
Software and Hardware Co-design

for Efficient Neural Networks

Yiren (Aaron) Zhao

St Edmund’s College

This dissertation is submitted on September, 2021 for the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome

of work done in collaboration except as declared in the Preface and specified in the text. It

is not substantially the same as any that I have submitted, or am concurrently submitting,

for a degree or diploma or other qualification at the University of Cambridge or any other

University or similar institution except as declared in the Preface and specified in the text.

I further state that no substantial part of my dissertation has already been submitted, or

is being concurrently submitted, for any such degree, diploma or other qualification at the

University of Cambridge or any other University or similar institution except as declared

in the Preface and specified in the text. This dissertation does not exceed the prescribed

limit of 60 000 words.

Yiren (Aaron) Zhao

October, 2021

Abstract

Software and Hardware Co-design for Efficient Neural Networks

Yiren (Aaron) Zhao

Deep Neural Networks (DNNs) offer state-of-the-art performance in many domains but

this success comes at the cost of high computational and memory resources. Since DNN

inference is now a popular workload on both edge and cloud systems, there is an urgent

need to improve its energy efficiency. The improved efficiency enables the use of DNNs in

a boarder range of target markets and helps boost performance as performance if often

limted by power today. This thesis makes a number of contributions that help improve

DNN inference performance on different hardware platforms using a hardware-software

co-design approach.

I first show a number of software optimisation techniques for reducing DNN run-time

costs. Overall, I demonstrate model sizes can be reduced by up to 34×. A combination

of different styles of neural network compression techniques can offer multiplying gains

in shrinking the memory footprints. These techniques are suitable for running DNN

inference on memory-sensitive edge devices. Using the run-time and data-dependent

feature information, I develop a dynamic pruning strategy that outperforms existing static

pruning methods by a significant margin. The proposed dynamic pruning not only reduces

the model sizes but also the number of multiply-accumulate operations for GPUs. I also

introduce a novel quantisation mechanism that is tuned to fit the natural distributions

of model parameters and this method decreases the total number of bit-wise operations

required for DNN inference.

I then focus on accelerating DNNs using custom hardware. I build a framework named

Tomato that generates multi-precision and multi-arithmetic hardware accelerators on

FPGA devices. The software hardware co-generation flow deploys hardware accelerators

from high-level neural network descriptions, and exploits the hardware reconfigurability of

FPGA devices to support a flexible per-layer quantisation strategy. I then demonstrate that

the automatically generated accelerators outperform their closest FPGA-based competitors

by at least 2 to 4× for latency and throughput. The accelerator generated for the ImageNet

classification runs at a rate of more than 3000 frames per second with a latency of only

0.32ms, making it a suitable candidate for latency critical, high throughput inference in

the cloud.

Finally, I show how automated machine learning techniques can be improved with

hardware-awareness to produce efficient network architectures for emerging types of neural

networks and new learning problem setups. Hardware-aware network architecture search

(NAS) is able to discover more power efficient network architectures and achieve significant

computational savings on emerging neural networks types such as graph neural networks.

The proposed Low Precision Graph Network Architecture Search improves the size-accuracy

Pareto frontier when compared to seven manual and NAS-generated baselines on eight

different graph datasets. In addition, I demonstrate hardware-aware NAS can be applied

to a many-task many-device few-shot learning scenario. In popular few-shot learning

benchmarks with various hardware platforms and constraints, the proposed approach

outperforms a variety of NAS and manual baselines by a significant margin. On the

5-way 1-shot Mini-ImageNet classification task, the proposed method outperforms the

best manual baseline by 5.21% in accuracy using 60% less computation.

Acknowledgements

Many say pursuing a PhD is a lonely endeavor, throughout my PhD, I have recieved a

great deal of support and this journey then becomes an unforgettable and fun one for me.

I will start by acknowledging and giving my warmest thanks to my supervisor, Prof.

Robert Mullins. His support went far beyond looking at our paper drafts and discussing

research ideas. I felt I have been increditably lucky to have him as my PhD supervisor

and will always be truely thankful to the amount of reserach freedom that he lets me to

have in my PhD studies.

I would also thank my PhD examiners, Prof. Nic Lane and Dr. Elliot Crowley, for

their fruitful discussion and insightful questions during the viva. These suggestions have

definitely helped me to improve my thesis.

I would also give special thanks to my parents (Mr. Qingjie Zhao and Mrs. Shihong

Li) and my partner (Ms. Shu Zhong). I feel lucky to be in a super supportive family, and

I am grateful to my parents for their continuous support and love. I could not achieve any

of these without your support.

I owe speical thanks to all my reserach collaborators, both in and out of the Computer

Lab in Cambridge. I will always remember the time and effort that they put into these

fun research projects. I also owe a lot of thanks to all my internship mentors over various

summers. I also give my deepest thanks to all my friends, you know who you are. I would

not have got through it without you.

Contents

1 Introduction 15

1.1 Motivation . 15

1.2 Research questions and hypotheses . 16

1.3 Contributions . 17

1.4 Outline . 19

1.5 Publication . 20

2 Background 23

2.1 An overview of deep neural networks and their computational requirements 23

2.2 Deep neural network structures . 26

2.3 Neural network compression and automated machine learning 28

2.3.1 Pruning . 29

2.3.2 Quantisation . 30

2.3.3 Automated machine learning and network architecture search . . . 31

2.4 Neural network hardware accelerators . 33

2.4.1 From general-purpose processors to custom hardware accelerators . 34

2.4.2 Processing elements . 35

2.4.3 Data reuse models . 36

2.4.4 A comparison of DNN hardware accelerators 37

3 Pruning and quantisation for efficient neural networks 41

3.1 Intriguing properties of DNNs . 42

3.2 Combining different compression techniques 42

3.3 Dynamic coarse-grained pruning . 45

3.3.1 Static and dynamic pruning . 45

3.3.2 Feature boosting and suppression 47

3.3.3 Evaluating FBS . 49

3.4 Focused quantisation for custom hardware 53

3.4.1 Quantising sparse and dense models 53

3.4.2 Focused quantisation . 54

3.4.3 Evaluating focused quantisation . 56

3.5 Applying compression techniques to hardware 58

3.6 Summary . 61

4 Multi-precision multi-arithmetic CNN hardware accelerators for effi-

cient neural networks 63

4.1 Accelerator designs for neural networks: homogeneous systolic arrays vs

streaming cores . 64

4.2 Low precision inference in hardware . 65

4.3 The Tomato framework . 66

4.4 Automatic quantisation exploration . 68

4.5 Automatic hardware generation . 69

4.5.1 Macro-architectures . 69

4.5.2 Micro-Architecture: roll-unrolled convolutions 70

4.5.3 Striding and rolling: matching the throughput 71

4.5.4 Batch normalisation and rounding 72

4.6 Evaluating the performance of automatically generated hardware 74

4.6.1 Experimental setups . 74

4.6.2 Resource utilisation . 74

4.6.3 Performance evaluation . 76

4.6.4 Multi-FPGA acceleration . 77

4.7 Summary . 78

5 Hardware-aware automated machine learning 79

5.1 Motivations for automated machine learning network architecture search . 80

5.2 Network architecture search for GNNs . 81

5.2.1 Architectural design space for GNNs 82

5.2.2 Quantisation search space for graph neural networks 84

5.2.3 Low precision graph neural network architecture search 86

5.2.4 Evaluating low precision graph network architecture search (LPGNAS) 88

5.2.4.1 LPGNAS on Citation datasets 88

5.2.4.2 LPGNAS for graph sampling based learning 90

5.2.5 Quantisation search time . 92

5.2.6 Quantisation statistics and limitations 92

5.3 Network architecture search in a multi-task multi-device few-shot learning

setup . 94

5.3.1 Few-shot learning in the MAML framework 95

5.3.2 Hardware-aware network architecture search for meta-learning . . . 97

5.3.2.1 Problem formulation . 97

5.3.2.2 Architecture space . 98

5.3.2.3 Pre-training strategy . 98

5.3.2.4 Layer-wise profiling . 99

5.3.2.5 Adaption strategy . 101

5.3.2.6 NAS backbone design . 101

5.3.3 Evaluating H-Meta-NAS . 103

5.3.3.1 Evaluating H-Meta-NAS searched architectures 104

5.3.3.2 H-Meta-NAS for diverse hardware platforms and constraints106

5.3.3.3 A more complex NAS backbone 108

5.3.3.4 Search complexity and search time 108

5.4 Summary . 109

6 Conclusion 111

6.1 Future research . 113

6.1.1 Software-hardware co-design network architecture search 113

6.1.2 General-purpose AI accelerator . 114

6.1.3 Large AI chips . 115

6.1.4 Handling complex data types in Machine Learning using custom

hardware . 116

A Structure of MCifarNet used in dynamic channel pruning 117

B Graph dataset details, graph sampler configurations and the grid search

setup for baselines 119

C Details of VGG9 and ResNet12 backbones used for H-Meta-NAS 121

Bibliography 123

Chapter 1

Introduction

1.1 Motivation

Deep Neural Networks (DNNs) are now a popular technique for solving problems in

many fields. Previously, building an object detector or a dialogue system required various

sophisticated components and hand-crafted feature extractions from human experts. With

the success of DNNs, these complicated building blocks are replaced by a single or multiple

learning systems [72, 93]. Since many real-life problems can be viewed as learning from

labelled or unlabelled data, the application of DNNs is now popular in domains like natural

language processing [162], computer vision [93], decision making [121], autonomous driving

[138], etc. DNNs are not only broadly adopted in computer science but also show potential

in many other fields for accelerating fundamental scientific discoveries, e.g., DNNs have

found a totally new antibiotic [154] and have been used to successfully predict the structure

of a vast number of proteins from their amino acid sequences [141]. From the hardware

perspective, neural networks are becoming a major workload on both power-sensitive

embedded devices and large distributed cloud systems.

The rise of DNNs helped researchers to achieve high accuracy on many datasets and

showed some interesting trends in terms of their computation requirements. AlexNet, an

early model designed by Krizhevsky et al. for the 2012 ImageNet competition, trained

on 1.2 million images and was used for classification with 1000 categories [93]. The 1000

classes include every-day objects (cat, dog, leopard, etc.). The proposed AlexNet utilises

around 60 million parameters and around 1.6 billion floating-point operations (FLOPs)

for a single inference run. The GPT2 language model, proposed in late 2019, is trained to

perform next word prediction but can be further fine-tuned to many downstream language

tasks. The model uses around 1.5 billion parameters and 3.4 trillion FLOPs to produce a

single inference result and was trained on around 8 million documents. Machine learning is

tackling harder and bigger problems and is using more and more data. This in turn requires

much larger networks (e.g. GPT2 is around 25× larger than AlexNet) and computational

15

complexity (e.g. GPT2 requires around 2000× more computations compared to AlexNet),

posing an enormous challenge of executing these workloads on today’s or future hardware

systems.

The fast-growing computational requirements of Machine Learning (ML) applications

pose a real challenge to existing hardware systems. The possibility that hardware may limit

what ML is able to achieve, e.g. due to power, computation speed or memory bandwidth, is

obviously a concern. The deep learning community faced the second artificial intelligence

winter in the late 90s. A major reason for the recession was the insufficient computational

power since 1) computers at that time were not explicitly designed for massively parallel

workloads such as neural networks, and 2) the CMOS technology (e.g. number/speed/power

of transistors) at that time posts a fundamental limit on the computational capabilities.

Machine Learning algorithms, consequently, do not have a chance to show their great

performance on large-scale problems. It was a great lesson to learn that when hardware

design and their technology scaling cannot keep up with computational requirements,

novel research is not easy to conduct and the whole field is slow-moving because of the

computation bottleneck. Any advances in terms of efficiency or ML hardware, both from

the hardware architecture design and CMOS scaling, will allow us to apply ML methods

to a broader range and more complex problems.

In the meanwhile, challenges also exist in terms of technology scaling, it is reaching

or may have reached the post Moore’s law era [140], the speed and capability of our

computers are not growing as fast as they used to be. Since transistors are getting smaller

and smaller with CMOS scaling, transistor density grows but then power and wire delays

become another major limiting factor [43]. In addition, CMOS scaling has also slowed

down significantly compared to the past decade. From the hardware architecture design

point of view, enabling the ever-increasing computation requirements of running more

and more demanding ML workloads rely on inventions on smart hardware architectures.

From the system design’s point of view, future systems are going to be heterogeneous, and

these systems will have to reach a better performance with a fixed power budget. Future

systems would require an integration of various specialised hardware and ML accelerators

are expected to play a major role in such a system. Given the growing need of applying

Deep Learning to different applications and the potential limitation of CMOS scaling, this

dissertation aims at exploring possible ways of reducing the computational requirements

of modern DNNs.

1.2 Research questions and hypotheses

In this dissertation, I address the following research questions and hypotheses:

• An efficient combination of algorithmic optimisations makes neural networks more

16

hardware friendly with a given accuracy budget.

• A co-design of neural network architectures, algorithmic optimisations and hard-

ware architectures helps to reach the full potential of DNN acceleration on custom

hardware.

• Designing accelerators for neural networks is expensive and repetitive, is it possible

to have an automated framework to generate accelerators for custom hardware?

• Given the increase in the number of distinct types of neural networks (e.g. con-

volutional neural network, recurrent neural network, graph neural network, etc.)

and different learning setups (e.g. few-shot learning, federated learning, etc.), is

it possible to have a hardware-aware Network Architecture Search framework for

emerging networks or new learning setups?

1.3 Contributions

This dissertation makes a number of contributions in the field of efficient deep neural

network inference.

First, I create and evaluate a range of network compression techniques. These methods

are implemented with an open-source software framework (Mayo). The implemented

compression techniques reduce either the number of parameters or the number of bits

required to represent parameters of a neural network. The open source framework allows

users applying different compression techniques to arbitrary tensor components in a

neural network, this simplifies the evaluation of different styles of network compression

techniques [201, 126]. During the development of the framework, I also demonstrate

that a combination of compression techniques normally significantly outperforms any one

technique alone, offering a large combinatorial design space for compression techniques.

Second, a novel run-time pruning technique that reduces the computing cost of convolu-

tions with minimal neural network architectural modification. The novel pruning explores

the feature saliency at run-time and is so called Feature Boosting and Suppression (FBS)

[50]. This early work in dynamic computation of deep neural networks later encouraged

exploration of more algorithmic optimisations focusing on the same problem [77, 165, 167]

and also CNN hardware accelerators supporting run-time channel skipping [76].

Third, an efficient distribution-aware quantisation and a new general framework of

quantising sparse neural networks based on the minimum description length principle

[202]. This quantisation illustrates that custom hardware has the ability to produce

a better size-accuracy tradeoff by exploring the more flexible hardware operators. In

addition, an efficient combination of different compression techniques (pruning and a

custom quantisation) can significantly improve the compression performance.

17

Fourth, an automated framework for generating multi-precision and multi-arithmetic

accelerators on custom hardware [203]. Here, instead of using a single large systolic

array core as in most neural network accelerators, I exploit a deeply pipelined streaming

architecture with multiple small cores that has the advantage of not temporally sharing

computing elements for different neural network layers. The streaming processing design

offers a flexibility on the arithmetic space since now the hardware can have different layer-

wise quantisations. This framework is an example case where if the hardware provides

enough flexibility, its corresponding neural network model can have more design freedom

and thus a higher re-trained accuracy.

Fifth, a hardware-aware Network Architecture Search (NAS) flow for graph neural

networks [205, 204]. The proposed NAS flow not only is gradient-based that joins the

normal Stochastic Gradient Descent but also is hardware-aware so that it can produce

highly quantised graph neural network models. The NAS-generated networks can be

viewed as a result of a joint-optimisation for both model architectures and quantisation

choices. The proposed NAS flow is a scalable approach for future new types of neural

networks that are going to be deployed with critical model size and latency constraints.

Finally, a general NAS framework for many-task many-device few-shot learning. The

many-task many-device scenario considers deployments of neural network models to different

learning tasks (normally networks of the same style but operate on different datasets),

and deployments of these models on various hardware systems with different run-time

constraints (e.g. latency, storage size, etc.). I then use a classic few-shot learning setup

as a testbed. The empirical results demonstrate that the proposed NAS framework can

produce optimised models for each task-device pair and it outperforms manually designed

baselines by a significant margin.

The contributions of this dissertation cover several important aspects of accelerating

DNN inference. The first three contributions focus on the software stack, these techniques

reduce the redundancies of neural networks for more energy efficient inference. However,

this dissertation reveals that software compression methods show varying performance

on different hardware systems, there does not exist a one-fits-all algorithmic solution

for accelerating DNNs on a diverse set of hardwares. In addition, these contributions

also demonstrate that the best practice is often applying a series of DNN compression

techniques instead of using a single one, there is a multiplying gain when applying

several compression techniques together. The fourth contribution shows how flexible,

reconfigurable, hardware allows a large, flexible software compression design space to

be considered and then supported through a specialised implementation, this HW/SW

co-design generates highly efficient CNN accelerators. This contribution demonstrates that

detailed hardware architectural choices will influence algorithmic compression methods, and

possibly increase the degrees of freedoms of the algorithmic optimisation space. In addition,

18

it demonstrates how deeply pipelined streaming architecture has a latency advantage

compared to other systolic-array based architectures. Since the software compression design

space is large and complex, the final two contributions focus on automating the process

of designing efficient DNNs with hardware-awareness. These contributions demonstrate

that NAS can reduce the amount of software tuning significantly. In addition, NAS is a

scalable approach for emerging neural networks types (Graph Neural Networks) and new

learning setups (many-task many-device learning).

1.4 Outline

The organisation of this dissertation is as follows:

In Chapter 2, I discuss the backgrounds of neural networks and existing techniques

used in software and hardware for minimising their required computation resources. I

will also illustrate the importance and introduce the key challenges for hardware efficient

neural network inference.

In Chapter 3, I show that neural network models are inherently redundant and

algorithmic compression methods can focus on exploring these redundancies. I introduce

the software framework Mayo and show how combining various network compression

methods can explore redundancies in different design spaces. In addition, I present two

novel compression methods for faster inference. The first one is a dynamic pruning

algorithm that can further reduce the computational requirements compared to static

pruning. The second novel compression is a distribution-aware quantisation that can help

sparse models to be represented using a more compact data type.

In Chapter 4, I focus on the hardware implementation of a convolutional neural network

accelerator. I show how to use a streaming-based computation pattern to allow better

flexibility in the arithmetic design space. The flexible arithmetic designs then provides the

opportunities for the network to achieve a better accuracy. I then describe how I extend

this idea to an automated flow for generating multi-precision, multi-arithmetic accelerators

on custom hardware.

In Chapter 5, I introduce the concept of Automated Machine Learning (AutoML) and

Network Architecture Search (NAS). I demonstrate how they can be applied on graph

neural networks and many-task many-device few-shot learning. I then explain how NAS

can be a scalable solution for emerging network types and new learning setups.

In Chapter 6, I conclude the dissertation and provide suggestions for possible future

research on accelerating neural network inference.

19

1.5 Publication

Some of the research discussed in this dissertation also appeared in the following publica-

tions:

• Yiren Zhao, Xitong Gao, Robert Mullins, and Chengzhong Xu. Mayo: A framework

for auto-generating hardware friendly deep neural networks. In Proceedings of the

2ndInternational Workshop on Embedded and Mobile Deep Learning, pages 25–30,

2018. (EMDL 2018).

• Xitong Gao, Yiren Zhao, Lukasz Dudziak, Robert Mullins, Chengzhong Xu. Dynamic

channel pruning: Feature boosting and suppression. In International Conference of

Learning Representations 2019 (ICLR 2019).

• Yiren Zhao, Xitong Gao, Daniel Bates, Robert Mullins, and Cheng-Zhong Xu.

Focused quantization for sparse CNNs. In Advances in Neural Information Processing

Systems,pages 5584–5593, 2019 (NeurIPS 2019).

• Milos Nikolic, Mostafa Mahmoud, Andreas Moshovos, Yiren Zhao, and Robert

Mullins. Characterizing sources of ineffectual computations in deep learning networks.

In IEEE International Symposium on Performance Analysis of Systems and Software,

pages 165–176. IEEE, 2019 (ISPASS 2019).

• Yiren Zhao, Xitong Gao, Xuan Guo, Junyi Liu, Erwei Wang, Robert Mullins, Peter

YK Cheung, George Constantinides, and Cheng-Zhong Xu. Automatic generation of

multi-precision multi-arithmetic CNN accelerators for FPGAs. In 2019 International

Conference on Field-Programmable Technology, pages 45–53. IEEE, 2019 (ICFPT

2019).

• Yiren Zhao, Duo Wang, Xitong Gao, Robert Mullins, Pietro Lio, and Mateja Jamnik.

Probabilistic dual network architecture search on graphs. In Deep Learning on

Graphs: Method and Applications Workshop for 35th AAAI Conference on Artificial

Intelligence (DLG-AAAI 2021), recipient of the best student paper award.

• Yiren Zhao, Duo Wang, Daniel Bates, Robert Mullins, Mateja Jamnik, and Pietro

Lio. Learned low precision graph neural networks. In The 1st Workshop on Machine

Learning and Systems (EuroMLSys 2021).

• Yiren Zhao, Xitong Gao, Ilia Shumailov, Nicolo Fusi, Robert Mullins. Rapid Model

Architecture Adaption for Meta-Learning. In submission

During my PhD study, my research also resulted in the following publication and patents

that are not included in this dissertation:

20

• Yiren Zhao, Ilia Shumailov, Robert Mullins, Ross Anderson. To compress or not to

compress: Understanding the interactions between adversarial attacks and neural

network compression. Proceedings of the 2nd SysML Conference, 2019 (SysML

2019).

• Kaifeng Wang, Xitong Gao, Yiren Zhao, Xingjian Li, Dejing Dou, Cheng-Zhong Xu.

Pay Attention to Features, Transfer Learn Faster CNNs. International Conference

of Learning Representations 2020 (ICLR 2020).

• Ilia Shumailov, Yiren Zhao, Robert Mullins, Ross Anderson. Towards Certifiable

Adversarial Sample Detection. Proceedings of the 13th ACM Workshop on Artificial

Intelligence and Security, Pages 13–24 (AISec 2020).

• Yiren Zhao, Ilia Shumailov, Robert Mullins, Ross Anderson. Blackbox attacks on

reinforcement learning agents using approximated temporal information. 2020 50th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks

Workshops (DSN-W 2020).

• Daniel Lo, Amar Phanishayee, Eric S Chuang, Yiren Zhao, Richie Zhao. Neural

network activation compression with narrow block floating-point. US Patent.

• Daniel Lo, Amar Phanishayee, Eric S Chuang, Yiren Zhao, Richie Zhao. Neural

network activation compression with outlier block floating-point. US Patent.

• Daniel Lo, Amar Phanishayee, Eric S Chuang, Yiren Zhao. Neural network activation

compression with non-uniform mantissas. US Patent.

• Ilia Shumailov, Yiren Zhao, Daniel Bates, Nicolas Papernot, Robert Mullins, Ross

Anderson. Sponge Examples: Energy-Latency Attacks on Neural Networks. .

Proceedings of the 6th IEEE European Symposium on Security and Privacy (EuroS&P

2021)

• David Khachaturov, Ilia Shumailov, Yiren Zhao, Nicolas Papernot, Ross Ander-

son. Markpainting: Adversarial Machine Learning meets Inpainting. The 38th

International Conference on Machine Learning (ICML 2021, Short Talk).

• Ilia Shumailov, Zakhar Shumaylov, Dmitry Kazhdan, Yiren Zhao, Murat A Erdogdu,

Nicolas Papernot, Ross Anderson. Manipulating SGD with Data Ordering Attacks.

To appear in Advances in Neural Information Processing Systems, 2021 (NeurIPS

2021).

21

22

Chapter 2

Background

This chapter surveys the background literature and recent model design trends of deep

learning. I then use convolutional neural networks as an example to introduce the basic

structure and learning methods of neural networks. Later, I introduce popular neural

network compression techniques and prior automated machine learning algorithms. At the

end, I provide a survey of prior hardware accelerators and their corresponding hardware

optimisation.

2.1 An overview of deep neural networks and their

computational requirements

In recent years, we see a trend of using larger and larger neural networks to solve an

array of tasks with ever-increasing complexities, and all of this started from the early

discoveries in the field of computer vision. The design of AlexNet, utilising around 60

million parameters and 1.6 billion floating-point operations (FLOPs), showed a significant

accuracy boost compared to manual feature engineering when classifying the 1000 daily

objects in the ImageNet competition. This work then motivated researchers to build

large neural network models for different learning problems [93]. Simonyan et al. and

Zagoruyko et al., in the following years, used deeper CNNs with more parameters and

achieved significantly better results on the same dataset [151, 188]. Also very recently,

in the world of natural language processing (NLP), Vaswan et al. proposed to use the

attention mechanism to solve language understanding tasks and built the Transformer

model with around 213 million parameters [162]. Devlin et al. later scaled the transformers

to be both bidirectional and deeper and called their model BERT [38]. Very recently, we

have begun to see the rise of gigantic models such as GPT2 and GPT3 [133, 15]. These

models not only solve traditional NLP tasks, such as machine translation and question

answering; they aim adding machine intelligence to the broader range of applications, from

23

translating English to SQL to plotting beautiful graphs from plain English. The GPT3

model uses more than 170 billion parameters, and its training costs around 4.6 million

dollars if you are using Azure services [15].

2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

100

101

102

103

104

105

Nu
m

be
r o

f M
AC

s (
B)

Representative models and their MACs
Alexnet
VGG16
WideResNet101
Transformer
BERT
GPT2
GPT3

2015 2016 2017 2018 2019
Year

100

101

102

Nu
m

be
r o

f M
AC

s (
B)

Efficient models and their MACs
ResNet50
MobileNet
MnasNet
ALBERT

Figure 2.1: Model sizes and numbers of floating points of representative neural networks
published in different years. These models have various accuracies and target different
tasks, however, the general trend suggests that models are getting bigger and more
computationally heavy.

0.0 0.2 0.4 0.6 0.8 1.0
Number of input nodes 1e6

10 2

10 1

100

101

Nu
m

be
r o

f F
LO

Ps
 (G

)

GAT
Alexnet
Resnet18
Wide_resnet50_2
Mobilenet_v2
Resnet101

0.0 0.2 0.4 0.6 0.8 1.0
Number of input nodes 1e6

100

101

102

103

Ac
tiv

at
io

n
Si

ze
 (M

B)

GAT
Alexnet
Resnet18
Wide_resnet50_2
Mobilenet_v2
Resnet101

Figure 2.2: Evaluating the computational requirements for a two-layer Graph attention
network (GAT) compared to a range of vision models. Numbers are reported for a
single graph/image inference and we treat an image as a graph with 224× 224× 3 input
nodes. Inputs for the GAT model are Erdős-Rényi-Gilbert Random Graphs generated
with different number of nodes (N) and a connectivity probability of 1

N
.

While machine learning models are growing in size and complexity, smart network

architectural engineering reduces the cost of running inferences. He et al. and Howard

et al. redesigned the building blocks of CNNs, and proposed the ResNet and MobileNet

families respectively [66, 73]. These vision models use far fewer parameters and operations,

but match the performance of their larger counterparts. Similarly, the design of ALBERT

shows the possibility to port a lightweight transformer model with comparable performance

[97]. In parallel to manual optimisation of networks based on domain expertise, automatic

24

exploration methods such as Network Architecture Search (NAS) successfully find efficient

models such as the MNasNet that reaches the state-of-the-art accuracy per operation

performance [157]. In Figure 2.1, I choose the well-known neural networks mentioned

above and show how their computational requirements change across years. I demonstrate

their computational requirements in terms of 1) number of parameters, also known as

model sizes, and 2) number of multiplication-accumulates (MACs) required for a single

inference run. The first gives an indication of the hardware memory requirements and the

potential need for high off-chip memory bandwidth depending on the detailed memory

hierarchy designs. The latter challenges the computational ability of the hardware. The

number of parameters of various networks are measured in millions (M), and the number of

MACs reported are in billions (B). I also label the names and the published dates of these

networks in Figure 2.1. On the same dataset, researchers spent a long time on reducing

both the number of parameters and error rates of DNNs. It is noteworthy that efficient

networks normally utilise special network structures and optimization techniques. For

example, MobileNet made use of grouped convolutions [73] and ResNet50 has its special

shortcut connections [66]. There are several interesting trends we can summarise from

Figure 2.1:

• It takes a great amount of time to design efficient neural networks. AlexNet was

introduced in 2012 but the efficient MobileNet family starts to appear in late 2017.

• People tend to first design networks for better accuracy, but these networks are

normally harder to train and have a risk of being more sensitive to hardware. For

instance, it is easier to support VGG16 in today’s TPUs [85] than WideResNet101

because of the skip connections.

Apart from the ever increasing model sizes and complexities, recent years have witnessed

a more diverse set of neural network types. In addition to classic learning domains such

as computer vision and natural language processing, emerging research has proven the

capabilities of DNNs on graph [89, 163] or tabular data [183]. Novel neural network types

often show vastly different computational properties. Taking graph neural networks as an

example, Figure 2.2 demonstrates that these models can have a much higher computational

requirements in terms of FLOPs and activation sizes compared to vision models if the

input graph size is large. However, these graph models are often very small in terms of

model sizes compared to their vision counterparts.

In general, we can summarize the following trends:

• We will always have larger datasets and larger model. There will always be a demand

to tackle harder problems. The computational requirement is always growing.

25

• Although over-parameterization is advantageous in training on very large datasets, it

is not always necessary for accurate inference [28]. There exists efficient networks on

the same datasets, smart architectural changes or automated machine learning will

discover the efficient networks in a few years from the release date of the dataset.

• The operations and structures of DNNs will be more diverse and complex (residual

blocks, depthwise separable convolutions, attention mechanisms, etc.) over time in

order to make these models more efficient (e.g. run faster or consume less energy for

a given accuracy budget).

• Over time new neural network types are introduced to improve performance or

solve new machine-learning problems. These may have very different memory access

patterns and computational requirements when compared to existing models.

2.2 Deep neural network structures

Figure 2.3: AlexNet network architecture with 5 convolutional layers and 3 fully-conneted
layers [93].

DNNs have been biologically inspired by the neural system in human brains. Neurons

are basic units in a DNN and a number of neurons make up a layer. The network

architecture of AlexNet is shown in Figure 2.3. There are currently a great number of

DNN layer types, the network in Figure 2.3 utilised fully-connected layer, pooling layer and

convolutional layer. AlexNet has 5 convolutional layers, 3 max pooling layers and 3 fully

connected layers. The convolutional layers have most of the computations and they start

to replace the fully-connected layers because of their capabilities on feature extractions

[73]. The fully connected layer is nothing more than dense matrix multiplications and

the pooling layer requires only a linear scan of all variables in the feature maps. Since

convolutions is a popular and representative computation layer in today’s DNNs, I would

26

like to introduce the mathematics behind convolutions for a concrete understanding of

this workload.

w00 w01 w02

w10 w11 w12

w20 w21 w22

w00 w01 w02

w10 w11 w12

w20 w21 w22

w00 w01 w02

w10 w11 w12

w20 w21 w22

w00 w01 w02

w10 w11 w12

w20 w21 w22

w00 w01 w02

w10 w11 w12

w20 w21 w22

w00 w01 w02

w10 w11 w12

w20 w21 w22

w00 w01 w02

w10 w11 w12

w20 w21 w22

w00 w01 w02

w10 w11 w12

w20 w21 w22

w00 w01 w02

w10 w11 w12

w20 w21 w22

w00 w01 w02

w10 w11 w12

w20 w21 w22

w00 w01 w02

w10 w11 w12

w20 w21 w22

w00 w01 w02

w10 w11 w12

w20 w21 w22

Input feature maps: Xl-1

Weights: W

Output feature maps: Xl

Figure 2.4: A typical convolution layer, with 3 input feature maps, 4 output feature maps
and 12 3× 3 kernels.

We consider a deep sequential CNN with L convolutional layers, i.e. XL = F (X0) =

fL (· · · f2 (f1 (X0)) · · ·), where the lth layer fl : RCl−1×Hl−1×Wl−1 → RCl×Hl×Wl computes

the features xl ∈ RCl×Hl×Wl , which comprise of Cl channels of features with height Hl and

width Wl. The lth layer is thus defined as:

Xl = fl (Xl−1) = ReLU(convl(Xl−1,θl)) (2.1)

Here, ReLU(x) = max (x, 0) denotes the ReLU activation, and convl (Xl−1,θl) computes

the convolution of input features Xl−1 using the weight tensor θl ∈ RCl×Cl−1×k2 , where k

is the kernel size. As illustrated in Figure 2.4, for each single output pixel at a particular

channel of the output feature map, the entire weights volume is multiplied with the selected

input feature volume in an element-wise manner and then summed to produce the final

single pixel result. At inference time, a convolution uses k2Cl−1ClHlWl multiply-accumulate

operations (MACs), which means 2k2Cl−1ClHlWl floating-point operations (FLOPs), for

the computation of the lth layer.

Another view on this convolution workload is to treat it as a classic hardware accelera-

tion for nested loops. Listing 2.1 further shows the code snippet for a single convolution.

OutR, OutC and OutF are the three dimensions of the output feature maps. InF is the

number of input feature maps and K and stride are the kernel sizes and stride value

respectively.

Listing 2.1: Nested loops for convolution

27

for (row=0; row <OutR; row++){

for (col=0; col <OutC; col++){

for (fo=0; fo <OutF; fo++){

for (fi=0; fi <InF; fi++){

for (i=0; i<K; i++){

for (j=0; j<K; j++){

output_fm[fo][row][col]+= weights[fo][fi][i][j]*in_fm[fi][

stride*row+i][stride*col+j];

}}}}}}

Optimisation for computing nested loops has been a long-existing research subject in

hardware acceleration. The formulation above offers many possible optimisations for better

data-reuse patterns or better contiguous DRAM access patterns [137, 103, 124], these

optimisation are beyond the scope of this dissertation. A naive strategy is to unroll all

iterators in the nested loops so that all computations are fully parallelised, however, such

designs normally cannot meet the hardware constraints due to the large computational

dimensions (e.g. large channel counts or large feature map sizes) of neural networks. In

Chapter 4, I will revisit different optimisation choices for nested loops and how they

influence the hardware designs.

2.3 Neural network compression and automated ma-

chine learning

Neural network compression refers to the process of reducing the run-time costs of neural

network inference through shrinking the network parameters, it normally targets a pre-

trained neural network model with a pre-defined network architecture. Reducing the size

of a neural network directly decreases the amount of off-chip accesses and normally reduces

the amount of computation required. Although re-designing the original network to a

smaller network is directly beneficial, such design normally requires a large amount of

design-time. In general, most compression techniques focus on the following three paths.

• Reduce the number of parameters in a neural network.

• Reduce the bit-width of parameters.

• Reshape kernels.

I summarise all the compression techniques in Figure 2.5 as a taxonomy. In this section, I

will mainly focus on pruning and quantisation. In addition, I will introduce optimisation

on the neural network architecture space, namely neural network architecture search

techniques for finding the best performing network architectures.

28

Compression methods

Reduce number of parameters

Pruning

Fine-grained Coarse-grained

Regularization

Reduce bit-width

Quantization Encoding

Reshape kernels

Low rank approximations

Figure 2.5: Taxonomy of compression techniques.

2.3.1 Pruning

Pruning directly reduces the number of connections. Since LeCun et al. [100] introduced

optimal brain damage, the idea of creating more compact and efficient CNNs by removing

connections or neurons has received significant attention. Early approaches to pruning

deep CNNs zeros out individual weight parameters [65, 57]. This results in highly irregular

sparse connections, which were notoriously difficult for SIMD architectures such as GPUs

to exploit. This has prompted custom accelerator solutions that exploit sparse weights

[128, 63]. Although supporting both sparse and dense convolutions efficiently normally

involves some compromises in terms of efficiency or performance.

Because of the above-mentioned reasons, recent research is more focused on structured

sparsity [169, 185, 6, 208], that can be directly exploited by GPUs and also allow custom

accelerators to focus solely on efficient dense operations. Wen et al. [169] added group Lasso

on channel weights to the model’s training loss function. This has the effect of reducing

the magnitude of channel weights to diminish during training, and remove connections

from zeroed-out channels. To facilitate this process, Alvarez et al. [6] additionally used

proximal gradient descent, while Li et al. [105] and He et al. [69] proposed to prune channels

by thresholds, i.e. they set unimportant channels to zero, and fine-tune the resulting

CNN. The objective to induce sparsity in groups of weights may present difficulties for

gradient-based methods, given the large number of weights that need to be optimised. A

common approach to overcome this is to solve [70] or learn [114, 185] channel saliencies to

drive the sparsification of CNNs. He et al. [70] solved an optimization problem which limits

the number of active convolutional channels while minimising the reconstruction error on

the convolutional output. Liu et al. [114] used Lasso regularisation on channel saliencies

to induce sparsity and prune channels with a global threshold. Ye et al. [185] learned to

sparsify CNNs with an iterative shrinkage/thresholding algorithm applied to the scaling

factors in batch normalisation. There are methods [116, 213] that use greedy algorithms

for channel selection. Luo et al. [116] selectively prune input channels while minimizing

29

the reconstruction error of the convolutional output. Zhuang et al. [213] similarly perform

channel selection to minimise a joint loss of the reconstruction error and the classification

power of convolutional channels. Huang et al. [78] and He et al. [71] adopted reinforcement

learning to train agents to produce channel pruning decisions.

In general, existing work in the field of network pruning demonstrates that fine-grained

pruning is better at achieving a greater reduction in terms of model sizes. However,

when talking about real inference time reduction on commodity hardware such as GPUs,

coarse-grained methods are a better choice.

2.3.2 Quantisation

Quantisation methods allow parameters to be represented with much narrower bit-widths

than the 32-bit long floating-point numbers used in classic CPU- or GPU-based DNN

implementations. Converting numbers to fixed-point representations drastically reduces

computation and memory requirements [32, 109, 81]. An n-bit fixed-point number with a

binary point position p can represent a value x̂ with:

x̂ = 2−p ×mnmn−1 . . .m1, (2.2)

Lin et al. claim that a suitable fixed-point quantisation can offer a large reduction in model

sizes without any accuracy loss [109]. In extreme cases, the parameters can be binary

(0 and 1) [80] or ternary values (−1, 0, 1) [104]. This significantly reduces the memory

requirements for parameters, but naively putting weights and activation values to extreme

low bit-widths can cause a huge decrease in network accuracy. The idea of grouping

numbers with common bases might be long-existing [172], Lin et al. and Zhang et al. first

showed that this technique works well with neural network model parameters [110, 192].

They group parameters using a set of shared numerical bases, so that the offsets of these

bases can be quantised to binary or ternary values without a large decrease in network

accuracy [110, 192]. These extreme low-precision number formats might be challenging

to be exploited by general computing platforms but can bring a significant performance

gain to custom hardware accelerators. Inference on general purpose hardware, e.g. CPUs

and GPUs, often utilise 8-bit fixed-point numbers. The Intel DL Boost provides built-in

instructions, an extension based on the Advanced Vector Extensions 512 (AVX-512), to

accelerate 8-bit model inference [9]. Recently, Intel also released an Advanced Matrix

extensions (AMX) in addition to AVX-512 [2]. Its supported tile matrix multiplication

enables around 2000 INT8 operations per cycle per core. NVIDIA now has the TensorRT

toolkit to support various low-precision formats (the lowest possible bit-width is 8-bit) on

a variety of GPU devices [161].

Arithmetics beyond fixed-point have also being explored for efficient neural network

30

inference. Miyashita et al. showed that logarithmic data representations can be effective on

DNNs, and Lee et al. also discovered that powers-of-2 numbers is sufficient for networks

to retain accuracy but replaces expensive multipliers with shifting [101]. Shift quantisation

results in the following representable values, where s ∈ {−1, 0, 1} indicates the sign of the

value, b is a constant integer shared among weights within the same layer which ensures

no values overflow, and e is a variable exponent:

x̂ = s× 2e−b. (2.3)

Many quantisation methods also consider re-training the quantised networks for a

better post-quantisation accuracy, this is also known as quantisation-aware training

(QAT). Courbariaux et al. first proposed that re-training the quantised networks can

significantly reduce the accuracy loss introduced by quantisation errors [32]. Direct

quantisation and quantisation-aware training are now pervasive in deep learning. Modern

deep learning frameworks such as Pytorch [129] and Tensorflow [129] now both offer

fixed-point quantisation and quantisation aware training to help developers to deploy deep

learning models to mobile or more constrained devices.

2.3.3 Automated machine learning and network architecture

search

Automated machine learning (AutoML) refers to the idea of automating the entire ML

pipeline that involves four major steps: data preparation, feature engineering, model

generation and model estimation [68]. While network architecture search (NAS) methods

focus on automating two major processes of this whole AutoML pipeline, namely the

model generation and model estimation phases.

The rise of NAS comes at a time when the manual design and tuning of architectures

of DNNs on custom datasets is getting increasingly difficult. One challenge is the increase

in the number of different possible operations that may be employed, e.g. in the field

of computer vision, simple convolutions and fully connected layers [93] have expanded

to include depth-wise separable convolutions [73], grouped convolutions [196], dilated

convolutions [168], etc. This opens up a much larger design space for neural network

architectures but makes manual architectural engineering a lot more challenging than

before.

Network Architecture Search (NAS) seeks to automate the search for the best DNN

architecture. A challenge in this search is how to properly define a search space of network

architectures. One common practice is to represent neural architecture as a direct acyclic

graph (DAG) consisting of ordered nodes. However, this DAG representation is potentially

very large if we consider deep neural networks with hundreds of layers and each layer has

31

a great number of possible operations. Several NAS methods [113, 130, 216, 206] then

focused on a reduced cell-based search space, with the hope that learned cell structure can

be repeated several times to compose a complete network. There is a clear motivation

behind this cell-based search space: previous well-performing human-designed networks

normally stack a number of fixed blocks [66]. Now if we can build a successful cell, it is

expected that replicating this cell multiple times would construct a good model architecture.

Figure 2.6 demonstrates a cell-based search space in DARTs [113]. Each red edge in Celli

is a searchable operation, the designer only searches for reduction and normal cells and

repeat these cells several times to build a complete network. Another popular search space

setup in NAS is to construct a supernet from a seed/backbone network [17, 18, 157]. The

backbone network normally relies on a pre-built successful network such as ResNets [66]

or MobileNets [73]. The NAS methods then expand this network with a set of pre-defined

candidate operations to build a supernet. Finally, the NAS method will exploit a search

method (e.g. genetic algorithms) to pick the best network (architecture adaption phase in

Figure 2.7). It is generally hard to argue which search space is better, since they have

different limitations. Cell-based architecture relies on repeating the blocks and its complex

DAG of each cell might induce a large inference latency (I discuss this latency problem in

details in Chapter 5). The supernet-based approach, on the other hand, focuses on its

pre-defined backbone and can have vastly different performances when backbones are not

designed with care.

IQSXW

OXWSXW

QRUPaO ceOO

UedXcWLRQ ceOO

QRUPaO ceOO

UedXcWLRQ ceOO

QRUPaO ceOO

UeSaW N WLPeV

UeSaW N WLPeV

UeSaW N WLPeV

0

1

2

3

CeOOL

CeOOL-1 CeOOL-2

EacK Ued edJe LV a OeaUQabOe RS

Figure 2.6: An illustration of a cell-based NAS search spaces.

32

NAS Backbone Supernet

Construct search space Architecture adaption

Searched network

Figure 2.7: An illustration of a supernet-based NAS search spaces.

NAS methods can also be classified by their search methodologies. Early work in this

field, such as NASNet [216] and AmoebaNet [136], employed reinforcement-learning (RL) or

evolutionary algorithms (EA) to discover optimal network architectures, but this comes at a

large computational cost. Each update of the controller requires a few hours to train a child

network to convergence which significantly increases the search time. Liu et al. proposed

Differentiable Architecture Search (DARTS) that is a purely gradient-based optimisation

(GO); each candidate operation’s importance is scored using a trainable scalar and updated

using Stochastic Gradient Descent (SGD) [113]. Subsequently, Casale et al. approached

the NAS problem from a probabilistic view, transforming concrete trainable scalars used by

DARTS [113] to probabilistic priors and only train a few architectures sampled from these

priors at each training iteration [20]. Wu et al. and Xie et al. used the Gumbel-softmax

trick to relax discrete operation selection to continuous random variables [175, 177]. I

present the representative NAS techniques in Table 2.1. It can be concluded that these

three mainstream NAS approaches all demonstrate compatible search time in terms of

GPU days.

There is also now a rise of applying NAS with hardware design parameters, so that

both the network architecture and hardware architecture search spaces are jointly explored.

Abdelfattah et al. and Zhou et al. have explored how NAS can establish an efficient

exploration in the software-hardware co-design search space [4, 211].

2.4 Neural network hardware accelerators

In the last few years, a great number of custom hardware accelerators have been proposed

and implemented for improving the run-time efficiency of DNNs. In this section, I would

33

Method Style Top1/Top5 (%) Params (Millions) GPU Days

NASNet [216] RL 82.7/96.2 88.9 2000
Path-level EAS [16] RL 74.6/91.9 594 200
FPNAS [33] RL 73.3/- 3.41 0.8

AmoebaNet [136] EA 82.8/96.1 86.7 3150
OFA [18] EA 80.0/- - 1.7

SMASH [14] GO 61.4/83.7 16.2 3
PARSEC [20] GO 74.0/91.6 5.6 1
ProxylessNAS [17] GO 75.1/92.5 - 8.33
SNAS [177] GO 72.7/90.8 4.3 1.5
FBNet [175] GO 74.9/- 5.5 9
DARTS [113] GO 73.3/91.3 4.7 4

Table 2.1: Different Network Architecture Search Methods and their performance on
the ImageNet 2012 dataset [93]. RL, EA and GO represent Reinforcement Learning,
Evolutionary Algorithm and Gradient-based Optimisation respectively.

like to compare some popular accelerator designs in terms of their processing elements and

data reuse models. Energy consumed by a hardware accelerator can be broadly categorised

as relating to computation, on-chip memory accesses or off-chip memory accesses. The

design of DNN accelerators need to carefully arrange its available hardware resources to

processing elements, on-chip memory systems to improve efficiency.

2.4.1 From general-purpose processors to custom hardware ac-

celerators

General-purpose processors are the most common hardware in the world. These processor,

particularly Central Processing Units (CPUs), are designed to be efficient for general-

purpose computing. However, these computing platforms are not friendly to massively

parallel workloads such as DNN inference. For operations in DNN inference, many of these

matrix multiplications can be mapped efficiently to a single-instruction, multiple=thread

(SIMT) or single-instruction, multiple data (SIMD) computation paradigm. This is also

the reason for the dominant usage of GPUs as the computation platform for DNN inference.

However, there is also a rising trend of using custom computing to accelerate DNN inference.

Hardware platforms such as Field Programmable Gate Arrays (FPGA) and Application-

Specific Integrated Circuits (ASICs) are designed to be efficient for DNN inference. While

GPUs excel in computing dense float-point matrix multiplies, these platforms are not

designed for short bit-width fixed-point operations and sparse computation. Researchers

have then looked at how customising the computation units together with the memory

system can be used to achieve better performance, and we will review some of these

34

hardware designs in the rest of this chapter.

One particularly popular hardware architecture for DNN inference is the Systolic Array.

This is a homogeneous network of processing elements that are connected to a single

memory system. These processing elements are normally data processing units (DPUs),

and each of these DPUs can be configured to independently compute a partial result as

the data moves from its upstream neighbors. The DPU then performs the computation

and then passes the result to its downstream neighbors, as illustrated in Figure 2.8.

Figure 2.8: An illustration of a systolic-array based accelerator presented in the ScaleSIM
simulator [139]. The processing elements are shown as small colored blocks in the middle.

2.4.2 Processing elements

The design of processing elements are heavily impacted by the network compression

algorithms used. The complexity of a PE’s compute logic is highly dependent on data

format (arithmetic) and bit-width, this in turn, also has implications for area, power

efficiency and latency. One consideration is whether the processing elements are zero-aware,

meaning that they can take advantage of the sparsities in both weights and feature maps.

Bit-widths can heavily impact the arithmetic cores in a neural network and thus the

computation efficiency and latency.

In this sub-section, I only review representative compression-aware DNN accelerators

with unique processing elements. EIE encodes weights into 4-bit to reduce the bandwidth

requirements [63]. This, in turn, requires the EIE accelerator to have decoding units in

hardware. In addition, EIE supports non-zero detection, so that the run-time sparsities in

activations can be exploited. This non-zero zero detection requires an activation queue

to store non-zero activations. Similarly, Eyeriss supports sparse activations as well: it

misses both the memory read and calculation if detected a zero value on activations.

Angle-Eye [56] is a standard accelerator with dense weights and activations. Nullhop [5]

35

Accelerator Sparsity Bit-widths

Diannao [24] Dense weights and dense activations 16-bit fixed-point PE
EIE [63] Sparse weights and sparse activations 4-bit encoding, 16-bit fixed-point PE
SCNN [128] Sparse weights and sparse activations 4-bit encoding, 16-bit fixed-point PE
Eyeriss [27] Dense weights and sparse activations 16-bit fixed-point PE
Angel-Eye [56] Dense weights and dense activations 16-bit or 8-bit fixed-point PE
Nullhop [5] Dense weights and sparse activations 16-bit fixed-point PE
XNOR Neural Engine [31] Dense weights and dense activations binary PE with partial sums stored as 16-bit
Bit-Tactical [35] Bit-level sparse weights and activations 16-bit fixed-point PE
YodaNN [7] Dense weights and dense activations binary weights, 12-bit activations

Table 2.2: Sparsities and data formats of various neural network accelerators.

exploits activation sparsity to reduce the computation complexity. XNOR Neural Enginee

focuses on accelerating binary neural networks [31], and Bit-Tactical [35] accelerates

neural networks by exploiting bit-level sparsities using bit-serial operators. YodaNN is

an accelerator for binarised neural networks, the arithmetic operations are nearly costless

because they are simply bit-wise operations.

2.4.3 Data reuse models

Consider the nested for loops in Listing 2.1 again, we can identify these iterators: [i, j, fi,

fo, col, row]. Table 2.3 shows how recently proposed hardware accelerators unroll different

loop iterators.

Accelerator Unrolled iterators

Eyeriss [27] i, j, row, col
EIE [63] i, j and fo
Ma et al. [117] fi and fo
Rahman et al. [134] col, row and fo

Table 2.3: Unrolling strategies of different neural network accelerators.

Unrolling different iterators in hardware would have different impacts on the underlying

architecture (PE arrangements, interconnects and etc) and data reuse model. Naive

unrolling of only i, j means exploiting the hardware parallelism inside each kernel, however,

these kernels are small in size and thus does not provide enough hardware parallelism.

Eyeriss tries to obtain more parallelisms by unrolling the row and col iterators together

with the kernels (i, j) [27]: it utilizes a systolic-array like architecture where outputs are

streamed vertically to be summed and inputs are streamed diagonally. The weights are

broadcasted to each processing element using a large multicast network. Ma et al. find the

parallelisms in input feature maps (fi): each input feature map is fully calculated before

switching to a new one [117]. The partial sums for output feature maps (fo) are cached

on-chip until the calculation finishes. In this case, only weights are not reused. In contrast,

36

Rahman et al. choose to fully unroll the output feature maps and their corresponding

dimensions (row, col, fo) in hardware [134], however, these unrollings force partial sums

at the output to be store back into the external memories if on-chip storage is not large

enough.

In short, various unrollings indicate different hardware architectures (PE design, on-chip

interconnects, memory accesses, etc.) and data reuse models. Convolution layers normally

vary in terms of channel count, kernel size and feature map sizes. An optimal hardware

for one particular convolution layer does not apply to another: hardware that is optimised

for one particular convolution layer may perform poorly when used to execute different

layers with different dimensions.

2.4.4 A comparison of DNN hardware accelerators

Table 2.4 summarises key data for a representative sample of recent hardware platforms

used to execute DNNs.. NVIDIA GPUs are included as a baseline platform: the 1080Ti

GPU is a server level chip and TK1 aims for embedded systems.

Hardware Power Throughput Technology Clock Frequency Bit-width

Edge/Embedded Devices

NVIDIA TK1 10.2W 155 GOPS 28nm 852 MHZ 32b Float
Eyeriss [27] 0.28W 84 GOPS 65nm 200 MHz 16b Fixed
EIE [63] 0.59W 102 GOPS 45nm 800 MHz 16b Fixed
ShiDianNao [41] 0.32W 194 GOPS 65nm 1 GHz 16b Fixed
AngleEye [56] 3.5W 188 GOPS 28nm (FPGAs) 150 MHZ 8b Fixed

Cloud Devices

NVIDIA 1080Ti 250W 10.6 TOPS 16nm 1580 MHz 32b Float
Brainwave [29] 225W 90.0 TOPS 14nm (FPGAs) 500 MHz 8b MS-Float
GraphCore MK1 IPU [84] 250W 124.5 TOPS 16nm 1.6 GHz 32b/16b Float mixed

Table 2.4: Performance comparison of neural network accelerators. Bit-width means the
bit-width of the computation cores.

AngleEye and Brainwave are two representative FPGA-based accelerator designs

[56, 29]. As shown in the table, for FPGA implementations I choose to report performance

assuming 8-bit processing elements, which shows the flexibility of using reconfigurable

hardwares. The Brainwave accelerator utilises a special data format that is similar to

a block floating-point arithmetic [87]. In general, FPGA based accelerators tend to use

special or lower precision arithmetics because of the fine-grained reconfigurability, ASIC

based accelerators have better energy efficiencies mainly because of the higher clock

frequency.

In Figure 2.9, I consider a wider range of cores from both industry and academia. The

vertical axis shows the number of operations per unit die size (mm2) and the horizontal

axis is the years that these accelerators are published. I calculate the number of operations

37

2015 2016 2017 2018 2019 2020 2021
Year

10 8

10 6

10 4

10 2

100

102

104
GO

ps
 /

m
m

2 /
 W

ShiDianNao
Eyeriss

EIE

AngleEye

Throuput-Opt

FPGAConvNet
NVIDIA Jetson TK1 NVIDIA Jetson TX2

TPU Edge
Intel Movidius Myriad X

TPU-V1

TPU-V2 TPU-V3
TPU-V4GroqAscend 910

BrainWave
Graphcore C2Nvidia V100

Cerebras WSE2

Qualcomm A100

Figure 2.9: A comparison of various DNN accelerators. Orange circles represent research
ASIC accelerators for embedded systems, blue circles represent commercial ASIC accelera-
tors for embedded systems, blue triangles are commercial ASIC cores for cloud systems,
blue rectangles are commercial FPGA designs for cloud systems and orange starts are
research FPGA designs for embedded systems.

from the fastest arithmetic that the accelerator can offer. For instance, if an accelerator

supports both INT16 and FLOAT16, I report the number of operations as the number

of INT16 operations finished per unit time. The estimation is coarse-grained for several

platforms because of the limited information available, e.g. Cerebras does not report

the exact number of floating-point operations so I have to estimate it from its available

clock frequency and number of processing elements. In particular, the following hardware

systems are considered:

• ASIC accelerators for embedded systems (orange circles and blue circles): ShiDianNao

[41], EIE [63] and Eyeriss [27] are representative designs from the academia. These

accelerators tend to use a more aggressive optimisation strategy on the software

space (e.g. more compact number formats). In particular, EIE utilised fine-grained

pruning, fixed-point quantisation and Huffman encoding to aggressively compress

the model [63]. Nvidia Jetson [159, 120], Intel Movidius [3] and TPU Edge [21] have

similar performance although being designed at different years, and I consider them

as representative designs from the industry.

38

• FPGA-based accelerators for embedded systems (orange stars): FPGAConvNet [164]

and AngleEye [56] are two representative designs from the academia.

• ASIC accelerators for cloud systems (blue triangles): TPU-V1, TPU-V2, TPU-V3

and TPU-V4 are a series of tensor processing units developed at Google [85]. TPU-V1

and V4 supports network inference only whereas the other two generations support

both training and inference. Nvidia V100 is a popular platform in popular cloud

services [118]. Huawei HiSilicon ships the Ascend 910 chip based on the same Huawei

Da Vinci architecture [108]. The Groq Tensor Streaming Processor are a set of

Superlanes which each Superlane contains a specialised very long instruction word

(VLIW) instruction [60]. Graphcore AI released a C2 card, showing strong inference

performance for both ResNet50 training and inference [86]. Cerebras shows an

incredibly large chip using their waver scaling technology on the 7nm technology

node [1].

• FPGA-based accelerators for cloud systems (blue triangles): In this case, BrainWave

from Microsoft might be the most recognised FPGA design that is widely deployed

in today’ Microsoft data centers [48].

In Figure 2.9, I observe several interesting trends that is worth highlighting in this

dissertation:

• DNN inference accelerators for edge systems designed by researchers (ShiDianNao,

EIE, Eyeriss) show the best performances, they outperform other accelerators by

a significant margin. These accelerators tend to use aggressive optimisation tech-

niques. For instance, EIE [63] utilised pruning, quantisation and encoding. FPGA

accelerators show the same trend, where research accelerators show better efficiency

compared to commercial grade accelerators.

• The middle band in Figure 2.9 (blue circles) are mainly embedded systems designed

by the industry. These accelerators show a better performance compared to server-

class accelerators. This indicates that simply using a larger die size (making larger

chips) might increase the absolute operations per second counts but does not provide

a better power efficiency per die size. This phenomenon is easy to understand since

larger die sizes normally suggest an increased number of transistors and thus a more

difficult routing. In addition, server-class chips normally integrate more networking

facilities and DRAM channels. On the other hand, loading off-chip data from DRAM

is likely to be a bottleneck for server-class accelerators.

• DNN accelerators designed by the industry do not show great performance (Gops/mm2/W)

in Figure 2.9. It is commonly known that industry accelerators will have to support

39

more types of neural networks and even ensure backwards compatibility [85], this

wider coverage forces the designers to use more conservative optimisation meth-

ods. Some of these industry accelerators have particular applications to support

with particular quality targets, e.g. in some cases forcing the use of some forms of

floating-point arithmetics. They may also have to take and run networks as they are,

i.e. they don’t have the ability to retrain after applying some sort of compression

technique.

It is also worth mentioning that this comparison does not consider the effect of different

fabrication processes. However, it is generally expected that, at least in industry, the

accelerators fabricated in later years are using a more advanced nanometer technology. On

the other hand, recent DNN accelerators contain both ASIC and FPGA designs. ASIC

designs have a major advantage of its high clock frequency FPGAs used to be a testing

facility for ASIC designs [95], but now start to rise as a general purpose computation

platform because of the following reasons:

• Faster time to market: ASIC designs has a much longer development cycle compared

to FPGAs.

• Design difficulty: The design process of ASIC accelerators is complex and requires

collaborations of different entities, FPGAs, on the other hand, has a much simpler

design flow, especially with the rise of recent high-level-synthesis tools [173].

• Flexibility: ASIC accelerators have to focus on a set of pre-defined applications,

PGA is a flexible device due to its hardware re-programmability.

In this dissertation, I mainly focus on FPGA designs and provide a more thorough

discussion of DNN accelerating on FPGAs in Chapter 4.

40

Chapter 3

Pruning and quantisation for

efficient neural networks

In this chapter, I will look at how pruning and quantization techniques can reduce the

amount of computation required for neural network inference. These techniques are often

used in the context of deep learning with a pre-defined DNN architecture and pre-trained

DNN weights, and the objective is to lower the amount of computation required for a

neural network is often a limiting factor.

I first discuss the intriguing properties of deep neural networks: their redundancy and

ability to recover accuracy from re-training. I start with a discussion of the effects of

combining different basic neural network compression methods and a flexible software

tool for achieving this combined compression. I later demonstrate and evaluate two novel

compression techniques, dynamic coarse-grained pruning and focused quantisation. Finally,

I discuss how various approximate computing methods might be applicable to different

hardware platforms.

This chapter includes relevant contents published in:

• Yiren Zhao, Xitong Gao, Robert Mullins, and Chengzhong Xu. Mayo: A framework

for auto-generating hardware friendly deep neural networks. In Proceedings of the

2ndInternational Workshop on Embedded and Mobile Deep Learning, pages 25–30,

2018. (EMDL 2018)

• Xitong Gao, Yiren Zhao, Lukasz Dudziak, Robert Mullins, Chengzhong Xu. Dynamic

channel pruning: Feature boosting and suppression. In International Conference of

Learning Representations 2019 (ICLR 2019).

• Yiren Zhao, Xitong Gao, Daniel Bates, Robert Mullins, and Cheng-Zhong Xu.

Focused quantisation for sparse CNNs. In Advances in Neural Information Processing

Systems,pages 5584–5593, 2019 (NeurIPS 2019)

41

Yiren Zhao proposed the idea of constructing the Mayo framework. Xitong Gao

developed the pruning functions and Yiren Zhao constructed the quantisation functions

for Mayo. Yiren Zhao conceived and designed the experiments for Dynamic channel

pruning and Focused quantisation. Xitong Gao enhanced the implementation of Dynamic

channel pruning with normalisation and achieved better results, he also provided insights

on developing the feature saliency motivation in the publication.

3.1 Intriguing properties of DNNs

DNNs are, in general, inherently redundant, which means that many operations in DNNs

compute highly-correlated results. Wen et al. showed that filters (also referred as kernels

in some literature) of a network have a similar low-rank basis if decomposed using singular

value decomposition [170]. From the learning point of view, Srivastava et al. proposed

Dropout that simply removes neurons in a DNN while training and it improves the

training quality and prevents overfitting [153]. Since many neurons tend to learn similar

representations, stochastically dropping neurons helps to enhance the capabilities of

singular neurons. In other words, Dropout works by breaking the neuron-wise correlations,

which in turn proves that many neurons are computing highly correlated results.

Another interesting property of neural networks is their ability to recover accuracy from

further training. Han et al. proposed Deep Compression that achieves a 35× compression

rate using the AlexNet [93] model with re-training at every compression step. The Deep

Compression flow includes pruning, quantisation and Huffman encoding. The pruning

process suppresses a significant part of the weights to zero, and quantisation employs

a standard low-precision fixed-point arithmetic. At the end, the encoding scheme uses

a compact representation for the quantised sparse tensors to offer a further reduction.

At each compression stage in Deep Compression, the authors conduct re-training. Re-

training allows learnable parameters in a network to adapt to the damages incurred during

compression.

These intriguing properties of DNNs have driven research that focuses on iteratively

trimming and re-training models to reduce the runtime computational requirements.

3.2 Combining different compression techniques

As illustrated in Chapter 2, a wide range of compression techniques have proven to be

effective for lowering the computation and memory requirements of DNNs. Pruning directly

reduces the number of connections and quantisation methods enable each parameter to be

represented with much narrower bit-width than the 32-bit single-precision floating-point

numbers.

42

Han’s Deep Compression further demonstrated the possibility of achieving multiplying

gains in terms of shrinking the model sizes when applying a series of compression techniques

[64]. Deep Compression only investigates a single combination of pruning, quantisation

and encoding techniques in the large compression optimisation space. Intuitively, there

are potentially many other combinations of compression techniques that have equivalent

accuracy but with very different hardware implications. In general, we will be presented

with the possibility of combining many different compression techniques and selecting

from numerous different number formats. The Mayo tool was designed to help explore this

design space and find optimal solutions. Mayo then aims to be a flexible software compres-

sion optimisation framework to support arbitrary combinations of various compression

techniques on different components of a neural network as illustrated in Figure 3.1.

Pre-trained
Model Mayo

Compresion
setup

Re-training
setup

Compressed
Model

Figure 3.1: An high-level illustration of the Mayo tool. Mayo takes a set of compression
techniques and combines them to achieve a single compression rate. The compression setup
and the re-training setup can be configured in YAML files. The tool takes a pre-trained
model as an input and outputs a compressed model.

At the time of implementing Mayo, the research community had a few open source

methods and frameworks for compressing neural networks. Table 3.1 demonstrates the

differences between Mayo and other existing tools, it is clear that Mayo supports a wider

range of pruning and quantisation methods with the ability to apply these methods on

different components of a neural network. The dynamic fixed-point arithmetic refers to a

specialised fixed-point arithmetic where the whole layer shared a scaling factor for all the

fixed-point numbers of that layer.

All compression methods are implemented as objects called overriders in Mayo. Over-

riders can be flexibly applied to not only layer-wise model parameters θl, but also the

underlying algorithm fl, and even the gradient of each layer computation xl = fl(xl−1,θl)

where xl ∈ RCl×Hl×Wl ,, The design of overriders provides an abstraction for various

compression techniques.

An overrider g ∈ G, configured with suitable hyperparameters, takes a multi-dimensional

array (a tensor) as an input, and produces a new array with the same shape as the

43

Mayo Ristretto ADaPTION DoReFa

Pruning
fine-grained 3 7 7 7

coarse-grained 3 7 7 7

Quantization

fixed-point 3 3 3 3

dynamic fixed-point 3 3 3 7

mini-float 3 3 3 7

log 3 7 7 7

shift 3 3 3 7

Layer-wise customization 3 3 3 7

Automated hyperparameter optimization 3 7 7 7

Compression method chaining 3 7 7 7

Customizable components w/a/g w/a w/a w/a/g

Configuration format YAML Caffe Caffe Python

Table 3.1: A comparison: Ristretto [61], ADaPTION [119], DoReFa [210] and Mayo.

compressed variant. Parameters θl can thus be simply substituted using any overrider

gparam ∈ G:

θ̃l = gparam(θl). (3.1)

Moreover, overriders can be used to customise other trainable/non-trainable components

of a DNN. For example, I can customise the activation function to replace fi with f̃i, using

an overrider gactivation ∈ G, where for any input xi−1 and parameters θl, I have:

f̃i(xi−1,θl) = gactivation (fi (xi−1,θl)) . (3.2)

Under the same principle, overriders can be applied on tensor gradients.

Finally, overriders are recursively-compositional. Multiple overriders can be chained in

sequence, which in turn provides greater compression opportunities. For example, given

a pruning overrider g and a quantising overrider h, the composition of them is also an

overrider that can be applied to any components, i.e. h ◦ g ∈ G. In this case, for any

parameters θl:

θ̃l = h (g (θl)) . (3.3)

I show in Table 3.2 the effect of applying quantisation on top of a sparse CifarNet

(details of this network is explained in later section in Table 3.3) [201] for classifying

CIFAR10 [94] objects. I designed the CifarNet model based on the VGG family [151] but

added Batch Normalizations and Dropout layers. Applying both quantisation and pruning

offers a multiplying performance gain in terms of the compression rates. Table 3.2 shows

that a pruned model, when quantised with dynamic fixed-point numbers, brings an over

44

Method Bit-width Density Compression rate Top-1/top-5 accuracy

baseline 32 100.00% - 91.37%/99.67%
fixed-point (fixed) 4 100.00% 8.00× 89.64%/99.74%

dynamic fixed-point (DFP) 4 100.00% 8.00× 90.63%/99.68%
fine-grained pruning (pruned) 32 15.65% 6.39× 91.12%/99.70%

pruned + fixed 6 15.65% 33.92× 90.59%/99.68%
pruned + DFP 6 15.65% 33.92× 91.04%/99.70%

Table 3.2: Quantisations on sparse and dense CifarNets [201].

30× decrease in model sizes with a minimal decrease in classification accuracy (less than

0.4%).

The comparison in Table 3.2 provides an interesting insight: pruned + DFP outperforms

the pruned + fixed flow utilised in Deep Compression, this proves that there are further

compression opportunities if a more flexible combination of pruning and quantisation

strategy is permitted. pruned + fixed and pruned + DFP have the same compression rates

but different accuracy values. This further demonstrates that there are many combinations

of compression techniques that offer sub-optimal performance on accuracy, the developed

Mayo framework is a suitable tool for traversing the design space. In addition the Mayo

framework quantises not only the weights but also activation values, the tool also supports

compressing each layer of the network independently, i.e. using different compression

techniques or parameters. I will revisit this ability in Chapter 4 to demonstrate how these

features can benefit the design of hardware accelerators.

3.3 Dynamic coarse-grained pruning

3.3.1 Static and dynamic pruning

One common approach to reduce the memory, bandwidth and computation costs is to

prune over-parameterized CNNs, as discussed in Section 3.2. If performed in a coarse-grain

manner this approach is known as coarse-grained pruning or channel pruning [185, 71].

One well-established approach in this domain is Network Slimming [114], this method

considers the Lasso regularization on channel saliencies. The authors then introduce a

scaling factor for each channel, which is multiplied to the output of that channel. Then

Network Slimming jointly trains the network weights and these scaling factors, with the

Lasso sparsity regularization imposed on the latter. Finally Network Slimming prunes

those channels with small factors, and fine-tunes the pruned network.

Most channel pruning methods follow the same approach, they evaluate channel saliency

and remove all input and output connections from unimportant channels, generating a

smaller dense model. A saliency-based pruning method utilises static channel information,

however, has two disadvantages. Firstly, by removing channels, the capabilities of CNNs

45

are permanently lost, and the resulting CNN may never regain its accuracy for difficult

inputs for which the removed channels were responsible. Secondly, the saliency of a

neuron is not static, which can be illustrated by the feature visualization in Figure 3.2a,

Figure 3.2b and Figure 3.2c. Here, a CNN is shown a set of input images, certain channel

neurons in a convolutional output may get highly excited, whereas another set of images

elicit little response from the same channels. This is in line with my understanding of

CNNs whereby neurons in a convolutional layer specialise in recognizing distinct features,

and the relative importance of a neuron depends heavily on the inputs.

high
response

low
response

5.426 3.297 3.076 2.938

0.051 0.052 0.066 0.069

(a) Channel 114

3.409 3.309 3.298 3.171

-0.229-0.218-0.168 -0.161

(b) Channel 181
(c) The distribution of maxi-
mum activations

Figure 3.2: When images from the ImageNet validation dataset are shown to a pre-trained
ResNet-18 [66], the outputs from certain channel neurons may vary drastically. The top
rows in (a) and (b) are found respectively to greatly excite neurons in channels 114 and 181
of layer block 3b/conv2, whereas the bottom images elicit little activation from the same
channel neurons. The number below each image indicate the maximum values observed in
the channel before adding the shortcut and activation. Finally, (c) shows the distribution
of maximum activations observed in the first 20 channels.

The above shortcomings prompt the question: why should we prune by static impor-

tance, if the importance is highly input-dependent? Surely, a more promising alternative is

to prune dynamically depending on the current input. A dynamic channel pruning strategy

allows the network to learn to prioritise certain convolutional channels and ignore irrelevant

ones. Instead of simply reducing model size at the cost of accuracy with pruning, I can

accelerate convolution by selectively computing only a subset of channels predicted to be

important at run-time, while considering the sparse input from the preceding convolution

layer. In practice, the amount of activation values stayed on-chip and the number of

DRAM reads, writes and arithmetic operations used by a well-designed dynamic model

can be almost identical to an equivalently sparse statically pruned one. In addition to

saving computational resources, a dynamic model preserves all neurons of the full model,

which minimises the impact on task accuracy.

46

3.3.2 Feature boosting and suppression

Motivated by the shortcomings described above, I will start with a high-level illustration

(Figure 3.3) of how Feature Boosting and Suppression accelerates a convolutional layer

with batch normalization (BN). The auxiliary components (in red) predict the importance

of each output channel based on the input features, and amplify the output features

accordingly. Moreover, certain output channels are predicted to be entirely suppressed

(or zero-valued as represented by), such output sparsity information can advise the

convolution operation to skip the computation of these channels, as indicated by the

dashed arrow. It should be noted that convolutions can be skipped due to (1) inactive

input channels and (2) due to the suppression of particular output channels. The rest of

this section provides a detailed explanation of the components in Figure 3.3.

subsample
channel saliency

predictor
multiple winners
take all wtawta

convolution
normalize
�� bias)

multiply
ss (xl�1) gl (xl�1)

sparsity

⇡l (xl�1)

xl�1 convl (xl�1) norm (convl (xl�1)) + �l

xl(+ ReLU)

Figure 3.3: A high level view of a convolutional layer with FBS. By way of illustration, I
use the lth layer with 8-channel input and output features, where channels are colored to
indicate different saliencies, and the white blocks () represent all-zero channels.

Mathematically, consider the following generalization of a layer with dynamic execution:

f̂ (x, · · ·) = f (x,θ, · · ·) · π (x,φ, · · ·) , (3.4)

where f and π respectively use weight parameters θ and φ and may have additional

inputs, and compute tensors of the same output shape, denoted by F and G. Intuitively,

the expensive F[i] can always be skipped for any index i whenever the cost-effective G[i]

evaluates to 0. Here, the superscript [i] is used to index the ith slice of the tensor. For

example, if we have features F ∈ RC×H×W containing C channels of H-by-W features,

F[c] ∈ RH×W retrieves the cth feature image. I can further sparsify and accelerate the layer

by adding, for instance, a Lasso on π to the total loss, where Ex [z] is the expectation of z

over x:

R (x) = Ex [‖π (x,φ, · · ·)‖1] , (3.5)

Despite the simplicity of this formulation, it is however very tricky to design f̂ properly.

Under the right conditions, I can arbitrarily minimise the Lasso while maintaining the

47

same output from the layer by scaling parameters. For example, in low-cost collaborative

layers [39], f and π are simply convolutions (with or without ReLU activation) that

respectively have weights θ and φ. Since f and π are homogeneous functions, one can

always halve φ and double θ to decrease Equation (3.5) while the network output remains

the same. In other words, the optimal network must have ‖φ‖∞ → 0, which is infeasible

in finite-precision arithmetic. For the above reasons, Dong et al. [39] observed that

the additional loss in Equation (3.5) always degrades the CNN’s task performance. Ye

et al. [185] pointed out that gradient-based training algorithms are highly inefficient in

exploring such reparameterisation patterns, and channel pruning methods may experience

similar difficulties. Shazzer et al. [145] avoided this limitation by finishing π with a softmax

normalization, but the Equation (3.5) can no longer be used as the softmax renders the

`1-norm, which now evaluates to 1. In addition, similar to sigmoid, softmax (without the

cross entropy) is easily saturated, and thus may equally suffer from the gradient vanishing

problem.

Instead of imposing sparsity on features or convolutional weight parameters [169, 6,

105, 69], channel pruning methods [114, 185] induce sparsity on the BN scaling factors

γl. Inspired by them, FBS similarly generates a channel-wise importance measure. Yet

contrary to them, instead of using the constant BN scaling factors γl, FBS predicts channel

importance and dynamically amplify or suppress channels with a parametric function

π(xl−1) dependent on the output from the previous layer xl−1. Here, I propose to replace

layer definition fl (xl−1) for all l ∈ [1, L] with f̂l (xl−1) which employs dynamic channel

pruning:

f̂l (xl−1) = (πl (xl−1) · (norm (convl (xl−1,θl)) + βl))+ , (3.6)

where norm is batch normalisation and a low-overhead policy πl (xl−1) evaluates the pruning

decisions for the computationally demanding conv (xl−1,θl):

πl (xl−1) = wtaddCle (gl (xl−1)) . (3.7)

Here, wtak(z) is a k-winners-take-all function, i.e. it returns a tensor identical to z, except

that I zero out entries in z that are smaller than the k largest entries in absolute magnitude.

In other words, wtaddCle(gl(xl−1)) provides a pruning strategy that computes only ddCle
most salient channels predicted by gl(xl−1), and suppresses the remaining channels with

zeros. In addition, gl(xl−1) is a simple fully connected layer that learns to predict channel

saliencies using only a handful of learning parameters.

It is notable that the proposed strategy prunes Cl−ddCle least salient output channels

from lth layer, where the density d ∈]0, 1] can be varied to sweep the trade-off relationship

between performance and accuracy. Moreover, pruned channels contain all-zero values.

This allows the subsequent (l + 1)th layer to trivially make use of input-side sparsity, since

48

all-zero features can be safely skipped even for zero-padded layers. Because all convolutions

can exploit both input- and output-side sparsity, the speed-up gained from pruning is

quadratic with respect to the pruning ratio. For instance, dynamically pruning half of

the channels in all layers gives rise to a dynamic CNN that uses approximately 1
4

of the

original MACs.

Theoretically, FBS does not introduce the reparameterisation discussed above. By batch

normalizing the convolution output, the convolution kernel θl is invariant to scaling. Com-

putationally, it is more efficient to train. Many alternative methods use non-differentiable

π functions that produce on/off decisions. In general, DNNs with these policy functions

are incompatible with SGD, and resort to reinforcement learning for training. In contrast,

FBS allows end-to-end training, as wta is a piecewise differentiable and continuous function

like ReLU. Srivastava et al. [153] suggested that in general, a network is easier and faster

to train for complex tasks and less prone to catastrophic forgetting, if it uses functions

such as wta that promote local competition between many sub-networks.

3.3.3 Evaluating FBS

I use CIFAR10 [94] and ImageNet [93], the two popular image classification datasets, to

evaluate FBS. I designed a custom CNN for CIFAR10 named CifarNet based on the VGG

class of networks (see Table 3.3 for its structure), using only 1.3 million parameters with

91.37% and 99.67% top-1 and top-5 accuracies respectively. CifarNet is much smaller

than a VGG16 on CIFAR10 [114], which uses 20 million parameters and is only 2.29%

more accurate, it is basically a variant of VGG9 with Batch Normalization and Dropout.

Because of its compactness, CifarNet is more challenging to accelerate. By faithfully

reimplementing Network Slimming (NS) [114], a popular static coarse-grained pruning

method, I closely compare FBS with NS under various speedup constraints. For ImageNet,

I augment two popular CNN variants, ResNet18 and [66] and VGG16 [151], and provide

a detailed accuracy/MACs trade-off comparison against recent structured pruning and

dynamic execution methods.

I trained CifarNet (see Table 3.3 for its architecture) with a 0.01 learning rate and

a 256 batch size. We reduced the learning rate by a factor of 10× for every 100 epochs.

To compare FBS against NS fairly, every model with a new target MACs budget were

consecutively initialized with the previous model, and trained for a maximum of 300

epochs, which is enough for all models to converge to the best obtainable accuracies. For

NS, we follow [114] and start training with an `1-norm sparsity regularization weighted by

10−5 on the BN scaling factors. We then prune at 150 epochs and fine-tune the resulting

network without the sparsity regularization.

We additionally employed image augmentation procedures from [93] to preprocess each

training example. Each CIFAR10 example was randomly horizontal flipped and slightly

49

perturbed in the brightness, saturation and hue.

ImageNet classifiers, were trained with a procedure similar to the one above. The

difference was that they were trained for a maximum of 35 epochs, the learning rate was

decayed for every 20 epochs, and NS models were all pruned at 15 epochs. For image

preprocessing, we additionally cropped and stretched/squeezed images randomly following

[93].

The proposed FBS method begins by first replacing all convolutional layer computations

with Equation (3.6), and initializing the new convolutional kernels with previous parameters.

Initially, I do not suppress any channel computations by using density d = 1 in Equation

(3.7) and fine-tune the resulting network. For fair comparison against NS, I then follow

[114] by iteratively decrementing the overall density d of the network by 10% in each step,

and thus gradually using fewer channels to sweep the accuracy/performance trade-off. The

difference is that NS prunes channels by ranking globally, while FBS prunes around 1− d
of each layer.

0.0 0.5 1.0 1.5
MACs 1e8

78%

80%

82%

84%

86%

88%

90%

92%

A
cc

ur
ac

y

NS top-1
FBS top-1
NS+FBS top-1

(a) CifarNet accuracy/MACs trade-off

conv0

layers
1

0

channels sorted by probabilities of being active

conv1

conv2

conv3

conv4

conv5

conv6

conv7

(b) Channel skipping probabilities

Figure 3.4: Experimental results on CifarNet. I compare in (a) the accuracy/MACs
trade-off between FBS, NS and FBS+NS. The baseline is emphasized by the circle©. The
heat map in (b) reveals the individual probability of skipping a channel for each channel
(x-axis), when an image of a category (y-axis) is shown to the network with d = 1.

By respectively applying NS and FBS to CifarNet classifier and incrementally increasing

sparsity, I produce the trade-off relationships between number of operations (measured in

MACs) and the classification accuracy as shown in Figure 3.4a. FBS clearly surpasses NS

in its ability to retain the task accuracy under an increasingly stringent computational

budget. Besides comparing FBS against NS, I am interested in combining both methods,

which demonstrates the effectiveness of FBS if the model is already less redundant, i.e. it

cannot be pruned further using NS without degrading the accuracy by more than 1%. The

composite method (NS+FBS) is shown to successfully regain most of the lost accuracy

due to NS, producing a trade-off curve closely matching FBS. It is notable that under the

50

same 90.50% accuracy constraints, FBS, NS+FBS, and NS respectively achieve 3.93×,

3.22×, and 1.19× speed-up ratios. Conversely for a 2× speed-up target, they respectively

produce models with accuracies not lower than 91.55%, 90.90% and 87.54%.

Figure 3.4b uses 8 heat maps to respectively represent the channel skipping probabilities

of the 8 convolutional layers. The brightness of the pixel at location (x, y) denotes the

probability of skipping the xth channel when looking at an image of the yth classification

category. The heat maps verify my belief that the auxiliary network learned to predict

which channels specialise to which features, as channels may have drastically distinct

probabilities of being used for images of different categories. The model here is a CifarNet

using FBS with d = 0.5, which has a top-1 accuracy of 90.59% (top-5 99.65%). Moreover,

channels in the heat maps are sorted so the channels that are on average least frequently

evaluated are placed on the left, and channels shaded in stripes are never evaluated. The

network in Figure 3.4b is not only approximately 4× faster than the original, by removing

the unused channels, it also reduces the number of weights by 2.37×. This reveals that

FBS naturally subsumes channel pruning strategies such as NS, as I can simply prune

away channels that are skipped regardless of the input. It is notable that even though I

specified a universal density d, FBS learned to adjust its dynamicity across all layers, and

prune different ratios of channels from the convolutional layers.

I also resent a detailed layer-wise study of CifarNet in Table 3.3 on the CIFAR10

classification task. The CifarNet, a custom designed CNN, with less than 1.30 million

parameters and takes 174 million MACs to perform inference for a 32-by-32 RGB image.

The architecture is illustrated in Table 3.3, where all convolutional layers use 3× 3 kernels,

the Shape column shows the shapes of each layer’s features, and pool7 is a global average

pooling layer. Table 3.3 additionally provides further comparisons of layer-wise compute

costs between FBS, NS, and the composition of the two methods (NS+FBS). It is notable

that the FBS column has two different output channel counts, where the former is the

number of computed channels for each inference, and the latter is the number of channels

remaining in the layer after removing the unused channels.

Residual networks [66] adopt sequential structure of residual blocks: xb = K (xb−1) +

F (xb−1), where xb is the output of the bth block, K is either an identity function or a

downsampling convolution, and F consists of a sequence of convolutions. For residual

networks, I directly apply FBS to all convolutional layers, with a difference in the way I

handle the feature summation. Because the (b+ 1)th block receives as input the sum of

the two features with sparse channels K (xb−1) and F (xb−1), the channels of this sum is

considered sparse only when the same channels in both features are sparse.

By applying FBS and NS respectively to ResNet18, I saw the ImageNet validation

accuracy of FBS consistently outperforms NS under different speed-up constraints. For

speed-up, I refer to the number of multiply accumulates required to finish an inference run

51

Layer Shape Number of MACs (Output Channels)
Original NS FBS NS+FBS

conv0 30× 30 1.5M (64) 1.3M (52) 893K (32/62) 860K (32)
conv1 30× 30 33.2M (64) 27.0M (64) 8.4M (32/42) 10.2M (39)
conv2 15× 15 16.6M (128) 15.9M (123) 4.2M (64/67) 5.9M (74)
conv3 15× 15 33.2M (128) 31.9M (128) 8.3M (64/79) 11.6M (77)
conv4 15× 15 33.2M (128) 33.1M (128) 8.3M (64/83) 12.1M (77)
conv5 8× 8 14.1M (192) 13.4M (182) 3.6M (96/128) 4.9M (110)
conv6 8× 8 21.2M (192) 11.6M (111) 5.4M (96/152) 4.3M (67)
conv7 8× 8 21.2M (192) 12.3M (192) 5.4M (96/96) 4.5M (116)
pool7 1× 1
fc 1× 1 1.9K (10) 1.9K (10) 960 (10) 1.1K (10)

Total 174.3M 146.5M 44.3M 54.2M
Saving - 1.19× 3.93× 3.21×

Table 3.3: The network structure of CifarNet for CIFAR10 classification. In addition, we
provide a detailed per-layer MACs compariso between FBS, NS, and the composition of
them (NS+FBS). I minimise the models generated by the three methods while maintaining
a classification accuracy of at least 90.5%.

compared to the original dense model. For instance, at d = 0.7, it utilises only 1.12 billion

multiply accumulates (MACs) (1.62× speed-up) to achieve a top-1 error rate of 31.54%,

while NS requires 1.51 billion MACs (1.21× faster) for a similar error rate of 31.70%.

When compared across recent dynamic execution methods examined in Table 3.4, FBS

demonstrates simultaneously the highest speed-up and the lowest error rates. It is notable

that the baseline accuracies for FBS refer to a network that has been augmented with the

auxiliary layers featuring FBS but suppress no channels, i.e. d = 1. FBS brings immediate

accuracy improvements, an increase of 1.73% in top-1 and 0.46% in top-5 accuracies, to

the baseline network, which is in line with my observation on CifarNet.

Method Dynamic
Baseline Accelerated Speed-

Top-1 Top-5 Top-1 Top-5 up

Soft Filter Pruning [69] 29.72 10.37 32.90 12.22 1.72×
Network Slimming ([114], my implementation) 31.02 11.32 32.79 12.61 1.39×
Discrimination-aware Channel Pruning [213] 30.36 11.02 32.65 12.40 1.89×
Low-cost Collaborative Layers [39] X 30.02 10.76 33.67 13.06 1.53×
Channel Gating Neural Networks [75] X 30.98 11.16 32.60 12.19 1.61×
Feature Boosting and Suppression (FBS) X 29.29 10.32 31.83 11.78 1.98×

Table 3.4: Comparisons of error rates of the baseline and accelerated ResNet18 models.

Since VGG16 is computationally intensive with over 15 billion MACs, I first applied

NS on this large network to reduce the computational and memory requirements, and this

eases the training of the FBS-augmented variant. I assigned a 1% budget in top-5 accuracy

degradation and compressed the network using NS, which gave us a smaller VGG16 with

52

Method Dynamic
∆ top-5 errors (%)
3× 4× 5×

Filter Pruning ([105], reproduced by [70]) — 8.6 14.6
Perforated CNNs [46] 3.7 5.5 —
Network Slimming ([114], my implementation) 1.37 3.26 5.18
Channel Pruning [70] 0.0 1.0 1.7
AMC [71] — — 1.4
ThinNet-Conv [116] 0.37 — —
Feature Boosting and Suppression (FBS) X 0.04 0.52 0.59

Table 3.5: Comparisons of top-5 error rate increases for VGG16 on ImageNet validation
set under 3×, 4× and 5× speed-up constraints. The baseline has a 10.1% top-5 error rate.
Results from He et al. [70] only show numbers with one digit after the decimal point.

20% of all channels pruned. The resulting network is a lot less redundant, which almost

halves the compute requirements, with only 7.90 billion MACs remaining. Table 3.5 shows

the performance of different structured pruning and dynamic execution methods to FBS.

At a speed-up of 3.01×, FBS shows a minimal increase of 0.44% and 0.04% in top-1 and

top-5 error rates respectively. At a 5.23× speed-up, it only degrades the top-1 error rate

by 1.08% and the top-5 by 0.59%.

3.4 Focused quantisation for custom hardware

3.4.1 Quantising sparse and dense models

Pruning algorithms compress CNNs by setting weights to zero, thus removing connections

or neurons from the models. In particular, fine-grained pruning [112, 57] provides the

best compression by removing connections at the finest granularity, i.e. individual weights.

Quantisation methods reduce the number of bits required to represent each value, and thus

further provide memory, bandwidth and compute savings. Shift quantisation of weights,

which quantises weight values in a model to powers-of-two or zero, i.e. {0,±1,±2,±4, . . .},
is of particular of interest, as multiplications in convolutions become much-simpler bit-shift

operations or simply wiring in certain cases. The computational cost in hardware can thus

be significantly reduced without a detrimental impact on the model’s task accuracy [207].

Fine-grained pruning is often in conflict with quantisation, as pruning introduces various

degrees of sparsities to different layers [125]. Linear quantisation methods (integers) have

uniform quantisation levels and non-linear quantisations (logarithmic, floating-point and

shift) have fine levels around zero but levels grow further apart as values get larger in

magnitude. Both linear and nonlinear quantisations thus provide precision where it is

not actually required in the case of a pruned CNN. It is observed that empirically, very

few non-zero weights concentrate around zero in some layers that are sparsified with

53

fine-grained pruning (see Figure 3.5c for an example). Shift quantisation is highly desirable

as it can be implemented efficiently, but it becomes a poor choice for certain layers in

sparse models, as most near-zero quantisation levels are under-utilized (Figure 3.5d).

(a) Dense layers (b) After shift quan (c) Sparse layers (d) After shift quan

Figure 3.5: The weight distributions of the first 8 layers of ResNet18 on ImageNet. (a) shows
the weight distributions of the layers, (c) similarly shows the distributions (excluding zeros) for
a sparsified variant. (b) and (d) respectively quantise the weight distributions on the left with
5-bit shift quantisation. Note that in some sparse layers, greedy pruning encourages weights to
avoid near zero values. Shift quantisation on these layers thus results in poor utilisation of the
quantisation levels.

This dichotomy prompts the question, how can we quantise sparse weights efficiently

and effectively? Here, efficiency represents not only the reduced model size but also the

minimised compute cost. Effectiveness means that the quantisation levels are well-utilised.

From an information theory perspective, it is desirable to design a quantisation function

Q such that the quantised values in θ̂ = Q(θ) closely match the prior weight distribution.

3.4.2 Focused quantisation

Shift quantisation constrains weight values to be either zero or powers-of-two. A repre-

sentable value in a (k + 2)-bit shift quantisation is given by:

v = s · 2e−b, (3.8)

where s = {−1, 0, 1} denotes either zero or the sign of the value, e is an integer bounded

by [0, 2k − 1], and b is the bias, a layer-wise constant which scales the magnitudes of

quantised values. I use θ̂ = Qshift
n,b [θ] to denote a n-bit shift quantisation with a bias b of a

weight value θ to the nearest representable value θ̂.

Intuitively, it is desirable to concentrate quantisation effort on the high probability

regions in the weight distribution in sparse layers. Focused quantisation Qfocus[θ] is

designed specifically for this purpose, and applied in a layer-wise fashion.

Q[θ] = zθα
∑

c∈C

δc,mθ
Qrec[θ], where Qrec

c [θ] = Qshift
n,b

[
θ − µc
σc

]
σc + µc. (3.9)

Here zθ is a predetermined constant {0, 1} binary value to indicate if θ is pruned, and

it is used to set pruned weights to 0. The set of components c ∈ C determines the locations

54

to focus quantisation effort, each specified by the component’s mean µc and standard

deviation σc. The Kronecker delta δc,mθ
evaluates to either 1 when c = mθ, or 0 otherwise.

In other words, the constant mθ ∈ C chooses which component in C is used to quantise

θ. Finally, Qrec
c [θ] locally quantises the component c with shift quantisation. Following

Zhu et al. [212] and Leng et al.[102], I additionally introduce a layer-wise learnable scaling

factor α initialised to 1, which empirically improves the task accuracy.

Quantized
(5-bit values)

Before
(32-bit float)

0 -3.81 1.50

5.63 0 -5.69

4.54 -3.13 2.44
/ 128

Normalized
(32-bit float)

0 0.19 -2.50

1.63 0 -1.69

0.54 0.87 -1.56
/ 128

µ� = �0.03125
<latexit sha1_base64="Ytm7wxKGhw0ZGUKoe1yvm3HlDWo=">AAAB+XicbZDLSsNAFIZP6q3WW9Slm8EidNOSVEU3QsGNywr2Am0Ik+mkHTqZhJlJoYS+iRsXirj1Tdz5Nk7bLLT1h4GP/5zDOfMHCWdKO863VdjY3NreKe6W9vYPDo/s45O2ilNJaIvEPJbdACvKmaAtzTSn3URSHAWcdoLx/bzemVCpWCye9DShXoSHgoWMYG0s37b7UepX0R2qOjXn0q1f+3bZ0EJoHdwcypCr6dtf/UFM0ogKTThWquc6ifYyLDUjnM5K/VTRBJMxHtKeQYEjqrxscfkMXRhngMJYmic0Wri/JzIcKTWNAtMZYT1Sq7W5+V+tl+rw1suYSFJNBVkuClOOdIzmMaABk5RoPjWAiWTmVkRGWGKiTVglE4K7+uV1aNdrrlNzH6/KjUoeRxHO4Bwq4MINNOABmtACAhN4hld4szLrxXq3PpatBSufOYU/sj5/AK72kP4=</latexit><latexit sha1_base64="Ytm7wxKGhw0ZGUKoe1yvm3HlDWo=">AAAB+XicbZDLSsNAFIZP6q3WW9Slm8EidNOSVEU3QsGNywr2Am0Ik+mkHTqZhJlJoYS+iRsXirj1Tdz5Nk7bLLT1h4GP/5zDOfMHCWdKO863VdjY3NreKe6W9vYPDo/s45O2ilNJaIvEPJbdACvKmaAtzTSn3URSHAWcdoLx/bzemVCpWCye9DShXoSHgoWMYG0s37b7UepX0R2qOjXn0q1f+3bZ0EJoHdwcypCr6dtf/UFM0ogKTThWquc6ifYyLDUjnM5K/VTRBJMxHtKeQYEjqrxscfkMXRhngMJYmic0Wri/JzIcKTWNAtMZYT1Sq7W5+V+tl+rw1suYSFJNBVkuClOOdIzmMaABk5RoPjWAiWTmVkRGWGKiTVglE4K7+uV1aNdrrlNzH6/KjUoeRxHO4Bwq4MINNOABmtACAhN4hld4szLrxXq3PpatBSufOYU/sj5/AK72kP4=</latexit><latexit sha1_base64="Ytm7wxKGhw0ZGUKoe1yvm3HlDWo=">AAAB+XicbZDLSsNAFIZP6q3WW9Slm8EidNOSVEU3QsGNywr2Am0Ik+mkHTqZhJlJoYS+iRsXirj1Tdz5Nk7bLLT1h4GP/5zDOfMHCWdKO863VdjY3NreKe6W9vYPDo/s45O2ilNJaIvEPJbdACvKmaAtzTSn3URSHAWcdoLx/bzemVCpWCye9DShXoSHgoWMYG0s37b7UepX0R2qOjXn0q1f+3bZ0EJoHdwcypCr6dtf/UFM0ogKTThWquc6ifYyLDUjnM5K/VTRBJMxHtKeQYEjqrxscfkMXRhngMJYmic0Wri/JzIcKTWNAtMZYT1Sq7W5+V+tl+rw1suYSFJNBVkuClOOdIzmMaABk5RoPjWAiWTmVkRGWGKiTVglE4K7+uV1aNdrrlNzH6/KjUoeRxHO4Bwq4MINNOABmtACAhN4hld4szLrxXq3PpatBSufOYU/sj5/AK72kP4=</latexit><latexit sha1_base64="Ytm7wxKGhw0ZGUKoe1yvm3HlDWo=">AAAB+XicbZDLSsNAFIZP6q3WW9Slm8EidNOSVEU3QsGNywr2Am0Ik+mkHTqZhJlJoYS+iRsXirj1Tdz5Nk7bLLT1h4GP/5zDOfMHCWdKO863VdjY3NreKe6W9vYPDo/s45O2ilNJaIvEPJbdACvKmaAtzTSn3URSHAWcdoLx/bzemVCpWCye9DShXoSHgoWMYG0s37b7UepX0R2qOjXn0q1f+3bZ0EJoHdwcypCr6dtf/UFM0ogKTThWquc6ifYyLDUjnM5K/VTRBJMxHtKeQYEjqrxscfkMXRhngMJYmic0Wri/JzIcKTWNAtMZYT1Sq7W5+V+tl+rw1suYSFJNBVkuClOOdIzmMaABk5RoPjWAiWTmVkRGWGKiTVglE4K7+uV1aNdrrlNzH6/KjUoeRxHO4Bwq4MINNOABmtACAhN4hld4szLrxXq3PpatBSufOYU/sj5/AK72kP4=</latexit>

µ+ = 0.03125
<latexit sha1_base64="yxGxtE23oVGrW8GZXG6LYOtjCPM=">AAAB+HicbZDLSgMxFIYz9VbrpaMu3QSLUBDKTFV0IxTcuKxgL9AOQybNtKFJZshFqEOfxI0LRdz6KO58G9N2Ftr6Q+DjP+dwTv4oZVRpz/t2CmvrG5tbxe3Szu7eftk9OGyrxEhMWjhhiexGSBFGBWlpqhnpppIgHjHSica3s3rnkUhFE/GgJykJOBoKGlOMtLVCt9znJjyDN9Creed+/TJ0K5bmgqvg51ABuZqh+9UfJNhwIjRmSKme76U6yJDUFDMyLfWNIinCYzQkPYsCcaKCbH74FJ5aZwDjRNonNJy7vycyxJWa8Mh2cqRHark2M/+r9YyOr4OMitRoIvBiUWwY1AmcpQAHVBKs2cQCwpLaWyEeIYmwtlmVbAj+8pdXoV2v+V7Nv7+oNKp5HEVwDE5AFfjgCjTAHWiCFsDAgGfwCt6cJ+fFeXc+Fq0FJ585An/kfP4APwWQxQ==</latexit><latexit sha1_base64="yxGxtE23oVGrW8GZXG6LYOtjCPM=">AAAB+HicbZDLSgMxFIYz9VbrpaMu3QSLUBDKTFV0IxTcuKxgL9AOQybNtKFJZshFqEOfxI0LRdz6KO58G9N2Ftr6Q+DjP+dwTv4oZVRpz/t2CmvrG5tbxe3Szu7eftk9OGyrxEhMWjhhiexGSBFGBWlpqhnpppIgHjHSica3s3rnkUhFE/GgJykJOBoKGlOMtLVCt9znJjyDN9Creed+/TJ0K5bmgqvg51ABuZqh+9UfJNhwIjRmSKme76U6yJDUFDMyLfWNIinCYzQkPYsCcaKCbH74FJ5aZwDjRNonNJy7vycyxJWa8Mh2cqRHark2M/+r9YyOr4OMitRoIvBiUWwY1AmcpQAHVBKs2cQCwpLaWyEeIYmwtlmVbAj+8pdXoV2v+V7Nv7+oNKp5HEVwDE5AFfjgCjTAHWiCFsDAgGfwCt6cJ+fFeXc+Fq0FJ585An/kfP4APwWQxQ==</latexit><latexit sha1_base64="yxGxtE23oVGrW8GZXG6LYOtjCPM=">AAAB+HicbZDLSgMxFIYz9VbrpaMu3QSLUBDKTFV0IxTcuKxgL9AOQybNtKFJZshFqEOfxI0LRdz6KO58G9N2Ftr6Q+DjP+dwTv4oZVRpz/t2CmvrG5tbxe3Szu7eftk9OGyrxEhMWjhhiexGSBFGBWlpqhnpppIgHjHSica3s3rnkUhFE/GgJykJOBoKGlOMtLVCt9znJjyDN9Creed+/TJ0K5bmgqvg51ABuZqh+9UfJNhwIjRmSKme76U6yJDUFDMyLfWNIinCYzQkPYsCcaKCbH74FJ5aZwDjRNonNJy7vycyxJWa8Mh2cqRHark2M/+r9YyOr4OMitRoIvBiUWwY1AmcpQAHVBKs2cQCwpLaWyEeIYmwtlmVbAj+8pdXoV2v+V7Nv7+oNKp5HEVwDE5AFfjgCjTAHWiCFsDAgGfwCt6cJ+fFeXc+Fq0FJ585An/kfP4APwWQxQ==</latexit><latexit sha1_base64="yxGxtE23oVGrW8GZXG6LYOtjCPM=">AAAB+HicbZDLSgMxFIYz9VbrpaMu3QSLUBDKTFV0IxTcuKxgL9AOQybNtKFJZshFqEOfxI0LRdz6KO58G9N2Ftr6Q+DjP+dwTv4oZVRpz/t2CmvrG5tbxe3Szu7eftk9OGyrxEhMWjhhiexGSBFGBWlpqhnpppIgHjHSica3s3rnkUhFE/GgJykJOBoKGlOMtLVCt9znJjyDN9Creed+/TJ0K5bmgqvg51ABuZqh+9UfJNhwIjRmSKme76U6yJDUFDMyLfWNIinCYzQkPYsCcaKCbH74FJ5aZwDjRNonNJy7vycyxJWa8Mh2cqRHark2M/+r9YyOr4OMitRoIvBiUWwY1AmcpQAHVBKs2cQCwpLaWyEeIYmwtlmVbAj+8pdXoV2v+V7Nv7+oNKp5HEVwDE5AFfjgCjTAHWiCFsDAgGfwCt6cJ+fFeXc+Fq0FJ585An/kfP4APwWQxQ==</latexit>

0 0.25 -2

2 0 -2

0.5 1 -2
/ 128

µ� = �0.03125
<latexit sha1_base64="Ytm7wxKGhw0ZGUKoe1yvm3HlDWo=">AAAB+XicbZDLSsNAFIZP6q3WW9Slm8EidNOSVEU3QsGNywr2Am0Ik+mkHTqZhJlJoYS+iRsXirj1Tdz5Nk7bLLT1h4GP/5zDOfMHCWdKO863VdjY3NreKe6W9vYPDo/s45O2ilNJaIvEPJbdACvKmaAtzTSn3URSHAWcdoLx/bzemVCpWCye9DShXoSHgoWMYG0s37b7UepX0R2qOjXn0q1f+3bZ0EJoHdwcypCr6dtf/UFM0ogKTThWquc6ifYyLDUjnM5K/VTRBJMxHtKeQYEjqrxscfkMXRhngMJYmic0Wri/JzIcKTWNAtMZYT1Sq7W5+V+tl+rw1suYSFJNBVkuClOOdIzmMaABk5RoPjWAiWTmVkRGWGKiTVglE4K7+uV1aNdrrlNzH6/KjUoeRxHO4Bwq4MINNOABmtACAhN4hld4szLrxXq3PpatBSufOYU/sj5/AK72kP4=</latexit><latexit sha1_base64="Ytm7wxKGhw0ZGUKoe1yvm3HlDWo=">AAAB+XicbZDLSsNAFIZP6q3WW9Slm8EidNOSVEU3QsGNywr2Am0Ik+mkHTqZhJlJoYS+iRsXirj1Tdz5Nk7bLLT1h4GP/5zDOfMHCWdKO863VdjY3NreKe6W9vYPDo/s45O2ilNJaIvEPJbdACvKmaAtzTSn3URSHAWcdoLx/bzemVCpWCye9DShXoSHgoWMYG0s37b7UepX0R2qOjXn0q1f+3bZ0EJoHdwcypCr6dtf/UFM0ogKTThWquc6ifYyLDUjnM5K/VTRBJMxHtKeQYEjqrxscfkMXRhngMJYmic0Wri/JzIcKTWNAtMZYT1Sq7W5+V+tl+rw1suYSFJNBVkuClOOdIzmMaABk5RoPjWAiWTmVkRGWGKiTVglE4K7+uV1aNdrrlNzH6/KjUoeRxHO4Bwq4MINNOABmtACAhN4hld4szLrxXq3PpatBSufOYU/sj5/AK72kP4=</latexit><latexit sha1_base64="Ytm7wxKGhw0ZGUKoe1yvm3HlDWo=">AAAB+XicbZDLSsNAFIZP6q3WW9Slm8EidNOSVEU3QsGNywr2Am0Ik+mkHTqZhJlJoYS+iRsXirj1Tdz5Nk7bLLT1h4GP/5zDOfMHCWdKO863VdjY3NreKe6W9vYPDo/s45O2ilNJaIvEPJbdACvKmaAtzTSn3URSHAWcdoLx/bzemVCpWCye9DShXoSHgoWMYG0s37b7UepX0R2qOjXn0q1f+3bZ0EJoHdwcypCr6dtf/UFM0ogKTThWquc6ifYyLDUjnM5K/VTRBJMxHtKeQYEjqrxscfkMXRhngMJYmic0Wri/JzIcKTWNAtMZYT1Sq7W5+V+tl+rw1suYSFJNBVkuClOOdIzmMaABk5RoPjWAiWTmVkRGWGKiTVglE4K7+uV1aNdrrlNzH6/KjUoeRxHO4Bwq4MINNOABmtACAhN4hld4szLrxXq3PpatBSufOYU/sj5/AK72kP4=</latexit><latexit sha1_base64="Ytm7wxKGhw0ZGUKoe1yvm3HlDWo=">AAAB+XicbZDLSsNAFIZP6q3WW9Slm8EidNOSVEU3QsGNywr2Am0Ik+mkHTqZhJlJoYS+iRsXirj1Tdz5Nk7bLLT1h4GP/5zDOfMHCWdKO863VdjY3NreKe6W9vYPDo/s45O2ilNJaIvEPJbdACvKmaAtzTSn3URSHAWcdoLx/bzemVCpWCye9DShXoSHgoWMYG0s37b7UepX0R2qOjXn0q1f+3bZ0EJoHdwcypCr6dtf/UFM0ogKTThWquc6ifYyLDUjnM5K/VTRBJMxHtKeQYEjqrxscfkMXRhngMJYmic0Wri/JzIcKTWNAtMZYT1Sq7W5+V+tl+rw1suYSFJNBVkuClOOdIzmMaABk5RoPjWAiWTmVkRGWGKiTVglE4K7+uV1aNdrrlNzH6/KjUoeRxHO4Bwq4MINNOABmtACAhN4hld4szLrxXq3PpatBSufOYU/sj5/AK72kP4=</latexit>

µ+ = 0.03125
<latexit sha1_base64="yxGxtE23oVGrW8GZXG6LYOtjCPM=">AAAB+HicbZDLSgMxFIYz9VbrpaMu3QSLUBDKTFV0IxTcuKxgL9AOQybNtKFJZshFqEOfxI0LRdz6KO58G9N2Ftr6Q+DjP+dwTv4oZVRpz/t2CmvrG5tbxe3Szu7eftk9OGyrxEhMWjhhiexGSBFGBWlpqhnpppIgHjHSica3s3rnkUhFE/GgJykJOBoKGlOMtLVCt9znJjyDN9Creed+/TJ0K5bmgqvg51ABuZqh+9UfJNhwIjRmSKme76U6yJDUFDMyLfWNIinCYzQkPYsCcaKCbH74FJ5aZwDjRNonNJy7vycyxJWa8Mh2cqRHark2M/+r9YyOr4OMitRoIvBiUWwY1AmcpQAHVBKs2cQCwpLaWyEeIYmwtlmVbAj+8pdXoV2v+V7Nv7+oNKp5HEVwDE5AFfjgCjTAHWiCFsDAgGfwCt6cJ+fFeXc+Fq0FJ585An/kfP4APwWQxQ==</latexit><latexit sha1_base64="yxGxtE23oVGrW8GZXG6LYOtjCPM=">AAAB+HicbZDLSgMxFIYz9VbrpaMu3QSLUBDKTFV0IxTcuKxgL9AOQybNtKFJZshFqEOfxI0LRdz6KO58G9N2Ftr6Q+DjP+dwTv4oZVRpz/t2CmvrG5tbxe3Szu7eftk9OGyrxEhMWjhhiexGSBFGBWlpqhnpppIgHjHSica3s3rnkUhFE/GgJykJOBoKGlOMtLVCt9znJjyDN9Creed+/TJ0K5bmgqvg51ABuZqh+9UfJNhwIjRmSKme76U6yJDUFDMyLfWNIinCYzQkPYsCcaKCbH74FJ5aZwDjRNonNJy7vycyxJWa8Mh2cqRHark2M/+r9YyOr4OMitRoIvBiUWwY1AmcpQAHVBKs2cQCwpLaWyEeIYmwtlmVbAj+8pdXoV2v+V7Nv7+oNKp5HEVwDE5AFfjgCjTAHWiCFsDAgGfwCt6cJ+fFeXc+Fq0FJ585An/kfP4APwWQxQ==</latexit><latexit sha1_base64="yxGxtE23oVGrW8GZXG6LYOtjCPM=">AAAB+HicbZDLSgMxFIYz9VbrpaMu3QSLUBDKTFV0IxTcuKxgL9AOQybNtKFJZshFqEOfxI0LRdz6KO58G9N2Ftr6Q+DjP+dwTv4oZVRpz/t2CmvrG5tbxe3Szu7eftk9OGyrxEhMWjhhiexGSBFGBWlpqhnpppIgHjHSica3s3rnkUhFE/GgJykJOBoKGlOMtLVCt9znJjyDN9Creed+/TJ0K5bmgqvg51ABuZqh+9UfJNhwIjRmSKme76U6yJDUFDMyLfWNIinCYzQkPYsCcaKCbH74FJ5aZwDjRNonNJy7vycyxJWa8Mh2cqRHark2M/+r9YyOr4OMitRoIvBiUWwY1AmcpQAHVBKs2cQCwpLaWyEeIYmwtlmVbAj+8pdXoV2v+V7Nv7+oNKp5HEVwDE5AFfjgCjTAHWiCFsDAgGfwCt6cJ+fFeXc+Fq0FJ585An/kfP4APwWQxQ==</latexit><latexit sha1_base64="yxGxtE23oVGrW8GZXG6LYOtjCPM=">AAAB+HicbZDLSgMxFIYz9VbrpaMu3QSLUBDKTFV0IxTcuKxgL9AOQybNtKFJZshFqEOfxI0LRdz6KO58G9N2Ftr6Q+DjP+dwTv4oZVRpz/t2CmvrG5tbxe3Szu7eftk9OGyrxEhMWjhhiexGSBFGBWlpqhnpppIgHjHSica3s3rnkUhFE/GgJykJOBoKGlOMtLVCt9znJjyDN9Creed+/TJ0K5bmgqvg51ABuZqh+9UfJNhwIjRmSKme76U6yJDUFDMyLfWNIinCYzQkPYsCcaKCbH74FJ5aZwDjRNonNJy7vycyxJWa8Mh2cqRHark2M/+r9YyOr4OMitRoIvBiUWwY1AmcpQAHVBKs2cQCwpLaWyEeIYmwtlmVbAj+8pdXoV2v+V7Nv7+oNKp5HEVwDE5AFfjgCjTAHWiCFsDAgGfwCt6cJ+fFeXc+Fq0FJ585An/kfP4APwWQxQ==</latexit>

Represented values

0 -3.75 2

6 0 -6

4.5 -3 2
/ 128

Figure 3.6: The step-by-step process of recentralised quantisation of unpruned weights on
block3f/conv1 in sparse ResNet-50. Each step shows how it changes a filter and the distribution
of weights. Higher peaks in the histograms denote values found with higher frequency. Values in
the filter share a common denominator 128, indicated by “/128”. The first estimates the high-
probability regions with a Gaussian mixture, and assign weights to a Gaussian component. The
second normalises each weight. The third quantises the normalised values with shift quantisation
and produces a representation of quantised weights used for inference. The final block visualises
the actual numerical values after quantisation.

Hyperparameters µc and σc in recentralised quantisation can be optimised by applying

the following two-step process in a layer-wise manner, which first identifies regions with high

probabilities (first block in Figure 3.6), then locally quantise them with shift quantisation

(second and third blocks in Figure 3.6). First, in general, the weight distribution resembles

a mixture of Gaussian distributions. It is thus more efficient to find a Gaussian mixture

model Qmix(θ) to approximate the original distribution p(θ|D), where D represents the

dataset, to closely optimise the above objective:

Qmix(θ) =
∑

c∈C

λcf(θ|µc, σc), (3.10)

where f(θ|µc, σc) is the probability density function of the Gaussian distribution N(µc, σc),

the non-negative λc defines the mixing weight of the cth component and Σc∈C λc = 1. Here,

55

I find the set of hyperparameters µc, σc and λc contained in φ that maximises Qmix given

that θ ∼ p(θ|D). This is known as the maximum likelihood estimate (MLE), and the

MLE can be efficiently computed by the expectation-maximisation (EM) algorithm [36].

In practice, it is sufficient to use two Gaussian components, C = {−,+}, for identifying

high-probability regions in the weight distribution. For faster EM convergence, I initialize

µ−, σ− and µ+, σ+ respectively with the means and standard deviations of negative and

positive values in the layer weights respectively, and λ−, λ+ with 1
2
. I then generate mθ

from the mixture model, which individually selects the component to use for each weight.

For this, mθ is evaluated for each θ by sampling a categorical distribution where the

probability of assigning a component c to mθ, i.e. p(mθ = c), is λcf(θ|µc, σc)/Qmix(θ).

Finally, I set the constant b to a powers-of-two value, chosen to ensure that Qshiftn, b [·]
allows at most a proportion of 1

2n+1
values to overflow and clips them to the maximum

representable magnitude. In practice, this heuristic choice makes better use of the

quantisation levels provided by shift quantisation than disallowing overflows. After

determining all of the relevant hyperparameters with the method described above, θ̂ = Q[θ]

can be evaluated to quantise the layer weights.

As I have discussed earlier, the weight distribution of sparse layers may not always

have multiple high-probability regions. It is possible that the sparse layers have two high

probability masses that are overlapping. Under this scenario, I can simply use n-bit shift

quantisation. To decide whether to use shift or recentralised quantisation, it is necessary

to introduce a metric to compare the similarity between the pair of components. While the

KL-divergence provides a measure for similarity, it is however non-symmetric, making it

unsuitable for this purpose. To address this, I propose to first normalise the distribution of

the mixture, then to use the 2-Wasserstein metric between the two Gaussian components

after normalisation as a decision criterion, which I call the Wasserstein separation:

W(c1, c2) =
1

σ2

(
(µc1 − µc2)2 + (σc1 − σc2)2

)
, (3.11)

where µc and σc are respectively the mean and standard deviation of the component

c ∈ {c1, c2}, and σ2 denotes the variance of the entire weight distribution. FQ can

then adaptively pick to use recentralised quantisation for all sparse layers except when

W(c1, c2) < wsep, and shift quantisation is used instead. I found wsep = 2.0 usually

provides a good decision criterion. In the next subsection, I additionally study the impact

of quantising a model with different wsep values.

3.4.3 Evaluating focused quantisation

Table 3.6 compares the accuracy and compression rates before and after applying the

focused quantisation compression (FC) pipeline under different quantisation bit-widths. It

56

demonstrates the effectiveness of FC on the models. Sparsified ResNets with 7-bit weights

are at least 16× smaller than the original dense model with marginal degradation (≤0.24%)

in top-5 accuracy. MobileNets, which are much less redundant and more compute-efficient

models to begin with, achieved a smaller CR at around 8× and slightly larger accuracy

degradations (≤0.89%). Yet when compared to the ResNet-18 models, it is not only more

accurate, but also has a significantly smaller memory footprint at 1.71 MB.

In Table 3.7, I compare FC with many state-of-the-art model compression schemes. It

shows that FC simultaneously achieves the best accuracy and the highest CR on both

ResNets. Trained Ternary Quantisation (TTQ) [212] quantises weights to ternary values,

while INQ [207] and extremely low bit neural network (denoted as ADMM) [102] quantise

weights to ternary or powers-of-two values using shift quantisation. Distillation and

Quantisation (D&Q) [131] quantise parameters to integers via distillation. Note that

D&Q’s results used a larger model as baseline, hence the compressed model has high

accuracy and low CR. I also compared against Coreset-Based Compression [42] comprising

pruning, filter approximation, quantisation and Huffman encoding. This method exploits

inter-filter dependencies in the CNN filter banks using corest representations and prune

unimportant filters. For ResNets, I additionally compare against ThiNet [115], a filter

pruning method, and Clip-Q [158], which interleaves training steps with pruning, weight

sharing and quantisation. FC again achieves the highest CR (18.08×) and accuracy

(74.86%).

Table 3.6: The accuracy (%), sparsities (%) and CRs of focused compression on ImageNet
models. The baseline models are dense models before compression and use 32-bit floating-point
weights, and 5 bits and 7 bits denote the number of bits used by individual weights of the
quantised models before Huffman encoding.

Model Top-1 ∆ Top-5 ∆ Sparsity Size (MB) CR (×)

ResNet-18 68.94 - 88.67 - 0.00 46.76 -
Pruned 69.24 0.30 89.05 0.38 74.86 8.31 5.69
5 bits 68.36 -0.58 88.45 -0.22 74.86 2.86 16.33
7 bits 68.57 -0.37 88.53 -0.14 74.86 2.94 15.92

ResNet-50 75.58 - 92.83 - 0.00 93.82 -
Pruned 75.10 -0.48 92.58 -0.25 82.70 11.76 7.98
5 bits 74.86 -0.72 92.59 -0.24 82.70 5.19 18.08
7 bits 74.99 -0.59 92.59 -0.24 82.70 5.22 17.98

MobileNet-V1 70.77 - 89.48 - 0.00 16.84 -
Pruned 70.03 -0.74 89.13 -0.35 33.80 6.89 2.44
7 bits 69.13 -1.64 88.61 -0.87 33.80 2.13 7.90

MobileNet-V2 71.65 - 90.44 - 0.00 13.88 -
Pruned 71.24 -0.41 90.31 -0.13 31.74 5.64 2.46
7 bits 70.05 -1.60 89.55 -0.89 31.74 1.71 8.14

57

Table 3.7: Comparisons of top-1 and top-5 accuracies (%) and CRs with various compression
methods. Numbers with ? indicate results not originally reported and calculated by us. Note
that D&Q used a much larger ResNet18, the 5 bases used by ABC-Net denote 5 separate
binary convolutions. LQ-Net used a “pre-activation” ResNet-18 [67] with a 1.4% higher accuracy
baseline than ours.

ResNet-18 Top-1 Top-5 Size (MB) CR (×)

TTQ [212] 66.00 87.10 2.92? 16.00?

INQ (2 bits) [207] 66.60 87.20 2.92? 16.00?

INQ (3 bits) [207] 68.08 88.36 4.38? 10.67?

ADMM (2 bits) [102] 67.0 87.5 2.92? 16.00?

ADMM (3 bits) [102] 68.0 88.3 4.38? 10.67?

ABC-Net (5 bases, or 5 bits) [110] 67.30 87.90 7.30? 6.4 ?

LQ-Net (preact, 2 bits) [192] 68.00 88.00 2.92? 16.00?

D&Q (large) [131] 73.10 91.17 21.98 2.13?

Coreset [42] 68.00 - 3.11? 15.00
Focused compression (5 bits, sparse) 68.36 88.45 2.86 16.33

ResNet-50 Top-1 Top-5 Size (MB) CR (×)

INQ (5 bits) [207] 74.81 92.45 14.64? 6.40?

ADMM (3 bits) [102] 74.0 91.6 8.78? 10.67?

ThiNet [115] 72.04 90.67 16.94 5.53?

Clip-Q [158] 73.70 - 6.70 14.00?

Coreset [42] 74.00 - 5.93? 15.80
Focused compression (5 bits, sparse) 74.86 92.59 5.19 18.08

As mentioned previously, I use the Wasserstein distance W(c1, c2) between the two

components in the Gaussian mixture model as a metric to differentiate whether recentralised

or shift quantisation should be used. It is important to understand the choices of this

introduced hyperparameter. In my experiments, I specified a threshold wsep = 2.0 such

that for each layer, if W(c1, c2) ≥ wsep then recentralised quantisation is used, otherwise

shift quantisation is employed instead. Figure 3.7 shows the impact of choosing different

wsep ranging from 1.0 to 3.5 at 0.1 increments on the Top-1 accuracy. This model is a

CIFAR10 [94] classifier with only 9 convolutional layers, so that it is possible to repeat

training 100 times for each wsep value to produce high-confidence results. Note that the

average validation accuracy is minimised when the layer with only one high-probability

region uses shift quantisation and the remaining 8 use recentralised quantisation, which

verifies my intuition.

3.5 Applying compression techniques to hardware

It is obvious that pruning reduces model sizes and the number of FLOPs (floating point

operations). Another important impact of pruning is on the memory side, especially

58

0
1
2
3
4
5
6
7
8
9

#l
ay

er
s w

ith
 re

ce
nt

ra
liz

ed
 q

ua
nt

iza
tio

n

1.0 1.5 2.0 2.5 3.0 3.5
Wasserstein distance

9.00%

9.25%

9.50%

9.75%

10.00%

To
p-

1
Er

ro
r

Figure 3.7: The effect of different threshold values on the Wasserstein distance. The larger
the threshold, the fewer the number of layers using recentralised quantisation instead of shift
quantisation.

if the inputs are batched. Not only does FBS use much fewer FLOPs, it also further

demonstrates significant reductions in bandwidth and memory requirements of hardware

platforms. In low-powered edge computing, inference is typically performed on a single

image. In Table 3.8, I observe a large reduction in the number of memory accesses required

to load weights and read/write activations, as a convolution with FBS uses sparse input

and evaluates sparse output activations. Since these read/write operations are often

carried out by DRAM accesses, minimising them directly translates to power-savings as I

spend much less energy performing expensive DRAM operations. Table 3.8 further reveals

that in diverse application scenarios such as low-end edge devices and cloud-based GPU

platforms, the peak memory usages by the optimised models are also significantly smaller

than the originals, which in general improves cache utilisation.

Table 3.9: Comparison of the original ResNet-18 with successive quantisations applied on weights,
activations and BN parameters. Each row denotes added quantisation on new components.

Quantised Top-1 ∆ Top-5 ∆

Baseline 68.94 - 88.67 -
+ Weights (5-bit FQ) 68.36 -0.58 88.45 -0.22
+ Activations (8-bit integer) 67.89 -1.05 88.08 -0.59
+ BN (16-bit integer) 67.95 -0.99 88.06 -0.61

Quantising weights using FC can significantly reduce the arithemtic computation

59

Table 3.8: Comparisons of the number of memory accesses and peak memory utilisation
of VGG16 and ResNet18 on ImageNet with FBS respectively under 3× and 2× inference
speed-up constraints. The Weights and Activations columns respectively show the total
amount of weight and activation accesses required by all convolutions for a single image
inference. The Peak Memory Usage columns show the peak memory usages by the
same models with different batch sizes.

Model
Total Memory Accesses Peak Memory Usage

Weights Activations Edge (1 image) Cloud (128 images)

VGG16 56.2 MB 86.5 MB 24.6 MB 3.09 GB
VGG16 3× 23.9 MB (2.35×) 40.8 MB (2.12×) 9.97 MB (2.47×) 1.24 GB (2.47×)

ResNet18 44.6 MB 17.8 MB 9.19 MB 0.47 GB
ResNet18 2× 20.5 MB (2.18×) 12.3 MB (1.45×) 4.68 MB (1.96×) 0.31 GB (1.49×)

Table 3.10: Computation resource estimates of custom accelerators for inference assuming the
same compute throughput.

Configuration #Gates Ratio

ABC-Net (5 bases, or 5 bits) 806.1 M 2.93×
LQ-Net (2 bits) 314.4 M 1.14×
Shift quantisation (3 bits, unsigned) 275.2 M 1.00×
FQ (5 bits) 275.6 M 1.00×
FQ (5 bits) + Huffman 276.4 M 1.00×

complexity in models. By further quantising activations and BN parameters to integers,

the expensive floating-point multiplications and additions in convolutions can be replaced

with simple bit-shift operations and integer additions. This can be realised with much

faster hardware implementations using custom hardware, which directly translates to

energy saving and much lower latencies. In Table 3.9, I evaluate the impact on accuracies

by progressively applying FQ on weights, and integer quantisations on activations and

batch normalisation (BN) parameters.

Figure 3.8 shows an accelerator design of the dot-products used in the convolutional

layers with recentralised quantisation for inference. Using this, in Table 3.10, I provide an

estimated logic usage required by the implementation to compute a convolution layer with

3× 3 filters with a padding size of 1, which takes as input a 8× 8× 100 activation and

produces a 8× 8× 100 tensor output. Additionally, I compare FQ to shift quantisation,

ABC-Net [110] and LQ-Net [192]. The #Gates indicates the lower bound on the number

of two-input logic gates required to implement the custom hardware accelerators for the

convolution, assuming an unrolled architecture and the same throughput. Internally, a

5-bit FQ-based inference uses 3-bit unsigned shift quantised weights, with a minimal

overhead for the added logic. Scaling constants σ− and σ+ are equal and thus can be

fused into αl. Perhaps most surprisingly, a 5-bit FQ has more quantisation levels yet

uses fewer logic gates, when compared to ABC-Net and LQ-Net implementing the same

60

Shift values (3-bit)Quantized (5-bit)

0 0.25 -2

2 0 -2

0.5 1 -2

0 0.25 -2

2 0 -2

0.5 1 -2/ 128 / 128

Input (8-bit int)

1 1 2

12 35 4

2 6 3
/ 8

��

0 0.25 -4

24 0 -8

1 6 -6 / 1024

X
<latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit>

X
<latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit>

⇥
<latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit>

⇥
<latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit> output

1 4 6

2 12 2 3

X
<latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit>

X
<latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit>

X
<latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit>

X
<latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit><latexit sha1_base64="nctphKWcW6v/PioTicKCV8K4VfA=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOepMhM7PLzKwQQn7BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXlApurO9/e6WNza3tnfJuZW//4PCoenzSNkmmGbZYIhLdjahBwRW2LLcCu6lGKiOBnWhyl/udJ9SGJ+rRTlMMJR0pHnNGbS71TSYH1Zpf9xcg6yQoSA0KNAfVr/4wYZlEZZmgxvQCP7XhjGrLmcB5pZ8ZTCmb0BH2HFVUoglni1vn5MIpQxIn2pWyZKH+nphRacxURq5TUjs2q14u/uf1MhvfhjOu0syiYstFcSaITUj+OBlyjcyKqSOUae5uJWxMNWXWxVNxIQSrL6+T9lU98OvBw3WtQYo4ynAG53AJAdxAA+6hCS1gMIZneIU3T3ov3rv3sWwtecXMKfyB9/kDJ7GOMQ==</latexit>

⇥
<latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit>

⇥
<latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit>

⇥
<latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit>

⇥
<latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit><latexit sha1_base64="aQsHnL0lRwXJwAjFKCXl+UDWmtY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9VAk3PbLFb/qL0DWSZCTCuRo9MtfvYFmWcIVMkmt7QZ+iuGUGhRM8lmpl1meUjamQ951VFG3JJwurp2RC6cMSKyNK4Vkof6emNLE2kkSuc6E4siuenPxP6+bYXwTToVKM+SKLRfFmSSoyfx1MhCGM5QTRygzwt1K2IgaytAFVHIhBKsvr5NWrRr41eD+qlKv5XEU4QzO4RICuIY63EEDmsDgEZ7hFd487b14797HsrXg5TOn8Afe5w+xW48k</latexit>

 µ�
<latexit sha1_base64="a/Xr8fl69V2MM3JDxU4X4wsQQNM=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoOQi2FXBD0GvHiM4CaBZAmzk9lkyMzsMg8hLPkGLx4U8eoHefNvnCR70MSChqKqm+6uOONMG9//9kobm1vbO+Xdyt7+weFR9fikrVOrCA1JylPVjbGmnEkaGmY47WaKYhFz2oknd3O/80SVZql8NNOMRgKPJEsYwcZJYV/YweWgWvMb/gJonQQFqUGB1qD61R+mxAoqDeFY617gZybKsTKMcDqr9K2mGSYTPKI9RyUWVEf54tgZunDKECWpciUNWqi/J3IstJ6K2HUKbMZ61ZuL/3k9a5LbKGcys4ZKslyUWI5MiuafoyFTlBg+dQQTxdytiIyxwsS4fCouhGD15XXSvmoEfiN4uK4160UcZTiDc6hDADfQhHtoQQgEGDzDK7x50nvx3r2PZWvJK2ZO4Q+8zx92eI5c</latexit><latexit sha1_base64="a/Xr8fl69V2MM3JDxU4X4wsQQNM=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoOQi2FXBD0GvHiM4CaBZAmzk9lkyMzsMg8hLPkGLx4U8eoHefNvnCR70MSChqKqm+6uOONMG9//9kobm1vbO+Xdyt7+weFR9fikrVOrCA1JylPVjbGmnEkaGmY47WaKYhFz2oknd3O/80SVZql8NNOMRgKPJEsYwcZJYV/YweWgWvMb/gJonQQFqUGB1qD61R+mxAoqDeFY617gZybKsTKMcDqr9K2mGSYTPKI9RyUWVEf54tgZunDKECWpciUNWqi/J3IstJ6K2HUKbMZ61ZuL/3k9a5LbKGcys4ZKslyUWI5MiuafoyFTlBg+dQQTxdytiIyxwsS4fCouhGD15XXSvmoEfiN4uK4160UcZTiDc6hDADfQhHtoQQgEGDzDK7x50nvx3r2PZWvJK2ZO4Q+8zx92eI5c</latexit><latexit sha1_base64="a/Xr8fl69V2MM3JDxU4X4wsQQNM=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoOQi2FXBD0GvHiM4CaBZAmzk9lkyMzsMg8hLPkGLx4U8eoHefNvnCR70MSChqKqm+6uOONMG9//9kobm1vbO+Xdyt7+weFR9fikrVOrCA1JylPVjbGmnEkaGmY47WaKYhFz2oknd3O/80SVZql8NNOMRgKPJEsYwcZJYV/YweWgWvMb/gJonQQFqUGB1qD61R+mxAoqDeFY617gZybKsTKMcDqr9K2mGSYTPKI9RyUWVEf54tgZunDKECWpciUNWqi/J3IstJ6K2HUKbMZ61ZuL/3k9a5LbKGcys4ZKslyUWI5MiuafoyFTlBg+dQQTxdytiIyxwsS4fCouhGD15XXSvmoEfiN4uK4160UcZTiDc6hDADfQhHtoQQgEGDzDK7x50nvx3r2PZWvJK2ZO4Q+8zx92eI5c</latexit><latexit sha1_base64="a/Xr8fl69V2MM3JDxU4X4wsQQNM=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoOQi2FXBD0GvHiM4CaBZAmzk9lkyMzsMg8hLPkGLx4U8eoHefNvnCR70MSChqKqm+6uOONMG9//9kobm1vbO+Xdyt7+weFR9fikrVOrCA1JylPVjbGmnEkaGmY47WaKYhFz2oknd3O/80SVZql8NNOMRgKPJEsYwcZJYV/YweWgWvMb/gJonQQFqUGB1qD61R+mxAoqDeFY617gZybKsTKMcDqr9K2mGSYTPKI9RyUWVEf54tgZunDKECWpciUNWqi/J3IstJ6K2HUKbMZ61ZuL/3k9a5LbKGcys4ZKslyUWI5MiuafoyFTlBg+dQQTxdytiIyxwsS4fCouhGD15XXSvmoEfiN4uK4160UcZTiDc6hDADfQhHtoQQgEGDzDK7x50nvx3r2PZWvJK2ZO4Q+8zx92eI5c</latexit>

µ�
<latexit sha1_base64="a/Xr8fl69V2MM3JDxU4X4wsQQNM=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoOQi2FXBD0GvHiM4CaBZAmzk9lkyMzsMg8hLPkGLx4U8eoHefNvnCR70MSChqKqm+6uOONMG9//9kobm1vbO+Xdyt7+weFR9fikrVOrCA1JylPVjbGmnEkaGmY47WaKYhFz2oknd3O/80SVZql8NNOMRgKPJEsYwcZJYV/YweWgWvMb/gJonQQFqUGB1qD61R+mxAoqDeFY617gZybKsTKMcDqr9K2mGSYTPKI9RyUWVEf54tgZunDKECWpciUNWqi/J3IstJ6K2HUKbMZ61ZuL/3k9a5LbKGcys4ZKslyUWI5MiuafoyFTlBg+dQQTxdytiIyxwsS4fCouhGD15XXSvmoEfiN4uK4160UcZTiDc6hDADfQhHtoQQgEGDzDK7x50nvx3r2PZWvJK2ZO4Q+8zx92eI5c</latexit><latexit sha1_base64="a/Xr8fl69V2MM3JDxU4X4wsQQNM=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoOQi2FXBD0GvHiM4CaBZAmzk9lkyMzsMg8hLPkGLx4U8eoHefNvnCR70MSChqKqm+6uOONMG9//9kobm1vbO+Xdyt7+weFR9fikrVOrCA1JylPVjbGmnEkaGmY47WaKYhFz2oknd3O/80SVZql8NNOMRgKPJEsYwcZJYV/YweWgWvMb/gJonQQFqUGB1qD61R+mxAoqDeFY617gZybKsTKMcDqr9K2mGSYTPKI9RyUWVEf54tgZunDKECWpciUNWqi/J3IstJ6K2HUKbMZ61ZuL/3k9a5LbKGcys4ZKslyUWI5MiuafoyFTlBg+dQQTxdytiIyxwsS4fCouhGD15XXSvmoEfiN4uK4160UcZTiDc6hDADfQhHtoQQgEGDzDK7x50nvx3r2PZWvJK2ZO4Q+8zx92eI5c</latexit><latexit sha1_base64="a/Xr8fl69V2MM3JDxU4X4wsQQNM=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoOQi2FXBD0GvHiM4CaBZAmzk9lkyMzsMg8hLPkGLx4U8eoHefNvnCR70MSChqKqm+6uOONMG9//9kobm1vbO+Xdyt7+weFR9fikrVOrCA1JylPVjbGmnEkaGmY47WaKYhFz2oknd3O/80SVZql8NNOMRgKPJEsYwcZJYV/YweWgWvMb/gJonQQFqUGB1qD61R+mxAoqDeFY617gZybKsTKMcDqr9K2mGSYTPKI9RyUWVEf54tgZunDKECWpciUNWqi/J3IstJ6K2HUKbMZ61ZuL/3k9a5LbKGcys4ZKslyUWI5MiuafoyFTlBg+dQQTxdytiIyxwsS4fCouhGD15XXSvmoEfiN4uK4160UcZTiDc6hDADfQhHtoQQgEGDzDK7x50nvx3r2PZWvJK2ZO4Q+8zx92eI5c</latexit><latexit sha1_base64="a/Xr8fl69V2MM3JDxU4X4wsQQNM=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoOQi2FXBD0GvHiM4CaBZAmzk9lkyMzsMg8hLPkGLx4U8eoHefNvnCR70MSChqKqm+6uOONMG9//9kobm1vbO+Xdyt7+weFR9fikrVOrCA1JylPVjbGmnEkaGmY47WaKYhFz2oknd3O/80SVZql8NNOMRgKPJEsYwcZJYV/YweWgWvMb/gJonQQFqUGB1qD61R+mxAoqDeFY617gZybKsTKMcDqr9K2mGSYTPKI9RyUWVEf54tgZunDKECWpciUNWqi/J3IstJ6K2HUKbMZ61ZuL/3k9a5LbKGcys4ZKslyUWI5MiuafoyFTlBg+dQQTxdytiIyxwsS4fCouhGD15XXSvmoEfiN4uK4160UcZTiDc6hDADfQhHtoQQgEGDzDK7x50nvx3r2PZWvJK2ZO4Q+8zx92eI5c</latexit>

 µ+
<latexit sha1_base64="/68ja5lkHkUObmrG3K2iCdOI7s4=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoMQEMKuCHoMePEYwU0CyRJmJ7PJkJnZZR5CWPINXjwo4tUP8ubfOEn2oIkFDUVVN91dccaZNr7/7ZU2Nre2d8q7lb39g8Oj6vFJW6dWERqSlKeqG2NNOZM0NMxw2s0UxSLmtBNP7uZ+54kqzVL5aKYZjQQeSZYwgo2Twr6wg8tBteY3/AXQOgkKUoMCrUH1qz9MiRVUGsKx1r3Az0yUY2UY4XRW6VtNM0wmeER7jkosqI7yxbEzdOGUIUpS5UoatFB/T+RYaD0VsesU2Iz1qjcX//N61iS3Uc5kZg2VZLkosRyZFM0/R0OmKDF86ggmirlbERljhYlx+VRcCMHqy+ukfdUI/EbwcF1r1os4ynAG51CHAG6gCffQghAIMHiGV3jzpPfivXsfy9aSV8ycwh94nz9zcI5a</latexit><latexit sha1_base64="/68ja5lkHkUObmrG3K2iCdOI7s4=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoMQEMKuCHoMePEYwU0CyRJmJ7PJkJnZZR5CWPINXjwo4tUP8ubfOEn2oIkFDUVVN91dccaZNr7/7ZU2Nre2d8q7lb39g8Oj6vFJW6dWERqSlKeqG2NNOZM0NMxw2s0UxSLmtBNP7uZ+54kqzVL5aKYZjQQeSZYwgo2Twr6wg8tBteY3/AXQOgkKUoMCrUH1qz9MiRVUGsKx1r3Az0yUY2UY4XRW6VtNM0wmeER7jkosqI7yxbEzdOGUIUpS5UoatFB/T+RYaD0VsesU2Iz1qjcX//N61iS3Uc5kZg2VZLkosRyZFM0/R0OmKDF86ggmirlbERljhYlx+VRcCMHqy+ukfdUI/EbwcF1r1os4ynAG51CHAG6gCffQghAIMHiGV3jzpPfivXsfy9aSV8ycwh94nz9zcI5a</latexit><latexit sha1_base64="/68ja5lkHkUObmrG3K2iCdOI7s4=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoMQEMKuCHoMePEYwU0CyRJmJ7PJkJnZZR5CWPINXjwo4tUP8ubfOEn2oIkFDUVVN91dccaZNr7/7ZU2Nre2d8q7lb39g8Oj6vFJW6dWERqSlKeqG2NNOZM0NMxw2s0UxSLmtBNP7uZ+54kqzVL5aKYZjQQeSZYwgo2Twr6wg8tBteY3/AXQOgkKUoMCrUH1qz9MiRVUGsKx1r3Az0yUY2UY4XRW6VtNM0wmeER7jkosqI7yxbEzdOGUIUpS5UoatFB/T+RYaD0VsesU2Iz1qjcX//N61iS3Uc5kZg2VZLkosRyZFM0/R0OmKDF86ggmirlbERljhYlx+VRcCMHqy+ukfdUI/EbwcF1r1os4ynAG51CHAG6gCffQghAIMHiGV3jzpPfivXsfy9aSV8ycwh94nz9zcI5a</latexit><latexit sha1_base64="/68ja5lkHkUObmrG3K2iCdOI7s4=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoMQEMKuCHoMePEYwU0CyRJmJ7PJkJnZZR5CWPINXjwo4tUP8ubfOEn2oIkFDUVVN91dccaZNr7/7ZU2Nre2d8q7lb39g8Oj6vFJW6dWERqSlKeqG2NNOZM0NMxw2s0UxSLmtBNP7uZ+54kqzVL5aKYZjQQeSZYwgo2Twr6wg8tBteY3/AXQOgkKUoMCrUH1qz9MiRVUGsKx1r3Az0yUY2UY4XRW6VtNM0wmeER7jkosqI7yxbEzdOGUIUpS5UoatFB/T+RYaD0VsesU2Iz1qjcX//N61iS3Uc5kZg2VZLkosRyZFM0/R0OmKDF86ggmirlbERljhYlx+VRcCMHqy+ukfdUI/EbwcF1r1os4ynAG51CHAG6gCffQghAIMHiGV3jzpPfivXsfy9aSV8ycwh94nz9zcI5a</latexit>

µ+
<latexit sha1_base64="/68ja5lkHkUObmrG3K2iCdOI7s4=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoMQEMKuCHoMePEYwU0CyRJmJ7PJkJnZZR5CWPINXjwo4tUP8ubfOEn2oIkFDUVVN91dccaZNr7/7ZU2Nre2d8q7lb39g8Oj6vFJW6dWERqSlKeqG2NNOZM0NMxw2s0UxSLmtBNP7uZ+54kqzVL5aKYZjQQeSZYwgo2Twr6wg8tBteY3/AXQOgkKUoMCrUH1qz9MiRVUGsKx1r3Az0yUY2UY4XRW6VtNM0wmeER7jkosqI7yxbEzdOGUIUpS5UoatFB/T+RYaD0VsesU2Iz1qjcX//N61iS3Uc5kZg2VZLkosRyZFM0/R0OmKDF86ggmirlbERljhYlx+VRcCMHqy+ukfdUI/EbwcF1r1os4ynAG51CHAG6gCffQghAIMHiGV3jzpPfivXsfy9aSV8ycwh94nz9zcI5a</latexit><latexit sha1_base64="/68ja5lkHkUObmrG3K2iCdOI7s4=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoMQEMKuCHoMePEYwU0CyRJmJ7PJkJnZZR5CWPINXjwo4tUP8ubfOEn2oIkFDUVVN91dccaZNr7/7ZU2Nre2d8q7lb39g8Oj6vFJW6dWERqSlKeqG2NNOZM0NMxw2s0UxSLmtBNP7uZ+54kqzVL5aKYZjQQeSZYwgo2Twr6wg8tBteY3/AXQOgkKUoMCrUH1qz9MiRVUGsKx1r3Az0yUY2UY4XRW6VtNM0wmeER7jkosqI7yxbEzdOGUIUpS5UoatFB/T+RYaD0VsesU2Iz1qjcX//N61iS3Uc5kZg2VZLkosRyZFM0/R0OmKDF86ggmirlbERljhYlx+VRcCMHqy+ukfdUI/EbwcF1r1os4ynAG51CHAG6gCffQghAIMHiGV3jzpPfivXsfy9aSV8ycwh94nz9zcI5a</latexit><latexit sha1_base64="/68ja5lkHkUObmrG3K2iCdOI7s4=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoMQEMKuCHoMePEYwU0CyRJmJ7PJkJnZZR5CWPINXjwo4tUP8ubfOEn2oIkFDUVVN91dccaZNr7/7ZU2Nre2d8q7lb39g8Oj6vFJW6dWERqSlKeqG2NNOZM0NMxw2s0UxSLmtBNP7uZ+54kqzVL5aKYZjQQeSZYwgo2Twr6wg8tBteY3/AXQOgkKUoMCrUH1qz9MiRVUGsKx1r3Az0yUY2UY4XRW6VtNM0wmeER7jkosqI7yxbEzdOGUIUpS5UoatFB/T+RYaD0VsesU2Iz1qjcX//N61iS3Uc5kZg2VZLkosRyZFM0/R0OmKDF86ggmirlbERljhYlx+VRcCMHqy+ukfdUI/EbwcF1r1os4ynAG51CHAG6gCffQghAIMHiGV3jzpPfivXsfy9aSV8ycwh94nz9zcI5a</latexit><latexit sha1_base64="/68ja5lkHkUObmrG3K2iCdOI7s4=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoMQEMKuCHoMePEYwU0CyRJmJ7PJkJnZZR5CWPINXjwo4tUP8ubfOEn2oIkFDUVVN91dccaZNr7/7ZU2Nre2d8q7lb39g8Oj6vFJW6dWERqSlKeqG2NNOZM0NMxw2s0UxSLmtBNP7uZ+54kqzVL5aKYZjQQeSZYwgo2Twr6wg8tBteY3/AXQOgkKUoMCrUH1qz9MiRVUGsKx1r3Az0yUY2UY4XRW6VtNM0wmeER7jkosqI7yxbEzdOGUIUpS5UoatFB/T+RYaD0VsesU2Iz1qjcX//N61iS3Uc5kZg2VZLkosRyZFM0/R0OmKDF86ggmirlbERljhYlx+VRcCMHqy+ukfdUI/EbwcF1r1os4ynAG51CHAG6gCffQghAIMHiGV3jzpPfivXsfy9aSV8ycwh94nz9zcI5a</latexit>

Learnable
scaling factor ↵l

<latexit sha1_base64="JYDOS3GI3kEc9d2Ug+FcbByaij8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jNs1BWx8MPN6bYWZekAiujet+O6WNza3tnfJuZW//4PCoenzS0XGqKGvTWMSqF6BmgkvWNtwI1ksUwygQrBtMbxd+94kpzWP5YGYJ8yMcSx5yisZKvQGKZIJDMazW3Iabg6wTryA1KNAaVr8Go5imEZOGCtS677mJ8TNUhlPB5pVBqlmCdIpj1rdUYsS0n+X3zsmFVUYkjJUtaUiu/p7IMNJ6FgW2M0Iz0aveQvzP66cmvPEzLpPUMEmXi8JUEBOTxfNkxBWjRswsQaq4vZXQCSqkxkZUsSF4qy+vk85lw3Mb3v1VrVkv4ijDGZxDHTy4hibcQQvaQEHAM7zCm/PovDjvzseyteQUM6fwB87nDwZ6j90=</latexit><latexit sha1_base64="JYDOS3GI3kEc9d2Ug+FcbByaij8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jNs1BWx8MPN6bYWZekAiujet+O6WNza3tnfJuZW//4PCoenzS0XGqKGvTWMSqF6BmgkvWNtwI1ksUwygQrBtMbxd+94kpzWP5YGYJ8yMcSx5yisZKvQGKZIJDMazW3Iabg6wTryA1KNAaVr8Go5imEZOGCtS677mJ8TNUhlPB5pVBqlmCdIpj1rdUYsS0n+X3zsmFVUYkjJUtaUiu/p7IMNJ6FgW2M0Iz0aveQvzP66cmvPEzLpPUMEmXi8JUEBOTxfNkxBWjRswsQaq4vZXQCSqkxkZUsSF4qy+vk85lw3Mb3v1VrVkv4ijDGZxDHTy4hibcQQvaQEHAM7zCm/PovDjvzseyteQUM6fwB87nDwZ6j90=</latexit><latexit sha1_base64="JYDOS3GI3kEc9d2Ug+FcbByaij8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jNs1BWx8MPN6bYWZekAiujet+O6WNza3tnfJuZW//4PCoenzS0XGqKGvTWMSqF6BmgkvWNtwI1ksUwygQrBtMbxd+94kpzWP5YGYJ8yMcSx5yisZKvQGKZIJDMazW3Iabg6wTryA1KNAaVr8Go5imEZOGCtS677mJ8TNUhlPB5pVBqlmCdIpj1rdUYsS0n+X3zsmFVUYkjJUtaUiu/p7IMNJ6FgW2M0Iz0aveQvzP66cmvPEzLpPUMEmXi8JUEBOTxfNkxBWjRswsQaq4vZXQCSqkxkZUsSF4qy+vk85lw3Mb3v1VrVkv4ijDGZxDHTy4hibcQQvaQEHAM7zCm/PovDjvzseyteQUM6fwB87nDwZ6j90=</latexit><latexit sha1_base64="JYDOS3GI3kEc9d2Ug+FcbByaij8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jNs1BWx8MPN6bYWZekAiujet+O6WNza3tnfJuZW//4PCoenzS0XGqKGvTWMSqF6BmgkvWNtwI1ksUwygQrBtMbxd+94kpzWP5YGYJ8yMcSx5yisZKvQGKZIJDMazW3Iabg6wTryA1KNAaVr8Go5imEZOGCtS677mJ8TNUhlPB5pVBqlmCdIpj1rdUYsS0n+X3zsmFVUYkjJUtaUiu/p7IMNJ6FgW2M0Iz0aveQvzP66cmvPEzLpPUMEmXi8JUEBOTxfNkxBWjRswsQaq4vZXQCSqkxkZUsSF4qy+vk85lw3Mb3v1VrVkv4ijDGZxDHTy4hibcQQvaQEHAM7zCm/PovDjvzseyteQUM6fwB87nDwZ6j90=</latexit>

Extract input
 by

Figure 3.8: An implementation of the dot-product used in convolution between an integer input
and a filter quantised by recentralised quantisation. The notation /N means the filter values
share a common denominator N .

convolution but with different quantisations. Both ABC-Net and LQ-Net quantise each

weight to N binary values, and compute N parallel binary convolutions for each binary

weight. The N outputs are then accumulated for each pixel in the output feature map.

Even with the optimal compute pattern proposed by the two methods, there are at least

O(MN) additional high-precision multiply-adds, where M is the number of parallel binary

convolutions, and N is the number of output pixels. This overhead is much more significant

when compared to other parts of compute in the convolution. As shown in Table 3.10, both

have higher logic usage because of the substantial amount of high-precision multiply-adds.

In contrast, FQ has only one final learnable layer-wise scaling multiplication that can

be further optimised out as it can be fused into BN for inference. Despite having more

quantisation levels and a higher CR, and being more efficient in hardware resources, the

fully quantised ResNet-18 in Table 3.9 can still match the accuracy of a LQ-Net ResNet-18.

3.6 Summary

In this chapter, I showed how combining basic compression algorithms can provide

multiplicative compression gains (Section 3.2). Although the same phenomenon has been

observed in Deep Compression, I revealed that there is further compression optimisation

opportunities if allowing a more flexible combination of pruning and quantisation strategies.

In Section 3.3 and Section 3.4, I introduced novel compression techniques for pruning

and quantisation respectively. These two novel compression techniques exploit certain

characteristics of the neural networks in order to achieve a better compression quality.

The first technique helps the models to go beyond the state-of-the-art compression ratios

by observing that channel saliencies are different for various inputs. The second method

61

exploits the post-pruning weights distributions to build a quantisation scheme. Finally, I

further explained how these novel compression methods can be used on real hardware and

what do they mean for general-purpose and custom hardware platforms.

62

Chapter 4

Multi-precision multi-arithmetic

CNN hardware accelerators for

efficient neural networks

In this chapter, I will look at how re-designing the hardware can improve the performance of

DNN inference. Hardware designs often limit the number of possible software compression

techniques (e.g. pruning and quantisations) that can be applied to the hardware. This

chapter then explores how a more flexible hardware deign can allow us to apply a group of

more sophisticated compression techniques.

I will first provide an overview of different styles of DNN accelerators and then propose

an alternative design that focuses on pipelining a number of small compute cores. I

show how this hardware design can be integrated with software optimisations, offering

a high throughput, low latency design on FPGAs without the need for off-chip memory

traffic. Later, I will discuss the computation flow and data reuse strategies of the proposed

hardware architecture in details and also demonstrate an automated co-design flow for

generating accelerators on custom computing devices.

This chapter includes relevant contents published in:

• Yiren Zhao, Xitong Gao, Xuan Guo, Junyi Liu, Erwei Wang, Robert Mullins, Peter

YK Cheung, George Constantinides, and Cheng-Zhong Xu. Automatic generation of

multi-precision multi-arithmetic CNN accelerators for FPGAs. In 2019 International

Conference on Field-Programmable Technology, pages 45–53. IEEE, 2019 (ICFPT

2019)

Yiren Zhao conceived and designed the experiments. Yiren Zhao implemented a test

version of a multi-arithmetic DNN accelerator in high level synthesis (HLS), Junyi Liu

provided correction and testing in this process. Erwei Wang changed and deployed the

test version to a more detailed implementation in high level synthesis. Yiren Zhao later

63

realised that the HLS tool was limiting the performance of deeply pipeline designs and

produced a hardware description in a RTL (SystemVerilog) design. Xuan Guo later further

optimised the implementation. Yiren Zhao and Xitong Gao worked on extending the

software framework Mayo to help the hardware generation.

4.1 Accelerator designs for neural networks: homo-

geneous systolic arrays vs streaming cores

Hardware that uses a homogeneous large systolic array currently dominates the design

of CNN accelerators; a great number of parallel multiplication-adds are used as a large

compute core and both weights and activations are buffered in on-chip memory [199, 25].

The large systolic array is time-shared as a number of different convolutions or fully-

connected layers reuse the same hardware. This approach is popular in ASIC accelerators

and can exploit data parallelism to achieve high throughput. In terms of hardware, the

potential design space of such a homogeneous core is large, since there is a wide variety

of data reuse patterns available as illustrated in Chapter 2. It is then hard to guarantee

that a single set of hardware optimisation is optimal to a wide range of neural network

types. From the software point of view, the efficiency of a systolic array accelerator relies

on data reuse and this complicates the compilation stack. The compiler has to carefully

schedule workloads to maximise the utilisation of the computation units while ensuring

a good data reuse to reduce the number of off-chip memory accesses [23]. This process

is non-trivial due to the ever-changing input data sizes, channel counts, kernel sizes and

ever-emerging neural network operators [197].

The systolic array structure is a popular DNN accelerator paradigm on both ASIC

and FPGA devices. A fully-custom specialised ASIC is a very attractive solution in terms

of energy efficiency. However, a good efficiency and performance may be limited to the

applications used to tune the architecture and may quickly degrade if the accelerator has

to run networks with different characteristics (standard limits to specialisation) [85]. On

the other hand, FPGA designs have great fine-grained reconfigurability, but normally

run at a lower clock frequency compared to ASIC accelerators. An alternative design

principle for DNN acceleration is to rely heavily on hardware reconfigurability and the

ability to customise heavily pipelined cores. This design approach is more suitable for

FPGA devices. In this way, the design complication in hardware increases significantly but

each core has the flexibility to be optimised solely for its targeting neural network layer.

The computation of a network can also be divided and pipelined into a number of smaller

compute cores (so-called flattened streaming cores). Each computation core, streamed

by activations, is only responsible for the calculations of individual layers [48, 198] to

maximise efficiency.

64

Compute	
Cores

Compute	Core

Homogenous	Core:
Uniform	compute	and	buffer	
resources	for	all	layers

Weight	Buffer

Ac
t	B

uf
fe
r

Flattened	Streaming:
Non-uniform	compute	and	buffer	
resources	for	different	layers

Compute	
Cores

Ac
tiv
at
io
n	

Bu
ffe

r

Ac
t	B

uf
fe
r

Output	Buffer

DE
M
U
X

DR
AM

DRAM

W	Buffer W	Buffer

…

On-chip	RAM
Off-chip	RAM

Logic

Individual	block	
for	each	layer

Figure 4.1: An illustration of a homogeneous core (left) and flattened streaming cores
(right).

Figure 4.1 shows a graphical illustration of a homogeneous core and flattened streaming

cores. The homogeneous core has a large compute unit that utilises most of the design

budget, whereas the flattened streaming cores design uses a number of smaller cores. It is

also worth to mention that, in the flatten streaming cores design, since the throughput

is determined by the slowest stage, there exists opportunities for fast (normally later)

computation stages to be unrolled less to save resources without having any impacts on

the system throughput. I will discuss this unrolling strategy in details in Section 4.5.3.

4.2 Low precision inference in hardware

The GPU has to make a decision about what number formats or arithmetic to support

when designing the hardware, while the FPGAs can be adapted and programmed to have

various hardware implementations. GPUs today can support narrow data types, but don’t

have as much freedom over the bit-widths and arithmetics, and other opportunities such

as mixing arithmetic. Yet DNNs are, in general, often over-provisioned and inherently

redundant; this makes low-precision quantisation an essential technique to drastically

reduce the memory consumed by the network’s parameters, and even allows DNN inference

to be computed entirely with low-cost arithmetic operations, rather than floating-point

ones. Many works [32, 81] train CNNs to use low-precision weights and activations

with minimal accuracy loss, while others pushed the limit by using ternarised weights

{0,±1} [82, 104, 212], and even constraining both weights and activations to binary values

{±1} [80]. However, binarised and ternarised CNNs struggle to achieve state-of-the-art

65

accuracies on large datasets. The most popular quantisation strategies used for DNN

accelerators are fixed-point and shift quantisations, since they achieve a good trade-off

between model accuracy and hardware efficiency, I have discussed these two number

representation systems in Chapter 2.

FPGA-based accelerators generally uniformly apply one of the above low precision

quantisation methods [148, 55]. This specialisation provides efficiency and performance

gains when compared to GPUs, but does not fully exploit the reconfigurability of such

devices. Alternatively, we could consider selecting the most appropriate quantisation

and quantisation hardware on a per layer basis. The aim here to is both minimise the

impact of quanisation loss and maximise the model task accuracy. My discussion in

Section 3.2 showed that different layers are suitable for different quantisation strategies

due to the differences in weights distributions. In addition, using different quantisations

on for different computing cores dedicated for each layer will reduce the hardware circuit

area. The idea of allowing different bit-width for different layers is not new. Bit-serial

accelerators [142, 143] target exactly this problem as they provide scope to optimise

away superfluous computation at the bit-level when computing with fixed-point numbers.

These accelerators will run at a much higher clock frequency compared to their bit-parallel

competitors to compensate for the increased number of clock cycles to finish multiplications.

However, the use of bit-serial operations is still a limited exploration of adaptive arithmetic

in the fixed-point number territory, later in this chapter, I will illustrate a workflow that

automatically generate accelerators that not only have computing cores using different

bit-widths but also different arithmetics.

4.3 The Tomato framework

The framework is designed to target Convolutional Neural Networks and to support

different styles of convolutional and fully-connected layers. The tool can be extended

with support for additional layer types and may also serve as a skeleton for automatic

hardware accelerator generations in other machine learning domains. The objective of this

framework is to design an easy-to-use hardware-software co-design flow with the flexibility

of supporting different arithmetics and numerical precisions on a per-layer basis.

Figure 4.2 shows Tomato and Mayo at a high level. The Tomato framework is at the

hardware level and can be easily integrated with the existing Mayo framework. Mayo can

produce compressed models and these models with then be used in Tomato to generate a

hardware accelerator Figure 4.3 further shows the details of hardware accelerator generation

flow named Tomato. The framework starts with an automated design process in software

which uses a search algorithm to explore the choices of fixed-point and shift arithmetics

with varying precisions on the pre-trained CNN model. It then produces optimised models

66

Pre-trained
Weights

Mayo/Software Stack

Model config

Constraints

Tomato/Hardware Stack

Compressed Model

Verilog
tempaltes

Model config

Bitstream

Figure 4.2: A high level illustration of how Mayo and Tomato can be integrated to produce
directly a bitstream for FPGA devices.

that are fully quantised while satisfying the accuracy constraints. In the exploration

procedure, it iteratively uses an accurate hardware resource estimator to provide rapid

predictions of hardware costs and minimise the costs for the searched models. I designed

an analytical model for predicting the hardware utilisation based on my empirical data,

the designed prediction model then shows a highly accurate estimation (within 2% errors)

on the targeting FPGA devices. The cost, latency, number of lookup tables (LUTs) and

block RAMs (BRAM) usage, is estimated using analytical models generated from post

synthesis results for a wide range of module parameters. The final optimised CNN model

is then fine-tuned on the original training dataset to minimise accuracy degradation.

It is notable that from the optimised model, Tomato generates dedicated compute

engines for each convolutional layer in a streaming fashion. As I have mentioned earlier, the

compute engines are connected in a pipeline, each takes a stream of inputs and produces

a stream of outputs. The isolated compute engines can thus have the freedom to use

different quantisations with individual bit-widths. To minimise hardware utilisation, layers

that exceed throughput requirements can be folded (i.e. only partially unrolled) to share

individual processing elements temporally. The framework automatically computes the

optimal unroll factors required to parallelise each layer which minimises stalls and idle

circuits. Finally, the framework generates SystemVerilog output describing the hardware

implementation of the input model, which is in turn synthesised into circuits with fine-tuned

weights.

67

Model	Config

Hardware	
Constraints

Meeting	HW	
Constraints?

Pretrained
Weights

Greedy	Search Resource	Estimator

Throughput	
Matching

Retraining

Accuracy
Constraints

Hardware	
GenerationVerilog	Template Synthesis	&	Routing

No

Throughput	
MatchingModel	Config

Scaling	factors

Verilog	
files

Scaling	factors

Trained	Weights

Yes

Searched	
Arith Info

Estimated	
Hardware	Info

Bitstream

Software	Stack

Hardware	Stack

Figure 4.3: Framework overview for generating the accelerator for a targeting network on
a particular dataset. The overall framework is composed of the Software Stack (Mayo)
and Hardware Stack (Tomato).

4.4 Automatic quantisation exploration

As both the bit-width of weights and their representation (i.e. either shift or fixed-width)

may vary on a layer-by-layer basis, it is intractable to explore all possible combinations

exhaustively. For this reason, I introduce an algorithm which minimises the hardware

design complexity under a given accuracy constraint. Algorithm 1 provides an overview

of the search algorithm, which accepts as inputs a CNN model with weight parameters

θ and N layers {l1, l2, . . . , lN}, the accuracy constraint αbudget, the hardware resource

constraint hbudget, and an initial state of quantisation hyperparameters q0 which uses 8-bit

fixed-point quantisation for all layers. Here, θ′, α← finetune(θ, q, E) fine-tunes the model

parameters θ under hyperparameters q for E epochs and returns the validation accuracy of

fine-tuned model. I found empirically E = 3 is sufficient to recover most accuracy loss due

to quantisation. To traverse the search space efficiently, I introduce a relation R(L), where

L is a set of modifiable layers. Each transition (q, q′) ∈ R(L) finds a one step change to

the configuration q, i.e. decreasing the bit-width by 1 or changing the arithmetic used by

a layer layer changed(q, q′) ∈ L. In each step, the algorithm is designed to greedily find a

68

new configuration q′ from q which results in the steepest reduction in hardware resources

hwcost(q)− hwcost(q′) until all layers cannot be modified further without violating the

accuracy constraint. Additionally, if the hardware resource constraint hwcost(q) ≤ hbudget

is already satisfied then I exit early to minimise accuracy loss. In my experiments, I chose

αbudget to be 0.95α, where α is the original accuracy, to generate a fully quantised model

with efficient hardware usage. The resulting model is then fine-tuned to further increase

accuracy.

Algorithm 1 Search Algorithm

1: function Search(θ, q0, αbudget, hbudget, E)
2: q ← q0; L← {l1, l2, . . . , lN}
3: while L 6= ∅ do
4: q′ ← argmax(q, q′) ∈ R(L)(hwcost(q)− hwcost(q′))
5: θ′, α← finetune (θ, q′, E)
6: if α ≥ αbudget then
7: q ← q′

8: θ ← θ′

9: if hwcost(q′) ≤ hbudget then
10: break
11: end if
12: else
13: L← L− layer changed(q, q′)
14: end if
15: end while
16: return q, θ
17: end function

This quantisation search is the core for the software part in the automatic generation

flow as illustrated as the orange regions in Figure 4.2.

4.5 Automatic hardware generation

4.5.1 Macro-architectures

From the macro-architecture point of view, Figure 4.4 shows the differences between a

normal homogeneous core style accelerator and the generated flattened streaming cores.

In the flattened streaming cores, each convolution has its dedicated compute engine, slide

buffer and weight buffer. Since the hardware is generated solely for the targeted CNN

and each compute core is dedicated for a particular layer, with a suitable strategy to

parallelise compute, the generated hardware can reach very high compute efficiency and

have minimal idle hardware. In fact, in later measurements, I will show that the compute

units generated from Tomato has a high utilisation that is constantly at around 84%.

69

C

C2 C3C1

Homogeneous	Time-shared	
Compute	Core

Flattened	Streaming	Cores

L1 L2 L3

L2L1

L2

L2L1 L3L3

1st cycle 2nd cycle

1st cycle 2nd cycle 3rd cycle 4th cycle

Idle	Circuits

Inactive	Compute

Active	Compute

L1

L2

L3

3-layer	CNN

Execute Compute	Flow

k2×ic

w×h×oc

Figure 4.4: An illustration of the computation flow on executing three layers of convolutions
(L1, L2, L3) at different clock cycles. C represents a large homogeneous compute core and
C1, C2, C3 are smaller compute cores in a flattened streaming architecture. The rectangle
block of each convolution layer represents input dimensions of a convolution flattened in
2D. k, ic, oc, w, h are kernel size, input/output channels, width and height of input feature
feature maps respectively.

4.5.2 Micro-Architecture: roll-unrolled convolutions

In this section, I introduce the roll-unrolled convolution compute core, this is designed

to minimise hardware costs when input and output data rates permit. As an example, I

consider a convolution layer with a kernel size of K, which takes as input feature maps Xl−1

of shape H ×W ×Cl−1, and produces output feature maps Xl with H ′ and W ′ depending

on the stride size and padding length. In addition, it is noteworthy that a convolution

with a stride size of 1 can produce pixels in the output feature maps at the same rate

of it taking input pixels. A convolution with a stride size of 2, however, produces an

output pixel 4 times slower than it can consume an input pixel. Layers in a convolutional

network can therefore process their feature maps at an exponentially slower rate as more

proceeding layers are strided, and in turn have greater opportunities to reuse data-paths.

By way of illustration, assuming the input image is fed at a rate of 1 cycle per pixel, the

input/output throughput rates of each layer in a MobileNet-V1 can be found in the last

column of Table 4.1.

In order to maximise a layer’s utilisation and minimise hardware costs, rather than

introducing stall cycles, I introduce two unroll factors, U and U ′, for input and output

channels respectively. I partially roll input channel dimension Cl−1 into U -sized blocks

to save hardware resource. I still accumulate Cl values in parallel. In other words, all Cl

channels of a pixel of the output feature maps are unrolled and computed concurrently.

Fully unrolling output channels during multiplication and accumulation is essential to

allow stall-free computation. Finally, output channels are rolled after accumulation to

U ′-sized blocks for batch normalisation. Fused batch normalisation and ReLU operations

70

are time-shared for U ′ output channels, as the next layer has an input block size equal to

U ′. As it processes all input channels Cl−1 in blocks of size U , it uses only U ×Cl, instead

of Cl−1×Cl parallel shift-accumulate or multiply-accumulate units, requiring
⌈
Cl−1

U

⌉
cycles

to complete the computation of a single pixel of all output channels, as shown in Figure 4.5.

Tomato does not use roll-unrolled in depthwise convolutions. Figure 4.6 shows the

computation pattern for depthwise convolutions. In contrast to normal convolutions,

depthwise convolutions are channel-wise operations, i.e. they do not exchange information

across channels. By rolling input channels in depthwise layers, the generated outputs are

also rolled, different from the normal roll-unrolled compute pattern. In this way, I exactly

match the throughput of incoming and upcoming computations while minimising resource

utilisation. Each parallel adder tree sums up K2 values and is fully pipelined, where K is

the kernel size.

Roll-unrolled should not be confused with loop tiling. Loop tiling reorders the access

pattern so that it is more friendly to either cache access or DRAM bandwidth utilisation

in systolic array based CNN accelerators. As Tomato pipelines multiple frames instead of

batching them, I did not change the access pattern. The purpose of rolling and unrolling in

Tomato’s streaming cores are to minimise hardware and provide a stall-free computation

dataflow, a fundamentally different objective.

⋮

≪ or *
ACC

⋮

Weights Output Feature Maps

⋮

ACC

ACC

Shift or Mult

Input Feature Maps
(After Slide Buffer)

Figure 4.5: An illustration of roll-unrolled computation for normal convolution (including
pointwise convolution): blue indicates data elements computed in a single cycle.

4.5.3 Striding and rolling: matching the throughput

By adjusting the unroll factors U and U ′, the framework smartly matches the throughput

between convolution layers with different channel counts and stridings for higher efficiency.

The only free parameter now is the input pixel rate at the very first layer of the CNN.

The input pixel rate determines how many pixels of an input image are fed into the

accelerator at each clock cycle. For instance, an input rate of 1
32

means I consume 1 input

71

Input Feature Maps
(After Slide Buffer)

Weights Output Feature Maps

≪ or *
Shift or Mult

Figure 4.6: An illustration of depthwise convolution: blue indicates data elements computed
in a single cycle.

pixel in 32 clock cycles. The choice of the input pixel rate directly impacts the trade-off

between performance and the hardware resources required. If this input pixel rate is 1,

the generated hardware is optimised for performance, fully-pipelined, and never stalls

the input pixel stream. When the input pixel rate decreases, because of the automatic

matching, unroll factors of all subsequent convolution layers decrease and the generated

hardware thus utilises fewer resources but has an increased latency.

I now explain how the automated throughput matching works. The framework utilises

the classic sliding window design — one pixel of a output feature map is produced once all

pixels of the sliding window on input feature maps have arrived [12]. The input stream and

output stream of strided convolutions, however, can have different input and output rates.

For instance, when the stride size is 2, the output stream is then 4 times slower than the

input stream (striding occurs in the two spatial dimensions). Table 4.1 shows the unrolling

factors U and U ′ that the framework picked for each convolution in MobileNet-V1 when

choosing the input pixel rate to be 1. Here, for each pixel, Ci

U
represents the number of

clock cycles required to iterate over all input channel values, and Co

U ′
is the number of

cycles required to finish generating all output channel values. Taking the second depthwise

convolution layer as an example, this layer has a stride size of 2 and the framework rolls

computations on the output channel side by a factor of Co

U ′
= 16 so that U ′ = 4 values of

each output channel are computed concurrently. Finally, all of the unrolling information

is provided to the hardware templates in order to instantiate the appropriate hardware.

4.5.4 Batch normalisation and rounding

Each convolved output has an inflated precision as mentioned in the previous section, and

I then subsequently apply batch normlisation on these values.

Batch normalisation (BN) is commonly used in CNNs to accelerate training [83]. As

shown in Equation (4.1), during inference, BN normalises convolutional outputs Xl in

72

Table 4.1: Unrolling factors U and U ′ are generated by the throughput matcher for
MobileNet-V1, depending on the input and output channel counts (Cl−1, Cl), and the
stride of each convolution. dw and pw are depthwise and pointwise convolution. s1 and s2
represents strides are 1 and 2.

Types Cl−1 / Cl U / U′ Cl−1

U / Cl

U′

Conv / s2 3 / 32 3 / 8 1 / 4
Conv dw / s1 32 / 32 8 / 8 4 / 4
Conv pw / s1 32 / 64 8 / 16 4 / 4
Conv dw / s2 64 / 64 16 / 4 4 / 16
Conv pw / s1 64 / 128 4 / 8 16 / 16
Conv dw / s1 128 / 128 8 / 8 16 / 16
Conv pw / s1 128 / 128 8 / 8 16 / 16
Conv dw / s2 128 / 128 8 / 2 16 / 64
Conv pw / s1 128 / 256 2 / 4 64 / 64
Conv dw / s1 256 / 256 4 / 4 64 / 64
Conv pw / s1 256 / 256 4 / 4 64 / 64
Conv dw / s2 256 / 256 4 / 1 64 / 256
Conv pw / s1 256 / 512 1 / 2 256 / 256
Conv dw / s1 512 / 512 2 / 2 256 / 256
Conv pw / s1 512 / 512 2 / 2 256 / 256
Conv dw / s2 512 / 512 2 / 1 256 / 512
Conv pw / s1 512 / 1024 1 / 1 512 / 1024
Conv dw / s1 1024 / 1024 1 / 1 1024 / 1024
Conv pw / s1 1024 / 1024 1 / 1 1024 / 1024
Avg Pool / s1 1024 / 1024 1 / 1 1024 / 1024
FC / s1 1024 / 1000 1 / 1 1024 / 1000

a channel-wise fashion with a moving mean µ and a moving standard deviation σ, then

applies affine transformation on them with the learned γ and β:

Xl = γ
Xl − µ
σ

+ β (4.1)

It is notable that Equation (4.1) can be re-arranged into a channel-wise affine transforma-

tion. In the CNN feed-forward stages, I respectively quantise the scaling and offset factors

of this affine transformation to fixed-point numbers:

y = quantise8.8

(γ
σ

)
x + quantise8.8

(
β − γµ

σ

)
, (4.2)

where quantise8.8(z) quantises z into 16-bit fixed-point values with a binary point at 8.

73

4.6 Evaluating the performance of automatically gen-

erated hardware

4.6.1 Experimental setups

In this section, I report results for automatically generated hardware implementations for

three distinct networks, each optimised for a different dataset. I use CifarNet [201], an

8-layer CNN with 1.30M parameters and 174M multiply-accumulates on the CIFAR-10

dataset [94], MobileNet-V1 [73] on the ImageNet dataset [93] and a customised 5-layer

CNN (FashionNet) for the Fashion MNIST dataset [176]. The first two networks are

relatively large, but the last network is small. I use MobileNet-V1 design as a comparison

to showcase the performance achieved from this hardware and software co-design workflow

in comparison to other published accelerators. The hardware part (SystemVerilog output)

is generated automatically using templates by the framework. Synplify Premier DP is

used for synthesis and post-synthesis timing analysis. The final designs are actually

implementable on FPGAs using Xilinx Vivado to place and route the full-size MobileNet

design.

4.6.2 Resource utilisation

For MobileNet, the design is fully-pipelined and never stalls the input stream (#OPs
#OPs/cycle

=

224× 224). Note that 224× 224 is the input image size and this means the accelerator

consumes an entire image in exactly 224× 224 clock cycles. The design utilises 84% of my

13479 compute units (shift-and-add or multiply-and-add) on every clock cycle. The high

utilisation rate of the hardware translates to a high activity ratio in the circuits since most

components are active all the time. This fully quantised MobileNet found by Algorithm 1

uses 3-bit shift weights in its pointwise layers, and fixed-point weights in its depthwise

layers with precisions ranging from 3 to 7.

Table 4.2: Summary of tested networks on the Tomato. IPP stands for input pixel rate.

Network IPP Platform Perf Metrics LUTs Registers BRAMs DSPs Top-1 Top-5 Size

MobileNet-V1 1 Intel Stratix 10
Frequency 156 MHz Used 926K 583K 1430 297 Orig. 70.71 89.53 33.92MB
Latency 358us Total 1866K 3732K 11721 5760 Quant. 68.02 88.02 16.1MB
Throughput 3109 fps Ratio 49% 15% 12% 5% ∆ -2.69 -1.51 2.11×

CifarNet 1
32

Intel Stratix V
Frequency 207MHz Used 304K 280K 771 84 Orig. 91.37 99.68 4.94MB
Latency 261us Total 469K 939K 2.56K 256 Quant. 91.06 99.58 520KB
Throughput 6317 fps Ratio 64% 29% 30% 32% ∆ -0.31 -0.10 9.73×

CifarNet 1
288

Intel Cyclone V
Frequency 116MHz Used 102K 84.7K 715 82 Orig. 91.37 99.68 4.94MB
Latency 4.01ms Total 227K 454K 1.22K 342 Quant. 91.06 99.58 520KB
Throughput 393 fps Ratio 44% 18% 58% 24% ∆ -0.31 -0.10 9.73×

FashionNet 1
9

Xilinx Artix 7
Frequency 98MHz Used 49.3K 32.7K 40 240 Orig. 91.79 99.67 443KB
Latency 138us Total 63.4K 127K 135 240 Quant. 91.57 99.56 65.3KB
Throughput 13.9kfps Ratio 77% 25% 29% 100% ∆ -0.22 -0.11 6.78×

Table 4.2 shows the total amount of hardware utilised for the generated accelerators for

all networks on different devices. The MobileNet design uses an input pixel rate of 1 for

74

the best performance (achieving 3109 FPS on an Intel Stratix 10). The proposed workflow

is a scalable one since it can adjust the input pixel rate to control a trade-off between

performance and hardware utilisation. CifarNet results in Table 4.2 show how it is possible

to target a small FPGA device (Cyclone V) by adjusting this factor to 1
288

. The results

suggest a 3× reduction in LUT usage compared to the design when the input pixel rate is

set to 1
32

. It is also observed an increase in latency, but part of the increase attributes to

the frequency differences running on various devices. On the other hand, if provided with

a small network (FashionNet), the proposed framework generates hardware that classifies

at a latency of 0.14ms on a very small FPGA device. The quantised FashionNet uses 3-bit

shift quantisation in the most resource-intensive third layer, and the remaining layers use

fixed-point weights with bit-widths from 5 to 7. Although FashionNet is small, it is a good

example of a specialised network produced for resource constrained edge devices; other

examples include emotion recognition [19].

I explore in Figure 4.7 the optimised CifarNets obtained with Algorithm 1 (denoted

by the “hybrid” points) and compare the results against shift (“shift”) and fixed-point

(“fixed”) models with all layers sharing the same bit-widths ranging from 3 to 8. To

explore the trade-off between top-1 error rates and resources, I ran Algorithm 1 20 times

by respectively taking as inputs the accuracy budget values αbudget ranging from 80%

to 100% at 1% increments. Here hbudget is set to 0 as I always minimise the resource

utilisation. I constrain each layer to use either shift or fixed-point quantised weights and

choose a bit-width ranging from 3 to 8. Additionally, E = 0 meaning that I skip the

fine-tuning process; without fine-tuning the accuracies are sub-optimal but the search

process above can complete within 1 hour. Figure 4.7a shows the trade-off between resource

utilisation and top-1 errors under the same throughput constraints. Figure 4.7b further

varies the throughput scaling of the optimised results, and shows that when synthesised

into circuits, the the optimised models (“hybrid”) consistently outperforms models (“shift”

and “hybrid”) with either shift or fixed-point quantisation under the same bit-width

applied across all layer weights. Finally, Figure 4.7c illustrates all results found by the

three methods and the trade-off relationship between top-1 error rates and resource-latency

products.

Hybrid quantisation reduces the accuracy degradation and improves model compression

rates by utilising multi-precision multi-arithmetic convolutions. Importantly, I consider

the ImageNet [93] classification task for MobileNet. This challenging dataset leaves less

headroom for compression techniques. The classification results achieved on this large

dataset using a relatively compact network proves that the workflow is also robust on

other cases where the model is over-provisioned on the target dataset.

75

Table 4.3: A comparison of CNN inference performance on FPGA and GPU platforms.
The quantisation of weights and activations are on the left. Target platform, frequency,
latency, throughput and arithmetic performance are on the right. Metrics with ∗ are our
best-case estimations as they are not mentioned in the original papers. Note VGG16 has
a similar top-5 accuracy to MobileNet-V1 when neither is quantised, many of the works
below do not report ImageNet accuracies after quantisation.

Quantisation(s)
Platform

Frequency
(MHz)

Latency
(ms)

Throughput
(FPS)

Arithmetic
perf. (GOP/s)Implementation Weights Acts

V
G

G
1
6

Throughput-Opt [155] FXP8 FXP16 Intel Stratix V 120 262.9 3.8∗ 117.8
fpgaConvNet [164] FXP16 FXP16 Xilinx Zynq XC7Z045 125 197∗ 5.07 156

Angel-Eye [55] BFP8 BFP8 Xilinx Zynq XC7Z045 150 163∗ 6.12∗ 188
Going Deeper [132] FXP16 FXP16 Xilinx Zynq XC7Z045 150 224∗ 4.45 137

Shen et al. [147] FXP16 FXP16 Xilinx Virtex US XCVU440 200 49.1 26.7 821
HARPv2 [122] BIN BIN Intel HARPv2 – 8.77∗ 114 3500

GPU [122] FP32 FP32 Nvidia Titan X – – 121 3590

M
ob

il
eN

et

Ours Mixed FXP8 Intel Stratix 10 156 0.32 3109 3536
Ours Mixed FXP8 Xilinx Virtex US+ XCVU9P 125 0.40 2491 2833

Zhao et al. [199] FXP16 FXP16 Intel Stratix V 200 0.88 1131 1287
Zhao et al. [200] FXP8 FXP8 Intel Stratix V 150 4.33 231 264

GPU FP32 FP32 Nvidia GTX 1080Ti – 279.4 515 586

400 600 800 1000 1200
Resources (kLUTs)

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

20.0%

To
p-

1
Er

ro
r

shift
fixed
hybrid

(a) Number of LUTs vs top-1
error under the same 1

32 scaling
and the same throughput.

103 104

Resources (kLUTs)

102

103

La
te

nc
y

(
s)

shift
fixed
hybrid

(b) Number of LUTs vs latency
for models with ≤ 10% top-1
errors.

105 106

Resource-Latency Product (kLUTS s)

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

20.0%

To
p-

1
Er

ro
r

shift
fixed
hybrid

(c) Error vs area-latency prod-
uct for all optimized models.

Figure 4.7: A case study of trade-off options among hardware utilization (LUTs), per-
formance (latency) and model accuracy (top-1 error rate) before fine-tuning, targeting
a clock frequency of 200 MHz. The LUTs and latency numbers are from the hardware
estimator. Here, “shift” and “fixed” respectively indicate using the same shift and fixed-
point quantisation method across all layers with the same weight precisions. The “hybrid”
points are optimized by Algorithm 1. The area shaded in red, green and blue respectively
denote the 2D Pareto frontier of “shift”, “fixed” and “hybrid” optimized results.

4.6.3 Performance evaluation

I compare the MobileNet-V1 design generated by my framework with existing FPGA

accelerators in Table 4.3. This comparison only considers networks in the ImageNet

dataset that achieve greater than 70% top-1 accuracy when not quantised. The computer

vision community spends a significant amount of effort in optimizing model architecture, I

note that it is important to generate results for the latest models as they offer the best

accuracy/cost trade-offs. Results for older models in terms of GOp/s can be misleading.

76

The generated design is different from most existing designs examined in Table 4.3 in

the following ways. First, the framework exploits hybrid quantisation to minimise the

impact of quantisation errors. Second, using the throughput scaling trick, the amount

of hardware required is reduced significantly. Most of the examined designs rely on a

high DRAM bandwidth with a large monolithic compute core. As discussed previously,

a large compute core cannot explore multi-precision and multi-arithmetic quantisations

and struggles to fully utilise compute units on convolutions with varying channel counts,

kernel sizes and input feature sizes. Tomato generated designs compute various layers

concurrently and quantise each layer differently, thus achieving a very high utilisation of

my compute units and to operate at around 3.5 TOps/s on Stratix 10. Note that, for

accelerators that I compare against, the arithmetic performance reported in Table 4.3

considers the peak performance assuming an unbounded DRAM bandwidth. In reality,

such designs can easily be limited by the available memory bandwidth. In contrast, this

is not a concern in this design as all weights and activations are held on the FPGA.

Additionally, the generated design has a high throughput since operations rarely stall.

Designs proposed by Bai et al. [12] and Zhao et al. [199] have to execute computations in

a layer-wise fashion, and thus operations in the next layer only executes when the current

layer finishes. In this framework, similar to Shen et al. [148], computations in different

layers happen concurrently in the same pipeline stage while later layers never stall earlier

layers. Moreover, consecutive image inputs can be fully pipelined, because the generated

hardware utilises streaming sliding windows. These features help the hardware to achieve

high throughput compared to other designs (Table 4.3). The proposed workflow avoids

complex and time-consuming design space exploration as necessary in many compared

FPGA accelerators [12, 200].

In terms of performance, this design achieves a higher throughput and a lower latency

compared to all designs listed in Table 4.3. I notice that most CNN accelerators report

theoretical upper bounds for arithmetic performance and throughput. In terms of latency,

the numbers are reported optimistically assuming DRAM accesses cause no stalls. In this

design, since I stream in pixels of the input image, the computation pattern differs from

most existing designs. The reported values in Table 4.3 represents the true performance and

make no assumptions regarding DRAM bandwidth. The system automatically produces an

implementation of MobileNet for the Stratix 10 FPGA that outperforms Zhao et al. [199]

by 2.44× in latency and 3.52× in throughput.

4.6.4 Multi-FPGA acceleration

The flattened streaming style employed by Tomato makes it easy to partition the generated

design across multiple FPGAs This feature makes Tomato highly scalable with respect to

network sizes and/or FPGA sizes. I demonstrate in this section an example of partitioning

77

MobileNet-V1 onto two Stratix V FPGAs, connected through enhanced small form-factor

pluggable (SFP+) interfaces. I present the performance results in comparison to Zhang

et al. [190] in Table 4.4, and the detailed hardware utilisation information in Table 4.5.

The latency is not penalised thanks to the low latency of SFP+, which contributes only a

0.0013ms latency overhead.

The simple case study of partitioning the same MobileNet-V1 design to two devices

demonstrates that, first, Tomato generated designs are scalable from single to multi-FPGAs;

second, aiming accelerating new network architectures with mixed quantisations bring

significant improvements in accuracies, latency and throughput.

Table 4.4: Multi-FPGA acceleration of CNNs. MBNet represents MobileNet, VGG-D
and VGG-E are both VGG16 based networks but different configurations, one is latency
oriented and one is throughput oriented [190].

Network Acc (%) #Device Lat (ms) Tpt (GOPs)

MbNet-V1 (ours) 68.02 2 Stratix V 0.32 3536
VGG-D [190] 66.52 2 VX690t 200.9 203
VGG-E [190] 66.51 7 VX690t 151.8 1280

Table 4.5: Multi-FPGA hardware utilization.

Device No Frequency LUTs Regs BRAM DSP

0 156MHz 362.7k 278.8k 828 256
1 156MHz 345.9k 303.6k 598 31

4.7 Summary

In this chapter, I presented a hardware-software co-design workflow to automatically

generate high-performance CNN accelerators. The workflow is able to quantise weights to

both fixed-point and shift values at various precisions, and keeps activations to fixed-point

numbers. In addition, it transforms batch normalisation to simple affine operations with

fixed-point scaling and offset factors. In hardware, the framework utilises the Roll-Unrolled

compute pattern and provides flexibility in rolling computations in the channel dimension.

As a result, the guided rolling minimises computation while keeping the input stream

stall-free. The results showed state-of-the-art performance in terms of model accuracy,

latency and throughput. The implemented accelerator for MobileNet is fully pipelined

with sub-millisecond latency (0.32ms) and is able to classify at around 3000 frames per

second.

78

Chapter 5

Hardware-aware automated machine

learning

The previous two chapters describe several software and hardware techniques for improving

the energy efficiency of running DNN inference on different hardware systems. These

methods assume pre-trained networks and pre-defined network architectures. In this

chapter I will explore opportunities in the model architecture space and the creation of

automated tools to aid in their designs. This chapter aims to demonstrate that Automated

Machine Learning (AML) is a powerful tool for designing and optimising emerging neural

network types and also learning scenarios.

In this chapter, I will first introduce the concepts of Automated Machine Learning

(AutoML) and Network Architecture Search (NAS), and discuss why they are particularly

useful for designing hardware-aware DNNs. I show two particular applications of NAS in

this chapter and demonstrate how they can be an efficient solution for emerging neural

network types and new learning setups. First, I demonstrate how state-of-the-art NAS

algorithms can be made hardware-aware and show a novel NAS algorithm aiming at

finding efficient Graph Neural Networks (GNNs). Later, I show how NAS algorithms can

be deployed in a many-task many-device setup for few-shot learning.

This chapter includes relevant contents published in:

• Yiren Zhao, Duo Wang, Xitong Gao, Robert Mullins, Pietro Lio, and Mateja Jamnik.

Probabilistic dual network architecture search on graphs. In Deep Learning on

Graphs: Method and Applications Workshop for 35th AAAI Conference on Artificial

Intelligence (DLG-AAAI 2021), recipient of the best student paper award.

• Yiren Zhao, Duo Wang, Daniel Bates, Robert Mullins, Mateja Jamnik, and Pietro

Lio. Learned low precision graph neural networks. In The 1st Workshop on Machine

Learning and Systems (EuroMLSys 2021), full version is in submission

• Yiren Zhao, Xitong Gao, Ilia Shumailov, Nicolo Fusi, Robert Mullins. Rapid Model

79

Architecture Adaption for Meta-Learning. In submission

Yiren Zhao conceived the experiments for graph-based NAS methods. Duo Wang later

enhanced the search process with a Gumbel-softmax based stochastic method. Yiren

Zhao conceived the experiments for the MAML-based NAS and and implemented it as an

extension to the MAML++ framework [8]. Ilia Shumailov and Xitong Gao ported other

versions using metric-based MAML frameworks as a comparison baseline.

5.1 Motivations for automated machine learning net-

work architecture search

DNNs achieve state-of-the-art results on a wide range of tasks, but tuning the architectures

of DNNs on new datasets is getting increasingly difficult. First, the number of possible

operations inside a neural network is growing rapidly. In the early years, fully-connected

and convolutional layers are the most popular choices for neural networks [93] and only

a handful of activation functions are available [178]. The community later witnessed an

increasing number of neural network layers, including different normalisations (batched

normalisation [83], layer normalisation [11], [160] etc..) and activation functions (SELU [90],

ELU [30] etc.). The large number of choices for neural network layers makes architectural

engineering extremely tedious and it is hard to prove that manually selected operators are

anywhere near optimal. I refer to the process of picking individual operators from a set of

possible operators as micro-architecture design. Secondly, neural networks are now having

complex structures rather than the simple sequential connections found in AlexNet [93]

and VGGNets [151]. Later network architecture designs like ResNets [66] and DenseNets

[78] start to utilise shortcut connections and have adopted more complex structures. The

recently proposed Vision Transformer (ViT) [40] borrows the NLP transformer designs

and has sophisticated structures involving multiple attention mechanisms [162].

These two above-mentioned factors together create a large design space for neural

network architectures. Most current literature on AutoML and NAS identify the two

reasons above as the main motivations for NAS algorithms. In this dissertation, the

Network Architecture Search (NAS) are also motivated by the following facts.

First, there are now more and more neural network architecture types. In addition to

the rapid growth of the micro-architectures and complex structures of existing DNNs, it

is increasingly common to see DNNs applied to new data types such as graph [89] and

tabular data [10, 183]. In this chapter, I apply NAS methods to graph neural networks

and demonstrate how this automation can help to produce hardware-aware GNNs. The

searched GNNs not only have efficient neural network architectures but also have weights

and activations being quantised to mixed-precision numbers. I show how NAS is a scalable

80

approach for emerging network types, and how it can be combined with additional search

spaces to produce models with hardware awareness. Second, there is now a growing need

of applying neural networks to various hardware systems and learning setups. Compared

to a few years ago, I now have a diverse set of hardware devices, ranging from server-class

GPUs to IoT devices, having the need of executing DNN inference. This chapter then

considers a novel many-task many-device deployment scenario, in particular, I consider

this setup in few-shot learning and demonstrate how NAS can be an effective approach in

this setup.

5.2 Network architecture search for GNNs

Graph Neural Networks (GNNs) have been successful in fields such as computational

biology [214], social networks [62], knowledge graphs [111], etc. The ability of GNNs to

apply learned embeddings to unseen nodes or new subgraphs is useful for large-scale ML

systems on graph data, ranging from analysing posts on forums to creating product listings

for shopping sites [62]. Most large production systems have high throughputs, running

millions or billions of GNN inferences per second. This creates an urgent need to minimise

the computation cost of GNN inference.

GNN models are typically smaller than CNNs or RNNs, but the need to apply compu-

tation at each node or each edge across a graph causes a rapid growth of the computation

resources required as the graph size increases. The number of floating point operations

(FLOPs) and the maximum possible inference batch size of GNN models are tightly coupled

to the size of the input graphs. Figure 2.2 illustrates that a simple 2-layer Graph Attention

Network (GAT) [163] can have much higher computational requirements than well-known

vision models if input graphs are large. The increased number of FLOPs means a greater

inference latency, while a large activation size (the number of temporal activation values

generated at run-time) will limit the inference batch size given a limited device RAM

budget, and thus decrease the inference throughput.

One common approach to reduce computation and memory costs in neural networks is

quantisation [202, 192, 79, 212, 82]. A narrower data format (fewer bits) not only reduces

the model size but also introduces the chance of using simpler arithmetic operations on

existing or emerging hardware platforms [202, 79]. Quantisation methods to date have

focused solely on CNNs and RNNs, but unfortunately cannot be directly adopted in

GNNs. First, in CNNs and RNNs, it is the convolutional and fully-connected layers that

are quantised [79]. GNNs, however, follow a sample and aggregate approach [205, 62],

where a building block of a GNN can be separated into four smaller sub-blocks (Feature

Extraction, Attention, Aggregation and Activation); only a subset of these sub-blocks

has trainable parameters. Second, GNN blocks involve a design space of attention and

81

aggregation mechanisms where the choice of method influences the required numerical

precision. Third, previous CNN NAS methods [174] consider two possible quantisable

components (weights and activations) for a single layer. Given n quantisation options, this

provides n2 combinations. I show that a single GNN layer has n6 quantisation combinations,

offering a much larger search space.

In this section, I propose Low Precision Graph NAS (LPGNAS), which aims to

automatically design quantised GNNs. The proposed NAS method is single-path, one-shot

and gradient-based. Additionally, LPGNAS’s quantisation options are at a fine granularity

so that different sub-blocks in a graph block can have different quantisation strategies. I

describe the details of how to design a hardware-aware GNN NAS method. Section 5.2.1

and Section 5.2.2 describe the architectural and quantisation search spaces of GNNs

respectively. I discuss the results of the proposed NAS in Section 5.2.4.

5.2.1 Architectural design space for GNNs

Deep Learning on graphs has emerged into an important field of machine learning in

recent years, due to the increase in the amount of graph-structured data. Graph Neural

Networks has scored success in a range of different tasks on graph data, such as node

classification [163, 62], graph classification [195, 186, 180] and link prediction [194]. There

are many variants of graph neural networks proposed to tackle graph structured data.

In this work I focus on GNNs applied to node classification tasks based on Message-

Passing Neural Networks (MPNN) [53]. The objective of the neural network is to learn

an embedding function for node features so that they quickly generalise to other unseen

nodes. This inductive nature is needed for large-scale production level machine learning

systems since they operate on a constantly changing graph with many incoming nodes

(e.g. shopping history on Amazon, posts on Reddit etc.) [62].

Most of the manually designed GNN architectures proposed for the node classification

use message passing neural networks. The list includes, but is not limited to, GCN [89],

GAT [163], GraphSage [62], and their variants [149, 193, 22, 167]. These works differ in

ways of computing the edge weights, sampling neighbourhood and aggregating neighbour

messages. For an emerging type of neural networks, as mentioned previously, neural network

architecture search offers a rapid and efficient exploration of the potential architectural

design space. Let first look at the architectural design space in details and consider GNNs

based on the message-passing mechanism. In each GNN layer, nodes aggregate attention

weighted messages from their neighbours and combine these messages with their own

feature. Formally, each GNN layer can be described as:

hk = Act(Aggr(Atten(ak, Linear(wk, hk−1)))) (5.1)

82

Here hk−1 ∈ RN×D is representation for transformed features, where N is the number of

nodes in a graph and D is the dimension of the feature. In GNNs, there is typically a linear

transformation (linear layer in Figure 5.1) in the form of W khk−1. ak are the attention

parameters for messages passed from neighbouring nodes (attention in Figure 5.1). AGGR

is an aggregation operation for the messages received and is also responsible for combining

aggregated messages with features of the current node. Act is a non-linear activation.

Linear Layer Attention
Mechanism Aggregation Activation

Graph Block

Messages from Neighbours

Figure 5.1: The structure of a single graph block consists of four sub-blocks: Linear Layer,
Attention, Aggregation and Activation.

A Graph Block is similar to a cell employed in the CNN NAS algorithm DARTS [113].

DARTS uses a weighted sum to combine outputs of all candidate operators. In the

proposed NAS, I use the arg max function, which allows only one candidate operator to

be active in each training iteration. Let ōi,k be the kth sub-block in Graph Block i, and

oi,k,t be the tth candidate operator for ōi,k. ōi,k is then computed as:

ōi,k = oi,k,tmax
i,k

,where tmaxi,k = arg max
t∈T

P a
i,k,t. (5.2)

Here, P a
i,k,t is the probability of the tth candidate operator of sub-block k and layer

i assigned by the NAS Controller. P is a probability distribution over all candidate

operators, and P ∈ RT,K,I , where T , K and I are the number of candidate operators,

sub-blocks and layers respectively. This hard-max approach considerably reduces memory

and computational cost since only one operation is active at any training iterations, whilst

still converges, as shown by Wu et al. [175] and Xie et al. [177]. While the arg max function

is non-differentiable, I use a differentiable approximation which ensures that the controller

receives learning signals. I will introduce the full details of the proposed NAS algorithm in

the next section.

In Table 5.1, I include all the operations described above in our micro-architectural

search space. I show all attention types that are in the search space in Table 5.1. The

attention types includes a various styles of parametric or non-parametric attention methods.

In Table 5.2, I list all activation types that were considered in the architectural search

83

Table 5.1: Different types of attention mechanisms. W here is parameter vector for
attention. <,> is dot product, aij is attention for message from node j to node i.

Attention Type Equation

Const aij = 1
GCN aij = 1√

didj

GAT agatij = LeakyReLU(Wa(hi||hj))
Sym-GAT aij = agatij + agatji

COS aij =< Wa1hi,Wa2hj >
Linear aij = tanh(

∑
j∈N(i)(Wahj))

Gene-Linear aij = Wgtanh(Wa1hi +Wa2hj)

Table 5.2: Different types of activation functions.

Activation Equation

None f(x) = x
Sigmoid f(x) = 1

1+e−x

Tanh f(x) = tanh(x)
Softplus f(x) = 1

β log(1 + eβx)

ReLU f(x) = Max(0, x)
LeakyReLU f(x) = Max(0, x) + αMin(0, x)

ReLU6 f(x) = Min(Max(0, x), 6)
ELU f(x) = Max(0, x) +Min(0, α(ex − 1))

space. Apart from attention and activation types, I also consider searching for the best

hidden feature size, using two fully-connected layers with an intermediate layer with an

expansion factor that can be picked from a set {1, 2, 4, 8}. In terms of aggregation, the

choices considered include mean, add and max.

5.2.2 Quantisation search space for graph neural networks

In a single graph block, or a GNN layer, there are four consecutive sub-blocks (Equa-

tion (5.3)). Equation (5.3) considers node features hk−1 from the k − 1 layer as inputs,

and produces new node features hk with trainable attention parameters ak and weights

wk. The four sub-blocks, as illustrated in Equation (5.3), are the Linear block, Attention

block, Aggregation block and Activation block; these sub-blocks have operations as search

candidates. In Equation (5.4), I label all possible quantisation candidates using Q. The

quantisation function Q can be applied not only on learnable parameters (e.g., wk) but

also activation values between consecutive sub-blocks. In addition, I allow quantisation

options in Equation (5.4) to be different. For instance, Qa can learn to have a different

84

quantisation from Qw, meaning that a single graph block receives a mixed quantisation

for different quantisable components annotated in Equation (5.4).

hk = Act(Aggr(Atten(ak, Linear(wk, hk−1)))) (5.3)

hklinear = Ql(Linear(Qw(wk), Qh(h
k−1)))

hkatten = Qat(Atten(Qa(a
k), hklinear))

hk = Act(Qag(Aggr(h
k
atten)))

(5.4)

Table 5.3: Quantisation search space for weights and activations.

Weights Activations

Quantisation Frac Bits Total Bits Quantisation Frac Bits Total Bits

binary 0 1 fix2.2 2 4
binary 0 1 fix4.4 4 8
ternary 0 2 fix2.2 2 4
ternary 0 2 fix4.4 4 8
ternary 0 2 fix4.8 4 12
fix1.3 3 4 fix4.4 4 8
fix2.2 2 4 fix4.4 4 8
fix1.5 5 6 fix4.4 4 8
fix3.3 3 6 fix4.4 4 8
fix2.4 4 6 fix4.4 4 8
fix4.4 4 8 fix4.4 4 8
fix4.4 4 8 fix4.8 8 12
fix4.4 4 8 fix8.8 8 16
fix4.8 8 12 fix4.8 8 12
fix4.12 12 16 fix4.4 4 8
fix4.12 12 16 fix4.8 8 12
fix4.12 12 16 fix8.8 8 16

The reasons for considering input activation values as quantisation candidates are the

following. First, GNNs always consider large input graph data, the computation operates

on a per-node or per-edge resolution but requires the entire graph or the entire sampled

graph as inputs. The amount of intermediate data produced during the computation is

huge and causes a large pressure on the amount of on-chip memory available. Second,

quantised input activations with quantised parameters together simplify the arithmetic

operations. For instance, Linear(Qw(wk), Qh(h
k−1)))) considers both quantised hk−1 and

quantised wk so that the matrix multiplication with these values can operate on a simpler

fixed-point arithmetic.

The quantisation search space identified in Equation (5.4) is different from the search

85

space identified by Wu et al. [174] and Guo et al. [59]. Most existing NAS methods

focusing on quantising CNNs look at quantisation at each convolutional block. In a graph

neural network, a single graph block is equivalent to a convolutional block. In a single

graph block, I look at more fine-grained quantisation opportunities within the four sub-

blocks. The quantisation search considers a wide range of fixed-point quantisations. The

weights and activation can pick the numbers of bits in [1, 2, 4, 6, 8, 12, 16] and [4, 8, 12, 16]

respectively, and I allow different integer and fractional bits combinations. I list the

detailed quantisation options in the Table 5.3. Table 5.3 shows the quantisation search

space, each quantisable operation identified will have these quantisation choices available.

BINARY means binary quantisation, and TERNARY means two-bit ternary quantisation.

FIXx.y means fixed-point quantisation with x integer bits and y bits for fractions. I also

demonstrate the number of fractional bits (FRAC BITS) and total number of bits (TOTAL

BITS).

In total, as listed in Table 5.3, there are 17 quantisation options; and as illustrated in

Equation (5.4), there are six possible components that join the quantisation search, this

gives in total 176 = 24137569 quantisation combinations for a Graph Neural Network.

5.2.3 Low precision graph neural network architecture search

Algorithm 2 LPGNAS algorithm

1: Inputs: x, y, xv, yv, M , Ma, Mq, K, α, β
2: Init(w,wa, wq)
3: for i = 0 to M − 1 do
4: N = NoiseGen(i, α)
5: Pa, Pq = ga(wa, xval, N), gq(wq, xval, N)
6: πa, πq = arg max(Pa), arg max(Pq)
7: for i = 0 to K − 1 do
8: L = Loss(x, y, πa, πq)
9: w = Optw(L)

10: end for
11: Lv = Loss(xv, yv, πa, πq)
12: if e > Ma then
13: wa = Optwa

(Lv)
14: end if
15: if e > Mq then
16: Lq = QLoss(Pa, Pq)
17: wq = Optwq

(Lv + βLq)
18: end if
19: end for

I describe the Low Precision Graph Network Architecture Search (LPGNAS) algorithm

in Algorithm 2. (x, y), (xv, xv) are the training and validation data respectively. M is the

total number of search epochs, and Ma and Mq are the epochs to start architectural and

86

quantisation search. Before the number of epochs reaches Ma or Mq, LPGNAS randomly

picks up samples and warms up the trainable parameters in the supernet. K is the number

of steps to iterate in training the supernet. After generating noise N , I use this noise

in architectural controller ga and quantisation controller gq together with the validation

data xv to determine the architectural πa and quantisation πq choices. After reaching the

pre-defined starting epoch (Ma or Mq), LPGNAS starts to optimise the controllers’ weights

(wa and wq). I choose the hyper-parameters Mq = 20,Ma = 50, α = 1.0, β = 0.1, unless

specified otherwise. I provide an ablation study in the Appendix to justify our choices of

hyper-parameters. Notice that QLoss estimates the current hardware cost based on both

architectural and quantisation probabilities. As shown in Equation (5.5), I define S as a

set of values that represents the costs (number of parameters) of all possible architectural

options: for each value s in this set, I multiply it with the probability pa from architecture

probabilities Pa generated by the NAS architecture controller. Similarly, I produce the

weighted-sum for quantisation from the set of values Sq that represents costs of all possible

quantisations. The dot product <,> between these two weighted-sum vectors produces

the quantisation loss Lq.

Lq = QLoss(Pa, Pq)

=<
∑

s∈S,pa∈Pa

(s ∗ pa),
∑

sq∈Sq ,pq∈Pq

(sq ∗ pq) > (5.5)

Figure 5.2 is an illustration of the LPGNAS algorithm. I use two controllers (ga

and gq) for architecture and quantisation (named as Controller and Q-Controller in the

diagram) respectively. The controllers use trainable embeddings connected to linear layers

to produce architecture and quantisation probabilities. The architecture controller provides

probabilities (Pa) for picking architectural options of graph blocks and also the router. The

router is in charge of determining how each graph block shortcuts to the subsequent graph

blocks [205]. In addition, the quantisation controller provides quantisation probabilities (Pq)

to both modules in graph blocks and the linear layers in the router. In a graph block, only

the linear and attention layers have quantisable parameters and have matrix multiplication

operations; neither activation nor aggregation layers have any trainable or quantisable

parameters. However, all input activation values of each layer in the graph block are

quantised. The amount of intermediate data produced during the computation causes

memory pressure on many existing or emerging hardware devices, so even for modules

that do not have quantisable parameters, I choose to quantise their input activation values

to help reduce the amount of buffer space required.

87

Figure 5.2: An overview of the LPGNAS architecture. Pa denotes controller output
(Purple) for selecting different operations within each graph block, and for routing shortcut
connections between graph blocks. Pq denotes quantisation controller (Q-Controller)
output (Green) for selecting quantisations for operations within graph blocks and shortcut
connections. Gij are gating functions conditioned on Pa. Solid lines are input streams into
the router while dashed lines are output streams.

5.2.4 Evaluating low precision graph network architecture search

(LPGNAS)

In Section 5.2.4.1, I present the results of running LPGNAS on the Citation datasets, these

datasets take the entire input graph as a single input to the neural networks. Section 5.2.4.2

shows the results of LPGNAS on graph sampling based learning, there exists a sampler on

the input graphs and the sampled subgraphs are then the inputs to the neural network.

The graph sampling approach is a common technique to deal with large input graphs.

5.2.4.1 LPGNAS on Citation datasets

The Citation datasets include nodes representing documents and edges representing citation

links. The task is to distinguish which research field the document belongs to [184].

Table 5.4 shows the performance of GraphSage [62], GAT [163], JKNet [179], PDNAS

[205] and LPGNAS on the citation datasets with a partition of 0.6, 0.2, 0.2 for training,

validation and testing respectively. For the quantisation options of GraphSage, GAT and

JKNet, I manually perform a grid search on the Cora dataset. The grid search considers

various weight and activation quantisations in a decreasing order. I reimplemented

88

Table 5.4: Accuracy and size comparison on Cora, Pubmed and Citeseer with a data split
of 60%, 20% and 20% for training, validation and testing. Our results are averaged across
3 independent runs.

Method Quan
Cora CiteSeer PubMed

Acc Size Act Size Bitops Acc Size Act Size Bitops Acc Size Act Size Bitops
% KB MB G % KB MB G % KB MB G

GraphSage float 74.5± 0.0 92.3 62.1 48.3 75.3± 0.0 237.5 197.1 58.6 85.3± 0.1 32.2 157.7 349.1
GraphSage w10a12 74.3± 0.1 28.8 23.3 5.4 75.1± 0.1 74.2 73.9 6.6 85.0± 0.0 10.1 59.1 39.0

GAT float 88.9± 0.0 369.5 62.1 25.1 75.9± 0.0 950.3 197.1 30.2 86.1± 0.0 129.6 157.7 181.9
GAT w4a8 88.8± 0.1 46.2 15.5 0.73 68.0± 0.1 118.8 49.3 0.89 82.0± 0.0 16.2 39.4 5.3

JKNet float 88.7± 0.0 214.9 139.7 1018.5 75.5± 0.0 505.2 443.5 3230.1 87.6± 0.0 94.5 354.9 2588.2
JKNet w6a8 88.7± 0.1 40.3 26.2 23.9 73.2± 0.1 94.7 83.2 75.7 86.1± 0.1% 17.7 66.5 60.7

PDNAS-2 float 89.3± 0.1 192.2 62.1 50.4 76.3± 0.3 478.6 197.1 62.3 89.1± 0.2 72.8 157.7 77.3
PDNAS-3 float 89.3± 0.1 200.0 93.2 83.2 75.5± 0.3 494.4 295.6 77.3 89.1± 0.2 81.4 236.6 98.4
PDNAS-4 float 89.8± 0.3 205.0 124.2 102.3 75.6± 0.2 500.0 404.5 130.2 89.2± 0.1 102.7 340.3 244.3
PDNAS-4 w8a8 86.9± 0.1 51.3 31.1 12.5 69.3± 0.1 125.0 101.1 32.1 88.9± 0.1 25.7 85.1 71.2
PDNAS-4 w12a16 88.8± 0.2 76.9 46.7 27.3 74.4± 0.2 187.5 151.1 44.2 89.0± 0.1 38.5 126.7 92.3

LPGNAS mixed 89.8± 0.0 67.3 10.5 9.3 76.2± 0.1 56.5 14.6 19.9 89.6± 0.1 45.6 29.7 20.8

GraphSage [62], GAT [163] and JKNet [179] for quantisation, and provide the architecture

choices. For the manual baseline networks, I used the quantisation strategy found on Cora

for Citeseer and Pubmed. For LPGNAS, I searched with a set of base configurations that

I clarified in the Appendix.

There are several hyperparameters in the LPGNAS algorithm (Algorithm 2). As

mentioned, I pick Nq = 20, Na = 50, α = 1.0, β = 0.1, lr = 0.005 through a hyperparameter

study. For β, Nq and Na, I justify the choices in the graph below by sweeping across

different values of β, Na and Nq on the Pubmed dataset (Figure 5.3).

Figure 5.3: Collected statistical information for quantisation, the horizontal axis shows
the chosen bit-width and the vertical axis shows the occurences.

The results in Table 5.4 suggest that LPGNAS shows better accuracy on both Cora

and Pubmed with quantised networks. In addition, although LPGNAS does not show the

smallest sizes on these two datasets, it is only slightly bigger than the manual baselines but

shows a much better accuracy. On Citeseer, LPGNAS only shows slightly worse accuracy

(around 0.1% less) with a considerably smaller size (around 9× reduction in model sizes).

89

Table 5.5: Accuracy and size comparison on Amazon-Computers and Amazon-Photo [146]
Our results are averaged across 3 independent runs.

Method Quan
Amazon-Computers Amazon-Photos

Acc Size Act Size Bitops Acc Size Act Size Bitops
% KB MB G % KB MB G

SageNet float 84.0± 0.0 49.8 4.6 6.8 84.0± 0.1 49.8 4.6 6.8
SageNet w4a8 83.9± 0.1 6.2 1.1 0.21 83.9± 0.1 6.2 1.1 0.21

GAT float 84.4± 0.3 199.8 4.6 3.6 84.2± 0.1 199.8 4.6 3.6
GAT w4a8 81.8± 1.5 25.0 1.1 0.10 83.5± 0.5 25.0 1.1 0.10

JKNet float 87.6± 0.0 130.5 10.1 74.5 87.7± 0.1 130.5 10.1 74.5
JKNet w4a8 38.0± 0.0 16.3 2.5 2.3 38.0± 0.0 16.3 2.5 2.3

PDNAS-4 w4a8 85.6± 0.1 100.0 2.7 2.1 84.6± 0.1 75.4 1.4 3.3

LPGNAS mixed 90.5± 0.0 157.3 3.7 3.5 89.7± 0.0 164.0 3.7 4.5
LPGNAS-small mixed 88.7± 0.1 3.5 1.0 1.3 88.6± 0.1 3.6 0.81 1.2

Table 5.6: Accuracy and size comparison on Flickr [189], Cora-full [13] and Yelp [189].
Our results are averaged across 3 independent runs.

Method Quan
Flickr CoraFull Yelp

Acc Size Act Size Bitops Acc Size Act Size Bitops Micro F1 Size Act Size Bitops
% KB MB G % KB MB G KB MB G

SageNet float 49.9± 0.0 32.5 2.9 6.2 66.4± 0.1 562.3 39.4 13.4 23.6± 0.0 26.1 1.6 19.1
QSageNet w4a8 45.0± 0.0 4.1 0.72 0.20 55.7± 0.2 70.3 12.3 0.41 24.8± 0.0 3.3 0.39 0.59

GAT float 42.4± 0.1 130.6 2.9 3.3 62.0± 0.1 2249.3 49.4 6.8 24.6± 0.5 104.4 1.6 9.7
QGAT w4a8 42.4± 0.0 16.3 0.73 0.098 53.8± 0.2 281.2 12.3 0.21 14.2± 0.0 13.0 0.39 0.30
JKNet float 50.6± 0.0 95.5 6.6 48.5 69.0± 0.1 1162.8 112.3 809.9 32.6± 0.3 94.1 3.5 27.6
QJKNet w4a8 42.3± 0.0 11.9 1.6 1.5 4.4± 0.0 145.3 28.1 25.3 31.0± 2.2 11.8 0.87 0.86

PDNAS-4 w4a8 68.6± 0.1 223.5 8.3 12.4 72.6± 0.2 657.1 11.1 27.2 42.4± 0.0 62.0 1.2 1.4

LPGNAS mixed 74.6± 0.2 113.8 2.8 1.6 77.7± 0.0 573.3 7.4 25.8 40.5± 0.1 6.4 3.2 1.2
LPGNAS-small mixed 69.8± 0.4 6.4 0.31 0.21 69.8± 0.2 141.5 3.2 0.16 30.9± 0.1 1.5 1.8 0.14

5.2.4.2 LPGNAS for graph sampling based learning

Table 5.5 and Table 5.6 show how LPGNAS performs on large datasets sampled using

the recently proposed GraphSaint sampling [189]. The detailed configuration of the

sampler is in the Appendix. I provide additional baselines on these datasets since the

original GraphSage [62], GAT [163], JKNet [179] under-fit this challenging task. I thus

implemented V2 versions of the baselines that have larger channel counts; the architecture

details are reported in the Appendix. In addition, for quantising the baseline models I

uniformly applied a w4a8 (4-bit weights, 8-bit input activations) quantisation. Although I

train on a sampled sub-graph, evaluating networks requires a full traversal of the complete

graph. Since the datasets considered are large, traversing the entire graph adds a huge

computation overhead. If I use the previous grid-search for all quantisation possibilities

(roughly 164 in our case) for the all baseline networks, this will require a huge amount of

search time. So I fixed the quantisation strategy to w4a8 for the baseline networks.

The results in Table 5.5 and Table 5.6 suggest that LPGNAS found the models with

90

102 103

Model size (KB)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy LPGNAS

Sage
QSage
GAT
QGAT
JKNet
QJKNet
PDNAS

101 102

Activation size (MB)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy LPGNAS

Sage
QSage
GAT
QGAT
JKNet
QJKNet
PDNAS

100 101 102 103

Bitops (G)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy LPGNAS

Sage
QSage
GAT
QGAT
JKNet
QJKNet
PDNAS

Figure 5.4: Pareto frontier of LPGNAS on Coraf-full with baseline models. I show the
trade-off between model sizes, activation sizes and bitops, LPGNAS demonstrates a Pareto
dominance.

best accuracy and also with a relatively competitive model size when compared to a

wide range of manual baselines. To further demonstrate that LPGNAS is a flexible NAS

method, I adjust the base configurations to provide models that are equal or smaller than

the smallest baseline networks in Table 5.5 and Table 5.6 and name them LPGNAS-small.

I describe how I turn the knobs in LPGNAS by adjusting the base configurations in the

Appendix. It is clear, in both Table 5.5 and Table 5.6, that LPGNAS outperforms all

baselines in terms of accuracy or micro-F1 scores. LPGNAS-small, on the other hand,

trades-off the accuracy for a better model size, however it shows better performance

than baseline models that have a similar size budget. I also visualise the performance of

LPGNAS on sampled datasets using the Pareto frontiers plot for Cora-full in Appendix.

As expected, LPGNAS shows a Pareto dominance compared other manually designed

networks.

LPGNAS is able to achieve significant performance gains in terms of accuracy over the

baseline networks. For instance, on Flickr, CoraFull, and Yelp, I show on average an around

20% increase compared to even the full-precision baseline models, while LPGNAS produced

quantised models. The performance gap between quantised baselines and LPGNAS is

even greater. On the other hand, LPGNAS is able to produce extremely small models.

For instance, LPGNAS-Small is able to produce models that are around 50× smaller on

Amazon-Computers and Amazon-Photos while only suffer from an around 1% drop in

accuracy compared to standard LPGNAS.

To further prove the point that LPGNAS generates more efficient networks, I sweep

across different configurations and different quantisation regularisations to produce Fig-

ure 5.4. LPGNAS shows a Pareto dominance compared to all evaluated methods, meaning

that it strikes the best combination between computational complexity and accuracy.

Figure 5.4 shows that models can run with larger batch sizes (reduction in activation size),

and also run with less computation (reduction in bitops).

91

Table 5.7: Search cost in GPU hours, all experiments are conducted on an NVIDIA
GeForce RTX 2080 Ti GPU.

Dataset Cora Citeseer Pubmed Cora-full Flickr Yelp Amazon-photos Amazon-computers

LPGNAS 3.2 3.6 4.2 11.8 11.0 11.8 11.4 11.2
JKNet-32 6518.5 8165.6 5289.1 2180.6 3062.1 9116.7 1739.8 1786.2

5.2.5 Quantisation search time

One advantage of using Network Architecture Search is the reduction of search time.

Previous NAS methods on GNNs demonstrated the effectiveness of their methods by

reducing the amount of search time required to find the best network architecture [205,

51, 209]. In this work, I not only reduced the amount of manual tuning time required

for network architectures but also shortened the amount of time required to optimise the

numerical precision of each sub-block.

To further illustrate that LPGNAS has significantly reduced the amount of search time

required, I provide Table 5.7 to show how LPGNAS compares to a fixed JKNet-32 archi-

tecture in terms of the amount of GPU hours spent for searching for the best quantisation

options. Because of the limited resources I have, I estimate the quantisation search cost

of a JKNet-32 by running 5 different randomly selected quantisation combinations and

multiply the averaged training time with the total number of quantisation options.

Table 5.7 shows that LPGNAS can significantly reduce the search time. For instance,

on Citeseer, the search time can be reduced by around 2270×. It is worth noting that, when

performing this quantisation search time comparison, I do not consider the architectural

search space of the baseline, meaning that the baseline (JKNet) is a fixed-architecture.

LPGNAS also searched for architecture choices, which would further increases the search

time of the baseline if they are considered.

5.2.6 Quantisation statistics and limitations

In order to fully understand the properties of different quantisable sub-blocks in GNNs, I

report the searched quantisation strategies on more than 100 search runs across 8 different

datasets (Cora, Pubmed, Citeseer, Amazon-Computers, Amazon-Photos, Flickr, CoraFull

and Yelp). The idea is to reveal some common quantisation properties or trends using

LPGNAS on different datasets. I collect the quantisation decisions made by LPGNAS for

both weights and activations and present them in Figure 5.5. The possible quantisation

levels for weights and activations are [1, 2, 4, 6, 8, 12, 16] and [4, 8, 12, 16] bits respectively.

For weights, we see that narrow ternary or even binary values are often sufficient for the

hidden and attention sub-blocks, however, shortcut connections prefer a larger bit-width

(around 4 bits) for weights. In contrast, quantising activations show in general a trend

92

of using larger bit-widths (around 8 bits). Based on these results, if one would like to

manually quantise GNNs, I would suggest to start with around 4 bits for weights and 8

bits for activations. However, it is worth mentioning that LPGNAS is able to search for

the best combination of quantisation and architectural decisions. For instance, I observed

LPGNAS was able to choose operations with less parameters but use higher bit-widths.

Nevertheless, the large number of runs across a relatively wide range of datasets aim at

sharing empirical insights for people that are manually tuning quantisations for GNNs.

For GNN services that are whether energy, memory or latency critical, and for future AI

ASIC designers focusing on GNN inference, the gathered quantisation statistics can be a

useful guideline for fitting a suitable quantisation method to their networks.

Figure 5.5: Collected statistical information for quantisation on Cora, Citeseer, PubMed,
Amazon-Computers, Amazon-Photos, Flickr, CoraFull and Yelp, the horizontal axis shows
the chosen bit-width and the vertical axis shows the occurences of quantisations (not
weighted by the number of weights). A bit-width count of 16 is not present because it has
never been selected by LPGNAS.

It is also interesting to observe that in both Table 5.5 and Table 5.6, some of the

manually designed GNNs suffer from a large accuracy drop when applying a 4-bit weight and

93

8-bit activation fixed-point quantisation (w4a8). For instance, both quantised JKNet and

JKNet-V2 drop down to 4.4% accuracy on the Cora-full dataset (Table 5.5). However, the

collected statistics of LPGNAS suggest that w4a8 is sufficient, proving that modifications

of network architectures are the key element in order for networks to maintain accuracy

with aggressive quantisation strategies.

The applied fixed-point quantisation is a straight-forward one, many researchers have

proposed more advanced quantisation schemes on CNNs or RNNs [202, 192, 150]. I

suggest future research of investigating how these quantisation strategies work on GNNs

should consider w4a8 fixed-point quantisation as a baseline case. Because the collected

statistics suggest that w4a8 fixed-point quantisation is the most aggressive quantisation

for searched GNNs while guaranteeing minimal loss of accuracy, and manual GNNs often

do not perform well using the w4a8 setup.

5.3 Network architecture search in a multi-task multi-

device few-shot learning setup

Existing Network Architecture Search (NAS) methods show promising performance on

image [215, 113], language [58, 152] and, as I have shown in the previous section, graph

data [205]. This automation not only reduces the amount of human effort required for

architecture tuning but also produces architectures with state-of-the-art performance

in domains like image classification [215] and language modeling [152] and graph node

classification (Section 5.2). Most NAS methods today focus on a single task while targeting

a single hardware platform, e.g. a mobile phone or a data center class GPU. Real-life model

deployments with multiple tasks and various hardware platforms will significantly prolong

this process. As illustrated in Figure 5.6, a common design flow is to re-engineer the

architecture and train for different task(T)-hardware(H) pairs with different constraints

(C). The architectural engineering phase can be accomplished whether manually or by using

an established NAS procedure. The major challenge remains to be how to design efficient

algorithmic method to overcome the increased O(THC) search complexity described in

Figure 5.6.

Few-shot learning systems follow exactly this many-task many-device setup, since it

considers deployments on different user devices on key applications such as facial [54]

and speech recognition [74]. A task in few-shot learning normally takes a N -way K-shot

formulation, where it contains N classes with K support samples and Q query samples in

each class. Model-Agnostic Meta-Learning (MAML), incorporating the idea of learning to

learn, builds a meta-model using a great number of training tasks, and then adapts the

meta-model to unseen test tasks using only a very small number of gradient updates [47].

MAML then becomes a powerful and elegant approach for few-shot learning, its ability

94

to quickly adapt to new tasks can potentially shrink the O(THC) complexity illustrated

in Figure 5.6 to O(HC). In the meantime, hardware-aware NAS methods [18, 17, 181],

e.g. the train-once-for-all technique [18], support deployments of searched models to fit to

different hardware platforms with various latency constraints. These hardware-aware NAS

techniques reduce the search complexity from O(THC) to O(T) [17].

Task 1

+

Hardware System 1Architectural Engineering
& Train from scratch or Re-train

Task T

+

Hardware System H

...

+

Constraints 1

+

Constraints C

ASIC

Figure 5.6: Deploying networks in a many-task many-device setup. This implies a large
search complexity O(THC) and requires a huge amount of architectural engineering time.

I propose a novel Hardware-aware Meta Network Architecture Search (H-Meta-NAS).

Integration of the MAML framework into hardware-aware NAS would theoretically sim-

plify the search complexity from O(THC) to O(1), allowing a rapid adaption of model

architectures to unseen tasks on new hardware systems. However, I identified the following

challenges to this integration:

• The classic NAS search space contains many over-parameterised sub-models, this

makes it hard to tackle the over-fitting phenomenon in few-shot learning.

• Hardware-aware NAS profiles latency for sub-networks on each task-hardware pair,

this profiling can be prolonged significantly with a great number of tasks and, more

importantly, if the targeting device has scarce computation resources.

To tackle these challenges, I propose to use Global Expansion (GE) and Adaptive

Number of Layers (ANL) to allow a drastic change in model capabilities for tasks with

varying difficulties. The experiments later proved that such changes alleviate over-fitting in

few-shot learning and improve the accuracy significantly. I also present a novel layer-wise

profiling strategy to allow reuse of profiling information across different tasks.

5.3.1 Few-shot learning in the MAML framework

Inspired by the ability for humans to learn from only a few tasks and generalise the

knowledge to unseen problems, a meta learner is trained over a distribution of tasks with

95

the hope of generalising its knowledge to new tasks [47].

arg min
θ

(ET ∈T[Lθ(T)]) (5.6)

Equation (5.6) captures the optimisation objective of meta-learning, where optimal param-

eters are obtained through optimising on a set of meta-training tasks. Current mainstream

approaches that use meta-learning to tackle few-shot learning problems can be roughly

categorised into three major types: Memory-based, Metric-based and Optimisation-based.

Memory-based method utilises a memory-augmented neural network [123, 52] to

memorise meta-knowledge for a fast adaption to new tasks. Metric-based methods aim to

meta-learn a high-dimensional feature representation of samples, and then apply certain

metrics to distinguish them. For instance, Meta-Baseline utilises the cosine nearest-centroid

metric [26] and DeepEMD applies the Earth Mover’s Distance [191]. Optimisation-based

method, on the other hand, focuses on learning a good parameter initialisation (also known

as meta-parameters or meta-weights) from a great number of training tasks, such that these

meta-parameters adapt to new few-shot tasks within a few gradient updates. The most

well-established Optimisation-based method is Model-Agnostic Meta-Learning (MAML)

[47]. MAML is a powerful yet simple method to tackle the few-shot learning problem,

since its adaption relies solely on gradient updates. Antoniou et al. later demonstrate

MAML++, a series of modifications that improved MAML’s performance and stability [8].

While the meta-learning framework is increasingly used to solve few-shot learning

challenges, little attention has been paid to the run-time efficiency of these approaches.

Meta-learning has been explored in key applications such as facial and speech recognition

[74, 54] for mobile deices. Real-life deployments on these devices resemble a many-task

many-device scenario, where learning on each user’s data is a few-shot learning task

and different hardware platforms represent different types of under-deployment devices.

Memory-based and Metric-based meta-learning methods are then challenged by the

hardware or latency constraints: Memory-based methods need additional storage space (at

least double) and Metric-based approaches use multiple inference runs (at least two) for a

single image classification. Our proposed NAS method then follows the simple yet effective

MAML++ framework. After adapting the model to new tasks, MAML++ executes exactly

one network inference run for a single test sample without additional memory usage.

Several NAS methods are proposed under the MAML framework [88, 144, 107], these

methods successfully reduce the search complexity from O(T) to O(1). However, some

of these methods do not show significant performance improvements compared to care-

fully designed MAML methods (e.g. MAML++) [88, 144]. In the meantime, some of

these MAML-based NAS methods follow the Gradient-based approach and operate on

complicated cell-based structures [107]. I illustrate later how cell-based NAS causes an

96

undesirable effect on latency, and also meets fundamental scalability challenges when

trying to deploy in a many-task many-device setup.

5.3.2 Hardware-aware network architecture search for meta-learning

Figure 5.7 is an overview of the proposed H-Meta-NAS flow. There are three stages in

the search process. First, I meta-train a super-net. The super-net contains many possible

sub-networks (roughly 109 sub-networks using the VGG9 backbone) (Section 5.3.2.3). I

use a layer-wise profiling to construct a hash-table for different hardware systems, there

is no training involved in the profiling stage, the details of the profiling is discussed in

Section 5.3.2.4. The third phase is to adapt not only the meta-parameters (θ) but also

the meta-architecture (α) from the super-net to a particular task (Section 5.3.2.5) with

specific hardware constraints on a specific hardware system.

Phase 1: Super-net Pre-training Phase 2: Layer-wise Profiling

Profile first layer
on different devices

Profile second layer
on different devices

Phase 3: Device-aware Task-specific Deployment

...

Task 1

Task 2

+

Cloud System

+

Cloud System

Task 1

+

Mobile System

Task 1

+

AIOT

AIOT

AIOT

AIOT

Figure 5.7: An overview of the three main stages of the proposed H-Meta-NAS algorithm.
The first stage is to meta-train a super-net, the second stage is to adapt the super-net to
a particular task, and the third stage is to adapt the super-net to a particular hardware
system.

5.3.2.1 Problem formulation

In the MAML setup, I consider a set of tasks T and each task Ti ∈ T contains a support

set Dsi and a query set Dqi . The support set is used for task-level learning while the query

set is in charge of evaluating the meta-model. All tasks are divided into three sets, namely

meta-training (Ttrain), meta-validation (Tval) and meta-testing (Ttest) sets.

Equation (5.7) formally states the objective of the pre-training stage illustrated in

Figure 5.7 Phase 1. The objective of this process is to optimise the parameters θ of the

97

super-net for various sub-networks sampled from the architecture set A. This will ensure

the proposed H-Meta-NAS to have both the meta-parameters and meta-architectures ready

for the adaption to new tasks. Section 5.3.2.3 describes the details of the meta-training

and a progressive shrinking strategy to prevent sub-model interference.

arg min
θ

Eα∼p(A)[ET ∈Ttrain
[Lθ(T , α)]] (5.7)

Equation (5.8) describes how H-Meta-NAS adapts network architectures to a particular

task T with a given hardware constraint Ch (Phase 3 in Figure 5.7). In practice, using

the support set data Dsi from a target task Ti, I apply a genetic algorithm for finding the

optimal architectures α∗. I discuss further how this process is designed in Section 5.3.2.5.

α∗ = min
α

∑

α∈A

Lθ(Dsi , α)

s.t. C(α) ≤ Ch
(5.8)

5.3.2.2 Architecture space

H-Meta-NAS considers a search space composed of different kernel sizes, number of channels

and activation types. I mostly consider a VGG9-based NAS backbone, that is a 5-layer

CNN model with the last layer being a fully connected layer. I chose this NAS backbone

because both MAML [47] and MAML++ [8] used a VGG9 model architecture. The details

of this backbone are in Appendix.

I allow kernel sizes to be picked from {1, 3, 5}, channels to be expanded with a set

of scaling factors {0.25, 0.5, 0.75, 1, 1.5, 2, 2.25} and also six different activation functions

(details in Appendix). For a single layer, there is 3× 7× 6 = 126 search options. H-Meta-

NAS also contains an Adaptive Number of Layers strategy, the network is allowed to

use a subset of the total layers in the supernet with a maximum usage of 4 layers. The

whole VGG9-based backbone then gives us in total 1264× 4 ≈ 109 possible neural network

architectures.

In addition, to demonstrate the ability of H-Meta-NAS on a more complex NAS back-

bone. I also studied an alternative ResNet12-based NAS backbone, that has approximately

2× 1024 possible sub-networks.

5.3.2.3 Pre-training strategy

As illustrated by prior work [18], progressively shrinking the super-net during meta-training

can reduce the sub-model interference, I observe the same phenomenon and then use a

similar progressive shrinking strategy in H-Meta-NAS, the architectural sampling process

98

α ∼ p(A) will pick the largest network with a probability of p, and randomly pick other

sub-networks with a probability of 1− p. I apply an exponentially decay strategy to p:

p = pe + (pi − pe)× exp(−α×
e− es
em − es

)) (5.9)

pe and pi are the end and initial probabilities. e is the current number of epochs, and es

and em are the starting and ending epochs of applying this decaying process. α determines

how fast the decay is. In our experiment, I choose pi = 1.0 and es = 30, because the

super-net reaches a relatively stable training accuracy at that point. I then start the

decaying process, and the value α = 5 is determined through the following hyper-parameter

study shown in Table 5.8.

Table 5.8: Tuning the decay factor α for pre-training on Mini-ImageNet 5-way 1-shot
classification. Accuracy is averaged across 100 randomly picked sub-networks.

α 0.1 0.5 5 10 50
Avg Accuracy 0.424 0.4145 0.5464 0.5323 0.4423

5.3.2.4 Layer-wise profiling

Hardware-aware NAS needs the run-time of sub-networks on the target hardware to

guide the search process [18, 181]. However, the profiling stage can be time-consuming

if given a low-end hardware as the profiling target and the search space is large. For

instance, running a single network inference of VGG9 on the Raspberry Pi Zero with a

1GHz single-core ARMv6 CPU takes around 2.365 seconds to finish. If I assume this is

the averaged time needed for profiling a sub-network, given that the entire search space

includes around 109 sub-networks, a naive traverse will take a formidable amount of time

which is approximately 6 × 105 hours. More importantly, the amount of profiling time

scales with the number of hardware devices (O(H)).

Existing hardware-aware NAS schemes build predictive methods to estimate the run-

time of sub-networks [18, 181] and have a relatively significant error of around 10-20%. I

show that, performing an exact profiling can be done with a low cost if allowing a per-layer

profiling strategy.

Theoretically, if consider the original search space discussed in Section 5.3.2.2, profiling

per-layer will in total run inference for 126× 4 = 504 layers with various configurations.

This is a much lower cost compared to brute-force profiling of all possible 109 sub-networks.

Practically, on a Pi Zero, the consumed profiling time is 82 minutes, much lower than the

6× 105 hours brute-force profiling time.

I re-implemented the latency predictor in OFA [18] to illustrate how a layer-wise

99

Table 5.9: Comparing latency predictor with our proposed profiling. MSE Error is the
error between estimated and measured latency, Time is the total time taken to collect and
build the estimator.

Hardware Metric Latency Predictor Layer-wise Profiling

2080 Ti GPU
MSE Error 0.0188 0.00690

Time 16.09 mins 6.216 secs

Intel i9 CPU
MSE Error 0.165 0.0119

Time 21.92 mins 16.41 secs

Pi Zero
MSE Error NA 0.00742

Time NA (Approx. 220 hours) 82.41 mins

profiling and look-up method is a perfect match in our learning scenario. I pick 16K

training samples and 10K validation samples to train and test the latency predictor. This

training setup is identical to Cai et al. [18]. I use another 10K testing samples to evaluate

the performance of OFA-based latency predictor against the layer-wise profiling on different

hardware systems in terms of MSE (measuring the latency estimation quality) and Time

(measuring the efficiency).

As illustrated in Table 5.9, layer-wise profiling saves not only time but also has a

smaller MSE error compared to a predictor-based strategy that is very popular in today’s

evolutionary-based NAS frameworks [18, 17]. In addition, layer-wise profiling shows orders

of magnitude better run-time when targeting hardware devices with scarce computational

resources. If I consider an IoT class device as a target (i.e the Raspberry Pi Zero), it

requires an unreasonably large amount of time to generate training samples for latency

predictors, making them an infeasible approach in real life. For instance, the total time

consumed by latency predictor is infeasible to execute on Pi Zero (last row in Table 5.9).

Of course, in reality, there is also a great number of IoT devices using more low-end CPUs

compared to Pi Zero (ARMV5 or ARMV4), making the latency predictor even harder to

be deployed on these devices. Also in a many-hardware setup considered in this paper,

this profiling is executed O(H) times.

Most existing layer-wise look-up approaches consider at most mobile systems as

targeting platforms [181, 182]. These systems are in general more capable than a great

range of IoT devices. In this work, I demonstrate the effectiveness of this approach on

more low-end systems (Raspberry Pi and Pi Zeros), illustrating this is the more scalable

approach for hardware-aware NAS on constrained hardware systems.

100

5.3.2.5 Adaption strategy

The adaption strategy uses a genetic algorithm [171] to pick the best suited sub-network

with respective to a given hardware constraint. In general, the adaption algorithm randomly

samples a set of tasks from Tval, and uses the averaged loss value and satisfaction to the

hardware constraints as indicators the for the genetic algorithm. The genetic algorithm

has a pool size P and number of iterations M , I demonstrate the optimal values are

P = 100,M = 200 by sweeping different combinations of these hyper-parameters. I

detailed this hyper-parameter tuning process in later paragraphs.

Algorithm 3 details the adaption algorithm. In the Mutate function, each architecture

is ranked with the averaged loss across all sampled tasks, and 10% of the architectures

with the lowest loss values are then used to perform a classic genetic algorithm mutation

[171]. The mutation will allow the top-performing architectures to have two randomly

picked architectural choices being modified to another choice that is not the original

one. The mutation function considers the original pool of architectures (A) and their

averaged loss values (La). The cost of each architecture can be computed by the pre-build

hardware-specific hash-table Ht(A). I then only mutate the subset in A that their hardware

cost has satisfied the constraints {A|A ∈ A ∧Ht(A) ≤ C}. The mutation is to randomly

pick two options in the entire architectural space and change them to other choices that

are different from the original.

I identify the following two hyperparameters that can potentially affect the performance,

namely the number of iterations M and the pool size P , and then run an hyper-parameter

analysis in Figure 5.8. The horizontal axis shows the number of iterations and the vertical

axis shows the averaged accuracy on the sampled tasks for all architectures in the pool.

Figure 5.8 shows that the accuracy convergence is reached after around 150 iterations, and

running for additional iterations only provides marginal accuracy gains. For this reason, I

picked the number of iterations to be 200 for a balance between accuracy and run-time.

In the meantime, I notice in general a higher pool size will give better adapted accuracy.

However, this does not mean the final searched accuracy is affected to the same degree.

The final re-trained accuracy of searched architectures show an accuracy gap of 0.21%

between P = 100 and P = 200 and 0.32% between P = 100 and P = 500. An increase in

pool size can prolong the run-time significantly, I thus picked a pool size of 100 since it

offers the best balance between accuracy and run-time.

5.3.2.6 NAS backbone design

One particular problem in few-shot learning is that models are prone to over-fitting. This

is because only a small number of training samples are available for each task and the

network normally iterate on these sample many times. I would like to explore on the

architectural space to help models to overcome over-fitting and conduct a case study

101

Algorithm 3 The adaption algorithm

Input: M , P , C, Ht

A = Init(P) . Initialise a set of architectures with a size of P
for i = 0 to M − 1 do

La = ∅
Ts ∼ p(Tval) . Obtain a subset from the validation task set
for A ∈ A do

Lt = ∅
for T ∈ Ts do

l = L(T ,A) . Compute loss
Lt = Lt

⋃{l}
end for
La = La

⋃{mean(Lt)} . Collect averaged loss values across all tasks
end for
A = Mutate(A, La, Ht, C) . Mutate the architectures based on hardware constraints

end for

0 50 100 150 200 250 300
Number of Iterations (M)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
ed

 a
cc

ur
ac

y

P = 50
P = 100
P = 200
P = 500

Figure 5.8: The effect of different pool size (P) and different number of iterations (M).

for different design options available for the backbone network. I identify the following

key changes to the NAS backbone to help the models to have high accuracy in few-shot

learning:

• n × n pooling: Pooling that applied to the final convolutional operation, n × n

indicates the height and width of feature maps after pooling.

• Global Expansion (GE): Allowing the NAS to globally expand or shrink the number

of channels of all layers.

• Adaptive Number of Layers (ANL): Allowing the NAS to use an arbitrary number

of layers, the network then is able to early stop using only a fewer number of layers.

102

Figure 5.9 further illustrate that GE and ANL can allow a much smaller model compared

to existing NAS backbones. The results in Table 5.10 suggest that these changes on a

backbone will allow the search space to reach a much smaller model and then provide a

better accuracy. In addition, Table 5.10 also illustrates that 5× 5 pooling is necessary for

a higher accuracy. I hypothesize this is because a relatively large fully-connected layer

after the pooling is required for the network to achieve good accuracy in this meta-learning

setup.

Table 5.10: A case study of different design options for the NAS backbone network.
Experiments are executed with a model size constraint of 70K on the Mini-ImageNet
5-way 1-shot classification task.

Design options Accuracy

MAML [47] 48.70%
MAML++ [8] 52.15%

1× 1 Pool 42.28%
5× 5 Pool 46.13%

5× 5 Pool + GE 53.09%
5× 5 Pool + GE + ANL 56.35%

Existing NAS methods have a fixed number of channels
for layers at the 'edge' of each searchable block

GE allows these edge layers to shrink/expand

output

ANL allows the network to use fewer layers

Figure 5.9: A graphical illustration of GE and ANL. Both methods will allow a more
drastic change in model capabilities, allowing the searched model to deal with tasks with
varying difficulties.

5.3.3 Evaluating H-Meta-NAS

I evaluate H-Meta-NAS in a few-shot learning setup. For each dataset, I search for the

meta-architecture and meta-parameters. I then adapt the meta-architecture with respect

to a target hardware-constraint pair. In the evaluation stage, I re-train the obtained

hardware-aware task-specific architecture to convergence and report the final accuracy.

103

I consider three popular datasets in the few-shot learning community: Omniglot,

Mini-ImageNet and Few-shot CIFAR100. I use the PytorchMeta framework to handle the

datasets [34].

Omniglot is a handwritten digits recognition task, containing 1623 samples and 20

samples per class [96]. I use the meta train/validation/test splits used Vinyals et al. [166].

These splits are over 1028/172/423 classes (characters).

Mini-ImageNet is first introduced by Vinyals et al.. This dataset contains images

of 100 different classes from the ILSVRC-12 dataset [37], the splits are taken from Ravi

et al. [135].

FC100 is introduced by Oreshkin et al. [127], the datasets has 100 different classes

from the CIFAR100 dataset [92]

Table 5.11 details the systems and representative devices considered. I use the ScaleSIM

cycle-accurate simulator [139] for the Eyeriss [25] accelerator. Details about this simulation

and more information with respect to the datasets and search configurations are in our

Appendix.

Table 5.11: Details of hardware systems experimented with H-Meta-NAS.

System Device Specs

Cloud Nvidia GeForce RTX 2080 Ti 4352 CUDA cores at 1635MHz
Mid-end CPU Intel CPU 2.3GHz 8-core i9 CPU (2.3GHz, 16GB RAM)
Mobile CPU Raspberry Pi 4B Quad core Cortex-A72 (ARMv8) CPU (1.5GHz, 4GB RAM)

IoT Raspberry Pi Zero Single core ARM11 (ARMv6) CPU (1GHz, 512MB RAM)
ASIC Eyeriss [25] 65nm with a core frequency of 250 MHz

5.3.3.1 Evaluating H-Meta-NAS searched architectures

Table 5.12 displays the results of H-Meta-NAS on the Omniglot 20-way 1-shot and 5-shot

classification tasks. I match the size of H-Meta-NAS to MAML and MAML++ for a fair

comparison. H-Meta-NAS outperforms all competing methods apart from the original

MAML++. MAML++ uses a special evaluation strategy, it creates an ensemble of models

with best validation-set performance. MAML++ then picks the best model from the

ensemble based on support set loss and report accuracy on the query set. I then locally

replicated MAML++ without this trick, and show that H-Meta-NAS outperforms it by

a significant margin (+1.01% on 1-shot and +0.11% on 5-shot) with around half of the

MACs (4.95G compared to 10.07G).

Table 5.13 shows the results of running the 5-way 1-shot and 5-shot Mini-ImageNet

tasks, similar to the previous results, I match the size of searched networks to MAML

and MAML++. Table 5.13 not only displays results on MAML methods with fixed-

architectures, it also shows the performance of searched networks including Auto-Meta

104

Table 5.12: Results of Omniglot 20-way few-shot classification. We keep two decimal
places for our experiments, and keep the decimal places as it was reported for other cited
work. ∗ reports a MAML replication implemented by Antoniou et al. [8]. Details are
discussed in Section 5.3.3.1.

Method Size MACs
Accuracy

1-shot 5-shot

Siamese Nets [91] 35.96M 1.36G 99.2% 97.0%
Matching Nets [166] 225.91K 20.29M 93.8% 98.5%

Meta-SGD [106] 419.86K 46.21M 95.93%± 0.38% 98.97%± 0.19%

MAML [47] 113.21K 10.07M 95.8%± 0.3% 98.9%± 0.2%
MAML∗ (Replication from [8]) 113.21K 10.07M 91.27%± 1.07% 98.78%

MAML++ ∗ [8] 113.21K 10.07M 97.65%± 0.05% 99.33%± 0.03%
MAML++ (Local Replication) 113.21K 10.07M 96.60%± 0.28% 99.00%± 0.07%

H-Meta-NAS 110.73K 4.95M 97.61± 0.03% 99.11%± 0.09%

Table 5.13: Results of Mini-ImageNet 5-way classification. We use two decimal places
for our experiments, and keep the decimal places of cited work as they were originally
reported. T-NAS uses the complicated DARTS cell [107], it has a smaller size but a large
MACs usage. Details are discussed in Section 5.3.3.1.

Method Size MACs
Accuracy

1-shot 5-shot

Matching Nets [166] 228.23K 200.31M 43.44± 0.77% 55.31± 0.73%
CompareNets [156] 337.95K 318.38M 50.44± 0.82% 65.32± 0.70%

MAML [47] 70.09K 57.38M 48.70± 1.84% 63.11± 0.92%
MAML++ [8] 70.09K 57.38M 52.15± 0.26% 68.32± 0.44%

Auto-Meta [88] 98.70K - 51.16± 0.17% 69.18± 0.14%
BASE (Softmax) [144] 1200K - - 65.4± 0.7%
BASE (Gumbel) [144] 1200K - - 66.2± 0.7%

T-NAS ∗ [107] 24.3/26.5K 37.96/52.63M 52.84± 1.41% 67.88± 0.92%
T-NAS++ ∗ [107] 24.3/26.5K 37.96/52.63M 54.11± 1.35% 69.59± 0.85%

H-Meta-NAS 70.28K 24.09M 57.36± 1.11% 77.53± 0.77%

[88], BASE [144] and T-NAS [107]. H-Meta-NAS shows interesting results when compared

to T-NAS and T-NAS++. H-Meta-NAS has a much higher accuracy (+3.26% in 1-shot

and 7.94% in 5-shot) and a smaller MAC count, but uses a greater amount of parameters.

T-NAS and T-NAS++ use DARTS cells [113]. This NAS cell contains a complex routing

of computational blocks, making it not suitable for latency critical applications. I will

demonstrate in Section 5.3.3.2 how this design choice gives a worse on-device latency

performance.

I also show how H-Meta-NAS work with FC100. In Table 5.14, I further demonstrate

the effectiveness of the proposed H-Meta-NAS on the FC100 dataset. T-NAS did not

report their model sizes on this task, and our results suggest that H-Meta-NAS achieves

105

the best accuracy on both the 1-shot and 5-shot setups.

Table 5.14: Results of FC100 5-way few-shot classification. I keep two decimal places
for our experiments, and keep the decimal places of cited work as they were originally
reported.

Method Size
Accuracy

1-shot 5-shot

MAML 70.09K 38.1± 1.7% 50.4± 1.0%
MAML++ 70.09K 38.7± 0.4% 52.9± 0.4%

T-NAS - 39.7± 1.4% 53.1± 1.0%
T-NAS++ - 40.4± 1.2% 54.6± 0.9%

H-META-NAS 55.52K 43.29± 1.22% 56.86± 0.76%

5.3.3.2 H-Meta-NAS for diverse hardware platforms and constraints

In addition to using the model sizes as a constraint for H-Meta-NAS, I use various latency

targets on various hardware platforms as the optimisation target. Figure 5.10 shows how

model sizes and GPU latencies can be used as constraints. T-NAS and T-NAS++ show a

better performance on the size-accuracy plot in Figure 5.10a. However, the smaller model

sizes of T-NAS do not provide a better run-time on GPU devices (Figure 5.10b), in fact,

T-NAS based models have the worst run-time on GPU devices due to the complicated

dependency of DARTS cells. Figure 5.11 illustrates the performance of H-Meta-NAS on

different CPU devices and an ASIC hardware. The details of these hardware are described

in Table 5.11. In Figure 5.11, H-Meta-NAS shows a better Pareto-frontier performance

compared to a range of baselines and searched models. I only compare to MAML and

MAML++ when running on Eyeriss due to the limitations of the ScaleSIM simulator

[139]. Our results in both Figure 5.10 and Figure 5.11 demonstrate that H-Meta-NAS

consistently generates more efficient models compared to various MAML-based methods.

I mostly follow the experiment setup in MAML++ [8]. In the pre-training stage, I

train for 100 epochs, each epoch consists of 500 iterations. I also pick 600 tasks to be

validation tasks. In the adaption stage, I randomly sample from the validation set, and

pick 16 tasks to build a data slice for the architectures to traverse. In the final re-training

stage of a searched architecture, we follow the strategy used in MAML++ [8]. I then

introduce the detailed special configurations for the datasets:

• Omniglot: I randomly split 1200 characters for training, and the rest is used for

testing. The images are augmented with randomised rotation of multiples of 90

degrees.

106

0 50 100 150 200 250 300 350
Model size (K)

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Ac
cu

ra
cy

H-Meta-NAS
MAML
MAML++
Matching Nets
CompareNets
Auto-Meta
TNAS
TNAS++

(a) Targeting model sizes

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Inference Latency on NVIDIA 2080 Ti GPU (ms)

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Ac
cu

ra
cy

H-Meta-NAS
MAML
MAML++
Matching Nets
CompareNets
TNAS
TNAS++

(b) Targeting a GPU

Figure 5.10: Applying H-Meta-NAS with model size and GPU latency as optimisation
targets.

0 1 2 3 4 5
Inference Latency on Eyeriss (ms)

0.46

0.48

0.50

0.52

0.54

0.56

0.58

Ac
cu

ra
cy

H-Meta-NAS
MAML
MAML++

(a) Targeting an ASIC accelerator

0 10 20 30 40 50 60
Inference Latency on Intel i9 CPU (ms)

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

Ac
cu

ra
cy

H-Meta-NAS
MAML
MAML++
Matching Nets
CompareNets
TNAS
TNAS++

(b) Targeting a mid-end CPU

0 200 400 600 800 1000 1200
Inference Latency on Raspberry Pi 4B (ms)

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Ac
cu

ra
cy

H-Meta-NAS
MAML
MAML++
Matching Nets
CompareNets
TNAS
TNAS++

(c) Targeting a low-end CPU

0 10000 20000 30000 40000
Inference Latency on Raspberry Zero (ms)

0.44

0.46

0.48

0.50

0.52

0.54

0.56

Ac
cu

ra
cy

H-Meta-NAS
MAML
MAML++
Matching Nets
CompareNets
TNAS
TNAS++

(d) Targeting an IoT device

Figure 5.11: Applying H-Meta-NAS with ASIC and CPUs as targets.

107

• Mini-ImageNet: All images are down-sampled to 84× 84.

I use the ScaleSim framework [139] for simulating the Eyeriss [27] accelerator. ScaleSim

is an open-source cycle-accurate CNN simulator. The simulator has certain limitations

with respect to the DRAM simulation, it could be advanced with an external DRAM

simulator but will cause a large run-time. So I kept the original setup and the DRAM

simulation would report a read/write bandwidth requirements. For simplicity, I assume

these DRAM requirements are met. In addition, it is a well-known fact that cycle-accurate

simulators are slow to execute. Due to this reason, I only launched the MAML and

MAML++ networks in the ScaleSim simulator.

5.3.3.3 A more complex NAS backbone

Table 5.15 shows how H-Meta-NAS performs with a more complicated NAS backbone.

In previous experiments, I build the NAS on top of a VGG9 backbone since it is the

architecture utilised in the MAML++ algorithm. For the purpose of having a fair

comparison, I did not manually pick a complex NAS backbone. However, I demonstrate,

in this section, that H-Meta-NAS can be applied with a more complicated backbone and

it shows better final accuracy as expected. The trained accuracy of searched networks

using ResNet12 reaches a 7.31% higher accuracy compared the original VGG9 backbone.

In addition, I compare the proposed approach with state-of-the-art Metric-based meta-

learning methods [191, 26]. Although using only a single inference pass (our method

does not conduct inference runs on the support set when deployed), H-Meta-NAS shows

competitive results with SOTA Metric-based methods while having a much smaller MACs

usage (around 20×).

Table 5.15: Applying H-Meta-NAS to different NAS backbones and algorithms for the
Mini-ImageNet 5-way 1-shot classification task.

Method Network Backbone Inference Style Size MACs Accuracy

MAML [47] VGG-based Single Pass 70.09K 57.38M 48.70± 1.84%
MAML++ [8] VGG-based Single Pass 70.09K 57.38M 52.15± 0.26%

Meta-Baseline [26] ResNet-based Multi Pass 12.44M 56.48G 63.17± 0.23%
DeepEMD [191] ResNet-based Multi Pass 12.44M 56.38G 65.91± 0.82%

H-Meta-NAS VGG-based Single Pass 70.28K 24.09M 57.36± 1.11%
H-Meta-NAS ResNet-based Single Pass 70.62K 28.19M 64.67± 2.03%

5.3.3.4 Search complexity and search time

In Table 5.16, I show a comparison between H-Meta-NAS and various NAS schemes in

the many-task many-device setup. Specifically, I consider a scenario with 500 tasks and 10

108

Table 5.16: Comparing the NAS search complexity with N tasks, H hardware platforms
and C constraints. Search time is estimated for a deployment scenario with 500 tasks and
10 hardware-constraint pairs, estimation details are discussed in Appendix.

Method Style Hardware-aware Search complexity Search time (GPU hrs)

DARTS [113] Gradient-based, single task No O(THC) ≈ 106

Once-for-all [18] Evolution-based, single task Yes O(N) ≈ 104

TNAS & TNAS++ [107] Gradient-based, multi task No O(HC) ≈ 103

H-Meta-NAS Evolution-based, multi task Yes O(1) 40

different hardware-constraint paris. In this case, search complexity refers to the amount

of time spent on searching for a new architecture. Our results in Table 5.16 suggest that

H-Meta-NAS is the most efficient search method because of its low search complexity.

Due to the limited computing facilities available, I estimate the search time of DARTS

[113], Once-for-all [18] and T-NAS [107] in a multi-task multi-device setup. I take the

search time reported in the original publications and multiply them by the appropriate

scaling factors. For DARTs, I take the search time (4 GPU days = 96 GPU hours) and

multiply it by H × T = 5000. I additionally assume a linear scaling relationship between

search time and number of input image pixels, so I multiply the total search time by
84×84
32×32 , this gives us in total a search time of around 106. I perform the same estimation for

Once-for-all [18] and T-NAS [107].

5.4 Summary

In this chapter, in Section 5.2, I propose a novel single-path, one-shot and gradient-

based NAS algorithm named LPGNAS. LPGNAS is able to generate compact quantised

networks with state-of-the-art accuracy. To my knowledge, this is the first piece of work

that systematically studies the joint effect of quantisation and model architectures of

GNNs in a NAS setup. I define the GNN quantisation search space and show how it can

be co-optimised with the original architectural search space. The end results demonstrate

that a co-optimisation between the architectural and quantisation spaces greatly improves

network accuracy. The searched networks show Pareto dominance on a accuracy model

size trade-off over all manually designed networks. In addition, I empirically show the

limitation of GNN quantisation using the proposed NAS algorithm, most of the searched

networks converge to a 4-bit weight 8-bit activation quantisation setup. Despite this

limitation, LPGNAS demonstrates superior performance when compared to networks

generated manually or by other NAS methods on a wide range of datasets.

In Section 5.3 of this chapter, I show H-Meta-NAS, a NAS method focusing on fast

adaption of not only model weights but also model architectures in a many-task many-

device few-shot learning setup. H-Meta-NAS shows a Pareto dominance when compared

109

to a wide range of MAML baselines and other NAS results. I study the effectiveness of

H-Meta-NAS on a wide variety of hardware systems and constraints, and demonstrate

its superior performance on real-hardware devices using an orders of magnitude shorter

search time compared to existing NAS methods.

110

Chapter 6

Conclusion

The deep learning approach offers state-of-the-art performance in many applications and

is now widely deployed in many of today’s hardware architectures. As illustrated in

this dissertation, the optimisation space of DNN inference covers both the software and

hardware stacks. In this dissertation, I provided a set of compression techniques on the

software stack for lowering the computational and memory requirements of running DNN

inference (Chapter 3). I also demonstrate specialised hardware can successfully accelerate

DNNs in Chapter 4. At the end, I demonstrate how automated machine learning, or in

particular network architecture search, can be made hardware-aware for finding efficient

models for emerging network types and in new learning setups (Chapter 5).

I would like address these interesting observations:

• Software optimisation, such as compression methods, will affect the efficiency of

running ML workloads on hardware, but this design space is determined by the

capabilities of the given hardware. In the meantime, these compression methods also

reshape today’s hardwares.

The chosen hardware platform decides the applicability of the software optimisations.

For instance, GPUs struggle to realise the theoretical performance gains of fine-

grained pruning due to limitations of the SIMT architecture [49], but bit-serial

DNN accelerators can utilise not only element-wise but also bit-wise sparsities. In

practice, users have to be aware of the underlying hardware system when selecting

software compression methods, this suggests that DNN implementation frameworks

should carefully select optimisation techniques based on the target hardware. In

this dissertation, I demonstrated that dynamic channel pruning is particularly useful

on CPU devices, but cannot reach its theoretical gains on GPUs because of the

low efficiency of scatter and gather operations of GPUs. In addition, the focused

quantisation scheme presented is only applicable on custom hardware. It is also

interesting to notice that the software-level optimisations for ML workloads are also

reshaping today’s hardware architectures. For instance, NVIDIA GPUs now have

111

tensor cores [118] and Intel CPUs [2] have extended instructions to support low-

precision matrix multiplications. Architecture and micro-architectures are adapting

their target markets (or workloads) and are evolving all the time in order to catch

the performance scaling.

• Algorithmic changes offer larger performance gains than pure hardware modifications,

co-design offers multiplying gains. However, all of these modifications might have

diminishing returns after a while if we try to specilise further.

From the experiments conducted in this dissertation, I observe there are huge

performance gains possible from purely software optimisation, in general, these gains

outweigh those possible from hardware optimisations alone, but co-design often

provides the best performance.

This is an interesting phenomenon for hardware designers, the overall design for

DNN accelerators should be software orientated and co-design focused.

In addition, the possible returns from both hardware and software optimisations

might have a limit. Previous research in the filed of network compression shows

great compression rates but many of these proposed methods optimise on overlapped

design spaces. In other words, these methods are not orthogonal to each other. For

instance, the proposed dynamic channel pruning shows an around 3× compression

ratio for VGG16 but only 1.98× for ResNet18 with no accuracy loss, this implies that

pruning is not totally orthogonal to architectural engineering. The latter apparently

has a more carefully designed, compact architecture so that it benefits less from

network pruning.

• Reconfigurable hardware enlarges the design space and provides significant perfor-

mance gains.

In Chapter 4, I utilised a flexible hardware design consisting of many small cores.

This design in turn provides a larger quantisation optimisation space. I think this

offers an interesting trade-off from the co-design point of view: complex hardware

might provide a large design space but also enables a more involved exploration on

the software stack.

• Is there a general AI accelerator? New network types and structures can be difficult for

DNN accelerators, specialised for a narrower range of models, to process efficiently.

There was a long-held belief in the community that we can build a ‘general AI

accelerator’ and running AI applications is nothing more than accelerating dense

matrix multiplications. I would like to argue that this belief might be true when

we are in the CNN era, but now it is less likely to be the case when we are facing

112

complex models such as Transformers and GNNs. The diverse structures of DNNs

make building a universal accelerator almost impossible. Specialised accelerators for

CNNs can not exploit sparsities that exist in GNNs or NLP models. This indicates

that the reconfigurability of hardware is an interesting alternative to accelerating a

diverse set of models. FPGA-like reconfigurability comes at a very high cost. New

devices or technologies, such as memristor-based accelerators [187], might offer the

potential for very low-cost reconfigurability.

• NAS algorithms benefit from search strategies that are specialised for particular

use-cases and applications.

Although Network Architecture Search algorithms show promising performance in

many domains, these algorithms normally require special treatments to fit to different

application scenarios. Chapter 5 shows two NAS algorithms, namely the LPGNAS

and H-Meta-NAS. The search of the routing strategy is crucial for LPGNAS, and

the proposed Global Expansion and Adaptive Number of Layers is the key for

H-Meta-NAS to achieve high accuracy on few-shot learning tasks. These application

specific modifications are necessary for the NAS techniques to achieve high accuracy.

6.1 Future research

6.1.1 Software-hardware co-design network architecture search

In Chapter 5, I presented a flexible hardware accelerator that can adapt to different

layer-wise quantisation strategies, this does not fully capture the large software-hardware

co-design space of DNN inference acceleration. This dissertation considers a search

space of quantisation choices of a streaming-based architecture on FPGAs, however,

software and hardware co-design architecture search methods have been established on

systolic-array based accelerators [4, 211]. These co-design search algorithms normally

operate with a limited number of architectural hyper-parameters on systolic-array based

architectures. The hardware search space of these algorithms does not allow drastic

hardware transformations such as transforming from a streaming-based accelerator to a

systolic array based accelerator. The exploration of the hardware search space is still

limited in current co-design NAS methods.

One of the root causes of this limitation is the difficulties of applying transformations

in the hardware space. Unlike software engineering, code can be transformed easily in

intermediate representations, there lacks a concise yet powerful hardware representation

that supports flexible transformations. The existing MLIR [99] is built for compiler

optimisations from a software engineering perspective. Ideally, hardware research in this

field would like to see a prototype hardware design that can be applied with various

113

transformations to sweep a much larger hardware design space than only the number

of PEs or number of multipliers. These hardware transformations can then be jointly

searched with architectural choices to offer a much larger exploration in the co-design

search space.

Another interesting challenge when performing HW/SW co-design optimisations stems

from the need to perform retraining. The optimisation covers a range of lossy techniques,

these methods reduce the run-time costs but might induce accuracy degradation. This

phenomenon changes the optimisation problem to be drastically different from classic

software compilation flow. In a standard software compiler, such as LLVM [98], there

are various methods to guarantee the final execution result is unchanged after a series of

complex code transformations. I realised it is hard to fulfill this guarantee when optimising

DNN inference, unless re-training is allowed in the optimisation flow. However, re-training

DNNs then introduces additional problems such as the prolonged optimisation time.

Another fundamental challenge in this co-design is the lack of abilities to measure

hardware performance in a quick and accurate manner. We have seen LLVM using local

profiling information to help the tool to further optimise code snippets [98]. Ideally, if

we can quickly profile hardware platforms, there is a chance to build hardware-aware

optimisations in this co-design circle. However, this performance estimation is highly

data-dependent if we consider different co-design targets. For instance, the optimisations

applicable for different sets of neural networks can be vastly different. In addition, it is

well-known that precise hardware simulation can be extremely slow, while coarse-grained

power emulation can be very inaccurate.

6.1.2 General-purpose AI accelerator

I have already argued that the design of a universally optimal AI accelerator architecture

is not feasible. Nevertheless, I believe there are a number of interesting directions that

might help address the challenge.

• Multiple heterogeneous ML accelerators on one chip:

Having a heterogeneous system might be an obvious approach, however, having

an increasing number of ML accelerators on one chip will increase the design and

integration complexities.

• Try to find a sweet-spot in terms of a ‘general-purpose’ ML accelerator:

One of the most famous ML accelerators today is maybe Google’s TPU chip. In

its latest retrospective report [85], one of the interesting discussion is how to keep

backwards compatibility. This then causes the newest TPU-V4 to not only support

BERT and RNNs but also needs to keep serving MLP and CNNs from 2017. Google

114

finds the sweet-spot of designing the ML accelerator by sweeping across Google’s

inference workloads, the most dominant neural network types then drive the entire

architecture design.

• Extend general-purpose multi-core or many-core processors:

Since ML workloads are getting more complex, one possible approach is to extend the

instruction sets of CPUs to support ML applications [9]. The core matrix-multiply

operations can be accelerated using special instructions while the exotic operations

are well supported by general-purpose computation platforms.

All of these above-mentioned approaches are possible methods for building a general-

purpose AI accelerator. The differences in energy profiles, costs, design complexities,

etc. will then all affect the cost effectiveness of these solutions.

Recent trends in AI accelerators, however, are going in the opposite direction of building

general-purpose AI cores. First, as illustrated in Figure 2.9, cores designed for applications

(e.g. embedded systems or cloud systems) have a big performance gap. Since the power

budget is different for various applications, micro-architectures of these cores are now

vastly different. Second, DNN inference and training have totally different characteristics

and the industry start to have individual designs for these two workloads. For instance,

TPU-V4 surprisingly only supports DNN inference but V3 was able to run both training

and inference [85].

It seems like the industry is choosing the path of building different accelerators for

different DNN applications and they might start to bundle them on a system level

depending on the task demands. These cores can be whether integrated in an SoC if it

is for autonomous driving, or connected using fast communication links (fast rack-level

switches or InfiniBand) in data centers.

6.1.3 Large AI chips

Starting from GraphCore AI, there is a rise of using larger die sizes for AI chips [86]. Most

startup companies in this domain are using this non-traditional approach, such as Groq

[60] and Cerebras [1]. The new release of Cerebras’ second generation Wafer Scale Engine

surprised the hardware design community by integrating a few thousands of compute cores

on a massive 46000 mm2 silicon, and popular NVIDIA GPU cores have a die size of around

500 - 700 mm2. These large cores use the data-streaming architecture, where data is

streamed to the chip and weights of the DNNs stay on-chip during the computation. This

computation pattern is in fact very similar to Tomato (Chapter 4). Additionally, these

accelerators have a large SRAM size at GB level, e.g. Cerebras contains 40GB SRAM.

The aggressively large chip sizes and dataflow hardware design then offer a great

challenge to software designers. Many designers are thinking of supporting training

115

on these platforms, the optimisation targets and possible transformations are different

from traditional GPU programming. For instance, supporting dynamic operators in a

computational graph might be challenging for these streaming based hardware accelerators,

do programmers now have more restrictions in their high level languages or compiler

engineers can invent smart ways of converting these dynamic operations to static ones?

It is interesting to see how future research in ML compilers can equip these hardware

accelerators with more capabilities.

6.1.4 Handling complex data types in Machine Learning using

custom hardware

Most of todays’ co-design frameworks in ML focus solely on one type of data. An interesting

fact is that most data information in today’s world contains more complex formats and

relationships, e.g. multi-modal data connected in complex graphs. These sophisticated data

structures can challenge the performance of existing learning systems. A common practice

to obtain information through complex data structures is through feature engineering,

so that these feature information fits into the ML pipeline that we are familiar with.

Practitioners have to manually extract features from this unstructured combinatorial

information, and create embeddings for learning methods. For example, most GNNs

assume the graph nodes have embedding information trained from large scale feature

extraction [189]. Theoretically speaking, building compact feature information relies on the

manifold hypothesis. The hypothesis states that, empirically, high dimensional sampled

data points will fit to low dimensional non-linear manifolds, generalizing the projection

theorem in Hilbert space [44]. However, this feature learning process remains to be a lossy

operation and might affect the data quality. One of the major reasons of keeping the

unified compact data format is the lack of support of these complex data types in today’s

hardware systems. It is interesting to see how complex data types can be well supported

on custom hardware, and how heterogeneous data information can be consumed by ML

algorithms.

116

Appendix A

Structure of MCifarNet used in

dynamic channel pruning

Figure A.1 shows how the skipping probabilites heat maps of the convolutional layer Conv4

evolve as we train MCifarNet. The network was trained for 12 epochs, and I saved the

model at every epoch. The heat maps are generated with the saved models in sequence,

where I apply the same reordering to all heat map channels with the sorted result from

the first epoch. It can be observed that as we train the network, the channel skipping

probabilites become more pronounced.

training epochs

channels

5

10

Figure A.1: The training history of a convolutional layer Conv4 in MCifarNet. The history
is visualized by the 12 skipping probabilites heat maps, where the heights denote the 10
categories in Cifar10, and channels in Conv4 occupy the width.

117

118

Appendix B

Graph dataset details, graph sampler

configurations and the grid search

setup for baselines

In this section we decribe in details the dataset we used. In our experiments we use dataset

preprocessing and loading implementations from Pytorch Geometric [45].

Citation Dataset: Citation dataset [184] is a standard benchmark dataset for graph

learning. It comprises three publication datasets, which are Cora, CiteSeer and PubMed.

There is an additional extended version of Cora called Cora-Full [13]. Cora contains all

Machine Learning papers in the Cora-Full graph. In these datasets, nodes correspond to

bag-of-word features of the documents and edges indicates citation. Each node has a class

label. In this paper we use the 6:2:2 train/validation/test split ratio.

Amazon Dataset: Amazon datasets [146], including Amazon Photos and Amazon

Computers, are segments of the Amazon co-purchase graph. Nodes represent goods while

edges represent frequent co-purchase of linked goods. Node feature is bag-of-word features

of product review, while node label is its category. We use the 6:2:2 train/validation/test

split ratio.

Flickr and Yelp Dataset: Flickr and Yelp datasets are introduced along Graph-

SAINT [189]. In Flickr dataset, nodes represent images uploaded to Flickr, and edges

represent sharing of common properties (e.g. location and comments by same user). Node

feature is 500-dimensional bag-of-words representation based on SIFT descpritions, and

node label is its class. In Yelp dataset, nodes represent users and edges represent friendship

between users. Node feature is summed word2vec embeddings of words in the user’s

reviews, and node label is a multi-hot vector representing which types of businesses has

the user reviewed. For both dataset we use the 6:2:2 train/validation/test split ratio.

For producing quantised baseline networks, we manually grid searched options listed

in Table 5.3 and follow the order from bottom to top. We stop the search and retrieve to

119

the previous quantisation stage if the current stage shows an accuracy drop of more than

0.5%. It is worth to mention this grid search for quantisation is very time-consuming, and

we therefore only performed on Cora and used the found quantisation strategy for the rest

of the Citation datasets.

Table B.1 shows the configurations of the baseline networks we’ve used in this paper.

Table B.1: Baseline networks configurations.

Networks Layers Channels

GAT 2 32
GAT-V2 2 64
JKNet 2 32

JKNet-V2 2 512
SageNet 2 16

SageNet-V2 2 512

120

Appendix C

Details of VGG9 and ResNet12

backbones used for H-Meta-NAS

The two tables below show the NAS backbones of H-Meta-NAS. Clearly the ResNet-based

NAS backbone is significantly more complicated. The kernel size search space is {1, 3, 5}.
The channel expansion search space is {0.25, 0.5, 0.75, 1, 1.5, 2, 2.25} for the VGG-based

NAS backbone but {0.25, 0.5, 1, 1.5, 1.75, 2} for the ResNet-based backbone. The reason

for the modification in search space is because the GPU RAM limitation does not support

an expansion size of 2.25 on the ResNet-based backbone. The activation search space

contains {[′relu′,′ elu′,′ selu′,′ sigmoid′,′ relu6′,′ leakyrelu′}.

Table C.1: Details of the VGG9 NAS backbone

Layer Name Base channel counts Stride

Layer0 64 2
Layer1 64 2
Layer2 64 2
Layer3 64 2

121

Table C.2: Details of the ResNet12 NAS backbone

Layer Name Base channel counts Stride

Block0 Layer0 32 2
Block0 Layer1 32 1
Block0 Layer2 32 1
Block1 Layer0 64 2
Block1 Layer1 64 1
Block1 Layer2 64 1
Block2 Layer0 128 2
Block2 Layer1 128 1
Block2 Layer2 128 1
Block3 Layer0 256 2
Block3 Layer1 256 1
Block3 Layer2 256 1

122

Bibliography

[1] The wafer-scale engine. https://cerebras.net/chip/. Accessed: 2021-08-20.

[2] Advanced matrix extension (AMX) - x86 - wikichip. https://en.wikichip.org/

wiki/x86/amx. Accessed: 2021-09-21.

[3] Intel movidius myriad x vision processing unit. https://www.intel.com/content/

www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.

html. Accessed: 2021-08-20.

[4] Mohamed S Abdelfattah, Lukasz Dudziak, Thomas Chau, Royson Lee, Hyeji Kim,

and Nicholas D Lane. Codesign-nas: Automatic FPGA/CNN codesign using neu-

ral architecture search. In Proceedings of the 2020 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, pages 315–315, 2020.

[5] Alessandro Aimar, Hesham Mostafa, Enrico Calabrese, Antonio Rios-Navarro, Ri-

cardo Tapiador-Morales, Iulia-Alexandra Lungu, Moritz B Milde, Federico Corradi,

Alejandro Linares-Barranco, Shih-Chii Liu, et al. Nullhop: A flexible convolutional

neural network accelerator based on sparse representations of feature maps. IEEE

transactions on neural networks and learning systems, 30(3):644–656, 2018.

[6] Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep

networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,

editors, Advances in Neural Information Processing Systems (NIPS), pages 2270–

2278. 2016.

[7] Renzo Andri, Lukas Cavigelli, Davide Rossi, and Luca Benini. Yodann: An archi-

tecture for ultralow power binary-weight CNN acceleration. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 37(1):48–60, 2018.

[8] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml.

International Conference on Learning Representations (ICLR), 2019.

[9] Mohamed Arafa, Bahaa Fahim, Sailesh Kottapalli, Akhilesh Kumar, Lily P Looi,

Sreenivas Mandava, Andy Rudoff, Ian M Steiner, Bob Valentine, Geetha Vedaraman,

123

https://cerebras.net/chip/
https://en.wikichip.org/wiki/x86/amx
https://en.wikichip.org/wiki/x86/amx
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html

et al. Cascade lake: Next generation intel xeon scalable processor. IEEE Micro, 39

(2):29–36, 2019.

[10] Sercan O Arık and Tomas Pfister. Tabnet: Attentive interpretable tabular learning.

In AAAI, volume 35, pages 6679–6687, 2021.

[11] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

[12] Lin Bai, Yiming Zhao, and Xinming Huang. A CNN accelerator on FPGA using

depthwise separable convolution. IEEE Transactions on Circuits and Systems II:

Express Briefs, 2018.

[13] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of

graphs: Unsupervised inductive learning via ranking. International Conference on

Learning Representations (ICLR), 2018.

[14] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot

model architecture search through hypernetworks. International Conference on

Learning Representations (ICLR), 2018.

[15] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.

Language models are few-shot learners. Advances in Neural Information Processing

Systems (NeurIPS), 2020.

[16] Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-level

network transformation for efficient architecture search. In International Conference

on Machine Learning, pages 678–687. PMLR, 2018.

[17] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search

on target task and hardware. International Conference on Learning Representations

(ICLR), 2019.

[18] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all:

Train one network and specialize it for efficient deployment. International Conference

on Learning Representations (ICLR), 2020.

[19] Pierre-Luc Carrier, Aaron Courville, Ian J Goodfellow, Medhi Mirza, and Yoshua

Bengio. FER-2013 face database. Technical report, 2013.

[20] Francesco Paolo Casale, Jonathan Gordon, and Nicolo Fusi. Probabilistic neural

architecture search. arXiv preprint arXiv:1902.05116, 2019.

124

[21] Stephen Cass. Taking ai to the edge: Google’s tpu now comes in a maker-friendly

package. IEEE Spectrum, 56(5):16–17, 2019.

[22] Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional

networks with variance reduction. International Conference on Machine Learning,

2018.

[23] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Yan, Leyuan

Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Tvm:

End-to-end optimization stack for deep learning. Proceedings of the 13th USENIX

Conference on Operating Systems Design and Implementation, 2018.

[24] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,

and Olivier Temam. Diannao: A small-footprint high-throughput accelerator for

ubiquitous machine-learning. ACM Sigplan Notices, 49(4):269–284, 2014.

[25] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-efficient

reconfigurable accelerator for deep convolutional neural networks. IEEE Journal of

Solid-State Circuits, 52(1):127–138, Jan 2017. ISSN 0018-9200. doi: 10.1109/JSSC.

2016.2616357.

[26] Yinbo Chen, Zhuang Liu, Huijuan Xu, Trevor Darrell, and Xiaolong Wang. Meta-

baseline: Exploring simple meta-learning for few-shot learning. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 9062–9071, 2021.

[27] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An energy-

efficient reconfigurable accelerator for deep convolutional neural networks. IEEE

Journal of Solid-State Circuits, 52(1):127–138, 2017.

[28] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Universal deep neural network

compression. IEEE Journal of Selected Topics in Signal Processing, 14(4):715–726,

2020.

[29] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian Caulfield,

Todd Massengil, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, et al.

Accelerating persistent neural networks at datacenter scale. In Hot Chips, volume 29,

2017.

[30] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate

deep network learning by exponential linear units (elus). International Conference

on Learning Representations (ICLR), 2015.

125

[31] Francesco Conti, Pasquale Davide Schiavone, and Luca Benini. Xnor neural engine:

A hardware accelerator ip for 21.6-fj/op binary neural network inference. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(11):

2940–2951, 2018.

[32] Matthieu Courbariaux, Yoshua Bengio, et al. Training deep neural networks with low

precision multiplications. In International Conference on Learning Representations,

2015.

[33] Jiequan Cui, Pengguang Chen, Ruiyu Li, Shu Liu, Xiaoyong Shen, and Jiaya Jia.

Fast and practical neural architecture search. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 6509–6518, 2019.

[34] Tristan Deleu, Tobias Würfl, Mandana Samiei, Joseph Paul Cohen, and Yoshua Ben-

gio. Torchmeta: A Meta-Learning library for PyTorch, 2019. URL https://arxiv.

org/abs/1909.06576. Available at: https://github.com/tristandeleu/pytorch-meta.

[35] Alberto Delmas Lascorz, Patrick Judd, Dylan Malone Stuart, Zissis Poulos, Mostafa

Mahmoud, Sayeh Sharify, Milos Nikolic, Kevin Siu, and Andreas Moshovos. Bit-

tactical: A software/hardware approach to exploiting value and bit sparsity in

neural networks. In Proceedings of the Twenty-Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems, pages

749–763, 2019.

[36] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 1977.

[37] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009.

[38] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. Proceedings

of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,

Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), 2018.

[39] Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan. More is less: A more

complicated network with less inference complexity. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), July 2017.

[40] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua

Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,

126

https://arxiv.org/abs/1909.06576
https://arxiv.org/abs/1909.06576

Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image

recognition at scale. International Conference on Learning Representations (ICLR),

2021.

[41] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing

Feng, Yunji Chen, and Olivier Temam. Shidiannao: Shifting vision processing closer

to the sensor. In Proceedings of the 42nd Annual International Symposium on

Computer Architecture, pages 92–104, 2015.

[42] Abhimanyu Dubey, Moitreya Chatterjee, and Narendra Ahuja. Coreset-based neural

network compression. In Proceedings of the European Conference on Computer

Vision (ECCV), pages 454–470, 2018.

[43] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam, and

Doug Burger. Dark silicon and the end of multicore scaling. In 2011 38th Annual

international symposium on computer architecture (ISCA), pages 365–376. IEEE,

2011.

[44] Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold

hypothesis. Journal of the American Mathematical Society, 29(4):983–1049, 2016.

[45] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch

Geometric. In ICLR Workshop on Representation Learning on Graphs and Manifolds,

2019.

[46] Mikhail Figurnov, Aizhan Ibraimova, Dmitry P Vetrov, and Pushmeet Kohli. Per-

foratedCNNs: Acceleration through elimination of redundant convolutions. In

Advances in Neural Information Processing Systems (NIPS), pages 947–955, 2016.

[47] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for

fast adaptation of deep networks. In International Conference on Machine Learning,

pages 1126–1135. PMLR, 2017.

[48] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming

Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,

et al. A configurable cloud-scale DNN processor for real-time ai. In 45th Annual

International Symposium on Computer Architecture, 2018.

[49] Wilson WL Fung and Tor M Aamodt. Thread block compaction for efficient simt

control flow. In 2011 IEEE 17th International Symposium on High Performance

Computer Architecture, pages 25–36. IEEE, 2011.

127

[50] Xitong Gao, Yiren Zhao, Lukasz Dudziak, Robert Mullins, and Cheng-zhong Xu. Dy-

namic channel pruning: Feature boosting and suppression. International Conference

on Learning Representations (ICLR), 2019.

[51] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. GraphNAS:

Graph neural architecture search with reinforcement learning. arXiv preprint

arXiv:1904.09981, 2019.

[52] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without

forgetting. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4367–4375, 2018.

[53] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. Neural message passing for quantum chemistry. In Proceedings of the 34th

International Conference on Machine Learning-Volume 70, pages 1263–1272. JMLR.

org, 2017.

[54] Jianzhu Guo, Xiangyu Zhu, Chenxu Zhao, Dong Cao, Zhen Lei, and Stan Z. Li.

Learning meta face recognition in unseen domains. CoRR, abs/2003.07733, 2020.

URL https://arxiv.org/abs/2003.07733.

[55] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Song Yao, Song Han, Yu Wang, and

Huazhong Yang. Angel-Eye: A complete design flow for mapping CNN onto cus-

tomized hardware. In IEEE Computer Society Annual Symposium on VLSI, 2016.

[56] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Jincheng Yu, Junbin Wang, Song Yao, Song

Han, Yu Wang, and Huazhong Yang. Angel-eye: A complete design flow for mapping

CNN onto embedded FPGA. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 37(1):35–47, 2018.

[57] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient

DNNs. In Advances in Neural Information Processing Systems, 2016.

[58] Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen, Peilin Zhao, and Junzhou

Huang. Nat: Neural architecture transformer for accurate and compact architectures.

Advances in Neural Information Processing Systems, 32, 2019.

[59] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and

Jian Sun. Single path one-shot neural architecture search with uniform sampling.

European Conference on Computer Vision, 2020.

[60] Linley Gwennap. Groq rocks neural networks. Microprocessor Report, Tech. Rep.,

jan, 2020.

128

https://arxiv.org/abs/2003.07733

[61] Philipp Gysel et al. Ristretto: A framework for empirical study of resource-efficient

inference in convolutional neural networks. IEEE Transactions on Neural Networks

and Learning Systems, 2018.

[62] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning

on large graphs. In Advances in Neural Information Processing Systems, pages

1024–1034, 2017.

[63] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and

William J Dally. Eie: efficient inference engine on compressed deep neural network.

In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International

Symposium on, pages 243–254. IEEE, 2016.

[64] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing

deep neural networks with pruning, trained quantization and Huffman coding.

International Conference on Learning Representations (ICLR), 2016.

[65] Babak Hassibi, David G. Stork, and Gregory Wolff. Optimal brain surgeon: Exten-

sions and performance comparisons. In J. D. Cowan, G. Tesauro, and J. Alspector,

editors, Advances in Neural Information Processing Systems (NIPS), pages 263–270.

1994.

[66] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[67] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in

deep residual networks. In European conference on computer vision, pages 630–645.

Springer, 2016.

[68] Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art.

Knowledge-Based Systems, 212:106622, 2021.

[69] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter

pruning for accelerating deep convolutional neural networks. In International Joint

Conference on Artificial Intelligence (IJCAI), pages 2234–2240, 2018.

[70] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very

deep neural networks. IEEE International Conference on Computer Vision (ICCV),

pages 1398–1406, 2017.

[71] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. AMC: AutoML

for model compression and acceleration on mobile devices. In Proceedings of the

European Conference on Computer Vision (ECCV), pages 784–800, 2018.

129

[72] Geoffrey Hinton, Li Deng, et al. Deep neural networks for acoustic modeling in

speech recognition: The shared views of four research groups. IEEE Signal Processing

Magazine, 2012.

[73] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Ef-

ficient convolutional neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861, 2017.

[74] Jui-Yang Hsu, Yuan-Jui Chen, and Hung-yi Lee. Meta learning for end-to-end low-

resource speech recognition. In ICASSP 2020-2020 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 7844–7848. IEEE, 2020.

[75] Weizhe Hua, Christopher De Sa, Zhiru Zhang, and G. Edward Suh. Channel

gating neural networks. Advances in Neural Information Processing Systems, pages

1886–1896, 2019.

[76] Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G Edward Suh.

Boosting the performance of CNN accelerators with dynamic fine-grained channel

gating. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on

Microarchitecture, pages 139–150, 2019.

[77] Weizhe Hua, Yuan Zhou, Christopher M De Sa, Zhiru Zhang, and G Edward Suh.

Channel gating neural networks. In Advances in Neural Information Processing

Systems, pages 1886–1896, 2019.

[78] Qiangui Huang, Kevin Zhou, Suya You, and Ulrich Neumann. Learning to prune

filters in convolutional neural networks. In IEEE Winter Conference on Computer

Vision. 2018.

[79] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. Binarized neural networks. In Advances in neural information processing

systems, pages 4107–4115, 2016.

[80] Itay Hubara, Matthieu Courbariaux, et al. Binarized neural networks. In Advances

in Neural Information Processing Systems. 2016.

[81] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. Quantized neural networks: Training neural networks with low precision

weights and activations. The Journal of Machine Learning Research, 18(1):6869–6898,

2017.

130

[82] Kyuyeon Hwang and Wonyong Sung. Fixed-point feedforward deep neural network

design using weights +1, 0, and −1. In Signal Processing Systems, 2014.

[83] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In International Conference on Machine

Learning, pages 448–456, 2015.

[84] Zhe Jia, Blake Tillman, Marco Maggioni, and Daniele Paolo Scarpazza. Dissecting the

graphcore ipu architecture via microbenchmarking. arXiv preprint arXiv:1912.03413,

2019.

[85] Norman P Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B

Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, et al. Ten

lessons from three generations shaped google’s tpuv4i.

[86] Ilyes Kacher, Maxime Portaz, Hicham Randrianarivo, and Sylvain Peyronnet. Graph-

core c2 card performance for image-based deep learning application: A report. arXiv

preprint arXiv:2002.11670, 2020.

[87] Kari Kalliojarvi and Jaakko Astola. Roundoff errors in block-floating-point systems.

IEEE transactions on signal processing, 44(4):783–790, 1996.

[88] Jaehong Kim, Sangyeul Lee, Sungwan Kim, Moonsu Cha, Jung Kwon Lee, Youngduck

Choi, Yongseok Choi, Dong-Yeon Cho, and Jiwon Kim. Auto-meta: Automated

gradient based meta learner search. arXiv preprint arXiv:1806.06927, 2018.

[89] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convo-

lutional networks. International Conference on Learning Representations (ICLR),

2016.

[90] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-

normalizing neural networks. Advances in neural information processing systems, 30,

2017.

[91] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks

for one-shot image recognition. In ICML deep learning workshop, volume 2. Lille,

2015.

[92] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical

report, 2009.

[93] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in Neural Information Processing

Systems 25. 2012.

131

[94] Alex Krizhevsky et al. The CIFAR-10 dataset.

http://www.cs.toronto.edu/kriz/cifar.html, 2014.

[95] Ian Kuon and Jonathan Rose. Measuring the gap between FPGAs and ASICs.

IEEE Transactions on computer-aided design of integrated circuits and systems, 26

(2):203–215, 2007.

[96] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level

concept learning through probabilistic program induction. Science, 350(6266):1332–

1338, 2015.

[97] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,

and Radu Soricut. Albert: A lite bert for self-supervised learning of language

representations. International Conference on Learning Representations (ICLR),

2020.

[98] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program

analysis & transformation. In International Symposium on Code Generation and

Optimization, 2004. CGO 2004., pages 75–86. IEEE, 2004.

[99] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques

Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zi-

nenko. Mlir: A compiler infrastructure for the end of moore’s law. arXiv preprint

arXiv:2002.11054, 2020.

[100] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Advances

in Neural Information Processing Systems (NIPS), pages 598–605. 1990.

[101] Edward H. Lee, Daisuke Miyashita, et al. Lognet: Energy-efficient neural networks

using logarithmic computation. In IEEE International Conference on Acoustics,

Speech and Signal Processing, 2017.

[102] Cong Leng, Zesheng Dou, Hao Li, Shenghuo Zhu, and Rong Jin. Extremely low

bit neural network: Squeeze the last bit out with ADMM. In Thirty-Second AAAI

Conference on Artificial Intelligence, 2018.

[103] Christian Lengauer. Loop parallelization in the polytope model. In International

Conference on Concurrency Theory, pages 398–416. Springer, 1993.

[104] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv preprint

arXiv:1605.04711, 2016.

[105] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning

filters for efficient convnets. 2017.

132

[106] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn

quickly for few-shot learning. arXiv preprint arXiv:1707.09835, 2017.

[107] Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu, Leyu Lin, Peilin Zhao, Junzhou

Huang, and Shenghua Gao. Towards fast adaptation of neural architectures with

meta learning. In International Conference on Learning Representations, 2019.

[108] Heng Liao, Jiajin Tu, Jing Xia, and Xiping Zhou. Davinci: A scalable architecture

for neural network computing. In 2019 IEEE Hot Chips 31 Symposium (HCS), pages

1–44. IEEE Computer Society, 2019.

[109] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. Fixed point quantization

of deep convolutional networks. In International conference on machine learning,

pages 2849–2858, 2016.

[110] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural

network. In Advances in neural information processing systems, pages 345–353, 2017.

[111] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity

and relation embeddings for knowledge graph completion. In Twenty-ninth AAAI

conference on artificial intelligence, 2015.

[112] Baoyuan Liu, Min Wang, et al. Sparse convolutional neural networks. In IEEE

Conference on Computer Vision and Pattern Recognition, 2015.

[113] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture

search. International Conference on Learning Representations (ICLR), 2019.

[114] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui

Zhang. Learning efficient convolutional networks through network slimming. In

International Conference on Computer Vision (ICCV), 2017.

[115] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. ThiNet: A filter level pruning method

for deep neural network compression. In Proceedings of the IEEE International

Conference on Computer Vision, pages 5058–5066, 2017.

[116] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. ThiNet: A filter level pruning method

for deep neural network compression. In ICCV, pages 5058–5066, 2017.

[117] Yufei Ma, Naveen Suda, Yu Cao, Jae-sun Seo, and Sarma Vrudhula. Scalable and

modularized rtl compilation of convolutional neural networks onto FPGA. In Field

Programmable Logic and Applications (FPL), 2016 26th International Conference

on, pages 1–8. IEEE, 2016.

133

[118] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S

Vetter. Nvidia tensor core programmability, performance & precision. In 2018 IEEE

International Parallel and Distributed Processing Symposium Workshops (IPDPSW),

pages 522–531. IEEE, 2018.

[119] Moritz B Milde, Daniel Neil, et al. ADaPTION: Toolbox and benchmark for

training convolutional neural networks with reduced numerical precision weights and

activation. CoRR, abs/1711.04713, 2017.

[120] Sparsh Mittal. A survey on optimized implementation of deep learning models on

the nvidia jetson platform. Journal of Systems Architecture, 97:428–442, 2019.

[121] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning. nature,

518(7540):529–533, 2015.

[122] Duncan Moss, Srivatsan Krishnan, Eriko Nurvitadhi, Piotr Ratuszniak, Chris John-

son, Jaewoong Sim, Asit Mishra, Debbie Marr, Suchit Subhaschandra, and Philip

H. W. Leong. A customizable matrix multiplication framework for the Intel HARPv2

Xeon + FPGA platform. In ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, 2018.

[123] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In International Conference

on Machine Learning, pages 2554–2563. PMLR, 2017.

[124] Giridhar Sreenivasa Murthy, Mahesh Ravishankar, Muthu Manikandan Baskaran,

and Ponnuswamy Sadayappan. Optimal loop unrolling for gpgpu programs. In 2010

IEEE International Symposium on Parallel & Distributed Processing (IPDPS), pages

1–11. IEEE, 2010.

[125] Milos Nikolic, Mostafa Mahmoud, Andreas Moshovos, Yiren Zhao, and Robert

Mullins. Characterizing sources of ineffectual computations in deep learning networks.

In 2019 IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS), 2019.

[126] Miloš Nikolić, Mostafa Mahmoud, Andreas Moshovos, Yiren Zhao, and Robert

Mullins. Characterizing sources of ineffectual computations in deep learning networks.

In 2019 IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS), pages 165–176. IEEE, 2019.

134

[127] Boris N Oreshkin, Pau Rodriguez, and Alexandre Lacoste. Tadam: Task dependent

adaptive metric for improved few-shot learning. Advances in neural information

processing systems, 31, 2018.

[128] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan

Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and William J Dally.

SCNN: An accelerator for compressed-sparse convolutional neural networks. In ACM

SIGARCH Computer Architecture News, volume 45, pages 27–40. ACM, 2017.

[129] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:

An imperative style, high-performance deep learning library. In Advances in neural

information processing systems, pages 8026–8037, 2019.

[130] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural

architecture search via parameters sharing. In International Conference on Machine

Learning, pages 4095–4104. PMLR, 2018.

[131] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distil-

lation and quantization. In International Conference on Learning Representations,

2018.

[132] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu,

Tianqi Tang, Ningyi Xu, and Sen Song. Going deeper with embedded FPGA platform

for convolutional neural network. In ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, 2016.

[133] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. Language models are unsupervised multitask learners. OpenAI blog, 1(8):

9, 2019.

[134] Atul Rahman, Jongeun Lee, and Kiyoung Choi. Efficient FPGA acceleration of

convolutional neural networks using logical-3d compute array. In Design, Automation

& Test in Europe Conference & Exhibition (DATE), 2016, pages 1393–1398. IEEE,

2016.

[135] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning.

International Conference on Learning Representations (ICLR), 2017.

[136] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution

for image classifier architecture search. In Proceedings of the aaai conference on

artificial intelligence, volume 33, pages 4780–4789, 2019.

135

[137] Lakshminarayanan Renganarayanan, Daegon Kim, Michelle Mills Strout, and San-

jay Rajopadhye. Parameterized loop tiling. ACM Transactions on Programming

Languages and Systems (TOPLAS), 34(1):1–41, 2012.

[138] Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep

reinforcement learning framework for autonomous driving. Electronic Imaging, 2017

(19):70–76, 2017.

[139] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar

Krishna. Scale-sim: Systolic CNN accelerator simulator. arXiv preprint

arXiv:1811.02883, 2018.

[140] Robert R Schaller. Moore’s law: past, present and future. IEEE spectrum, 34(6):

52–59, 1997.

[141] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre,

Tim Green, Chongli Qin, Augustin Ž́ıdek, Alexander WR Nelson, Alex Bridgland,

et al. Improved protein structure prediction using potentials from deep learning.

Nature, 577(7792):706–710, 2020.

[142] Sayeh Sharify, Alberto Delmas Lascorz, Mostafa Mahmoud, Milos Nikolic, Kevin

Siu, Dylan Malone Stuart, Zissis Poulos, and Andreas Moshovos. Laconic deep

learning inference acceleration. In Proceedings of the 46th International Symposium

on Computer Architecture, ISCA ’19, 2019.

[143] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas

Chandra, and Hadi Esmaeilzadeh. Bit fusion: Bit-level dynamically composable

architecture for accelerating deep neural networks. In Proceedings of the 45th Annual

International Symposium on Computer Architecture, 2018.

[144] Albert Shaw, Wei Wei, Weiyang Liu, Le Song, and Bo Dai. Meta architecture search.

arXiv preprint arXiv:1812.09584, 2018.

[145] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey

Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated

mixture-of-experts layer. International Conference on Learning Representations

(ICLR), 2017.

[146] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. Pitfalls of graph neural network evaluation. arXiv preprint

arXiv:1811.05868, 2018.

136

[147] Junzhong Shen, You Huang, Zelong Wang, Yuran Qiao, Mei Wen, and Chunyuan

Zhang. Towards a uniform template-based architecture for accelerating 2D and 3D

CNNs on FPGA. In ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays, 2018.

[148] Yongming Shen, Michael Ferdman, and Peter Milder. Maximizing CNN acceler-

ator efficiency through resource partitioning. In 2017 ACM/IEEE 44th Annual

International Symposium on Computer Architecture (ISCA), 2017.

[149] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. Two-stream adaptive graph

convolutional networks for skeleton-based action recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 12026–12035,

2019.

[150] Sungho Shin, Kyuyeon Hwang, and Wonyong Sung. Fixed-point performance analysis

of recurrent neural networks. In 2016 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 976–980. IEEE, 2016.

[151] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale

image recognition. CoRR, abs/1409.1556, 2014.

[152] David So, Quoc Le, and Chen Liang. The evolved transformer. In International

Conference on Machine Learning, pages 5877–5886. PMLR, 2019.

[153] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The journal of machine learning research, 15(1):1929–1958, 2014.

[154] Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-

Ruiz, Nina M Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar

Bloom-Ackermann, et al. A deep learning approach to antibiotic discovery. Cell,

180(4):688–702, 2020.

[155] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma, Sarma

Vrudhula, Jae-sun Seo, and Yu Cao. Throughput-optimized OpenCL-based FPGA

accelerator for large-scale convolutional neural networks. In Proceedings of the 2016

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2016.

[156] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M

Hospedales. Learning to compare: Relation network for few-shot learning. In

Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 1199–1208, 2018.

137

[157] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew

Howard, and Quoc V Le. Mnasnet: Platform-aware neural architecture search for

mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 2820–2828, 2019.

[158] Frederick Tung, Greg Mori, and Simon Fraser. CLIP-Q: Deep network compres-

sion learning by in-parallel pruning-quantization. 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 7873–7882, 2018.

[159] Yash Ukidave, David Kaeli, Umesh Gupta, and Kurt Keville. Performance of

the nvidia jetson tk1 in hpc. In 2015 IEEE International Conference on Cluster

Computing, pages 533–534. IEEE, 2015.

[160] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization:

The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[161] Han Vanholder. Efficient inference with tensorrt, 2016.

[162] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30:5998–6008, 2017.

[163] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. Graph Attention Networks. International Conference

on Learning Representations, 2018. URL https://openreview.net/forum?id=

rJXMpikCZ.

[164] Stylianos I. Venieris and Christos-Savvas Bouganis. fpgaConvNet: A framework

for mapping convolutional neural networks on FPGAs. In IEEE International

Symposium on Field-Programmable Custom Computing Machines, 2016.

[165] Thomas Verelst and Tinne Tuytelaars. Dynamic convolutions: Exploiting spatial

sparsity for faster inference. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 2320–2329, 2020.

[166] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan

Wierstra. Matching networks for one shot learning. Advances in Neural Information

Processing Systems, 2016.

[167] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S

Yu. Heterogeneous graph attention network. In The World Wide Web Conference,

pages 2022–2032, 2019.

138

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ

[168] Yunchao Wei, Huaxin Xiao, Honghui Shi, Zequn Jie, Jiashi Feng, and Thomas S

Huang. Revisiting dilated convolution: A simple approach for weakly-and semi-

supervised semantic segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 7268–7277, 2018.

[169] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured

sparsity in deep neural networks. In Advances in Neural Information Processing

Systems (NIPS), pages 2074–2082. 2016.

[170] Wei Wen, Cong Xu, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Co-

ordinating filters for faster deep neural networks. In Proceedings of the IEEE

International Conference on Computer Vision, pages 658–666, 2017.

[171] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85,

1994.

[172] JH Wilkinson. Rounding errors in algebraic processes. 1965.

[173] Felix Winterstein, Samuel Bayliss, and George A Constantinides. High-level synthesis

of dynamic data structures: A case study using vivado hls. In 2013 International

Conference on Field-Programmable Technology (FPT), pages 362–365. IEEE, 2013.

[174] Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and

Kurt Keutzer. Mixed precision quantization of convnets via differentiable neural

architecture search. arXiv preprint arXiv:1812.00090, 2018.

[175] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu,

Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-

aware efficient convnet design via differentiable neural architecture search. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 10734–10742, 2019.

[176] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset

for benchmarking machine learning algorithms. arXiv preprint, 2017.

[177] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural

architecture search. International Conference on Learning Representations (ICLR),

2019.

[178] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified

activations in convolutional network. arXiv preprint arXiv:1505.00853, 2015.

139

[179] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi,

and Stefanie Jegelka. Representation learning on graphs with jumping knowledge

networks. In International Conference on Machine Learning, pages 5449–5458, 2018.

[180] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are

graph neural networks? In International Conference on Learning Representations,

2019. URL https://openreview.net/forum?id=ryGs6iA5Km.

[181] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Bowen Shi, Qi Tian, and Hongkai

Xiong. Latency-aware differentiable neural architecture search. arXiv preprint

arXiv:2001.06392, 2020.

[182] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivi-

enne Sze, and Hartwig Adam. Netadapt: Platform-aware neural network adaptation

for mobile applications. In Proceedings of the European Conference on Computer

Vision (ECCV), pages 285–300, 2018.

[183] Yongxin Yang, Irene Garcia Morillo, and Timothy M Hospedales. Deep neural

decision trees. arXiv preprint arXiv:1806.06988, 2018.

[184] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-

supervised learning with graph embeddings. In Proceedings of the 33rd International

Conference on International Conference on Machine Learning-Volume 48, pages

40–48. JMLR. org, 2016.

[185] Jianbo Ye, Xin Lu, Zhe L. Lin, and James Z. Wang. Rethinking the smaller-norm-

less-informative assumption in channel pruning of convolution layers. In International

Conference on Learning Representations (ICLR), 2018.

[186] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure

Leskovec. Hierarchical graph representation learning with differentiable pooling. In

Advances in neural information processing systems, pages 4800–4810, 2018.

[187] Geng Yuan, Xiaolong Ma, Caiwen Ding, Sheng Lin, Tianyun Zhang, Zeinab S Jalali,

Yilong Zhao, Li Jiang, Sucheta Soundarajan, and Yanzhi Wang. An ultra-efficient

memristor-based dnn framework with structured weight pruning and quantization us-

ing admm. In 2019 IEEE/ACM International Symposium on Low Power Electronics

and Design (ISLPED), pages 1–6. IEEE, 2019.

[188] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. Proceedings of

the British Machine Vision Conference (BMVC), 2016.

140

https://openreview.net/forum?id=ryGs6iA5Km

[189] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Vik-

tor Prasanna. GraphSAINT: Graph sampling based inductive learning method.

In International Conference on Learning Representations, 2020. URL https:

//openreview.net/forum?id=BJe8pkHFwS.

[190] Chen Zhang, Di Wu, Jiayu Sun, Guangyu Sun, Guojie Luo, and Jason Cong. Energy-

efficient CNN implementation on a deeply pipelined fpga cluster. In Proceedings of

the 2016 International Symposium on Low Power Electronics and Design, 2016.

[191] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen. Deepemd: Few-shot image

classification with differentiable earth mover’s distance and structured classifiers.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 12203–12213, 2020.

[192] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned

quantization for highly accurate and compact deep neural networks. In Proceedings

of the European conference on computer vision (ECCV), pages 365–382, 2018.

[193] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung.

Gaan: Gated attention networks for learning on large and spatiotemporal graphs.

arXiv preprint arXiv:1803.07294, 2018.

[194] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In

Advances in Neural Information Processing Systems, pages 5165–5175, 2018.

[195] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep

learning architecture for graph classification. In Thirty-Second AAAI Conference on

Artificial Intelligence, 2018.

[196] Ting Zhang, Guo-Jun Qi, Bin Xiao, and Jingdong Wang. Interleaved group

convolutions for deep neural networks. CoRR, abs/1707.02725, 2017. URL

http://arxiv.org/abs/1707.02725.

[197] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely

efficient convolutional neural network for mobile devices. In IEEE Conference on

Computer Vision and Pattern Recognition, 2018.

[198] Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong, Wen-mei Hwu,

and Deming Chen. DNNBuilder: an automated tool for building high-performance

dnn hardware accelerators for FPGAs. In Proceedings of the International Conference

on Computer-Aided Design, page 56. ACM, 2018.

141

https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=BJe8pkHFwS
http://arxiv.org/abs/1707.02725

[199] Ruizhe Zhao, Ho-Cheung Ng, Wayne Luk, and Xinyu Niu. Towards efficient con-

volutional neural network for domain-specific applications on FPGA. 2018 28th

International Conference on Field Programmable Logic and Applications (FPL),

pages 147–1477, 2018.

[200] Ruizhe Zhao, Xinyu Niu, and Wayne Luk. Automatic optimising CNN with depthwise

separable convolution on FPGA: (abstact only). In ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, 2018.

[201] Yiren Zhao, Xitong Gao, Robert Mullins, and Chengzhong Xu. Mayo: A framework

for auto-generating hardware friendly deep neural networks. In Proceedings of the

2nd International Workshop on Embedded and Mobile Deep Learning, pages 25–30,

2018.

[202] Yiren Zhao, Xitong Gao, Daniel Bates, Robert Mullins, and Cheng-Zhong Xu.

Focused quantization for sparse CNNs. In Advances in Neural Information Processing

Systems, pages 5584–5593, 2019.

[203] Yiren Zhao, Xitong Gao, Xuan Guo, Junyi Liu, Erwei Wang, Robert Mullins, Pe-

ter YK Cheung, George Constantinides, and Cheng-Zhong Xu. Automatic generation

of multi-precision multi-arithmetic CNN accelerators for FPGAs. In 2019 Interna-

tional Conference on Field-Programmable Technology (ICFPT), pages 45–53. IEEE,

2019.

[204] Yiren Zhao, Duo Wang, Daniel Bates, Robert Mullins, Mateja Jamnik, and Pietro

Lio. Learned low precision graph neural networks. arXiv preprint arXiv:2009.09232,

2020.

[205] Yiren Zhao, Duo Wang, Xitong Gao, Robert Mullins, Pietro Lio, and Mateja

Jamnik. Probabilistic dual network architecture search on graphs. arXiv preprint

arXiv:2003.09676, 2020.

[206] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. Practical block-

wise neural network architecture generation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 2423–2432, 2018.

[207] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremen-

tal network quantization: Towards lossless CNNs with low-precision weights. In

International Conference on Learning Representations, 2017.

[208] Hao Zhou, Jose M. Alvarez, and Fatih Porikli. Less is more: Towards compact CNNs.

In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision

142

– ECCV 2016, pages 662–677, Cham, 2016. Springer International Publishing. ISBN

978-3-319-46493-0.

[209] Kaixiong Zhou, Qingquan Song, Xiao Huang, and Xia Hu. Auto-GNN: Neural

architecture search of graph neural networks. arXiv preprint arXiv:1909.03184, 2019.

[210] Shuchang Zhou, Zekun Ni, et al. DoReFa-Net: Training low bitwidth convolutional

neural networks with low bitwidth gradients. CoRR, abs/1606.06160, 2016.

[211] Yanqi Zhou, Xuanyi Dong, Berkin Akin, Mingxing Tan, Daiyi Peng, Tianjian

Meng, Amir Yazdanbakhsh, Da Huang, Ravi Narayanaswami, and James Laudon.

Rethinking co-design of neural architectures and hardware accelerators. arXiv

preprint arXiv:2102.08619, 2021.

[212] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary

quantization. International Conference on Learning Representations (ICLR), 2017.

[213] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu,

Junzhou Huang, and Jinhui Zhu. Discrimination-aware channel pruning for deep

neural networks. In Advances in Neural Information Processing Systems (NIPS).

2018.

[214] Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-

layer tissue networks. Bioinformatics, 33(14):i190–i198, 2017.

[215] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.

International Conference on Learning Representations (ICLR), 2017.

[216] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning trans-

ferable architectures for scalable image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 8697–8710, 2018.

143

144

	Introduction
	Motivation
	Research questions and hypotheses
	Contributions
	Outline
	Publication

	Background
	An overview of deep neural networks and their computational requirements
	Deep neural network structures
	Neural network compression and automated machine learning
	Pruning
	Quantisation
	Automated machine learning and network architecture search

	Neural network hardware accelerators
	From general-purpose processors to custom hardware accelerators
	Processing elements
	Data reuse models
	A comparison of DNN hardware accelerators

	Pruning and quantisation for efficient neural networks
	Intriguing properties of DNNs
	Combining different compression techniques
	Dynamic coarse-grained pruning
	Static and dynamic pruning
	Feature boosting and suppression
	Evaluating FBS

	Focused quantisation for custom hardware
	Quantising sparse and dense models
	Focused quantisation
	Evaluating focused quantisation

	Applying compression techniques to hardware
	Summary

	Multi-precision multi-arithmetic CNN hardware accelerators for efficient neural networks
	Accelerator designs for neural networks: homogeneous systolic arrays vs streaming cores
	Low precision inference in hardware
	The Tomato framework
	Automatic quantisation exploration
	Automatic hardware generation
	Macro-architectures
	Micro-Architecture: roll-unrolled convolutions
	Striding and rolling: matching the throughput
	Batch normalisation and rounding

	Evaluating the performance of automatically generated hardware
	Experimental setups
	Resource utilisation
	Performance evaluation
	Multi-FPGA acceleration

	Summary

	Hardware-aware automated machine learning
	Motivations for automated machine learning network architecture search
	Network architecture search for GNNs
	Architectural design space for GNNs
	Quantisation search space for graph neural networks
	Low precision graph neural network architecture search
	Evaluating low precision graph network architecture search (LPGNAS)
	LPGNAS on Citation datasets
	LPGNAS for graph sampling based learning

	Quantisation search time
	Quantisation statistics and limitations

	Network architecture search in a multi-task multi-device few-shot learning setup
	Few-shot learning in the MAML framework
	Hardware-aware network architecture search for meta-learning
	Problem formulation
	Architecture space
	Pre-training strategy
	Layer-wise profiling
	Adaption strategy
	NAS backbone design

	Evaluating H-Meta-NAS
	Evaluating H-Meta-NAS searched architectures
	H-Meta-NAS for diverse hardware platforms and constraints
	A more complex NAS backbone
	Search complexity and search time

	Summary

	Conclusion
	Future research
	Software-hardware co-design network architecture search
	General-purpose AI accelerator
	Large AI chips
	Handling complex data types in Machine Learning using custom hardware

	Structure of MCifarNet used in dynamic channel pruning
	Graph dataset details, graph sampler configurations and the grid search setup for baselines
	Details of VGG9 and ResNet12 backbones used for H-Meta-NAS
	Bibliography

