens them up to further modulation 

by inflammatory cues. LECs express IFN-receptors, IFN-R1/2 and IFN-R1/2, 

allowing IFN to induce proliferation and up-regulation of a number of surface markers, 

namely E-selectin, ICAM-1 and MHC-II48,100. IFN- has been further shown to drive 

NOS2-dependent NO production and IDO expression in lymphatics104,100; further 

implications of this for the immune response are described later in this chapter. LECs 
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also express functional TLRs. In both murine and human LECs, TLR-1, 2, 3, 4, 5, 6 

and 9 allow LECs to respond to pathogen associated molecular patterns (PAMPs) and 

danger associated molecular patterns (DAMPs)105. TLR stimulation led to IL-1β, TNF-

α and IL-6 expression in primary dermal LECs in vitro, which was further accompanied 

by increased mRNA expression of VEGF-C and VCAM-1/ICAM-1. This suggests a 

TLR-mediated role in lymphangiogenesis and immune cell migration, through 

enhanced expression of cell adhesion molecules. Collectively this data indicates LECs 

as active responders during the inflammatory process, suggesting an important role 

in inflammatory regulation beyond cellular and fluid trafficking.  

 

1.3.3. Lymphatics as regulators of inflammation 
 

As described above, lymphatics expand during inflammation and express a repertoire 

of immune receptors that propose a more active role in the inflammatory process than 

originally thought. As well as responding to inflammatory cues, lymphatics also play 

an active role in orchestrating localised immunity. LECs have been shown to express 

a plethora of cytokines and other immune modulatory soluble factors, as reviewed 

in105. As well as a wealth of chemokines, expression of pro-inflammatory cytokines IL-

1ß and IL-6 have been reported in murine and human LECs cultured in vitro, with toll-

like receptor (TLR) ligation inducing expression106. IL-8 is also produced by 

lymphatics106, a cytokine known to promote neutrophil recruitment and activation. 

These findings support LECs as responders to pathogen-induced inflammation and 

promoters of immune cell recruitment capable of sustaining a pro-inflammatory 

cytokine milieu. However, lymphatics also produce the potent anti-inflammatory 

cytokine TGF-ß106,108,16, which may further act in an autocrine fashion to drive 

lymphangiogenesis 109 and adhesion to the extracellular matrix in low oxygen 

conditions110. Lymphatics also assist in maintenance of T-cells in lymph nodes through 

IL-7 production, which is required for survival of naïve and memory T-cells111 and is 

an important factor for lymphangiogenesis, as both LN and peripheral LECs respond 

to IL-7 in an autocrine fashion112.  

 

Moreover, LECs produce a number of other factors; with LEC/T-cell co-culture studies 

confirming IFN- inducible, NOS-dependent NO production and IDO expression104,100. 
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Both NO and IDO have immune regulatory properties with NO considered an anti-

inflammatory under steady state conditions and a mediator of inflammation in disease 

states113.  

 

Overall, these findings suggest a complex interaction between immune populations 

and LECs, emphasising lymphatics as active immune modulators in both healthy and 

inflamed tissues.  As we know the immune status of the tumour microenvironment is 

instrumental in defining tumour fate, investigation into the immune contributions of 

lymphatics both at the primary site and draining nodes may identify novel mechanisms 

for LEC-mediated immune modulation and tumour progression. 

 

1.3.4. LECs as amateur antigen presenting cells  
 

Further to their roles in mobilising and transporting immune cells in the lymph node to 

initiative immune responses, it is becoming clear that LECs have a much more 

complex role within the immune system.  It is emerging that LECs have tolerogenic 

properties, replicating the function of professional APCs such as dendritic cells, by 

directly presenting antigen to T-cells to drive T-cell deletion.   

 

The first to describe stromal cells as having the capacity to present peripheral antigen, 

found that within lymph nodes, professional DCs were not essential for inducing 

effector T-cell tolerance. Instead, lymph node stromal cells expressing peripheral 

tissue antigens (PTAs) could present to naïve CD8+ T-cells, leading to the elimination 

of antigen-specific self-reactive T-cells in vivo114. This occurred via MHC Class I, with 

some evidence indicating expression via MHC Class II also114. Of interest was the T-

cell specific nature of this mechanism, as stroma-mediated T-cell activation and 

deletion did not affect CD4 T-cells115. Of particular relevance to anti-tumour immunity, 

constitutively expressed melanocyte/melanoma tyrosinase antigen in peripheral and 

mesenteric lymph nodes, led to apoptosis of tyrosinase-specific T-cells. Similarly to 

other publications, DCs were not involved in tyrosinase-induced tolerance, suggesting 

another cell type with APC capacity116. Lymph node resident melanoblasts, which act 

as precursor cells for melanocytes, also drove antigen-specific CD8+ T-cell deletion, 

proposing a global phenomenon of induced tolerance to peripheral antigens governed 
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lymph nodes resident stromal cells117. Upon closer examination of the specific stromal 

cell responsible for T-cell deletion, antigen-specific in vivo models identified LECs as 

capable of direct antigen presentation. Self-antigens presented on MHC Class-I by 

LN-LECs led to subsequent deletion of self-reactive CD8+ T-cells118,119 identifying 

LECs as modulators of self-antigen driven tolerance.   

 

As lymph nodes are bathed in peripheral-derived exogenous antigen, more recent 

studies have explored the interaction between lymphatics and antigen that drains to 

the lymph node. In the context of viral challenge, one group demonstrated that injected 

fluorescently conjugated ovalbumin (OVA) drained to lymph nodes and co-localised 

with LYVE-1 positive regions120. Antigen persisted in the lymphatic compartment, thus 

the group proposed the phenomenon of antigen uptake, but also antigen “archiving” 

by LN-resident LECs. This process appeared dependent on T-cell expansion, however 

did not depend on an antigen-specific response, suggesting an intrinsic mechanism 

for lymphatic expansion during inflammatory responses120. In contrast, another study 

implied that LECs are unable to present antigen, instead archiving material to be 

passed on to dendritic cells that induce T-cell deletion121.  

 

These findings initiated a growing number of investigations into lymphatic antigen 

presentation capacity, where murine LECs were shown in vitro and in vivo to actively 

scavenge and present peripheral antigens in steady state conditions. Extending upon 

this foundational knowledge, the authors investigated mechanisms of antigen uptake 

and presentation in LN-LECs. Using a panel of inhibitors, in vitro uptake and 

presentation was shown to rely on clathrin- and caveolin-dependent pathways, with 

inhibition of late endosomal / lysosomal transition further affecting antigen 

presentation122. Following this through to T-cell priming, cross-presentation of antigen 

by MHC Class-I led to impaired activation of naïve CD8+ T-cells, through PD-L1 

engagement and concurrent increases in PD-1 expression, resulting in decreased 

IFN- and IL-2 production and early-apoptosis, suggesting an important role for PD-

L1 mediated lymphatic deletion of CD8+ T-cells119,122. In support, LN-LECs were found 

to induce CD8+ T-cell tolerance through complementary Lag-3 and PD-1 engagement, 

proposing lymphatics as capable of inducing both T-cell death and anergy121. 

Interestingly, PD-L1 expression was only detected on LN-LECs with no PD-L1 
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observed in peripheral LECs123, implying a site-specific function of LN-LECs in T-cell 

immunity.  

 

1.3.5. Antigen transfer between LECs and DCs 
 

Adding further complexity to the journey of draining antigen through the lymph node, 

an emerging feature of lymphatic biology is the capacity to transfer antigen to DCs. 

Two very recent studies demonstrate that LN-LECs in fact rely on antigen transfer to 

hematopoietic APCs for effective T-cell priming120, with migratory DCs specifically 

identified as the subset capable of doing this124. These studies propose an intriguing 

mechanism by which LN-LECs can indirectly induce T-cell deletion through antigen 

transfer to professional APCs, in the form of incoming, migratory DCs.  

 

1.4. The role of lymphatics in cancer 

 

1.4.1. Lymphangiogenesis in the tumour microenvironment  
 

Within the tumour microenvironment, a number of soluble and biophysical factors exist 

to drive lymphangiogenesis (Figure 1.5). In terms of biophysical factors, elevated 

intratumoural pressure and resultant increased interstitial flow is created by the ever-

expanding tumour bulk and is an observational hallmark of tumour progression. This 

increased flow, changes the tumour-associated stroma, and is sufficient to stimulate 

the lymphangiogenesis observed. However, as intratumoural pressure leads to the 

compression of weak-walled lymphatics and loss of function, most lymphangiogenesis 

in solid tumours is observed in the peritumoural regions125,126. Therefore, fluid is 

pushed towards the surrounding tumour-associated tissues, rich in lymphatics, where 

it can be drained126,127.  Vessels associated with tumours are either newly formed 

(lymphangiogenic) or re-modelled from pre-existing vessels. These vessels are 

frequently hyperplastic or functionally abnormal128,129 but can still drain interstitial fluid 

that leaves the tumour to draining lymph nodes125.  
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Figure 1.5. Mechanisms of lymphangiogenesis and metastasis in the tumour 
microenvironment. A number of mechanisms are involved in the process of lymphatic 
expansion and tumour metastasis in the tumour microenvironment. Vascular endothelial 
growth factor (VEGF) A, C and D have all been reported to drive lymphangiogenesis through 
ligation of receptors (VEGF-R2/3) on lymphatic endothelial cells comprising the lymphatic 
vessels. In addition to pro-angiogenic growth factors, a few immune-cell derived cytokines 
have been reported to modulate lymphangiogenesis. In addition to cytokines and growth 
factors, chemokines in the tumour microenvironment guide both immune trafficking and 
tumour metastasis, with both dendritic cells and metastatic tumour cells using lymphatic-
derived CCL21 as a guidance cue. Expression of CCR7 on the surface of dendritic cells and 
tumour cells facilitates this, with directional cues from interstitial flow further assisting in 
metastasis. As well as biochemical cues, biophysical cues modulate lymphatic function in the 
tumour microenvironment, with increased luminal flow regulating both production of CCL21 
and intravasation of migrating immune and metastatic cells. VEGF-C can also promote tumour 
cell metastasis by inducing CCL21 production.  
 

 

As well as a tissue fluid homeostatic response, lymphangiogenesis has been positively 

correlated with and causally associated with metastasis. Many tumours, including 

melanoma130,126,137, squamous cell carcinoma138,139, breast127, colorectal131 and non-

small lung cancer132, exploit the lymphatics to metastasize to lymph nodes. In fact, the 

density of lymphatic vessels is predictive of metastasis and was accurate in predicting 

metastasis in 90% of patients 126,133.  

 

To support the process of metastasis, tumour cells use biophysical and biochemical 

cues to enter lymphatic vessels. Tumour cells have been described to use an 
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autocrine chemokine-dependent mechanism to drive directional migration. Tumour 

cells bind self-secreted CCL21 ligand through CCR7 receptor, which paired with 

interstitial fluid movement, creates autocrine chemokine gradients directed specifically 

towards functional lymphatics, thus promoting lymphatic homing and dissemination 

(Figure 1.5). Self-secreted CCL21 and subsequent CCR7-dependent metastasis has 

been described in melanoma134 and breast cancer models135,136. In addition to the role 

of interstitial movement in creating chemokine gradients, the increased interstitial flow 

out of tumours can physically separate and ‘push’ loose tumour cells into associated 

lymphatics129.  

 

In addition to CCL21, other soluble cues contribute to tumour-associated 

lymphangiogenesis. Secretion of VEGF-C and VEGF-D by the tumour and 

subsequent ligation of VEGFR-3 on lymphatic vessels has been shown to drive 

lymphangiogenesis127,140 (Figure 1.5). As well as tumour-derived secretion, tumour-

associated macrophages (TAMs) also produce pro-lymphangiogenic VEGF-C and 

VEGF-D141, highlighting both tumoural and immune derived lymphangiogenic cues in 

the tumour microenvironment. Manipulating the VEGF signalling axis has been the 

focus of many developing targeted therapies, with VEGF-R targeting shown to block 

lymphangiogenesis145,146,90. However, little is still known of the role VEGF-C and 

VEGF-D play in lymph node lymphangiogenesis and how blockade affects lymphatic 

changes in tumour-draining lymph nodes.  

 

In addition to growth factors, hypoxia associated HIF-1, has been proposed to drive 

lymphangiogenesis, suggesting that the development of hypoxic regions in developing 

tumours, as well as canonical inflammatory factors control lymphangiogenesis142. 

Interestingly, as hypoxia and lymphangiogenesis are both associated with 

metastasis143,144, this association further implies that hypoxia may indirectly promote 

metastasis through expansion of the lymphatic network.  

 

There is now a significant body of evidence regarding the association between 

lymphangiogenesis and tumour progression at the primary tumour site, with the 

mechanistic work mentioned above mostly focusing on the interaction between tumour 

cells and the present lymphatic network. However how lymph node LECs respond to 
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factors derived from the tumour microenvironment beyond lymphatic growth, or indeed 

how such expansion in the tumour-draining lymph node aids metastasis and tumour 

progression remain to be elucidated. 

 

1.4.2 T-cell dysfunction in the tumour microenvironment  
 

Despite identifying novel roles for lymphatics in modulating the immune response in 

healthy and inflammatory states, the context in which lymphatics engage in immune 

responses within the tumour microenvironment is still relatively unclear. The following 

section aims to highlight key immune compartments that are dysfunctional in the 

tumour microenvironment and outline new avenues of research into the role of 

lymphatics in immune modulation in the tumour microenvironment.  

 

Immune dysfunction in the tumour microenvironment has predominantly focused on 

alterations at the primary tumour site itself, identifying dysfunction of T-cells and 

dendritic cells as two of the main features that promote tumour survival and 

progression. Analysis of solid tumours, both in in vivo models and clinically, 

demonstrate recruitment of both naïve T cells that expand in situ147 and activated 

effector CD8+ T-cells to the tumour and peritumoural stroma-rich regions148,149,150 

,151,152. Considering a number of tumour cell types express a plethora of antigens on 

their surface153, the assumption would be that infiltrating CD8+ T-cells could be 

intrinsically primed towards these antigens and hence should drive antigen-specific 

tumour clearance. Indeed, there is some evidence that CD8+ T-cell infiltrate is 

associated with stunted tumour progression and disease-free intervals154. However, 

more often, infiltrating CD8+ T-cells exhibit poor proliferative capacity and aberrant 

cytokine production155,156. In cancers such as melanoma, the underpinning reason for 

T-cell dysfunction predominantly lies in a number of suppressive processes in the 

tumour microenvironment. Despite infiltration of melanoma-antigen specific CD8+ T-

cells identified in the tumour157,158, high expression of programmed death-ligand 1 

(PD-L1), and other inhibitory molecules such as indoleamine-2,3-dioxygenase (IDO), 

have been shown to switch-off effector T-cell responses and induce T-cell 

anergy159,160,158. In addition, a feedback loop exists around CD8+ T-cell infiltrates and 

suppression, whereby CD8+ T-cells secrete IFN- which drives expression of PD-L1 
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and IDO on both surrounding stromal cells and tumour cells161,162-164, leading to further 

CD8+ T-cell suppression. Further to PD-L1 and IDO, molecules such as Lag-3165,166 

and CTLA-4167,168,169, a number of cytokines170,171,172 and the non-immune tumour 

stroma173, are directly involved in suppressing effector T-cell immunity in the tumour 

microenvironment.  

 

As well as suppression of infiltrating effector CD8a+ T-cells, the presence of regulatory 

T-cells (Tregs) has been well documented, with Tregs found in head & neck, 

colorectal, pancreatic, gastric and ovarian, as well as hepatocellular carcinoma. In 

particular, increased representation of FoxP3+ regulatory T-cells in the tumour 

microenvironment is a predictor for poor patient survival174, with this being 

predominantly due to their role in modulating effector T-cell function150. FoxP3+ Tregs 

exhibit a suppressive expression profile, secreting TGF-ß, IL-10, cyclooxygenase-2 

(COX-2) and prostaglandin E-2 (PGE-2) which dampen effector CD4+ and CD8+ T-

cell responses175, 176,177,178. Their suppressive role in the tumour microenvironment 

goes beyond secretion of inhibitory cytokines, with a number of other roles identified, 

such as T-cell cytotoxicity, induction of tolerogenic DCs and expression of a range of 

inhibitory receptors, as reviewed in179. Collectively, a complex system of T-cell 

suppression exists in the developing tumour microenvironment to maintain poor T-cell 

function, ultimately resulting in tumour cell survival and disease progression. The 

mechanism underpinning T-cell suppression remains the focus of much research, but 

little is known of the steps involved in establishing such a suppressive 

microenvironment in the early stages of tumour development. This thesis focuses at 

immune changes early in disease to better understand how the tumour 

microenvironment adapts to support the developing tumour.  

 

1.4.3 Dendritic cell dysfunction in the tumour microenvironment 
 

To better understand how T-cell immunity is altered in the tumour microenvironment, 

events preceding T-cell mediated immunity must be considered. T-cell priming and 

“education” occurs via antigen presenting DCs, with critical interactions between the 

two occurring downstream in draining lymph nodes, as previously described. In order 

to mount an appropriate immune response, DCs must be mature, activated, have the 
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capacity to process and present antigen, and express the appropriate co-stimulatory 

repertoire. They must also be able to traffic from the tumour where they acquired the 

antigen, to the lymph node, where they initiate an antigen-specific immune response 

through direct antigen presentation to naïve T-cells. Thus, DCs encounter a number 

of potential barriers before mounting an anti-tumoural response; perturbations to DC 

phenotype or trafficking behaviour can influence the priming and ultimate outcome of 

the immune response.  

 

Indeed, much research carried out in the past two decades has characterised the 

phenotype of DCs in the tumour microenvironment, with much of our understanding 

derived from complementary in vitro and in vivo mouse models. When assessing DC 

function, the most informative functional read-out reported is assessment of T-cell 

proliferation. DCs within the tumour microenvironment are widely described as poor 

inducers of T-cell proliferation, with two bodies of evidence describing impaired 

maturation and activation, and the development of a regulatory phenotype as the 

presiding causes.  

 

Evidence for impaired maturation demonstrates DCs in the tumour microenvironment 

express reduced levels of MHC-II and CD40, with low CD40 expression associated 

with tumour growth and high CD40 expression associated with T-cell induced tumour 

regression180,181,182. Reciprocal in vitro observations using human derived cells with 

low levels of maturation markers CD1a and CD83 confirmed that immature DCs 

resulted in poor stimulation of T-cell proliferation183. 

 

Reduced expression of essential co-stimulatory molecules CD80 and CD86, has also 

been reported in tumour associated DCs, showing that where levels of MHC-II are 

unchanged, the total percentage of CD80 and CD86 expressing tumour infiltrating 

DCs in vivo can be very low (<1%)184. Similar observations were made in vitro to derive 

the source of inhibition, with tumour-conditioned media from colorectal tumour cells 

shown to inhibit up-regulation of CD86 in the presence of LPS185. This demonstrates 

that even in the presence of pro-inflammatory stimuli DC maturation can be inhibited 

by tumour-derived factors. As CD80 and CD86 are critical for facilitating APC/T-cell 

interactions186,187, this data gives insight to the mechanisms underpinning DC 

suppression in the tumour microenvironment.  
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1.4.4 A novel role for lymphatics in immune modulation in the tumour 
microenvironment  
 

Peripheral and LN-resident LECs have been shown to modulate immunity in steady 

and inflamed stated, as described previously. However, very little is known of their role 

in modulating immunity in the tumour microenvironment. The role of lymphatics in 

melanoma in particular has been explored, with in vivo data demonstrating a capacity 

to antigen prime CD8+ T-cells in TDLNs and a critical role in regulating immune 

infiltrate at the primary tumour site. These studies were all conducted in VEGF-C over-

expressing B16-F10 tumours, which are highly lymphangiogenic. LN-LECs were found 

to present tumour-associated OVA on MHC Class-I to OVA-specific CD8+ T-cells, 

resulting in dysfunctional activation and apoptosis, as measured by IFN- production, 

proliferation and Annexin-V staining188. This was shortly followed by two studies 

exploring the role of peripheral lymphatics in tumour immune infiltrate. Using an in vivo 

model that lacks dermal lymphatic vessels, impaired dendritic cell migration, reduced 

immune infiltrate and altered tumour cytokine profiles were reported188. Upon 

assessment of human The Cancer Genome Atlas (TCGA) data, lymphangiogenesis 

correlated with T-cell markers, CD3e, CD4, CD8a and FoxP3 and myeloid markers, 

CD11b and F4/80, demonstrating the transferability of in vivo findings to clinical 

melanoma, and supporting the notion that lymphatics have an important role in tumour 

immunity188. Further investigation into the mechanisms underpinning this association, 

confirmed that lymphangiogenesis promoted immune cell infiltrate, determining 

VEGFR-3 and CCR7 to be critical mechanistic drivers189.  

 

Overall, these are some of the first studies to demonstrate the active role played by 

lymphatics modulating immunity in the tumour microenvironment. As the 

aforementioned studies have identified antigen uptake and presentation by TDLN-

resident LECs, it poses the question as to whether this is altered relative to resting 

lymph nodes and whether some of the complex mechanisms of antigen transfer also 

occur in TDLNs. It further alludes to the process of mounting an anti-tumour immune 

response as being multifaceted and incredibly complex. Hence more mechanistic 

insight is needed to precisely determine the role of lymphatics in immunity, especially 

at TDLNs where immune responses are initiated. As most of the evidence highlighted 
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above has explored lymphatics in the context of melanoma, this thesis will continue to 

look at the role of lymphatics in melanoma.   

 

1.5. Summary  
 

Most lymphatic research in the context of the tumour microenvironment remains at the 

correlative level – linking lymphatic presence with poor prognosis. More detailed 

mechanistic investigation into emerging roles of lymphatics in systemic biology has so 

far focused on the steady state or inflammation. There is hence a lack of knowledge 

of the role of lymphatics in the tumour microenvironment, with some understanding of 

how they promote tumour cell metastasis, but little in the way of other mechanistic 

contributions to tumour development and progression. Furthermore, with recent 

papers identifying roles in governing the immune infiltrate in primary tumours, T-cell 

priming in TDLNs and tumour responsiveness to immunotherapy, there is growing 

evidence to suggest lymphatics as key players in the anti-tumour immune response. 

This project centres on identifying lymphatic changes in early stages of tumour 

development with particular focus on alterations in TDLNs. We will also focus on 

whether tumour conditioning alters immune functionality of lymphatics in TDLNs and 

how these changes affect early anti-tumour immune responses.  
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1.6. Hypothesis and Aims  
 

Microarrays of lymphatics from normal tissue and primary tumours have identified 

tumour-specific transcriptional profiles pointing to functional changes in tumour-

associated LECs, but to date have not examined lymphatics in TDLNs, especially 

during early stages of tumour development.  

 

We hypothesise that lymphatics are differentially altered in early TDLNs due to 

conditioning from the early developing tumour. As lymph nodes are immune hubs, we 

hypothesise that tumour-conditioned lymphatics in TDLNs will exhibit altered 

functionality in favour of tolerance, ultimately laying down the foundations for a 

continued anti-tumoural immune response. Furthermore, as one of the main roles of 

lymphatic vessels is to assist in dendritic cell trafficking, we hypothesise the pro-

tolerogenic features of tumour-associated lymphatics, will influence dendritic cell-

mediate immunity.  

 

The goal of this PhD project is hence to define how lymphatics at the TDLN are altered 

by factors derived from the tumour microenvironment and how conditioned lymphatics 

contribute to immune dysfunction in the early stages of tumour development. 

 

We will address the following specific aims:  

 

1. Identify and characterise changes within the lymphatic compartment of 

TDLNs  

    a. Determine the extent of lymphatic expansion within tumour draining lymph 

nodes, using in vivo tumour models.  

    b. Determine lymphatic-specific transcriptional reprogramming using microarray of 

lymphatic compartments derived from TDLNs 

    c. Verify any transcriptional changes ex vivo 

 

2. Explore the functional impact of these changes on lymph node architecture 

and immune organisation 

    a. Determine whether lymphatic adaptation influences immune compartments  



45 

 

    b. Determine whether lymphatic adaptation influences behaviour of incoming 

tumour-derived dendritic cells   

 

3. Determine the functional consequences of these changes on immune 

priming and T-cell function  

a. Define changes in immune cell dynamics within TDLNs throughout tumour 

development  

b. Determine whether lymphatic adaptation effects T-cell priming  

c. Explore links between lymphatic adaptations and immune cell dynamics within 

TDLNs throughout tumour development 
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2. Methods 

 

2.1. Cell Culture  

 

2.1.1. Cells 
 

C57BL/6 murine primary dermal lymphatic endothelial cells (LECs) were purchased 

from CellBiologics® (Cat No: C57-6064L) and cultured in endothelial cell medium 

purchased from CellBiologics® (Cat No. M1168) supplemented with 10% Foetal Calf 

Serum (FCS), 1% L-Glutamine, 0.1% Hydrocortisone, 0.1% Heparin, 0.1% Endothelial 

Growth Factor (EGF), 0.1% Vascular Endothelial Growth Factor (VEGF), 0.1% 

Endothelial Cell Growth Supplement (ECGS) and 1% Antibiotic-Antimycotic Solution, 

purchased as a kit from CellBiologics® (Cat No. M1168-Kit). C57BL/6 murine 

melanoma cell line B16-F10 were purchased from ATCC® (Cat No. CRl-6475) and 

cultured in Dulbecco’s Modified Eagle Medium (DMEM) with glucose (4.5g/L), L-

glutamine (4mM) (Gibco, Cat No. 41966-029) supplemented with 10% FCS and 1% 

Penicillin Streptomycin (PS). Ex vivo splenocytes were cultured in Roswell Park 

Memorial Institute formulation 1640 (RPMI-1640) medium (Gibco, Cat No. 21875-

034), supplemented with 10% FCS, 1% PS and β-mercaptoethanol (15μM) (Sigma 

Aldrich). For all media, FCS and PS were supplied by in-house media facilities. 

 

2.1.2. Cell Passage  
 

B16-F10s were cultured in 75cm3 tissue culture flasks (Thermo Scientific) and LECs 

were cultured in collagen-coated 25cm3 tissue culture flasks (Thermo Scientific). 

Collagen coating solution was prepared using sterile nuclease-free water (Ambion), 

50μg/ml Rat-Tail Collagen Type 1 (Corning, Cat No. 354236) and 0.1% acetic acid 

(VWR International). Cells were cultured at 37°C with 5% CO2 and allowed to reach 

70-90% confluency before being passaged. Culture medium was removed by 

aspiration and discarded. Cells were washed with tissue culture phosphate buffered 

saline (TC-PBS) without Ca2+/Mg2+, followed by the addition of 0.25% trypsin for 5 

minutes. Once all cells were detached, full tissue culture media was added to flasks 

to neutralise the trypsin, and cell suspensions were retrieved. For B16F10s, cells were 



48 

 

counted and re-suspended at a 1:10 dilution, with approximately 1x106 resuspended 

in full tissue culture media and transferred to 75cm3 culture flasks. For LECs, cells 

were counted and re-suspended at a density of 500,000/flask in full endothelial cell 

media. Cells were then transferred to 25cm3 culture flasks, coated as described above. 

All cell counts were carried out using trypan blue exclusion, with LECs and primary 

immune cells counted manually with a haemocytometer and B16-F10s counted with 

the automated Countess® cell counter (Thermo Fisher Scientific Invitrogen). Trypsin 

and TC-PBS were supplied by in-house media facilities.  

 

2.1.3. Cryopreservation  
 

Cells were cryopreserved in freezing medium (90% FBS, 10% DMSO), aliquoted into 

2ml cryovials (Thermo Scientific), and transferred to a Nalgene® Mr. Frosty freezing 

container containing 100% isopropyl alcohol for optimal rate freezing. Cells were 

stored in liquid nitrogen at -80°C. Recovery of frozen cells was carried out by rapid 

thawing of frozen vials, followed by re-suspension in warm medium. Cells were 

transferred to respective culture flasks and incubated overnight at 37°C with 5% CO2. 

Following overnight incubation, media was exchanged.  

 

2.2. Isolation of primary murine cell populations  

 

2.2.1. Digestion of primary tissue  
 

To digest primary lymph nodes and spleens, samples were excised from mice, broken 

up using a 25 gauge (0.5mm x 25mm) needle and transferred to eppendorfs (lymph 

nodes) or 15ml falcon flasks (spleens). Samples were then incubated with 

Collagenase-A and Collagenase-D (Roche), prepared in basic RPMI at a 

concentration of 10mg/ml and used at a 1:10 dilution and DNase (Roche) prepared in 

deionised water at a concentration of 10mg/ml and used at a dilution of 1:25. Firstly, 

samples were incubated for 30 minutes at 37ºC, with Collagenase-A (1mg/ml) and 

DNase (0.4mg/ml) in a shaking heat block at 550rpm. Collagenase-D (1mg/ml) and 

DNase (0.4mg/ml) was then added to the pre-existing digestion mix of each sample 

and incubated for a further 30 minutes at 37ºC in a shaking heat block at 550rpm. 
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Digestion was deactivated using 50μl of 0.5M EDTA. Digested tissue was added to a 

70μm cell strainer (FisherBrand), remnant tissue manually crushed through with a 1ml 

syringe plunger (Soft-Ject) and the filter flushed with 2ml of PBS. Single cell 

suspensions were collected in a 50ml falcon flask, followed by centrifugation at 

1800rpm for 5 minutes. EDTA and PBS were supplied by in-house media facilities at 

MRC Cancer Unit, UK.  

 

2.2.2. MACS enrichment of CD11c dendritic cells  
 

For CD11c dendritic cell enrichment, spleens were digested as described above in 

Section 2.2.1. Single cell suspensions were then lysed with Red Blood Cell (RBC) lysis 

buffer at room temperature for 5 minutes. Lysis was deactivated by addition of 15ml 

of full RPMI and samples centrifuged at 1800rpm for 5 minutes. Splenocytes were 

then counted with a haemocytometer, using trypan blue exclusion and re-suspended 

in 400μl of MACS buffer and 100μl of CD11c Ultra-Pure MicroBeads (Miltenyi Biotec 

Cat No: 130-108-338), per 108 splenocytes and incubated on ice for 15 minutes. 

Following incubation, 30ml of MACS buffer was added and samples centrifuged at 

300g for 5 minutes. The cells were re-suspended in 1ml of MACS buffer and loaded 

onto a LS column (Miltenyi Biotec, Cat No: 130-042-041) that had been attached to a 

MidiMACSTM Separator on a MACS MultiStand (both from Miltenyi Biotec) and primed 

with 3ml MACS buffer. The column was then washed with 3ml of MACS buffer twice 

to remove unlabelled CD11c negative cells. Once all liquid had drained from the 

column, the column was removed from the separator, and labelled CD11c positive 

cells flushed out into a 15ml falcon flask using the provided plunger and 5ml of MACS 

buffer. Viable cells were counted with a haemocytometer using trypan blue exclusion, 

centrifuged at 300g for 5 minutes and re-suspended at the desired concentration for 

functional assays. Recipes for all buffers used here are listed in Table 2.9. Purity was 

confirmed using flow cytometry, with a yield of >70% purity.  

 

2.2.3. MACS Enrichment of OT-1 CD8a T-cells  
 

For CD8a T-cell enrichment, spleens from OT-1 mice spleens were digested as 

described above in Section 2.2.1. Single cell suspensions were then RBC lysed and 
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enriched using the CD8a+ T-cell isolation kit (Miltenyi Biotec, Cat No: 130-104-075). 

Splenocytes were re-suspended in 400μl of MACS buffer and 100μl of Biotin-Antibody 

Cocktail per 108 splenocytes and incubated on ice for 5 minutes. Following incubation, 

300μl of MACS buffer was added with 200μl of Anti-Biotin MicroBeads per 108 

splenocytes and incubated on ice for 10 minutes. The splenocytes were then loaded 

directly onto a LS column, prepared as previously described. The flow-through, 

containing unlabelled cells, representing CD8a+ T-cells was collected into a 15ml 

falcon flask and the column washed once with 3ml of MACS buffer to collect remnant 

unlabelled CD8a+ T-cells. Viable cells were counted with a haemocytometer using 

trypan blue exclusion and, centrifuged at 300g for 5 minutes and re-suspended at the 

desired concentration for functional assays.  

 

2.3. In vivo mouse studies  
 

2.3.1. In vivo mouse lines  
 

To determine the role of lymphatics in the tumour microenvironment, a number of in 

vivo mouse models were used, conducted under Home Office approved Personal 

Licence I1b141bfa, and Project Licences 80/2574 (2014-2017) and P88378375 (2017-

2018). For syngeneic tumours, immune competent male and female C57BL/6 mice 

aged 8-12 weeks were primarily used. C57BL/6JOlaHsd were sourced either from 

breeding stocks at the animal facility (MRC ARES, Cambridge, UK) or externally from 

Envigo, USA (www.envigo.com). To assess changes in the tumour microenvironment 

in the context of aberrant Podoplanin expression, PDPN-FL mice, generated by Dr. 

Dayong Guo258 and generously donated by Professor Bonewald from the University 

of Missouri-Kansas City (USA), were used. In addition, the transgenic mouse model, 

C57BL/6-Tg(CAG-EGFP)131Osb/LeySopJ, was purchased from The 

Jackson Laboratory (Stock No: 006567) and maintained for acquisition of 

EGFP fluorescent samples for in vitro studies. Genotyping of PDPN-FL and 

CAG.EGFP litters and subsequent breeding management was carried out personally 

and is described below.  

 
 

http://www.envigo.com/
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2.3.2. Genotyping of mouse lines 
 

In-house genotyping was carried out for CAG.EGFP and PDPN-FL mice using ear 

punch biopsies from mice. Biopsies were provided by the animal facility in 1.5ml 

eppendorfs, with each eppendorf containing a single mouse sample. To lyse cells and 

extract DNA, 40μl of 25mM NaOH was added to each eppendorf, and samples 

incubated at 95°C for 15 minutes on a heat-block. Samples were then removed and 

allowed to cool before adding 40μl of 40mM Tris-HCl (pH 7.5) to neutralise and stop 

lysis. At this stage, samples could be stored for a short time at 4°C until needed for 

PCR.  

 

For PCR, 2μl of solution from each sample was added to a mastermix, prepared as 

stated below (Table 2.1) using reagents purchased from (Thermo Scientific). PCR was 

conducted using the program stated below (Table 2.2) on a PTC-225 Thermal Cycler 

(MJ Research) and samples subsequently run on 1% (w/v) agarose gels prepared by 

diluting agarose (APExBio) in 1x TBE buffer supplemented with 1:10 ethidium bromide 

(Sigma Aldrich). Details of primers used can be found below in Table 2.3. All buffer 

recipes used here are listed in Table 2.9.  
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Components of PCR Mastermix Volume (µl) 

HF-Buffer (Green) 4.0 

10mM dNTPs 0.4 

10µM Transgene primers 2.0 

10µM Internal control primers 2.0 

Phusion Polymerase 0.2 

RNase-Free Water 9.4 

Genomic DNA from ear biospies 2.0 

Total 20.0 

Temperature (°C) Time No. Cycles 

98 30secs  

98 10secs 

30 60 30secs 

72 60secs 

72 10mins  

10 Forever  

Primer Primer Sequence 5’ à  3’ 

Podoplanin 

(gp38 mouse) 
Forward: TGCTCAGCGCCTTCCAACCT 

Podoplanin 

(gp38 mouse) 
Reverse: GCTCCCCAAAACCCAGAACA 

CAG.EGFP 

oIMR0872 
Forward: AAGTTCATCTGCACCACCG 

CAG.EGFP 

oIMR1416 
Reverse: TCCTTGAAGAAGATGGTGCG 

CAG.EGFP 

oIMR7338 
Forward: CTAGGCCACAGAATTGAAAGATCT 

CAG.EGFP 

oIMR7339 
Reverse: GTAGGTGGAAATTCTAGCATCATCC 

Table 2.1. PCR  mastermix components used for genotyping. 

Table 2.2. PCR program used for genotyping. 

Table 2.3. Primers used for genotyping of mouse lines. 
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For CAG.EGFP mice, transgene insertion could be detected by a band at 173 base 

pairs (bps), indicating expression of Green Fluorescent Protein (GFP). Internal 

controls were included in the PCR mastermix, with bands detected at 324bps (Figure 

2.1a). For PDPN-FL mice, the wild-type allele could be detected at 196bp and floxed 

allele at 296bps (Figure 2.1b). Hence, in homozygous mice, only a band at 296bps 

could be seen, whereas in heterozygous mice a double band could be detected at 

196bps and 296bps.  

 

 

Figure 2.1. Agarose gels for genotyping of mouse lines. Phenotype of PDPN-FL mice 
determined by bands at 196bps and 296bps (A). Phenotype of CAG.EGFP mice determined 
by presence (+) or absence (-) of the transgene band at 173bps. Internal control bands 
expected on all samples at 324bps (B). BPs, Basepairs.  
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2.3.3. Transplanted tumour generation in vivo  
 

B16-F10 melanoma cells were prepared following standard cell passage protocol 

(Section 2.1) and counted using trypan blue exclusion. For shoulder tumours, cells 

were prepared at a density of 2.5x105 cells in 50μl of sterile PBS and for ear tumours, 

prepared at a density of 1x105 in 50μl of sterile PBS. 

 

Prior to inoculation with tumour cells, mice were anaesthetised used either Isofluorane 

of injectable anaesthesia. Isofluorane was administered using an induction chamber 

in 100% oxygen at a flow rate of 2litres/min. Injectable anaesthesia was administered 

intraperitoneally using 150μl anaesthetic stock solution, comprising of ketamine 

(100mg/kg) and xylazine (10mg/kg), made up using 0.5ml (50mg) ketamine + 0.25ml 

(5mg) xylazine + 4.25ml 1x PBS. For shoulder tumours, mice were anaesthetised 

using isofluorane or injectable anaesthesia, shoulders shaved and tumour cells 

injected subcutaneously into each shoulder. For ear tumours, mice were 

anaesthetised via injectable anaesthesia and tumour cells injected subcutaneously on 

the dorsal side of each ear. After being inoculating with tumour cells, mice injected 

with anaesthesia were transferred to a Vetbed chamber for recovery.  

 

Mice bearing shoulder tumours were sacrificed at Day 4 and Day 11 post-inoculation 

and mice bearing ear tumours sacrificed 3-weeks post-inoculation. Throughout 

experiments, tumour growth was monitored by staff at the animal facility using calipers 

and sacrificed when a maximal tumour size of 12mm diameter was reached. Humane 

killing of mice was conducted using Schedule 1 methods, with exposure to carbon 

dioxide as the primary method and dislocation of the neck as the secondary method 

for confirmation of death. For mice bearing shoulder tumours, brachial tumour-draining 

lymph nodes (TDLNs) were harvested, with brachial non-draining lymph nodes 

(NDLNs) taken from non-tumour bearing control mice injected with PBS (Figure 2.2). 

For mice bearing ear tumours, cervical TDLNs were harvested, with cervical NDLNs 

taken from control mice injected with PBS. For all in vivo experiments, mice were age 

matched and assigned to control or tumour groups randomly, with animals only 

excluded in the event of poor health.  
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Figure 2.2. Schematic of in vivo B16-F10 mouse model. B16-F10 tumour cells injected 
subcutaneously on the shoulders. At early (Day 4) and late (Day 11) time-points, brachial 
TDLNs and respective control NDLNs were retrieved. 
 
 

2.3.4. Autochthonous tumour generation in vivo 
 

The most common point mutation in human melanoma is in the BRAF proto-oncogene, 

occurring in approximately 65% of individuals, resulting in constitutive expression of 

BrafV600E, a protein serine kinase that drives activation of the Braf-MEK-ERK pathway. 

Full malignancy in human melanoma is however only acquired through silencing of 

tumour suppressor genes, for which silencing of PTEN occurs in roughly 20% of Braf 

mutant melanomas. Dankort et al., (2009)268 hence developed the 

TyrCreERBrafCAPtenlox model of melanoma in order to establish a preclinical model that 

recapitulated human melanoma better than currently used murine models of 

melanoma. Authors developed this mouse model using TyrCreERBrafCA mice 

expressing conditional PTEN alleles flanked by loxP sites. This allowed for tamoxifen-

inducible Cre-mediated conversion of BrafCA to BrafV600E alongside deletion of exons 

4 and 5 of Pten, specifically in melanocytes with conditionally active Cre recombinase.  

 

Authors reported topical or systemic administration of tamoxifen (4-HT) led to the 

appearance of a range of lesions and tumours, accompanied with reliable lymph node 

metastasis. In our hands, we find topical administration directly to the skin, induces 

pigmentation as early as 14days with tumours developing from 21days post-induction. 

Mostly these tumours are amelanotic, with black pigmentation on the external facing 

surface of the tumour in small regions; which authors did not report (Figure 2.3a). Mice 

induced with 4-HT also exhibited pigmentation on the tail and in non-induced mice 
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report the development of spontaneous tumours (Figure 2.3a,b). In line with Dankort 

and colleagues267, we observe reliable lymph node drainage and metastasis. 

 

The TyrCreERBrafCAPtenlox mouse model was used to observe lymphangiogenesis in 

ear tumours, whereby mice were anaesthetised by i.p using injectable anaesthesia, 

as described in 2.3.3, and 4-HT applied to the ear skin (2µl, 5mM) using a pipette. This 

step was then repeated daily for 4-days. After Cre activation, mice were checked 

regularly and pigmented lesion development observed (Figure 2.3c). Malignant 

melanomas develop between 4-7 weeks and once reached a diameter of 5mm on the 

ear, mice culled using Schedule 1 methods.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.3. Amelanotic tumours and pigmentation in BrafV600E/Pten mice. The 
TyrCreERBrafCAPtenlox mouse model was used to observe lymphangiogenesis in ear tumours. 
In some instances, TyrCreERBrafCAPtenlox mouse developed spontaneous amelanotic tumours 
(outlined region) with small black pigmentations (A, white arrow head). Mice with both 
spontaneous and tamoxifen (4-HT) induced tumours had black pigmentation visible on the tail 
(B, black arrow heads). For experimental purposes, mice without spontaneous tumours were 
anaesthetised by i.p using injectable anaesthesia and 4-HT applied to the ear skin (2µl, 5mM). 
In mice lacking the Cre (non-carriers), ears treated with 4-HT (induced) were free of 
pigmentation and melanoma lesions (C, left panel). In mice carrying the Cre (carriers, 
malignant melanomas developed over 4-7 weeks, with extensive coverage found on the dorsal 
side of the ear (C, right panel, arrows). Shown are ears split into the dorsal (left) and ventral 
(right) sides (C). 

 

A B

C Induced non-carrier ear Induced carrier ear

Amelanotic spontaneous tumour Pigmented tail
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2.3.5. Tracking dendritic cell migration in vivo 
 

To assess localization within lymph nodes of tumour-derived migratory DCs, C57BL/6 

wild type and PDPN-FL mice were inoculated with B16F10 tumours and painted with 

fluorescent tetramethylrhodamine isothiocyanate (TRITC) (Sigma Aldrich, Cat No: 

87918). TRITC was prepared in a 1ml solution of acetone (Fisher Chemical) and skin-

sensitising agent, dibutyl phthalate (Sigma Aldrich) at a ratio of 1:1 to enable transit of 

TRITC across the epithelial barrier. For application of TRITC, mice were anaesthetised 

under isofluorane and 10μl of TRITC pipetted on to the tumour injection site. Control 

non-tumour bearing mice were shaved and then painted with TRITC. Mice were culled 

18 hours after application to skin to ensure the skin absorbed TRITC, and to allow 

TRITC+ cells from the periphery to migrate to draining brachial lymph nodes (Figure 

2.4). Mice were culled in accordance with Schedule 1 methods described previously 

in Section 2.3 and brachial lymph nodes taken for histology or flow cytometry. 

 
 
Figure 2.4. In vivo model of tracking tumour-derived dendritic cells. Day4 tumours are 
painted with TRITC to allow for non-invasive labelling of migratory dendritic cells. TDLNs and 
control NDLNs are retrieved 18 hours after painting.   

 

2.3.6. Blocking Podoplanin in vivo  
 

To assess migration of tumour-derived DCs in the context of perturbed interactions 

with Podoplanin, C57BL/6 wild type mice were inoculated with B16F10 tumours as 

previously described. To block Podoplanin, azide-free purified monoclonal Syrian 

Hamster 8.1.1 antibody against Podoplanin (BioXCell, Cat No. BE0236) was used. 

After a 24-hour period to allow injected tumour cells to settle, blocking antibody or 

control LEAFTM Syrian Hamster IgG Isotype control antibody (Biolegend, Cat No. 

402014) were injected daily at a concentration of 1mg/ml in 50μl of sterile PBS. 
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Injections were made subcutaneously into the fore legs to ensure maximal drainage 

to brachial lymph nodes. In conjunction, we used the TRITC model (Section 2.3) to 

track tumour-derived migratory DCs in draining lymph nodes in the context of 

Podoplanin blockade. The antibodies and concentrations used in these experiments 

are identical to those used in a study conducted by Astarita et al., (2015), which 

assessed in vivo the role of the Podoplanin-CLEC2 axis in DC migration along FRC 

conduits in lymph nodes236.  

 

2.4. RNA Isolation, Amplification and Quantification 
 

2.4.1. RNA isolation of primary lymph node cells  
 

For isolation of primary lymph node-derived LECs and migratory dendritic cells, lymph 

nodes were digested in accordance to Section 2.2 and single cell suspensions 

processed for FACS as described in Section 2.8. Specific antibody protocols are 

stated in relevant chapters and details listed in Table 2.11. Populations of interest were 

then sorted from total stained single cell suspensions, using an InfluxTM Cell Sorter 

(BD Biosciences). Populations of interest were sorted directly into 350μl of RLT, RNA 

lysis buffer, vortexed and snap frozen on dry ice, before transfer to -80°C until needed 

for RNA isolation.  

 

For RNA extraction the RNeasy Micro Kit (Qiagen, Cat No. 74004) was used. Samples 

stored at -80°C in RLT buffer were thawed and vortexed before proceeding with the 

RNA isolation protocol. Firstly, ethanol (VWR International) was diluted in nuclease-

free water (Ambion) to working solutions of 70% and 80%. Equal volumes of 70% 

ethanol were added to homogenised cells in RLT buffer (350μl RLT to 350μl Ethanol). 

Samples were then transferred to RNAeasy MiniElute spin columns (Qiagen) in 2ml 

collection tubes. Samples were centrifuged at 15 seconds at 10,000rpm and the flow-

through discarded. To eliminate contaminating DNA, a solution of 10μl DNase-I in 70μl 

of RDD buffer (Qiagen) was added to each column membrane and incubated at room 

temperature for 20 minutes. If multiple samples were being processed for RNA 

extraction, a stock solution of DNase-I in RDD buffer was prepared. Columns were 

then washed with 350μl RW1 buffer and centrifuged for 15 seconds at 10,000rpm. The 
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flow-through was discarded and followed by two washes with 500μl RPE buffer. 

Columns were centrifuged for 15 seconds at 10,000rpm, the flow-through discarded 

and 500μl 80% ethanol added to each column. Columns were centrifuged for 2 

minutes at 10,000rpm and the flow-through and collection tube discarded. Columns 

were placed in new collection tubes and centrifuged with open lids for 5 minutes at 

10,000rpm to dry the membrane. The flow-through and collection tube was discarded 

and columns placed in 1.5ml nuclease-free eppendorfs.  To elute RNA from the 

columns, 14μl of nuclease-free water was added directly to each column and left on 

the bench for 5 minutes to allow full absorption of water. Columns were finally 

centrifuged for 2 minutes at 10,000rpm and elute the RNA. Eppendorfs were then 

stored at -80°C until needed for quantification. RNA quantification was conducted 

using the Eukaryote Agilent RNA 6000 Pico Kit (Agilent Technologies Cat No. 5067-

1513) and 2100 Bioanalyser Instrument (Agilent Technologies).  

 

2.4.2. Amplification and quantification of cDNA for primary LECs 
 

For amplification of lymph node-derived LECs, RNA samples were processed for 

whole transcriptome amplification using the Ovation® PicoSL WTA System V2 kit 

(NuGEN, Cat No. 3302). Based on their eukaryotic total RNA integrity number (RIN), 

which is based on a scale of 1 to 10, with 1 being highly degraded RNA and 10 being 

most intact; samples were chosen with a RIN value above 8 and a total concentration 

of 100pg/μl. This amplification process then involves a multi-step process of cDNA 

synthesis, purification and amplification. cDNA synthesis was conducted using thermal 

cycling programmes.  

 

Firstly, cDNA synthesis was carried out using 2μl of First Strand Primer Mix and 500pg 

of RNA sample. Samples were then incubated at 65°C for 2 minutes in 0.5ml tubes in 

a thermal cycler. Samples were then removed and placed on ice and 3μl of mastermix 

added to each sample. This mastermix was prepared using 2.5μl of First Strand Buffer 

mix and 0.5μl of First Strand Enzyme Mix, with a stock mastermix made-up for multiple 

samples. Samples were then incubated in accordance to the First Strand cDNA 

Synthesis program outlined in Table 2.4.  
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For Second Strand cDNA Synthesis, a mastermix of Second Strand Buffer Mix (9.7μl) 

and Second Strand Enzyme Mix (0.3μl) was prepared per sample, with a stock 

mastermix made-up for multiple samples. For each sample, 10μl was added and tubes 

were incubated in a pre-cooled thermal cycler using the Second Strand cDNA 

Synthesis program outlined in Table 2.4. At this stage, samples were directly 

processed for cDNA purification.  

 

Purification was conducted using Agencourt RNAClean XP beats (provided with the 

kit), which bind cDNA and use magnetism and ethanol washes to purify the cDNA. 

Firstly, beads were allowed to reach room temperature and mixed to ensure beads 

were fully resuspended. Secondly, to each sample, 32μl of beads were added, the 

PCR tubes transferred to the magnet stand and the samples left to stand on the 

magnet for 5 minutes until the solution appeared clear. Whilst keeping the tubes on 

the magnet, 45μl of sample solution was removed and 200μl of freshly prepared 

RNase-free 70% ethanol added. Finally, samples were again left to stand on the 

magnet for a further 30 seconds, the ethanol removed, and an additional two washes 

with ethanol performed. On the last wash, as much ethanol as possible was removed 

and the samples allowed to air dry for 20 minutes.  

 

Samples were then processed immediately for amplification, with a mastermix added 

to each sample. The amplification mastermix is composed of 20μl SPIATM Buffer Mix, 

10μl SPIATM Primer Mix and 10μl SPIATM Enzyme Mix, with a stock mastermix made-

up for multiple samples. Samples were then placed in a pre-cooled thermal cycler and 

incubated in accordance to the SPIA Amplification program outlined in Table 2.4. Once 

the cycling program is complete, carefully remove all of the cleared supernatant, 

transfer to a new PCR tube and store at -20°C; this is the amplified cDNA. The 

remaining beads can then be discarded. When removing samples from storage for 

quantification, amplified cDNA samples were thawed and 1.0μl used for quantification 

with the Nanodrop 1000 (Thermo Scientific). 
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2.5. Microarray Hybridisation and Data Normalisation 

 

To determine transcriptional changes in LECs derived from NDLNs and TDLNs, RNA 

was extracted from FACS sorted LN-derived LECs (Section 2.8). NDLNs and TDLNs 

were retrieved from tumour bearing and non-tumour bearing mice and RNA isolated 

as outlined previously (Section 2.4). Samples with a RIN value above 7 were then 

processed for microarray analysis. Microarray experiments were performed externally 

at Cambridge Genomic Services, University of Cambridge using the Mouse WG-6 v2.0 

Expression BeadChip Kit (Illumina, Cat No. BD-201). Across conditions, LECs isolated 

from four brachial lymph nodes, derived from two mice were pooled to create a single 

sample, as shown in Figure 2.5. This was then repeated to provide triplicate samples, 

with a total of n=6 mice used per time-point. 

 
 
 
 

Program Temperature Time 

First Strand cDNA Synthesis 4°C 
25°C 
42°C 

70°C 
4°C 

2 mins 
30 mins 
15 mins 

15 mins 
HOLD 

Second Strand cDNA Synthesis 4°C 
25°C 
50°C 

80°C 
4°C 

 

1 min 
10 mins 
30 mins 

20 mins 
HOLD 

SPIA Amplification 4°C 
47°C 
95°C 

4°C 

1 min 
75 mins 
5 mins 

HOLD 

Table 2.4. PCR programs for amplification 
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Figure 2.5. Schematic of experimental murine set-up for microarray samples. Isolated 
RNA from NDLN and TDLN LECs was derived from n=6 mice per condition, across triplicates. 
This was conducted across one independent experiment. LHS, Left-hand side; RHS, Right-
hand side.  
  
 
 

2.6. Quantitative real-time polymerase chain reaction (qRT-PCR) 
 

Quantitative Real-Time PCR (qRT-PCR) was conducted using TaqManTM Gene 

Expression FAM-dye assays for targets of interest, CDH5 (Probe ID: 

Mm00486938_m1), JAM3 (Probe ID: Mm00499214_m1), and CLDN11 (Probe ID: 

Mm00500915_m1) (Life Technologies, UK). Each PCR mix was prepared with 5.5μl 

mastermix per sample, prepared using 0.5μl TaqManTM Assay and 5μl diluted cDNA 
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Pool LHS and RHS TDLNs 
 

Isolate LECs using FACS 

Mouse #2 

Sample 1 for Microarray Analysis 

Tumour  
RHS 

Tumour  
LHS 

Mouse #1 



63 

 

(2μg/μl), with a stock mastermix made-up for multiple samples. Samples were 

incubated on a thermal cycler (ABI) for a standard 2hrs comparative program, as 

outlined in Table 2.5. The software q-base (https://www.qbaseplus.com) was used to 

calculate change in Ct values (CT), using the housekeeping gene GAPDH (Probe 

ID: Mm99999915_g1) and Control NDLNs as endogenous controls. Relative fold 

changes were then calculated using the formula, 2-Ct. 

 

 

 

 

 

 

 

 

 

2.7. Dendritic Cell and Antigen Presenting Cell PCR Array 

 

2.7.1. Dendritic cell isolation and RNA purification  
 

In order to assess functional changes in migratory dendritic cells from early TDLNs, 

lymph nodes were taken from TRITC painted control mice and tumour-bearing mice 

at Day 4 and Day 11 post-inoculation. RNA from TRITC+ migratory dendritic cells was 

extracted as described in Section 2.4.  

 

2.7.2. cDNA Amplification  
 

Due to low levels of RNA per sample, the amplification RT2 PreAMP cDNA Synthesis 

Kit (Qiagen, Cat. No. 330451) was used. Samples with a RIN value above 8.0 were 

selected, with 1ng of RNA used per sample. This kit utilises PCR to pre-amplify gene-

specific cDNA, using specific primer mixes. As these samples were needed for the 

Mouse Dendritic and Antigen Presenting Cell RT2 Profiler PCR Array (Qiagen, Cat. 

Cycles Temperature  
Time 

1 2 mins  
50°C 

1 15 mins  
95°C 

40 15 secs, 95°C 
1 min, 60°C 

Table 2.5. qRT-PCR program for ABI StepOnePlusTM Cycler 

https://www.qbaseplus.com/
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No. PAMM-406Z), the specific primer mix for this array was used - Mouse Dendritic 

and Antigen Presenting Cell (Qiagen, Cat No. RT2-PBM-406Z).  

 

The protocol first involves first genomic DNA elimination, conducted by mixing RNA 

samples (1ng) with Buffer GE (2μl) in RNase-free water to a total volume of 10μl and 

incubating at 42°C for 5 minutes in a thermal cycler. This is followed by first strand 

cDNA synthesis using a reverse transcription mix in accordance with volumes stated 

in Table 2.6. The reverse transcription mix (10μl) is added to the genomic DNA 

elimination mix (10μl) from the previous step, followed by initial incubation at 42°C for 

30 minutes then 95°C for 5 minutes in a thermal cycler. Samples were then stored 

overnight at -20°C.  

 

  
 

 

 

 

 

 

 

 

 

 

After first strand cDNA synthesis, primer specific amplification was conducted by 

incubating 5μl of first strand cDNA samples with 20μl of mastermix composed of PCR 

mastermix (12.5μl) and primer mix (7.5μl). Samples were then amplified in a thermal 

cycler, in accordance with the program stated in Table 2.7. Post-amplification, 

samples were placed on ice and residual primers eliminated by the addition of 2μl (per 

sample) of Side Reaction Reducer. Finally, samples were incubated at 37°C for 15 

minutes, followed by heat inactivation at 95°C for 5 minutes in a thermal cycler. 

Nuclease-free water (84μl) was then added to each sample immediately after. 

Samples were then stored overnight at -20°C until needed for qRT-PCR. All incubation 

and cycler programs were conducted in a Tetrad PTC-225 Thermal Cycler (MJ 

Research). 

Reagent Volume per Sample 

5x Buffer BC3 4µl 

Control P2 1µl 

cDNA Synthesis Enzyme Mix 1µl 

RNase Inhibitor  3µl 

Total  10µl 

Table 2.6. Reverse transcription mix for First Strand cDNA Synthesis 

for PCR Profiler Arrays 
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2.7.3. qRT-PCR for RT2 Profiler PCR Array  
 

As previously stated, the Mouse Dendritic and Antigen Presenting Cell RT2 Profiler 

PCR Array was used to assess changes in functionality in early and late TDLN-derived 

migratory dendritic cells, relative to control NDLNs. Amplified cDNA (102μl) was added 

to RT2 SYBR Green Rox qPCR Mastermix (1350μl) (Qiagen, Cat. No. 330520), 

prepared in RNase free water (1248μl) and aliquoted into RT2 Profiler PCR Array 96-

well plates (Figure 2.6), with 25μl pipetted into each well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. 96-well plate format for PCR Profiler Arrays. 

 

 

Cycles Temperature  
Time 

1 10 mins  
95°C 

12 15 secs, 95°C 
2 mins, 65°C 

Table 2.7. Amplification PCR program for PCR Profiler Arrays 
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As per schematic in Figure 2.5, each well contains specific primers, with A1 – G12 

containing Dendritic and APC target genes. Housekeeping genes Actnb, B2m, Gapdh, 

Gusb and Hsp90ab1, are contained in wells H1 – H5, with H6 – 12 containing controls 

to assess Genomic DNA contamination, Reverse Transcription efficiency and PCR 

reproducibility. Plates were cycled in a real-time StepOnePlusTM cycler (Applied 

Biosystems) according to the PCR program outlined in Table 2.8.  

 

 

 

 

 

 
 

 

 

2.7.4. Data Analysis and Quality Control 
 

Prior to data export, the CT threshold was set across samples in accordance with 

SHAM control NDLNs. For these samples, a CT threshold of 0.107 was used across 

samples. Data was exported in Excel and formatted as suggested by the 

manufacturer’s guidelines. For data analysis and quality control, the resource from 

Qiagen – Sample Insight, was used. Sample management, data quality control and 

calculation of fold change values were all conducted online by automated analysis. 

Any samples that failed to meet criteria for PCR reproducibility, Reverse Transcription 

efficiency and Genomic DNA contamination were excluded from the analysis. If 

Average PPC CT was 19±3 and if no two arrays had an Average PPC CT >2 away from 

each other within groups, the PCR was considered reproducible and passed criteria. 

If Delta CT (Average RTC – Average PPC) was ≤7 then the reverse transcription 

efficiency passed criteria. If CT (GDC) ≥ 30, then samples were considered to have no 

genomic DNA contamination. For normalisation, reference genes from the whole plate 

were selected, as inconsistencies in classic housekeeping genes were found. The 

following genes were hence used as normalisation genes Tgfb1, Fas, Ccl5, Itgam and 

Thbs. Data analysis was then carried out automatically online; with fold change data 

Cycles Temperature  
Time 

1 10 mins  
95°C 

40 15 secs, 95°C 
1 min, 60°C 

Table 2.8. qRT-PCR program for ABI StepOnePlusTM Cycler  

for PCR Profiler Arrays 
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exported and plotted using heatmap visualisation. As there were n=2 samples per 

group, p-values could not be calculated by automated analyses. Heatmap 

visualisation hence represents fold changes in gene targets, independent of statistical 

significance.  

 

2.8. Flow Cytometry analysis of primary and cell line populations  

 

2.8.1 Preparation of ex vivo samples for flow cytometry  
 

Prepared single cell suspensions were first transferred into 96-round bottom plates 

(Corning) and centrifuged for 1 minute at 2000rpm. Cells were then stained with 

conjugated antibodies against targets of interest, in FACS buffer for 30 minutes at 4°C. 

Where biotin primary antibodies were used, samples were incubated with appropriate 

conjugated streptavidin antibodies in FACS buffer for an additional 20 minutes at 4°C 

following removal of primary antibodies. To ensure non-specific binding of antibodies, 

BSA was added as a component of FACS buffer, prepared according to Table 2.9. 

Non-specific binding was not conducted using incubation steps with Fc receptor 

blocking antibodies. Specific antibody protocols are stated in relevant chapters and 

details listed in Table 2.10. Finally, samples were washed with PBS and transferred 

into round-bottom polystyrene tubes (Corning) for flow cytometry. Recipes for all 

buffers used here are listed in Table 2.10.  

 

2.8.2 Preparation of cultured cells for flow cytometry  
 

Following culture or functional assays with adherent cells, media was removed and 

cells were washed with PBS. Staining with fluorophore-conjugated antibodies in FACS 

buffer was conducted in-plate for 20 minutes at 4°C. For non-adherent cells, 

suspensions were transferred from culture plates directly into 96-well round bottom 

plates, centrifuged for 1 minute at 2000rpm and incubated with fluorophore-conjugated 

antibodies in FACS buffer for 20 minutes at 4°C. Where biotin primary antibodies were 

used, samples were incubated with appropriate fluorophore-conjugated streptavidin 

antibodies, in FACS buffer for an additional 20 minutes at 4°C. Specific antibody 

protocols are stated in relevant chapters and details listed in Table 2.10. For adherent 
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cells, wells were washed with PBS and detachment using Accutase® Cell Detachment 

Solution (Biolegend). Once stained, samples were transferred into polystyrene tubes 

for flow cytometry. Where stated, samples were stained with LIVE/DEADTM Fixable 

Dead Cell Stain (Thermo Fisher Scientific, Cat No. L34955). This cell stain was 

prepared in 50μl of DMSO for a 1000x stock solution and was used to stain cells for 

10mins at 4°C, prior to primary and secondary staining steps. Recipes for all buffers 

used here are listed in Table 2.10.  

 

2.8.3. Flow cytometry data acquisition and analysis 
 

Following cell staining, in accordance to the above protocols described, samples were 

run on a LSR BD FortessaTM (BD Biosciences), supported by BD FACSDIVATM 

software package (BD Biosciences). As multi-parameter staining was performed, 

single stained anti-rat/hamster compensation beads (BD Biosciences, Cat No. 51-90-

9000949) and unstained controls were run to determine signal overlap between 

fluorophores. Laser settings were altered to ensure fluorescent signal was below <102 

in unstained controls for each fluorophore, and that fluorescent signal between any 

two fluorophores had a minimum of 101 difference. Once parameters were finalised, 

compensation was calculated automatically by BD FACSDIVATM software, with <10% 

spectral overlap across fluorophores. Subsequent data analysis was carried out offline 

using the software application FlowJo® (https://www.flowjo.com).  

 

2.9. Immunofluorescent Imaging (IF) 
 

2.9.1. Immunofluorescent staining of sectioned tissue 
 

Freshly isolated ears, lymph nodes and tumours were retrieved from culled mice and 

placed in cryo-moulds with Optimal Cutting Temperature Compound (OCT) (VWR 

International), ensuring correct tissue orientation using tweezers. OCT was then 

added to the cryomold to fully cover the tissue sample and snap frozen on dry ice. 

Samples were stored at -80oC until needed for sectioning. For sectioning, samples 

were transferred to -20oC for 24 hours prior to sectioning using a cryostat and 

https://www.flowjo.com/
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sectioned to a width of 10μm. Slides were stored in slide boxes at -80oC, until required 

for staining.  

 

Prior to immunofluorescent staining, sections were left to dry at room temperature for 

approximately 3 hours. Sections were then fixed in an ice-cold solution of acetone 

(Fisher Chemicals) and methanol (Fisher Chemicals) at a 1:1 ratio, for 2mins and 

washed (x1) with PBS. As there were multiple sections per slide, individual samples 

were isolated using a hydrophobic pen before non-immune blocking steps were 

performed in PBS supplemented with 2% BSA (Fisher Scientific) and 10% chicken 

serum (Alpha Diagnostics International, Cat No. NCHS-500) at room temperature for 

1 hour. Sections were then incubated with primary antibodies using 75μl per section 

overnight at 4oC. Primary antibodies were removed by washing (x3, 15 minutes per 

wash) in PBS supplemented with 0.1% Tween (PBS-Tween) (NBS Biologics), followed 

by staining with appropriate conjugated secondary antibodies at room temperature for 

1 hour. After slides had been washed (x3, 15 minutes per wash) in PBS-Tween, and 

where stated, nuclei counterstained with DAPI (1:10,000) (Biotium), slides were 

mounted with 22x50mm glass coverslips and SlowFade® Gold Antifade Mountant 

(Life Technologies, Cat No. S36936). Specific antibody protocols are stated in relevant 

chapters and details listed in Table 2.11.   

 

2.9.2 Dermal sheet preparation of murine ears  
 

The use of lymphatic-rich whole mouse ears for either immunofluorescent imaging or 

in vitro assays is well documented273,274. To prepare dermal sheets for these 

techniques whole mouse ears were removed by excision at the base of the ear, using 

scissors. If needed for immunofluorescent wholemount imaging, ears were placed 

whole in bijous with 4% paraformaldehyde (PFA) prepared in distilled water. After 

fixation, ear sheets were separated using tweezers, into dorsal and ventral sides, and 

placed directly into 48-well plates (Figure 2.7). The ventral sheet is the most optimal 

for immunofluorescent imaging as it is cartilage-free, yielding clearer images with 

better imaging depth. If needed for in vitro assays, ears were immediately split without 

fixation and processed in accordance to Section 2.10.   
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Figure 2.7. Dermal sheet preparation from whole ears derived from C57BL/6 mice. 
Visualisation of the steps involved in ear sheet preparation for in vitro assays. Whole ears are 
excised using scissors from culled mice (A). Using fine dissecting tweezers the dorsal and 
ventral sides of the ear are removed, by anchoring one side of the ear to a petri dish with a 
set of tweezers, and gently pulling the other side with the other set of tweezers (B,C). The 
thinnest layer of two ear sheets is the most optimal, due to cartilage-free properties, which 
allow for better visualisation during microscopy (D). Ear sheets are placed dermis side up in 
48-well plates with full RPMI (E). Adapted from Weber et al., Methods Mol Biol (2013)273.   

 

2.9.3 Immunofluorescent staining of ear wholemounts 
 

Fixed ears in 48-plates were placed in 250μl of PBS supplemented with 0.2% Triton-

X (Sigma Aldrich), for 5 hours to permeabilise the tissue. Ears were then washed with 

PBS and incubated with primary antibodies for 48 hours at 4°C. Ears were then 

washed with PBS-Tween for 1 hour and incubated with conjugated secondary 

antibodies for 24 hours at 4°C, followed by further washing with PBS-Tween. Ears 

were mounted on a glass bottom petri dish (Mat Tek Coorporation) with SlowFade® 

Gold Anti-fade Mountant and sealed with 12mm circular glass coverslips. Specific 

antibody protocols are stated in relevant chapters and details listed in Table 2.11.   

 

For enhanced visualisation of ears, RapiClear®, from the SunJin Lab, was used (Cat 

No. RC152001). RapiClear® is a water-soluble clearing reagent, used to improve 

optics of biological sample characteristics (1-5mm penetrance). In this instance, 
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clearing of the ear is helpful to better visualize lymphatic vasculature and immune cell 

localisation relative to such vasculature. RapiClear®1.52, which has a refractive index 

similar to immersion oil and coverslips, of 1.52nD, is advised for use with tissues 

>0.5mm in thickness. Post-immunofluorescent staining, each ear half were placed in 

350μl of RapiClear®1.52 solution in 48-well plates for >6 hours at room temperature 

or overnight at 4°C. This is akin to a mounting step, so anti-fade was not used in 

conjunction with this protocol.   

 

2.9.4. Immunofluorescent staining of cultured cells 
 

To assess characterise LECs cultured in vitro, cells were cultured on collagen-coated 

12mm circular glass coverslips in 24-well plates and cultured until a monolayer was 

formed. Cells were washed with PBS, fixed in 4% PFA for 5 minutes at room 

temperature and permeabilised using PBS + 0.2% Triton-X for 5 minutes at room 

temperature. Non-immune blocking steps were performed in PBS supplemented with 

2% BSA and 10% chicken serum for 1 hour at room temperature. Cells were then 

stained with primary antibodies against targets of interest with 200μl added to each 

well, followed by incubation overnight at 4oC. Following incubation, primary antibody 

was removed by PBS-Tween. Appropriate conjugated secondary antibodies were 

prepared, added to samples and incubated for 1 hour at room temperature. Nuclei 

were counterstained using DAPI (1:10,000) for 10 minutes at room temperature. 

Coverslips were then delicately removed from wells using fine tweezers and mounted 

on glass slides using EverBriteTM hard-set mounting medium (Biotium, Cat No. 23003). 

Specific antibody protocols are stated in relevant chapters and details listed in Table 

2.11.   

 

2.9.5. Microscopy and Image Analysis 
 

Prepared sections, wholemount ears and cells were imaged on a Zeiss LSM 880 

confocal microscope. Plan-Apochromat objectives were used, with the following 

numerical apertures; 0.45 (10x), 0.75 (20x), 0.95 (40x), 1.4 (63x oil), 1.4 (100x oil).  
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Whole lymph node and tumour images were acquired using the Convex Hull Tile Scan 

setting, using 20x magnification and 1024x1024 resolution, with 5% overlap between 

each tile, a line average of 2 and scanning speed of 7.45 seconds/frame. On average 

over 40 tiles were needed to scan whole tissue sections. Whole images were then 

stitched online, using the medium stitching setting, before being exported as a CZI file 

for further analysis.  

 

For region of interest images of lymph nodes, 20x magnification was used with 

1024x1024 resolution, a line average of 8 and a scanning speed of 81 seconds/frame. 

For z-stacks of DCs in co-cultures, 100x magnification was used, with 2048x2048 

resolution and a line averaging of 1. ZEN Blue software from Zeiss was used to 

conduct offline image analysis.  

 

For quantitative image analysis of lymph node tile-scans and ROIs, HALOTM image 

analysis software from PerkinElmer was used. Volocity 6.3 software from PerkinElmer, 

was used specifically for 3D z-stacked images of in vitro cultures, high magnification 

lymph node ROIs and ear wholemounts. Quantitative analysis of images acquired 

from in vitro and ex-vivo co-cultures, FIJI image analysis software was used275. 

Specific methods are detailed in relevant chapter sections. 

 

2.10. Functional Assays 
 

2.10.1. In vitro conditioning of cell lines and primary cells  
 

Tumour conditioning of LECs and splenic DCs was performed by culturing cells in vitro 

with 50% tumour-conditioned media (TCM) for varying periods of time. TCM was 

derived from B16F10s seeded at 3.0x106 in a 75cm3 flask overnight, then treated 

overnight with basal endothelial cell media supplemented with 2% FCS for LEC 

conditioning, or basal RPMI supplemented with 2% FCS for DC conditioning. Control 

conditioned media (CCM) was composed of 50% full endothelial cell media and 50% 

used media from LEC single cultures of 70% confluency.  
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2.10.2. In vitro LEC antigen uptake and processing assays 
 

For assessment of antigen uptake and processing by lymphatic endothelial cells in 

vitro, fluorescently-labelled ovalbumin (OVA) was used to track uptake of antigen, and 

DQ-ovalbumin (DQ-OVA) to track processing of antigen. Fluorescent OVA is a protein 

labelled with a bright, photostable and pH-insensitive dye which can be detected using 

flow cytometry and immunofluorescent imaging. DQ-OVA is a protein heavily labelled 

with BODIPY dyes, designed to yield single, bright fluorescent-labelled peptides upon 

proteolysis. DQ-OVA is hence used for immunoassays assessing antigen degradation 

of processing as the amount of fluorescent-signal detected increases as the OVA is 

degraded.  

  

For antigen uptake assays, LECs were seeded at a density of 100,000 cells per well, 

in collagen-coated 6-well plates, and where stated treated with TCM, as per methods 

outlined above in Section 2.10. LECs were then washed gently with TC-PBS and 

pulsed with fluorescent 647-ovalubumin conjugate (647-OVA) (Thermo Fisher 

Scientific Invitrogen, Cat No. 034784), diluted in PBS for a final concentration of 

100µg/ml. LECs were cultured at 37C in 5% CO2 for 15 minutes and washed three 

times with ice-cold PBS, supplemented with 2% FCS, to remove any unbound antigen. 

LECs were then retrieved using 350μl of Accutase® solution per well and processed 

for flow cytometry.  

 

For antigen processing assays, LECs were seeded and treated as stated above and 

pulsed with DQ ovalbumin (DQ-OVA) (Thermo Fisher Scientific Invitrogen, Cat No. 

D12053), diluted in PBS for a final concentration of 100µg/ml. LECs were cultured at 

37C in 5% CO2 for up to 75 minutes, with cells retrieved at a number of time-points 

to assess extent of antigen processing. Cells were washed three times with ice-cold 

PBS, supplemented with 2% FCS, to remove any unbound antigen. LECs were then 

retrieved using 350μl of Accutase® solution per well and processed for flow cytometry.  

 

For detection of fluorescent antigen in both 647-OVA and DQ-OVA assays, OVA 

uptake and processing was detected using flow cytometry, whereby the 488nm laser 

detected processed DQ-OVA and the 647nm laser detected uptake of 647-OVA. 
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Specific antibody protocols and detailed methods for flow cytometry are stated in 

relevant chapters. 

 

2.10.3. LEC-DC co-culture assays – Cell culture and conditioning 
 

For LEC-DC co-cultures, LECs were seeded on collagen-coated 6-well plates 

(Eppendorf) at a density of 100,000 cells per well for adhesion assays or 8µm pore 

12mm transwell inserts (Merck Millipore) at a density of 10,000 cells per insert for 

transmigration assays. LECs were allowed to settle overnight and then treated with 

CCM or TCM for 48 hours, as described in Section 2.10. Every 24 hours media was 

supplemented with fresh CCM or TCM. Where stated, LECs were also treated with 

Syrian Hamster 8.1.1 anti-podoplanin blocking antibody (Biolegend, Cat No. 127401) 

at a concentration of 0.5µg/ml for 3 hours prior to co-culture with DCs. For isolation of 

DCs, splenic CD11c dendritic cells were isolated from either wild-type C57BL/6 mice 

or CAG.EGFP mice for GFP-DCs, as described in Section 2.2.  

 

2.10.4. LEC-DC co-culture assays – adhesion, transmigration and motility 
 

To define interactions between DCs and LECs, simple adhesion assays were used to 

assess whether DCs exhibited altered adherent properties when interacting with TCM-

conditioned LECs. Firstly, GFP-DCs were isolated re-suspended in full RPMI to a 

density of 1x105 per ml and 2x105 added to a monolayer of LECs cultured as stated 

above in Section 2.10.1. Co-cultures were incubated at 37C in 5% CO2 for 1 hour, 

after which the suspension was removed, hence removing the unattached DCs. Co-

cultures were then gently washed with PBS and subsequently the number of adherent 

GFP-DCs counted.  

 

For transmigration assays, GFP-DCs were co-cultured with LECs seeded as stated 

above and incubated at 37C for 1 hour to allow adhesion. After the initial incubation 

period, the suspension was removed, hence removing the unattached DCs, and co-

cultures gently washed. Co-cultures were then incubated at 37C and the number of 

transmigration GFP-DCs in the bottom chamber after 18 hours was then counted.  
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For both adhesion and transmigration assays, GFP-DCs were visualised and imaged 

using the EVOS® FL Cell Imaging System (Thermo Fisher Scientific). Multiple fields 

of views (FOVs) were imaged with 3-5 taken per well. The number of GFP-DCs per 

FOV was manually counted using FIJI image analysis software, with the counting 

overlay tool.   

 

For motility GFP-DCs were visualised and imaged using the Zeiss Live Cell 

microscope. Multiple fields of views (FOVs) per well across conditions were imaged 

over durations of an hour. Mobile GFP-DCs were then identified and tracked offline 

using automated modules from image analysis software Volocity 6.3 (Perkin Elmer). 

Quantitative outputs included velocity, displacement rate, meandering index and 

distance.   

 

For morphology imaging of adherent DCs, co-cultures were incubated at 37C for 1 

hour, after which the non-adherent compartment was removed by extracting the 

media. Co-cultures were then gently washed with PBS, fixed with 4% PFA (350l per 

well) at room temperature for 2 minutes and permeabilised with PBS supplemented 

with 0.1% Triton-X (350l per well). Co-cultures were then stained with VE-Cadherin 

at 4C overnight, to outline intercellular junctions and cell borders. Following primary 

antibody incubation, co-cultures were incubated with 594-conjugated donkey-anti-

rabbit secondary antibody at room temperature for 1 hour. Cells were counterstained 

with DAPI (1:10,000) in PBS at room temperature for 10 minutes. Slides were mounted 

using Anti-Fade mountant and imaged using a Zeiss 880. Details of antibody clones, 

concentrations and suppliers are provided in Table 2.11.   

 

2.10.5. LEC-DC co-culture assays – antigen transfer  
 

LECs and DCs were prepared for co-culture in 6-well plates as described in Section 

2.10.2. Immediately before co-culture, LECs were pulsed with 100g/ml of 647-

conjugated full-length ovalbumin (647-OVA), at 37C in 5% CO2 for 15 minutes. OVA 

was washed three times using ice-cold PBS supplemented with 2% FCS. DCs were 

re-suspended in full RPMI to a density of 1x105 per ml and 2x105 added to each well. 

Co-cultures were incubated at 37C in 5% CO2 for 1 hour, after which the non-
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adherent compartment was removed by extracting the media. Co-cultures were then 

gently washed with PBS and the adherent compartment removed by adding 350l of 

Accutase® Cell Detachment Solution to each well, yielding both LECs and DCs. For 

co-culture assays intended for T-cell proliferation assays, the adherent compartment 

removed by adding 350l 0.5mM EDTA to each well and incubating until adherent 

DCs detached. A sample of the adherent and non-adherent DCs were then 

immediately processed for flow cytometry analysis to quantify OVA uptake. Specific 

antibody protocols and detailed methods for flow cytometry are stated in relevant 

chapters. 

 

2.10.6. T-cell proliferation assays 
 

For preparation of antigen-specific T-cells, OT-1 CD8+ T-cells were isolated as per 

methods outlined in Section 2.2. Cells were then counted and re-suspended at a 

density of 1-10x106 in 1ml of PBS and transferred into 15ml falcon flasks. CFSE 

(Invitrogen, Molecular Probes®) was prepared in 110l of PBS (1:100, 1.1l of stock 

5mM CFSE), added to T-cell suspensions and incubated at room temperature for 

10minutes. Cells were then washed (x3) with ice-cold PBS supplemented with 2% 

FCS and re-suspended in full RPMI media. Cells were counted using trypan blue 

exclusion and a haemocytometer.  

 

For assessing whether lymphatic conditioned DCs differentially prime T-cells, splenic 

DCs were cultured with antigen-primed LECs as per Section 2.10.4. LEC-conditioned 

DCs were then retrieved from both adherent and non-adherent compartments for T-

cell assays. DCs were counted and re-suspended in full RPMI at a density of 1x105 

per ml. OT-1 CD8+ T-cells were cultured at 37C in 5% CO2 in round-bottom 96-well 

plates with DCs at a ratio of 1:10, with 10,000 DCs and 100,000 T-cells. After 72 hours, 

all cells were retrieved and processed for flow cytometry as per Section 2.8. 

Throughout these co-cultures, both with LECs and T-cells, the DCs were not pre-

activated with any cytokine or bacterial-derived product. Specific antibody protocols 

and detailed methods for flow cytometry are stated in relevant chapters.  
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Bulk splenic dendritic cells pulsed directly with 647-OVA, at a range of concentrations, 

were also cultured with T-cells using the same seeding densities outlined above. 

These conditions acted as positive controls for APC-mediated T-cell priming. 

Appropriate negative controls were also used, 1) co-culture with CFSE-negative T-

cells 2) co-culture with antigen non-specific wild-type T-cells and 3) co-culture with 

dendritic cells primed with LECs in the absence of OVA.  

 

2.10.7. In vivo antigen assays  
 

For assessment of antigen uptake and processing by stromal cells and dendritic cells 

in lymph nodes in vivo, fluorescent ovalbumin (OVA) was used to track uptake of 

ovalbumin antigen, and DQ-OVA to track processing of antigen. How OVA and DQ-

OVA works is described in Section 2.10.2.To assess antigen uptake and processing 

in vivo, 50µl of FITC-OVA (Thermo Fisher Scientific Invitrogen, Cat No. 023030) or 

DQ-OVA diluted in sterile PBS to a concentration of 50µg/ml were injected 

subcutaneously into the front legs of C57BL/6 mice. This injection site is immediately 

upstream of brachial lymph nodes, and hence allows rapid delivery of antigen to said 

lymph nodes for detection of uptake and processing by resident stromal populations. 

After 15 minutes post-injection, mice were culled and brachial lymph nodes retrieved. 

Where stated, lymph nodes were also taken from TRITC painted mice to determine 

migratory dendritic cell uptake of antigen drained to the lymph node. This was 

conducted as outlined in Section 2.3.   

 

For immunofluorescent imaging, control NDLNs and Day 4 TDLNs were isolated from 

control and tumour-bearing mice. Lymph node sections were prepared as per methods 

in Section 2.9 and stained with rabbit anti-LYVE1. Specific antibody protocols are 

stated in relevant chapters and details listed in Table 2.11. Whole lymph node tile-

scans were taken using confocal microscopy, whereby OVA positive cells were 

detected using the 488nm laser. Automated HaloTM image analysis software was used 

to quantify OVA positive staining as a percentage of total lymph node area. Details on 

methods of quantification are stated in relevant chapters.  
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For flow cytometry, control NDLNs and Day 4 TDLNs were isolated from control and 

tumour-bearing mice. Lymph nodes were digested as per methods described in 

Section 2.2 and processed for flow cytometry as described in Section 2.8. Lymph 

nodes were stained with markers for dendritic cell and non-immune stromal markers 

to determine relative OVA uptake and processing across lymph node compartments. 

As stated above, OVA positive cells were detected using the 488nm laser. Flow 

cytometry data was acquired and analysed as stated in Section 2.8, with specific 

methods stated in relevant chapters.  

 

2.11. Statistical Analysis 
 

Statistical analysis was performed using GraphPad Prism Version 7.00 for Mac, 

(GraphPad Software, La Jolla California USA, www.graphpad.com). Statistical tests 

were conducted as appropriate to the dataset and detailed in figure legends. Student 

t-tests were used for parametric data, when comparing two groups with sample sizes 

above n=15. Mann-Whitney tests were used for non-parametric data, when comparing 

two groups with sample sizes below n=15. One-way analysis of variance (ANOVA) 

was used to conduct parametric analyses of datasets with three or more groups, with 

Tukey’s multiple comparisons conducted between groups. The Kruskal-Wallace test 

with Dunn’s multiple comparisons, was conducted for non-parametric datasets with 

three or more groups and sample sizes below n=15. For all data, bar charts are 

presented with error bars representing the standard error of the mean (SEM); as stated 

in figure legends Statistics are hence reported in the written text as the value ± SEM. 

Box and whisker plots are presented as 25th to 75th percentile box plots with, 5-95% 

percentile whiskers and median line shown; as stated in figure legends. Where data 

was found to be significant, p-values are denoted by asterisks, with (*) denoting P ≤ 

0.05, (**) denoting P ≤ 0.01, (***) denoting P ≤ 0.001 and (****) denoting P ≤ 0.0001. 

Where data was found not to be significant, this is not stated, or referred to as not 

significant (ns).  

 

 

 

 

http://www.graphpad.com/
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Table 2.9. Buffers and Reagents 
 
 

Buffer / Reagent Contents 

 
RBC Lysis Buffer 

 
0.1mM EDTA, 150mM NH4Cl, 1mM KHCo3  
prepared in deionised water  
 

 
MACS Buffer 

 
0.5% (w/v) BSA and 2mM EDTA  

prepared in 1x PBS and filtered with a 0.2m filter 
 

 
FACS Buffer 

 
0.5% (w/v) BSA and 2mM EDTA 
prepared in 1x PBS  
 

 
Immunofluorescence  
Blocking Buffer  

 
10% chicken serum and 2% BSA 
prepared in 1x PBS 
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Table 2.10. Antibodies for flow cytometry 
 

Target Clone Isotype Supplier 
Stock ConcN 
Dilution Used 

Live/Dead 
Viability Dye 

Ref: L34955 Invitrogen 
1:1000 

 

Biotin 
LYVE-1 

ALY7 Rat IgG1 LS Bio 
0.5mg/ml 

1:300 

Biotin 
PD-1 

TY25 Rat IgG2a,   eBioscience 
0.5mg/ml 

1:300 

Biotin 
PD-L1 

10F.9G2 Rat IgG2b,  Biolegend 
0.5mg/ml 

1:300 

488 
CD3e 

145-2C11 
Armenian 

Hamster IgG 
Biolegend 

0.5mg/ml 
1:300 

421 
CD8a 

53-6.7 Rat IgG2a,  Biolegend 
0.05mg/ml 

1:300 

450 
CD11c 

N418 
Armenian 

Hamster IgG 
eBioscience 

0.2mg/ml 
1:300 

BV-780  
CD8a 

53-6.7 Rat IgG2a,  eBioscience 
0.2mg/ml 

1:300 

488 
CD103  

2E7 
Armenian 

Hamster IgG 
Biolegend 

0.5mg/ml 
1:300 

488 
CD4 

GK1.5 Rat IgG2b,  Biolegend 
0.5mg/ml 

1:300 

488 
ICAM1 

YN1/1.7.4 Rat IgG2b,  Biolegend 
0.5mg/ml 

1:300 

488 
VCAM1 

429 Rat IgG2a,  Biolegend 
0.5mg/ml 

1:300 

FITC 
CD31 

390 Rat IgG2a,  eBioscience 
0.5mg/ml 

1:300 

PE 
CLEC-2 

17D9 Rat IgG2b,  Biolegend 
0.2mg/ml 

1:300 

PE 
ESAM 

1G8 Rat IgG2a,  Biolegend 
0.2mg/ml 

1:300 

PeCy7 
CD11c 

N418 
Armenian 

Hamster IgG 
Biolegend 

0.2mg/ml 
1:300 

PeCy7 
CD31 

MEC13.3 Rat IgG2a,  Biolegend 
0.2mg/ml 

1:300 

PeCy7 
CD45 

30-F11 Rat IgG2b,  Biolegend 
0.2mg/ml 

1:300 

PeCy7 
PD-1 

RMP1-30 Rat IgG2b,  Biolegend 
0.2mg/ml 

1:300 

PeCy7 
PD-L1 

10F.9G2 Rat IgG2b,  Biolegend 
0.2mg/ml 

1:300 

APC 
FoxP3 

FJK-16s Rat IgG2a,  eBioscience 
0.2mg/ml 

1:300 

APC 
PDPN 

8.1.1 
Syrian Hamster 

IgG 
Biolegend 

0.2mg/ml 
1:300 

APC 
MHC-II 

KH74 Rat IgG2a,  Biolegend 
0.5mg/ml 

1:300 

APC-Cy7 
CD11b 

M1/70 Rat IgG2b,  Biolegend 
0.2mg/ml 

1:300 

APC-Cy7 
CD25 

PC61 Rat IgG1,  BD Pharmingen 
0.2mg/ml 

1:300 

APC-Cy7  
CD45 

30-F11 Rat IgG2b,  Biolegend 
0.2mg/ml 

1:300 
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Table 2.11. Antibodies for immunofluorescence   
 

Target Clone Species Supplier 
Concentration 

Used 

DAPI  
 

Ref: 40011 Biotium 
1:10,000 

B220 RA3-6B2 Rat BD Pharmingen 0.5mg/ml 
1:100 

CCL21/6Ckine 
 

AF457 Goat R&D Systems 0.2mg/ml 

CD3e 500A2 Syrian 
Hamster 

BD Pharmingen 0.5mg/ml 
1:100 

CD31 
 

MEC13.3 Rat Biolegend 0.5mg/ml 
1:100 

CDH5 
 

Polyclonal Rabbit Abcam 1mg/ml 

LYVE-1 
 

Polyclonal Rabbit Abcam 0.5mg/ml 
1:300 

PDPN 8.1.1 Syrian 
Hamster 

Biolegend 0.5mg/ml 
1:100 

PROX-1 
 

Polyclonal Rabbit Abcam 1mg/ml 

 

Table 2.12. Fluorescently conjugated secondary antibodies  
 

Antibody Conjugate Supplier 
Concentration 

Used 

Donkey anti-rat 405 Abcam 2mg/ml 
1:300 

Donkey anti-goat 
 

405 Abcam 2mg/ml 
1:300 

Chicken anti-rabbit 488 Invitrogen 2mg/ml 
1:300 

Goat anti-hamster 488 Invitrogen 2mg/ml 
1:300 

Donkey anti-rabbit 594 Invitrogen 2mg/ml 
1:300 

Goat anti-hamster 647 Invitrogen 2mg/ml 
1:300 

Conjugated streptavidin   Pe-Cy7 Biolegend 0.2mg/ml 
1:300 

Conjugated streptavidin   APC-Cy7 Biolegend 0.2mg/ml 
1:300 
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3. Functional characterisation of lymphatics from melanoma TDLNs 
 

3.1. Introduction  
 

Until recently, lymphatics were mostly considered as passive participants in tumour 

progression, serving largely as routes for metastasis. As lymphangiogenesis was 

frequently observed in primary tumours of many human cancers including 

melanoma130, 126, breast 127, colorectal 131 and non-small lung cancer132, much focus 

has been placed on exploring the role of lymphatics at the tumour site to define their 

role in LN metastasis and patient survival. Specifically, lymphangiogenesis has been 

strongly linked with metastasis of melanoma130,126, with much research showing 

lymphatic expansion at primary and draining lymph nodes positively correlated with 

poor patient survival and prognosis127,130,126. While studies have also demonstrated 

the presence of lymphangiogenesis at tumour draining lymph nodes, which correlated 

with metastasis incidence in murine models126,133, the adaptations and functional 

changes occurring in lymphatics both at the primary site and TDLNs, and how these 

changes support tumours, however, remain poorly defined. In steady states and 

inflammation, lymphatics are accepted to regulate trafficking of immune 

cells44,45,46,47,48,49,50,51. An emerging role for lymphatics and lymphangiogenesis in the 

tumour suggests a role in regulation of immune microenvironments, with lymphatic 

expansion associated with immune suppression188,190. This was further found to be 

associated with susceptibility to immunotherapy189. Hence, there exists an 

understanding that lymphangiogenesis is a characteristic of tumour progression, and 

some evidence to suggest an active role in immune modulation in the primary tumour. 

However, there is a lack of knowledge in lymphatic function beyond the primary 

tumour, and in the specific mechanisms of lymphatic-mediated immune modulation. 

Hence, we aimed to better characterise functional changes and determine the relative 

immune contribution of these changes, in lymphatics from TDLNs.  
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3.2. Methods 

 

3.2.1. Flow cytometry analysis of lymphatic expansion in TDLNs 
 

To assess the extent of lymph node and specific lymphatic expansion in TDLNs, LNs 

were retrieved from tumour bearing and non-tumour bearing mice as described in 

Section 2.3. Samples were digested and processed for flow cytometry as described in 

Section 2.9. LN single-cell suspensions were stained with 405-conjugated live/dead 

viability dye and fluorescently conjugated antibodies against CD45, Podoplanin and 

CD31, then run and analysed as described in Section 2.9. Stromal subpopulations 

were gated based on Podoplanin and CD31 expression, within CD45 negative 

populations, with LECs defined as CD45- Podoplanin+ CD31+, FRCs defined as 

CD45- Podoplanin+ CD31- and BECs defined as CD45- Podoplanin- CD31+. This 

gating strategy has been used by other publications investigating lymph node 

stroma108 and details of all antibodies used are listed in Table 2.10 in Methods. Two 

independent experiments were used, with n=25 NDLNs and n=33 TDLNs across 

various time-points. Data was statistically tested using Two-way ANOVA with Sidak’s 

multiple comparison tests. This was conducted and published by colleagues191. 

 

3.2.2. Immunofluorescent imaging of lymph node and tumour lymphatics  
 

To assess the extent of lymphangiogenesis in lymph nodes and tumours, tissues were 

retrieved from tumour bearing and non-tumour bearing mice as described in Section 

2.3. Lymph nodes were sectioned and stained for the lymphatic marker, LYVE-1 

(1:300) and 488-conjugated chicken-anti-rabbit secondary (1:300), using methods 

outlined in Section 2.9. Details of all antibodies used are listed in Table 2.11 and 2.12 

in Methods. Lymph nodes were imaged in accordance to methods outlined in Section 

2.9.  

 

For quantitative image analysis of whole lymph nodes, HALOTM software 

(PerkinElmer, USA) was used. Using DAPI counterstain, the edge of the lymph node 

was defined, and a mask created to detect LYVE-1 positive regions (Figure 3.1) within 

that defined area. Lymph nodes from three independent experiments were quantified, 
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with n=12 control NDLNs, n=13 Day 4 TDLNs and n=5 Day 11 TDLNs. Data was 

presented as box and whisker plots and statistically tested using One-way ANOVA 

with Tukey’s multiple comparison test. 

Figure 3.1. Method of quantifying lymphatic coverage in lymph nodes. Quantification of 
percentage lymphatic coverage relative to lymph node area using HaloTM image analysis 
software. A threshold mask was set to determine negative and positive LYVE1 staining. The 
area of quantification was then defined (1), followed by application of the fluorescent staining 
mask to detect positive LYVE1 staining (2). The defined area was then analysed for positive 
staining, and results generated and exported in Excel.  

 

3.2.2. Bioinformatic Microarray Analysis 
 

To define transcriptional changes across tumour development in LECs derived from 

early and late TDLNs, microarray analysis was conducted as described in Section 2.5. 

To visualise broad changes in gene expression between NDLNs and TDLNs volcano 

plots were generated in R-studio using package, ggplot2. Log2 transformed fold 

change data was plotted against log10 transformed p-values, with targets of significant 

fold changes visually identified and quantified on plots. Individual plots were created 

for Day 4 and Day 11 TDLNs respectively, comparing their gene target changes with 

control NDLNs. To identify changes in expression of specific gene targets, heatmaps 

were generated using the TIGR Multi-Experiment Viewer (MeV_4_8 Version 10.2) 

software (http://en.bio-soft.net/chip/MeV.html). Analysis was restricted to expression 

fold changes of ± 1.25 and p-value ≤0.05. Fluorescent intensity values relative to the 

mean chip value for the top altered gene targets in Day 4 and Day 11 TDLNs were 

uploaded and subsequently normalized using row-centred mean. To elucidate 

1.	Define	Region	 2.	Apply	fluorescence	detec on	mask		

http://en.bio-soft.net/chip/MeV.html
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whether any of the altered gene targets in Day 4 and Day 11 TDLNs overlapped, online 

software Venny 2.0, was used (http://bioinfogp.cnb.csic.es/tools/venny/). Gene targets 

with significantly altered expression levels in Day 4 and Day 11 TDLN-LECs, were 

input and the number of genes overlapped, quantified and listed. Overlapping gene 

targets are listed in Appendix 1.   

 

3.2.3. Gene Ontology Microarray Analysis 
  

In order to investigate the specific functional implications of these transcriptional 

changes, pathway analysis was conducted using the Broad Institute’s Gene Set 

Enrichment Analysis (GSEA) Molecular Signatures Database online 

(http://software.broadinstitute.org/gsea). This tool allows overlaps to be computed 

between a given gene set and gene sets in the database. Specific overlap analysis 

was carried out between 1,329 gene sets within Canonical Pathways, and significantly 

altered gene sets from our Day 4 and Day 11 TDLNs. Gene sets within Canonical 

Pathways are curated from a number of sources, including online databases and 

published literature, and includes gene sets derived from the BioCarta, Kyoto 

Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway databases. 

The extent of overlap is quantified using FDR q-values, which represent probability 

that the normalized enrichment score represents a false positive finding. An FDR q-

value of 0.05 implies that 5% of significant tests will be false positives. Only pathways 

with FDR q-values of <0.05 were hence selected.  

 

The resulting ontology data was used to devise heatmaps, as described in Section 

3.2, highlighting gross ontology changes across our dataset. Altered ontology 

pathways were also visualised using bar charts, plotting inverse log10 transformed 

false discovery rate (FDR) q-values against GO Canonical Pathways, displaying 

significantly enriched pathways sorted in order of increasing transformed (inverse 

log10) q-values. Ontology analysis was repeated with separate Day 4 and Day 11 

data, and altered ontology pathways manually sorted into categories. Percentage 

representation of each pathway was then calculated relative to the total number of 

pathways and presented as pie charts. This gave us an indication of the most 

represented pathway at both early (Day 4) and late (Day 11) time-points. Pathways 

http://bioinfogp.cnb.csic.es/tools/venny/
http://software.broadinstitute.org/gsea
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were categorised as such; Cell Signalling, Cell Cycle, Immunity, Endothelial, DNA 

Replication, Metabolism, Hypoxia, Apoptosis, Transcription and Other. The 

categorisation of these pathways is listed in full in Appendix 2. As Immunity associated 

pathways were of particular interest, these were visualised using bar charts, with 

transformed FDR q-values plotted, as described above. Gene targets listed within 

Immunity associated pathways were then collated and visualised using heatmaps, as 

described in Section 3.2.  

 

3.2.5. Verification of Microarray Data  
 

In order to verify targets of interest from the microarray data, LECs were isolated from 

lymph nodes retrieved from tumour-bearing and non-tumour bearing mice, as 

described in Section 2.3. Samples were then processed for flow cytometry and 

immunofluorescent analysis.  

 

For flow cytometry, lymph nodes were retrieved, digested and stained as previously 

described in Section 2.8. Podoplanin expression, within LECs (CD45- Podoplanin+ 

CD31+), was quantified using the geometric mean of fluorescent intensity (gMFI). Fold 

changes were calculated, within independent experiments, with individual NDLN and 

TDLN expression calculated relative to average expression of NDLNs. Fold changes 

were calculated relative to control NDLNs within independent experiments and 

statistically tested using One-way ANOVA with Tukey’s multiple comparison tests. 

 

For immunofluorescence, NDLNs and TDLNs were sectioned and stained for CCL21 

(1:100) and Podoplanin (1:100), with the following secondary antibodies; 488-

conjugated chicken-anti-rabbit (1:300), 405-conjugated donkey-anti-goat (1:300) and 

647-conjugated goat-anti-Syrian hamster (1:300), using methods outlined in Section 

2.9. Details of all antibodies used are listed in Table 2.11 and 2.12. Prepared sections 

were imaged as described in Section 2.9. For CCL21, murine experiments and 

imaging was conducted by colleagues. 

3.2.6 Analysis of Cutaneous Melanoma TCGA Data 
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Using the Cancer Genome Atlas (TCGA) Cutaneous Melanoma dataset, published in 

2015, of which included 333 primary and/or metastatic melanomas from 331 patients 

with 160 lymph node samples. From these lymph node samples, mRNA expression 

data for targets of interest were downloaded from the online portal cBioPortal Version 

1.10.2. Targets of interest were restricted to lymphatic markers – Prox1, Lyve1 and 

Pdpn; top up-regulated and down-regulated hits from Day 4 and Day 11 TDLNs – 

Col5a1, Zbp1, Lpar1 and Reln and other altered immune-associated genes, namely 

Ccl20, Ccl21, Sema6d, Ptx3, Vegfa and Jam3.  

 

To determine the correlation between these markers and dendritic cell infiltrate, mRNA 

expression for dendritic cell marker, Itgax, was grouped into low, medium and high 

expression, based on quartile ranges, with low expression defined as data  lower 

quartile; high expression defined as data  upper quartile; and medium expression 

defined as data ranging from the lower quartile to upper quartile. This data was then 

plotted against reciprocal expression data for the aforementioned gene targets. This 

determines whether any key lymphatic markers, or altered gene targets in our 

microarray, correlate with dendritic cell immunity, in the context of human melanoma. 

Overall this provides further insight into the role of lymphatic gene targets in anti-

tumour immunity in a clinical context, with further work needed to elucidate the 

translational application of our observations in the human tumour microenvironment. 
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3.3. Results 
 

3.3.1 Lymphatic expansion in TDLNs  
 

In order to study the role of LECs in tumour progression, we chose a pre-metastatic 

model of melanoma, utilising the well-described syngeneic injectable B16.F10 

melanoma model192,191,189,134. The importance of using a pre-metastatic melanoma 

model lies in the lack of understanding in early tumour immune response kinetics. We 

wished to determine the relative contributions of lymphatics in immune modulation, at 

early stages of tumour development, in order to ascertain when and how immune 

suppression evolves in the tumour microenvironment. With published work 

demonstrating stromal responses in distal sites, such as lymph nodes, there is a strong 

indication that early tumour development can condition sites beyond the primary 

tumour. As stated in this project’s hypotheses and aims (Section 1.6), we hypothesise 

that tumours in early stages of development, already begin to condition in particular 

TDLNs, which due to being essential sites for mounting immune responses, 

subsequently leads to altered immunity. Finally, we hypothesise that stromal changes 

in TDLNs, suggests that stromal cells, including lymphatic endothelial cells, have an 

active role in tumour progression and may play a critical role in immune modulation. 

Therefore, we first wished to assess lymphatic involvement in brachial lymph nodes 

draining of B16.F10 tumours. 

 

Across tumour development, total TDLN cellularity was seen to increase progressively 

across time-points, with significant LN expansion seen as early as Day 4 post-

injection, with LN cellularity fold changes of 2.32 and 2.98 at Day 4 and Day 11, 

respectively. The lymphatic compartment specifically was seen to expand in late 

TDLNs, with a significant increase in the number of LECs per LN seen at Day 14 

(NDLNs Mean, 306.6 ± 182.15; TDLNs Mean, 1219.8 ±; 265.41; ∆913.13) (Figure 3.2). 

These experiments were carried-out by and published by colleagues in the lab191. 

Interestingly, colleagues also showed that this was applicable to other stromal 

compartments with the number of BECs and FRCs per node also increasing, at Day 

10 and Day 14 191. This was also recapitulated in the TyrCreERBrafCAPtenlox model, 

demonstrating these observations to be applicable to multiple murine melanoma 

systems191. The pre-metastatic state of these TDLNs was confirmed by colleagues in 
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the lab, with quantitative real-time PCR used to detect mRNA levels of melanoma 

markers, Tyrosinase-related protein-1 (Tyrp1) and Tyrosinase-related protein-2 (Dct), 

which were not detectable in TDLNs191. This hence demonstrates that the stromal 

changes occurring in TDLNs across these time-points is occurring in a pre-metastatic 

state. 

 

To verify published data, and build upon these observations, we sought to determine 

the spatial lymphangiogenic patterns in TDLNs. We assessed the extent of 

lymphangiogenesis in TDLNs using whole node confocal imaging of LYVE-1-positive 

lymphatics. TDLNs were clearly enlarged at both Day 4 and Day 11, with apparent 

expanded lymphatics in Day 11 (Figure 3.3). Upon closer assessment of 

lymphangiogenesis, expansion was observed in Day 4 TDLNs, but this was limited to 

the subcapsular sinus, with little expansion seen in medullary regions. Whereas, in 

Day 11 TDLNs, extensive expansion could be seen both at the subcapsular sinus and 

in medullary regions (Figure 3.4).   

 

Lymphatic coverage was subsequently quantified using image analysis software, 

confirming a significant increase in LYVE-1 structures per lymph node in Day 11 

TDLNs (NDLNs Mean 6.08% ± 0.58%; Day 11 TDLNs Mean, 11.73% ± 1.91%). An 

increasing trend in lymphatic coverage, although more variable, was measured in Day 

4 TDLNs (NDLNs Mean 6.08% ± 0.58%; Day 4 TDLNs Mean, 9.11% ± 1.47%) (Figure 

3.5).  

 

In contrast to the lymph nodes, matched tumours showed no intra-tumoural 

lymphangiogenesis, with limited expansion confined to peri-tumoural regions. 

Individual LYVE-1 positive cells could also be seen, indicating perhaps poor vessel 

formation in B16-F10 tumours (Figure 3.6a). This was also seen in BrafV600E/Pten 

tumours, whereby tamoxifen induction on ear dermis, induced lymphatic expansion, 

with lymphatic rich regions also confided to the peri-tumoural areas in more developed 

tumours (Figure 3.6b, c). This suggests a communicative link between tumours and 

TDLNs, whereby microenvironment cues inducing lymphatic expansion at the primary 

tumour site, may indeed induce similar changes downstream in TDLNs.  
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Figure 3.2. Lymph node and lymphatic expansion in TDLNs of B16-F10 tumours. 
Representative gating strategy to identify stromal populations in dLNs, shown here NDLNs 
(top panel) and Day 11 TDLNs (bottom panel). Gated within singlets CD45- Podoplanin+ 
CD31- denote FRC populations, CD45- Podoplanin- CD31 denote BEC populations and 
CD45- Podoplanin+ CD31+ denote LEC populations of interest, highlighted within the oval 
gate (A). NDLNs and TDLNs retrieved after 4-14 days post-inoculation with B16 F10 tumour 
cells, were analysed for total lymph node cellularity (B) and total count of CD45- Podoplanin+ 
CD31+ LECs (C). Shown is data from two independent experiments, with n=25 NDLNs and 

n=33 TDLNs total across time-points. Data presented as mean  SEM. Statistical significance 

was calculated using One-way ANOVA (P0.05). This data was acquired by Dr. Angela 

Riedel191.  
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Figure 3.3. Lymphatic networks expand in tumour draining LNs over time. Control 
NDLNs (A), Day 4 early TDLNs (B) and Day 11 late TDLNs (C) from B16-F10 tumour bearing 
mice, were immunofluorescently stained for lymphatic marker, LYVE-1 (green). Whole lymph 
node tile scans taken at 20x magnification and imaged using a confocal microscope. Shown 
are representative whole node images from three independent experiments, with n=12 control 
NDLNs, n=13 Day 4 TDLNs and n=5 Day 11 TDLNs. Scales represent 200µm. 

LYVE-1 
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Figure 3.4. Lymphatic expansion occurs at the subcapsular sinus and in medullary 
regions on TDLNs. Control NDLNs (A), Day 4 early TDLNs (B) and Day 11 late TDLNs (C) 
from B16-F10 tumour bearing mice, were immunofluorescently stained for lymphatic marker, 
LYVE-1 (green). Whole lymph node tile scans taken at 20x magnification and imaged using a 
confocal microscope. Shown are representative regions of interest at the subcapsular sinuses 
(A, C, E) and medullary sinuses (B, D, F), with the dotted white line representing the lymph 
node edge. Shown are images from three independent experiments, with n=12 control NDLNs, 
n=13 Day 4 TDLNs and n=5 Day 11 TDLNs. Scales represent 100µm. 
 
 

LYVE-1 
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Figure 3.5. Whole node lymphatic coverage is significantly increased in late TDLNs. 
Control NDLNs (A), Day 4 early TDLNs (B) and Day 11 late TDLNs (C) from B16-F10 tumour 
bearing mice, were immunofluorescently stained for lymphatic marker, LYVE-1. Whole lymph 
node tile scans taken at 20x magnification were imaged using a confocal microscope and 
analysed for LYVE-1 coverage using HaloTM software. Using manually created detection 
masks, lymphatic coverage was quantified as the percentage of LYVE-1 positive staining (%) 
relative to the whole node area. Shown is data from three independent experiments, with n=12 
NDLNs, n=13 Day 4 TDLNs and n=5 Day 11 TDLNs. Data presented as 25th to 75th 
percentiles box plots, with 5-95% percentile whiskers and median line shown. Statistical 

significance was calculated using One-way ANOVA (P0.05).  
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Figure 3.6. Lymphatic expansion occurs in peritumoural regions of melanoma tumours. 
Representative images of B16-F10 tumours retrieved from tumour-bearing mice at Day 11 
post-inoculation (A) and BrafV600EPten tamoxifen-induced tumours Day 14 (early) and Day 21 
(late) post-induction (B, C). Tumours were immunofluorescently stained for lymphatic marker, 
LYVE-1 (green) and nuclei counterstained using DAPI (blue). Whole tumour tile scans were 
taken at 20x magnification and imaged using a confocal microscope.  Arrow heads define 
lymphatic regions and dotted lines define the epithelial-tumour barrier (A) and auricular 
cartilage (B, C). Scale bars represent 200µm. 

LYVE-1 
DAPI 
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3.3.2 Transcriptional alterations in LECs derived from TDLNs 
 

As described in the literature, lymphatic expansion serves to provide greater access 

to TDLNs once metastatic cells leave the primary tumour. However, TDLNs drain 

lymph rich in factors derived from the tumour microenvironment that have potential to 

act on cells of the lymph node. Indeed, the observation of expanded stromal 

compartments does suggest a TDLN response to factors and stresses derived from 

the tumour microenvironment. Thus, to elucidate whether expansion of the lymphatic 

compartment was accompanied by more extensive functional adaptations, we 

conducted whole-genome transcriptional profiling on freshly isolated LECs of NDLNs 

and TDLNs. LECs were isolated using flow cytometry, based on expression of both 

Podoplanin and CD31, within CD45 negative populations. As the number of LECs per 

lymph node is very low, with NDLNs ~500; TDLNs ~1000 (Figure 3.2c), we were 

unable to spare a sufficient number of cells for purity checking, cells were sorted 

directly into lysis buffer for RNA processing pre-transcriptional profiling. Using R-

Studio package ggplot2 and software package MeV 4.8, microarray data was 

visualized using volcano plots and heatmaps (Figure 3.7). By plotting log-transformed 

fold changes against log-transformed p-values, trends in statistically significant targets 

could be visualised. A fold change cut off of 1.25 and p-value cut-off of 0.05 identified 

149 genes to be down-regulated and 364 genes up-regulated in early Day 4 TDLNs 

(Figure 3.7a), with 303 genes down-regulated and 456 up-regulated genes in late Day 

11 TDLNs (Figure 3.7b). Using the same statistical cut-offs, heatmap visualisation 

provided a list of altered genes at both Day 4 and Day 11 (Figure 3.7c), as listed in 

Appendix 1. As ranked by expression, the top up-regulated and down-regulated gene 

targets in early and late TDLNs were determined. This revealed distinct changes 

between LECs from NDLNs and TDLNs, as well as distinct changes between LECs 

from early and late TDLNs indicative of time-dependent reprogramming events 

specific to LECs of ‘early’ and ‘late’ TDLNs. The top up-regulated and down-regulated 

genes for Day 4 and Day 11, as shown in the heatmap (Figure 3.7c), are listed in 

Appendix 1. Despite distinct signatures, overlap analysis of Day 4 and Day 11 gene 

lists, visualised using Venn diagrams (Figure 3.7d), demonstrated that the expression 

of a number of gene targets were altered at both early and late time-points, with 43 

genes commonly down-regulated and 53 genes commonly up-regulated in Day 4 and 

Day 11 TDLNs, as listed in Appendix 2.  



97 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7. TDLN-derived LECs undergo time-specific transcriptional changes. 
Bioinformatic analysis was conducted on microarray data from LECs isolated from NDLN and 
Day 4 and Day 11 TDLNs from B16-F10 tumour bearing mice. Volcano plots show gene 

targets with statistically significant expression changes with fold changes 1.25 (red) and 

0.75 (cyan) represented for both Day 4 (A) and Day 11 (B) TDLNs. Fluorescent intensity 
values for gene targets with statistically significant expression changes were visualised using 
heatmaps, showing trends in expression across gene targets and time-points (C). The number 
of down-regulated (cyan) and up-regulated (red) gene targets overlapping between time-
points is shown in Venn diagrams (D). Data shown is from one independent experiment, with 
pooled brachial lymph nodes from n=2 mice per sample (total n=18). All altered gene targets 
from (C) and (D) are listed in Appendix 1 and 2.   

Down-regulated

Up-regulated
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Of the top significantly up-regulated gene targets, Col5a1, pro-collagen type V -1, 

with a fold change of 1.86 (P = 0.0085), was the highest up-regulated gene at Day 4 

was, with the highest up-regulated gene at Day 11 being Edg2, lysophosphatidic acid 

receptor 2, with a fold change of 1.93 (P < 0.001). The highest down-regulated gene 

at Day 4 was Zbp1, Z-DNA binging protein 1, with a fold change of 0.52 (P = 0.0011), 

and at Day 11 was Reln, Reelin, with a fold change of 0.54 (P = 0.0012).  

 

The expression of Col5a1 by LECs has been reported, despite usual association with 

BECs 193. Transcriptional profiling of lymphatics in fibrosarcoma, reported down-

regulation of Col5a1, as well as a number of other collagen-associated molecules, 

such as Col5a2, Col6a1, Col6a2 and Col3a11. This is contrary to our findings and 

suggests differential transcriptional changes occur in lymphatics at the primary tumour 

site and TDLNs, with tumour model variance acting as another confounding variable. 

In terms of its possible functional relevance in early TDLNs, epithelial cells in the 

presence of fluid sheer stress express Col5a1194 and expression of Col5a1 has been 

reported in association with HIF-1195. Hence, despite little reporting of Col5a1 

expression by LECs, TDLN-resident LECs may be expressing Col5a1 as a result of 

altered biophysical and biochemical cues derived from the tumour. Also, colleagues 

have seen hypoxic signatures in early B16-F10 tumours [personal communication], 

suggesting that perhaps early TDLNs are experiencing distal hypoxia, with Col5a1 

expression a potential consequence.   

 

The lysophosphatidic acid receptor 1 (LPAR1), is encoded by gene target Edg2, binds 

lysophosphatidic acid (LPA) and is well characterised to promote endothelial cell 

wound healing196. LPA produced by platelets binds LPAR1 and regulates endothelial 

cell permeability, proliferation and migration through specific signal transduction 

pathways197,198. Due to this interaction between platelets and endothelial cells, LPAR1 

is considered to be an important receptor driving LPA-mediated vascular 

regeneration197,198. Translating this to lymphatic dynamics in TDLNs, this signature is 

suggestive of lymphatics undergoing expansion and reprogramming in response to a 

wound-healing type state. As the developing tumour has been described as a “wound 

that never heals” 199, TDLNs may be adopting a similar state.  
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Zbp1, initiates innate immune responses through binding of cytosolic foreign DNA and 

engagement of type-1 interferon signalling. In endothelial cells, Zbp1 assists in 

enhanced microvascular permeability and leukocyte adhesion in response to DNA 

recognition200. Murine Zbp1 is mostly expressed in spleen, liver and lung, however in 

human, expression is strongest in lymphatic tissue. Not only does this imply that down-

regulated Zbp1 expression could result in altered lymphatic permeability in TDLNs, 

but it also implies that type-1 interferon signalling cascades are perturbed. As type-1 

interferon is associated with tissue damage sensing201,202, decreased expression of 

Zbp1 may result in an impaired tissue damage response in the lymphatics of TDLNs.   

 

Reelin is encoded by gene target Reln and is an essential matrix molecule needed for 

lymphatic vessel development203, reported to act as a key signalling molecule between 

smooth muscle cells and lymphatic endothelial cells204. As expression of Reln is 

decreased in late TDLNs, this may be acting as a negative regulatory mechanism to 

control lymphatic expansion. Also, as smooth muscle cells have long since been 

known to line the lymph node capsule205, there is likely to be further localised 

regulation of lymphatic behaviour from other stromal compartments within TDLNs.  

 

Altogether, these analyses demonstrate that LECs derived from TDLNs are 

responding to a plethora of biochemical and biophysical cues, and consequently 

undergoing significant transcriptional reprogramming, with distinct temporal changes. 

Top hits are indicative of altered endothelial permeability, migration and immune 

interactions and allude to complex signalling networks with other stromal 

compartments.    

 

To gain a more precise understanding of the functional and temporal changes 

occurring in TDLN-derived LECs, ontology analysis of all targets with significant 

expression changes across both Day 4 and Day 11 TDLNs was conducted. Analysis 

revealed a range of altered canonical pathways (Figure 3.8), which are listed in 

Appendices 3 and 4.  
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Figure 3.8. Gene targets from immune signatures and key endothelial pathways have 
altered expression levels in TDLN-derived LECs. Gene targets with statistically significantly 
expression changes from Day 4 and Day 11 TDLNs, from B16-F10 tumour bearing mice, were 
analysed for changes in canonical pathways, using online GSEA tools. Listed are the most 
represented pathways from all gene targets with statistically significantly expression changes 
across TDLNs, ranked according to their -log10(FDR q-value). (A). Fluorescent intensity 
values for gene targets with statistically significantly expression changes were visualised using 

heatmaps for canonical pathways of interest. Genes with expression fold changes 1.25 

shown in red and 0.75 shown in cyan (B). Data shown is from one independent experiment, 
with pooled brachial lymph nodes from n=2 mice per sample (total n=18). All altered pathways 
and gene targets are listed in Appendix 3 and 4. 

 

 

Expression of gene targets from canonical endothelial pathways, such as VEGF, 

Angiogenesis and Platelet Activation were altered, as well as pathways pertaining to 

Focal Adhesion, Tight Junctions and Hypoxia (Figure 3.8b). Across these pathways, 

decreased expression of Jam3 and Cldn11 alluded to changes in endothelial 

permeability or immune cell interactions, as both govern endothelial tight junction 

integrity, and Jam-C, encoded by gene Jam3, regulates the transendothelial migration 

of a number of immune cells60,61. This not only has obvious implications for immune 

A B
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cell migration and access, particularly dendritic cells, that traffic from the periphery to 

lymph nodes via lymphatics, but also for selective permeability of TDLNs. Altered 

permeability may result in greater exposure to antigen, which has implications for the 

anti-tumour immune response. 

 

Changes in angiogenic growth factors, suggests that the expansion of lymphatic 

networks in TDLNs is being regulated transcriptionally. Specifically, endogenous 

expression of VEGF-A in endothelial cells has been found to maintain expression of 

VEGFR-2 and key vascular proteins206, hence down-regulation of down-stream gene 

target, Vegfa, as seen in Day 11 TDLNs, may be acting as a homeostatic regulator of 

lymphangiogenic expansion. Also known as a regulator of focal adhesion, down-

regulation of Vegfa may also have implications for LEC-ECM interactions and hence 

lymph node lymphatic endothelium integrity. Further regulators of angiogenesis, such 

as Cd36, known as a negative regulator, and Nras, known to cooperate with VEGF to 

promote angiogenesis in hypoxic and normoxic conditions were also down-regulated, 

further suggesting that a complex network of signalling events govern 

lymphangiogenic responses in TDLNs. Of interest, is that TDLNs, as well as upstream 

tumours, may be hypoxic, with Shc1 and Itgax, both associated with hypoxia 

signalling207,208, up-regulated in TDLNs.  

 

Finally, a number of immune-associated pathways were altered, with the expression 

of a number of targets involved in Antigen Processing and Presentation, and Cytokine 

and Chemokine Signalling, altered. The following gene targets were amongst the 

plethora of immune-associated gene targets with expression changes; Chemokines, 

Cxcl2, Cxcl12, Cxcl16, Cxcl19, Ccl5, Ccl20 and Ccl21; Semaphorins, Sem6a, Sema6d 

and Sema7a; Immune Receptors, Il2rg, Cd44, Adam17, Cd36, Ifnar2 and Trl4; 

immune signalling molecules, Cd74, Calr and many proteasomal subunits (Psma4, 

Psma5, Psmd4, Psmd7 and Psmd11). This highlighted a strong immunity signature in 

TDLN-derived LECs and gave convincing reason to further pursue immune 

functionality of TDLN-derived LECs. 

 

To assess the relative contribution of expression changes in immune-associated 

pathways at individual time-points, ontology analysis was repeated for Day 4 and Day 

11 gene lists. Of these time-point specific ontology pathway lists, pathways were 
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categorised according to their functional role, for example with Antigen Processing 

and Presentation being categorised as an ‘Immunity’ pathway. Analysis revealed that 

15.7% of all altered pathways at Day 4 and 20.0% at Day 11 were classified as 

Immunity pathways (Figure 3.9). Other represented pathway families included, Cell 

Signalling, Cell Cycle, DNA Replication, Transcription, Metabolism, Apoptosis, 

Hypoxia and Endothelial biology, as detailed in Appendix 5. 

 

 

 
 
Figure 3.9. Immunity pathways are highly represented in early and late TDLNs, relative 
to other canonical pathways Significantly represented canonical pathways from GSEA 
analysis were manually categorised. Categorisation was based on which ontological family 
the individual pathway represented e.g. antigen presentation was categorised as an Immunity 
pathway. The total number of individual pathways within an ontological family was calculated 
as a percentage (%) of the total number of pathways altered and presented as pie charts. 
Immunity pathways are represented in both Day 4 TDLNs (A) and Day 11 TDLNs (B) and 
shown here in the pop-out pie chart segments. Manual categorisation of pathways is detailed 
in Appendix 5.  
 
 

Immunity associated pathways were then visualised using bar charts, plotting 

transformed FDR q-values (Figure 3.10). Of the specific pathways listed, Adaptive 

Immunity, Integrins, Cytokines & Chemokines (IL-4, IL-2, IFN, IL-7 and CXCR4), 

Antigen Cross-Presentation, Semaphorins and Vascular Cell Surface Interactions, 

were all identified. Aside from Reactome_Immune System and Reactome_Adaptive 

Immune System, which listed top in both Day 4 and Day 11 ontology analysis, 

Cytokine Signalling and Antigen Processing and Presenting, were the most 

represented Immunity pathways in Day 4 and Day 11, respectively.   

 
 
 
 
 
 
 

Day 4 TDLNs Day 11 TDLNs 
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Figure 3.10. Specific Immunity pathways with altered gene expression profiles in 
TDLNs. Immunity pathways with altered gene expression profiles from both Day 4 (A) and 
Day 11 (B) TDLNs are ranked according to their -log10(FDR q-value), showing the most 
represented pathways at both time-points. Data shown is from one independent experiment, 
with pooled brachial lymph nodes from n=2 mice per sample (total n=18).  

 

 

To investigate the specific genes assigned to Immunity associated pathways in a time-

point dependent manner, heatmaps were created to visualise specific genes from 

Immunity pathways with altered gene expression profiles in early at Day 4 and Day 11 

(Figure 3.11), as listed in Appendix 6. Immunity associated gene targets are listed in 

Appendix 6.   

 

 

Day 11 TDLNs 

Day 4 TDLNs 
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In addition to automated pathway analysis of TDLN gene sets, lymphatic gene targets 

known to be involved in specific Immunity pathways, that were absent from GSEA 

analyses, were manually added. For example, the stromal marker Podoplanin (or 

GP38 as it’s also known), expressed on cancer-associated fibroblasts (CAFs), FRCs 

and LECs, and described to be important for dendritic cell migration, was incorporated 

into these heatmaps. 

 

In Day 4 TDLNs (Figure 3.11a), key down-regulated Immunity genes included 

collagens Col1a2 and Col5a1, as well as Ccl21. Collagen V forms reticular networks 

in a number of tissues, including the lymph node and Collagen-I is a key component 

of the lymph node capsule, as well as the conduits running throughout the node, which 

both provide key structural support. Increased collagen density is often observed in 

tumour-draining and metastatic lymph nodes, implying that any changes in collagen 

deposition in lymph nodes is driven by other stromal cells, such as FRCs. Indeed, work 

from our lab shows that FRCs increase their collagen production in TDLNs191, 

suggesting that LECs may not contribute greatly to structural changes in the node, 

with FRCs instead providing the critical building blocks for structural lymph node 

remodelling. LEC-derived CCL21 is an essential chemokine for dendritic cells, with a 

gradient across the SCS necessary to facilitate entrance of dendritic cells into the 

node. Once within the node, secretion by FRCs guides dendritic cells from the node 

edge to T-cell zones. As well as being produced by FRCs and LECs in the node, 

CCL21 is produced by peripheral lymphatics, providing not only a directional cue for 

entry but also a guidance cue for dendritic cells to reach larger collecting lymphatic 

vessels, whereby biophysical factors play a larger role in dendritic cell migration. 

CCL21 in draining lymph nodes, can hence derive from peripheral sources also. Key 

up-regulated Immunity genes included cytosolic DNA binding protein gene, Zbp1, 

interferon response genes such as Ifnb1, Ifit2 and Ifit3 and lymphatic marker, Pdpn. 

This suggests that lymphatic marker Podoplanin may exhibit a specific functional role 

in reprogrammed lymphatics, which is a novel finding, and that interferon signalling is 

a key transcriptional change in early TDLN lymphatics, brought on perhaps by 

detection of tumour DNA or danger associated molecular patterns (DAMPs) from 

tissue damage, draining from early developing tumours.   
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Figure 3.11. Genes associated with Immunity pathways with altered gene expression 
profiles in TDLNs. Fluorescent intensity values for Immunity associated gene targets with 
significantly altered expression levels in Day 4 TDLNs (A) and Day 11 TDLNs (B) relative to 

control NDLNs, were visualised using heatmaps. Genes with expression fold changes 1.25 

shown in red and 0.75 shown in cyan. Data shown is from one independent experiment, with 
pooled brachial lymph nodes from n=2 mice per sample (total n=18). Altered gene targets are 
listed in Appendix 6.  

Day 11 TDLNs Day 4 TDLNs 
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In Day 11 TDLNs (Figure 3.11b), key down-regulated Immunity genes of interest 

included Ccl21a, Cxcl12, Sema6a, Pdgfa, Angpt2, Cldn11 and Jam3. As previously 

described, CCL21 is a key chemokine for dendritic cell migration, governing both its 

peripheral entry to lymphatic vessels but also its entry to and through lymph nodes. 

Endothelial-derived CXCL12 has been associated with B-cell proliferation, 

macrophage recruitment and maintenance, and is found to be over-expressed in a 

number of tumours, with angiogenic characteristics209, 210. Semaphorin-6A (encoded 

by gene, Sema6a), Platelet-derived growth factor-A (encoded by gene, Pdgfa) and 

Angiopoietin-2 (encoded by gene, Angpt2), are all soluble factor regulators of 

angiogenesis, with Angiopoietin-2 also identified as a regulator of endothelial cell 

inflammatory response, sensitizing endothelial cells towards TNF-α, which enhances 

immune adhesion to endothelium. A prominent signature for neovascularisation is 

expected due to the expansion of lymphatics in late TDLNs, which in itself could act to 

modulate immune cell entry due to altered immune cell interactions. Chemokines were 

also up regulated in Day 11 TDLNs, namely Sem6d, Ccl20, Cxcl2 and Ccl5. These 

genes encode factors that have been described as mediators of dendritic cell 

activation, recruitment and migration (Semaphorin-6D and CCL20), and other 

leukocyte recruitment, such as T-cells, neutrophils (CXCL2) and granulocytes (CCL5). 

This suggests that not only is chemokine signalling perturbed in early TDLNs, but is 

also altered in late TDLNs, indicative of a sustained transformation in TDLNs across 

tumour development, and coincident impacts on the immune microenvironment.  

 

Furthermore, gene targets Jam3 and Cldn11, denoting endothelial junctional 

molecules Jam-C and Claudin-11, were down-regulated significantly in Day 11 

TDLNs. These molecules, amongst others, are important for maintaining junctional 

integrity and for facilitating fluid drainage, and respond to shear stresses, the soluble 

milieu and migrating immune cells 61,211,3. Jam-C has been specifically described as a 

negative regulator of immune cell trafficking, implying that down-regulation in late 

TDLNs would result in heightened trafficking61. Jam-C has also recently been 

identified as a regulator of VEGF-C, promoting lymphangiogenesis and tumour 

metastasis. This suggests that in late TDLNs where expression of Jam3 is down-

regulated, that perhaps late TDLNs are undergoing a state of negative regulation of 

lymphangiogenesis212. In addition, the role of Jam-C in terms of immunity appears 
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complex with one study showing a pro-migratory function60 and another study 

demonstrating knock-out resulted in heightened pro-inflammatory responses and 

enhanced immune trafficking through increased VCAM-1 expression213. In regards to 

Claudin-11, little has been described in lymphatic endothelium, with other Claudin 

family members reported in dermal lymphatic vasculature, namely Claudin-5214. 

Hence, collectively in terms junctional molecules, down-regulation has implications not 

only for lymphatic permeability at TDLNs but also for immune trafficking and 

lymphangiogenesis. 

 

Interestingly, many antigen processing-associated gene targets denoting proteasomal 

subunits (Psma4, Psma5, Psmd2, Psmd4, Psmd7), RAB proteins and Calreticulin 

were up-regulated in Day 11 TDLNs. This may imply that lymphatic endothelial cells 

of TDLNs acquire enhanced antigen processing and presenting functions, which 

would have direct ramifications on T-cell priming and other antigen pathways reported 

to occur in the lymph node, such as antigen archiving and transfer120. Genes encoding 

co-stimulatory molecules, Cd80 and Cd86, which are required by professional APCs 

to prime antigen-specific T-cell responses, were detected by the microarray, 

demonstrating expression at gene level in LN-LECs. Expression of these markers, 

were however unchanged in Day 4 or Day 11 TDLNs with p-values >0.05 (Day 4 TDLN 

Fold Change = 0.94; Day 11 TDLN Fold Change = 1.05). This is contrary to literature 

stating low-undetectable protein expression levels of CD80 and CD86 in LN-LECs122.  

 

Overall, these genes primarily describe a strong immune signature for TDLN-derived 

LECs, with data suggesting potential DNA-sensing in early TDLNs, enhanced antigen 

processing and presentation in late TDLNs and a significant change in immune 

interactions through expansion of lymphatic networks and altered soluble milieus. 

Specifically, altered chemokine signalling in both Day 4 and Day 11 TDLN-derived 

LECs, suggests this a consistent transformation, across the lymphatic compartment 

and throughout tumour development. With a plethora of chemokines altered, this data 

suggests LECs may play a role in migration of a number of immune populations, with 

altered expression likely having an impact of migratory behaviour of many immune 

cells. With accompanying changes to expression of Podoplanin, which is a novel 

physical regulator of immune cell migration, and potentially altered lymphatic 

permeability, these changes suggest not only soluble modulation of immune migration 
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by LECs, but also a physical involvement. With similar changes observed in FRCs191, 

this data demonstrates that factors derived from the tumour microenvironment affect 

similar axes across stromal compartments. Whether these factors enhance or perturb 

expression is hence dependent on which stromal compartment and on the time-point, 

be it early or late in tumour development. It is also likely that certain early and late 

changes are functionally linked, with early changes preluding late changes. This would 

require further investigation but would shed light on the complex functional interactions 

of stromal compartments, both in steady state and in response to factors derived from 

the tumour microenvironment.  

 

3.3.3 Verification of microarray identified targets of interest  
 

Assessing the transcriptional changes across both Day 4 and Day 11 TDLN-derived 

LECs, early immune signatures alluded to changes in critical gene targets associated 

with lymphatic permeability and immune trafficking. We hence chose to verify Cdh5, 

Cldn11, Jam3, Ccl21 and Pdpn.   

 

Firstly, we verified junctional molecule gene targets, Cdh5, Cldn11 and Jam3, as 

decreased expression in TDLN lymphatics implies disrupted permeability and 

enhanced leakiness, which has implications for access of antigen and trafficking 

immune cells into TDLNs (Figure 3.12). In the microarray, no significant change was 

seen in Cdh5, with a down-regulated fold-change of 0.88 and p-value of 0.40 in Day 

11 TDLNs relative to control NDLNs. Whereas, Cldn11 and Jam3 were both 

significantly down-regulated, with a fold-change of 0.74 and 0.73 and p-values 0.01 

and 0.02, respectively. Using qRT-PCR, we were able to recapitulate the decreasing 

trends in Day 11 TDLNs seen for Cldn11 and Jam3, with statistically significant 

decreases seen in Cldn11 expression at Day 4 and Jam3 expression at Day 11. 

Fluctuating changes were seen across TDLNs in Cdh5 expression, however no 

significant changes were found, further recapitulating trends seen in the microarray. 

This collectively suggests that certainly at an RNA level, expression of junctional 

molecules in LN-LECs is indeed perturbed in TDLNs, with likely temporal changes 

through tumour development.   
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Figure 3.12. Verification of LN-LEC RNA expression trends of junctional molecules. 
qRT-PCR was conducted on LN-LECs samples isolated from control NDLNs, Day 4 TDLNs 
and Day 11 TDLNs. TaqManTM probes against JAM3, CLDN11 and CDH5 were used to detect 
changes in junctional molecule expression. Shown is data from two independent experiments, 

with n=4 NDLNs and n=5 Day 4 TDLNs and n=5 Day 11 TDLNs. Data presented as mean  

SEM. Statistical significance was calculated using One-way ANOVA (P0.05).    
 

 

As CCL21 is a critical chemokine for immune priming dendritic cells, down-regulation 

of CCL21 expression in LECs has many implications for dendritic cell migration. 

Altered expression of CCL21, by LN-LECs in particular, could have direct impact on 

dendritic cell migration across the subcapsular sinus, as it is there that LEC-

established chemokine gradients govern traversing dendritic cells. Immunofluorescent 

staining of CCL21 in early TDLNs, showed no visible change in CCL21 distribution or 

expression, with CCL21 seen universally expressed in the capsule, across conduits, 

and on vascular venules (Figure 3.13). However, as CCL21 can drain via lymphatic 

vasculature from peripheral tissue and is also produced by FRCs in lymph nodes, we 

are merely describing here the total CCL21 content in lymph nodes rather than 

production. This suggests that CCL21 is present in early TDLNs and appears 

consistently distributed, hence despite transcriptional down-regulation in LECs, 
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CCL21 within the early TDLN is intact. Interestingly colleagues described a loss of 

CCL21 RNA expression in FRCs derived from Day 11 TDLNs, which further suggests 

that aberrant organ-wide CCL21 expression is a feature of many stromal cell subsets, 

in TDLNs from later stages as well as early stages of tumour development. As this 

work did not quantify CCL21 protein expression, as it would be non-specific to 

lymphatic derived CCL21, further work is required to quantify changes in CCL21 

protein expression and secretion across stromal populations in TDLNs from different 

stages of tumour development.  

 

Figure 3.13. CCL21 protein expression is unaltered in early TDLNs. Representative 
control NDLNs (A) and Day 4 TDLNs (B), from B16-F10 tumour-bearing mice, were 
immunofluorescently stained for CCL21 (grey). Regions of interest were imaged at 20x 
magnification using confocal microscopy. Dotted white lines highlight the edge of the lymph 
node and scales represent 150µm. Shown are representative FOVs from two independent 
experiments, across n=6 NDLNs and n=6 Day 4 TDLNs.  
 

 

Our final gene target of interest, which was significantly up-regulated in LECs derived 

from early TDLNs, is stromal marker, Podoplanin. Described as essential for dendritic 

cell migration along FRC networks in lymph nodes, we were interested to explore the 

expression of LEC-derived Podoplanin, with the hypothesis that changes in 

expression could influence dendritic cell migration. Immunofluorescent analysis of 

Podoplanin in both subcapsular sinus and medullary regions appeared unchanged 

between control NDLNs and TDLNs (Figure 3.14). 

 
 
 

CCL21 
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Figure 3.14. Podoplanin protein expression is upregulated on early TDLN-derived LECs. 
Control NDLNs (A, B) and Day 4 TDLNs (C, D) from B16-F10 tumour-bearing mice were 
immunofluorescently stained for Podoplanin (grey). Regions of interest were imaged at 63x 
oil magnification using confocal microscopy. Dotted white lines highlight the edge of the lymph 
node and scales represent 10µm. Shown are representative FOVs from subcapsular sinus 
regions from five independent experiments, with n=12 control NDLNs, n=13 Day 4 TDLNs (A-
D). Control NDLNs and TDLNs from B16-F10 tumour-bearing mice were assessed for 
Podoplanin expression using flow cytometry (E). Fold changes in geometric mean fluorescent 
intensity (gMFI) were calculated relative to control NDLNs per independent experiment. 
Shown is data from n=6 independent experiments, with n=22 NDLNs and n=20 Day 4 TDLNs. 

Data presented as mean  SEM. Statistical significance was calculated using One-way 

ANOVA (P0.05). 

Podoplanin 
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However, when assessed using flow cytometry, LEC-specific Podoplanin expression 

in early (Day 4) and late TDLNs (Day 11), a significant increase in expression at Day 

4 was seen (NDLNs Mean Fold Change, 0.99 ± 0.03; Day 4 TDLNs Mean Fold 

Change, 1.21 ± 0.04) (Figure 3.14). As Podoplanin is up-regulated also in FRCs 

derived from late TDLNs (Day 11)191, our data further suggests a global change in 

stromal cell expression of Podoplanin. This also identifies Podoplanin as a potent 

responder to factors derived from the tumour microenvironment, with Podoplanin up-

regulated in LECs of early TDLNs and FRCs in late TDLNs.  

 
 

3.3.4 Changes in expression of key gene targets correlate with dendritic cell marker, 

Itgax, in human melanoma lymph nodes 

 

In recent publications, the TCGA Cutaneous Melanoma dataset has been used to 

investigate the role of lymphangiogenesis in immune modulation190,189. While these 

studies have employed such datasets to explore the role of lymphangiogenesis in 

primary tumour immune infiltrate and relative responsiveness to immunotherapy, 

lymph node samples from this dataset have so far been neglected. Thus, lymph node 

samples serve as a useful resource to answer questions pertaining to immune kinetics 

in the lymph node itself. We hence used this dataset to explore lymphatic-immune 

crosstalk in TDLNs, in particular communication between lymphatics and dendritic 

cells. 

 

Expression data from only lymph node samples was accessed and analysed for 

correlative patterns between targets identified in our microarray, as well as lymphatic 

markers Pdpn, Prox1 and Lyve1, and Itgax, which denotes the dendritic cell marker 

CD11c. Itgax expression data was categorised into lo-mid-hi expression as described 

in methods and plotted against gene target mRNA expression. This highlighted that of 

our top gene targets and lymphatic markers, Pdpn and Zbp1 significantly correlated 

with Itgax expression (P0.05) (Figure 3.15a). This identified a clinically relevant target 

from our murine dataset and suggests Podoplanin as a possible mediator of dendritic 

cell mediated immunity and migration. Regarding Immunity-associated targets, Ccl20 

positively correlated with Itgax expression, suggesting this chemokine as essential in 

dendritic cell migration in human melanoma (Figure 3.15b). Interestingly, a negative 
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correlation could be seen for Sema6d, identifying perhaps a lymphatic-derived 

negative regulator of dendritic cell immunity.  

 

 
Figure 3.15. Microarray identified gene targets of interest correlate with dendritic cell        
marker, Itgax, in human melanoma. mRNA expression data, from 160 lymph node human 
melanoma samples, was accessed from online TCGA databases. Shown is mRNA expression 
of key gene targets (y-axis) categorized relative to lymph node sample expression of dendritic 
cell marker, Itgax. Box plots represent the range of gene target expression within samples 
exhibiting low, medium or high Itgax expression (white = Itgax-lo; light grey = Itgax-mid; dark 
grey = Itgax-hi). Data shown is presented as 25th to 75th percentiles box plots, with 5-95% 
percentile whiskers and median line shown. Statistical significance was calculated using One-

way ANOVA (P0.05). 

 

Collectively, this data provides translational application of our murine microarray 

dataset, confirming that gene targets altered in TDLN-derived LECs, may indeed have 

an important role in dendritic cell mediated immunity. Many gene targets identified in 

the microarray however showed no correlative link with dendritic cells, implying a lack 

of functionality in human melanoma. Of particular interest, Podoplanin, which was 

identified from our microarray data and verified to be up-regulated in early TDLNs, was 

one of few targets significantly correlated with dendritic cell marker, highlighting it as 

one of the more plausible targets to pursue in further experiments.  
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3.4. Discussion  
 

Lymphangiogenesis is a well-established characteristic of tumour development and 

progression, with a significant body of evidence highlighting its association with lymph 

node metastasis and poor patient survival in a many human tumours, including 

melanoma and breast cancer127,126,130,134. More recently, lymphatics have been 

postulated to play a more active role in the tumour microenvironment than previously 

thought, with remodelling and expansion of the lymphatic network associated with 

tumour immune landscapes. The contribution of lymphangiogenesis to the immune 

composition and function of associated TDLNs is somewhat less clear. Hence, we 

wished to explore further the functional contribution of lymphatics in the tumour 

microenvironment including TDLNs, using melanoma as our model of choice, due to 

its highly immunogenic nature.  

 

In line with published work127,191, we first confirmed that expanded lymphatic networks 

were established in tumour-draining brachial lymph nodes of B16.F10 tumours. Day 4 

TDLNs exhibited varying degrees of lymphangiogenic responses, indicating an early 

transitional phase in response to the tumour, unlike later TDLNs, where Day 11 

consistently detected extensive lymphatic expansion. Interestingly, in early TDLNs, 

the bulk of lymphangiogenesis occurred in capsular vessels rather than those of 

deeper sinuses, potentially alluding to a specific functional need for more vessels at 

the node periphery. When looking at primary lesions in the dermis from induced 

TyrCreERBrafCAPtenlox mice (Figure 3.6), an increase in the number of lymphatic vessels 

was observed even from the earliest pre-malignant lesions, suggesting that the 

lymphangiogenic programme is initiated early in tumour development, and is likely key 

for communication with downstream lymph nodes. Further work is needed to assess 

the transcriptional profiles of lymphatics derived from both B16-tumours and Braf-

tumours, with matched draining lymph nodes over time. This could be achieved 

through isolating lymphatics from pooled tumours by FACS and conducting a 

microarray or single-cell sequencing. If matched with proteomic analysis, this would 

identify not only transcriptional signatures but also proteomic signatures, which are 

site-specific in tumour development. This analysis would also give an indication of 

upstream drivers of lymph node changes, which is currently lacking in this work and 

in the field’s understanding of LN transformation in response to tumour 
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microenvironment derived factors. This further suggests that lymphatics of TDLNs 

respond to early factors derived from the evolving tumour microenvironment, giving 

rise to a fully expanded lymphatic network in late TDLNs. The kinetics of lymph node 

lymphatic expansion is poorly understood, so not only did this act as verification that 

there is a lymphangiogenic response in our models, but also that this is an early event 

in tumour development. This is particularly pertinent when considering therapeutic 

targeting of metastasis via inhibition of lymphangiogenic signals, as this data suggests 

perhaps the optimal window for blocking lymphangiogenesis is in early stages of 

tumourogenesis. Also, as VEGF-C mediated lymphangiogenesis has been shown to 

be associated with an immune suppressive tumour infiltrate190; anti-lymphangiogenic 

therapy is likely to have an effect on immune dynamics in TDLNs also. As TDLNs act 

as the hub for immune response initiation, lymphangiogenesis may have a prominent 

effect on the priming of immune responses in early TDLNs. This could then set the 

scene for a developing tumour, skewing the immune response either in favour of or 

against tumour progression. Hence, application of anti-lymphangiogenic therapy must 

consider temporal and spatial effects on the immune response, with characterisation 

of immune changes in the primary tumour and TDLNs, at early and more developed 

time-points required. Adding further complexity to the matter is a recent finding, that 

VEGF-C mediated lymphangiogenesis also dictates susceptibility of a tumour to 

immunotherapy. Whereas it was hypothesised that anti-lymphangiogenic therapy 

would reduce risk of metastasis and perturb infiltration of suppressive immune cells, it 

was found in this study that lymphangiogenic tumours were in fact more sensitive to 

immune therapy, with better tumour rejection, reduced metastasis, epitope spreading 

and re-challenge protection reported189. As we see lymphangiogenesis early on in 

tumour development, in both primary tumours and TDLNs, this finding is intriguing and 

suggests that perhaps early administration of immune therapy to lymphangiogenic 

tumours may indeed have a positive impact on the anti-tumour immune response. By 

suggesting that lymphangiogenesis is a critical parameter in successful immune 

priming by immune therapy, it may be the case that lymphangiogenesis directly 

influences immunity by facilitating better immune cell trafficking delivery of tumour 

antigen to TDLNs. Indeed, it is already known that lymphatics archive tumour antigen 

and directly modulate tumour-antigen specific CD8 T-cells188. Hence, as 

lymphangiogenesis plays a critical role in tumour development and has perhaps a 

complex role in the anti-tumour immune response, it is essential to better define how 
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lymphatics directly modulate immunity in the tumour microenvironment. As lymph 

nodes communicate with tumours from early stages of development and mount 

immune responses, it is critical to specifically understand early lymphatic contributions 

in the lymph node. Hence, in order to determine how TDLN lymphatics functionally 

respond to factors derived from the early developing tumour microenvironment, we 

identified the transcriptional changes occurring in lymphatic endothelial cells from pre-

metastatic TDLNs. 

 

As well as changes in expression of gene targets from a number of canonical 

endothelial biology and cell cycle pathways, transcriptional profiling revealed 

expression changes of gene targets associated with pathways pertaining to immunity. 

Both in early and late TDLNs, expression of gene targets from immunity-associated 

pathways were altered, confirming that lymphatics were indeed functionally changed 

in response to factors derived from the tumour microenvironment, in favour of immune 

modulation. Gene targets of interest that were altered encompassed endothelial 

permeability, chemokine signalling and immune interactions, with expression of key 

dendritic cell migration factors altered. With greater lymphatic coverage of the node, 

expanded lymphatics provide a better network for immune cell access, which twinned 

with potential changes in permeability, has implications not only for immune cell 

access, but also dissemination of soluble factors and antigen. Characterised as 

amateur APCs, with the ability to archive and present antigen, TDLN-derived LECs 

are perhaps not only passively supplying more antigen to TDLNs through heightened 

permeability, but also actively processing and presenting antigen to interacting 

immune cells. Furthermore, disruption of migratory cues, resulting from down-

regulated chemokine expression, could cause changes to localised chemokine 

gradients. Collectively, we have confirmed the role of LECs in immunity, showing an 

active role in immune modulation in the form of immune receptors, antigen processing 

and presentation and chemokine expression. However, our novel contribution to the 

understanding of lymphatic immunology is the capacity for these roles to be altered by 

factors derived from the tumour microenvironment, with unique functionality of TDLN-

LECs defined.  

 

We further investigate for the first time, TDLN data from patient TCGA repositories. 

Due to links between dendritic cell behaviour and immunity, and lymphangiogenesis 
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we focused on the association between microarray defined top hits and dendritic cell 

marker, ITGAX. Having verified up-regulation of Podoplanin protein expression in 

TDLN-derived LECs and hence hypothesising a role for Podoplanin in modulation of 

immune interactions, positive correlation with ITGAX expression in human patient 

TDLNs, was encouraging. This confirmed a potential role for Podoplanin in dendritic 

cell infiltrate in human melanoma-derived TDLNs, suggesting not only a role for 

Podoplanin in murine models, but also identifying it as a clinically relevant gene target. 

Surprisingly, CCL21A and JAM3, which are well defined mediators of migration and 

physical immune cell interactions with endothelium, did not correlate with ITGAX 

expression. Whereas these factors are known to be critical for dendritic cell movement 

in basal and inflammatory settings, these factors may be of less importance in human 

TDLNs. Other lymphatic markers and top up- and down- regulated hits in our 

microarray also did not significantly correlate with ITGAX expression, suggesting 

perhaps independent roles in human melanoma. Technical issues could also explain 

a lack of detection, as bulk tissue would have been used for this analysis. As LECs 

and migratory DCs are a small composite of the lymph node, perhaps only stronger 

correlative signatures were detected, with weaker associations undetected.  

 

Overall, this data indicates that not only are lymphatics in TDLNs expanding in 

response to factors derived from the tumour microenvironment but are also 

undergoing key pre-metastatic transcriptional alterations that likely have significant 

ramifications for the anti-tumour response, in particular dendritic cell mediated 

immunity. We hypothesise that the physical and soluble interactions between dendritic 

cells and lymphatic endothelial cells are modified early on in tumour development, 

although whether they are enhanced or perturbed is currently unclear. As the soluble 

cues driving dendritic cell mobility are well characterised in the literature, focus will be 

given to investigating the physical interactions between these cells. We will determine 

how these physical interactions are altered in TDLNs and what mechanisms drive 

these interactions, focusing on key hits from the microarray, namely Podoplanin, which 

we hypothesise to play a critical role in this process.  
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4.  Determining the interactions between DCs and LECs in TDLNs 

 

4.1. Introduction  
 

In recent years, there has been a surge of interest towards the potential use of 

dendritic cells in cancer immunotherapy, aiming to manipulate the immune-priming 

functionality of dendritic cells, creating ‘vaccines’ by pulsing with tumour antigen. As 

the immune system is suppressed in the tumour microenvironment, these studies 

sought to use dendritic cell-based vaccines to re-establish a potent anti-tumour 

immune response. Due to the immunogenic nature of melanoma, many of these trials 

have been conducted in patients diagnosed with metastatic melanoma. These efforts 

however have had limited efficacy, with variable responses in patients215,216. Due to 

the complexity of mounting an immune response, there are a number of confounding 

factors that could contribute to the inefficiencies of dendritic cell vaccines. Not only 

must dendritic cells be sufficiently and precisely prepared prior to patient vaccination, 

but also, there are a number of in-situ hurdles. The main hurdle in priming an anti-

tumour response is migration. Dendritic cells must acquire a migratory phenotype and 

interact with a number of stromal cells to exit the tumour and reach tumour-draining 

lymph nodes via the lymphatics. In addition, they must migrate through lymph nodes 

towards T-cell zones for immune cell priming. A recent study has indeed shown that a 

significant number of total vaccinated dendritic cells remain in the tumour itself rather 

than migrating217. This has hence been an important area for research, with much 

work exploring the soluble and physical cues needed for dendritic cell migration in 

healthy and diseased states. A particular knowledge area lacking and poorly 

understood is the relative contribution of non-immune stromal cells. Dendritic cell 

migration along lymphatic vasculature is well characterised in resting and 

inflammatory states with ICAM-1, VCAM-1, LYVE-1 and CCL2116, 52, 55,63, all identified 

as essential mediators of migration. In specific regard to lymph nodes, as well as 

CCL21 signalling, Podoplanin was recently identified as a mediator of dendritic cell 

migration along FRC conduits in lymph nodes, facilitating access to T-cell zones in 

resting and inflammatory states77. However, there remains a lack of mechanistic 

research into the migratory patterns of dendritic cells in the wider tumour 

microenvironment, and their interactions with stromal cells on route to tumour-draining 
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lymph nodes. The primary stroma that dendritic cells interact with when trafficking from 

the periphery to respective draining LNs is the lymphatic vasculature. In Chapter 3, we 

identified a number of gene targets associated with immune pathways with altered 

expression levels in LECs of tumour-draining lymph nodes; multiple factors pertained 

to dendritic cell interactions. In light of these findings and the current knowledge gaps 

in dendritic cell biology and dendritic cell-mediated cancer therapy, we sought to take 

these observations forward do determine the interactions between lymphatic 

endothelial cells and dendritic cells in tumour-draining lymph nodes. 
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4.2. Methods  
 

4.2.1. In vivo dendritic cell migration assay  
 

To assess localization of tumour-derived migrated DCs LNs from tumour-bearing 

mice, control NDLNs and Day 5 TDLNs were retrieved from mice that had been TRITC 

painted, as described in Section 2.3. Lymph nodes were then processed for flow 

cytometry analysis and confocal imaging.   

 

For flow cytometry, lymph nodes were digested as previously described in Section 2.2 

and prepared for flow cytometry as described in Section 2.8. Single cell suspensions 

were stained with Pacific Blue-conjugated CD8a, 488-conjugated CD103, PeCy7-

conjugated CD11c, APC-conjugated MHCII and APC-Cy7-conjugated CD11b. Details 

of all antibodies used are listed in Table 2.10. Samples were run on the LSR BD 

FortessaTM flow cytometer as described in Section 2.8, with TRITC detected using the 

488nm laser and 532/561nm filter. Quantification of TRITC+ dendritic cells in each 

lymph node was conducted using offline FlowJo® software, gating on CD11c+ cells 

within singlets. TRITC+ dendritic cells were gated within specific dendritic cell 

subpopulations gating on CD11b+, CD8a+ or CD103+ populations within total CD11c+ 

cells. Raw counts per lymph node and respective percentages were exported into 

Microsoft Excel.  

 

For immunofluorescent imaging, LNs were processed for histology using methods 

outlined in Section 2.9, stained for LYVE-1 and Podoplanin and nuclei counterstained 

with DAPI (1: 10,000) for confocal microscopy. Whole tile-scans at 20x magnification 

and 1024 resolution were taken of whole nodes. Quantification of TRITC+ cells within 

the subcapsular sinus was conducted using HALOTM image analysis software. The 

node was partitioned digitally, with the ‘Total Lymph Node Area’ defined using the 

DAPI counterstain to mark out the perimeter of the node. The ‘Outer Region’ was 

defined as area ≤150m from the edge of the node and the ‘Inner Region’ was defined 

as area ≥150m from the edge (Figure 4.1a). A TRITC quantification mask was 

manually set-up, ensuring that only TRITC+ cells were detected using this mask 

(Figure 4.1b). Automated analysis of each defined area then detected specific TRITC+ 

cells within each part of the node. Automated analysis yielded data for the following 
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parameters, Total Lymph Node Area (mm2); TRITC Area Coverage (mm2); TRITC 

Coverage (% of Area). In conclusion, this method enabled us to compare the relative 

distribution of TRITC cells in NDLNs and early TDLNs. 

 

 

 
Figure 4.1. Schematic outlining methods of quantifying TRITC+ cells.  For quantification of TRITC 
coverage in different compartments of the lymph node, a detection perimeter was defined in HALOTM 
image analysis software and detected, with outer and inner regions defined on distance from the edge 
(A). To detect TRITC+ only cells, a detection mask for AlexaFluor594 was created. Each regional mask 
(Whole LN, Inner Region, Outer Region) was then analysed using the TRITC detection mask (B). 
Settings were saved and used for future analyses.  

 

4.2.2. In vitro characterisation of lymphatic endothelial cells  
 

To characterise LECs cultured in vitro, cells were cultured on collagen-coated circular 

coverslips (12mm diameter) in 24-well plates and cultured until a monolayer was 

formed. For characterisation using flow cytometry, cells were processed according to 

methods outlined in Section 2.8 and stained with biotin-conjugated anti-LYVE1, PE-

conjugated ESAM, APC-conjugated anti-Podoplanin, 488-conjugated anti-CD31, 488-

conjugated anti-ICAM1, 488-conjugated anti-VCAM1. For LYVE-1, staining with 

fluorescent conjugated streptavidin was conducted for a further 30 minutes, followed 
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by further washes with PBS. Details of all antibodies used are listed in Table 2.10. 

Cells were then processed on the LSR BD FortessaTM flow cytometer as described in 

Section 2.8. For ICAM/VCAM measurements by flow cytometry, cells were also 

treated with TNF-alpha (100ng/ml) at 37ºC for 18 hours.  

 

For immunofluorescent characterisation, cells were processed according to methods 

outlined in Section 2.9 and stained with rabbit primary antibodies against PROX-1. 

Cells were then stained with fluorescently conjugated anti-rabbit secondary 

antibodies. Details of all antibodies used are listed in Table 2.11. 

 

4.2.3. Quantification of dendritic cell morphology 
 

To quantify changes in dendritic cell morphology upon physical interaction with CCM 

or TCM-conditioned LECs, the number of cellular protrusions, cell area and the 

sphericity of each cell was quantified using image analysis software FIJI (Figure 4.2). 

Having set the scale accordingly, measurement of the shortest and longest length 

allowed for manual calculation of the sphericity index (SI = shortest length / longest 

length) (Figure 4.2a). Protrusions were also manually calculated, with a protrusion 

defined by a clear dendrite extension (Figure 4.2b). Cell area was measured by 

manually drawing around the edge of each cell, providing a 2D area measurement 

(Figure 4.2c).    
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Figure 4.2. Schematic outlining methods of quantifying morphological features of DCs.  For 
quantification of sphericity index, the shortest and length of each cell was defined and calculated using 
the equation stated (A). The number of protrusions per cell were manually counted, as shown in red 
(B). The cell area was calculated by manually drawing around each cell (dotted white line) (C).  
 
 
 
 
 
 
 
 
 

CCM TCM

1

28

7

6

4

5

3

1
2

3

4

5

6
78

9

10

11

12

105.2μm2

233.9μm2

A

Sphericity Index (SI)

Longest length (black)

Shortest length (white)
SI = 

B

No. of Protrusions

C

Cell Area

(dotted white line)

GFP-CD11c DCs 



125 

 

4.2.4. In vivo characterisation of lymphatic networks in dermal ear sheets 

 

For staining of lymphatic vessels in wholemount ears, dermal ear sheets were 

processed in accordance to methods outlined in Section 2.9.3. Ear sheets were 

stained with rabbit anti-LYVE1, rat anti-CD31 and Syrian hamster anti-Podoplanin, 

followed by fluorescent-conjugated anti-rabbit and anti-rat secondary antibodies. Ear 

sheets were then treated with RapiClear® to enhance visual clarity when imaging, 

following the protocol described in Section 2.9.3. Ear sheets were then imaged using 

confocal microscopy. With multiple z-stacks taken per ear sheet across regions of 

interest, at a magnification of 20x and resolution of 1024 x 1024.  

 

4.2.5. Measurement of Podoplanin expression by flow cytometry 
 

For assessment of Podoplanin expression in PDPN-FL tissues, lymph nodes and ears 

were digested in accordance to methods outlined in Section 2.2 and processed for 

flow cytometry as described in Section 2.8. Single cell suspensions were stained with 

488-conjugated anti-CD31, PeCy7-conjugated anti-CD45, APC-conjugated anti-

Podoplanin and Biotin anti-LYVE1. Secondary steps were conducted using APC-Cy7-

conjugated streptavidin antibodies. Cells were then processed on the LSR BD 

FortessaTM flow cytometer as described in Section 2.8. To assess Podoplanin 

expression specifically on lymph node lymphatic endothelial cells, the geometric mean 

fluorescent intensity of Podoplanin within the CD45- CD31+ LYVE1+ population was 

calculated.  

 

For in vitro dermal lymphatic endothelial cells, samples were retrieved from culture 

and stained for Podoplanin as per methods outlined in Section 2.8. Cells were stained 

with violet viability dye and APC-conjugated anti-Podoplanin and processed on the 

LSR BD FortessaTM flow cytometer as described in Section 2.8. The geometric mean 

fluorescent intensity of Podoplanin, within total viable cells, was calculated for control 

and TCM treated samples. Fold changes were calculated relative to control samples.  
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4.3. Results 

 

4.3.1. Differential migratory patterns of dendritic cells in early TDLNs 
 

To determine whether the interactions between lymphatic endothelial cells and 

dendritic cells are altered in early TDLNs, imaging of lymph nodes from TRITC-painted 

mice was employed. The use of TRITC ‘paint’ is an established method to assess 

migratory behaviour of dendritic cells218, 219, 220. The sensitising TRITC paint applied to 

the skin upstream of lymph nodes, where upon crossing the epithelial barrier, 

migratory dendritic cells take up the agent and migrate to draining lymph nodes. We 

used this method to assess any differences in lymph node localisation and infiltration 

of TRITC dendritic cells coming from early tumours.  

 

To highlight the localisation of migrated dendritic cells relative to lymphatics, lymph 

nodes were also stained with lymphatic marker, LYVE-1. In both NDLNs and early 

TDLNs, TRITC dendritic cells could be seen in the nodes, demonstrating that skin and 

tumour-derived dendritic cells had indeed migrated from early tumour sites in 

response to stimulation. In control NDLNs, TRITC dendritic cells were observed 

primarily in the inner cortex, with very few detected within the outer region or 

subcapsular sinus of the node (Figure 4.3a). In contrast, although many TRITC 

dendritic cells were found in the inner cortex of early TDLNs, a significant accumulation 

of cells was detected in the outer regions and subcapsular sinuses of the nodes 

(Figure 4.3b-d).  

 

To determine the extent of differential localisation between NDLNs and TDLNs, the 

distance TRITC dendritic cells had migrated from the edge of the node was quantified. 

Multiple measurements were taken per node, demonstrating a range of 136.0µm to 

258.9µm, with an average of 198.5µm ± 17.4µm in control NDLNs and 105.9µm to 

230.1µm in Day 4 TDLNs, with an average of 150.5µm ± 27.6µm (Figure 4.4a). These 

control measurements acted as a cut-off range for further automated measurements, 

highlighting that most TRITC dendritic cells migrate >150µm into lymph nodes in 

control settings.  
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Figure 4.3. Migratory TRITC+ DCs cluster in outer regions of early TDLNs in association 
with subcapsular lymphatics. Control NDLNs (A) and Day 4 TDLNs (B-D) from B16-F10 
tumour-bearing mice were immunofluorescently stained with LYVE-1 (green) with periphery-
derived migratory dendritic cells marked with TRITC (red). Regions of interest were imaged at 
20x magnification using confocal microscopy. Shown are representative FOVs from n=5 
independent experiments, with n=9 NDLNs and n=18 Day 4 TDLNs. Dotted lines define the 
lymph node edge (A) and subcapsular sinuses (B). Scale bars represent 50µm. 
 
 
 

LYVE-1 
TRITC DCs 
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Figure 4.4. Increased clustering of migratory TRITC+ DCs in outer regions of early 
TDLNs. Control NDLNs and Day 4 TDLNs from B16-F10 tumour-bearing mice painted with 
TRITC were tile scan imaged at 20x magnification using confocal microscopy. Whole lymph 
node images were analysed using offline image analysis software. The distance of TRITC+ 
cells from the edge of the lymph node was manually measured (A) and the quantification of 
TRITC coverage as a percentage of inner and outer lymph node areas was calculated using 
HaloTM software (B,C). The inner lymph node was defined as >150µm from the edge of the 
lymph node (B) and the outer lymph node area was defined as within ≤150µm from the edge 
of the lymph node (C). Manual ratio calculations of outer to inner TRITC coverage was 
calculated using data from B and C (E). Shown is data from n=3 independent experiments 
with n=8 control NDLNs and n=4 Day 4 TDLNs (A), and n=5 independent experiments with 
n=9 NDLNs and n=18 Day 4 TDLNs (B-D). Data presented as 25th to 75th percentiles box 

plots, with 5-95% percentile whiskers and median line shown (A). Data presented as mean  

SEM (B-D). Statistical significance was calculated using the Mann Whitney test (P0.05). 

 

ND
LN

s
D4

 TD
LN

s

0

50

100

150

200

250

300

D
is

ta
n

c
e
 f

ro
m

 S
C

S
 (
µ

m
)

P = 0.10

T
R

IT
C

 (
%

 o
f 

O
u

te
r 

A
re

a
)

ND
LN

s

D4
 TD

LN
s

0.0

0.2

0.4

0.6

0.8

1.0 *

R
a
ti

o
 (

O
u

te
r 

: 
In

n
e
r)

ND
LN

s

D4
 TD

LN
s

0.0

0.2

0.4

0.6

0.8
P = 0.05

T
R

IT
C

 (
%

 o
f 

In
n

e
r 

A
re

a
)

ND
LN

s
D4

 TD
LN

s

0.0

0.5

1.0

1.5
P = 0.77

A

B C D



129 

 

To more precisely quantify spatial distribution of TRITC dendritic cells the relative 

localisation was determined using image analysis software, as per methods outlined 

above in Section 4.2. Nodes were partitioned based on previously defined parameters, 

with the ‘outer region’ defined as <150µm from the edge and the ‘inner region’ defined 

as >150µm. The area of each node covered by TRITC positive cells, relative to inner 

and outer nodal regions, was calculated as a percentage of the area or as total area 

coverage. There was no difference between NDLNs and early TDLNs, in terms of 

TRITC coverage in the inner nodal regions. (Figure 4.4b), with TRITC coverage 

averaging 0.88% ± 0.24% in control NDLNs and 0.92% ± 0.15%. However, an 

increase in the percentage of TRITC coverage within the outer nodal regions was 

seen, with an average percentage coverage of 0.31% ± 0.10% in control NDLNs and 

0.65% ± 0.11% in Day 4 TDLNs (Figure 4.4c). The ratio of outer to inner TRITC 

coverage was hence increased with the average ratio of outer coverage to inner 

coverage calculated as 0.40 ± 0.06 in control NDLNs and 0.66 ± 0.08 in Day 4 TDLNs, 

as expected (Figure 4.4d). Overall, this demonstrates a quantifiable change in TRITC 

dendritic cell localisation in the TDLNs of early tumours, with an outer clustering 

phenotype observed.  

 

To assess whether the change in migration of TRITC dendritic cells was restricted to 

localisation or whether numbers of migratory dendritic cells were also altered, flow 

cytometry was carried out on whole lymph nodes. Using the gating strategy outlined 

in Figure 4.5 (NDLN vs TDLN gating in Appendix 7), we first observed a significant 

increase in lymph node cellularity, with average cellularity between control lymph 

nodes and Day 4 TDLNs increasing by 2.5-fold (Control LNs Average, 0.61x106 ± 0.16; 

Day 4 TDLNs Average, 1.53x106 ± 0.16) (Figure 4.6a). This trend is in line with 

published work 191 and previously described findings in Chapter 3. Upon gating within 

CD11c+ singlets, an increasing trend in the number of CD11c+ dendritic cells could 

be seen with the average count per node fold-change calculated in control LNs as 1.00 

± 0.18 and in Day 4 TDLNs as 1.94 ± 0.27 (Figure 4.ba). Although with increases in 

whole lymph node cellularity, this equated to an overall significant decrease in the 

percentage of CD11c+ dendritic cells, relative to singlets (Control LNs Average, 6.8% 

± 1.0; Day 4 TDLNs Average, 4.25% ± 0.4) (Figure 4.6c). 
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Gating specifically on subpopulations within total CD11c DCs revealed similar trends 

with the count per node fold-change increased in CD8a, CD11b and CD103 DCs 

(Figure 4.6d-f). Relative to total CD11c DCs however, percentages were unchanged 

in CD8a subpopulations but significantly decreased in CD11b and CD103 

subpopulations (CD11b, Control NDLNs - 81.6% ± 2.9 and Day 4 TDLNs - 68.8% ± 

3.4; CD103, Control NDLNs - 16.7% ± 1.0 and Day 4 TDLNs - 11.8% ± 0.7) (Figure 

4.6g-i).   

 

TRITC+ migratory CD11c+ dendritic cells revealed similar trends, with increases both 

in the number and percentage of TRITC+ cells (Figure 4.7a-d). Average count per 

node fold-changes yielded significant increases in total TRITC+ CD11c+, with almost 

significant increases seen in migratory populations, CD11b and CD103. Average 

count per node fold-changes in Day 4 TDLNs relative to control NLDNs, were 1.99 ± 

0.33 in TRITC+CD11c+, 1.71 ± 0.27 in TRITC+CD11b+ and 2.15 ± 0.46 in 

TRITC+CD103+ subpopulations (Figure 4.7e-g). A statistically significant increase in 

the TRITC count fold-change in resident CD8a+ populations was also seen, however 

as the number of TRITC+ cells detected in this population was <50 per node, this is 

an insignificant contribution to the overall trends of migratory DCs. As a percentage of 

the total subpopulation, e.g. TRITC as a percentage of CD8, trending increases could 

be seen across CD8, CD11b and CD103 populations, however with no statistically 

significant changes (Figure 4.7i-l). Reconciling the increase in count of TRITC+ 

CD11c+ (Figure 4.7a). with the decrease in the percentage of CD11c+ relative to 

singlets (Figure 4.6c), this data suggests the increase in TRITC+ CD11c+ DCs in early 

TDLNs is not sufficient to compensate for the rapidly expanding node, as shown in 

Figure 4.6a, resulting in the overall decrease in the percentage of CD11c+ DCs seen.  

 

Firstly, this data defines TRITC+ cells as predominantly expressing CD11b and 

CD103, confirming TRITC+ cells present in the LN as migratory DCs. Secondly, this 

data collectively demonstrates that increases in total CD11c were partially accounted 

for by increases in migratory populations. Finally, these findings overall describe a 

definitive and significant increase in lymph node cellularity in Day 4 TDLNs, which is 

accompanied by changes in dendritic cell composite, with increasing numbers of total 

and migratory CD11c+ dendritic cells. Hence in addition to delocalisation, there appear 
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to be changes in the dynamics of influx from the periphery as well as intrinsic changes 

to resident populations.  

 

 

Overall, from both the immunofluorescent and flow cytometry analysis, we concluded 

that in early TDLNs, there is enhanced migration of dermal derived dendritic cells, 

comprised mostly of CD11b+ subsets. These migratory dendritic cells, upon arrival at 

early TDLNs, accumulate at the edge of the lymph node within the subcapsular sinus. 

This suggests an important role for lymphatics in the migration of tumour-derived 

dendritic cells, posing the question as to whether they are perturbing or promoting 

tumour-derived dendritic cell mediated immunity. 
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Figure 4.5. Gating strategy for dendritic cell profiling in TDLNs from TRITC painted 
tumours. Representative gating strategy to identify dendritic cell populations. Total CD11c+ 
dendritic cell populations and migratory CD11c+ TRITC+ highlighted within gates shown in 
(A). Within total CD11c+ dendritic cell populations, sub-populations were gated on CD8a+, 
CD11b+ and CD103+, with TRITC denoting migratory dendritic cells within each sub-
population. Full gating for NDLN vs Day 4 TDLN is detailed in Appendix 7.  
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Figure 4.6. Lymph node cellularity and dendritic cell counts is increased in early TDLNs. 
Using flow cytometry, NDLNs and TDLNs were analysed for total lymph node cellularity (A), 
total CD11c dendritic cells in terms of total count and as a percentage of singlets (B,C). 
Quantification of subpopulations of dendritic cell – CD8a, CD11b, CD103, in terms of count 
fold-change (D-F) and percentage of total CD11c DCs (G-I). Shown is data from three 
independent experiments, with n=7 Control NDLNs and n=13 Day 4 TDLNs. Data presented 

as mean  SEM. Statistical significance was calculated using the Mann-Whitney test (P0.05). 
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Figure 4.7. Altered profiles of TRITC+ dendritic cell subpopulations in early TDLNs. 
Using flow cytometry, TRITC+ CD11c DCs and subpopulations of dendritic cells – CD8a, 
CD11b, CD103, in NDLNs and TDLNs were analysed for subset count fold-change (A-D), raw 
count per lymph node (E-H), and TRITC percentage of subset (I-L). Shown is data from three 
independent experiments, with n=7 Control NDLNs and n=13 Day 4 TDLNs. Data presented 

as mean  SEM. Statistical significance was calculated using the Mann-Whitney test (P0.05).  
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4.3.2. Murine LECs express canonical endothelial markers 
 

To investigate the consequences of accumulation within the SCS, and how lymphatics 

may impact dendritic cell migration into the node, a simple in vitro model using LECs 

(LECs) and isolated DCs was developed. Firstly, we characterised expression profiles 

of LECs grown on collagen-coated plates (Figure 4.8).  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.8. In vitro LECs express canonical lymphatic markers and lymphatic 
transcription factor, PROX-1. Primary LECs were grown in vitro on collagen-coated plates 
(50µg/ml) until a monolayer had formed and imaged using phase-contrast. Scale bars 
represent 400µm (A). Primary LECs were grown on collagen-coated glass coverslips until a 
monolayer had formed and immunofluorescently stained for lymphatic marker and 
transcription factor, PROX-1 (green). Cells were imaged at 20x magnification using confocal 
microscopy. Scale bars represent 100µm (B). Primary LECs were grown in vitro on collagen-
coated plates (50µg/ml) until a monolayer had formed, and stained with fluorescently-
conjugated antibodies for flow cytometry, assessing the expression of lymphatic surface 
markers (CD31, ESAM, Podoplanin and LYVE-1). Unstained cells were processed as controls 
and used to set the threshold for negative expression (white peaks). Positive expression of 
these markers is denoted by a shift in the histogram peak relative to controls (grey peaks) (C). 
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Phase contrast imaging revealed classic “cobble-stone” morphology (Figure 4.8a), 

with confocal microscopy showing prominent expression of lymphatic transcription 

factor, PROX-1 (Figure 4.8b). Flow cytometry also showed positive expression of 

lymphatic markers ESAM, CD31, Podoplanin and LYVE-1 (Figure 4.8c), with ESAM 

and LYVE-1 expressed to a higher extent than CD31 and Podoplanin.   

 

4.3.3. Enhanced physical interactions between DCs and LECs in vitro  
 

Having established their expression profile, LECs were used for co-culture interactions 

assays. Cells were cultured on collagen-coated plates until a monolayer was formed, 

and splenic GFP-CD11c added to assess the physical interactions between the two 

cell types (Figure 4.9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 4.9. Schematic of in vitro dendritic cell assays used to assess lymphatic 
interactions. Adhesion assays used to count number of adherent GFP-DCs and assess 
morphological changes (A). Transmigration assays used to count number of GFP-DCs in 
bottom chamber (B). GFP+ dendritic cells (GFP-DCs). 
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Physical interactions were assessed by a) adhesion to a monolayer, b) morphological 

changes when interacting with a monolayer, c) transmigration across an endothelial 

monolayer grown on transwells and d) movement across a monolayer. This 

capitulated the physical interactions that occur at the subcapsular sinus, when arriving 

migratory DCs bind to and traverse the lymphatic lining in order to enter the lymph 

node. LECs were pre-treated with TCM for 48hrs to recapitulate the short-term 

exposure that lymphatics undergo in early TDLNs over the 4-days post tumour cell 

inoculation and TCM was derived from the same B16-F10 tumour cells injected in vivo.  

 

Indeed, when co-cultured with TCM-conditioned LECs the number of protrusions per 

cell was significantly increased, with an average of 3.5 ± 0.4 DC protrusions in control 

treated conditions and 5.6 ± 0.82 in TCM treated conditions (Figure 4.11a,b). 

Appearance of dendrites is associated with maturity, transmigration and antigen 

uptake and presentation 222,77. Dendritic cells cultured with TCM-conditioned LECs 

were also larger, with an average DC area of 67.7µm2 ± 6.3 in control treated 

conditions and 93.1µm2 ± 11.5 in TCM treated conditions. (Figure 4.11a,c). This did 

not represent a statistically different change. Upon quantification of sphericity, i.e. the 

degree of morphological change from initial spherical appearance, there was no 

difference between conditions either with an average sphericity index of 0.58 ± 0.04 

in control treated conditions and 0.56 ± 0.03 in TCM treated conditions (Figure 

4.11a,d). 

 

Interestingly, whilst these cells seemed more adherent and exhibited anchorage 

phenotypes morphologically, they were less motile. Using a transwell system, the 

number of GFP+ CD11c+ dendritic cells that migrated across an endothelial 

monolayer akin to the subcapsular sinus floor, into the bottom chamber was quantified. 

An average of 38 cells ± 8.0 per field of view had migrated across control treated 

endothelium, whereas only 19 cells ± 1 per well migrated across TCM-conditioned 

endothelium (Figure 4.12). A 50% decrease in migration in the presence of more, 

stronger interactions implies TCM-conditioned endothelium impairs DC movement. 

Indeed, upon assessment of motility across a lymphatic monolayer using live-cell 

tracking over an hour, cells were more stationary. Offline analysis of live-cell tracking 

showed the movement of DCs from their preliminary position had a more limited range 

in TCM treated conditions, compared to control treated conditions (Figure 4.13a). 
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Upon quantification this translated to some significant changes in motility, with the 

speed of DC movement, the length of trajectory and the distance of DC movement 

from their starting position all significantly reduced in the presence of TCM conditioned 

LECs.  

 

As all assays were conducted over a 1-hour duration in culture with treated lymphatic 

endothelial cells, these findings demonstrate that over this duration, DCs anchor down 

and adhere to TCM-conditioned lymphatic endothelium more than they do with control 

treated lymphatic endothelium; with indicative morphological changes. The function 

consequence of this is reduced transmigration and motility.  
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Figure 4.10. Enhanced adhesion of dendritic cells to TCM-conditioned LECs in vitro. 
GFP-DCs were co-cultured with LECs grown on collagen-coated plates (50µg/ml) and 
conditioned with tumour-conditioned media (TCM) for 1hour or 48hours prior to co-culture. 
GFP-DCs adhered to monolayers of LECs imaged using the EVOS® system. Representative 
FOVs shown and scale bars represent 200µm (A). Adherent GFP+ cells were manually 
counted using FIJI image analysis software. Raw counts were normalised relative to control 
samples within independent experiments to calculate fold changes in adherent GFP-DCs (B). 
Shown is data from n=4 independent experiments with n=77 Control; n=29 TCM (1hr); n=17 

TCM (48hrs). Data presented as mean  SEM. Statistical significance was calculated using 

One-way ANOVA (P0.05).  
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Figure 4.11. Altered dendritic cell morphology upon co-culture with TCM-conditioned 
LECs in vitro. GFP-DCs co-cultured with LECs on coverslips, fixed and imaged using 
confocal microscopy. Representative GFP-DCs from co-cultures with control or TCM-
conditioned LECs. Scale bars represent 10µm (A). Manual counts of protrusions per cell (left) 
and measurements of area (middle), and sphericity index (right) (B). Shown is data from n=2 

independent experiments with n=18 Control; n=12 TCM. Data presented as mean  SEM. 

Statistical significance was calculated using Student t-tests (P0.05).  
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Figure 4.12. Perturbed transmigration of dendritic cells across TCM-conditioned LECs 
in vitro. GFP-DCs were co-cultured with LECs grown on collagen-coated transwell inserts 
(50µg/ml) and conditioned with tumour-conditioned media (TCM) for 48hours prior to co-
culture. Migrated GFP-DCs were imaged using the EVOS® system. Representative FOVs 
shown and scale bars represent 200µm (A). Migrated GFP+ cells were manually counted 
using FIJI image analysis software. Data shown is the number of migrated DCs per FOV, 
calculated by manual counting of the number of GFP+ DCs in the bottom chamber of each 
well (B). Data shown is from n=2 independent experiments with n=16 Control; n=17 TCM 

(48hrs) and presented as mean  SEM. Statistical significance was calculated using Student 

t-tests (P0.05). 
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Figure 4.13. Perturbed motility of dendritic cells across TCM-conditioned LECs in vitro. 
GFP-DCs were co-cultured with LECs conditioned with tumour-conditioned media (TCM) for 
48 hours prior to co-culture. GFP-DCs adhered to monolayers of LECs were tracked using 
live-imaging over a duration of 1 hour. Offline data analysis produced spider-plots to visualise 
motility of DCs during the experiment (A) and quantified motility in terms of speed, length of 
trajectory and displacement (B). Shown is data from n=2 independent experiments. Data 

presented as mean  SEM. Statistical significance was calculated using Student t-test 

(P0.05). 
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4.3.4 Microarray identified candidate gene targets for altered LEC-immune 

interactions in vivo  

 

To visualise changes in soluble and membrane-bound factors involved in LEC-

immune interactions, we analysed our microarray data acquired from LECs derived 

from NDLNs and TDLNs (see Methods 3.22), to determine expression trends in 

molecular targets known to be involved in immune cell adhesion, migration and 

lymphatic interactions (Figure 4.14a). To visualise the changes in expression of these 

factors, heatmaps were created based on fold change or statistical significance to 

eliminate bias (Figure 4.14a). Several factors were unchanged in their expression 

profiles, with chemokine signaling factors, CCL19 and CCRL1 and cell-adhesion 

molecules, ICAM-1, ICAM-2, VCAM-1 and LYVE-1, all showing no difference in fold 

change expression in both Day 4 and Day 11 TDLN-derived LECs (Figure 4.14b). This 

demonstrates that factors derived from early developing B16-tumours may not 

regulate canonical integrin-dependent pathways and LYVE-1, recently identified to 

have cell adhesion properties52. As we observed a difference in dendritic cell-

lymphatic interactions in vivo and in vitro, we concluded that these factors are hence 

unlikely to be responsible for tumour-driven prolonged interactions between dendritic 

cells and lymphatic endothelial cells. The same conclusion was drawn for CCL19 and 

CCRL1; eliminating CCL19 signalling and chemokine scavenging as a means of 

altered dendritic cell localisation in early TDLNs.  

 

Of the factors reported to be required for dendritic cell migration, expression of neither 

Semaphorin-3A nor Semaphorin-7A were altered in early TDLNs (Figure 4.14), 

despite significantly decreased expression of Semaphorin-7A in late TDLNs (Day 11 

TDLNs Fold Change = 0.72, P = 0.005). This suggests that disrupted expression of 

Semaphorin-7A may impact dendritic cell migration and localisation in nodes at later 

stages of tumours development, however is unlikely to be responsible for changes in 

dendritic cell-lymphatic endothelial interactions in early TDLNs. Of the up- and down-

regulated chemokines, CCL21 was down regulated in both Day 4 and Day 11 TDLNs 

(Day 4 TDLNs Fold Change = 0.74, P = 0.024; Day 11 TDLNs Fold Change = 0.71, P 

= 0.009) (Figure 4.14b). As CCL21 is critical for migration, decreased expression in 

TDLNs could indeed contribute towards delocalisation of dendritic cells. However, as 

shown in Chapter 3, CCL21 expression could be detected in all stromal compartments 
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of Day 4 TDLNs, despite significant changes in CCL21 RNA expression by LECs in 

TDLNs. Total CCL21 expression may hence not be perturbed to the extent needed to 

drive changes in dendritic cell interactions with lymphatics at the lymph node 

periphery. Also, in early TDLNs Podoplanin (Gp38) and Chemerin receptor (Cmklr1) 

were both significantly up-regulated (Day 4 TDLNs: Gp38 Fold Change = 1.44, P = 

0.005 and Cmklr1 Fold Change = 1.54, P = 0.003) (Figure 4.14b). As Podoplanin has 

recently been reported to contribute to FRC-dependent dendritic cell mobility once 

within lymph nodes77,235, we were intrigued by the expression changes in early TDLN-

derived LECs. Furthermore, as shown in Chapter 3, increases in RNA expression were 

validated at a protein level using flow cytometry.  
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Figure 4.14. Microarray data of gene targets involved in immune cell interactions. 
Fluorescent intensity values for gene targets with significantly altered expression levels in Day 
4 TDLNs and Day 11 TDLNs relative to control NDLNs, were visualised using heatmaps. 

Genes with expression fold changes 1.25 shown in red and 0.75 shown in cyan (A). 
Tabulated fold change and p-values for each gene target shown in the heatmap (B). Data 
shown is from one independent experiment, with pooled brachial lymph nodes from n=2 mice 
per sample (total n=18).  
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4.3.5. Dendritic cells interact with Podoplanin expressing lymphatic endothelium in 
lymph nodes in vivo 
 

To assess whether migratory dendritic cells come into physical contact with 

Podoplanin in the subcapsular sinus, high magnification confocal microscopy was 

conducted on control NDLNs and Day 4 TDLNs from TRITC painted mice where less 

TRITC+ dendritic cells were found in the outer regions and subcapsular sinus of 

control NDLNs than Day 4 TDLNs. TRITC+ dendritic cells were observed in direct 

contact with areas of the subcapsular sinus that were strongly positive for Podoplanin 

(Figure 4.15). Expression was detected on the ceiling and floor of the sinus, and on 

the strands connecting the ceiling and floor (Figure 4.15). On all Podoplanin positive 

regions of the sinus, TRITC+ dendritic cells could be seen interacting with the ceiling, 

the floor and sinus strands (Figure 4.15). 

 

4.3.6 Tumour-derived factors drive up-regulation of Podoplanin protein expression and 

consequent adhesion of dendritic cells to lymphatic endothelial cells in vitro  

 

Having identified a physical interaction between DCs and LECs at the subcapsular 

sinus, of both resting and early TDLNs, and shown the up-regulation of Podoplanin at 

both an RNA and protein level, we investigated whether Podoplanin could be driving 

prolonged physical interactions in vitro. Indeed at 48-hours, Podoplanin expression 

was up-regulated in LECs treated with TCM. In vitro cultures treated with TCM for 5hrs 

and 72hrs, the fold change in expression of Podoplanin was 0.85 ± 0.14 and 1.60 ± 

0.11, respectively. Whereas in LECs treated with 48hrs, the fold change in expression 

of Podoplanin was 6.19 ± 2.72 (Figure 4.16a). To ensure that TCM was not inducing 

the up regulated expression of other cell adhesion molecules known to bind DCs, TCM 

or TNF- (100ng/ml) was added to cultured cells, and cells processed for flow 

cytometry for expression of CAMs. Treatment dramatically increased the expression 

of VCAM-1, with a lesser affect observed with ICAM-1. Cultures treated with TCM 

showed no up-regulated expression of VCAM-1 and ICAM-1 relative to control treated 

wells (Figure 4.16b). This suggested that B16-F10 derived TCM, did not induce altered 

VCAM-1 and ICAM-1 expression in our in vitro system, and further suggests a lack of 

sufficient levels of factors that induce VCAM-1 and ICAM-1 expression. 
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Figure 4.15. Immunofluorescent imaging of TRITC+ DCs in the subcapsular sinus of 
LNs. Control NDLNs and Day 4 TDLNs derived from B16-F10 tumour bearing mice, painted 
with TRITC. Lymph nodes were immunofluorescently stained for Podoplanin (white) and 
TRITC DCs (red), and imaged using confocal microscopy at 20x (A) and 63x oil (B) 
magnification. Few TRITC DCs can be seen in the subcapsular sinus of control NDLNs (A, 
left panel) and clusters of TRITC DCs seen in the subcapsular sinus of Day 4 TDLNs (A, right 
panel). Those seen in the subcapsular sinus can be seen to interact with Podoplanin positive 
regions (arrowheads) in both Control and Day 4 TDLNs (B). Shown are representative FOVs 
from n=5 independent experiments with n=9 NDLNs and n=18 Day 4 TDLNs. Scale bars 
represent 20µm (A) and 8µm (B).  

 

 

To confirm the role of Podoplanin in physical interactions between DCs and LECs, in 

vitro cultures were treated with Podoplanin blocking antibody clone 8.1.1, which has 

previously been used for in vivo blocking experiments 236. As we had hypothesised 

that Podoplanin was driving prolonged physical interactions, with a dominant adhesion 

and anchorage phenotype, we assessed adhesion of GFP+ DCs to LECs in vitro in 
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resting conditions in the presence of Podoplanin blocking antibody (Figure 4.17a). We 

saw a significant reduction in adherence of GFP+ DCs, with fold-changes in control 

treated LECs averaging 1.00 ± 0.03 and in anti-Podoplanin treated LECs averaging 

0.71 ± 0.06 (Figure 4.17b). Full gating strategies stated in Appendix 8.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.16. Enhanced Podoplanin expression in LECs treated with TCM for 48hrs in 
vitro. Primary LECs cultured in collagen-coated plates and treated with 50% B16-F10 derived 
TCM for 5-72hrs or recombinant TNFα (100ng/ml) overnight. Cells were retrieved from culture 
and stained with fluorescently-conjugated antibodies for flow cytometry, assessing Podoplanin 
(A), ICAM-1 (B) and VCAM-1 (C)  surface expression. Unstained cells were processed as 
controls and used to set the threshold for negative expression. Fold changes in geometric 
mean fluorescent intensity (gMFI) were calculated relative to control untreated LECs per 
independent experiment. Data shown is representative of n=3 independent experiments with 
n=6-10 samples per group. Data is shown ± SEM. Statistical significance calculated using the 
Kruskal-Wallace test. 

 

A 
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Figure 4.17. Podoplanin blockade inhibits DC adhesion to LECs in vitro in resting 
conditions. GFP-DCs were co-cultured with LECs grown on collagen-coated plates (50µg/ml) 
and conditioned with tumour-conditioned media (TCM) for 48hours prior to co-culture. GFP-
DCs adhered to monolayers of LECs imaged using the EVOS® system. Representative FOVs 
shown and scale bars represent 200µm (A). Adherent GFP+ cells were manually counted 
using FIJI image analysis software, and the fold changes in adherent GFP-DCs calculated 
using raw counts normalised to control samples within independent experiments (B). Data 
shown is from n=3 independent experiments with n=76 Control; n=24 anti-Podoplanin. Data 

presented as mean  SEM. Statistical significance was calculated using the Student t-test 

(P0.05). 
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To determine whether splenic DCs used throughout these assays, expressed the 

described ligand of Podoplanin, CLEC-2, we processed spleens and lymph nodes 

using flow cytometry to assess surface expression of CLEC-2 on CD11c+ DCs.  

 

 
Figure 4.18. CLEC-2 is expressed in DCs derived from spleen and lymph nodes. Spleens 
and lymph nodes derived from wild-type C57BL/6 mice were digested and samples stained 
with fluorescently-conjugated antibodies for flow cytometry to assess surface expression of 
CD11c and CLEC-2. Unstained cells were processed as controls and used to set the threshold 
for negative expression. CLEC-2 positive cells gated within total CD11c DCs in splenic and 
lymph node samples (A). Data shown is percentage of CLEC-2 positive expression in 
populations within total CD11c DCs (B). Data shown is representative of n=3 independent 
experiments with n=7 Spleens; n=7 Lymph Nodes. Data is shown ± SEM. Statistical 

significance calculated using the Mann Whitney test (P0.05). 
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As a comparison and to see whether lymph node DCs expressed CLEC-2, resting 

lymph nodes were also processed for flow cytometry. In splenic samples, a defined 

population of CLEC2+ cells could be seen within CD11c+ DCs, whereas in lymph 

nodes a less well-defined population could be seen (Figure 4.18a). Upon quantification 

of the percentage of CLEC2+ populations within CD11c+ DCs, an average of 17.11% 

± 2.09 of CD11c+ DCs expressed CLEC2+ in splenic samples and 7.58% ± 2.52 in 

lymph node samples (Figure 4.18b). This confirms that splenic DCs used throughout 

these assays do indeed express CLEC-2 and hence have the capacity to physically 

interact with and bind to Podoplanin expressing LECs in vitro.  

 

4.3.7 In vivo blockade of Podoplanin inhibits dendritic cell migration into lymph nodes 
 

To investigate further the role of Podoplanin in dendritic cell migration in the extended 

tumour microenvironment, we inhibited Podoplanin along the drainage pathway using 

subcutaneous administration of blocking antibody clone 8.1.1 as previously described 

in literature236. To avoid effects of Podoplanin blocking on lymphatics, tumour cells 

and fibroblasts at the tumour site and thus potentially impairing DC trafficking away 

from the tumour, we instead injected blocking antibody subcutaneously into the front 

leg, to ensure rapid delivery of antibody to the downstream draining brachial lymph 

node. Blocking antibody was administered daily to maintain inhibition of Podoplanin 

throughout the experiment, having allowed 24 hours for inoculated tumour cells to 

settle at the injected site. Tumours were painted with TRITC, using previously 

described protocols, and lymph nodes harvested 18 hours later for histology and flow 

cytometry analysis.  

 

In TDLNs derived from TRITC painted tumours, TRITC+ cells were detected in TDLNs 

in both control IgG and blocking antibody treated conditions. Importantly however, the 

lymphatic expansion phenotype observed in early TDLNs was retained in mice treated 

with IgG controls or blocking antibody. Localisation of TRITC+ cells could be seen at 

the subcapsular sinus and in regions of lymphatic expansion in both IgG and blocking 

antibody treated conditions, however the extent of TRITC infiltrate across FOVs 

appeared reduced in comparison to previously imaged Day 4 TDLNs (Figure 4.19). 

This could be due to both IgG and blocking antibodies perturbing overall infiltrate of 
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TRITC+ DCs, which would explain the overall lack of TRITC+ cells seen in these 

FOVs.  

 

Figure 4.19. In vivo Podoplanin blockade does not alter migratory dendritic cell 
localisation in LNs. Day 4 TDLNs from B16-F10 tumour-bearing mice injected 
subcutaneously daily with IgG control (A) or anti-Podoplanin blocking antibody (B) at a 
concentration of 1mg/ml in 50μl of sterile PBS. Samples were immunofluorescently stained 
with LYVE-1 (green) with periphery-derived migratory dendritic cells marked with TRITC (red). 
Shown are representative FOVs from n>3 independent experiments, with n>10 LNs imaged 
across all groups. Lymph node edge (dashed white line). Dotted lines define the lymph node 
edge and white arrowheads indicate TRITC localisation relative to lymphatic regions. Scale 
bars represent 50µm. 
 

 
 
To determine whether IgG and blocking antibodies did indeed significantly reduce the 

overall infiltrate of TRITC+ DCs, control NDLNs and early TDLNs, from matched 

animals, were processed for flow cytometry. Similarly, to previous experiments, lymph 

nodes were stained for CD11c, CD8a, CD11b and CD103 to discern trends in specific 

DC populations. Across conditions, lymph node cellularity was not significantly altered, 

except for in Day 4 TDLNs treated with anti-Podoplanin blocking antibody (Figure 
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4.20a). Global assessment of CD11c, in terms of count and percentage of singlets 

showed similar trends, with the fold-change count per lymph node also showing 

highest levels in anti-Podoplanin blocking antibody treated Day 4 TDLNs (Figure 

4.20b,c). Similar to previous findings (Figure 4.7), the infiltrate of migratory DC subsets 

was increased in D4 TDLNs versus NDLNs in PBS treated conditions (Figure 4.21). 

However, neither treatment with IgG nor anti-Podoplanin blocking antibody appeared 

to reverse this increased trend. Whether TRITC infiltrate was assessed by counts 

(Figure 4.21) or as a percentage of a population (Figure 4.22), there were no 

significant changes across conditions.   
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Figure 4.20. Podoplanin blockade does not significantly alter dendritic cell counts in 
early TDLNs. NDLNs and Day 4 TDLNs Day 4 TDLNs from B16-F10 tumour-bearing mice, 
injected subcutaneously daily with IgG control or anti-Podoplanin blocking antibody at a 
concentration of 1mg/ml in 50μl of sterile PBS. Samples were digested and stained with 
fluorescently-labelled antibodies for flow cytometry, assessing expression of DC surface 
marker, CD11c. Data shown is total lymph node cellularity (A), total CD11c DCs, as expressed 
by count fold-change (B) and as a percentage of singlets (C). Shown is data from n=2 
independent experiments, with n=4 PBS NDLNs; n=4 anti-PDPN NDLNs; n=6 PBS Day4 

TDLNs; n=6 IgG Day4 TDLNs; n=6 anti-PDPN Day4 TDLNs. Data presented as mean  SEM. 

Statistical significance was calculated using the Kruskal-Wallace test, with P0.05 when 
compared to PBS treated control NDLNs.  
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Figure 4.21. Podoplanin blockade does not significantly alter total counts of migratory 
TRITC DC infiltrate in early TDLNs. NDLNs and Day 4 TDLNs Day 4 TDLNs from TRITC 
painted B16-F10 tumour-bearing mice, injected subcutaneously daily with IgG control or anti-
Podoplanin blocking antibody at a concentration of 1mg/ml in 50μl of sterile PBS. Samples 
were digested and stained with fluorescently-labelled antibodies for flow cytometry, assessing 
expression of DC surface markers, CD11c, CD8a, CD11b and CD103. Data shown is total 
TRITC CD11c (A), TRITC CD8a (B), TRITC CD11b (C) and TRITC CD103 (D), expressed by 
count fold change. Shown is data from n=2 independent experiments, with n=4 PBS NDLNs; 
n=4 anti-PDPN NDLNs; n=6 PBS Day4 TDLNs; n=6 IgG Day4 TDLNs; n=6 anti-PDPN Day4 

TDLNs. Data presented as mean  SEM. Statistical significance was calculated using the 

Kruskal-Wallace test, with P0.05 when compared to PBS treated control NDLNs. 
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Figure 4.22. Podoplanin blockade does not significantly alter the percentage of 
migratory TRITC DC infiltrate in early TDLNs. NDLNs and Day 4 TDLNs Day 4 TDLNs from 
TRITC painted B16-F10 tumour-bearing mice, injected subcutaneously daily with IgG control 
or anti-Podoplanin blocking antibody at a concentration of 1mg/ml in 50μl of sterile PBS. 
Samples were digested and stained with fluorescently-labelled antibodies for flow cytometry, 
expression of DC surface markers, CD11c, CD8a, CD11b and CD103. Data shown is TRITC 
cells, expressed as a percentage of total CD11c (A), CD8a (B), CD11b (C) and CD103 (D). 
Shown is data from n=2 independent experiments, with n=4 PBS NDLNs; n=4 anti-PDPN 
NDLNs; n=6 PBS Day4 TDLNs; n=6 IgG Day4 TDLNs; n=6 anti-PDPN Day4 TDLNs. Data 

presented as mean  SEM. Statistical significance was calculated using the Kruskal-Wallace 

test, with P0.05 when compared to PBS treated control NDLNs. 
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As migratory DC infiltrate, as shown by TRITC CD11c count per lymph node, in early 

TDLNs in untreated LNs were increased relative to control NDLNs, blockade of 

Podoplanin was expected to inhibit the ingress of DCs. This data however shows that 

subcutaneous administration of blocking antibody, using this regime and particular 

antibody concentrations, does not induce significant changes in migratory DC infiltrate 

in early TDLNs.  

 

4.3.8 Dendritic cell migration is perturbed in Podoplanin-flox mice  
 

As little was seen in the in vivo blockade model, we further applied the TRITC tumour 

model to ears of tumour-bearing PDPN-FL mice, as the ear is very lymphatic rich and 

hence we expected to see an exaggerated impact of perturbed Podoplanin signalling 

on DC trafficking to TDLNs. In this case, draining cervical lymph nodes were collected 

for analysis, as they lay downstream of the tumours implanted in the ears. We TRITC 

painted wild type, heterozygous and homozygous PDPN-FL mice inoculated with 

subcutaneous B16-F10 tumours.  

 

Firstly, lymphatic vasculature integrity was assessed using immunofluorescent 

imaging. By staining for lymphatic marker, LYVE-1, and CD31, which is highly 

expressed in blood vasculature; lymphatic vessels in both wild type and homozygous 

PDPN-FL mice displayed undisrupted networks, with no visible alteration in branching 

or vessel morphology (Figure 4.23a). Furthermore, the blood and lymphatic 

vasculature appeared visibly separate in both wild type and homozygous mice. Upon 

assessment of Podoplanin expression, wild type mice exhibited expected expression 

patterns with Podoplanin detected throughout the vasculature and at valves. 

Heterozygous mice appeared to be moderately affected by loss of an allele, with 

similar expression patterns seen across the vasculature, suggesting one allele is 

sufficient for Podoplanin protein translation. As expected in homozygous mice, 

Podoplanin staining was undetectable (Figure 4.23b), with positive Podoplanin 

expression detected in heterozygous ears but to a lesser extent. This characterisation 

led us to conclude that lymphatic vasculature was intact and Podoplanin knockout did 

not affect expression of other markers such as LYVE-1. Therefore, any changes in 
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dendritic cell migration seen in this model, could be attributable to perturbed 

Podoplanin expression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 4.23. Characterisation of lymphatic networks and Podoplanin expression in ear 
dermis from PDPN-FL mice. Ear dermal sheets from PDPN-FL mice of wild type, 
heterozygous and homozygous genotypes were immunofluorescently stained for lymphatic 
surface markers, LYVE-1 and Podoplanin, and blood vasculature surface marker, CD31. 
Samples were imaged at 20x magnification using confocal microscopy. Representative FOVs 
showing lymphatic and blood vasculature in PDPN-FL wild-type (WT) and homozygous (HOM) 
ear dermal sheets. Scale bars represent 100µm (A). Representative FOVs showing 
Podoplanin expression in lymphatic vessels as defined by LYVE-1 expression. Scale bars 
represent 50µm (B).  Shown are images from n>3 independent experiments. White dotted 
lines represent edge of the ear dermal sheet.  
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Similarly, to previous analysis on PDPN-FL mice, TDLNs from wild type, heterozygous 

and homozygous PDPN-FL mice were taken from tumour-bearing mice for flow 

cytometry analysis of dendritic cell markers, CD11c, CD8a, CD11b and CD103. As 

expected in heterozygous mice, lymph node cellularity was unaltered (Figure 4.24a) 

and little change could be seen across overall dendritic cell counts, expressed either 

as count fold-change or as a percentage (Figure 4.24b,c). This trend was reflected in 

subsets, which also showed little change in total numbers of CD8a, CD11b and CD103 

DCs (Figure 4.24d-i). In homozygous mice however, total counts per lymph node were 

significantly reduced in total CD11c DCs (Figure 4.24b) as well as subset specific DCs 

(Figure 4.24d-f), with the most prominent reduction seen in CD11b DCs (Figure 4.24e). 

This was not however reflected in calculations of relative percentage composite, with 

the percentage of CD8a, CD11b and CD103 as a percentage of total CD11c was 

unchanged across genotypes (Figure 4.24g-i). Upon specific assessment of TRITC+ 

DCs, decreased trends in the counts and relative percentages of DC subsets was 

seen in heterozygous PDPN-FL mice, with numbers almost entirely ablated in 

homozygous PDPN-FL mice (Figure 4.25). Whether TRITC was assessed within total 

CD11c DCs or within specific CD8a, CD11b or CD103 populations, TRITC detection 

was significantly perturbed.  

 

This collectively shows a substantial effect of Podoplanin knockout on DC trafficking 

in tumour-bearing mice, whereby migration of tumour-derived DCs, denoted by TRITC 

expression, was dramatically reduced in PDPN-FL homozygous mice.  
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Figure 4.24. Dendritic cell composite and lymph node cellularity is altered in PDPN-FL 
homozygous mice. NDLNs and Day 4 TDLNs Day 4 TDLNs from B16-F10 tumour-bearing 
PDPN-FL mice. Samples were digested and stained with fluorescently-labelled antibodies for 
flow cytometry, assessing expression of DC surface markers, CD11c, CD8a, CD11b and 
CD103. Data shown is total lymph node cellularity (A), total CD11c dendritic cells, as 
expressed by count fold-change (B) and as a percentage of singlets (C), and CD8a (D,G), 
CD11b (E,H) and CD103 (F,I) infiltrate as shown by count fold-change. Shown is data from 
n=2 independent experiments, with n=10 wild-type LNs; n=6 heterozygous LNs; n=4 

homozygous LNs. Data presented as mean  SEM. Statistical significance was calculated 

using One-way ANOVA (P0.05). WT: PDPN-FL wild-type; HET: PDPN-FL heterozygous; 
HOM: PDPN-FL homozygous. 
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Figure 4.25. Migratory dendritic cell infiltrate is altered in PDPN-FL homozygous mice. 
NDLNs and Day 4 TDLNs Day 4 TDLNs from TRITC painted B16-F10 tumour-bearing PDPN-
FL mice. Samples were digested and stained with fluorescently-labelled antibodies for flow 
cytometry, assessing expression of DC surface markers, CD11c, CD8a, CD11b and CD103. 
Data shown is TRITC count per lymph node relative to DC subset (A-D), TRITC count fold-
change relative to DC subset (E-H) and percentage of TRITC+ cells relative to DC subset  
(I-L). Shown is data from n=2 independent experiments, with n=10 wild-type LNs; n=6 

heterozygous LNs; n=4 homozygous LNs. Data presented as mean  SEM.  Statistical 

significance was calculated using One-way ANOVA (P0.05). WT: PDPN-FL wild-type; HET: 
PDPN-FL heterozygous; HOM: PDPN-FL homozygous. 

 

 

To determine the levels of Podoplanin expression in LECs across genotypes in LNs 

and ears, samples were stained with CD45, LYVE-1 and CD31, to allow for gating on 

CD45- LYVE1+ CD31+ populations (Figure 4.26a). In both LNs and Ears reduced 

Podoplanin expression was seen in heterozygous samples, with a more dramatic 

reduction in Podoplanin expression was seen in homozygous samples. In LNs, the 
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average gMFI of Podoplanin in LYVE1+ CD31+ cells was 312.8 ± 45.9 in wild type 

LNs, 179.5 ± 40.0 in heterozygous LNs and 100.5 ± 40.5 in homozygous LNs (Figure 

4.26b). In comparison to expression of Podoplanin in ears, which was overall much 

higher than LN expression, the average gMFI of Podoplanin in LYVE1+ CD31+ cells 

was 9946.4 ± 1452.5 in wild type LNs, 4656.4 ± 948.8 in heterozygous LNs and 8.02 

± 3.07 in homozygous LNs (Figure 4.26b). From these values, it can be concluded 

that the knockdown of Podoplanin appears more affective in peripheral tissue sites 

than in lymph nodes.  
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Figure 4.26. Podoplanin expression is perturbed in lymph nodes and ear dermis from 
heterozygous and homozygous PDPN-FL mice. Using flow cytometry, Tumour-bearing ear 
dermis (A, top panel) and cervical TDLNs (A, bottom panel) were analysed for Podoplanin 
expression, assessing the geometric fluorescent intensity in CD45- LYVE1+ CD31+ 
populations (A,B). Shown is data from n>3 independent experiments with n=7 WT; n=11 HET; 
n=2 HOM (ears) and n=8 WT; n=6 HET; n=3 HOM (lymph nodes). Data presented as mean 

 SEM. Statistical significance was calculated using One-way ANOVA (P0.05).  
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4.4. Discussion  
 

Lymphangiogenesis has been shown to promote immune infiltrate at the primary 

tumour188,189, however little is known of the functional consequences at the TDLN 

where observations have been limited to the context of well-established tumours 

rather than at earlier stages of development. We hence set out to determine the 

functional impact of lymphatics in early TDLNs on immunity, with a specific focus on 

their role in dendritic cell trafficking.  

 

As particular subsets of migratory dendritic cells have been described to carry tumour 

antigen, it was pertinent to define the composite of lymph node dendritic cells further. 

Using gating strategy defined in dendritic cells were subcategorised into CD11c+ 

CD8a+, CD11c+ CD11b+ and CD11c+ CD103+. The CD11c+ CD8a+ population 

denotes the lymph node resident dendritic cells, which do not migrate, and hence were 

expected to be TRITC negative. The CD11c+ CD11b+ population denotes the majority 

of migratory dendritic cells, with both epidermal and dermal populations found to 

express low-to-high levels. Finally, the CD11c+ CD103+ population denotes a subset 

of migratory dermal dendritic cells, which recently were described as critical primers 

of anti-tumour immunity, carrying melanoma tumour antigen to TDLNs, whereby they 

directly activate effector T-cells 221. 

 

Confocal analysis of early TDLNs found that migratory DCs cluster in lymphatic dense 

regions and at the subcapsular sinus, with the distance migrated into TDLNs lower 

than for control NDLNs. This was supported by quantification of the relative distribution 

of migratory DCs in subcapsular and cortical of the node showing preferential 

delocalisation of migratory DCs to subcapsular regions in early TDLNs. This analysis 

suggested that dendritic cells remained closer to the LN periphery, suggesting that 

migratory dendritic cells were indeed not entering as far into early TDLNs than in 

control NDLNs. In light of transcriptionally altered lymphatic permeability, this suggests 

other factors may be influencing migration of DCs, as despite potential enhanced 

leakiness migratory DCs are being retained at the edge of the node.  

 

As LNs are insufficient for yielding a significant number of LECs to grow up in vitro, 

skin-derived LECs were purchased and used to verify in vivo observations. Despite 



165 

 

likely being functionally distinct from LN-derived LECs, in vitro assays did mimic in vivo 

observations whereby DCs underwent prolonged interactions with TCM-conditioned 

LECs, as measured by adhesion, mobility and transwell migration. These in vitro 

assays suggested that the clustering seen at lymphatic-rich subcapsular sinuses in 

early TDLNs may be governed by changes in the adherent properties of tumour-

conditioned lymphatic endothelium. This results in prolonged physical interactions with 

incoming DCs that need to traverse the sinus to enter the lymph node. We hence 

describe a novel finding, in lymphatic-driven changes in DC migration behaviour in 

early TDLNs, that is likely modulated by factors draining from early developing tumours 

at the primary site. Morphological changes were further suggestive of an anchorage 

phenotype, implying that conditioning of LECs with TCM promoted physical 

interactions between LECs and DCs. These in vitro findings shed some light on the 

potential mechanisms underpinning the clustering phenotype in vivo, suggesting that 

migratory DCs physically interact more with lymphatics in early TDLNs which inhibits 

or delays migration into the node. This data is not the first to describe physical 

interactions with subcapsular sinus lymphatics upon entry to LNs but is the first to 

describe perturbed interactions in TDLNs. As these findings are also in early TDLNs, 

we further propose a potential novel mechanism for altered DC migration at early 

stages of tumour development. However, as this analysis has been conducted in static 

states, using section lymph nodes retrieved at a specific time-point, this does not 

provide any kinetic data. The observation of DCs failing to reach deeper into Day 4 

TDLNs, may just be question of timing. There is yet to be any kinetic analysis of DC 

migration in TDLNs, revealing an area for future work, whereby live tracking of DCs, 

arriving at TDLNs from different time-points in tumour development, would determine 

whether migration is perturbed overall or whether kinetic dynamics are altered. The 

latter could still indeed be of functional significance, as delayed entry and prolonged 

presence in contact with tumour-conditioned lymphatics at the TDLN sinus may indeed 

influence DC immunity through further conditioning by LECs of DCs in contact; as is 

explored in Chapter 5.   

 

In order to derive a molecular mechanism driving this interaction, we explored the 

microarray gene target list, to identify candidates in early TDLNs. Of the molecules 

reported to be involved in immune migration, the expression of canonical markers such 

as ICAM and VCAM were unchanged in Day 4 or Day 11 TDLNs. TCM-treatment of 
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LECs in vitro also failed to up-regulate these markers, suggesting expression of ICAM 

and VCAM is unresponsive to tumour-derived factors both in vitro and in vivo, 

presenting them as unlikely contenders for the altered immune interactions. 

Podoplanin however emerged as a strong candidate, with RNA and protein expression 

up-regulated in LECs derived from early TDLNs (Figure 3.14 and 4.14). Considering 

the newly identified role of Podoplanin as an adhesion molecule for migrating dendritic 

cells and verified expression changes in Day 4 TDLN-derived LECs, at both RNA and 

protein levels, we hypothesized that Podoplanin up-regulation is a critical alteration in 

early TDLNs that could contribute to prolonged dendritic cell interactions with 

lymphatic stroma. Immunofluorescent imaging also demonstrated DC interaction with 

Podoplanin positive lymphatics upon entry to lymph nodes, suggesting Podoplanin to 

be important for incoming immune cells traversing the subcapsular sinus. In some 

instances, we also saw cup-like structures around TRITC+ dendritic cells, implying 

Podoplanin may also mediate transmigration across the lymphatic endothelium lining 

of the node. Literature supported the notion of Podoplanin as a mediator of DC 

migration, with recent studies demonstrating knockout of Podoplanin and reciprocal 

CLEC-2 ligand as having an inhibitory effect on lymphatic vessel entry at the periphery 

and on lymph node migration77,237. Ligation of CLEC-2 has also been reported to drive 

morphological changes similar to those observed here in vitro, with changes in the 

number of protrusions associated with CLEC-2 engagement. Hence, if DCs were 

interacting with Podoplanin expressed on the surface of LECs through CLEC-2, such 

morphological changes are expected. As splenic DCs were shown to express CLEC-

2, we concluded that CLEC-2 ligation of Podoplanin was likely to be the mechanism 

driving enhanced adhesion in vitro. B16-derived TCM-induced up-regulation of 

Podoplanin in vitro and DC adhesion to LEC monolayers was impaired following 

Podoplanin blockade, further supporting a role for Podoplanin in mediating physical 

interactions between DCs and LECs and a role for tumour-derived factors in regulating 

that interaction through up-regulation of Podoplanin expression. This further suggests 

that prolonged exposure to B16-derived factors in vivo can indeed modulate 

Podoplanin expression on TDLN-lymphatics, resulting in altered DC interactions and 

migration. However, the reduced proportion of CD11c+ DCs expressing CLEC-2 in the 

lymph node samples suggests lymph node-DCs may not express CLEC-2 to a similar 

degree. As lymph nodes are predominantly comprised of resident DCs however and 

the literature alludes to CLEC-2 being a facilitator of migration expressed by mature 
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DCs, resident DCs are unlikely to express CLEC-2. Furthermore, as the number of 

migratory DCs in resting lymph nodes makes up a small proportion of the overall 

population, the level of CLEC-2 detection is expected to be low.  

 

Future work using Podoplanin knock-out LECs in vitro, would better determine 

whether Podoplanin is exclusively required for DC adhesion and prolonged 

interactions. This would need to be conducted with control treated and TCM treated 

LECs to investigate whether other cell adhesion molecules contributed to this 

adhesion phenotype. Alternatively, these experiments could also be conducted using 

CLEC-2 knockout DCs, as used in the literature with FRC adhesion assays77.  

 

To further establish whether this axis and consequent DC migration could be 

modulated, in vivo blockade and genetic models were used. Across both methods of 

targeting Podoplanin expression, individual experiment repeats exhibited a degree of 

variation. This was evident particularly in antibody-mediated Podoplanin blockade 

experiments, whereby upon combining data from repeated experiments, clear trends 

showing significantly reduced DC migration from initial experiments, could no longer 

be seen. The high variability in these experiments could be due to variable systemic 

effects of the antibody, as Podoplanin is expressed by other cell types, such as 

fibroblasts. Variability was particularly seen in flow cytometry experiments, with no 

significant changes observed in the number of infiltrating TRITC+ DCs in NDLNs and 

TDLNs across time-points and DC subsets when comparing LNs from control treated 

to anti-Podoplanin treated mice. Despite this, immunofluorescent imaging of TDLNs 

derived from mice receiving Podoplanin blockade treatment suggested an overall 

decrease in migratory DCs reaching nodes, with some clustering at the lymphatic 

sinus still observed.  

 

Of interest in these blockade experiments was the significant increase in the LN 

cellularity in Day 4 TDLNs treated with anti-PDPN, which could be masking accurate 

quantification of the number of DCs migrated into TDLNs. This phenomenon was 

previously described in resting LNs in relation to Podoplanin engagement in LN-FRCs, 

whereby administration of anti-PDPN blockade antibody resulted in LN expansion235. 

The study described a mechanism by which Podoplanin induced RhoA-dependent 

FRC stretching, caused by physical interactions with CLEC-2 expressing DCs235. This 
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study contributed to the mechanistic understanding of LN expansion in adaptive 

immunity and supports this work by confirming that CLEC-2 expressing DCs can and 

do interact with Podoplanin expressing stromal cells in LNs. As the aforementioned 

study demonstrated that the same DCs which initiate immunity through T-cell priming, 

also initiate LN remodelling, future work should look in more detail at the functional 

implications of active or perturbed Podoplanin-CLEC2 signalling between DCs and 

LECs in TDLNs, focusing on overall LN reorganisation and implications for tumour 

progression and LN metastasis.  

   

As antibody blockade delivered such variable results across independent experiments 

using the shoulder injectable model and artificially expanded TDLNs, the Podoplanin-

flox mouse model was used in conjugation with a site-administration change from the 

shoulder to lymphatic-rich ear dermis. Control mice homozygous for Podoplanin 

knockout demonstrated clear ablation of protein expression in lymphatic-rich ear 

dermis, visualised using immunofluorescent imaging. This was supported by flow 

cytometry assessment of protein expression, showing that both in ear dermis and 

downstream cervical lymph nodes, protein expression was significantly reduced in 

LECs from both sites. Using this model, flow cytometry data provided evidence that 

migration into TDLNs was significantly reduced only in homozygous knockout tumour-

bearing mice, with dramatic reductions in TRITC+ DC infiltrate detected in cervical 

TDLNs from early ear tumours. This is in line with published work showing lymphatic-

specific knockout of Podoplanin substantially decreases migration of peripheral DCs 

to local draining lymph nodes in resting conditions237, and that it perturbs DC capacity 

to engage Podoplanin on peripheral lymphatic vessels; hence preventing entry77. 

Despite reduced levels of LN cellularity, which could explain to a degree the decrease 

in TRITC detection in early TDLNs, the levels to which lymph node cellularity was 

altered, is unlikely to account for the almost complete ablation of TRITC+ infiltrate. 

Hence, as lymphatic vasculature was visibly intact and other markers such as LYVE-

1, which facilitates DC migration, were unaffected by knockout; we can conclude from 

this data that Podoplanin does indeed facilitate DC migration in the tumour 

microenvironment. Future experiments should utilise lymphatic specific knockdown 

models, under promoters such as PROX-1 or LVYE-1, which would enable LEC 

specific knockdown without affecting global vasculature changes and lymph node 

architecture. 
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Interpreting the results here in conjugation with the aforementioned literature, it is 

possible that disrupted DC migration in our homozygous knockout mice may be partly 

due to peripheral Podoplanin knockout. Further investigation is hence needed, to 

define peripheral interactions with lymphatics at the primary tumour site to elucidate 

the role of Podoplanin beyond the TDLN and analysis of matched ears from these 

samples would provide insight into whether migratory DCs were incapable of entering 

peripheral lymphatics of homozygous mice. Despite the non-specific targeting of 

Podoplanin in these in vivo models, our data is the first to translate the functional role 

of the Podoplanin-CLEC2 axis in DC trafficking in a tumour setting, suggesting this 

axis to be critical for DC migration in the tumour microenvironment, as well as resting 

and inflammatory states. Furthermore, as the number of viable heterozygous and 

homozygous mice that survived per litter as low, these experiments were not 

conducted in control settings. Hence, these experiments hence need to be repeated 

in lymphatic-specific Podoplanin knock-out mice in control and tumour-bearing 

conditions, with a robust number of mice from wild-type, heterozygous and 

homozygous backgrounds to verify DC migratory patterns in all biological contexts. 

This would also provide insight into whether patterns of perturbed DC migration in 

Podoplanin-knockout mice is dependent on a tumour state or occurs generally in 

resting states also. Finally, these experiments would also provide an opportunity to 

see whether Podoplanin is a major player in DC migration, or whether chemokines, 

such as CCL21, and molecules, such as CCRL1, are the primary governors of DC 

migration. As Podoplanin would be knocked out in these experiments, any 

perturbations to expression of other factors, would highlight their importance in DC 

migration, independent of Podoplanin expression.    

 

Another critical aspect explored in these experiments is the implication for subset-

specific DC trafficking. In both B16-F10 and BrafV600E/Pten melanoma models, 

CD103+ dermal DCs at the primary tumour site have been described to be the 

dominant migratory subpopulation carrying tumour antigen to TDLNs, with CD103+ 

DCs further found to induce anti-tumoural T-cell responses221. Expansion of this 

subset was further found to enhance efficacy of checkpoint therapies with anti-PD-

L1221. In our model, the infiltration of migratory CD11b and CD103 dermal DCs was 

increased in early TDLNs in terms of total count, which also manifested as an overall 

increase in the percentage of total migratory DCs. Although not significant, these 
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findings suggest that indeed in early TDLNs, dermal DCs are responding to the 

developing tumour through enhanced trafficking to TDLNs. In terms of the effect of 

Podoplanin on these trends, little affect could be seen through blockade treatments. 

However, in homozygous knockout mice, the number of migratory DCs detected in 

early TDLNs was ablated. As described above, this could be due to poor entry of DCs 

at the primary site, rather than a specific role of Podoplanin at the sinus of TDLNs and 

could also be driven by overall reduced nodal cellularity and defective lymph node 

architecture, as is seen in global Podoplanin knockout mice.  

 

To hence specifically determine the influence of Podoplanin on subset specific 

migration, DCs derived from reporter mice with GFP expressed under CD11b or 

CD103 promoters could be injected into wild-type mice to assess whether these 

subsets preferentially interact with lymphatic expressed Podoplanin. This would also 

need to be conducted in conjunction with lymphatic specific Podoplanin knockout mice 

on a tumour background to elucidate the role of lymphatic Podoplanin on dermal DC 

trafficking in the tumour microenvironment.  

 

In summary, these findings act as an evidence base for Podoplanin mediated DC 

trafficking in basal settings as well as the tumour microenvironment. We further show 

that current in vivo models are insufficient to adequately assess the relative 

contribution of Podoplanin in DC migration in TDLNs, with lymphatic specific knockout 

models needed. We do however demonstrate that DCs in early stages of tumour 

development are mobilised and furthermore that their route is heavily reliant on 

lymphatics. We show lymphatics in the tumour microenvironment are conditioned by 

factors derived from the tumour microenvironment with implications for DC trafficking 

in early TDLNs and hence propose lymphatics as critical regulators of DC-mediated 

immunity in the early developing tumour. As therapies utilising DC vaccines to promote 

anti-tumour immunity assume efficient trafficking to TDLNs, we propose the role of 

non-immune stroma, in particular lymphatics, must be considered in conjunction. A 

deeper mechanistic and kinetic understanding of DC trafficking and their interactions 

with other stromal cells in the tumour microenvironment is hence needed to improve 

DC-based therapies.  
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5.  Determining the role of lymphatic-DC cross-talk in T-cell priming 
in TDLNs  

 

5.1. Introduction  
 

The process of DC-mediated T-cell priming is complex. For a dendritic cell to initiate 

an appropriate T-cell response, it must be mature and activated, characterised through 

expression of CD40, CD80, CD86 and MHC-II. They must also express an array of 

cytokines permissive of T-cell responsiveness, such as IL-12 which promotes T-cell 

expansion and cytokines such as IL-4, IL-6, IL-10 and TGF-, which determine the 

differentiation of naïve T-cells. To prime effective antigen-specific T-cell responses, 

antigen must be taken up, processed correctly and presented on MHC Class-I and 

Class-II to CD8+ and CD4+ T-cells respectively. Concurrent interaction of T-cell 

expressed CD28 with DC-expressed molecules, CD80 and CD86, drives a co-

stimulatory signal that sustains T-cell activation. With specific regard to migratory DCs 

and their role in T-cell priming in lymph nodes, their location within the node is also 

critical to successfully mounting an immune response. Upon arrival, DCs must 

traverse the subcapsular sinus and travel along FRC conduits to reach T-cell zones in 

the lymph node cortex. This is heavily dependent on the correct chemotactic cues and 

molecular facilitators of migration, such as CLEC-2 expression77. There hence exists 

a biological “tool-box” for T-cell priming, with dendritic cells needing molecular tools to 

physically reach T-cells and uptake, process and present antigen, which all effectively 

mount an antigen-specific T-cell response.  

  

In the context of cancer, the anti-tumour immune response is understood to be 

disrupted, leading to poor recognition and clearance of tumour cells. Immune 

tolerance in the melanoma tumour microenvironment is known to be driven by 

immunosuppressive molecules, namely PD-L1 and CTLA-4 expressed on tumour, 

immune and and stromal cells173. PD-L1 induces T-cell exhaustion and apoptosis 

through ligation of receptor PD-1167, and CTLA-4 out-competes CD28 for ligation of 

CD80 and CD86168, acting as a negative regulatory molecule for T-cells. The over-

representation of these molecules in melanoma158,173,285 has led to a flurry of recent 

clinicals, with much success achieved with the anti-CTLA4 drug, Ipilimumab, and anti-

PD-1 drug, Nivolumab, in late stage melanoma patients286,287,288. Other molecules 
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such as tryptophan enzyme, IDO158,159,175 and cytokine, TGFβ171,172,176, also promote 

T-cell deletion and the expansion of regulatory T-cells in the melanoma tumour 

microenvironment, demonstrating the complexity of mechanisms involved in 

establishing and maintaining immune tolerance in the tumour microenvironment.  

 

Much of this research however, has been conducted in late stages of tumour 

development and human disease, with little knowledge of how pro-tumour immune 

tolerance develops in early stages of the disease. In recent years, lymphatic 

endothelial cells have been identified as novel regulators of immunity and dendritic 

cell function105,106,107,16,114,118,122 in basal and inflammatory conditions. As we have 

shown in previous chapters that lymphatics are transcriptionally altered in early TDLNs 

(Chapter 3) and exhibit altered physical interactions with tumour-derived migratory 

DCs, we sought to determine whether these early lymphatic changes could have other 

immune consequences in the context of T-cell priming and responses. As there is still 

a paucity of research in the context of the dynamics of lymphatic-mediated immunity 

in TDLNs of early disease, this is a novel line of investigation and will shed light on our 

understanding of anti-tumour immunity in early stages of disease.  
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5.2. Methods 

 

5.2.1. In vitro antigen transfer assays 
 

For assessment of antigen transfer from LECs to DCs, an in vitro antigen transfer 

assay was developed. As described in Section 2.10, LECs pulsed with OVA antigen 

and co-cultured with splenic GFP+ CD11c+ DCs. After 1 hour of co-culture, non-

adherent DCs in the media and adherent DCs and LECs were processed for flow 

cytometry. To establish uptake of OVA by DCs cultured alone, bulk DCs were seeded 

at a density of 5x105 in the presence or absence of fluorescent conjugated OVA 

(100µg/ml), in round-bottom 96-well plates. DCs were incubated with OVA at 37ºC for 

15 minutes. Samples were stained with PeCy7-conjugated anti-CD11c (1:300) at 4ºC 

for 20 minutes, to allow OVA uptake to be quantified specifically in GFP+ CD11c+ DCs 

using flow cytometry. The percentage of OVA+ DCs within GFP+ CD11c+ populations 

and the geometric mean fluorescent intensity of 647-OVA was calculated offline using 

FlowJo® software. The protocol for antigen pulsing lymphatic endothelial cells 

followed a protocol optimised by colleague Dr. Matt Lakins173. When establishing the 

ratio of DCs to LECs, the ratio used for adhesion assays was used, as stated in Section 

2.10.4. In previous adherence assays, 1hr co-culture durations were used, and to 

ensure this was sufficient duration for any antigen transfer, 1hrs and 2hr incubations 

were trialed during assay optimisation, as shown in Appendix 10.  

  

5.2.2. In vitro T-cell proliferation assays 
 

To measure T-cell priming by lymphatic conditioned DCs, OT-1 T-cells were used for 

in vitro proliferation assays. Assays were set-up as stated in Section 2.10.6, with DCs 

co-cultured with OVA-pulsed LECs before being transferred to co-cultures with T-cells. 

Co-cultures were incubated at 37ºC for 72 hours in round-bottom 96-well plates before 

centrifugation at 2000rpm for 1 minute. Samples were then stained with Live/dead 

violet at 4ºC for 10 minutes, followed by primary antibodies; BV780-conjugated anti-

CD8a and biotin-anti-PD1 (followed by APC-Cy7-conjugated streptavidin) at 4ºC for 

20 minutes. As OT-1 T-cells were stained with CFSE prior to co-culture, proliferated 

T-cells were detected using flow cytometry. The percentage of proliferated cells within 
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total viable CD8a+ T-cells, the percentage of viable cells within total CD8a+ T-cells 

and percentage expression of death ligand receptor, PD1, was calculated offline using 

FlowJo® software. The protocol for T-cell co-culture with antigen-presenting cells and 

CFSE staining followed a protocol optimised by colleague Dr. Matt Lakins173.  The ratio 

of DCs:Tcells (1:10) was informed by literature. 

 

5.2.3. In vivo lymphatic endothelial cell antigen assays 
 

For assessment of antigen uptake and processing in vivo, FITC-OVA and DQ-OVA 

were injected subcutaneously in control and tumour-bearing mice as outlined in 

Section 2.10, with an explanation of how these OVA conjugates work in Section 

2.10.2. Brachial LNs from control and tumour-bearing mice injected with FITC-OVA 

were processed for immunofluorescent imaging to observe localisation of OVA. In 

addition, LNs were retrieved for flow cytometry analysis for more detailed analysis of 

OVA uptake and DQ-OVA processing across lymph node compartments. 

 

For immunofluorescent imaging of OVA localisation, control NDLNs and Day 4 TDLNs 

were isolated and prepared as per methods in Section 2.9. Sections were stained with 

primary rabbit anti-LYVE1 at 4ºC overnight, followed by secondary staining with 594-

conjugated donkey anti-rabbit at room temperature for 1 hour. FITC-OVA positive cells 

were detected using the 488nm laser. Whole lymph node tile scans and images of 

regions of interest were taken as per Section 2.9. Details of all antibodies used can be 

found in Table 2.11. 

 

For flow cytometry analysis of FITC-OVA uptake and DQ-OVA processing, control 

NDLNs and Day 4 TDLNs were isolated and digested as per methods described in 

Section 2.2. To assess distribution of FITC-OVA and DQ-OVA across lymph node 

compartments, samples were stained with 450-conjugated anti-CD11c, PeCy7-

conjugated anti-CD31, APC-conjugated anti-Podoplanin and APC-Cy7-conjugated 

anti-CD45 at 4ºC for 30 minutes. This identified both dendritic cell and non-immune 

stromal cell uptake of FITC-OVA and relative DQ-OVA processing capacity. Details of 

all antibodies used can be found in Table 2.10. 
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5.2.4. In vivo antigen transfer assays  
 

As described above in Section 5.2.3, mice were injected with DQ-OVA. To assess 

whether incoming dendritic cell populations processed lymph node derived antigen, 

control and tumour-bearing mice injected with DQ-OVA, were also painted with 

TRITC. This was carried out as per methods described in Section 2.3 DQ-OVA was 

injected in the front leg to ensure rapid delivery of OVA to draining brachial lymph 

nodes, followed by TRITC painting. As for DQ-OVA assays conducted without TRITC 

painting, lymph nodes were digested and processed for flow cytometry as described 

in Section 2.8 and stained with 450-conjugated anti-CD11c, PeCy7-conjugated anti-

CD31, APC-conjugated anti-Podoplanin and APC-Cy7-conjugated anti-CD45. TRITC 

was detected using the 561nm laser. The percentage of total DQ-OVA+ cells and the 

geometric mean fluorescent intensity of DQ-OVA, within TRITC+ populations, was 

calculated offline using FlowJo® software. Details of all antibodies used can be found 

in Table 2.10. 

 

5.2.5. In vivo imaging of T-cell zone localisation of migratory dendritic cells 
 

To visualise localisation of migratory dendritic cells relative to T-cells, control NDLNs 

and early Day 4 TDLNs were TRITC painted, as described in Section 2.3 LNs were 

processed for histology as described in Section 2.9 and sections were then stained 

with Syrian Hamster anti-CD3e and Rat anti-B220 at 4ºC overnight, followed by 

incubation with 488-anti-Syrian Hamster and 405-anti-Rat secondary antibodies at 

room temperature for 1 hour. Whole lymph node images were taken in accordance to 

Section 2.9, obtaining 20x tile scan images of regions of interest within T-cell and B-

cell zones. For manual review of each tile scan image, Zen image analysis software 

was used. For quantitative image analysis of TRITC coverage within T-cell zones, 

HALOTM software (PerkinElmer, USA) was used. Using CD3e positive staining that 

stains T-cells, T-cell zones were defined, and a mask created to detect TRITC positive 

regions within that defined area (Figure 5.1). TRITC coverage was defined as both 

total area coverage (µm2) and percentage coverage of total area. Details of all 

antibodies used can be found in Table 2.11. 
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Figure 5.1. Method of TRITC quantification within T-cell zones. Using HALOTM image 
analysis software whole lymph node tile scans were uploaded and T-cell zones defined using 
the hand-draw tool and CD3e positive staining (1). Then parameters for the TRITC detection 
mask were defined and could be edited by clicking the Marker 1 Alexa Fluor 594 (large white 
dashed box). A region of interest box then appeared overlaid on the section (white box) 
showing which cells are being detected as TRITC positive. Outlines of TRITC negative cells 
were defined in grey, allowing for clear distinction of positively stained cells (2). Once 
parameters of detection were defined, the TRITC detection mask was applied to the defined 
T-cell zone by clicking “Analyse” in the top left corner of the screen (small white dashed box). 
All TRITC positive cells within the T-cell zone are detected (3).  
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5.2.6. In vivo characterisation of stromal and immune cells in TDLNs 
 

Migratory DCs were profiled using the PCR Profiler Array, as described in Section 2.7. 

The PD1-PDL1 axis was also quantified in early TDLNs. Lymph nodes were retrieved 

from control and tumour-bearing C57BL/6 mice and processed for flow cytometry as 

per methods described in Section 2.8. For characterisation of PD-L1 expression, 

single cells suspensions were stained with 450-conjugated anti-CD11c, APC-

conjugated anti-MHCII, Biotin-conjugated anti-PDL1 and APC-Cy7-conjugated anti-

CD45, to identify expression on dendritic cells. For non-immune stromal cells, single 

cell suspensions were stained with FITC-conjugated anti-CD31, PeCy7-conjugated 

anti-PDL1, APC-conjugated anti-Podoplanin and APC-Cy7-conjugated anti-CD45, 

identifying PD-L1 expression in FRCs, BECs and LECs. For measurement of PD1 

expression, T-cells were stained with 488-conjugated anti-CD4, 421-conjugated anti-

CD8a, PeCy7-conjugated anti-PD1 and APC-Cy7-conjugated anti-CD25. Single cell 

lymph node suspensions were stained with the above antibodies at a dilution of 1:300 

at 4ºC for 30 minutes, followed by incubation with streptavidin anti-biotin secondary 

antibodies at 4ºC for 30 minutes. In addition, trends in FoxP3 positive Tregs was 

determined by staining single cell suspensions with 647-conjugated anti-FoxP3. 

Details of all antibodies used can be found in Table 2.10. 
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5.3. Results 

 

5.3.1. Migratory DCs are differentially localised in cortical regions of early TDLNs  
 

As introduced previously, effective T-cell priming relies on APCs reaching the T-cell 

zone in LNs to enable interactions between antigen-bearing APCs and T-cells. The 

dynamics of T-cell interactions with migratory DCs in early TDLNs is however relatively 

unknown, thus the TRITC model was used to determine where in early TDLNs, 

migratory DCs localised to. In Chapter 4 we showed that migratory TRITC DCs cluster 

within the subscapular sinus and fail to migrate as far into early TDLNs as in NDLNs 

(Figure 4.3) leading to the hypothesis that prolonged interactions with lymphatics at 

the sinus may perturb access to the T-cell zone. We therefore aimed to determine the 

specific localisation of migratory TRITC DCs in relation to T-cell zones, using confocal 

microscopy to map localisation. Upon assessment of migratory DC localisation, TRITC 

positive DCs could be seen across T-cell zones in resting NDLNs (Figure 5.2a). In Day 

4 TDLNs, TRITC positive DCs could also be seen in T-cell zones, however 

quantification of coverage of migrated DCs in T-cell zones, revealed markedly reduced 

DC content both by area and percentage, despite consistent total areas of T-cell zones 

(Figure 5.2b). The total area of the T-cell zones in both Control NDLNs and Day 4 

TDLNs averaged 1.81x106µm2 ± 0.25 and 1.80x106µm2 ± 0.21, respectively. TRITC 

coverage however was dramatically reduced although not significant with TRITC DCs 

covering an average of 0.87x105µm2 ± 0.31 and 0.36x105µm2 ± 0.11 of T-cell zones in 

Control NDLNs and Day 4 TDLNs, respectively. In terms of percentage, this calculated 

to be an average fold-change of 0.36, meaning an overall decrease in the percentage 

coverage of TRITC DCs in T-cell zones. A potential reason for this lies in the observed 

clustering of migratory DCs at the base of B-cell follicles at the Tcell-Bcell margin and 

in surrounding subcapsular sinuses in Day 4 TDLNs (Figures 5.3 and 5.4). Findings 

reported by colleagues, demonstrate immune cells cluster in similar localities in Day 

11 TDLNs, which transpired to be HEV regions, as confirmed by positive peripheral 

lymph node addressin (PNAd) expression191. These results appear to support this, 

although PNad staining in conjunction with TRITC would be needed to confirm.  

 

Collectively this demonstrates that TRITC-carrying migrated DCs that do reach the T 

cell zone of early TDLNs localise differently in comparison to resting NDLNs. The 
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functional relevance of altered and reduced coverage is not clear, but further 

investigation into the dynamics of contacts made between T-cells and migratory DCs 

that reach T-cell zones, in early TDLNs, would provide critical insight into the functional 

implications of this observation. Also, investigation into the kinetics of DC migration in 

TDLNs would shed light on the functional significance of prolonged interactions with 

lymphatics at the TDLN subcapsular sinus.   
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Figure 5.2. Migratory DCs are delocalised in T-cell zones of Day 4 TDLNs. Control NDLNs 
and Day 4 TDLNs from TRITC painted B16-F10 tumour-bearing mice were 
immunofluorescently stained with CD3e (green) and B220 (blue) with periphery-derived 
migratory dendritic cells marked with TRITC (red). Whole lymph node tile scans were taken at 
20x magnification using confocal microscopy. Images shown are representative regions of 
interest, demonstrating TRITC+ DCs in T-cell zones in control NDLNs (A, left panel) vs Day 4 
TDLNs (A, right panel), with infiltrating B-cells identified (*). Scale bars are representative of 
50µm (A). Whole lymph node images were analysed offline using HALOTM software, with 
quantification of the area of T-cell zones (B), total TRITC coverage (C) and TRITC coverage 
as a percentage of the whole lymph node area (D).  Data shown is representative of n=4 
independent experiments, with n=6 NDLNs and n=11 Day 4 TDLNs. Data presented as mean 

 SEM. Statistical significance was calculated using the Mann-Whitney test, with P ≤ 0.05.  
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Figure 5.3. Migratory DCs are clustered around B-cell follicles in Day 4 TDLNs. Control 
NDLNs and Day 4 TDLNs from TRITC painted B16-F10 tumour-bearing mice were 
immunofluorescently stained with B220 (blue) with periphery-derived migratory dendritic cells 
marked with TRITC (red). Whole lymph node tile scans were taken at 20x magnification using 
confocal microscopy. Images shown are representative regions of interest, demonstrating 
TRITC+ DCs clustered around B-cell follicles, at the edge of B-cell follicles (dotted line) and 
in the surrounding subcapsular sinus (arrowheads). Data shown is representative of n=4 
independent experiments, with n=6 NDLNs and n=11 Day 4 TDLNs.  
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Figure 5.4. Migratory DCs are clustered at the Tcell-Bcell margins of Day 4 TDLNs. 
Control NDLNs and Day 4 TDLNs from TRITC painted B16-F10 tumour-bearing mice were 
immunofluorescently stained with CD3e (green) and B220 (blue) with periphery-derived 
migratory dendritic cells marked with TRITC (red). Whole lymph node tile scans were taken at 
20x magnification using confocal microscopy. Images shown are representative regions of 
interest, demonstrating TRITC+ DCs clustered at Tcell-Bcell margins in Day 4 TDLNs 
(arrowheads) with some TRITC+ DCs infiltrating B-cell follicles (arrow). Scale bars are 
representative of 50µm (A). Data shown is representative of n=4 independent experiments, 
with n=6 NDLNs and n=11 Day 4 TDLNs.  
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5.3.2. LECs uptake and process soluble antigen in vitro 
 

Having demonstrated that migratory DCs are differentially localised within T-cell zones 

in early TDLNs following prolonged physical interactions with LECs, we next 

investigated whether the said prolonged interactions with LECs were able to condition 

migrated DCs. As studies have shown the capacity for LECs to present antigen both 

in vitro and in vivo118,123,121,122,188, we examined whether TDLN-LECs could use 

antigen scavenged to directly influence DC function. Specifically, we focussed on the 

concept of antigen transfer to incoming migratory DCs and potential to affect T-cell 

priming in TDLNs. 

 

We first confirmed that LECs in vitro could indeed uptake antigen. LECs incubated in 

the same concentration of fluorescently conjugated OVA planned for co-culture 

experiments (100µg/ml), had scavenged antigen within 15 minutes (Figure 5.5a,b). On 

average, 89.3% ± 2.33% of total LECs per sample had taken-up OVA (Figure 5.5a,b), 

with an average gMFI of 12979.6 ± 4413.5 (Figure 5.5a,c).  

 

The use of DQ-OVA confirmed that LECs could rapidly process engulfed antigen; 

proteolytic cleavage was detected by fluorescent signal within 15 minutes of in vitro 

(Figure 5.5d, e). In control conditions, DQ-OVA gMFI increased 2-fold from an average 

of 631.2 ± 145.4 at 15 minutes to an average of 1275.5 ± 47.5 at 60 minutes (Figure 

5.5e). DQ-OVA gMFI did not significantly increase between 60 minutes and 75 

minutes, indicating that the rate of processing plateaus after 60 minutes, potentially 

due to saturation. To simulate TDLN conditions, assays were also performed in TCM-

conditioned LECs. Since proteasomal signatures in late TDLN-derived LECs were up-

regulated, we hypothesised that antigen processing may be enhanced in the presence 

of TCM, however no change capacity to process engulfed antigen could be seen in 

the time-points examined in vitro (Figure 5.5e). 
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Figure 5.5. OVA uptake and processing by LECs in vitro. Flow cytometry was used to 
define OVA uptake with histograms showing a shift in fluorescence in LECs treated with OVA 
(w/OVA, grey peak) (A). Quantification of OVA uptake as a percentage of total LECs and 
geometric mean fluorescent intensity (gMFI) in LECs pulsed with and without OVA (B, C).  
Flow cytometry was used to define DQ-OVA processing with dot plots (D) and quantification 
of DQ-OVA geometric mean fluorescent intensity (gMFI) across 0-75minutes, in the presence 
or absence of TCM (E). Data shown represents n=2 independent experiments. Data presented 

as mean  SEM. Statistical significance was calculated using the Mann-Whitney test, with  
P ≤ 0.05. Full gating strategy is detailed in Appendix 9.  
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5.3.3. LECs transfer antigen to CD11c dendritic cells  
 

Having established that LECs have the capacity to uptake and process antigen in vitro, 

although tumour-derived factors did not enhance this, we then proceeded to determine 

physical interactions with dendritic cells would allow for antigen transfer. For this we 

developed an assay whereby GFP+ CD11c dendritic cells were isolated and cultured 

with LECs saturated with fluorescently conjugated OVA (Figure 5.6). To ensure that 

the only source of OVA for DCs was OVA actively taken up by LECs, cells were 

thoroughly washed to remove any antigen in the media. As we observed physical 

interactions with LECs over a 60 minutes period in vitro, we used the same timeframe, 

incubating DCs with OVA-pulsed LECs for 60 minutes at 37ºC. Non-adherent DCs in 

suspension and adherent DCs were then retrieved for flow cytometry to detect levels 

of fluorescence, indicative of OVA uptake.  

 

 

 

Figure 5.6. Schematic showing in vitro model of antigen transfer. Before co-culture, LECs 
were pulsed with 647-OVA (1), followed by incubation with CD11c DCs for 60 minutes (2). 
Non-adherent and attached DCs were then retrieved for flow cytometry assessment of 647-
OVA fluorescence (3).  
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Upon analysis by flow cytometry, sequential gating in GFP+CD11c+ populations 

allowed for OVA detection specifically in CD11c-positive dendritic cells (Figure 5.7). 

Fluorescently conjugated 647-OVA enabled quantification of the percentage of OVA-

positive DCs and the geometric mean degree of OVA uptake within CD11c positive 

populations.  

 

 
 
Figure 5.7. Gating strategy for flow cytometry analysis of OVA transfer.  Flow cytometry 
was used to define 647-OVA uptake in GFP+CD11c+ DCs co-cultured with OVA-pulsed LECs. 
Representative gating for 647-OVA and CD11c was defined using unstained controls. Bulk 
GFP+CD11c isolated DCs pulsed with OVA was used as a positive control for intrinsic OVA 
uptake capacity. Adherent and non-adherent DCs were retrieved from LEC co-cultures, with 
adherent DCs retrieved alongside LECs. This allowed quantification of 647-OVA in both 
adherent GFP+ CD11c+ DCs and corresponding LECs. 647-OVA uptake was detected using 
the 640nm laser.  
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Preliminary experiments with 100µg/ml FITC-OVA pulsed LECs indicated that OVA 

uptake was significantly higher in adherent CD11c+ DCs as quantified by percentage 

of OVA+ DCs and the gMFI within CD11c+ DCs (Appendix 3). To more robustly 

examine this, ensuring only OVA uptake in added CD11c+ DCs was measured, we 

used GFP+ DCs purified for CD11c and 647-fluorescently conjugated OVA (647-

OVA). A negative and positive threshold for OVA uptake was established using bulk 

DCs pulsed with OVA at the same concentration received by LECs (100µg/ml). OVA 

was detected in 35.3% ± 0.92 of total GFP+ CD11c+ dendritic cells and within this 

population, the average gMFI was 321 ± 22.5 (Figure 5.8a,b). Using these results as 

a guideline for uptake when DCs are directly saturated in soluble OVA, we determined 

the capacity and degree of OVA uptake, comparing non-adherent and adherent DCs 

from co-cultures with OVA-pulsed LECs. The percentage of OVA-positive DCs was 

significantly increased in adherent DCs compared with the non-adherent population, 

which were assumed not to have physically interacted with LECs. An average of 

8.13% ± 0.87 adherent DCs were found to be OVA positive, whereas only 3.2% ± 0.46 

of non-adherent were OVA positive. The gMFI in these cells was also significantly 

increased, with average gMFI calculated to be 32.3 ± 2.71 and 19.27 ± 1.01, in 

adherent and non-adherent DCs respectively. This indicates that not only were more 

DCs receiving OVA, but average uptake of LEC-derived antigen was greater in 

adherent DCs than in non-adherent DCs. Upon comparison with bulk DC positive 

controls, the percentage of OVA positive DCs and the gMFI were lower but this is likely 

due to the fact that bulk DCs were saturated with OVA, unlike the co-cultured DCs 

which relied on antigen transfer from LECs (Figure 5.8c,d). 

 

This assay demonstrated that DCs which physically interact with LECs have more 

exposure to LEC-derived antigen and hence an increased likelihood of taking up said 

antigen. These results show for the first time, to our knowledge, that internal antigen 

can be physically transferred between LECs and attached DCs. When translated to 

lymph node dynamics in vivo, it is likely that rapid response antigen draining to the 

lymph node results in lymphatic uptake and subsequent presentation to incoming 

migratory dendritic cells.  
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Figure 5.8. LEC-derived antigen is transferred to physically interacting DCs. Flow 
cytometry was used to define 647-OVA uptake in GFP+CD11c+ DCs co-cultured with OVA-
pulsed LECs. 647-OVA was quantified as a percentage of total GFP+ CD11c+ cells (A) and 
as geometric mean fluorescent intensity within total GFP+CD11c+ cells (B) in bulk DCs pulsed 
with OVA, or non-adherent and adherent DCs from co-cultures with OVA-pulsed LECs (C, D). 
Data shown represents n=2 independent experiments, with n=9 non-adherent and n=9 

adherent samples. Data presented as mean  SEM. Statistical significance calculated using 
the Mann-Whitney test, with P ≤ 0.05. 
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described, with non-adherent and adherent DCs processed for flow cytometry. No 

difference in the percentage of OVA positive cells or the uptake of OVA, as defined by 

gMFI, could be seen between CCM and TCM conditions (Figure 5.9). This suggests 

that while conditioning of LECs with tumour-derived factors enhances DC-LEC 

interactions, it does not affect the process of antigen transfer over the time-frame 

examined.  

 

 
 
Figure 5.9. No change in antigen transfer between TCM-conditioned LECs and DCs. 
Flow cytometry was used to define 647-OVA uptake in GFP+CD11c+ DCs co-cultured with 
OVA-pulsed LECs pre-conditioned with either control-conditioned media (CCM) or tumour-
conditioned media (TCM). 647-OVA was quantified as a percentage of total GFP+CD11c+ 
cells (A) and as geometric mean fluorescent intensity within total GFP+CD11c+ cells (B). Data 
shown represents n=2 independent experiments, with n=9 samples per group. Data presented 

as mean  SEM. Statistical significance calculated using the Mann-Whitney test, with P ≤ 0.05. 
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5.3.4. LEC-primed DCs fail to induce T-cell proliferation in vitro 
 

As introduced earlier, antigen primed DCs are key drivers of T-cell immunity in the 

lymph node, with the type of antigen presented, presence of co-stimulatory/co-

inhibitory molecules, the cytokine and chemokine milieu, localisation of DCs and T-

cells, and the duration of DC-T-cell interaction all contributing to immune outcome. 

Following the establishment of lymphatics as an additional layer on immune 

modulation, we assessed whether lymphatics could influence DC-mediated T-cell 

priming. Having demonstrated antigen transfer to DCs from LECs, we co-cultured 

these DCs with CFSE labelled OT-1 T-cells to determine if LEC-antigen bearing DCs 

could indeed induce antigen specific T-cell responses. Co-culture of DC’s with CFSE-

labelled T cells permits quantification of T-cell proliferation, as the fluorescent signal 

halves with every T cell division. OT-1 CD8a+ T-cells express T-cell receptors that 

specifically recognise SIINFEKL, the processed OVA peptide presented within MHC-

I on antigen presenting cells, such as a DCs. Thus CFSE-labelled OT-1 CD8a+ T-cells 

were added to DCs acquired from OVA-primed LECs to measure antigen-specific T-

cell proliferation in response to transferred antigen. Proliferation and viability were then 

quantified (Figure 5.10). CFSE-positive cells represent non-proliferative populations, 

with progressively negative CFSE populations representing each subsequent 

generation. Bulk DCs primed with OVA at the same concentration as LECs and 

cultured with T-cells at the same density as LEC-conditioned DCs, were used as the 

positive control. Throughout these co-cultures DCs were not pre-activated with any 

cytokine or bacterial-derived product, allowing us to assess the sole influence of pre-

culturing with LECs on DC-mediated T-cell priming, with DCs cultured alone as the 

control.    

 

Using the gating strategy outlined in Figure 5.10, bulk DCs and both adherent and 

non-adherent DCs derived from co-cultures with OVA-pulsed LECs, were processed 

for flow cytometry. Controls such as CFSE negative T-cells, bulk DCs co-cultured with 

CFSE T-cells in the absence of antigen, and unstained controls to delineate viable and 

CD8a+ T-cells were used to define gates. In the presence of bulk CD11c+ isolated 

DCs primed directly with OVA, an average of 52.5% ± 6.0 of viable CD8a+ OT-1 T-

cells proliferated, compared with 6.8% ± 1.12 in the absence of OVA (Figure 5.11a).   
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Figure 5.10. Gating strategy for quantification of OT-1 CD8a+ T-cell proliferation and 
viability. DCs primed directly with OVA or by OVA-bearing LECs were co-cultured with OT-1 
CD8a+ T-cells for 72 hours. Cells stained with a viability dye and fluorescently conjugated 
anti-CD8a were processed for flow cytometry. For quantification of proliferation, CFSE 
negative cells were gated within CD8a+ viable cells, yielding a percentage of proliferated cells, 
as a total of all CD8a+ viable cells. For quantification of viable OT-1 CD8a+ T-cells, viable 
cells were gated within total CD8a+ cells, yielding a percentage of alive cells, as a total of all 
CD8a+ cells.  

 

 

In the case of DCs collected from LEC co-cultures, neither adherent nor non-adherent 

DCs induced significant T-cell proliferative responses (Figure 5.11a). Compared with 

Bulk DC where 52.5% ± 6.0 of OT-1 proliferated in response to stimulation, 12.6% ± 

3.0 of viable CD8a+ OT-1 T-cells proliferated when co-cultured with non-adherent 

DCs, and 5.49% ± 2.7 proliferated in response to adherent DCs. T-cell viability does 

not appear to be a contributing factor to varying levels of proliferation seen across 

conditions, as percentage of viable CD8a+ OT-1 T-cells co-cultured with LEC-

conditioned DCs was comparable with the viability of those co-cultured with bulk DCs 

(Bulk viability, 74.0% ± 2.3; Adherent viability 69.2% ± 2.8; Non-adherent viability 57.6 

± 0.97) (Figure 5.11b).  

 

As we detected lower levels of OVA uptake in DCs derived from LEC co-cultures in 

comparison to bulk DCs primed directly with OVA, we carried out an antigen titration 

experiment to observe levels of T-cell proliferation with lower levels of antigen. DC co-
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culture densities with T-cells were maintained at 1:10, with OVA concentrations 

ranging from 1-100µg/ml (Figure 5.11c). The percentage of viable proliferating CD8a+ 

T-cells was >80% across OVA concentrations (Figure 5.11c), with no difference in 

viability seen across OVA concentrations either (Figure 5.11d). This suggested 

reduced viability with LEC-conditioned DCs, was not a consequence of lower levels of 

OVA available to present.  

 

To ensure that DCs from OVA-pulsed LEC co-cultures did indeed uptake OVA, as per 

our original experiments, a sample from both non-adherent and adherent DCs from 

every independent experiment carried out, was processed for flow cytometry (Figure 

5.11e). OVA uptake was almost undetectable in non-adherent DCs, which could 

explain the lack of proliferation in T-cells cultured with non-adherent DCs (Figure 

5.11e). OVA could however be detected in adherent DCs (Figure 5.11e) with an 

average of 5.3% ± 1.45 found to be positive for OVA. This suggests that T-cells co-

cultured with adherent DCs did not proliferate despite the presence of OVA-bearing 

DCs. As pre-conditioning with tumour-derived factors did not alter OVA uptake and 

processing by LECs, or the extent of antigen transfer to DCs, no changes in T-cell 

proliferation were expected. Indeed, preliminary data suggests no change in T-cell 

proliferation between DCs derived from CCM or TCM conditioned LECs.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



194 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.11. OT-1 T-cells do not proliferate in the presence of LEC-primed DCs. Flow 
cytometry was used to quantify proliferation and viability of OT-1 CD8a+ T-cells co-cultured 
with bulk DCs pulsed with OVA or non-adherent and adherent DCs derived from OVA-pulsed 
LECs (A,B). Flow cytometry was used to quantify proliferation and viability of OT-1 T-cells co-
cultured with bulk DCs pulsed with a range of concentrations of OVA (C,D). Proliferation 
quantified as a percentage of viable CD8a+ T-cells and viability quantified as a percentage of 
total CD8a+ T-cells. Flow cytometry quantification of 647-OVA uptake in non-adherent and 
adherent DCs before being co-cultured. 647-OVA quantified as a percentage of total cells (E). 
Data shown is from n>3 independent experiments with n>10 samples per group. Data 

presented as mean ± SEM. Statistical significance calculated using Student’s t-test, with P  
0.05. 
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5.3.5. Draining antigen is predominantly taken up by resident LN-LECs  
 

Having established that antigen is taken up and processed by LECs in vitro and can 

be transferred to physically interacting DCs in vitro, we sought to identify whether this 

phenomenon occurred in vivo and whether antigen dynamics was altered in TDLNs.   

 

Firstly, to examine dynamics of drained antigen rather than antigen actively 

transported to the node by migratory APCs, we injected FITC-OVA subcutaneously to 

the front legs of tumour-bearing or control mice, to ensure rapid delivery of antigen 

directly to brachial lymph nodes with minimal exposure of antigen to the periphery. 

Analysis was performed using the gating strategy outlined in Figure 5.12, all non-

immune stromal populations (FRCs, LECs and BECs) were gated using CD31 and 

Podoplanin expression in CD45 negative populations and dendritic cells were gating 

using CD11c expression in CD45 positive populations. FITC-OVA positive populations 

were gated within each stromal compartment and in dendritic cells with overall 

geometric mean fluorescent intensity of OVA in each subpopulation also calculated.  

 

Upon analysis of the non-immune stromal compartments, LECs were the predominant 

FITC+ cell type having engulfed FITC-OVA within 15 minutes of delivery. Across 

resting NDLNs, an average of 66.1% ± 4.05 of total LECs were FITC-OVA positive, 

compared only 17.3% ± 6.9 of total FRCs and 8.5% ± 5.0 of total BECs. Relative 

distribution was unchanged in early TDLNs, with an average of 57.6% ± 5.9 of total 

LECs, 21.7% ± 9.2 of FRCs and 14.0% ± 5.8 of BECs calculated as FITC-OVA positive 

(Figure 5.13a). Immunofluorescent analysis of FITC-OVA distribution in nodes 

confirmed that FITC-OVA was predominantly detected in direct association with 

lymphatic marker, LYVE-1, in both resting NDLNs and Day 4 TDLNs (Figure 5.14).  
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Figure 5.12. Flow cytometry gating strategy used to identify FITC-OVA localisation in 
TDLNs. Flow cytometry was used to determine FITC-OVA uptake in non-immune stromal and 
CD11c+ dendritic cell populations. Non-immune stromal cells were gated with CD45- singlets; 
Fibroblast reticular cells (FRCs) CD31- Podoplanin+; Lymphatic endothelial cells (LECs), 
CD31+ Podoplanin+; Blood endothelial cells (BECs), CD31+ Podoplanin-. Dendritic cells were 
gated upon CD11c+ populations within CD45+ singlets. Representative FITC-OVA gating 
within LECs (left) and CD11c (right) populations are shown.  
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Similar observations were made upon assessment of the degree of FITC-OVA uptake 

by each stromal compartment (Figure 5.13b), with gMFI of FITC-OVA in LECs 

averaging 8-fold higher than in BECs and FRCs in resting NDLNs (Average OVA 

gMFI: LECs – 554.5 ± 69.0; FRCs – 64.4 ± 28.8; BECs – 64.7 ± 31.1). In early TDLNs, 

the gMFI was marginally increased across CD45 negative stromal compartments, with 

a fold-change in OVA gMFI of 1.2 in LECs (Average OVA gMFI: NDLNs – 554.5 ± 

69.0; D4 TDLNs – 676.6 ± 198.6) and fold-change of 1.5 in FRCs and BECs (Average 

OVA gMFI in FRCs: NDLNs – 64.4 ± 28.8; D4 TDLNs – 102.4 ± 54.4 and Average 

OVA gMFI in BECs; NDLNs – 64.7 ± 31.1; D4 TDLNs – 100.4 ± 31.8) (Figure 5.13b). 

These data clearly identified the lymphatics as the dominant compartment for uptake 

of draining antigen, however no significant change in the degree or distribution of 

uptake across non-immune stromal compartments, indicating that the capacity for 

LECs to sample exogenous lymph-borne antigen is a constitutive phenomenon.  

 

Within the CD45 positive immune compartment, uptake of FITC-OVA by CD11c 

dendritic cells was substantially lower than observed for LECs, with an average of 

10.1% ± 0.67 OVA-positive DCs in resting NDLNs and 12.0% ± 1.8 in early TDLNs 

(Figure 5.13c). The extent of uptake was also low, with the gMFI of OVA in CD11c 

DCs averaging 45.3 ± 7.33 in resting NDLNs and 55.8 ± 10.6 in early TDLNs (Figure 

5.13d). Compared with the aforementioned values for OVA uptake in LECs, this data 

suggests that exposure of DCs to draining antigen is minimal within short time frames, 

and the slight increases may be attributed to altered permeability in early TDLN. 

Analysis of early TDLNs also showed identical distribution patterns, supporting flow 

cytometry data and suggesting that draining antigen is predominantly taken up by 

LECs in both resting and early TDLNs. Further kinetic analysis would identify if antigen 

is re-distributed with time and further still whether antigen is re-distributed differentially 

in early TDLNs. 
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Figure 5.13. Antigen is taken-up primarily by LECs in NDLNs and TDLNs. Flow cytometry 
analysis of FITC-OVA uptake by non-immune stromal and CD11c dendritic cell compartments 
within resting NDLNs and early Day 4 TDLNs. FITC-OVA+ cells as a percentage of total cells 
(A, C) and the geometric mean fluorescent intensity of FITC-OVA within each population (B, 
D) is shown with each point representing a single lymph node. Data shown is from n=2 
independent experiments with n=5 NDLNs and n=5 Day 4 TDLNs. Data presented as mean 

 SEM. Statistical significance calculated using the Kruskal-Wallis test with P ≤ 0.05. 
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Figure 5.14. Antigen localises to LYVE-1 positive regions in Day 4 TDLNs. 
Representative confocal images of OVA (red) localisation relative to lymphatics, LYVE-1 
(green). Control NDLNs and Day 4 TDLNs were imaged on a Zeiss 880, with tile scan images 
taken at 20x and 1024 resolution. Shown are representative ROIs of lymphatic rich 
subcapsular sinuses in control NDLNs (left panel) and Day 4 TDLNs (right panel). Dotted white 

lines outline the edge of the lymph node. Scale bars represent 50µm.  
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5.3.6. Draining antigen is predominantly processed by resident LN-LECs  
 

In light of reports that infer a capacity of LECs to process antigen in nodes draining 

late, established tumours188, we aimed to determine the changes in processing of 

engulfed antigen by LECs in early TDLNs. Similarly, to the in vivo FITC-OVA models 

used, we injected DQ-OVA which was detected using flow cytometry, enabling 

quantitation of the degree of processed OVA across lymph node compartments 

(Figure 5.15).   

 

Since draining antigen is rapidly and preferentially taken up by lymphatics within both 

resting NDLNs and early TDLNs, we hypothesised that in the immediate 15 minutes 

post-administration, this would translate to preferential processing by lymphatics. 

Indeed, preliminary data shows that in the stromal compartment, an average of 86.7% 

± 1.0 of all LECs in resting NDLNs were positive for processed OVA, whereas for 

FRCs and BECs, only 12.6% ± 5.5 and 23% ± 7.8 respectively were positive for 

processed OVA (Figure 5.16a, left panel). No significant change in distribution of OVA 

processing capabilities was detected in early TDLNs. Similar dynamics were observed 

when quantifying extent of OVA processing, with the LEC compartment dominating 

(gMFI averaging 1645.5 ± 229.0 in resting NDLNs) compared with FRCs and BECs 

(gMFI averaging 84.6 ± 17.4 and 128.5 ± 27.5, respectively) (Figure 5.16a, right 

panel). Interestingly, while the amount of antigen engulfed by LECs was elevated in 

LECs of TDLNs, the extent of processing by LECs was lower, albeit not significantly, 

with a fold change of 1.96 in gMFI (NDLNs – 1645.5 ± 229.5; Day 4 TDLNs – 839.3 ± 

287.4) (Figure 5.16a, right panel). For FRCs and BECs, the small increases seen in 

uptake of FITC-OVA in early TDLNs continued to processing, likely due to increased 

availability, with average gMFI of FRCs 84.6 ± 17.4 vs. 105.1 ± 18.0 for NDLNs and 

Day 4 TDLNs respectively, and 128.5 ± 27.5 vs. 135.6 ± 7.7 for BECs of NDLNs and 

Day 4 TDLNs respectively (Figure 5.16a, right panel).  

 

As antigen-containing lymph drains continually to lymph nodes, we also assessed 

processing longer term, beyond the acute processing response. Brachial LNs were 

retrieved 18 hours after DQ-OVA administration and the same gating strategy used to 

define extent of OVA processing across lymph node compartments. 
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Figure 5.15. Flow cytometry gating strategy used to identify DQ-OVA processing in 
TDLNs. Flow cytometry was used to determine DQ-OVA processing in non-immune stromal 
and CD11c+ dendritic cell populations. Non-immune stromal cells were gated with CD45- 
singlets; Fibroblast reticular cells (FRCs) CD31- Podoplanin+; Lymphatic endothelial cells 
(LECs), CD31+ Podoplanin+; Blood endothelial cells (BECs), CD31+ Podoplanin-. Dendritic 
cells were gated upon CD11c+ populations within CD45+ singlets. Representative DQ-OVA 
gating within LECs (left) and CD11c (right) populations are shown.  
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Consistent with data from 15-minute time points, in NDLNs, LECs remained dominant 

OVA processers at 18 hours with an average of 69% ± 12.5 of LECs positive for 

processed OVA. An average of 11.9% ± 1.0 and 8.5% ± 0.4 of FRCs and BECs in 

resting NDLNs, and 12.1% ± 2.1 and 8.2% ± 1.4 respectively in Day 4 TDLNs were 

found to have processed OVA (Figure 5.16b, left panel). At later time points, the 

proportion of LECs detected with fluorescent signal indicative of OVA processing was 

43.5% ± 6.2 compared with 86.7% ± 1.0 immediately after inoculation (Figure 5.16b, 

right panel). A more drastic decrease in OVA gMFI could be seen in early TDLNs 

(Figure 5.16b, right panel), with the average gMFI of DQ-OVA down to 499.6 ± 135.7, 

compared with NDLNs at 1441 ± 549.8. However, this decrease was not significant 

due to variation in NDLNs. No changes were found in the gMFI of OVA in FRCs and 

BECs, with the gMFI in FRCs averaging 109.3 ± 4.6 and 102.5 ± 7.4 and in BECs 

averaging 99.5 ± 2.6 and 113.6 ± 9.7, in resting NDLNs and Day 4 TDLNs respectively. 

 

This data ultimately demonstrates that as in resting NDLNs, LECs are taking up and 

processing drained antigen in early TDLNs. It further demonstrates that despite no 

change in antigen uptake, there may be changes in the extent of antigen processing. 

Delayed kinetics could result in better presentation as antigen has more time to be 

processed efficiently; this could explain why the fluorescent signal is so decreased by 

18 hours. As antigen presentation has not been explored in these experiments, the 

relative importance of these changes in processing, for antigen presentation remains 

undefined. Measuring SIINFEKL within MHC on the surface of APCs within the node 

would give a good indication of the extent of presentation relative to processing 

kinetics. Importantly however, it highlights that in terms of stromal involvement in 

antigen-associated processes, the lymphatics dominate over FRCs and BECs in both 

resting NDLNs and early TDLNs, identifying them as likely active contributors to 

antigen-mediated immunity in responding TDLNs in early stages of B16 tumour 

development.  

 

Within CD11c-positive dendritic cells (gating in Figure 5.14), the percentage of DCs 

processing OVA at both 15 minutes and 18 hours post-administration remained 

unchanged (Figure 5.17a). The degree of processing mirrored this, with the gMFI of 

OVA not changing between DCs from resting NDLNs and Day 4 TDLNs (Figure 

5.17a). When comparing the percentage of DCs that had processed DQ-OVA and the 
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extent of processing (Figure 5.17b), values were drastically lower than that shown for 

LECs, demonstrating again, that even after 18 hours (Figure 5.17b), drained antigen 

in both resting and early TDLNs is lymphatic dominated. 

 

 

 
Figure 5.16. LECs efficiently process antigen in NDLNs and early TDLNs. Flow cytometry 
analysis of DQ-OVA uptake by non-immune stromal cells in resting NDLNs and early Day 4 
TDLNs. DQ-OVA positive cells as a percentage of total cells (A, C) and the geometric mean 
fluorescent intensity (gMFI) of DQ-OVA within each population (B,D) is shown with each point 
representing a single lymph node. Brachial dLNs retrieved 15 minutes after (A,B) and 18 hours 
after (C,D) DQ-OVA administration. Data shown is from n=1 independent experiment, with 

n=3 NDLNs and n=3 Day 4 TDLNs. Data presented as mean  SEM. Statistical significance 
calculated using the Kruskal-Wallis test with P ≤ 0.05. 
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Figure 5.17. No difference in antigen processing by CD11c DCs between control NDLNs 
and early TDLNs. Flow cytometry analysis of DQ-OVA processing by CD11c dendritic cells 
in resting NDLNs and early Day 4 TDLNs. DQ-OVA positive cells as a percentage of total cells 
(A, B left panel) and the geometric mean fluorescent intensity (gMFI) of DQ-OVA within each 
population (A, B, right panel) is shown with each point representing a single lymph node. 
Brachial LNs retrieved 15 minutes after (A) and 18 hours after (B) DQ-OVA administration. 
Data shown is from n=1 independent experiment, with n=3 NDLNs and n=3 Day 4 TDLNs. 

Data presented as mean  SEM. Statistical significance calculated using the Mann-Whitney 
test, with P ≤ 0.05. 
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5.3.7. Migratory DCs process more DQ-OVA than resident DCs  
 

Having demonstrated that draining antigen is predominantly taken-up by lymphatics 

early in tumour development, we next set out to ascertain whether DCs entering the 

node could access antigen from said lymphatics during the prolonged physical 

interactions described earlier. In vitro data certainly suggests that mature splenic DCs 

have the capacity to uptake antigen from lymphatics. To investigate this in vivo, we 

developed a simple assay to enable assessment of processing by different DC 

populations. Firstly, DQ-OVA was injected subcutaneously in the front leg allow rapid 

antigen drainage to the lymph node lymphatics independently of any tumour 

involvement. After 15 minutes the tumour-site was painted with TRITC. This ensured 

that tumour-derived DCs were TRITC positive, and that they originated from an OVA-

free tissue site. Only once they reached the lymph node would they be able to interact 

with DQ-OVA that had rapidly drained after administration (Figure 5.18a). No OVA 

was present within the tumour-region, thus any TRITC cells positive for DQ-OVA in 

the lymph node, would hence have acquired that antigen AFTER they arrived, with 

OVA-bearing lymphatics as the likely dominant source. 

 

Using the gating shown in Figure 5.18b, TRITC positive and negative cells DCs were 

identified, and then gated for DQ-OVA using the same strategy as previously used. In 

NDLNs, a 1.6-fold increase in the percentage of DQ-OVA-positive, TRITC-positive 

migratory populations was detected when compared with TRITC negative resident 

populations (15.3% ± 2.0 in resident vs. 24.5% ± 5.1 in migratory, Figure 5.18c). 

Detection in Day 4 TDLNs was reduced in both resident and migratory DCs, with 

11.4% ± 1.2 resident DCs found to have processed DQ-OVA and 8.25% ± 2.8 

migratory DCs having processed DQ-OVA. Upon assessing gMFI across both control 

NDLNs and Day 4 TDLNs, gMFI was dramatically lower in migratory DCs than in 

resident DCs, with a difference between average gMFI of the populations, of 43.6 and 

53.2, in control NDLNs and Day 4 TDLNs respectively.  

 

In terms of what this means of LN-antigen uptake and processing by DCs, we 

previously demonstrated that antigen could be taken up and processed by CD11c DCs 

within the lymph node, hence we expected to observe antigen processing by both 

resident DCs and any present migratory DCs. As we see an increasing trend in the 
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percentage of migratory DCs processing in control NDLNs, this preliminary data does 

suggest that migratory DCs may have better exposure to drained antigen than resident 

DCs, certainly in control NDLNs. However, due to other possible confounding factors 

influencing detection of DQ-OVA processing in the node, as discussed earlier; we may 

not be capturing the full extent of antigen processing using this method. This may 

explain why levels of detection are much lower in Day 4 TDLNs. Trends observed 

collectively do however indicate the possibility that migratory DCs are preferentially 

exposed to drained antigen through physical interactions with lymphatics, which are 

the primary compartment for antigen uptake in both resting and early TDLNs. Further 

analysis would be required to determine more precisely the kinetics of antigen 

processing in resident and migratory DCs in early TDLNs, with appropriate techniques 

needing to be optimised to do so. 
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Figure 5.18. Migratory DCs process drained antigen in LNs. In vivo model to track 
processing of DQ-OVA by tumour-derived migratory DCs (A). Flow cytometry gating strategy 
for quantification of DQ-OVA processing by TRITC DCs (B). DQ-OVA positive cells as a 
percentage of total cells (C) and geometric mean (D) in control NDLNs and Day 4 TDLNs is 
shown. Each point represents a single brachial lymph node retrieved 18 hours after DQ-OVA 
administration and TRITC painting. Data shown is from n=1 independent experiment with n=3 

NDLNs and n=3 Day 4 TDLNs. Data presented as mean  SEM. Statistical significance 
calculated using the Kruskal-Wallace test, with P ≤ 0.05. 
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5.3.8. Migratory DCs are activated and mature in early TDLNs  
 

Having shown that in early TDLNs, tumour-derived migratory DCs have prolonged 

interactions with lymphatics at the subcapsular sinus, and that physical interactions 

permit antigen transfer from antigen-pulsed LECs to DCs, we hypothesised that 

interactions between migratory DCs and lymphatics at the subcapsular sinus could 

result in functionally altered DCs. In support of this, in vitro data implied that DCs co-

cultured with antigen-pulsed LECs were less capable of priming T-cells, despite 

sampling antigen.  

 

We hence conducted a Mouse Dendritic and Antigen Presenting Cell RT2 Profiler PCR 

Array on freshly isolated TRITC-positive cells from non-draining controls, and both 

early and late TDLNs (Figure 5.19a). The gating strategy for isolated TRITC-positive 

immune cells is shown in Appendix 11. The particular array used was tailored to 

Dendritic and Antigen Presenting Cells, with gene targets ranging across key APC 

functions such as antigen uptake and presentation and chemotaxis and cytokine 

production (Figure 5.19b). Qiagen software, designed to accompany these arrays for 

post-experiment analysis was used to calculate gene expression fold change values 

for Day 4 TDLNs and Day 11 TDLNs relative to control NDLNs. This data was used to 

create heatmaps using MeV software and as the Qiagen software does not calculate 

fold change values of individual control samples used, data for NDLNs is not displayed 

in heatmaps produced, as shown in Figure 5.19c.  

 

Visualisation of gene expression profiles of migrated TRITC DCs from early Day 4 and 

late Day 11 TDLNs was done using heatmaps (Figure 5.19c). Early TDLNs revealed 

little change in gene expression fold change of DC maturation markers CD40, CD80 

and CD86 relative to resting NDLNs. This is contrary to literature alluding to altered 

maturation and activation in APCs within the tumour microenvironment as the 

maturation of TRITC migratory DCs that reached the tumour-draining lymph nodes 

appeared unchanged at early stages of disease progression. Interestingly, expression 

of these markers was decreased in late TDLNs, suggesting an immature phenotype 

of DCs is associated more with later stages of tumour development. In contrast, many 

chemokine signalling molecules were altered, with CXCR4, CCL19 and CCL8 up 

regulated in TRITC-positive cells of Day 4 TDLNs. CXCR4 is expressed on the surface 
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of APCs, playing a critical role maturation, survival and CXCL12- mediated 

chemotaxis238,239. Further assisting in APC migration is CCL19, which is not only a 

stromal-derived chemokine essential for facilitating migration of DCs into lymph nodes 

but is also an autologous chemokine which assists in naïve T-cell scanning 

behaviour240. In early TDLNs CCL19 expression is up regulated, whereas the opposite 

trend can be seen in late TDLNs. This suggests incoming migratory DCs are driving 

naïve T-cell responses specifically in early TDLNs, which may lead to altered T-cell 

dynamics in later TDLNs. Genes associated with antigen processing were also 

perturbed, with Tapbp and Tap2 all up regulated and H2-DMA down-regulated. Tapbp 

and Tap2 are critical in antigen processing, with both assisting in MHC Class I loading. 

Up regulation would suggest that TRITC migratory cells are capable of MHC Class-I 

loading and hence may retain capacity to cross present tumour antigen to CD8 effector 

T-cells. Conversely, MHC Class II associated H2-DMA is down regulated in early 

TDLNs, with a similar trend seen in late TDLNs. As MHC Class II is predominantly 

associated with antigen priming of CD4 T-cells, decreased expression of H2-DMA in 

TRITC migratory DCs implies possible dysfunction in this pathway. Furthermore, 

ICAM-2, which facilitates transendothelial migration of DCs277 and the immune 

synapse between mature DCs and naïve CD4 T-cells in lymph nodes278, was down-

regulated in TRITC+ DCs derived from Day 4 TDLNs and up-regulated in those from 

Day 11 TDLNs. 

 

Expression of a number of cytokines were also altered, with IL-6 and IL-2 increased 

and IL-10 and IL-12 decreased. IL-6 is a pleiotropic cytokine, associated mostly with 

pro-inflammatory effector function and anti-apoptotic features in specific relation to 

CD4 T-cells241. IL-2 and IL-12 are also associated specifically with T-cell function, with 

IL-2 governing differentiation into effector and memory T-cells and IL-12 shown to 

promote IFN-gamma / Th1 responses242 and synergise with IFN-alpha to prolong 

division of activated CD8 T-cells243. With IL-10 expression down regulated in early 

TDLNs, this cytokine signature collectively suggests early TDLNs, from the 

perspective of migratory DCs, are in a state of activation, skewed perhaps towards a 

more “pro-inflammatory” status.  

 

Together, these data imply that migrated DCs are activated and mature in early 

TDLNs, with a distinct inflammatory signature, differential antigen processing and 
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cytokine profiles to DCs that trafficked to NDLNs. This suggests that despite prolonged 

interactions with lymphatics at the sinus of early TDLNs, these interactions may not 

alter maturation and activation in vivo, instead serving to alter antigen repertoire and 

access/localisation cues. As little is understood of lymphatic-mediated modulation of 

DC function especially in TDLNs, many of these signatures would have to be 

independently verified in the context of lymphatic conditioning to identify whether DC 

function is much more widely under the influence of stromal cells.   
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Figure 5.19. Migratory DCs are activated and mature in early TDLNs. Migratory immune 
cells, sorted based on double positive expression of TRITC and CD45 within singlets, was 
sorted for RNA (A). The Dendritic and Antigen Presenting Cell PCR Profiler Array includes 84 
gene targets associated with antigen uptake and presentation, chemotaxis, DC differentiation 
and cytokine signalling, as well as cell surface markers and signal transduction molecules (B). 
Heatmap visualising fold change values for gene targets in early Day 4 and late Day 11 
TDLNs. Fold changes calculated relative to SHAM control NDLNs. Values below 1 indicate 
down-regulation and coloured in turquoise with values above 2 indicating up-regulation, 
coloured in red (C). Data shown is from pooled nodes across n=3 independent experiments 
across conditions. Full gating strategy is detailed in Appendix 11. 
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5.3.9. No change to the PD1-PDL1 axis in early TDLNs  
 

Despite providing an insight into expression profiles of key activation and maturation 

markers, as well as cytokines and chemokines, a number of important death 

ligand/receptor axes were not represented in the PCR Profiler Array. As shown across 

a number of studies and clinical trials, the PD1-PDL1 axis is critical in T-cell 

suppression across a number of cancer models244,245. Furthermore, recent in vivo work 

in lymphangiogenic melanoma, has shown TDLN-resident LECs delete effector T-cells 

in a tumour-antigen specific manner via PD-L1. We hence chose to explore this axis 

across stromal compartments to determine whether PD-L1 expression was altered in 

early TDLNs, using flow cytometry as shown in Appendix 12. Across non-immune 

stromal compartments, PD-L1 could be detected mostly on endothelial cells in both 

control NDLNs and Day 4 TDLNs, with no change in expression seen in both BEC and 

LEC populations (Figure 5.20a,c). In Control NDLNs, the average gMFI of PD-L1 in 

LECs was 3555.2 ± 191.3 and in Day 4 TDLNs was 3670.4 ± 124.5. This was in 

comparison to levels of expression in FRCs, with 95.7 ± 1.6 in Control NDLNs and 

101.6 ± 3.6 in Day 4 TDLNs. Levels of PD-L1 expression in CD11c DCs appeared 

higher than in FRCs, with average gMFI in Control NDLNs of 411.0 ± 43.5 and in Day 

4 TDLNs 554.9 ± 77.3 (Figure 5.20a,c). This was calculated as an average fold-

change of 1.3, which may be a functionally relevant alteration, however does not 

represent a significant change in expression.   

 

Looking at reciprocal receptor expression on T-cells within the LN, PD-1 expression 

could not be detected well in either CD4 or CD8 T-cells, with a population expressing 

a small shift in gMFI relative to the unstained control (Figure 5.20b). Little difference 

could hence be detected between Control NDLNs and TDLNs, with CD8 T-cells 

appearing to express lower levels of PD-1 than CD4 T-cells across LNs (Figure 5.20d). 

The same was observed for CD25 across both Control NDLNs and TDLNs and CD4 

and CD8 T-cells (Figure 5.20b,d), however poor detection in this instance may be due 

to poor antibody efficiency.      
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Figure 5.20. No change in PD-L1 and PD1 expression in immune compartments 
between control NDLNs and early TDLNs.  Flow cytometry gating strategy for quantification 
of PD-L1, PD-1 and CD25 expression in non-immune stromal populations (BECs, FRCs and 
LECs (A), and immune populations (CD11c DCs and CD4/CD8 T-cells (B). Quantification of 
gMFI of PD-L1 (C) and PD-1 and CD25 (D) in Control NDLNs and Day 4 TDLNs in non-
immune stromal populations (C, left panel) and CD11c DCs (C, right panel) and CD4 and CD8 
T-cells (D). Data shown is from n=2 independent experiment with n=6 NDLNs and n=6 Day 4 

TDLNs. Data presented as mean  SEM. Statistical significance calculated using the Kruskal-
Wallace test, with P ≤ 0.05. Full gating strategy is detailed in Appendix 12.  
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5.3.10. Increased FoxP3 T-cells found in early TDLNs 
 

To assess whether the changes observed in localisation and function of migrated DCs 

affect T-cell dynamics in TDLNs, we retrieved TDLNs from Day 5, 7 and 11. As 

changes in migratory DCs may not have immediate effect, these time pointes provided 

insight into how changes in early TDLNs influenced the responding lymph node.  

 

TDLNs were taken from control and tumour-bearing mice and processed for flow 

cytometry where CD4 and CD8 T cells, and FoxP3 Tregs were quantified (Figure 

5.21a) to determine T-cell subset dynamics across time. A significant increase in the 

number of T-cells per lymph node was found across time-points, with an average count 

of total CD3e T-cells in Control NDLNs, 0.9x105; Day 7, 2.5x105 ± 0.21 and Day 11, 

1.9x105 ± 0.2. (Figure 5.21b). To determine whether this significant increase at Day 7 

was attributable to expansion of both the CD8 and CD4 compartment, specific CD4 

and CD8 T-cell counts were quantified (Figure 5.21c). Significant increases in CD8 T-

cell count could be seen both at Day 7 and Day 11 (Control NDLNs, 0.41x105 ± 0.08; 

Day 7 TDLNs, 1.15x105 ± 0.09; Day 11 TDLNs, 0.88x105 ± 0.13), whereas CD4 T-cell 

counts were seen to be significantly increased only at Day 7 (Control NDLNs, 0.45x105 

± 0.09, Day 7 TDLNs, 1.23x105 ± 0.11; Day 11 TDLNs, 0.91x105 ± 0.13). Further 

analysis into CD4 T-cell expansion demonstrated a significant increase in the number 

of FoxP3 Tregs at Day 7 only (Control NDLNs, 0.38x105 ± 0.04; Day 7 TDLNs, 

1.03x105 ± 0.12; Day 11 TDLNs, 0.83x105 ± 0.18), suggesting the increasing trends 

in total CD4 T-cell at Day 7 to be attributable to expanded Foxp3 T-cells (Figure 5.21c). 

Our data hence agrees with published data, suggesting early tumour events 

encourage Treg accumulation in TDLNs. In terms of applying these findings to the 

phenotype observed in migratory DCs in early TDLNs, the lack of significant change 

in numbers of T-cells, across subpopulations, in Day 5 TDLNs, suggests that any 

change occurring in early TDLNs could be influencing T-cell dynamics over 48hours 

later at Day 7. The specific contribution of altered DC migration in early TDLNs on T-

cell dynamics in the ever-developing TDLN is unknown, and hence this work sheds 

some light on the temporal kinetics of T-cell/DC interactions and consequent T-cell 

immune responses. These timelines are critical for therapy, and hence must be 

considered for any immunotherapies that rely on T-cell/DC interactions in TDLNs.  
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Figure 5.21. Altered T-cell profiles in TDLNs across time. LNs derived from control NDLNs 
and TDLNs were processed for flow cytometry, with T-cells defined by CD4 and CD8 
expression within T-cell singlets, with regulatory T-cells (Tregs) defined within CD4 T-cell 
populations (A). Data shown is the quantification of total CD3e T-cells (B), CD4 T-cells (C), 
CD8 T-cells (D) and FoxP3 CD4 Tregs (E) per node. Data shown is from n=2 independent 
experiments with n=9 NDLNs, n=2 Day 5 TDLNs, n=2 Day 7 TDLNs and n=5 Day 11 TDLNs. 

Data presented as mean  SEM. Statistical significance calculated using the Kruskal-Wallace 
test, with P ≤ 0.05 compared to control NDLNs.  
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5.4. Discussion 
 

Having established transformed lymphatics in early and late TDLNs of B16-F10 

melanoma tumours, with a number of immune signatures altered; we wished to 

explore the specific role of lymphatics in dendritic cell mediated immunity. Dendritic 

cells are in close contact with lymphatics for the duration of their journey from the 

periphery to the lymph node and we show that upon arrival at the node, migratory 

dendritic cells undergo prolonged physical interactions with the lymphatics at the 

subcapsular sinus. In addition to altered migratory and localisation patterns in early 

TDLNs, we wondered whether these interactions could have other functional 

consequences for migratory dendritic cells. With much research in basal settings 

demonstrating capacity for antigen to be transferred between lymphatic endothelial 

cells and migratory DCs, we wished to investigate relevance in the tumour 

microenvironment.  

 

Firstly, we demonstrate that dendritic cells that physically interact with antigen-bearing 

lymphatic endothelial cells in vitro can uptake lymphatic-derived antigen. In these 

experiments, we bathed the LECs with FITC-OVA, however did not conduct analysis 

on the location of the antigen. Considering the time-frames of these assays and the 

saturation of LECs with FITC-OVA, we would predict antigen would be localised both 

in intracellular vesicles as well as on the cell surface. Antigen transfer could be 

occurring via exosomes or microparticles or through acquisition from the extracellular 

surface, and both mechanisms could indeed contribute to the acquisition of antigen by 

interacting DCs. However, the literature suggests this process is dependent on the 

physical-interaction of DCs with LECs124 and does not occur via exosomes282, so we 

would predict antigen is predominantly being transferred through physical interactions 

in this in vitro model. Future work must build on the mechanism driving this 

phenomenon and explore whether antigen transfer occurs in healthy and/or disease 

states and whether it is site-specific and only occurs in lymph nodes.   

 

Secondly, lymphatics were shown to be the dominant compartment for antigen uptake 

and processing in vivo, over both short and medium-term periods. These findings 

suggest our in vitro observations of antigen transfer from LECs to DCs is highly 

plausible in vivo. Indeed, preliminary TRITC in vivo experiments found that migratory 
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DCs do process node-derived antigen more than resident DCs. As the lymph node 

drains antigen from the developing tumour, this mechanism may indeed allow for early 

tumour antigen which has drained to the TDLN, to be transferred between tumour-

conditioned lymphatics and tumour-derived DCs. This is in line with recent published 

work which describes migratory DC antigen uptake from lymphatics and subsequent 

T-cell priming124. This study was not however conducted in a tumour model, and hence 

our work extends upon their initial findings. As this work does not however account for 

possible changes in drainage of peripheral lymphatics or lymph node afferent 

lymphatic vessels, the differences in detected OVA and DQ-OVA is only explained in 

the context of LEC/DC capacity to uptake and process. However, these are critical 

factors in antigen drainage and delivery, in addition to other biophysical factors, which 

must be investigated in future work. Reviewing these findings in light of the described 

role for Podoplanin in mediating physical interactions between LECs and DCs 

(Chapter 4), future work should also assess the capacity for antigen transfer between 

LECs and DCs in over-expressed and knockout Podoplanin models. If Podoplanin 

knockout did indeed demonstrate perturbed transfer of antigen, this would be a highly 

novel observation and would identify Podoplanin as a unique regulator of antigen-

mediated immunity.   

 

In terms of implications for anti-tumour immunity, we show migratory DCs which have 

acquired tumour antigen from lymphatics, reach the T-cell zone. Albeit delocalised 

DCs and perturbed entry in early TDLNs, this indicated that tumour-derived migratory 

DCs are equipped with antigen for T-cell priming. We do however see that in vitro, 

DCs that have acquired lymphatic antigen are incapable of priming T-cell proliferation 

to their full capacity when compared with control DCs primed directly with antigen. 

Further investigation with a range of antigen concentrations suggested that this lack 

of T-cell proliferation was independent of the level of antigen taken up by DCs, as 

control DCs with low concentrations of antigen were still able to prime T-cell 

proliferation. Hence, despite lacking a more mechanistic investigation into why DCs 

do not induce T-cell proliferation in vitro, we do demonstrate differential T-cell 

responses in vitro between DCs that have or have not been conditioned by lymphatics. 

This contradicts findings by Kedl et al., whom described maintained T-cell priming 

functionality in DCs that acquired antigen from lymphatics124. However, as their 

investigations in to T-cell proliferation used in vivo models, results cannot be directly 
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compared with those obtained with the in vitro OVA model used in this thesis. Further 

investigation into T-cell proliferation and viability in vivo would be needed to elucidate 

more precisely the role of lymphatic-dendritic cell crosstalk in early TDLNs. 

 

Having established antigen transfer and potential loss of T-cell priming functionality in 

vitro, we looked to determine the phenotype of migratory DCs that had reached the T-

cell zones in vivo. From PCR array profiling and flow cytometry data, we could 

conclude that migratory TRITC DCs appeared to retain their maturation and activation 

status, with expression of CD40, CD80 and CD86 confirmed in early TDLNs. 

Furthermore, their antigen processing capacity appeared retained which supports our 

preliminary findings that migratory DCs can uptake and process antigen from 

lymphatics at the sinus before traversing into the T-cell zone. A key difference 

observed in early TDLNs was perhaps the precise localisation of migratory DCs within 

the cortex (Figure 5.2, 5.3) and their chemotactic profiles (Figure 5.19). Interestingly, 

we saw DCs near the B-cell edge and around HEVs, which often are populated with 

naïve T-cells. Often naïve T-cells enter LNs from the circulation and seek out antigen-

bearing DCs. If migratory, tumour-antigen bearing DCs are localised at the main 

entrance point to the LN, then the likelihood of exposure to antigen and subsequent 

priming is high. Marrying this with the array data, the stark increase in CC19 

expression in migratory DCs from early TDLNs, does indeed indicate that migratory 

DCs are preferentially attracting naïve T-cells. Upon analysis of T-cell populations, 

increases in CD4, CD8 and more specifically FoxP3 T-cells were seen in Day 7 TDLNs 

(+2 days from our observations). This suggests that there is either an intrinsic switch 

towards a regulatory phenotype or that more regulatory T-cells are entering early 

TDLNs from the periphery. Further investigations into precise T-cell kinetics in TDLNs 

across tumour development and reciprocal mechanistic work to examine the precise 

role of lymphatic-conditioned DCs in T-cell kinetics is needed to shed light on whether 

these preliminary findings are merely correlative or are indeed causal.  

 

In an attempt to dig further into the possibly mechanistic drivers of tolerance in TDLNs, 

we found expression of both PD1 and ligand, PDL1, to be equally expressed in control 

and early TDLNs. As this axis is often over-represented in the tumour 

microenvironment, driving effector T-cell deletion and maintenance of Treg 

phenotypes, we expected this axis to be altered in favour of suppression in TDLNs. 
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We hypothesised over-expression of one or both components of this axis, however 

found no change in expression across stromal and immune compartments. This 

suggests that either a permissive environment, that ordinarily maintains homeostatic 

immune balance is maintained and hence causing unwanted tolerance in early 

TDLNs, or alternatively may not be playing an important role in the establishment of a 

tolerogenic environment. Other molecules such as CTLA-4 have been identified as 

the preferential mechanism of induced tolerance in the node, with the PD1-PDL1 axis 

proposed to be more important for T-cell deletion at the primary tumour. We would 

hence need to do a more thorough examination of migratory DC phenotype in TDLNs 

to better understand their immunogenic capacity. Furthermore, as early TDLN immune 

kinetics are poorly understood, this data simply outlines a characterisation of migratory 

DCs in early TDLNs from B16-F10 melanomas. A finer analysis of their phenotype and 

how it changes with time and in line with changes at the primary tumour is imperative 

to concluding the role of migratory DCs in early immune response development. A 

clear in vivo phenotype would then allow for accompanying in vitro and in vivo models 

that utilise lymphangiogenic tumours, to determine the relative contribution of 

lymphatics to this early migratory DC phenotype.  
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6. General Discussion  

 

6.1. Project rationale and overview  
 

Tumour progression is a complex process requiring not only proliferation of and 

evolution of tumour cell populations, but also contribution from “normal” stromal cells. 

The stromal compartment within the tumour microenvironment comprises of both 

immune and non-immune cells, namely fibroblasts, blood endothelial cells and 

lymphatic endothelial cells. The involvement of the stromal compartment in health and 

disease has been the focus of much research in recent years. Within the tumour 

microenvironment, the immune compartment is accepted to be dysfunctional, with 

suppression of anti-tumour immune responses described in a number of cancers. 

Despite establishing an understanding of some of the mechanisms contributing to 

immune suppression, the changes occurring early on in tumour development that 

define the immune landscape and set the scene for tumour progression are poorly 

understood. In addition to the temporal aspect of immune suppression, the spatial 

element must also be understood, with significant gaps on the role of TDLNs in anti-

tumoural immunity remaining. Considering that lymph nodes function as immune 

hubs, but are also major sites of metastasis, there exists an unmet need to determine 

how tumour-associated tissues contribute to immune dysfunction from early phases 

of tumour development, ultimately allowing disease progression.  

 

The extent of dysfunction of the non-immune stromal compartment in comparison 

remains unclear. The identification of LEC-specific markers has facilitated a growing 

field of research on the role of lymphatic vasculature in the tumour microenvironment. 

The lymphatics are now accepted to be active facilitators of tumour metastasis, with 

the VEGF pathway and several chemokine pathways identified as critical for tumour-

lymphatic communication. In addition, the expansion of the lymphatic network is a 

characteristic of many cancers, in particular melanoma, which is considered to be both 

a highly lymphangiogenic and highly immunogenic cancer. Following the newly 

established role for lymphatics in immune modulation, we broadly aimed to determine 

the role of lymphatics in modulation of the anti-tumour response. However, as the 

lymphatics are the primary source of communication between primary tumours and 
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TDLNs, we focused on events occurring at TDLNs, hypothesising that LECs would 

contribute to conditioning of TDLNs and immune dysfunction from early disease. 

Together this thesis aimed to address the combined need for better spatial and 

temporal understanding of mechanisms underpinning immunity in the tumour 

microenvironment.  

 

To do this we sought to determine the functional changes occurring in lymphatics in 

TDLNs and whether these changes had implications for immunity. With an interest in 

temporal restraints, we also wished to conduct analysis in TDLNs from early and late 

stages of disease, to understand when precisely these changes were occurring. 

Finally, due to the evidence highlighting lymphatic involvement in melanoma and the 

immunogenic nature of melanoma tumours, these investigations were conducted in 

the context of melanoma. 

 

6.2. Lymphangiogenesis in the tumour microenvironment   
 

To assess changes in TDLN-derived lymphatics in melanoma, we used a well-

established injectable murine model of melanoma. Alongside colleagues, gross 

changes to TDLNs were reported with significant expansion of all non-immune stromal 

compartments in TDLNs from late, well-developed tumours. However, 

lymphangiogenic responses in particular appeared to be initiated earlier in tumour 

development, with increasing trends in LYVE-1 coverage observed from Day 4 prior 

to the established networks of Day 11 TDLNs. This was mirrored at the primary tumour 

where peritumoural lymphatics were often seen expanded in later tumours, in line with 

previous work demonstrating lymphangiogenesis in melanoma130, 126, breast127,131 and 

non-small lung cancer132. These findings were also consistent with studies reporting 

incidence of lymphangiogenesis in TDLNs138, however our initial findings took these 

observations beyond “pre-metastastic’ to define the temporal contributions of LN 

lymphangiogeneis which was seen very early on in pre-metastatic TDLNs. Our 

findings also clearly demonstrate capacity for all stromal compartments of the TDLN 

to respond to factors draining from the tumour, highlighting a susceptibility to adapt. 

Furthermore, as TDLNs were robustly altered across time, with no evidence of this 

being a transient change and recovery to former homeostatic states, we demonstrate 
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that TDLNs retain an “altered phenotype” for as long as they can communicate with 

and drain from tumours. To this end, it would be exciting to determine how tumour 

resection impacts downstream lymph nodes and whether stromal cells within either 

exhibit a sense of plasticity returning to former states (as for infection246) or retain 

functional alterations upon removal of tumour derived stimuli. 

 

These findings provide further insight as to when during tumour development a 

prominent lymphangiogenic signature develops. This has obvious implications for 

stratifying therapeutic intervention, as critical windows for therapy may in fact be much 

earlier on in disease progression. Considering further the consequences of blocking 

lymphangiogenesis in melanoma; as well as blocking the metastatic 

pathway94,145,247,248 recent published findings suggest lymphangiogenesis as a novel 

determinant for immunotherapy susceptibility249,189. As we demonstrate here that 

lymphatics are indeed key modulators of immunity in the tumour microenvironment, 

potential anti-lymphangiogenic therapies must also consider side-effects on the 

immune response and thus combinatorial immunotherapies approaches may also be 

required for effective treatment strategies. Finally, as we have identified lymphatic 

changes in TDLNs from early disease stages, it may be the case that lymph node 

biopsies, routinely collected in the clinic, could be used to determine immune status, 

and extent of lymphatic involvement used to predict risk of metastasis.   

 

In addition to characterizing gross lymphatic changes, transcriptional analysis of LECs 

from early and late TDLNs revealed many altered canonical pathways, mostly 

categorized into endothelial biology and immune associated pathways. As our 

hypothesis outlined a role for lymphatics in anti-tumour immunity, we focused on the 

immune changes occurring in both Day 4 and Day 11 TDLNs, with the expression of 

Gp38, Ccl21 and endothelial junctional molecules Jam3, Cdh5 and Cldn11 all 

significantly altered. These genes all play critical role in successful immune cell 

trafficking. Lymphatics are well understood to facilitate migration of dendritic cells 

45,25,63 and reviewed in250 and novel findings have extended this to T-cell and neutrophil 

trafficking49,50,51. As dendritic cells are essential for mounting an immune response 

once they’ve arrived at LNs, we concluded that altered expression of these gene 

targets in TDLN-derived LECs is likely to affect DC migration and hence DC-mediated 

immunity. We hence hypothesised that functional lymphatic changes would impact DC 
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migration in early TDLNs. Indeed, a number of studies report altered DC migration and 

behaviour in the context of perturbed lymphangiogenesis190,189,251,249,252, and a wealth 

of evidence indicates the importance of CCL21 and endothelial junctions in regulating 

directional migration and transmigration57,63,253.  

 

Upon verification of these changes, we confirmed increased Podoplanin expression in 

LECs derived from Day 4 TDLNs at the protein level, however CCL21 appeared to be 

unchanged. As immunofluorescent analysis was used to visualise CCL21 this analysis 

did not tell us whether the relative lymphatic contribution was changed. Instead, our 

data highlighted trends in total CCL21 as both FRCs and LECs derived CCL21, and 

additional CCL21 drained from the periphery would be detected. In future, we could 

employ methods such as RNA Scope to quantify both localisation and levels of RNA 

production in TDLNs. However, to more specifically measure the relative importance 

of lymphatic-derived CCL21 in dendritic cell migration in vivo, we would require 

genetically modified mouse models with lymphatic-specific promoters, such as Prox1 

or LYVE-1. This would give us clearer insight into the functional significance at a 

protein level of down-regulated expression in TDLN-derived LECs and would highlight 

significance relative to other stromal populations, which also produce CCL21. This 

approach would also be needed to translate verified changes in junctional molecule 

expression, as qRT-PCR served to confirm trends observed in the microarray. This 

would particularly give insight into whether junctional changes in lymphatics affected 

overall permeability of LNs, antigen exposure across LN compartments and immune 

cell trafficking.  Using these systems on a tumour background give us critical 

information regarding the functional contributions of lymphatic changes in tumour 

progression.   

 

Further to this, we utilized TCGA data as a first line correlation with clinical samples. 

This approach identified Gp38 as one of the only gene targets to positively correlate 

with dendritic cell infiltrate in TDLNs from melanoma patients, as Ccl21 and Jam3, as 

well as many of the top up- and down-regulated gene targets did not significantly 

correlate. We acknowledge that as these TCGA samples have been acquired through 

biopsy and have a unified approach to RNA profiling, there is likely to be inaccuracies 

and poor detection of expression in some cases. However, despite this, the TCGA 

data does support the notion of Podoplanin as a mediator of DC infiltrate and 



225 

 

encourages further investigation into the role of lymphatic Podoplanin in DC migration 

in early TDLNs.  

 

Collectively, these gross observations highlight a functional change in lymphatics in 

both early and late TDLNs, with temporal changes indicating distinct alterations at 

different phases throughout tumour development. Although transcriptional profiling of 

LECs has been conducted on peripheral lymphatics from fibrosarcoma 1, this is the 

first study to transcriptionally characterise LECs in TDLNs and more specifically the 

first to characterise these changes over time. It is interesting to note that our dataset 

from lymph nodes, and that from the tumour exhibited some similarities, such as 

differential junctional molecule expression alluding to degrees of commonality 

between tumour models and across tissue sites. Investigation into site-specific and 

tumour-specific differences in lymphatic alterations would be a highly useful tool that 

would provide further context to our findings and provide critical insight into the role of 

lymphatics across tumour types and across the tumour microenvironment.  

 

6.3. Modulation of DC migration in TDLNs mediated by Podoplanin positive 

lymphatics 

 

Having identified alterations in TDLN-derived LECs that had implications for DC 

trafficking, we sought to explore the potential cross-talk between DCs and tumour-

conditioned LECs. From the microarray data, Podoplanin emerged as a potential 

candidate for regulation of DC trafficking in LECs. This was supported by recent 

publications demonstrating that Podoplanin on LN-FRCs interacted with CLEC-2-

expressing DCs 77, and secondly demonstrating the importance of Podoplanin in 

lymph node infiltrate through lymphatic-specific knockout models 237. CLEC-2 

knockout models further showed decreased lymphatic vessel entry in the peripheral 

tissues, indicating both a peripheral and lymph node role for Podoplanin77. Both 

studies indicated engagement of the Podoplanin-CLEC2 axis in migration of DCs from 

the periphery to the lymph node, with the former highlighting the role of FRC-

expressed Podoplanin77 and the latter highlighting the role of LEC-expressed 

Podoplanin237. This indicated a function for Podoplanin across stromal compartments, 

across sites (periphery vs. lymph node) and in DC transmigration and trafficking. Thus, 
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the observation that expression of Podoplanin on LN-LECs was increased in early 

TDLNs at both RNA and protein level, we hypothesised that up-regulated Podoplanin 

expression was essential in mediating physical interactions between LECs and DCs 

in the extended tumour microenvironment.  

 

Firstly, assessment of tumour-derived DC migration in early TDLNs in vivo, showed 

that migratory DCs clustered at the subcapsular sinus of Day 4 TDLNs. As migratory 

DCs were detected in the T-cell zones, we concluded that this phenotype was 

suggestive of enhanced interactions between incoming tumour-derived DCs and 

lymphatics at the subcapsular sinus. Modelling these interactions in vitro with splenic 

DCs expressing CLEC-2 and with TCM conditioned LECs we recorded an anchorage 

phenotype with DCs exhibiting enhanced adhesion, decreased transmigration and 

mobility, and altered morphology. As this was a defined window of observation we 

could conclude that during the duration of the assay, DCs were physically interacting 

with LECs in vitro for prolonged durations of time, even though junctional integrity was 

likely compromised. This recapitulated our in vivo observations and suggested that 

tumour-derived factors condition lymphatic endothelium in favour of promoting 

prolonged physical interactions with DCs. Neutralization of LEC Podoplanin in vitro, 

resulted in decreased DC adhesion indicating that Podoplanin could indeed mediate 

these physical interactions. It is not known whether the Podoplanin antibody used for 

these assays binds the active binding site of CLEC-2, the glycosylated T34 amino acid 

in the PLAG domain, or if facilitates Fc-mediated anchoring. Podoplanin blockade may 

therefore reduce the number of migrating DCs through diminishing the number of 

CLEC-2 binding sites or by anchoring DCs to the endothelium layer. How the 8.1.1 

clone antibody binds Podoplanin and the consequent effect on CLEC-2 ligation and 

DC migration, must therefore be investigated further. Experiments using different 

Podoplanin clones, non-specific antibodies and CLEC-2 blocking antibodies would 

assist in answering this question by ensuring the blockade is specifically perturbing 

interactions through the Podoplanin-CLEC2 axis.  

 

Collectively, these results indicated that tumour-derived factors drive up-regulation of 

Podoplanin expression on lymphatics and this up-regulation likely promotes prolonged 

interactions between lymphatics and DCs. At the lymph node where observations 

were based, this has implications for DC entry into the node and potentially other 
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aspects of DC-mediated immunity. At the periphery, which was not addressed in this 

thesis, it may be the case that Podoplanin is acting as a facilitator of lymphatic vessel 

entry237. This notion is supported by in vivo observations in basal settings77 and 

extends upon findings that other lymphatic markers, namely LYVE-1, also mediate 

lymphatic entry of DCs in the periphery52.  

 

While we have shown that CLEC-2 is expressed on a population of splenic DCs, and 

to a lesser extent LN-derived DCs, an extensive characterisation of CLEC-2 

expression on the subpopulations of migratory DCs is required. As CLEC-2 was less 

detectable in LN-derived DCs, CLEC-2 may be a feature of migratory, mature DCs. 

This would explain why in resting LNs, little CLEC-2 was detected. In the context of in 

vivo settings, whether CLEC-2 is restricted to skin-derived DC populations acting as a 

feature which enables DCs to migrate away from the periphery, must be elucidated. A 

study exploring CLEC-2 expression and detection of CLEC-2, using the same antibody 

clone as used in this thesis found CLEC-2 to be mostly expressed by mature, 

migratory DCs, further enforcing the role of CLEC-2 to be routed in migratory 

phenotypes77,254. Beyond DCs, neutrophils also express CLEC-2 in the form of a 

phagocytic receptor255, however following identification that neutrophils use 

lymphatics to traffic to lymph nodes51, it may also be the case that the Podoplanin-

CLEC2 axis is critical for lymphatic migration of other immune populations in health 

and disease. Use of single-cell RNA sequencing and proteomic analysis of in vivo 

derived tissue samples from a range of anatomical sites in healthy conditions, would 

help identify the basal expression of CLEC-2 across immune populations and hence 

their relative capacity to interact with Podoplanin and the influence that has on 

trafficking. Conducted in inflammatory or disease states, this would provide a much 

clearer understanding of the role of the Podoplanin-CLEC2 axis in immune trafficking 

in response to certain stimuli. In particular, investigation into the Podoplanin-CLEC2 

axis in the tumour microenvironment is needed, as factors from the developing tumour 

may influence levels of CLEC-2 on immune cell subsets in the tumour 

microenvironment. As we have shown, lymphatics in the tumour microenvironment are 

transcriptionally altered in response to factors in the milieu, with Podoplanin up-

regulated in response to B16-F10 factors. Hence, factors from the tumour 

microenvironment may reciprocally alter the expression of CLEC-2. In vivo profiling of 

myeloid subsets in skin versus early and late tumours, with matched draining lymph 
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nodes, would determine whether CLEC-2 expression is altered in healthy versus 

disease states in primary and draining tissue sites. If accompanied by in vitro assays, 

the driving factor for CLEC-2 expression changes at RNA and protein level, could be 

determined using single factor administration e.g. culture with a cytokine, or by using 

conditioned-media from cultured cells e.g. B16-F10 tumour conditioned media or CAF 

conditioned media.  Furthermore, as CLEC-2 expression has been recently reported 

to be regulated by tetraspanins276, upstream signalling events and potential co-

operative interactions add further levels of complexity to Podoplanin-CLEC2 mediated 

lymphatic migration. In addition to the unknown impact of tumour microenvironment 

factors on CLEC-2 expression, little is known of the impact on lymphatic derived 

chemokines and the expression of chemokine scavengers, for which both govern DC 

migration. In vitro experiments determining the role of the Podoplanin-CLEC2 axis 

must hence be conducted in the presence or absence of a chemotactic gradient to 

better capitulate in vivo settings and determine the independence or cooperativity of 

the Podoplanin-CLEC2 axis and lymphatic chemokines in DC migration. In vivo 

disruption to chemokine signalling in conjunction with perturbed Podoplanin signalling, 

on a tumour background, would support this line of investigation. Finally, as 

Podoplanin is known to bind CCL21256, the Podoplanin-CLEC2 axis and related DC 

migration patterns may be interlinked with CCL21 signalling and must be explored.             

 

Having established a role for Podoplanin in DC interactions with lymphatics and 

identified tumour-derived factors as regulators of Podoplanin expression, we explored 

whether targeting Podoplanin expression influenced DC migration in the tumour 

microenvironment. Using antibodies previously described in Podoplanin targeting in 

vivo77, we trialled an in vivo blocking regime in B16-tumour bearing mice. Results were 

variable across independent experiments with no significant changes seen in DC 

migration from tumours to early TDLNs. As blocking antibody was administered 

subcutaneously and could hence bind Podoplanin on a number of Podoplanin 

expressing stromal cells, it may be the case that these results are being confounded 

by targeting other cells. It may also be the case that the blocking regime itself requires 

further optimization; within the window of 18hr migration, the rate at which DC bind 

LEC Podoplanin, the duration of these interactions and the kinetics of Podoplanin 

turnover are not known.  Finally, in vitro settings where this antibody successfully 

perturbed DC interactions and initial observations of TCM-induced Podoplanin up-
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regulation were controlled and restricted to dermal LECs being exposed to blockade 

antibody or B16-F10 tumour conditioned-media which drove up-regulation of 

Podoplanin protein expression. However in vivo, there are many factors which could 

influence expression of Podoplanin on primary and lymph node lymphatics, as well as 

possible effects on reciprocal CLEC-2 expression, as discussed above. Hence the 

kinetics of Podoplanin expression, blockade and consequent DC physical interactions 

are likely to be different and mechanistically more complex. We hence utilised an in 

vivo knockout model, with the rationale that ablating RNA expression would more 

robustly affect Podoplanin expression and subsequent interactions at the protein level. 

Although a hypomorph, the PDPN-FL model, used in a number of published 

studies257,258, enabled and in vivo titration of Podoplanin levels (heterozygous vs, 

homozygous) in tumour-bearing mice. We hypothesised that in the absence of 

Podoplanin, DC trafficking to TDLNs would be perturbed. Indeed, in homozygous 

mice, this was seen to be the case with markedly reduced migration of tumour-derived 

DCs. However, this was not observed in heterozygous mice, where both 

immunofluorescent and flow cytometry analysis yielded no differential patterns 

between wild type and heterozygous mice in terms of migratory DC infiltrate and 

localisation in early TDLNs. We believe that as heterozygous mice still have one 

Podoplanin allele, this is sufficient to translate protein and hence results in a lack of 

functional inhibition of DC trafficking. This is an important observation to make, as it 

informs future genetic targeting studies, with knockdown not being sufficient to have a 

prominent influence on immune trafficking. However, as this is not a lymphatic-specific 

Podoplanin knockout model, there are limitations to these observations. With global 

knockout of Podoplanin, come reduced litter viability, mixed blood and lymphatic 

vasculature and defected lymph node architecture, thus for any further studies we 

would want a lymphatic-specific knockdown model, such as the PROX-1 promoter 

knockdown model used by Watson and colleagues237. It would also be interesting to 

develop a conditional knockout model, whereby lymphatic Podoplanin could be 

targeted at different stages of tumour development, to truly highlight the temporal 

relevance of Podoplanin in the developing immune response. Furthermore, a recent 

study characterizing subpopulations of lymphatics in the lymph node123, could be 

utilised to develop more complex knockout models that, for example, specifically target 

Podoplanin expression in lymphatics of the subcapsular sinus. The same could be 

applied to the periphery if better subpopulation characterisation was conducted. 
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Overall, these approaches would inform us not only of the temporal contributions of 

lymphatic Podoplanin in DC migration, but also of location specific roles. As mounting 

an immune response involves a series of complex processes and there are therapies 

that rely on effective DC migration to TDLNs, such as DC vaccines259, it is critical to 

understand the path that DCs and other immune cells take in their attempt to prime 

the immune system. Defining the molecular mechanisms involved, such as 

interactions with Podoplanin, would hence provide a crucial part of the puzzle.  

 

6.4. Lymphatics as modulators of antigen-mediated immune priming  
 

Further to the implications of lymphatics in modulating DC trafficking, lymphatics have 

also been shown to engage in antigen processing and presentation. In fact, very recent 

publications have shown LN lymphatics can transfer antigen to DCs, and more 

specifically to incoming migratory DCs120,124. We show in this thesis that LECs 

exposed to antigen in vitro, can indeed transfer antigen to DCs in a manner that is 

dependent on physical contact. Despite microarray data implying altered antigen 

processing and presentation functionality in LECs, TCM-conditioning did not alter 

capacity to transfer, hence DCs that interacted with TCM-conditioned lymphatics took 

up as much antigen as those that interacted with control treated lymphatics. However, 

since more DCs interacted following TCM treatment, more LEC-derived antigen was 

ultimately transferred to immune cells. This extends upon the current literature, as it 

not only demonstrates antigen transfer in resting states, but also shows this 

mechanism occurs in tumour conditioned settings. To recapitulate this in vivo, we used 

fluorescent-conjugated antigens to track antigen uptake and processing in the lymph 

node. By injecting mice with antigen prior to TRITC painting this ensured that tumour-

derived DCs had not come into contact with fluorescent antigen prior to arriving at the 

lymph node. This approach highlighted lymphatics as the dominant compartment to 

uptake and process antigen, implying that a major source of antigen in the node is 

indeed the lymphatics. We were able to detect antigen transfer to migratory DCs in 

vivo, however due to the properties of DQ-OVA, we were limited in what we could 

detect by flow cytometry; in this case, we have a window of optimal proteolytic 

processing where antigen can be detected between lymphatic and immune 

compartments, but neither full-length of fully digested antigenic peptide is fluorescent. 
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This is however, the first attempt to track antigen transfer in early TDLNs, and hence 

this preliminary data acts as a foundation to build upon in future experiments.  

 

Bringing these observations back to the concept of prolonged interactions, we also do 

not know if kinetics of DC transit or the source of antigen can impact antigen 

processing and presentation. Our localisation analysis implies that through prolonged 

interactions at the subcapsular sinus, there is less T-cell zone coverage of migratory 

DCs, and hence perhaps fewer antigen-loaded DCs to interact with. However, whether 

the antigen taken up by DCs through these prolonged interactions has a differential 

impact on T-cell priming in vivo was not elucidated in this thesis. We did however 

demonstrate that DCs that underwent prolonged interactions with lymphatics in vitro 

were less able to stimulate T-cell proliferation. This implies that after prolonged 

interactions with lymphatics in early TDLNs, DCs subsequently migrate into more 

peripheral areas of T-cell zones and with a diminished capacity to prime T-cells. 

Interestingly, upon profiling of a panel of maturation, activation markers and death 

ligands at both RNA and protein levels, migratory DCs in early TDLNs are mature and 

activated and hence should be capable of mounting an immune response. This is 

opposite to the reported data pertaining to DC maturation and activation in primary 

tumours, which describe DCs as being immature and poor immune stimulators260,185. 

Hence, in light of canonical maturation markers being expressed and the apparent 

distinction between lymph node and tumour DC profiles, it may be the case that the 

immune response can be inhibited independently of maturation. Indeed, our data 

suggests that migratory DC localisation and lymphatic exposure could be 

distinguishing features of a mounting immune response in TDLNs. A number of studies 

have demonstrated that localisation in the node is defined by DC subtype, with dermal 

CD11b+ DCs found to localise at the B-cell follicle/T-cell zone interface, with epidermal 

DCs migrating later and localising further into the T-cell zone218. Due to varying 

capacities to antigen uptake present and cross present across DC subtypes, DC 

localisation is hence important in defining the type of immune response mounted. 

Further investigation into the subset of migratory DC that interacts for prolonged 

periods with lymphatics, and the subset specific localisation of migratory DCs in early 

TDLNs is needed to understand better the functional implications of these localisation 

phenotypes observed.   
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6.5. Driving factors involved in altered lymphatic and DC behaviour in the 
tumour microenvironment   
 

As the changes to lymphatics and subsequent DC behaviour was restricted to TDLNs, 

it would next be key to elucidate the factors derived from the tumour microenvironment 

driving the observed changes. As the primary tumour microenvironment has a 

complex cellular composite and with dynamic biophysical and biochemical signals, we 

can assume that the changing biophysical and biochemical cues are also important at 

the TDLNs. From the literature and signatures in our microarray data, a few specific 

factors can be identified as likely players in lymphatic transformation.  

 

Firstly, B16-F10 tumour cells produce a number of cytokines and other soluble factors. 

Proteomic analysis across tumour development of B16-F10 tumour cells growing in 

C57BL/6 mice, observed expression changes in proteins involved in inflammation, 

wound healing and chemotaxis261. In addition, B16-F10 derived VEGF and TGF-β was 

found to contribute to immune tolerance with silencing found to revert tolerance and 

inhibit tumour growth and Treg accumulation in TDLNs, and alter immune infiltrate 

phenotypes262. Interestingly, silencing of VEGF and TGF-β brought about separate 

transcriptional signatures in both early and late B16-F10 tumours, suggesting they 

have independent targets within the tumour microenvironment, with stage dependent 

implications also262. BrafV600E cells cultured in vitro were also found to express higher 

levels of IL-6, IL-8 and MMP-1, which promoted stromal transformation in the tumour 

microenvironment263. Indeed, our group has performed preliminary analysis of B16-

F10 TCM and B16F-10 in vivo tumour secretomes revealing high levels of TGF-β; an 

acknowledged driver of lymphangiogenesis109, identifying this as a potential driver of 

lymphatic expansion in TDLNs. In addition, both TGF-β and IL-3 have been shown to 

regulate Podoplanin expression264,265, identifying further factors that could be driving 

these changes in TDLNs. In light of this, future work should explore the role of tumour-

derived TGF-β in Podoplanin expression. This could be achieved in the first instance 

by exposing in vitro LECs to recombinant TGF-β to determine the direct impact on 

Podoplanin expression at gene and protein level. In order to determine the relative 

contribution of B16-derived TGF-β, repeated quantification is required and could be 

mirrored using Braf-tumours to determine the exclusivity of TGF-β production in 

melanoma tumours. Determining the role of in vivo TGF-β in Podoplanin expression 
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in the tumour microenvironment, both on CAFs and FRCs/LECs in TDLNs, would 

require in vivo blockade or injection of TGF-β knockout B16-tumour cells.   

 

Additional inflammatory signatures were observed in the TDLN-LEC microarray data, 

revealing altered expression of a number of IFN receptors and TLRs. This suggests 

potential functional responsiveness to IFN cytokines as well as tissue-damage 

products and danger-associated molecular patterns (DAMPs). As wound-healing 

signatures arise in both our microarray and B16-F10 tumours261, it may be the case 

that wound-healing responses are the drivers of lymphatic and broader lymph node 

changes across early and late TDLNs. Further investigation into the precise drivers of 

particular aspects of lymphatic alterations is needed, as the drivers of different 

lymphatic changes are likely to be different. Future work must not simply investigate 

tumour cell-derived factors as drivers of lymphatic changes, but also immune cell-

derived factors, as tumours are composites of immune cells as well as tumour cells, 

in particular melanoma tumours which are very rich in myeloid cells152. This could be 

conducted by assessing lymphatic changes in TDLNs of tumour-bearing transgenic 

mice, such as lysM-Cre/DTR mice which lack skin tissue and wound macrophages.    

 

Lymphatics are also capable of mechanosensing, thus are susceptible to biophysical 

factors such as increased fluid flow266. It is well documented that changesd in 

biophysical environment of tumours brings about changes in lymphatic drainage and 

lymphangiogenesis in the primary tumour site and associated lymph nodes. However, 

the biophysical impact on other functional transformations is unknown and must be 

explored further.  

 

In addition to factors derived from the tumour microenvironment that influence 

lymphatic behaviour, much research is needed to assess the lymphatic secretome; 

how that changes upon tumour conditioning and its consequent influence on the 

tumour microenvironment. Literature suggests that factors such as anti-inflammatory 

factor, prostaglandin-E2, secreted in the tissue microenvironment by lymphatics can 

lead to decreased dendritic cell maturity251. Aside from this study and the well-

documented role of lymphatic derived chemokines in immune cell 

trafficking25,62,63,65,66,230,231, little is known of the influence of lymphatic secretome on 
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immune cells. This is hence an area to pursue, with lymphatic secretome profiling in 

healthy and tumour states needed.  

  

6.6. Summary and Future Perspectives 
 

I have identified in this thesis an important role for tumour-associated lymphatics in 

modulating the anti-tumour immune response in TDLNs. I first demonstrate that early 

changes in TDLNs, downstream of B16-F10 tumours, result not only in gross 

architecture changes to the lymphatic network but functional changes also at a 

transcriptional level. Upon verification of key transcriptional changes, I next 

demonstrated TDLN-LECs to exhibit altered expression of critical gene targets 

involved in immune trafficking. Using the TRITC in vivo model with B16-F10 syngeneic 

tumours, I further show that these transcriptional changes manifest in altered 

localisation of migratory tumour-derived DCs in early TDLNs. Further functional 

analysis in vitro and in vivo identified a process by which B16-F10 tumour-derived 

factors drive an altered migratory phenotype in DCs interacting with lymphatics. 

Mechanistic analysis and microarray verification showed this mechanism to be driven 

by up-regulated expression of Podoplanin on tumour-conditioned lymphatic 

endothelium. As DCs were shown to express CLEC-2 and literature has shown 

migratory DCs to traffic to LNs through CLEC-2 expression, I show for the first time 

that the Podoplanin-CLEC2 axis is critical in trafficking of tumour-derived DCs in early 

stages of tumour development. Further elucidating other functional implications of 

prolonged interactions between DCs and LECs in the tumour microenvironment, I 

demonstrated drained antigen to be predominantly taken up by the lymphatic 

compartment in both resting NDLNs and TDLNs. Next, I demonstrated that this 

lymphatic antigen could be passed to interacting DCs; a process found to be 

dependent on physical interaction only. Preliminary in vivo studies using 

subcutaneously administered fluorescent-conjugated antigen in tumour-bearing mice 

supported these observations, with tumour-derived migratory DCs taking up lymph 

node-derived antigen upon arrival. Assessing the relevance of these interactions for 

the anti-tumour immune response, in vitro data demonstrated a lack of capacity to 

prime T-cells, in lymphatic-conditioned DCs despite DCs having taken-up antigen from 

antigen-pulsed lymphatics. In vivo observations further suggested that after prolonged 

interactions with lymphatics, tumour-derived DCs exhibit altered delocalisation relative 
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to T-cell zones and HEVs. T-cell dynamics in light of this were seen to favour 

expansion of FoxP3+ Tregs, which indicated altered DC priming post-lymphatic 

interactions.  

 

Future work should focus on better modelling the Podoplanin-CLEC2 axis in vivo to 

highlight the functional relevance to specific subsets of DCs. These approaches 

should use lymphatic specific and conditional knockout to explore the specific 

lymphatic contributions within the tumour microenvironment, with temporal and spatial 

elements accounted for. In addition, due to the preliminary nature of these findings 

relating to antigen transfer and T-cell priming in the early developing tumour 

microenvironment, further in vivo is required to establish the kinetics of DC-mediated 

T-cell priming in early TDLNs, with corresponding in vitro experiments needed to shed 

light on how lymphatic-conditioning can further modulate this process. Overall, as this 

data demonstrates critical changes in lymphatics that have implications for immune 

modulation in early stages of tumour development, it is imperative to understand 

further how lymphatics can modulate the precise processes involved in mounting an 

anti-tumour immune response, with implications for both anti-lymphangiogenesis 

therapy and immunotherapy.    
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Figure 6.1. Lymph node expansion and transformation during tumour development. 
Using the injectable subcutaneous B16-F10 tumour model, we demonstrate that during 
tumour development (11 days) the brachial tumour-draining lymph node expands in size. In 
addition to size expansion, we observe stromal changes, both to the fibroblast reticular 
network191 and the lymphatic vasculature. Expansion of the lymphatic network, known as 
lymphangiogenesis, is seen in both early and late TDLNs, demonstrating this as an early 
arising and continue change which occurs throughout tumour development. This expansion is 
particularly prevalent at the subcapsular sinus (SCS) and in the medullary regions, 
accompanied with transcriptional changes, including many relating to immune function. 
Alongside expansion and immune function transcriptional changes, tumour-derived DCs 
cluster at the subcapsular sinus in early TDLNs and fail to permeate far into the T-cell cortex, 
unlike migratory patterns observed in control NDLNs. Tumour-derived DCs which did reach 
the T-cell cortex were differentially localised and seen to cluster around the base of B-cell 
follicles, contrary to DC localisation in Control NDLNs. At the subcapsular sinus, DC clustering 
appears indicative of prolonged physical interactions with the lymphatic endothelium, with 
supporting evidence from in vitro experiments, with the Podoplanin-CLEC2 axis identified as 
a likely candidate for promoting physical interactions. This appears to lead to perturbed or 
delayed migration into the lymph node, affecting coverage of DCs in T-cell zones. Prolonged 
interactions also resulted in enhanced antigen transfer and exchange between LECs and DCs, 
with LEC-conditioned DCs acting as poor T-cell primers. Regarding the T-cell compartment, 
analysis of T-cell populations across TDLNs, demonstrated a peak in expansion of FoxP3+ 
regulatory T-cells in early TDLNs (Day 7), indicative of a suppressive immune environment. 
Antigen presentation in lymph nodes is critical to development of a suppressive or active 
immune response and LEC-conditioning of tumour-derived DCs demonstrated a skew towards 
a suppressive phenotype in vitro. Expansion of FoxP3+ T-cells may therefore be resultant of 
LEC-DC interactions in early tumour-conditioned draining lymph nodes.   
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Appendix 1 – Altered gene targets in TDLN-derived LECs 

Top up- and down-regulated gene targets in Day 4 (D4) and Day11 (D11) TDLN-LECs, from 
B16-F10 tumour-bearing mice. Gene targets are listed in order, as shown in the heatmap in 
Figure 3.7c.  

 

 Up-regulated 

 
Down-regulated 

 
D11 1. Edg2 

2. Gbp6 
3. Edg2 
4. Pfn1 
5. Mras 
6. Tgif1 
7. Hist1h3e 
8. Cdca8 
9. Hist1h3d 
10. Rab7 
11. Ung 
12. Loc100047628 
13. Kcnj10 
14. Ab124611 
15. Slc45a4 
16. Anp32a 
17. 2btb7a 
18. Fyb 
19. Ccl20 
20. Scl0003542.1.1 
21. D130004hd4rik 

22. Mrps34 
23. H2-dmb2 
24. Znhit6 
25. Ambra1 
 

26.Loc381212 
27. Xpnpep1 
28. Tmem177 
29. Ifnar2 
30. Df4e3 
31. Mki67 
32. Pqbp1 
33.2610301g19rik 
34. Ptx3 
35. Cxcl2 
36. Eef2 
37. Ptx3 
38. Crygn 
39. Man1a2 
40. Ogfrl-1 
41. Myst3 
42. Eme2 
43. Pdpk1 
44. Zmym3 
45. Mmp24 
46. Ostf1 
47. B4galnt1 
48. Rlf 
49. 2310032m22rik 
50. Dock7 

1. Loc100045343 
2. Bcd46404 
3. C130057N11rik 
4. Reln 
5. 9230103k20rik 
6. 2b10410a03rik 
7. Muted 
8. Mapk9 
9. Egfl7 
10. Ngfr 
11. Sphk1 
12. Unc13b 
13. Phldb2 
14. Gata2 
15. Josd2 
16. Noxo1 
17. A830080h07rik 
18. Tmem53 
19. Phxr4 
20. Acad8 
21. Klhl13 
22. Ttc3 
23. Plekha4 
24. 2500004h21rik 
25. Nfatc4 

26. Rxrb 
27. Ddx51 
28. Ubxnb 
29. Myd116 
30. B230365cd1rik 
31. Plekhm2 
32. A830092p18rik 
33. Polr3h 
34. F2r 
35. Socs3 
36. Rag1ap1 
37. 2310016m24rik 
38. Mrg1 
39. Gpr180 
40. Sct 
41. Nfat5 
42. U5hbp1 
43. Txnip 
44. C5nk1d 
45. 5n3a 
46.D630014a15rik 
47. Hoxd10 
48. Scl0002357.164 
49. Stab1 
50. Fcgrt 

D4 1. Col5a1 
2. Cenpl 
3. Mcat 
4. Kif23 
5. 9130404d08rik 
6. Nrd1 
7. Sntg2 
8. D10jhu81e 
9. Abhd2 
10. Pyroxd1 
11. Chmp7 
12. Ppap2c 
13. Hrb2 
14. Osbpl2 
15. Tgif1 
16. Cmklr1 
17. 4632413c10rik 
18. Tmem134 
19. Nsmce2 
20. 2500002l14rik 
21. Eya1 
22. Tmem161a 
23. A630072j24rik 
24. Eif2b5 
25. Xpnpep1 

26. Gtf3c2 
27. Lrrc8 
28. Znhit6 
29. C030032g21rik 
30. Zfand3 
31. Ube3b 
32. 4931417g12rik 
33. D130027a21rik 
34. Hist1h2be 
35. Mcm5 
36. Nkpd1 
37. Mllt11 
38. Setds 
39. Snapin 
40. Vrk3 
41. Ai931714 
42. Mki67 
43. Klk1b26 
44. Gp38 
45. 9430043d10rik 
46. A930010m14rik 
47. Lbac1 
48. Dyn112 
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Appendix 2 – Gene targets altered in Day 4 and Day 11 TDLN-derived 
LECs  
 
Gene targets with altered expression in both Day 4 and Day11 TDLN-LECs, from B16-F10 
tumour-bearing mice. This list details overlap analysis shown in Figure 3.7d. 

 
Genes down-regulated in  

Day 4 and Day 11 

 

Genes up-regulated in  
Day 4 and Day 11 

 
Rag1ap1 
Mrps24 
Sct 
Tmem53 
Loc630337 
Plekha4 
Gpr180 
Pdzd8 
Acad8 
Ddx51 
Sin31 
Sema3f 
Ly6a 
Tada3l 
Mdm4 
Extl3 
Ubxn8 
Mterfd2 
D930038m13rik 
Plec1 
Flt1 
Loc100048082 
2810410a03rik 
Il2rg 
Mrps12 

A230046k03rik 
Adrbk2 
Mir16 
Hyi 
6330509m05rik 
Cep63 
Igfbp3 
Mansc1 
Robo4 
Lman2 
2410004b18rik 
Adh1 
1700027m01rik 
Nol8 
C130080k17rik 
B430201c15rik 
Ccl21a 
Prdm2 

D10jhu81e 
Tgif1 
Nsmce2 
2500002l14rik 
Xpnpep1 
Znhit6 
Hist1h2be 
Snapin 
Mki67 
Rrm2 
Cdca8 
Hist1h2bk 
Olfm1 
Hist1h2af 
Crygn 
Myst3 
Uhrf1 
Zmym3 
Ptx3 
Nudt19 
Epm2a 
Hist1h2an 
2310032m22rik 
Whsxc2 
D930011h02rik 

 

Nid1 
Tbn-Pending 
Loc100042405 
Csnk1e 
Rin2 
Rab8a 
Prmt5 
Itgav 
Cep55 
Ndufs8 
2700060e02rik 
Zfp292 
Ccl5 
Loc100047827 
Rif1 
Ung 
Klhdc2 
2610301g19rik 
Ddc26 
Nap1l1 
Pxdn 
D130004h04rik 
Hspbap1 
Golga2 
Senp5 
Zfp664 
Egln1 
Sf3b4 
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Appendix 3 – Gene ontology pathways for altered genes  
 
Gene Ontology (GO) canonical pathways associated with gene targets with altered 
expression in TDLN-LECs, from B16-F10 tumour-bearing mice. GO canonical pathways are 
listed in descending order according to their -log10(FDR) value, as shown in the bar chart in 
Figure 3.8a. 

1. Genes involved in immune system 
2. Genes involved in cell cycle 
3. Genes involved in hemostasis 
4. Genes involved in cell cycle, mitotic  
5. Genes involved in Mitotic M-M/G1 phases 
6. Genes involved in immune system  
7. Genes involved in DNA replication  
8. Pathways in cancer  
9. Genes involved in cell cycle checkpoints 
10. Genes involved in assembly of pre-replicative complex 
11. Focal adhesion  
12. Genes involved in cytokine signalling in immune system  
13. Genes involved in transcription  
14. Genes involved in Class I MHC-mediated antigen P&P 
15. Genes involved in mRNA processing 
16. Genes involved in M/G1 transition  
17. Genes involved in antigen processing: Ub and proteasomal  
18. Genes involved in mitotic G1 G1/S phases 
19. Genes involved in regulation of mitotic cell cycle  
20. Genes involved in axon guidance  
21. Genes involved in platelet activation signalling and aggregation  
22. Genes involved in metabolism of RNA  
23. Genes involved in apoptosis  
24. Genes involved in G1/S transition  
25. Ensemble of genes encoding ECM proteins 
26. Ubiquitin-mediated proteolysis  
27. Genes involved in mitotic prometaphase  
28. Genes involved in S Phase 
29. Cell cycle  
30. Axon guidance  
31. Genes involved in mRNA splicing  
32. Genes involved in antigen processing-cross presentation  
33. Proteasome  
34. Genes involved in metabolism of lipids and lipoproteins  
35. VEGFR1 specific signals  
36. Genes involved in metabolism of mRNA  
37. IL2-mediated signalling events  
38. VEGF, Hypoxia and angiogenesis  
39. T-cell receptor signalling pathway 
40. Genes involved in signalling by ERBB4 
41. Genes involved in G1 DNA damage response  
42. Genes involved in regulation of apoptosis  
43. Genes involved in GPV1-mediated activation cascade  
44. VEGF signalling pathway  
45. Genes involved in interferon signalling  
46. Endocytosis 
47. Genes involved in ER-Phagosome pathway 
48. Validated targets of C-Myc transcriptional repression  
49. Genes involved in cross-presentation of soluble exogenous antigens (endosomes)  
50. Genes involved in CDK-mediated phosphorylation and removal of Cdc6 
51. HIF-2-alpha transcription  
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Appendix 3 (continued) 
 
Gene Ontology (GO) canonical pathways associated with gene targets with altered 
expression in TDLN-LECs, from B16-F10 tumour-bearing mice. GO canonical pathways are 
listed in descending order according to their -log10(FDR) value, as shown in the bar chart in 
Figure 3.8a. 

 
52. CXCR4-mediated signalling events 
53. Genes involved in regulation of ornithine decarboxylase (ODC)  
54. Class I PI3K signalling events 
55. FoxO family signalling  
56. Genes involved in signalling by Wnt  
57. Regulation of actin cytoskeleton  
58. Cytokine cytokine receptor pathway  
59. TCR signalling in CD4+ T-cells 
60. Splicesome  
61. mTOR signalling pathway 
62. p53 signalling pathway 
63. Genes involved in regulation of hypoxia-inducible factor (HIF) by oxygen  
64. TCR signalling in CD8+ T-cells 
65. Aurora B signalling  
66. TGF-beta receptor signalling  
67. Genes involved in Meiosis 
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Appendix 4 – Altered canonical pathways and associated gene 
targets 
 
Gene targets with altered expression in TDLN-LECs from B16-F10 tumour-bearing mice, 
grouped according to their Gene Ontology (GO) canonical pathways association. Gene targets 
are listed in order, as shown in the heatmap in Figure 3.8b. 

 

Tight Junctions 
 
1. Prkcz 
2. Prkcz 
3. Rhoa 
4. Jam3 
5. Cldn11 
6. Nras 
7. Ppp2r2a 
8. Tjap1 
9. Exoc4 
10. Mras 

 
 

VEGF Signalling 
 
1. Flt1 
2. Nfatc1 
3. Pik3cg 
4. Sphk1 
5. Cav1 
6. Hspb1 
7. Vegfa 
8. Nfatc4 
9. Nfat5 
10. Shc1 
11. Eif2b5 
12. Hif1a 
13. Nfatc1 
14. Ptgs2 
15. Pdpk1 
16. Nras 

HIF Signalling 
 
1. Cd36 
2. Ppard 
3. Shc1 
4. Kif23 
5. Itgav 
6. Ppard 
7. Pdpk1 
8. Ube2k 
9. Vav1 
10. Nras 
 
 
 
 

Semaphorins 
 
1. Sema6a 
2. Dpysl4 
3. Rhoa 
4. Sema7a 
5. Cd72 
6. Pak2 
7. Sema6d 
8. Ptprc 

Focal Adhesion 
 
1. Flt1 
2. Pik3cg 
3. Mylk 
4. Cav1 
5. Rhoa 
6. Vegfa 
7. Mapk9 
8. Reln 
9. Pdgfa 
10. Shc1 
11. Itgav 
12. Lamc1 
13. Pak2 
14. Vav1 
15. Pdpk1 

 

Platelet Activation  
 
1. Prkcz 
2. Prkcz 
3. Rhoa 
4. Vegfa 
5. F8 
6. Pdgfa 
7. Cd36 
8. Shc1 
9. F2r 
10. Pik3cg 
11. Pdpk1 
12. Gnai1 
13. Itga2b 
14. Srgn 
15. Calu  
16. Tmsb4x 
17. Vav1 
18. Pfn1  
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Appendix 4 (continued) 
 
Gene targets with altered expression in TDLN-LECs from B16-F10 tumour-bearing mice, 
grouped according to their Gene Ontology (GO) canonical pathways association. Gene targets 
are listed in order, as shown in the heatmap in Figure 3.8b. 

 

Cytokine and Chemokine Signalling 
 

Antigen Processing and Presentation  
 

 
1. Ngfr 
2. Pdgfa 
3. Csf1 
4. Socs3 
5. Nup210 
6. Acvr2b 
7. Adr8k2 
8. Pik3cg 
9. Rbx1 
10. Cxcl12 
11. Ccl21a 
12. Prkcz 
13. Ifnb1 
14. Traf6 
15. Nupl1 
16. Vegfa 
17. Rhoa 
18. Peli1 
19. Cxcl16 
20. Shc1 
21. Pik3r3 
22. Stat5a 
23. Flt1 
24. Inpp5d 
25. Il2rg 

 
26. Ifit3 
27. Eif4e3 
28. Gbp5 
29. Tnfrsf1b 
30. Tnfrsf10b 
31. Ccl7 
32. Cxcr2 
33. Ccl5 
34. Ifnar2 
35. Pdpk1 
36. Irf9 
37. Eif4e3 
38. Ccl5 
39. Tnfrsf1b 
40. Sp100 
41. Cd44 
42. Socs2 
43. Nras 
44. Pdpk1 
45. Adam17 
46. Nup93 
47. Vav1 
48. Cxcl12 
49. Ifit2 
50. Ccl20 
51. Gbp6 
 

 
1. Flt1 
2. Hgs 
3. Rab11fip3 
4. Pkkcz 
5. Psd3 
6. Adrbk2 
7. Pkkcz 
8. Il2rg 
9. Sh3glb2 
10. Traf6 
11. Tceb2 
12. Socs3 
13. Klhl13 
14. Cd36 
15. 5kp2 
16. Zfyve20 
17. Psmd11 
18. Ube2q2 
19. Tap2 
20. Sec61a2 
21. Rab22a 
22. Itgav2 
23. Psma4 
24. Psma5 
25. Psmd2 

 
26. Psmd4 
27. Psmd7 
28. Cdc20 
29. Cdc27 
30. Rbx1 
31. Wwp1 
32. Smurf1 
33. Ube2k 
34. Keap1 
35. Mkrn1 
36. Carn 
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Appendix 5 – Manual categorisation of canonical pathways  

Manual categorisation of Gene Ontology (GO) canonical pathways with altered gene profiles 
as shown in Figure 3.9. Categorised altered pathways in Day 4 TDLN-LECs from B16-F10 
tumour-bearing mice detailed below.   

 
Immunity  
 
ReactomeˍImmune System  
ReactomeˍCytokine signalling in immune 
system  
ReactomeˍIL7 signalling  
ReactomeˍAdaptive immune system  
ReactomeˍInterferon signalling  
PIDˍIL2 1pathway 
PIDˍIntegrin3 pathway  
ReactomeˍInterferon alpha beta signalling 
PIDˍIL4 2pathway 
PIDˍIntegrin1 pathway 
 

Signalling Pathways 
 
KEGGˍP53 signalling pathway  
PIDˍMyc repress pathway  
PIDˍDelta NP63 pathway  
KEGGˍPathways in cancer  
ReactomeˍSignalling by SCF KIT  
BIOCARTAˍMCM pathway 
PIDˍSMAD2 3nuclear pathway  
PIDˍP53 downstream pathway  
PIDˍTAP63 pathway 
PIDˍAurora A pathway 
KEGGˍJAK STAT signalling pathway 

Endothelial  
 
KEGGˍFocal adhesion  
NABAˍCore matrisome  
ReactomeˍSignalling by PDGF 
NABAˍMatrisome 
BIOCARTAˍVEGF pathway 
 

Metabolism 
 
KEGGˍOxidative phosphorylation  
ReactomeˍTCA cycle and respiratory 
electron transport  
ReactomeˍTranscription  
ReactomeˍMetabolism of lipids and 
lipoproteins  
 

DNA Replication  
 
ReactomeˍDNA replication  
ReactomeˍAssembley of the pre-replicative 
complex 
ReactomeˍSynthesis of DNA 
PIDˍERA Genomic pathway 
 

Other 
 
ReactomeˍORC1 removal from chromatin  
ReactomeˍHIV infection 
ReactomeˍHost interactions of HIV factors  
ReactomeˍHemostasis 
KEGGˍCytosolic DNA sensing pathway 
ReactomeˍLate phase of HIV life cycle 
KEGGˍAldosterone regulated sodium 
reabsorption 
ReactomeˍHIV life cycle  
ReactomeˍMetal ion SLC transporters 
ReactomeˍDevelopmental biology  
KEGGˍGlioma 
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Appendix 5 (continued) 
 
Manual categorisation of Gene Ontology (GO) canonical pathways with altered gene profiles 
as shown in Figure 3.9. Categorised altered pathways in Day 11 TDLN-LECs from B16-F10 
tumour-bearing mice detailed below.   

 
Immunity 
 
ReactomeˍImmune system 
ReactomeˍAdaptive immune system  
ReactomeˍClass I MHC mediated antigen 
processing presentation 
ReactomeˍAntigen processing 
ubiquitination proteasome degradation  
PIDˍTGFBR pathway  
ReactomeˍAntigen processing cross 
presentation  
KEGGˍEndocytosis 
KEGGˍChemokine signalling pathway 
KEGGˍT cell receptor signalling pathway  
ReactomeˍSemaphorin interactions 
ReactomeˍSignalling by the B cell receptor 
BCR 
PIDˍS1P S1P1 pathway  
PIDˍCXCR4 pathway  
ST Integrin Signalling pathway 
ReactomeˍCytokine signalling in immune 
system  
 

Endothelial  
 
KEGGˍFocal adhesion  
ReactomeˍFactors involved in 
Megakaryocyte development and platelet 
production  
PIDˍVEGFR1 pathway  
NABAˍMatrisome 
ReactomeˍPlatelet activation signalling and 
aggregation  
KEGGˍVEGF signalling pathway  
NABAˍECM glycoproteins 
BIOCARTAˍECM pathway  
NABAˍCore matrisome 
ReactomeˍAutodegradation of CDH1 by 
CDH1 APC  
ReactomeˍCell surface interactions at the 
vascular wall  
BIOCARTAˍEDG1 pathway  
PIDˍVEGFR1 2 pathway 
BIOCARTAˍVEGF pathway 
ReactomeˍGPVI mediated activation 
cascade  

Cell Cycle 
 
ReactomeˍCell cycle 
ReactomeˍCell cycle mitotic  
ReactomeˍMitotic M M G1 phases  
ReactomeˍAPC C CDH1 mediated 
degradation of CDC20 and other APC C 
CDH1 targeting proteins in late mitosis 
early G1  
ReactomeˍCell cycle checkpoints 
ReactomeˍM G1 transition  
RectomeˍRegulation of mitotic cell cycle  
ReactomeˍMeiosis  
ReactomeˍSCF Beta TRCP mediatied 
degradation of EMI1 
ReactomeˍAPC C CDC20 mediated 
degradation of mitotic proteins  
ReactomeˍG1 S transition 
ReactomeˍMeiotic recombination 
ReactomeˍCDK mediated phosphorylation 
and removal of CDC6 
 

DNA Replication  
 
ReactomeˍDNA replication  
ReactomeˍAssembly of the pre-replicative 
complex 
ReactomeˍSynthesis of DNA 
 

Transcription  
 
ReactomeˍTranscription  
ReactomeˍProcessing of capped intro 
containing pre-mRNA 
ReactomeˍMRNA processing 
ReactomeˍMRNA splicing  
ReactomeˍDestablisation of MRNA by 
AUF1 HNRNP D0 
KEGGˍSpliceosome  
ReactomeˍRNA POL I Promoter opening 
ReactomeˍRegulation of MRNA Stability by 
proteins that bind AU rich elements 
ReactomeˍRNA POL I transcription 
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Appendix 5 (continued) 
 
Manual categorisation of Gene Ontology (GO) canonical pathways with altered gene profiles 
as shown in Figure 3.9. Categorised altered pathways in Day 11 TDLN-LECs from B16-F10 
tumour-bearing mice detailed below.   

 
Signalling Pathways 
 
KEGGˍPathways in cancer 
PIDˍP75 NTR pathway 
KEGGˍRenal Cell Carcinoma 
KEGGˍRegulation of actin cytoskeleton 
KEGGˍSmall Cell Lung cancer 
PIDˍFOXO pathway  
PIDˍPI3CI pathway  
PIDˍMET pathway  
PIDˍP53 regulation pathway  
ReactomeˍER phagosome pathway  
ReactomeˍSignalling by ERBB4 
PIDˍInsulin pathway  
KEGGˍAdipocytokine signalling pathway 
 

Metabolism 
 
ReactomeˍMetabolism of RNA 
ReacomeˍRNA POL I RNA POL III and 
Mitochondrial transcription  
ReactomeˍMetabolism of proteins  
ReactomeˍRegulation of Ornithine 
decarboxylase ODC 
 

Hypoxia  
 
ReactomeˍRegulation of hypoxia inducible 
factor HIF by oxygen  
PIDˍHIF2 pathway  
ReactomeˍOxygen dependent proline 
hydroxylation of hypoxia inducible factor 
alpha  
PIDˍHIF1 TF pathway  
 

Other  
 
ReactomeˍHemostasis 
KEGGˍAxon guidance  
ReactomeˍHIV infection  
ReactomeˍHost interactions of HIV factors 
KEGGˍSystemic lupus erythematosus 
ReactomeˍVIF mediated degradation of 
APOBEC3G 
ReactomeˍAxon guidance  
KEGGˍUbiquitin mediated proteolysis 
ReactomeˍORC1 removal from chromatin 
ReactomeˍRegulated proteolysis of 
P75NTR 
ReactomeˍAmyloids 
ReactomeˍDevelopmental biology  
ReactomeˍActivation of chaperone genes 
by XBP1S 
PIDˍCeramide pathway 
 

Apoptosis 
 
ReactomeˍApoptosis  
ReactomeˍRegulation of apoptosis 
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Appendix 6 – Altered Immunity associated gene targets 

Altered Immunity associated gene targets in Day 4 (D4) and Day11 (D11) TDLN-LECs, from 
B16-F10 tumour-bearing mice. Gene targets are listed in order, as shown in the heatmaps in 
Figure 3.11.  

 

Day 4 Day 11 

Col1a2 
Col5a1 
Pik3r 
Rnf125 
Ppp2r5d 
Psmc2 
Ccl21a 
Cd8b 
Ifit3 
Kif23 
Mdm2 
Peij1 
Ube3b 
Nupl1 
Aim2 
Ap1g1 
Bcl6 
Birc5 
Ccl5 
Cd55 
Cdc16 
Cyr61 
Dvl1 
 

Dync2h1 
Cyn112 
Egln1 
Gbp5 
Ifit2 
Ifnb1 
Igf1 
Il2rg 
Irf9 
Itga2b 
Itgav 
Msh6 
Nid1 
Nup210 
Gp38 
Polr3k 
Prkca 
Psmb1 
Socs2 
Stat5a 
Them4 
Zbp1 

Mapk9 
Ngfr 
Sphk1 
Klhl13 
Nfatc4 
Rxrb 
F2r 
Socs3 
Nfat5 
Txnip 
Vegfa 
Cxcl12 
Rab11fip3 
Sema6a 
Pdgfa 
Il2rg 
Prkcz 
Flt1 
Mylk 
Angpt2 
Arhgap20 
Csf1 
Ccl21a 
Arhgef7 
Unc93b1 
Rhoa 
Traf6 
Acvr2b 
Shc1 
Adrbk2 
Acacb 
Jam3 
 

Cxcl16 
Cav1 
Inpp5d 
Dpy5l4 
Pik3cg 
Cd36 
Sh3glb2 
Lamc1 
Hif1a 
Psma4 
E2f2 
Rbx1 
Egln1 
Dctn1 
Nras 
Itgav 
Psmd4 
Ncoa4 
Keap1 
Calr 
Tek 
Acsl5 
Pak2 
Sp100 
Cdc27 
Gbp6 
Ptprc 
Ptg52 
Nup93 
Ccl5 
Capza1 
Ube2k 
 

Ppp2r2a 
Dusp3 
Cdc20 
Adam17 
Gstp1 
Cycs 
Capza2 
Ctsa 
Psmb2 
Wwp1 
Mkrn1 
Vav1 
Smurf1 
Psma5 
Psmd2 
Tnfrsf1b 
Cd44 
Psmd7 
Tlr4 
Rab22a 
Sema6d 
Cd22 
Tpm3 
Slc7a7 
Pdpk1 
Cxcl2 
Eif4e3 
Ifnar2 
Ccl20 
Fyb 
Rab7a 
Mras 
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Appendix 7 – Flow cytometry gating for profiling dendritic cells 

Flow cytometry gating strategy for profiling dendritic cells in Control NDLNs (left panel) and Day4 TDLNs (right panel), from B16-F10 tumour-
bearing mice painted with TRITC. Data shown are representative Control NDLN and Day 4 TDLN samples. 
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Appendix 8 – Flow cytometry gating for profiling LECs in vitro 

Flow cytometry gating strategy for profiling lymphatic endothelial cells cultured in vitro on 
collagen-coated plates. Surface expression of Podoplanin (A) and VCAM and ICAM (B). Data 
obtained using this gating strategy is shown in Figure 4.16. 
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Appendix 9 – Flow cytometry gating for in vitro OVA assays 

Flow cytometry gating strategy for quantifying FITC-OVA uptake and DQ-OVA processing in lymphatic endothelial cells cultured in vitro on 
collagen-coated plates. Data obtained using this gating strategy is shown in Figure 5.5. 
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Appendix 10 – Optimisation of the in vitro antigen transfer assay 

Optimisation of the in vitro antigen transfer assay using co-cultured primary lymphatic endothelial cells and splenic CD11c+ isolated dendritic 
cells. Gating strategy used to quantify amount of FITC-OVA in adherent and non-adherent dendritic cells when cultured at 1:2 ratio (DCs:LECs) 
for 1hr or 2hrs (A). Quantification of the percentage of FITC-OVA+ CD11c+ dendritic cells, in single cultures + OVA (DCs alone) or co-cultured 
with LECs (adherent and non-adherent). Data is a representative experiment and presented as mean ± SEM (B). Dendritic cells co-cultured with 
LECs at 1:2 ration (DCs:LECs) for 1hr. Shown is quantification of the percentage of FITC-OVA+ CD11c+ dendritic cells (C) and the geometric 
mean of fluorescence (gMFI) of FITC-OVA in CD11c+ populations (C). Data is representative of n=3 experiments and presented as mean ± SEM. 
Statistical singnificance calculated using the Mann-Whitney test with P≤0.05.  

 

A B

C D
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Appendix 11 – FACS gating for isolating TRITC immune cells 

FACS gating for isolating TRITC+ immune cells from Control NDLNs and Day4 TDLNs, from 
B16-F10 tumour-bearing mice painted with TRITC. Data shown is a representative sample. 
TRITC+ CD45+ cells were gated within viable singlets. Isolated cells were used for the 
Qiagen PCR array and data obtained shown in Figure 5.19. 
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Appendix 12 – Flow cytometry gating strategy for profiling 
lymph node cells 
 
Flow cytometry gating strategy for profiling non-immune stromal cells and immune cells in 
Control NDLNs and Day4 TDLNs, from B16-F10 tumour-bearing mice. Surface expression of 
PD-L1 on CD45- non-immune stromal cells (FRCs: Fibroblast reticular cells; BECs: Blood 
endothelial cells; LECs: Lymphatic endothelial cells) and CD45+ CD11c+ dendritic cells (A). 
Surface expression of PD-1 and CD25 in CD45+ CD4+ and CD45+ CD8+ T-cells (B). Shown 
is a representative sample. Data obtained using this gating strategy is shown in Figure 5.20.  

 


