
J
H
E
P
0
1
(
2
0
2
2
)
1
1
2

Published for SISSA by Springer

Received: December 7, 2021
Accepted: January 4, 2022

Published: January 21, 2022

On discrete anomalies in chiral gauge theories

Philip Boyle Smith, Avner Karasik, Nakarin Lohitsiri and David Tong
Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge, CB3 0WA, U.K.
E-mail: pb594@cam.ac.uk, avnerkar@gmail.com, nl313@cam.ac.uk,
d.tong@damtp.cam.ac.uk

Abstract: We study two well-known SU(N) chiral gauge theories with fermions in the
symmetric, anti-symmetric and fundamental representations. We give a detailed description
of the global symmetry, including various discrete quotients. Recent work argues that these
theories exhibit a subtle mod 2 anomaly, ruling out certain phases in which the theories
confine without breaking their global symmetry, leaving a gapless composite fermion in the
infra-red. We point out that no such anomaly exists. We further exhibit an explicit path
to the gapless fermion phase, showing that there is no kinematic obstruction to realising
these phases.

Keywords: Anomalies in Field and String Theories, Discrete Symmetries, Confinement,
Nonperturbative Effects

ArXiv ePrint: 2106.06402

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP01(2022)112

mailto:pb594@cam.ac.uk
mailto:avnerkar@gmail.com
mailto:nl313@cam.ac.uk
mailto:d.tong@damtp.cam.ac.uk
https://arxiv.org/abs/2106.06402
https://doi.org/10.1007/JHEP01(2022)112


J
H
E
P
0
1
(
2
0
2
2
)
1
1
2

Contents

1 Introduction 1

2 Aspects of discrete symmetry 3
2.1 The symmetry structure 4
2.2 Adding background gauge fields 5
2.3 Line and surface operators 8
2.4 Cocycle conditions 8
2.5 Cobordism 9

3 A field theoretic perspective 10
3.1 The anti-symmetric theory 10
3.2 The symmetric theory 12

1 Introduction

There is much that we don’t know about chiral gauge theories. The Nielsen-Ninomiya
theorem [1, 2] means that there is no Monte Carlo safety net, making it challenging to get a
handle on the dynamics of these theories at strong coupling. In this short note we comment
on two of the simplest, and best studied, chiral gauge theories which we refer to as the
“symmetric” and “anti-symmetric” theories respectively.

The symmetric theory. The first is an SU(N) gauge theory with left-handed Weyl
fermions in the following representations:

Symmetric and (N + 4) anti-fundamentals � (1.1)

We refer to the fermion as λ and the � as ψ. Ignoring subtleties such as discrete
quotients (which will be important later) the global symmetry is

G = SU(N + 4)×U(1) (1.2)

The theory flows to strong coupling in the infra-red and there are a number of different
proposals for the low-energy physics

• The theory may confine without breaking the global symmetry group G. In this case,
there must be massless fermions to saturate the ’t Hooft anomalies of G. The most
obvious candidate is the composite λψψ, transforming in the of SU(N + 4) [3]. In
what follows, we will refer to this as the “confining phase”.

– 1 –



J
H
E
P
0
1
(
2
0
2
2
)
1
1
2

• The global symmetry group may be broken to G → SU(N) × SU(4) × U(1)′. This
occurs, for example, if there is a gauge non-invariant condensate 〈λψ〉 6= 0. In what
follows, we will refer to this, somewhat inaccurately, as the “Higgs phase”.

• More recently, a study of softly broken supersymmetric theories suggested different
behaviour. For N ≥ 13, it was proposed that the symmetry group is broken to
G→ SO(N + 4) while, for N < 13 the theory was argued to flow to an interacting
infra-red fixed point [4].

The anti-symmetric theory. The second theory again has SU(N) gauge group, this
time with left-handed Weyl fermions transforming as

Anti-symmetric and (N − 4) anti-fundamentals � (1.3)

We refer to the fermion as χ and the � as ψ. Ignoring discrete subtleties, the global
symmetry group is now

G = SU(N − 4)×U(1) (1.4)

There are, again, different proposals for the infra-red physics.

• This theory may again confine without breaking the global symmetry G. The
perturbative ’t Hooft anomalies are saturated by the massless composite fermion χψψ,
transforming in the representation of SU(N − 4).
This time, something different happens in the would-be Higgs phase. If the gauge
non-invariant bilinear 〈χψ〉 is assumed to get an expectation value, then the global
symmetry G remains unbroken, albeit after twisting with the SU(N) gauge symmetry.
Once again, one finds a single massless fermion, transforming in the of the
SU(N −4) global symmetry. This means that the putative confining and Higgs phases
are thought to yield the same low-energy physics in this theory, an observation that
was referred to as complementarity [3].

• The study of softly-broken supersymmetric theories again suggests different low-energy
dynamics. For N even, the proposal is that SU(N − 4)→ Sp(1

2(N − 4)) (using the
convention Sp(1) ≡ SU(2)) with only Goldstone bosons in the low-energy spectrum.
For N odd, the suggestion is that SU(N − 4)→ Sp(1

2(N − 5)), this time with both
Goldstone bosons and massless fermions to saturate the ’t Hooft anomalies [5].

All the proposals above for both the symmetric and anti-symmetric theories are conjectures.
It may be that the true dynamics of these theories is something different yet again. Further
discussion of the phases of these theories can be found in [6].

Can discrete anomalies help?

The array of different options for these theories reflects our lack of control over the low-
energy physics. Clearly, it would be extremely useful if there were some way to get a better
handle on the strong coupling regime.
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Outside of supersymmetric theories, one of the few handles that we have at strong
coupling comes from symmetries and their attendant ’t Hooft anomalies. All phases described
above are consistent with perturbative ’t Hooft anomalies, but in recent years it has been
appreciated that precious information about 4d gauge theories can be harvested from
anomalies associated to discrete symmetries or to generalised higher-form symmetries [7, 8].
It is natural to ask: can these techniques be brought to bear on the chiral theories above?

This question was answered in the affirmative in a pair of papers [9, 10]. The authors
performed a detailed study of the global symmetry group, dressing (1.2) and (1.4) with a
number of discrete quotients. They then argued for a mixed anomaly between (−1)F and a
ZN 1-form symmetry that, for N even, could be used to reach the following conclusions:

1. The confining phase of the symmetric theory, with unbroken G = SU(N + 4)×U(1)
is inconsistent with discrete anomaly matching.

2. The confining phase of the anti-symmetric theory is distinct from the Higgs phase,
even though both have global symmetry group G = SU(N − 4)×U(1) and the same
massless matter content. Moreover, the confining phase is inconsistent with discrete
anomaly matching while the Higgs phase is not.

If true, these would be important results. However there are reasons to be cautious. In
particular, the claim that the Higgs and confining phases of the anti-symmetric theory are
distinct is striking given that these theories have the same gapless spectrum and the same
symmetry including, as we will review below, the discrete quotient structure.

In this short note, we revisit the discrete anomaly calculation of [9, 10]. We show that
the claimed mod 2 anomaly is an illusion. It does not exist. Correspondingly, there is
evidence for neither claim 1) nor 2). The confining phase of the theories cannot be ruled
out, at least not using methods wielded to date.

Sadly therefore, our paper serves primarily to increase, rather than reduce, our ignorance
about these theories. We will, however, describe in some detail the structure of the
discrete symmetries and their consequences. This includes both physical manifestations
of the symmetry structure, such as the spectrum of line and surface operators, and more
mathematical renderings of the subject including a computation of the relevant cobordism
group. In all approaches, we see that there is no discrete anomaly at play. Furthermore,
in section 3, we describe a deformation of each theory that results in the spectrum of the
confining phase, showing explicitly that there is no obstacle to realising these phases at
low energies.

2 Aspects of discrete symmetry

In this section, we give a careful analysis of the symmetry group and possible discrete
anomalies associated to the chiral theories. For concreteness, we will focus on the anti-
symmetric theory. However, all arguments below are easily adapted for the symmetric theory.
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2.1 The symmetry structure

As we explained in the introduction, the anti-symmetric theory consists of an SU(N) gauge
group, with a Weyl fermion χ in the representation and N − 4 fermions ψ in the �
representation. The naive global symmetry group is

G = SU(N − 4)×U(1) (2.1)

with the SU(N − 4) rotating the ψ fermions. However, a more careful study involves a
number of discrete quotients [9, 10], as we now review.

The charges under the global non-anomalous U(1) depend on whether N is odd or even.
For N odd, we have qχ = N − 4 and qψ = 2 − N . For N even, we must divide by 2 to
ensure that the U(1) acts faithfully on the matter content. Because the putative anomaly
described in [9, 10] arises only for N even, we restrict to this case and take

qχ = N − 4
2 and qψ = 2−N

2

The naive symmetry group (2.1) correctly captures the Lie-algebraic part of the global sym-
metry but has two shortcomings. First, there could be additional disconnected components.
Under a general U(1)χ ×U(1)ψ transformation, the theta parameter is shifted by

χ→ e2πiωχχ , ψ → e2πiωψψ ⇒ δθ = 2π(N − 2)ωχ + 2π(N − 4)ωψ (2.2)

In addition to the global U(1) under which δθ = 0, there might be discrete transformations
that change θ by 2πZ. Taking ωχ = −ωψ = 1

2 we get

χ, ψ → −χ,−ψ ⇒ δθ = 2π

This is the only additional component of the symmetry group and it clearly coincides with
fermion parity, (Z2)F = (−1)F .

The second shortcoming is that some elements of the symmetry group may act trivially
on fermions, or coincide with a gauge transformation. To find these redundant elements,
consider the most general centre transformation of SU(N)× SU(N − 4), accompanied by a
U(1) transformation. The effect on the fermions is

ψ → e−2πim/Ne2πik/(N−4)eπi(2−N)αψ

χ → e4πim/Neπi(N−4)αχ (2.3)

where m, k ∈ Z parametrise the centre of SU(N) and SU(N − 4) respectively and α

parametrises the U(1) action. For even N , it is not possible to eliminate a general centre
transformation by a U(1) rotation. However, for any centre transformation it is always
possible to find a U(1) rotation such that the combination acts as fermion parity (−1)F .
For the SU(N) centre transformation (m = 1, k = 0), we can take the U(1) transformation
to be

α = 1
N

=⇒ ψ, χ→ −ψ,−χ (2.4)
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For an SU(N − 4) center transformation (m = 0, k = 1) we can take

α = 1
N − 4 =⇒ ψ, χ→ −ψ,−χ (2.5)

We should then quotient by these transformations to obtain a faithfully acting symmetry
group. The correct refined version of (1.4) is, for N even [9, 10],

G = SU(N − 4)×U(1)× (Z2)F
ZN × ZN−4

N even (2.6)

We will shortly couple background gauge fields to this symmetry group. However, before
we proceed it will be useful to make a number of further remarks about the presence of the
(Z2)F in the symmetry group (2.6).

First, (Z2)F also sits within the Spin(4) spacetime symmetry. This becomes important
when the theory is placed on curved backgrounds and we will return to this point in
section 2.5. For now, however, we can restrict our discussion to flat space.

Second, the discussion above does not take full advantage of the fact that the SU(N)
action is a gauge symmetry (read redundancy) in whittling down the global symmetry
group to its simplest form. The first condition (2.4) means that, up to a gauge redundancy,
the (Z2)F becomes part of the U(1). It should therefore be possible to give an alternative
characterisation of G without reference to (Z2)F . As we now explain, the result is:

G = SU(N − 4)×U(1)
ZN(N−4)/4 × Z2

N = 0 mod 4 (2.7)

G = SU(N − 4)×U(1)
ZN(N−4)/2

N = 2 mod 4

To see this, note that from (2.3) the centre transformations that act trivially on the fermions
χ, ψ are

α = m

N
+ k

N − 4 with m+ k ∈ 2Z (2.8)

This condition on m+ k implies that the quotient group must have dimension 1
2N(N − 4).

For N = 2 mod 4, the element (m, k) = (1, 1) is of order 1
2N(N − 4), hence the quotient

must be ZN(N−4)/2. For N = 0 mod 4, there is no element of order 1
2N(N − 4). For

example, the element (m, k) = (1, 1) is of order 1
4N(N − 4) since (m, k) are defined mod

(N,N − 4). In addition we have the Z2 element (m, k) =
(
N
2 ,

N−4
2

)
which is not a multiple

of (m, k) = (1, 1). This is enough to deduce that the quotient group in this case is
ZN(N−4)/4 × Z2.

2.2 Adding background gauge fields

The existence of the discrete quotients in the global symmetry group brings a new opportu-
nity. When the theory is coupled to background gauge fields for G, we can ask how the
theory responds when the discrete gauge fields associated to the quotient take different
values. This is how one detects more subtle discrete ’t Hooft anomalies associated to the
symmetry, as used to great effect in, for example, [7, 8].
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The authors of [9, 10] apply this idea for the global symmetry group (2.6) and reach
a startling conclusion: they find two new anomalies, one between (Z2)F and ZN , and the
other between (Z2)F and ZN−4. Furthermore, they claim that these anomalies cannot be
matched by the conjectured massless fermions in the phase where the theory confines and
G is unbroken.

As explained above, the alternative form of the symmetry group (2.7) does not exhibit
a quotient by ZN ×ZN−4. Already, this casts some doubt on the claim that there is a mixed
anomaly between (Z2)F and ZN and between (Z2)F and ZN−4 as one can rephrase the
symmetry without reference to these subgroups. Nonetheless, following [9, 10], we return
to the form of the symmetry group (2.6) and introduce background gauge fields to see how
the theory responds. To this end, we denote the original dynamical SU(N) gauge field as a
and introduce background gauge fields A for U(1) ⊂ G and Af for SU(N − 4) ⊂ G.

The two SU(N) and SU(N − 4) gauge fields are then promoted to U(N) and U(N − 4)
gauge fields, denoted by ã and Ãf respectively, by coupling them to suitable higher form
gauge fields: B(1)

c for ZN and B(1)
f for ZN−4. This is accomplished by first viewing B(1)

c

and B(1)
f as U(1) gauge fields and writing

ã = a+ 1
N
B(1)
c and Ãf = Af + 1

N − 4B
(1)
f

We then further relate these to 2-form gauge fields in the usual manner for discrete gauge
symmetries,

NB(2)
c = dB(1)

c and (N − 4)B(2)
f = dB

(1)
f

Finally, we also introduce the U(1) gauge field A(1)
2 which will ultimately serve to gauge (Z2)F .

The symmetry structure (2.6) is then implemented by various 1-form gauge transformations
under which we have

B(2)
c → B(2)

c + dλ(1)
c

B(1)
c → B(1)

c +Nλ(1)
c

and
B

(2)
f → B

(2)
f + dλ

(1)
f

B
(1)
f → B

(1)
f + (N − 4)λ(1)

f

(2.9)

From this, it follows that

ã→ ã+ λ(1)
c

Ãf → Ãf + λ
(1)
f

A→ A+ λ(1)
c + λ

(1)
f

A
(1)
2 → A

(1)
2 + N

2 λ
(1)
c + N − 4

2 λ
(1)
f (2.10)

By virtue of this last expression, the combination A
(1)
2 − B

(1)
c /2 − B

(1)
f /2 is invariant

under 1-form transformations and carries the holonomy appropriate for a (Z2)F gauge field
by setting

2A(1)
2 −B

(1)
c −B

(1)
f = dA

(0)
2 (2.11)

for some periodic scalar A(0)
2 ∈ [0, 2π). All of the equations above appear in [9, 10].
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Taking the exterior derivative of this equation, and dividing by 2, yields a local equation
of 2-forms

dA
(1)
2 −

N

2 B
(2)
c −

N − 4
2 B

(2)
f = 0 (2.12)

To continue, we integrate (2.12) over any 2-cycle Σ. This gives

N

2

∫
B(2)
c + N − 4

2

∫
B

(2)
f ∈ 2πZ (2.13)

where we have made use of the normalisation
∫
dA

(1)
2 ∈ 2πZ. The factor of 1

2 on the
left-hand-side means that this equation should be viewed as a constraint, restricting the
fluxes of the two discrete gauge fields. This mirrors the analysis of redundant symmetries
and, in particular, the relation (2.8) between ZN and ZN−4 transformations where the same
factor of 2 can be seen.

Suppose that we choose to set B(2)
f = 0. The expression above then tells us that the

normalisation of B(2)
c , when integrated over a 4-cycle, is

N2

4

∫ 1
2(B(2)

c )2 ∈ (2π)2Z =⇒ N2

8π2

∫
(B(2)

c )2 ∈ 4Z (2.14)

where the additional factor of 1
2 on the left-hand side is simply a combinatoric factor.

The putative anomaly

The discussion above differs in two places from that in [9, 10]. The first of these is not
particularly consequential: the authors of [9, 10] insist that dA(0)

2 is not closed because of
the periodic nature of A(0)

2 . This is incorrect: dA(0)
2 is closed, though it is not exact. This

means that they have another term on the right-hand side of (2.12).
However, the key difference between the analysis above and that of [9, 10] lies in

the normalisation of the fluxes (2.13): their fluxes are normalised to
∫
dA

(1)
2 ∈ πZ and,

correspondingly, does not include the factor of 1
2 on the left-hand-side. (See, for example,

equation (5.25) in [9] for the symmetric theory, or (1.9) of [10] for the anti-symmetric
theory.) This incorrect choice of normalisation appears to be imposed because A(1)

2 is a Z2
gauge field, but this conflates holonomy with curvature. It is this factor of 2 that resulted
in the erroneous conclusion of a mixed anomaly.

To see how this incorrect normalisation gives the purported anomaly, it is simplest
to set B(2)

f = 0 so the theory is coupled only to background gauge fields A, A(1)
2 and

B
(2)
c , associated to a nontrivial (U(1)× (Z2)F )

/
ZN bundle. In the UV, there are ’t Hooft

anomalies due to the massless chiral fermions which can be summarised by a 5d WZW
action containing the term

SWZW = 1
8π2

∫
Y5
N2(B(2)

c )2A
(1)
2 ,

where Y5 is a 5-dimensional bulk whose boundary ∂Y5 is the closed 4-dimensional manifold
X4 where our theory lives. Under a (Z2)F gauge transformation δA

(1)
2 = 1

2dδA
(0)
2 , with

– 7 –
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δA
(0)
1 = 2π, the anomaly action above changes by

δSWZW = 1
8π2

∫
X4
N2(B(2)

c )2 δA
(0)
2

2 = N2

8π

∫
X4

(B(2)
c )2 (2.15)

Therefore, the partition function acquires a phase

exp(iδSWZW ) = exp
(
πi
N2

8π2

∫
X4

(B(2)
c )2

)
(2.16)

which implies that the partition function flips sign when (N2/8π2)
∫

(B(2)
c )2 is odd.

However, as seen in (2.14), the correct normalisation does not permit (N2/8π2)
∫

(B(2)
c )2

to be odd. Another way of saying this, as highlighted in both (2.8) and (2.13), is that B(2)
c

and B(2)
f are not independent: we can have (N2/8π2)

∫
(B(2)

c )2 odd, but only when B(2)
f 6= 0.

This correct normalisation nullifies the putative anomaly claimed in [9, 10].
The lack of mixed anomaly in this theory can be understood in a number of different,

complementary ways. In the remainder of this section we show how one can reach the same
conclusion from different viewpoints.

2.3 Line and surface operators

A useful, physical rephrasing of the story above can be seen in the language of topological
line and surface operators in the spirit of [11]. First, consider the field A(1)

2 . It is subject to
the following gauge transformations

A
(1)
2 → A

(1)
2 + N

2 λ
(1)
c + N − 4

2 λ
(1)
f + dλ

(0)
2

where λ(0)
2 ∈ [0, 2π) is a compact scalar. This states that although the line operator

exp(i
∫
A

(1)
2 ) isn’t gauge-invariant on its own, N/2 surface operators exp(i

∫
B

(2)
c ) and (N −

4)/2 surface operators exp(i
∫
B

(2)
f ) can end on it to make it gauge-invariant. Furthermore,

by virtue of the constraint (2.12), this junction is topological; the line can be moved around
to eat up the surfaces. It follows that the surface operator

exp
(
i

∫
B(2)
c

)N/2
exp

(
i

∫
B

(2)
f

)(N−4)/2
(2.17)

is trivial, for we can open up a hole with the line operator exp(i
∫
A

(1)
2 ) on the boundary,

and continue enlarging this hole until the surfaces disappear.
The triviality of (2.17) leads to the same constraint on B

(2)
c and B

(2)
f that we saw

earlier. Note however this argument highlights the fact there was no subtlety hiding in the
division by 2 that took us from (2.11) to (2.12). Instead, the crucial fact was simply the
ability to write down the line operator exp(i

∫
A

(1)
2 ).

2.4 Cocycle conditions

It is possible to analyse the symmetry structure (2.6) using discrete gauge fields. This has
the advantage of showing in a very simple way how the condition (2.13) arises, as well as
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being more natural from a mathematical standpoint. In the discrete formulation, the Z2
gauge field is described by the transition functions

sij ∈ Z2

In normal circumstances, these transition functions would obey the cocycle condition
sij + sjk + ski = 0 mod 2. But in the presence of the 2-form gauge fields B(2)

c and B(2)
f , the

cocycle condition is instead relaxed to

sij + sjk + ski = Bc
ijk +Bf

ijk mod 2

Here Bc
ijk ∈ ZN and Bf

ijk ∈ ZN−4 are the cocycles describing the 2-form gauge fields. The
above equation, when reduced to cohomology, defines an equation in H2(M ;Z2). Moreover,
the left hand side is the definition of a coboundary, so becomes trivial in cohomology.
Therefore the above equation becomes

0 = Bc +Bf mod 2

The relation between discrete and continuum gauge fields is, roughly speaking, 2π
N B

c =
B

(2)
c and 2π

N−4B
f = B

(2)
f . Recasting the previous equation into continuum normalisation,

it becomes

0 = N

2 B
(2)
c + N − 4

2 B
(2)
f mod 2π

This is the promised discrete analogue of (2.13).

2.5 Cobordism

So far we have considered anomalies in the internal symmetry group G, but made no mention
of metrics or gravitational anomalies. The right framework to discuss these anomalies is to
consider a theory on a curved manifold with a Spin-G structure. Furthermore, the right
way to think about anomalies for discrete symmetries is in terms of cobordism. If there is
an anomaly it should also show up in the cobordism approach where we couple to a Spin-G
structure. We will now see that no such anomaly exists.

We again restrict attention to the theory with anti-symmetric matter, although similar
remarks apply to the symmetric theory. The group SpinG is defined by

SpinG = G× Spin(4)
(Z2)F

= SU(N − 4)×U(1)× Spin(4)
ZN × ZN−4

The putative anomaly between (Z2)F and ZN can be seen even when the SU(N − 4) gauge
field is set to zero. Therefore it should be possible to see the anomaly working only with
the subgroup

U(1)× Spin(4)
ZN

⊂ SpinG

– 9 –
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The latter is isomorphic to

U(1)× Spin(4)
Z2

= Spinc

via the explicit isomorphism (eiθ, S) → (ei(N/2)θ, S). This means the anomaly should be
visible in the coupling of the theory to a background Spinc structure. However, since

TorΩSpinc
5 (pt) = 1

is trivial [12], Spinc can only have perturbative anomalies, not global ones. Since the UV
and IR have matching perturbative anomalies, we conclude they are fully consistent.

3 A field theoretic perspective

The previous arguments are rather mathematical in nature. Here we present a more physical,
field theoretical approach to the problem. The question we wish to address is whether the
low-energy phases with massless fermions and unbroken global symmetry G share the same
anomalies as the UV theory. One foolproof way to demonstrate this is to exhibit a path,
preserving the symmetry, from the UV theory to the free fermion phase. In this section we
exhibit such paths, first for the anti-symmetric theory and then for the symmetric theory.

3.1 The anti-symmetric theory

In this section we describe a (mostly) weakly coupled phase of the anti-symmetric theory
in which the low-energy physics consists of a massless fermion with unbroken symmetry
group (2.6). This leaves the would-be anomaly nowhere left to hide. The arguments below
closely follow those of [3, 14], with the only novelty a check that the discrete quotients are
unaffected by these arguments.

We start by adding some gauge and flavour indices to our fermions: these are χij and
ψia where i = 1, . . . , N is the gauge index and a = 1, . . . , N − 4 the flavour index under the
SU(N − 4) global symmetry.

We next introduce N − 4 fundamental scalars φia. Clearly there is no obstacle to
giving these a mass and they do not affect the anomalies. If the fermions ψ are taken to
transform in the (�,�) of SU(N)× SU(N − 4), then we take the scalars to sit in the (�,�)
representation. We assign them U(1) charge qφ = 1. The following Yukawa interaction is
then invariant under all symmetries,

LY ∼ φψχ+ c.c. (3.1)

The gauge and global center transformations act on φ as

φ→ e−2πim/Ne−2πik/(N−4)e2πiαφ

One can check that the addition of the Yukawa terms does not affect the symmetry
structure (2.6), including the discrete quotients.

– 10 –
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We now give an expectation value to the scalars of the form

〈φia〉 = vδia (3.2)

Crucially, the full global symmetry survives, but is now locked with the gauge symmetry.
To see this, note that the most general SU(N)× SU(N − 4)×U(1) transformation acting
on φ can be written as

φ→ e2πiαU∗φV † , U ∈ SU(N) , V ∈ SU(N − 4)

The choice

U =
(
V ∗e2πiα

U ′e−
2π(N−4)iα

4

)
, U ′ ∈ SU(4)

leaves the vacuum invariant. Because the global symmetry survives, so too do its ’t Hooft
anomalies and these can be matched between the UV and IR. Meanwhile, the gauge
symmetry is Higgsed down to SU(4). We will look more closely at the fate of this SU(4)
below.

In the Higgs phase, all the scalars are gapped. The Yukawa interaction (3.1) gives a
mass term of the form v

∑N−4
a=1

∑N
i=1 χ

aiψai. This gives a mass to most of the fermions. The
only ones that survive transform under SU(4)× SU(N − 4)×U(1) as

Ψ in (1, )−N/2: This comes from the fermion ψ
ρ in (6,1)0: This comes from the fermion χ

We now want to consider more carefully how the various discrete gauge fields couple. To
this end, let us briefly return to the un-Higgsed UV theory and couple it to background
gauge fields for the symmetry Geven defined in (2.6). It will be useful to write explicitly
all the covariant derivatives of the fields including the background fields. Denote by
ã = a+ 1

NB
(1)
c the promoted SU(N)→ U(N) gauge field, and Ãf + 1

N−4B
(1)
f the promoted

SU(N − 4)→ U(N − 4) gauge field. Meanwhile, the U(1) gauge field is written as A, and
the (Z2)F as A(1)

2 . Under 1-form gauge transformations, we have

ã→ ã+ λc

Ãf → Ãf + λf

A→ A+ λc + λf

A2 → A2 + N

2 λc + N − 4
2 λf

One can check that the corresponding covariant derivatives are:

Dψ = (∂ − iRF̄ (ã)− iRF (Ãf ) + i(N − 2)/2A− iA(1)
2 )ψ

Dχ = (∂ − iRA(ã)− i(N − 4)/2A+ iA
(1)
2 )χ

Dφ = (∂ − iRF̄ (ã)− iRF̄ (Ãf )− iA)φ
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where RX(a) the gauge field in representation X. This is before the Higgsing. After the
scalar gets an expectation value (3.2), we write the SU(N) gauge field as

a =

−Af +
(
A− 1

NB
(1)
c − 1

N−4B
(1)
f

)
1N−4

a4 − N−4
4

(
A− 1

NB
(1)
c − 1

N−4B
(1)
f

)
where a4 is the SU(4) gauge field that survives the Higgs mechanism, and we set all massive
fields to zero. This equation fixes a such that the vacuum is invariant under the global
symmetries. In other words, it gives us the colour-flavour locking pattern. The covariant
derivatives of the surviving massless fermions are

DΨ =
(
∂ − iRS(Ãf ) + iN

2 A− iA(1)
2

)
Ψ

Dρ =
(
∂ − iRA(a4)− i

2B
(1)
c −

i

2B
(1)
f + iA

(1)
2

)
ρ

Up to this point, everything is weakly coupled. There is no place for the anomalies to hide:
because the global symmetry survives the Higgs mechanism unscathed, with only a gauge
twist for its troubles, all ’t Hooft anomalies of the UV theory must be reproduced in the IR
by the massless fermions Ψ and ρ.

At first glance, the appearance of B(1)
c , B

(1)
f , A

(1)
2 in the covariant derivative of ρ may

suggest something that looks like an anomaly related to these three fields. However, ρ
cannot carry any anomaly. This follows simply because it is gappable: it sits in a real
representation of SU(4) and a mass term ρρ breaks no symmetry. Furthermore, (−1)F
acting on ρ is nothing but an SU(4) gauge transformation therefore we know that there
cannot be an associated anomaly. The upshot is that both the SU(4) sector, with the
fermion ρ become massive and decouple from the infra-red physics.

We are left, in the infra-red, with the massless fermion Ψ. This carries the same quantum
numbers as the composite fermion χψψ and so the anomalies in the two phases necessarily
agree: both are described by a massless fermion in the ( )−N/2 under SU(N − 4)×U(1).
This argument, which is largely a recapitulation of standard lore, is the reason why the
confining and Higgs phases are thought to coincide in the anti-symmetric theory.1

3.2 The symmetric theory

We now turn to the symmetric theory. In this case, the confining and Higgs phases clearly
differ. While the massless fermion λψψ saturates the perturbative ’t Hooft anomalies of the
SU(N + 4)× U(1) global symmetry, one may wonder if it also saturates discrete anomalies,
or perhaps even anomalies that are still to be discovered. Our goal here is to exhibit a path
in field space that makes it clear that the phase with unbroken global symmetry and a
massless fermion is indeed consistent.

1An attempt to distinguish the two phases was also made in [13] through the study of the anomalous
global U(1) symmetry, with the argument that in the confining phase there is no would-be scalar operator
that is charged only under this (non)-symmetry. We do not comment on the validity of the argument, but
simply mention that the baryonic state B = χN−2ψN−4 does the job. Its colour, flavour and Lorentz indices
are all contracted to give a scalar. Its condensate 〈B〉 6= 0 doesn’t break any symmetry, but it is “charged”
under the anomalous U(1).
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To achieve this, we start with a different UV theory. We will show that as we dial a
parameter, we can interpolate between the symmetric chiral gauge theory, and the free
massless fermion.

The parent theory has gauge group H = SU(N)× SU(N − 4), with left-handed Weyl
fermions in the following representations:

χ in
(
,1
)
, ψ in (�,�) , N copies of η in (1,�) (3.3)

The theory has a global symmetry

G = SU(N)×U(1)

Here only the η transform under the global SU(N), while the U(1) charges are qχ = N − 4
and qψ = −qη = 2 −N . (As before, this U(1) acts faithfully only when N is odd; for N
even, the charges should be divided by 2.)

Associated to each factor in the gauge group H is a strong coupling scale, ΛN and
ΛN−4, with the ratio

x = ΛN
ΛN−4

We can analyse the theory in the two limits x→ 0 and x→∞. We will show that one limit
reproduces the symmetric chiral gauge theory, while the other results in the free massless
fermion. Note that we make no claims about the dynamics as one varies x and it may well
be that a phase transition separates the two ends. Our purpose here is simply to make
a much weaker kinematical statement: the massless fermion of the confined phase is a
consistent possibility for the low-energy physics of the symmetric theory.

x → ∞. In the limit x → ∞, the SU(N) gauge group is the first to become strongly
coupled. This is a copy of the anti-symmetric theory that we have just discussed. Of course,
we do not know the low-energy physics but that is not our immediate concern: all that we
care about is that the confining phase of this theory, with its associated massless fermion
Ψ = χψψ, is consistent. (Indeed, we could add further Higgs fields as in section 3.1 to
ensure that we sit in this phase.)

At energy scales ΛN−4 � E � ΛN , we are left with an SU(N−4) gauge theory coupled
to the composite fermion Ψ, transforming in the and N fermions η in the �. This, of
course, is the symmetric chiral gauge theory.

x → 0. In the opposite limit, x → 0, the SU(N − 4) theory first becomes strong. The
dynamics of this theory is QCD-like, with N Dirac fermions and the expectation is that the
fermion bilinear ψη condenses, resulting in an SU(N) non-linear sigma model at low-energy,
parametrised by the field U ∈ SU(N).

At energy scales ΛN � E � ΛN−4, we are left with an H ′ = SU(N) gauge theory
coupled to a single fermion χ in the and the Goldstone mode U . Importantly, this
Goldstone mode is charged under the H ′ = SU(N) gauge symmetry as U → U ′ = V U

with V ∈ H ′. As a result, the vacuum of the sigma model acts to completely Higgs the
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H ′ = SU(N) gauge group. The G = SU(N) × U(1) global symmetry is preserved, albeit
only after mixing with the H ′ = SU(N) gauge symmetry. The upshot is that both the
gauge field and the Goldstone mode U become gapped, leaving us with the massless fermion
χ and an unbroken global symmetry. This is the low-energy physics of the confined phase
of the symmetric chiral gauge theory.

Again, we stress that we make no claims that the confined phase is dynamically
realised by the symmetric chiral gauge theory: only that ’t Hooft anomalies, perturbative
or otherwise, present no obstacle to doing so.
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