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ABSTRACT 

TITLE: An Investigation into the Vascular Phenotypes of Breast Patient- 

Derived Xenografts 

AUTHOR: Emma Brown 

Blood vessel networks in tumours are often chaotic, dense and immature resulting in reduced blood 

perfusion and oxygen delivery, leading to hypoxia (low oxygen levels). Hypoxic tumours are more 

aggressive, therapy resistant and likely to metastasise, particularly in breast cancer. Equally, hypoxic 

tumours encourage the growth of new blood vessels from existing vasculature, termed angiogenesis, 

and high rates of angiogenesis result in immature and chaotic vessels forming, creating a feed-

forward loop    of poor perfusion and oxygenation. Photoacoustic imaging (PAI) can visualise vascular 

features in the tumour microenvironment at multiple scales, building a complete picture of the 

vascular phenotype in a single tumour, which can be monitored longitudinally over time and non-

invasively in vivo. It’s high spatiotemporal resolution, low cost, use of nonionizing radiation and non-

invasive properties make PAI an attractive option for monitoring dynamic vascular features not only 

in a preclinical setting but also throughout    a patient’s treatment regime, particularly in breast cancer 

management. Thus far there has been a reliance on cell-line mouse models to provide insight into 

tumour vascular phenotypes captured with PAI. As a result, several questions remain regarding the 

sensitivity of PAI to discriminate between patient vascular phenotypes, and which vascular features 

are important to monitor in patients. In order to translate PAI into the clinic, the field must begin to 

use more clinically-relevant preclinical models and assess their ability to recapitulate the phenotypes 

seen in patients. This thesis proposes the use of breast cancer patient-derived xenografts (PDXs) in 

PAI, to begin to answer the aforementioned questions in clinically-relevant models. However, 

whether PDXs are good vascular models themselves remains unknown. This thesis conducts a 

careful evaluation of whether vascular phenotypes differ between 4 breast PDX models and how 

they evolve over time using PAI with corresponding ex vivo immunohistochemistry, used to 

biologically validate the phenotypes seen in vivo and provide additional molecular information. The 

work assessed how vascular phenotypes change across PDX passages and briefly compared them to 

originating patient tissue sections. Finally, the origin of these vascular phenotypes is investigated 

by measuring the underlying hypoxic gene expression of the cancer cells, assuming that the cancer 

cells shape the mouse host vasculature. The 4 breast PDXs studied displayed different vascular 

features on ex vivo IHC, which PAI was sensitive to in vivo. Overall, the PDXs were robust and 

reliable vascular models, with little inter-passage variability and similarity to patient 



vascular phenotypes shown on IHC. Demand and supply of oxygen through the blood vessel network 

appears to influence the extent of hypoxia in the tumour tissue. Inherent hypoxic phenotypes were 

measured using PAI, IHC and RNA-seq, which could drive formation of immature vascular networks 

in some PDX models. This thesis is the first multiparametric investigation into breast PDX vasculature 

across scales using PAI, IHC and RNA-seq.
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1 INTRODUCTION 

 

 
Parts of this introduction are published in: Emma Brown, Joanna Brunker and Sarah E. 

Bohndiek. Photoacoustic imaging as a tool to probe the tumour microenvironment. Dis Model 

Mech. 2019; 12(7) doi: 10.1242/dmm.039636. 

 

 

 
1.1. Introduction 

 
The focus of cancer research has moved from treating the tumour as a homogenous mass 

of cancer cells to considering the heterogeneity associated with this disease and the dysregulated 

and dynamic interactions within the wider tumour microenvironment (TME)1. The infrastructure 

of a growing solid tumour is a heterogeneous mixture of cancer and stromal cells, including a 

milieu of immune cells, adipocytes and fibroblasts. In addition to this complex cellular picture, 

chemical signals such as hypoxia and physical signals arising from fibrosis, among others 

(Figure 1.1), are linked to poor patient prognosis2. This thesis focuses primarily on the role of 

the immature vascular network and the accompanying hypoxic environment present in many solid 

tumours, particularly in breast cancer3. Importantly, features of the TME interact with and 

regulate one another4–6, and such dynamic relationships influence tumour growth and 

heterogeneity. Improving our understanding of the role of the vasculature in the TME and cancer 

progression would strongly benefit from non-invasive visualisation of the tumour as a whole organ 

in vivo, both preclinically in mouse models of the disease, as well as in patients. 

Unfortunately, vascular features remain challenging to resolve with non- invasive 

imaging. As a result, many studies still rely on excised tissues ex vivo, which only interrogate a 

small portion of the tumour at a fixed time point, and are not able to 
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capture its full spatial and temporal heterogeneity. Visualising vascular features in vivo would 

allow researchers to investigate key questions such as: how the vasculature evolves during tumour 

development; the interplay between cancer cells and tumour vasculature; and how vascular 

phenotypes differ between different tumour subtypes. The biomarkers resulting from these studies 

could then be applied clinically to predict tumour aggressiveness, stratify patients and monitor 

treatment response. Ultimately, this would transform patient care and improve survival by helping 

to guide therapeutic strategies, in combination with other informative biomarkers7,8. 

 

 

 
 

Figure.1.1. The tumour microenvironment (TME). Schematic diagram illustrating the involvement of multiple 

cell types in a tumour, including endothelial cells and pericytes that make up blood vessels, as well as immune cells, 

fibroblasts and adipocytes, alongside the cancer cells. Lipids are synthesised by adipocytes and cancer cells. Hypoxia 

arises as the tumour grows beyond the limit of oxygen diffusion from the surrounding vessels. Fibrosis arises from 

excessive deposition of extracellular matrix (ECM) components without concurrent degradation. A supportive 

environmental niche of these chemical and physical signals evolves with the cancer cells to promote tumour 

development and progression. 

 

 

A range of existing in vivo imaging techniques can be used to visualise different facets of 

the vascular microenvironment and have already provided valuable insight. Unfortunately, they 

come with limitations that include limited spatial resolution, extended scan times and poor 
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specificity from confounding signals. Photoacoustic (PAI, also referred to as optoacoustic) 

imaging is a promising new modality with potential to overcome these limitations for imaging 

vascular features in vivo. As PAI advances towards the clinic, it is vital that clinically-relevant 

biological models are assessed for their ability to recapitulate the vascular phenotypes seen in 

patients and to test the sensitivity of PAI to resolve these different vascular phenotypes. 

Currently, most preclinical studies in PAI to date used subcutaneous cell-line models, which 

poorly recapitulate the microenvironment seen in patients9. This thesis investigates the use of 

patient-derived xenografts (PDXs) of breast cancer, examining their potential to provide more 

clinically-relevant preclinical models10. 

This chapter will first focus on tumour vasculature and hypoxia and their dynamic 

interactions with other stromal and cellular compartments in the TME that shape the vascular 

microenvironment. Then, the advantages and disadvantages of current techniques for imaging 

vascular features ex vivo and in vivo will be discussed, specifically focussing on the potential of 

PAI. This chapter concludes by outlining the potential of breast PDXs as preclinical cancer 

models and discusses the opportunity to characterise the vascular microenvironment of breast 

PDXs with PAI. 
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1.2. Features of the vascular microenvironment 

 
1.2.1. Tumour vasculature and hypoxia 

A growing tumour mass requires a vascular network to supply cancer cells with nutrients 

and remove metabolic waste products, which then permits cancer cells to extravasate and 

metastasise. Development of a vascular network typically begins in response to diffusion-limited, 

or chronic hypoxia, which arises when the diffusion of oxygen from surrounding blood vessels 

is insufficient to meet the demand of the proliferating cancer cells3,4. Activation of hypoxia 

inducible factors (HIFs, notably HIF1α) drives the transcription of genes involved in a wide range 

of cellular functions3,4, including the production of pro-angiogenic factors, such as vascular 

endothelial growth factor (VEGF), that stimulate endothelial cells to proliferate, sprout and form 

new blood vessels 11,12. Notably, HIF1α can also be stabilised by the release of reactive oxygen 

species (ROS) or oncogenic signalling pathways meaning the initiation and acceleration of 

tumour angiogenesis via the HIF1α-VEGF axis can be hypoxia-independent13. With 

overexpression of VEGF, often an imbalance of pro- and anti-angiogenic factors then occurs, 

which results in a chaotic and heterogeneous network of blood vessels, including many immature 

vessels with poor pericyte coverage14, irregular branching and a tortuous morphology15–18. 

VEGF is a central growth factor in the regulation of blood vessel formation12. In 

pathological angiogenesis, such as in tumours, VEGF has also been found to have multiple roles 

in regulating pericyte/smooth muscle cell coverage. VEGF signalling was found to inhibit 

platelet-derived growth factor receptor beta signalling in pericytes/smooth muscle cells resulting 

in detachment of pericytes which contributed to vessel destabilisation in a fibrosarcoma mouse 

model19. VEGF-mediated vessel permeability is also driven by focal-adhesion kinase (FAK) and 

Src signalling in endothelial cells, where VEGF induced activation of FAK results in 

autophosphorylation of FAK, recruitment of Src and further downstream signalling which targets 

VE-Cadherin at endothelial cell junctions and results in dysregulation of the these junctions and 

vascular permeability20,21. Endothelial cell FAK pathways, under the influence of VEGF, also 

drive angiogenesis and other cellular processes, through Erk and Akt signalling22,23. Other 

angiogenic signalling pathways are also of note, for example the roles of 
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angiopoietin (ANG) ligands and their TIE tyrosine kinase receptors in angiogenesis and vessel 

maturity. ANG2-TIE2 is most often discussed in the context of cancer, with ANG2 expression 

upregulated in many solid tumours, notably breast cancer. ANG2 expression is upregulated by 

VEGF signalling as well as hypoxia and inflammatory cytokines, all of which can be in abundance 

in solid tumours24. Neutralising ANG-TIE2 interactions is thought to decrease angiogenesis, 

while blockage of ANG2 with peptibodies was shown to normalise tumour bloods vessels, with 

increased pericyte coverage, which will strengthen vessels, and increased VE-Cadherin 

expression at endothelial cell junctions in colorectal cancer cell-line xenografts25. Therefore, dual 

blockage of ANG2 and VEGF has been proposed as a dual anti-angiogenic therapeutic strategy 

in solid tumours24. 

Tumour vasculature does not follow a hierarchy of well-differentiated arteries, 

arterioles, capillaries, venules and veins as seen in normal tissue. In addition to this irregular 

architecture, tumour blood vessels themselves are also structurally distinct from normal vessels. 

Nagy et al. describe ‘mother vessels’ as the first vessels to develop in tumours under VEGF 

secretion (Figure 1.2). These are highly permeable enlarged sinusoids with loose basement 

membrane integrity and pericyte attachment. Internal bridging of endothelial cells inside the 

lumen of mother vessels can create capillaries or glomeruloid microvascular proliferations 

(GMPs). GMPs are tangled structures with irregularly ordered pericytes and redundant basement 

membrane. If mother vessels acquire smooth muscle cell coating they can evolve into vascular 

malformations, which are inappropriately large vessels although not as hyperpermeable as GMPs. 

Finally, tumours are also supplied by feeding arteries and drained by draining veins, however, 

even these structures are often abnormal and tortuous17,26. 
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Figure. 1.2. Vessel development in tumours. Schematic taken from Nagy et al. 2009 demonstrating how tumour 

vessels have a unique structure and evolve from existing venules. Mother vessels (MVs) form first and are 

hyperpermeable vessels with basement membrane degradation and loose pericyte attachment. From MVs capillaries, 

glomeruloid microvascular proliferations and vascular malformations can evolve. They are all dysfunctional 

structures. 

 

 
Several important prognostic consequences arise from these features of the tumour 

vasculature. First, repeated dynamic cycles of ischaemia and reperfusion occur due to inefficient 

orientation of the vessels. Arterio-venous shunting of red blood cells occurs, causing variation in 

red blood cell flux. Blood flow does not travel in one unidirectional path and the flow rate 

decreases when the red blood cells travel far from an artery and become hypoxic. Immature 

vessels which lack pericyte/ smooth vessel coverage are often leaky, causing further issues with 

blood pooling and a lack of flow and these vessels can collapse, starving nearby cancer and stromal 

cells of oxygen and nutrients13,26. This variation in perfusion causes perfusion-limited, or cycling, 

hypoxia in cancer and stromal cells generating oxidative stress, which leads to increased stem-

cell- like properties of cancer cells and resistance to therapy27. Second, heterogeneity of vessel 

perfusion leads to unequal access of systemic therapeutic agents within the tumour. Although 

some areas of the tumour – those that are well perfused – will likely receive the expected 

therapeutic dose, other poorly perfused areas may receive a lower dose, meaning that they can 

survive the treatment28. Any hypoxic tumour areas will also be resistant to 
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traditional chemo- and radiotherapies4, because many of these therapies mediate their effects via 

the generation of ROS29. Finally, as tumours shift to a predominantly glycolytic metabolism via 

the expression of HIF target genes, poor perfusion allows lactic acid (from anaerobic glycolysis) 

and protons (from the conversion of CO2 produced from the pentose phosphate pathway) to 

accumulate in the TME, giving rise to acidosis30,31. Acidosis can increase cancer cell invasion32 

and metastatic potential33, and decrease drug efficacy34. HIF1α, VEGF and associated pathways 

are linked to poor prognosis in a range of solid tumours3,35,36, demonstrating the consequences of 

tumour hypoxia on patient outcome. 

In more recent years, there has been debate around whether all tumours are dependent 

on angiogenesis for growth. Hypoxia is thought to drive other forms of vessel formation in 

tumours, which are less studied than the traditional ‘angiogenic’ model but may present 

explanations for resistance to anti-angiogenic therapies37. Cancer cells can co-opt existing 

vasculature, promote vasculogenesis (formation of new vessels from endothelial cell progenitors) 

or perform ‘vasculogenic mimicry’ (VM). VM is described as the ability of cancer cells to form 

vessel-like structures themselves, capable of carrying blood37,38. It was first observed in uveal 

melanoma39 and has since been observed in many solid tumours including breast, lung and 

glioblastoma37,40–43. EMT pathways, under hypoxia, are thought to drive VM but angiogenic 

pathways are also involved 38,44–46. Mimicked vessels are leaky and immature and tumours with 

high-levels of VM are more aggressive, invasive and poorly prognostic39,40,43,47,48. Under hypoxic 

conditions, it is still unclear why cancer cells would choose one vessel forming method over 

another. 

 
1.2.2. Dynamic interactions between features of the TME 

It is increasingly evident that features of the TME regulate each other. Hypoxia plays a 

central role in these interactions. For example, increased deposition of extracellular matrix 

proteins in tumours and recruitment of stromal cells leads to fibrotic contraction of the interstitial 

tissue space, which is associated with: increased interstitial fluid pressure49; the collapse of 

immature blood vessels; and restricted oxygen diffusion, which causes hypoxia50. Conversely, at 

the molecular level, HIF1α directly activates transcription of genes required for collagen 

synthesis and crosslinking, such as procollagen lysyl hydroxylase 251,52, which increases 

angiogenic signalling and vessel 
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permeability53,54. This could actually result in decreased oxygen delivery to the tumour and thus 

further hypoxia. 

Pro-angiogenic signalling of many stromal cell types is also hypoxia-mediated. Hypoxia 

drives macrophage polarisation towards an M2 phenotype, which is anti- inflammatory and pro-

angiogenic55. Many M2 macrophages are TIE2+ and cluster around existing blood vessels, 

promoting angiogenesis56–59 and vessel permeability60. The milieu of cytokines and growth factors 

secreted by cancer-associated fibroblasts (CAFs) contain further pro-angiogenic factors5, while 

hypoxia upregulates the production of sphingosine lipids61,62 that are also likely to drive 

angiogenesis63,64. Importantly, endothelial cells should not be considered passive responders to 

the pro-angiogenic environment surrounding them. Rather they are active players, stimulated by 

pro-inflammatory cytokines and consequently display a dysfunctional phenotype of increased 

proliferation, permeability, upregulation of inflammatory cytokines such as IL-6 and upregulation 

of adhesion molecules. Tumour endothelial cells contribute to an enhanced inflammatory 

microenvironment, similar to the wound healing response in normal tissue gone awry to promote 

cancer cell proliferation, survival and extravasation65. HIF1α signalling in endothelial cells 

disrupts barrier function to allow increased intravasation of tumour cells into blood vessels and 

increase metastases66. Additionally, hypoxia and acidosis modulate the function of all immune cell 

types, meaning that hypoxic niches spatially fine-tune the TME4,67. 

Finally, many therapies modulate the evolution of the TME and the dynamic 

relationships within. Anti-angiogenic treatments, which often target the VEGF pathway, have 

been shown to ‘normalise’ tumour vasculature by increasing vessel maturity, leading to re-

oxygenation of the tumour and decreased hypoxia in mouse models68,69. 

These dynamic relationships paint a complicated picture of the TME that will be explored 

for many years to come. The evidence presented thus far demonstrates that the vascular 

component of the TME is dynamic and evolves with many other chemical, physical and cellular 

components. The vasculature is not just growing and branching in tumour development due to an 

increase in VEGF production, but the resultant phenotype is regulated by hypoxia and hypoxia-

driven signalling pathways as well as cell-cell contact and paracrine signalling from nearby 

stromal cells. These factors in turn regulate hypoxia, infiltration of immune cells and 

extravasation of tumour cells themselves, 
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ultimately shaping tumour biology. This thesis will now focus on the vascular component of the 

TME, named the vascular microenvironment. Being able to monitor the dynamics of the vascular 

microenvironment in vivo is essential to improve our understanding of tumour biology and 

ultimately improve treatments for patients. 

 

 

 

1.3. Visualising the vascular microenvironment 

 
1.3.1. Ex vivo methodology for visualising the TME 

Many ex vivo imaging methodologies can be used to visualise the TME within tissue 

sections. Using these methods, one can investigate the morphology, composition, dynamic cell 

interactions, and molecular expression of biomarkers in the tumour at a single-cell level; they 

also provide a cornerstone of clinical analyses and are widely used in biological research. 

Immunohistochemistry (IHC) is a low-cost and easy-to-use method for staining tissue sections 

that is regularly used in clinic to characterise biomarkers for diagnosis, prognosis and to guide 

treatment options70. Angiogenic markers such as the expression of VEGF have been shown to have 

higher expression in malignant vs. benign disease, as well as correlate with certain subtypes of 

breast cancer71. These IHC methods are typically interpreted by a pathologist, which can lead to 

variability in interpretation and lack of reproducibility, highlighting a need for more quantitative 

methods70. Furthermore, typically IHC practices examine only one marker per tissue section, 

limiting our ability to study the interplay between different factors, although multiplexed methods 

are starting to emerge through exciting new tools, for example, Imaging Mass Cytometry (IMC)72, 

which once combined can be correlated with different cancer subtypes and prognosis73. 

Alternative multiplexing methods include optical microscopy techniques such as second 

harmonic generation microscopy, which can visualise collagen deposition in addition to the 

traditional microscopy data74. Furthermore, matrix-assisted laser desorption/ionization (MALDI) 

imaging can image thousands of analytes such as lipids and proteins in tissue, but not cellular 

structures75. 

Nonetheless, common to these methods is the disadvantage of excising the tissue, which 

means only a small portion of the tumour is interrogated at a fixed time point, ignoring the full 

spatial and temporal heterogeneity of the TME. Non-invasive in 
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vivo imaging methods allow true longitudinal imaging of tumours, whereby the same mouse or 

patient is imaged at multiple time-points to monitor tumour evolution and/or therapy response. 

Many in vivo imaging methods capture the whole tumour volume, or at least a larger volume than 

possible with ex vivo methods, gaining improved spatial and temporal information on the 

dynamics of the TME. 

 
1.3.2. Existing in vivo imaging modalities of the vascular 

microenvironment 

Several preclinical and clinical imaging techniques are already available to probe the 

vascular microenvironment (Table 1.1). Vascular perfusion can be visualised using intravenous 

administration of a contrast agent through ‘dynamic contrast-enhanced’ approaches76–78 which, 

despite being widely used, do have some associated toxicity concerns79,80. Hypoxia represents a 

challenge for imaging in medical diagnostics, as the method must generate a positive signal for 

the absence of oxygen. Preclinical studies using intravital imaging have revealed blood flow 

fluctuations and perivascular changes in hypoxia 27, though these approaches are invasive (Table 

1.1). Magnetic resonance imaging (MRI)-based approaches such as blood-oxygen-level-

dependent (BOLD) MRI81 and oxygen-enhanced (OE) MRI 82 correlate with tissue oxygenation 

and histological markers of hypoxia 81,82. However, they suffer from intrinsically low sensitivity 

83,84. Positron emission tomography (PET) agents for hypoxia visualisation, including those 

derived from nitroimidazole, are also available 85,86, but application to studying the TME is limited 

by the inherently low spatial resolution of PET and the requirement to administer a 

radiopharmaceutical. Diffuse optical spectroscopic imaging (DOSI) is a low- cost and readily 

accessible approach that measures local optical absorption coefficient. DOSI can measure 

concentrations of oxy- and deoxy-haemoglobin (HbO2 and Hb, respectively) as surrogate markers 

of hypoxia 87–89 but has poor resolution at depths beyond ∼1 mm due to light scattering in tissue95. 



 

11  

 

 

 

 

Table 1.1. Current imaging techniques for visualising different features of the vascular microenvironment in vivo 
 

Technique Principle Advantages Disadvantages References 

DCE-CT Iodinated contrast 

agents are injected to 

measure vascular per-fusion. 

● Well established CT 

technique. 

● Low cost 

● Widely available. 

● Contrast agent can 

cause toxicity. 

● Ionizing radiation. 

● Lack of standardized 

protocols. 

77,79 

DCE-MRI Paramagnetic contrast agents 

are injected to measure 

vascular perfusion. 

● Well established MRI 

technique. 

● Widely available. 

● Many gadolini- 

um chelates are 

approved clinically. 

● Contrast 

agent can cause 

toxicity. 

● High cost of MRI. 

76,77,80 

BOLD MRI Measures blood oxygenation 

using the paramagnetic 

property of 

deoxyhaemoglobin. 

● Well established MRI 

technique. 

● Utilises endogenous 

contrast. 

● Measurements 

correlate with tissue 

oxygenation. 

● Signals can be 

confounded by 

changes in blood 

volume and flow. 

● Intrinsically low 

signal. 

● High cost of MRI. 

81,83,84 
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OE MRI T1 relaxation time is inversely 

proportional to plasma 

dissolved oxygen. ΔT1 is 

measured following 

a breathing gas challenge to 

measure areas of low and high 

blood oxygenation. 

● Oxygen contrast is 

more rapidly 

reversible  than 

injectable contrast. 

● Measurements 

correlate with tissue 

oxygenation. 

● Intrinsically low 

signal. 

● High cost of MRI. 

82,83,84 

FMISO-PET An injected 

radiolabelled nitroimidazole 

derivative accumulates in 

hypoxic areas. 

● FMISO has the 

potential to give a 

direct quantification of 

tissue hypoxia. 

● Can be used to trace 

metabolic processes. 

● Long uptake time of 

tracers such as FMISO 

leads to poor signal- to-

noise ratio in tumour. 

● Radioactive isotope 

administration. 

● Intrinsically low 

resolution of PET (~5 

mm). 

86 

EF5-PET An injected 

radiolabelled nitroimidazole 

derivative accumulates in 

hypoxic areas. 

● More stable than 

FMISO. 

● Possible correlation to 

outcome. 

● Limited experimental 

evidence compared to 

FMISO. 

● More complicated 

labelling chemistry 

compared to FMISO. 

● Radioactive isotope 

administration. 

85,86 
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   ● Intrinsically low 

resolution of PET (~5 

mm). 

 

H2    O- PET 
15 Radioactive water is injected 

to measure vascular 

perfusion. 

● Short   half-life   of 15O 

enables serial 

measurement-s in a 

single scan. 

● Short   half-life   of 15O 

limits application to 

sites with an on-site 

cyclotron. 

● Radioactive isotope 

administration. 

● Intrinsically low 

resolution of PET (~5 

mm). 

90 

DCE- ultrasound Microbubbles are injected to 

generate differences in 

acoustic impedence with the 

surrounding tissue, to measure 

perfusion. 

● Low cost. 

● High resolution (~100 

μm-1 mm). 

● Increased signal-to- 

noise ratio 

(SNR) compare-d to 

conventional 

ultrasound. 

● Contrast agent can 

cause toxicity. 

● Ultrasound limited to 

localised imaging. 

78,79 

Doppler ultrasound Utilises the Doppler effect to 

image the movement of fluids 

(e.g. blood) and measure their 

direction and velocity. 

● Low cost and widely 

available. 

● Allows for serial 

measurements  of 

● Challenging to detect 

motion in small, deep 

vessels. 

91,92,93 
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  blood flow and 

perfusion without a 

contrast agent. 

● Easy to combine with 

other ultrasound 

techniques. 

● Cannot  distinguish 

signal arising from 

individual   or 

aggregated 

erythrocytes. 

● Ultrasound limited to 

localised imaging. 

 

DOSI Utilises the distinct spectra of 

deoxy- and oxyhaemoglobin to

 visualise blood 

haemoglobin concentration 

and oxygenation. 

● Utilises endogenous 

contrast. 

● Fast acquisition. 

● Allows visualisation 

of multiple TME 

features through 

spectral separation. 

● Low 

resolution (~1 cm) at 

depths at or above 1 

cm due to  strong 

attenuation and 

scattering of diffuse 

light in tissue. 

87,88,89 

Intravital microscopy An intravascular fluorescent 

contrast    agent is    injected to 

enable optical microscopy of 

tumour vasculature in a living

 animal 

through surgical proced- 

ures. 

● Micron resolution 

visualisation of 

capillary networks. 

● Invasive. 

● Challenging to apply 

clinically. 

● Small field-of-view. 

● Depth-limit 

of ~1 mm due to 

strong attenuation and 

scattering of diffuse 

light in tissue. 

 

 
94 

PAI Utilises the distinct spectra of 

deoxy- and oxy-haemoglobin 

to visualise blood 

● Higher penetration 

depth compared to 

other optical 
techniques. 

● Depth limit of ~7 cm 

due to strong 

attenuation and 

95, 98, 99, 104 
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 haemoglobin concentration 

and oxygenation. 

● Utilises endogenous 

contrast. 

● Fast acquisition. 

● Good technical and 

biological validation of

haemoglobin 

measurements. 

● Low cost. 

● Easy to implement 

into existing 

ultrasound systems. 

● Allows visualisation 

of multiple TME 

features through 

spectral separation. 

● Has multi-scale 

capabilities. 

scattering of diffuse 

light in tissue. 

● Difficult to 

quantify and 

resolve chromophores 

with current 

reconstruction and 

processing algorithms. 
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Notably, many of the techniques described suffer from limited spatial resolution, 

poor specificity from confounding signals and the need to administer contrast agents 

(Table 1.1). Additionally, none of the techniques mentioned are capable of imaging 

across scales. Modalities such as MRI and PET are capable of capturing the whole tumour 

volume, but the spatial resolution is low. While intravital imaging gives high resolution, 

capable of monitoring single-cell dynamics, it can only image a small field-of-view and 

is an invasive technique. Ultimately there is a trade-off between resolution and field-of- 

view. Hence, there remains an unmet need for validated imaging biomarkers of the 

vascular microenvironment that can be measured cost-effectively at high spatial and 

temporal resolution with a large field-of-view, which could be applied in biological 

research and in a clinical setting. PAI could offer the flexibility to monitor the vascular 

microenvironment in vivo across scales, without the need to administer contrast agents, 

providing a more complete picture of the TME. 

 
1.3.3. The principle of photoacoustic imaging 

PAI is an emerging imaging modality, currently in clinical trials 96,97, that could 

improve our visualisation of the TME. To create an image, the tissue of interest is 

illuminated with pulses of light, which cause a pressure change when absorbed and 

generate ultrasound waves through the photoacoustic effect (Figure 1.3A). The 

ultrasound waves are detected at the tissue surface using one or more detectors 98–100. A 

major advantage of PAI is its scalability: by selecting different light sources, ultrasound 

detectors and scanning methods, it is possible to tune the spatial resolution, temporal 

resolution, imaging depth and image contrast. Both image spatial resolution and tissue 

attenuation scale with increasing ultrasound frequency: low frequency ultrasound 

detection at a few MHz enables deep-tissue imaging with centimetre penetration and 

submillimetre resolution, whereas increasing the detection frequency pushes towards 

micron resolution but compromises the penetration depth. Technical developments in data 

acquisition and processing speeds will lead to improvements in the temporal resolution, 

but current state-of-the-art technology can achieve sub-second two- dimensional imaging, 

and three-dimensional images in seconds to minutes 98–100. To form an image, ultrasound 

signals must be acquired from different locations, either by scanning a single detector over 

the region of interest or by employing a detector array, and then 
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these signals can be naively backprojected (beamformed) or subjected to more complex 

reconstruction algorithms to improve image quality 98. 

 

 
Figure.1.3. Principles of photoacoustic imaging (PAI). (A) During PAI, pulses of light illuminate the 

tissue (1). When light is absorbed (2), a transient heating gives rise to ultrasound waves (3). The ultrasound 

waves are then detected and used to reconstruct an image of the optical absorption in tissue (4). (B) 

Absorption spectra of endogenous molecules that absorb light pulses and can provide insight into the 

tumour microenvironment (TME). Adapted from Brown et al. (2019) Hb, deoxyhaemoglobin; HbO2, 

oxyhaemoglobin. 

 

 

Photoacoustic image contrast arises due to optical absorption, which results in 

ultrasound generation. When using near-infrared wavelengths of light (620-950 nm) for 

illumination, several vital endogenous molecules for the TME strongly absorb light 

(Figure. 1.3B). Using only endogenous contrast and acquiring data at multiple 

wavelengths, PAI can therefore non-invasively visualise vascular morphology, blood 

oxygenation, fibrosis and lipid content simultaneously with a single technique. Other 

features, such as cell infiltration, can be imaged by introducing targeted exogenous 

contrast agents or in-vitro-labelled cells, allowing a complete picture of the dynamic 

relationships in the TME to be revealed with a single technique. Such contrast agents, 

either injected externally, taken up by cells101 or expressed in genetically modified cells102 

work by providing additional sources of optical absorption with distinct spectra; the 

contrast agent is typically bound to, or expressed by, a targeting component in order to 

highlight specific structural or functional tissue features. PAI with exogenous contrast 

agents remains subject to the same spatial resolution and penetration depth trade-off as 

imaging of endogenous molecules; in addition, it is important to select a signalling 

compound with distinct absorption peaks and strong optical absorption above 600 nm, 
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thus avoiding signal corruption by endogenous molecules (Figure. 1.3B). Compared to 

existing optical techniques such as DOSI and intravital microscopy, PAI maintains high 

spatial resolution to a greater imaging depth due to the detection of ultrasound waves, 

which scatter less than light in tissue. By utilising optical absorption and contrast, PAI 

maintains high molecular specificity98–100 compared to standard ultrasound techniques 

(Table 1.1). Additionally, many TME features can be detected simultaneously with PAI 

due to the multiwavelength data acquisition, without administration of a contrast agent or 

radioactive agent. 

Despite the ability of PAI to image beyond the optical diffusion limit, it has 

limited penetration depth compared to clinical whole-body modalities such as MRI, PET 

and CT. Preclinically, PAI is frequently used as a whole-body imaging modality, but this 

is not possible clinically, where the depth limits of PAI are approached. Introducing PAI 

through endoscopes can lift this limitation to some extent, but PAI would not compete 

with whole-body modalities such as PET for disease staging in patients (Table 1.1). 

Nonetheless, in tumours growing within the depth-detection limits of PAI, such as in the 

breast, PAI could follow initial conventional diagnostic imaging with MRI or ultrasound 

to provide additional insight into the TME. It is worth noting that combining imaging in 

a multi-modal approach would allow the limitations of one technique to be compensated 

for by another, and it is likely that PAI will be used in this way, for example by combining 

PAI with ultrasound to obtain an anatomical reference for the PAI data103–105. 

Although there are many endogenous molecules in the TME that absorb light in 

the visible to near-infra red wavelength range to give a photoacoustic signal, the dominant 

endogenous absorbers are deoxygenated and oxygenated haemoglobin (Figure 1.3B). A 

large volume of preclinical and clinical research to date has focussed on visualisation of 

tumour vasculature with PAI. The next section of this thesis will discuss how PAI has 

been used so far to image the vascular microenvironment, across different resolutions and 

penetration depths along with some of the challenges currently faced, and its potential for 

preclinical and clinical application in oncology. 
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1.4. Photoacoustic imaging of the vascular microenvironment 

 
1.4.1. PAI of vasculature and oxygenation 

Preclinical PAI in small animal cell-line models allows detailed tumour vascular 

architecture and morphology to be visualised non-invasively over time at sub-100 μm 

resolution using just a single wavelength of light, commonly selected as an approximate 

isobestic point of Hb and HbO2 (e.g. 532 nm). This method has been used to monitor the 

developing vasculature in early tumours, showing changes in structure such as increased 

tortuosity (Figure 1.4A)106,107, diameter and density108, as well as the recruitment of 

existing vessels to feed the tumour mass106,109. One study demonstrated a decrease in 

blood vessel density as the tumour developed110, showing that this parameter may be 

context-dependent and that PAI can sensitively resolve such differences. Raster-scanning 

optoacoustic mesoscopy (RSOM) systems aim to bridge the gap between macroscopy and 

microscopy, achieving ~20 μm resolution at several millimetre depths111,112. Preclinically, 

RSOM has monitored the development of vasculature in several tumour xenograft 

models107,109,113, including breast111 and was sensitive to aggressive vs. slow-growing 

vascular phenotypes113. Overall, these studies show how PAI can provide high-resolution 

visualisation of the development of tumour vasculature at depths of several milli-or 

centimetres in pre-clinical cell line xenograft models. 

To quantify vascular networks, vessels must be segmented from the background 

signal. Segmentation of blood vessel networks from images is a developing and 

expanding field, with many possible approaches taken. These include thresholding images 

based on signal intensity107,113–115 and vessel enhancement filtering 116–119, which have 

been occasionally used in PAI, although the latter is often used only for visual 

enhancement117,118. More advanced methods involving convolutional neural networks and 

deep learning approaches have been applied in optical microscopy images120 but are yet 

to be applied in PAI. It is particularly difficult to segment pathological networks, such as 

tumour vessels, which do not have an organised linear hierarchy121. Additionally, 

haemoglobin contrast will only show perfused vessels so one must be careful to draw 

conclusions when the networks will be incomplete121. Once segmented, imaging 

biomarkers such as blood volume could be extracted from these images, but the majority 

of PAI studies to date did not include quantification or robust statistical analyses. Other 
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network analyses include algorithms to quantify tortuosity and connectivity121,122. These 

current analyses have yet to be used regularly or be validated and standardised for use in 

PAI. Often the quantification conducted is manual, basic, poorly described and ad-hoc, 

with 2D measurements taken even with 3D PAI data107,108,110,113, leading to 

decreased repeatability and comparability121. With a lack of quantification, a large 

amount of information is lost from these images that could be exploited in studies of 

tumour vascular microenvironment biology, particularly as the resolution and quality of 

images improves. 
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Figure. 1.4. Example photoacoustic images of the vasculature. (A) Shown are x-y maximum intensity 

projections of a human colorectal tumour (SW1222) and the surrounding vasculature between day 7 and 

day 8 post-inoculation. Dashed white lines indicate tumour margins. Green arrows show common vascular 

features between images. Increasing tortuosity of normal blood vessels between day 7 and 8 is indicated by 

blue arrows. (B) Representative images of PC3 (left) and LNCaP (right) tumours showing the spatial 

distribution of ΔSO2 measured using PAI at multiple wavelengths. PC3 tumours displayed lower ΔSO2 

compared to LNCaP tumours and had a core with low ΔSO2 (black arrow). (C) Depth-encoded PAI images 

of the breast acquired while the patient, a 49-year-old woman with a stromal fibrosis or fibroadenoma, held 

her breath. Dashed white lines indicate tumour margin. Figure adapted from Brown et al. (2019). 

 

 

In addition to high-resolution imaging of vascular networks, utilising the 

differential absorption spectra of Hb and HbO2 (Figure 1.4B), PAI data can be recorded 

at multiple wavelengths and subjected to spectral unmixing algorithms to calculate 

imaging biomarkers related to total haemoglobin concentration (THb=Hb+HbO2) and 

blood oxygen saturation (SO2=HbO2/THb). Many studies using multiple wavelength PAI 

do so using tomographic systems to capture whole tumour volumes preclinically, due to 

the time limitations associated with raster scanning at multiple wavelengths. Such 

methodology is termed Multispectral Optoacoustic Tomography (MSOT)48,123–126. These 
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images are captured at a lower resolution but with a higher field-of-view compared to the 

studies described above. 

These functional parameters can provide further insight into the TME. PAI THb 

tends to be higher in tumours compared to normal tissue123,124 because of increased 

angiogenesis and blood vessel density. Vessels also tend to be concentrated around the 

periphery as the tumour models used, such as melanoma cell-line derived xenografts127, 

which tend to be less vascularised in their core. PAI generally measures lower SO2 values 

in tumours compared to normal tissue110,123,124,127,128, consistent with poor perfusion 

and/or high consumption of O2 from the blood due to tumour hypoxia. A recent study in 

breast cancer models demonstrated that SO2 measurements correlated with vascular 

maturity, measured by pericyte coverage of vessels ex vivo48. Altering the gas delivered 

to the mouse from air to 100% oxygen and measuring the change in SO2 can distinguish 

between well-perfused (with high ΔSO2) and poorly perfused (with low ΔSO2) regions, 

as demonstrated in prostate cancer models (Figure 1.4B)125,129. Importantly, low SO2 and 

ΔSO2 spatially correlate with regions of tissue hypoxia and necrosis126,130. 

PAI biomarkers relating to vascular form and function have also been used to 

predict and monitor treatment response in preclinical cancer models. Response to anti- 

angiogenic therapy has been shown across scales, with a decrease in THb and a 

corresponding increase in HbO2 in ovarian mouse tumour models131, and a decrease in 

tortuosity and vessel diameter in prostate tumour models132. These markers indicated 

vessel normalisation, which was shown ex vivo by an increase in pericyte coverage of 

vessels. RSOM has monitored destruction of the vasculature in response to vascular- 

targeted therapies, with a corresponding decrease in CD31-labelled vasculature ex vivo107. 

High tumour SO2 was demonstrated to be an early biomarker of radiotherapy response133 

and could predict which tumours would respond to radiotherapy in mouse models of head 

and neck cancer134. These studies demonstrate the potential of PAI in predicting and 

monitoring tumour response, which could assist with patient stratification and inform 

therapeutic strategies. 

In a clinical context, application of PAI to monitor vascular features of the TME 

have focussed on breast cancer, where PAI can be combined with existing ultrasound 

imaging approaches. Handheld PAI probes, similar to existing ultrasound probes, have 

been used in clinical trials to demonstrate higher THb in tumours compared to normal 
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tissue104,135 and an increase in abnormal features such as vessels radiating from the tumour 

mass105. The use of these probes to distinguish breast cancer molecular subtypes is being 

investigated in clinical trials136,137, hypothesising that PAI could reduce biopsy errors. 

However there is some evidence that vascular phenotypes will not be dependent on breast 

cancer molecular subtypes, which must be carefully considered138. Similar to standard X- 

ray mammography, the Twente photoacoustic mammoscope compresses the breast 

between a glass window and one flat ultrasound transducer matrix139. This system 

identified malignant lesions that displayed high PA contrast independent of breast density, 

but the penetration depth is limited to 3.2 cm140. To increase the penetration depth, and 

allow the visualisation of vessels in the whole breast, a Dual-Scan mammoscope has been 

designed, with 2 linear array transducers either side of the compressed breast allowing 

vessels at 7 cm to be visualised141142. Bespoke hemispherical transducer arrays, which form 

a cup that surrounds the whole human breast, have also been developed. These systems 

have become highly sophisticated in recent years, revealing the detailed vessel networks 

in the breast143–146. Cylindrical systems are similar, compressing the breast into a 

cylindrical shape, which can achieve 0.5 mm resolution and gain functional parameters 

with multiple wavelengths147. A pivotal study using a cylindrical system recently 

demonstrated that, when the patient holds their breath during a very fast 15s scan, thereby 

decreasing motion artefacts, detailed vascular features can be resolved to a depth of up to 

4 cm (Figure. 1.4C)148. 

These studies demonstrate how PAI could be utilised to diagnose and stage 

breast cancers based on vascular features. Despite these engineering advances, little is 

known about the significance of vascular phenotypes detected with PAI in human breast. 

Which key features will give insight into patient subtype, stage and/or treatment response 

and what drives the formation of these features? Many features can be monitored and 

manipulated easily with preclinical models, however, in the studies described above, all 

but one used cell-line derived xenografts. These often do not accurately recapitulate the 

vascular microenvironment seen in patients9 and more clinically relevant models should 

be considered as PAI advances towards clinical use. 

One of the biggest advantages of PAI, which merits further discussion, is its 

multi-scale capabilities for visualising vascular features. By scaling the resolution linearly 

with penetration depth, PAI offers a flexible approach to imaging vascular features in  
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vivo. In preclinical studies, the systems described above were either capable of capturing 

sub-100 µm resolution of individual blood vessels at superficial depths106,108,109, or could 

capture Hb and HbO2 content in whole tumours at cm depths48,125. By combining systems 

with different resolutions and penetration depths, one can capture complementary 

information on the vascular microenvironment and maximise the information obtained 

from one tumour arising from the same biological source of contrast. 

 
1.4.2. Current challenges and clinical potential 

There is growing evidence that PAI can inform on vascular features in preclinical 

models and holds promise for clinical translation. Currently, further technical and 

biological validation of PAI biomarkers is needed to increase uptake of the modality in 

studies of the vascular microenvironment or clinical evaluation of vascular features149. In 

terms of technical validation, some studies have reported on standardisation of data 

acquisition and analysis150–155. Establishing precise and accurate PAI biomarker 

measurements will provide confidence, while development of standardised stable test 

objects, or ‘phantoms’, that can be applied in a multi-centre setting is vital for routine 

quality assurance and control156,157. Additionally, correcting for spectral distortions of 

illumination light as it passes through tissue would allow absolute quantification of 

optically absorbing molecules, but remains a significant challenge to apply in vivo and 

hence is an active area of research in the field158–160. 

In terms of biological validation, the extensive use of cell-line derived cancer 

models in PAI studies limits the clinical applicability of the work due to the stark genomic 

and phenotypic differences between clonal cell lines and patient samples9. Further insights 

can be obtained by correlating in vivo PAI data with other well-validated in vivo imaging 

methods as well as ex vivo analyses such as immunohistochemistry and biochemical 

assays. In the few studies where this has been achieved preclinically, PAI provided in 

vivo biomarkers of vascular maturity and function that correlate with hypoxia48,125,130. 

Additionally, validation of photoacoustic mammography in patients showed an in vivo 

distribution of haemoglobin signal that had good colocalisation with DCE-MRI and 

correspondence with vascular patterns measured ex vivo161. 

Most clinical studies discussed here are observational and/or conducted in a limited 

number of patients104,143–145,148,161. Their purpose was to investigate how PAI biomarkers 
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could be used in disease diagnosis or assessment of disease severity, for example in 

differentiation between benign and malignant disease. The best-developed application 

in this regard, including multi-centre studies, is in breast cancer. PAI could be easily 

combined with ultrasound imaging, which is conventionally used in breast cancer patient 

management. PAI has been demonstrated to accurately downgrade benign masses105,162 

with higher specificity than ultrasound imaging105, which could reduce unnecessary 

biopsies and follow-up appointments, reducing patient distress and healthcare costs. PAI 

is low cost, making it a favourable candidate for screening programmes, and it performs 

independent of breast density, unlike X-ray mammography163. As yet, PAI has not been 

used in clinical decision-making and the results of these studies did not affect the 

diagnostic pathways of the patients involved; radiologists interpreting the photoacoustic 

images were blinded to the rest of the diagnostic work-up. Most of the clinical studies 

present qualitative results, and more quantitative outputs with more complex and 

clinically relevant study designs need to be explored138. Other superficial malignancies 

could also be monitored with PAI. For example, high-resolution PAI is capable of 

visualising microvasculature in human skin and could be applied to monitor the 

pathological neovascularisation of melanoma109,164. Photoacoustic endoscopy is 

expanding, bypassing limitations in the penetration depth, so could be used to monitor 

angiogenesis in gastrointestinal tract cancers, cervical and ovarian cancer with further 

technological advances165–168. Large-scale clinical trials are also being planned for 

inflammatory conditions96. 

To conclude, PAI: can visualise the vascular microenvironment across multiple 

length and time scales; has high spatiotemporal resolution; is low cost; uses non-ionising 

radiation; and is non-invasive, with potentially easy integration into existing ultrasound 

systems. PAI is an attractive option for monitoring the dynamic vascular 

microenvironment not only in a preclinical setting but also throughout a patient’s 

treatment regime, from diagnosis and staging to monitoring treatment response. 

 



 

26  

1.5. Patient-derived xenograft models of breast cancer 

 
1.5.1. Current preclinical cancer models 

Many of the preclinical studies in PAI described above, use cell-line derived 

xenografts (CDXs), where cancer cell lines are implanted into mice, subcutaneously or 

orthotopically, to generate a tumour. These models are useful for studying mechanistic 

pathways of cancer development and progression9,169 and in addition  are relatively simple 

to use, with time to engraftment being predictable and consistent in an established model. 

CDXs are used widely in cancer research and for PAI to study many different aspects of 

disease such as angiogenesis and vascular dynamics and response to therapy 

48,106,107,110,125. However, because cell lines are derived from a single clone these models 

do not represent the heterogeneity seen in patient samples and therefore cannot accurately 

represent tumour evolution or therapy response9,169. 

PAI is currently being evaluated clinically in breast cancer patient 

management163. To facilitate clinical translation, it is vital that the preclinical models used 

to validate systems and investigate biomarkers of tumour progression and therapy 

response are representative of patients. Breast cancer in particular is a very heterogeneous 

disease; there are at least 10 subtypes of breast cancer, or integrative clusters, with each 

cluster displaying specific genetic characteristics that allow tumours from different 

patients to be grouped170,171. Breast cancer tumours are highly heterogeneous, even within 

these subtypes, and accurately modelling this heterogeneity in preclinical models is a 

challenge. Ultimately, this forms a barrier towards clinical translation of PAI to monitor 

breast cancer, as the diversity of vascular phenotypes that can be studied in the preclinical 

setting is relatively limited. This thesis aims to evaluate the application of PAI in breast 

cancer patient-derived xenograft models, which may present a more clinically relevant 

model10. 

 
1.5.2. Introducing PDX models 

The use of patient-derived xenograft (PDX) models has expanded in recent 

years172, as they are thought to capture the heterogeneity seen in patients10,172. PDXs are 

generated by taking a fragment of tumour from a patient and passaging the tumour in 

immunodeficient mice173. The best implantation site for breast PDXs is heavily debated,  
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with subcutaneous engraftment often chosen10. Although this removes the proper 

anatomical niche seen in orthotopic fat pad models174 and therefore decreases metastatic 

potential, these models still capture the tumour architecture seen in patients and the clonal 

diversity172. They can also be used in imaging studies, being placed at an easily accessible, 

superficial, location. PDX models have been shown to preserve morphology, biomarker 

expression, genomics, transcriptomics and metastatic potential across serial passages10,172 

making them good models to answer clinically relevant questions relating to new 

treatments and biomarkers175–177. Breast cancer PDXs are being heavily utilised to study 

how the heterogeneity of tumours affects therapy response178–182, mechanisms of 

resistance183 to therapy and how these can be overcome184,185. 

 
1.5.3. Utilising PDXs as vascular models 

The most well-described and investigated use for breast PDXs is in drug studies. 

The therapies investigated are most commonly targeted at cancer-driver genes and 

biomarkers reported to monitor mutations in these genes/ copy number 

alterations/epigenetic changes180,183. There has been little focus on how the TME in PDXs 

affects their evolution and subsequent therapy response. This is particularly important as 

the stroma in PDXs will be derived from the mouse host10 and there has been little to no 

investigation into how the PDX stroma influences the utility of this model and whether 

the TME phenotype is representative of the patient. When many breast PDXs are 

implanted subcutaneously, lacking a traditional environmental niche for the tumour to 

grow, this could have marked implications on the clonal dynamics, phenotype and therapy 

response of the PDX186. 

Some studies have begun to investigate the TME of PDXs with imaging 

techniques. Hyperpolarised 13C MRI imaging has been shown to monitor metabolic 

changes in response to therapy187–189, while ex vivo mass spectrometry imaging can 

spatially map fatty acid metabolites in tumours190. Insight into hypoxia dynamics 

following irradiation has been studied with PET and DCE-MRI in pancreatic cancer 

PDXs191 and imaging biomarkers of response to anti-angiogenic drugs have been 

monitored in cervical and colorectal PDXs, with ex vivo histology validation192,193. In 

head and neck cancer PDXs, varied vascular phenotypes have been reported and those 

with higher vascular density were shown to be more sensitive to vascular targeting  
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agents194, giving insight into the vascular microenvironment of these PDXs and how it 

can be targeted. These models have been imaged with PAI, showing changes in blood 

oxygen saturation that were detectable 24hr after radiotherapy and could predict the 

change in tumour volume seen 2 weeks later133. Although not studied in detail, 

investigations into how well PDXs recapitulate the TME have shown mixed results so 

far, with some brain tumour PDXs showing similar radiological and histological features 

to the patients195 and others that showed decreased enhancement upon DCE-MRI, and 

corresponding decrease in expression of angiogenesis-related genes compared to the 

patient196. To our knowledge, similar studies in breast PDXs have not yet been completed, 

and there is no comprehensive knowledge of how the vascular microenvironment in breast 

PDXs evolves. Given the dynamic nature of the vascular microenvironment and how it 

shapes tumour development and therapy response, characterisation of the vascular 

microenvironment in breast PDXs is needed, to gain further insight into tumour-host 

interactions in PDXs and assess the utility of the model. 

 
1.5.4. Limitations 

Although there is much excitement surrounding PDXs, it must be remembered 

that there are some limitations to the model. Limitations include high cost9,186 and a lack 

of robust standards surrounding the generation and quality assurance of PDX models197. 

In addition, engraftment rates for non-aggressive subtypes (e.g. ER+ breast PDXs) are 

often low but have been improved with better protocols and decreased time from surgery 

to mouse173. Clonal dynamics can shift in PDXs, and the effect of this is largely unknown 

so they must be carefully monitored10,186,198. The most documented limitation is the need 

to passage the PDXs in immunodeficient mice, in order for tumours to become established 

and not be rejected9,173. This limits studies of the immune infiltrate in the TME and of the 

regulation of angiogenesis by immune cells5. Humanising the immune system of 

immunocompromised mice is underway in many laboratories and has the potential to 

overcome this limitation and advance the use of PDXs172. 
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1.6. Project Aims 
 

PAI represents an exciting tool to monitor the chaotic, dense and immature vascular 

networks in tumours. Engineering advances are enabling breast PAI to enter the clinic, 

with increasing depth of imaging, however, with a reliance thus far on the use of CDXs 

for insight into tumour vascular phenotypes captured with PAI, several questions remain: 

1) Which vascular features are important to monitor when examining breast 

tumours? Which provide the greatest insight into the underlying tumour biology, 

tumour grade and predicting response to the therapy? 

2) Is PAI sensitive to different vascular phenotypes in different patients? Mann et al. 

have already commented that PAI biomarkers of breast molecular subtypes 

overlap significantly and CDXs used previously in PAI will likely present extreme 

examples. For the majority of patients, will PAI be useful in stratifying patients 

beyond the classification of benign vs. malignant disease? 

3) Can using PAI on multiple scales provide complementary information about the 

same tissue? Despite its scalability, the use of multiple PAI systems, with different 

resolutions and penetration depths, in one study has not been reported. 

This thesis proposes the use of PDXs in PAI, to begin to answer the aforementioned 

questions in clinically-relevant models of breast cancer. However, to answer these 

questions, PAI along with ex vivo methods such as IHC must be used to answer questions 

surrounding the utility of the model itself: 

1) Do PDXs present with different vascular phenotypes and if so, what drives these 

differences? Does it depend on subtype or other genetic markers? 

2) Do PDXs recapitulate the vascular microenvironment seen in patients? 

3) Are the vascular phenotypes seen in PDXs robust and repeatable? 
 

In order to answer these questions surrounding the use of PAI in clinical breast cancer 

management and the utility of PDXs as vascular models of the disease, the following 

project aims have been defined: 

Aim 1: To characterise the vascular phenotypes in breast cancer PDXs using a 

combination of high-resolution and tomographic PAI and IHC. 

Aim 2: To determine whether PAI is sensitive to different vascular phenotypes in PDXs. 
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Aim 3: To determine whether PDXs are robust and reliable vascular models that represent 

the patients from which they are derived.. 

Aim 4: To question the origin of vascular phenotypes in PDXs and gain insight on which 

features may be the most significant to monitor in clinic. 

 

 

 

1.7. Summary 
 

Cancer cells live within their environmental niche known as the TME, where 

dynamic interactions between cancer and stromal cells as well as chemical and physical 

signals, shape tumour biology and evolution. The vasculature is a key component of the 

TME and is often dysfunctional and immature leading to areas of chronic and dynamic 

hypoxia which further spatially fine-tunes the TME. PAI can visualise vascular features 

in the TME at multiple scales, building a complete picture of the vascular phenotype in a 

single tumour, which can be monitored longitudinally over time. It’s high spatiotemporal 

resolution, low cost, use of nonionizing radiation and non-invasive properties with 

potentially easy integration into existing ultrasound systems make PAI an attractive 

option for monitoring dynamic vascular features not only in a preclinical setting but also 

throughout a patient’s treatment regime, from diagnosis and staging to monitoring 

treatment response. In order to translate PAI into the clinic, the field must begin to use 

more clinically relevant preclinical models and assess their ability to recapitulate the 

phenotypes seen in patients. 

Breast cancer PDXs offer an attractive model for PAI. Implanted subcutaneously 

on the flank, they sit within the limits of detection for most PAI imaging systems. They 

have been shown to maintain the genetic properties of the patients from which they were 

derived, across several passages. However, whether they are good vascular models 

remains unknown. Here, a careful evaluation of whether vascular phenotypes differ 

between PDX models and how they evolve over time is conducted using PAI with 

corresponding ex vivo IHC, used to biologically validate the phenotypes seen in vivo. The 

work assesses how vascular phenotypes change across passages and how similar they are 

to the originating patient. Finally, the question of how these phenotypes form begins to 

be answered by correlating these phenotypes with the underlying gene expression of the 
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cancer cells, assuming that the cancer cells shape the mouse host vasculature in their 

TME. 

Chapter 2 presents IHC analyses, investigating the expression of various 

vascular markers in ex vivo tissue from PDXs at early and late-stages of development. 

Intra-tumour, inter-model and inter-passage heterogeneity are assessed and a preliminary 

comparison to patient tumours is presented, to evaluate whether PDXs form distinct 

vascular phenotypes and how variable these phenotypes are across individual tumours 

and across passages as well as starting to assess the feasibility of these models as 

representative vascular models of patient tumours. Chapter 3 presents the optimisation of 

image acquisition, using a novel mesoscopic PAI system and the development and 

validation of a new image analysis pipeline to quantify blood volume and topology metrics 

from the vessel networks captured with mesoscopic PAI. Next, Chapter 4 presents 

tomographic PAI data, taken with an established system, evaluating blood content and 

oxygenation in whole tumours and mesoscopic PAI data is evaluated longitudinally across 

the PDXs, to monitor the evolution of the blood vessel networks. Chapter 5 begins to 

question the origin of the vascular phenotypes captured thus far by examining the hypoxic 

gene expression of the cancer cells, showing that the cancer cells instruct the mouse host 

vasculature to form distinct vascular phenotypes. Finally, the oxygen consumption and 

metabolic requirements of the PDXs are briefly considered, focussing on their differential  

latency periods. 
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2 IMMUNOHISTOCHEMISTRY 

CHARACTERISATION OF 

VASCULAR PHENOTYPES 

 
I selected 4 breast-patient derived xenografts for in vivo experiments from the biobank 

generated by the Caldas laboratory and excised and preserved tumour tissue. The pre- 

clinical genome editing core at the CRUK CI implanted the PDX tissue with my 

assistance. I analysed all QC IHC samples and compared PDX tissue to patient tissue 

under the guidance of breast pathologist Dr Elena Provanzano. I manually segmented 

tumour tissue on IHC sections and conducted all statistical analyses described herein and 

interpreted all results. The histopathology core at CRUK CI ran all IHC experiments and 

created algorithms for analysis under my supervision. I would like to thank Alejandra 

Bruna and Wendy Greenwood from the Caldas laboratory who helped logistically to set- 

up my own PDX sub-biobank from their own. 
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2.1. Introduction 

 
2.1.1. Monitoring the vascular microenvironment with IHC 

As introduced in detail in Chapter 1, cancer cells live within their environmental 

niche known as the tumour microenvironment (TME), where dynamic interactions 

between cancer and stromal cells, as well as chemical and physical signals, shape tumour 

biology and evolution1,2. The vasculature is a key component of the TME and is often 

dysfunctional and immature leading to areas of chronic and dynamic hypoxia that further 

spatially fine-tune the TME3,26,27. Hypoxic tumours encourage the growth of new blood 

vessels from existing vasculature, termed angiogenesis, and high rates of angiogenesis 

result in immature and chaotic vessels forming, creating a feed-forward loop of poor 

perfusion and oxygenation2. 

Cellular, chemical and physical components of the TME can be labelled by their 

molecular expression using immunohistochemistry (IHC), a low-cost and easy-to-use 

method for staining ex vivo tissue sections that is regularly used in clinic to characterise 

biomarkers for diagnosis, prognosis and to guide treatment options70. Importantly, IHC 

provides spatial information unlike other antibody-based labelling techniques that involve 

dissociation of the tumour, such as western blot, meaning one can visualise which cell 

types or components of the TME colocalise. For example, when considering the 

vasculature, colocalisation of vessels and pericytes/smooth muscle indicates vessel 

maturity and good vessel function, whereas vessels with a lack-of or disconnected 

pericytes are known to be immature and poorly perfuse the tumour mass48,199. 

In breast clinics, IHC is often used to help subtype patients by providing molecular 

information such as how many tumour cells express the estrogen receptor (ER) and the 

proliferation marker Ki67, and to what degree of intensity70. Although vascular IHC 

markers such as CD31 microvessel density, CAIX and VEGF have been demonstrated to 

be highly prognostic in breast cancer in numerous studies3,35,36,200, vascular markers are 

not routinely used in clinic. Equally, before this thesis, little to no investigation of vascular 

marker expression in breast PDXs had been conducted. 

 

Here, a thorough characterisation of the vascular microenvironment in 4 breast  
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cancer PDXs was undertaken at the cellular level using IHC, which interrogated changes 

as the PDXs grow, and also examined their behaviour across passages and in relation to 

the patient of origin for the PDX. To address Aim 1 of the project, the vascular phenotypes 

of 4 breast PDX models representing two breast cancer subtypes (basal: STG139 and 

STG321 and luminal B: AB580 and STG143) were characterised using a panel of IHC 

stains. Once the tumours had reached ~1 cm in diameter, following in vivo imaging that 

will be reported in subsequent chapters, they were excised for ex vivo IHC. The chosen 

panel of markers relevant to vascular phenotype selected were: CAIX (to mark hypoxic 

regions), VEGF-A (a potent angiogenic factor), CD31 (to mark endothelial cells and 

measure vessel area), CD31/ASMA colocalisation (to determine how many CD31+ 

vessels are lined with ASMA+ pericytes/smooth muscle cells), and H & E (to measure 

necrosis and haemorrhage). The variation of IHC metrics across the same tumour in all 4 

PDXs was interrogated by comparing 2 IHC sections per tumour, one taken from the 

centre and the other from an outer portion of the tumour. The variation across tumour 

passages in STG139 and AB580 was also investigated using 3 passages per model to meet 

Aim 3 of the project and assess PDX robustness and reliability. Contributing to this, an 

initial qualitative evaluation of how PDX vascular IHC markers compare to patient tissue 

is conducted. Finally, an investigation into how marker expression evolves with tumour 

growth is conducted, to understand whether expression of certain markers is inherent or 

develops over time and begins to contribute to Aim 4 of the thesis, regarding the origins 

of PDX vasculature. 
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2.2. Methods 

 
2.2.1. PDX model establishment and passaging 

4 breast PDX models (basal: STG139 and STG321 and luminal B: AB580 and 

STG143) were chosen for evaluation of their vascular phenotypes. Table 2.1 outlines the 

clinical information of the original patient tissue obtained from Bruna et al.10 These models 

were chosen for several reasons. First, they represented primary ductal breast tumours of 

two common subtypes (basal and luminal B). Second, tumour tissue was available in an 

early passage (P) from the originating patient (<P5) and the tumours engrafted 

successfully in vivo. It is worth noting that two additional models (one for each subtype) 

were chosen for testing but did not engraft successfully in vivo after 12 months, which 

was the maximum engraftment waiting period as our animal project license allowed the 

mice to be aged for a maximum of 14 months as the mice implanted begin to suffer age- 

related pathologies at this age201. Finally, initial IHC assessment using FFPE tissue from 

one PDX tumour per model, (kindly donated by the Caldas lab and processed as described 

in section 2.2.2.), revealed variation in ASMA vessel coverage (STG139: 15.62%, 

STG321: 32.53%, AB580: 35.87%, STG143: 21.39%) and CAIX expression (STG139: 

84.18%, STG321: 11.35%, AB580: 17.74%, STG143: 0.65%), suggesting that the models 

may show diverse vascular phenotypes in vivo, which could be further evaluated and 

compared. 
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Table 2.1. Clinical information of the originating patient tissue that formed the PDXs described in this thesis 

 

 

Model 
Patient 
pathology 
diagnosis 

Patient 
PAM50 

Integrative 
Cluster 171 

Patient 
ER 
status 

Patient 
PR 
status 

Patient 
HER2 
status 

Patient 
Ki67 
status 

STG139 Ductal (NST) Basal 10 Neg Neg Neg High 

STG321 Ductal (NST) Basal 10 Neg 
Not 
known 

Neg High 

AB580 Ductal (NST) 
Luminal 
B 

8 Pos 
Not 
known 

Neg High 

STG143 Ductal (NST) 
Luminal 
B 

8 Pos Neg Neg High 

 

 

 

All animal procedures were conducted in accordance with project (Bohndiek 

PE12C2B96) and personal licenses (Emma Brown- I544913B4), issued under the United 

Kingdom Animals (Scientific Procedures) Act, 1986 and approved locally under 

compliance forms CFSB1361, CFSB1567, CFSB1745 and CFSB1979. For all models 

and studies described in this thesis, cryopreserved breast patient-derived xenograft tumour 

fragments (~2 mm3) in freezing media (foetal bovine serum, heat-activated 

ThermoFisherScientific 10500064 +10% dimethyl sulfoxide Sigma D2650) were 

defrosted at 37°C, washed with Dulbecco’s modified eagle’s medium (Gibco 41966) and 

mixed with matrigel (Corning 354262) before surgical implantation. Tumours were 

implanted subcutaneously into the flank of 6-9 week-old NOD SCID gamma (NSG) mice 

(Jax Stock #005557) as per standard protocols10. 

Tumour growth was monitored with callipers measuring the diameter along the 

short and long axes and a mean diameter calculated. Mice were euthanised once the 

tumour mean diameter reached ~1 cm, which equated to a volume ~0.4 cm3, unless the 

tumour was being preserved at an earlier time point for intermediate analysis, in which 

case mice were euthanised once the tumour mean diameter reached ~0.5 cm, which 

equated to a volume ~0.1 cm3. The tumour size limits were determined by the resolution 

of the photoacoustic imaging systems and within the ethical limits defined by the project 
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license. Mice were killed by cardiac puncture to collect blood and plasma samples. The 

right half of each tumour sphere was preserved in formalin (CellPath BAF-6000-08A, 

10% formalin for 24hr) and the left half cut into fragments to provide tissue for 

cryopreservation in liquid nitrogen or freezing media (Figure 2.1A). For STG139 P3 and 

AB580 P2 only 2 mm3 fragments were taken instead of the semi-sphere in subsequent 

passages, to provide more tissue for passaging and growing my biobank. To continue to 

expand and propagate PDX samples for evaluation, passaging was necessary. This was 

conducted by implanting one fragment from one mouse into another (Figure 2.1B). The 

number of passages, the tumours per passage and the relationship between different 

tumours is listed in Table 2.2. 

 

 
Figure 2.1. PDX tumour preservation and passaging. A) PDX tumours (pink sphere) normally present 

as spheres that are excised at ~1cm diameter, and cut (dashed line) to preserve one half in formalin, and 

further fragments are cryopreserved in liquid nitrogen or freezing media. B) PDXs described in this thesis 

were established by taking a fragment of a patient’s tumour and implanting it into an immunocompromised 

mouse (P0) by the Caldas lab10. Subsequent passages were generated by defrosting fragments preserved in 

freezing media and re-implanting these fragments into subsequent batches of mice (Pn, where n is the 

passage number, passages are numbered consecutively), to exponentially increase the number of samples 

available. 
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Table 2.2. PDX tumour sample names, models, passages and relationship between different tumours. 
Tumours originating from Caldas laboratory highlighted in yellow. 

 
 

 
Tumour 

Name 

 

PDX model 

 
Passage 

Number 

 

Tumour originated from 

 
Tumour volume at 

excision (cm3) 

 
PEN2 

 
STG139 

 
3 

 
STG139-X2_23785 

 
0.53 

 
PEN3 

 
STG139 

 
3 

 
STG139-X2_23785 

 
0.55 

 
PEN4 

 
STG139 

 
3 

 
STG139-X2_23785 

 
0.7 

 
PEN5 

 
STG139 

 
3 

 
STG139-X2_23785 

 
0.71 

 
PEN6 

 
STG139 

 
3 

 
STG139-X2_23785 

 
0.6 

 
PEN7 

 
STG139 

 
4 

 
PEN6 

 
0.37 

 
PEN8 

 
STG139 

 
4 

 
PEN6 

 
0.37 

 
PEN14 

 
STG139 

 
4 

 
PEN6 

 
0.50 

 
PEN15 

 
STG139 

 
4 

 
PEN6 

 
0.45 

 
PEN18 

 
STG139 

 
4 

 
PEN6 

 
0.75 

 
PEN21 

 
STG139 

 
4 

 
PEN4 

 
0.73 
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PEN22 

 
STG139 

 
4 

 
PEN4 

 
0.34 

 
PEN23 

 
STG139 

 
4 

 
PEN4 

 
0.41 

 
PEN25 

 
STG139 

 
4 

 
PEN4 

 
0.43 

 
PEN26 

 
STG139 

 
4 

 
PEN4 

 
0.43 

 
PEN28 

 
STG139 

 
4 

 
PEN4 

 
0.43 

 
PEN29 

 
STG139 

 
4 

 
PEN4 

 
0.75 

 
PEN30 

 
STG139 

 
4 

 
PEN4 

 
0.36 

 
PEN31 

 
STG139 

 
4 (repeat) 

 
PEN3 

 
0.41 

 
PEN34 

 
STG139 

 
4 (repeat) 

 
PEN3 

 
0.52 

 
PEN38 

 
STG139 

 
4 (repeat) 

 
PEN5 

 
0.47 

 
PEN40 

 
STG139 

 
4 (repeat) 

 
PEN5 

 
0.45 

 
PEN43 

 
STG139 

 
4 (repeat) 

 
PEN6 

 
0.40 

 
PEN46 

 
STG139 

 
5 

 
PEN18 

 
0.48 
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PEN47 

 
STG139 

 
5 

 
PEN18 

 
0.51 

 
PEN48 

 
STG139 

 
5 

 
PEN18 

 
0.42 

 
PEN49 

 
STG139 

 
5 

 
PEN18 

 
0.51 

 
PEN56 

 
STG139 

 
5 

 
PEN26 

 
0.38 

 
PEN57 

 
STG139 

 
5 

 
PEN26 

 
0.38 

 
PEN58 

 
STG139 

 
5 

 
PEN26 

 
0.54 

 
PEN59 

 
STG139 

 
5 

 
PEN26 

 
0.43 

 
PEN60 

 
STG139 

 
5 

 
PEN26 

 
0.46 

 
PEN39 

 
 

STG139 

 
 

4 (repeat) 

 
 

PEN5 

 
0.14 (for intermediate 

analysis) 

 
PEN37 

 

 
STG139 

 

 
4 (repeat) 

 

 
PEN5 

 
0.21(for intermediate 

analysis) 

 
PEN36 

 
 

STG139 

 
 

4 (repeat) 

 
 

PEN5 

 
0.15 (for intermediate 

analysis) 

 
PEN32 

 

 
STG139 

 

 
4 (repeat) 

 

 
PEN3 

 
0.19 (for intermediate 

analysis) 
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PEN35 

 

 
STG139 

 

 
4 (repeat) 

 

 
PEN3 

 
0.11 (for intermediate 

analysis) 

 
PEN42 

 

 
STG139 

 

 
4 (repeat) 

 

 
PEN6 

 
0.14 (for intermediate 

analysis) 

 
PDP1 

 
AB580 

 
2 

 
AB580-X1_23191 

 
0.32 

 
PDP2 

 
AB580 

 
2 

 
AB580-X1_23191 

 
0.75 

 
PDP3 

 
AB580 

 
2 

 
AB580-X1_23191 

 
0.57 

 
PDP7 

 
AB580 

 
3 

 
PDP3 

 
0.37 

 
PDP8 

 
AB580 

 
3 

 
PDP3 

 
0.33 

 
PDP9 

 
AB580 

 
3 

 
PDP3 

 
0.36 

 
PDP11 

 
AB580 

 
3 

 
PDP3 

 
0.32 

 
PDP14 

 
AB580 

 
3 

 
PDP3 

 
0.31 

 
PDP16 

 
AB580 

 
3 

 
PDP3 

 
0.33 

 
PDP17 

 
AB580 

 
3 

 
PDP3 

 
0.31 
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PDP18 

 
AB580 

 
3 

 
PDP3 

 
0.29 

 
PDP25 

 
AB580 

 
3 (repeat) 

 
PDP2 

 
0.46 

 
PDP27 

 
AB580 

 
3(repeat) 

 
PDP3 

 
0.58 

 
PDP32 

 
AB580 

 
4 

 
PDP9 

 
0.48 

 
PDP35 

 
AB580 

 
4 

 
PDP9 

 
0.45 

 

 
PDP24 

 

 
AB580 

 

 
3 (repeat) 

 

 
PDP2 

 
0.16 (for intermediate 

analysis) 

 

 
PDP28 

 

 
AB580 

 

 
3 (repeat) 

 

 
PDP3 

 
0.11 (for intermediate 

analysis) 

 

 
PDP29 

 

 
AB580 

 

 
3 (repeat) 

 

 
PDP3 

 
0.2 (for intermediate 

analysis) 

 
 

STP3 

 
 

STG143 

 
 

3 

 
STG143-X2 

AN17CUK036905 

 
0.31 

 

 
STP5 

 

 
STG143 

 

 
3 

 
STG143-X2 

AN17CUK036905 

 
0.39 

 
 

STP7 

 
 

STG143 

 
 

3 

 
STG143-X2 

AN17CUK036905 

 
0.34 
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STP8 

 

 
STG143 

 

 
3 

 
STG143-X2 

AN17CUK036905 

 
0.38 

 

 
STP9 

 

 
STG143 

 

 
3 

 
STG143-X2 

AN17CUK036905 

 
0.32 

 
STP13 

 
STG143 

 
4 

 
STP3 

 
0.38 

 
STP15 

 
STG143 

 
4 

 
STP3 

 
0.38 

 
STP16 

 
STG143 

 
4 

 
STP3 

 
0.50 

 
STP18 

 
STG143 

 
4 

 
STP7 

 
0.43 

 
STN1 

 
STG321 

 
2 

 
STG321-X1 13914 

 
0.28 

 
STN2 

 
STG321 

 
2 

 
STG321-X1 13914 

 
0.37 

 
STN3 

 
STG321 

 
2 

 
STG321-X1 13914 

 
0.39 

 
STN4 

 
STG321 

 
2 

 
STG321-X1 13914 

 
0.38 

 
STN5 

 
STG321 

 
2 

 
STG321-X1 13914 

 
0.47 

 
STN6 

 
STG321 

 
2 

 
STG321-X1 13914 

 
0.43 
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STN8 

 
STG321 

 
2 

 
STG321-X1 13914 

 
0.45 

 
STN11 

 
STG321 

 
3 

 
STN4 

 
0.44 

 

 

 
 

 

2.2.2. Histopathological analysis 

All IHC and histology stains were conducted by the CRUK CI Histopathology core 

facility unless otherwise stated. Formalin-fixed paraffin embedded (FFPE) PDX tumour 

tissues were cut into 3-4 μm sections. For each marker, two tumour sections were  cut if  

 
STN12 

 
STG321 

 
3 

 
STN4 

 
0.37 

 
STN13 

 
STG321 

 
3 

 
STN4 

 
0.59 

 
STN14 

 
STG321 

 
3 

 
STN4 

 
0.36 

 
STN15 

 
STG321 

 
3 

 
STN5 

 
0.42 

 
STN17 

 
STG321 

 
3 

 
STN5 

 
0.46 

 
STN18 

 
STG321 

 
3 

 
STN5 

 
0.38 

 
STN19 

 
STG321 

 
3 

 
STN5 

 
0.45 

 
STN20 

 
STG321 

 
3 

 
STN5 

 
0.49 
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possible, one from the core of the tumour and the second from an outer portion, 

approximately 3 mm from the core, to assess intra-tumoural heterogeneity of the markers. 

Following deparaffinising and rehydration, IHC was performed using a BOND automated 

stainer with a bond polymer refine detection kit (Leica Biosystems) and 3,3’- 

diaminobenzadine as a substrate. The markers chosen, working dilutions, antigen retrieval 

methods and reasons to support the use of this marker are detailed in Table 2.3. Adjacent 

serial sections were used for CD31 and ASMA staining. Haematoxylin and Eosin 

(H&E) staining was performed using an automated system (ST5020 Leica, Biosystems). 

 

Additionally the PDX tumour blocks underwent a quality control (QC) IHC 

analysis to ensure that the resultant PDX had not changed significantly in phenotype or 

undergone neoplastic transformation of human or murine lymphocytes in the 

immunocompromised mice, which has been reported anecdotally (Caldas laboratory) and 

in several publications186,197. Information and reasoning on the choice of markers can be 

found in Table 2.4. Dr Elena Provanzano provided training and guidance such that I was 

then able to personally assess the QC markers. 

 

All PDXs described in this thesis underwent the QC IHC analysis and passed (for 

thresholds see Table 2.4), maintaining their original ER and Ki67 status and contained 

low numbers of lymphocytes. Nearly all PDXs were epithelial, confirmed by breast 

pathologist Dr Elena Provanzano using H&E, pan-cytokeratin and E-cadherin stained 

sections. STG139 occasionally presented with a high percentage of mesenchymal tumour 

cells (above 50%), which were identified as cells with a spindle-like appearance by Dr Elena 

Provanzano. This has previously been reported anecdotally (Caldas laboratory) and 

expected in this      model. Example QC IHC is shown in Figure 2.2. 
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Table 2.3. Antibodies used for histopathological assessment of PDX vascular phenotypes 

 
 

 
Marker 

Supplier & 

Catalogue 

number 

Working dilution & 

Antibody retrieval method 

 
Reasons to support use of this marker 

 
References 

Anti-mouse 

CD31 

Cell signalling 

77699 

1:100, Tris-EDTA HIER 

20min 
Stable and highly expressed endothelial cell marker. Microvessel density correlates with 

prognosis, tumour size, grade and VEGF expression in breast cancer. 

 
 

202 203,204,205 

 
Anti-mouse 

ASMA 

 
Abcam ab5694 

 
1:500, Tris-EDTA HIER* 

10min 

CD31/ASMA co-localisation considered marker of vessel maturity. ASMA widely used 

marker of smooth muscle cells and pericytes in tumours. Most abundant protein in smooth 

muscle cells and required for full differentiation. Abnormal expression in tumoural pericytes 

widely reported. 

 

 
48,199,126,206 

Anti-human 

CAIX 

Bioscience 

Slovakia 

AB1001 

1:1000, Sodium Citrate 

HIER 20min 

A stable marker of chronic hypoxia. Often correlates with exogenous pimonidazole staining. 

Downstream of HIF, with longer half-life of 2-3 days. Expression predictive and prognostic 

in breast cancer. 

 
3,207 

Anti-human 

VEGF 

Thermo 

Scientific RB- 

9031 

1:250, Sodium Citrate HIER 

20min 

 
Most prominent pro-angiogenic factor. Expression prognostic in many solid tumours. 

 
2,3,18 

 
Haematoxylin 

and Eosin 

(H&E) 

Leica 

Microsystems 

Eosin 1%- 
3801590 

Haem.- 

3801560E 

  

General tissue architecture. Can easily visualise cell shape, stromal content, necrosis and 

haemorrhage. 
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Table 2.4. Antibodies used for quality control IHC assessment of PDXs 

 
 

 

Marker 

 

Supplier & Catalogue number 
Working dilution & Antibody 

retrieval method 

 

Reasons to support use 

 

Threshold to pass QC 

 
Anti-human ER 

 
Novocastra NCL-ER-6F11/2 

 
1.071 µg/ml, Sodium Citrate, 

HIER 30 min 

Surrogate for intrinsic subtype 

(PAM50) analysis. Check if PDX 

has maintained ER status in 

patient. 

>1% tumour cells staining 

=positive <1% tumour cells 

staining =negative. Must remain 

same as patient. 10 

 
Anti-human Ki67 

 
Dako M7240 

1:400 (if xenograft) 1:200 (if 

primary human) Tris EDTA, 

HIER 30 min 

Marker of proliferation. 

Surrogate for intrinsic subtype 

(PAM50) analysis. Check if PDX 

has high or low proliferation. 

Must remain same as patient- 

high (>20%) or low (<20%) 

positivity. Both lumB and basal 

models have high proliferation. 10 

 
Anti-mouse Ki67 

 
Bethyl Laboratories IHC-00375 

 
1:1000, Sodium Citrate, HIER 20 

min 

Marker of proliferation. Positive 

tumour cells would indicate 

spontaneous murine 

transformation 

 
Only murine stromal cells can be 

positive. 

 
Anti-human CD45 

 
Dako M0701 

 
1.5 µg/ml, Tris EDTA, HIER 20 

min 

Pan-lymphocyte marker. 

Positivity in malignant cells 

would indicate human lymphoid 

origin. 

 
Must be negative 

 
Anti-mouse CD45 

 
Abcam ab25386 

 
5 µg/ml, Sodium Citrate, HIER 

20 min 

Pan-lymphocyte marker. 

Positivity in malignant cells 

would indicate murine lymphoid 

origin. 

 
Murine lymphocytes in stroma 

will be positive. 
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Anti-mouse CD45 (B220 

isoform) 

 
R&D Systems MAB1217 

 
0.67 µg/ml, Sodium Citrate, 

HIER 10 min 

Identifies a select subset of B- 

cells. Positivity would indicate 

murine B-cell lymphoma 

formation 

 
Murine B-lymphocytes in stroma 

will be positive. 

 
Anti-human CD3 

 
Thermo Scientific RM-9107-S0 

1:300, Sodium Citrate, HIER 20 

min 

Identifies human T cells. 

Positivity would indicate human 

T-cell lymphoma formation. 

 
Must be negative 

 
Anti-human CD20 

 
Novocastra NCL-L-CD20-L26 

0.95 µg/ml, Tris EDTA, HIER 20 

min 

Identifies human B cells. 

Positivity would indicate human 

B-cell lymphoma formation. 

 
Must be negative 

 
Anti-human pan-cytokeratin 

 
Dako M3515 

1:200, Sodium Citrate, HIER 20 

min 

Used to stain normal and 

neoplastic cells of epithelial 

origin. 

Must be some positivity, even if 

focal. 

 
Anti-human E-cadherin 

 
Dako M3612 

 
1:25, Sodium Citrate HIER 30 

min 

Used to stain normal and 

neoplastic cells of epithelial 

origin. Lobular carcinomas will 

be E-cadherin negative. 

 
Must be some positivity, even if 

focal. 

 
Haematoxylin and Eosin (H&E) 

 
Leica Microsystems Eosin 1%- 

3801590 Haem.- 3801560E 

 
N/A 

General tissue architecture. Can 

easily visualise cell shape, 

stromal content, necrosis and 

haemorrhage. 

Cell morphology should be 

similar to original 

patients/previous passages 
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Figure 2.2 Example results of quality-control IHC panel in the PDXs. Scale bar = 200 µm. Top panel example 

images of an ER+ PDX and bottom panel example images of an ER- PDX. The following IHC staining’s are shown 

(from left to right): anti-human estrogen receptor (ER), anti-human Ki67 (proliferation marker), anti-mouse Ki67 

(proliferation marker), anti-human CD45 (lymphocyte marker), anti-mouse CD45 (lymphocyte marker), anti-mouse 

CD45 (B220) (B-cell subset marker), anti-human CD3 (T-lymphocyte marker), anti-human CD20 (B-lymphocyte 

marker), anti-human pan-cytokeratin, anti-human E-cadherin.  

 
 

2.2.3. Patient samples and Tissue Microarray 

A tissue microarray (TMA) was prepared by the CRUK CI histopathology core 

using duplicate 0.6 mm cores extracted from FFPE blocks containing material from patient 

tumours STG321, AB580 and STG14310. The FFPE STG139 patient tumour block was not 

included in the TMA. 3-4 μm sections were processed as described above in section 2.2.1 

using Leica’s Polymer Refine Kit on their automated BOND platform. For the TMA cores, 

IHC was performed for the following antibodies: CD31 (anti-human Dako M0823), α-

smooth muscle actin (ASMA) (anti-human Sigma A2547) at 1:100 and 1:1000 

respectively. Adjacent serial sections were used for CD31 and ASMA staining. For all 

patient samples, H&E staining was performed using an automated system (ST5020 Leica, 

Biosystems). 



 

50  

2.2.4. Image analysis 

Stained FFPE sections were scanned at 20x magnification using an Aperio 

ScanScope (Leica Biosystems) and analysed using HALO (v3.2) (Indica Labs) or 

ImageScope (v12.3.2) (Leica Biosystems) softwares. Regions of interest (ROIs) were 

drawn over the whole viable tumour area, excluding skin and necrotic regions. All analyses 

were conducted within the defined ROIs. 

 

Using HALO, a random-forest tissue classifier was trained by Cara Brodie from 

the CRUK CI Histopathology core under my guidance to classify viable tissue, necrosis, 

haemorrhagic and glass regions in H&E sections. A new classifier for each PDX model 

was used, due to vast differences in the H&E colour and texture for each model. On 

average, the classifier was trained using 4 annotations per class per image on a training set 

of ~7 images. The number of images used for training was determined by the robustness 

needed for the classifier to cope with changes in colour and texture across the dataset. 

Quality of the classifier output was assessed by eye by myself and Cara Brodie and 

example images can be found in Figure 2.3. Necrosis area (µm2) and haemorrhage area 

(µm2) were quantified as a percentage of the total classified area (µm2). 

Further using HALO, a random-forest tissue classifier was trained by Dr Julia 

Jones from the CRUK CI Histopathology core under my guidance to classify CD31 area, 

viable tissue, and glass regions. The same classifier was used across all datasets, owing to 

the high consistency of colour and texture in the CD31 staining. On average, the classifier 

was trained using 6 annotations per class per image on a training set of ~3 images. The 

low number of images used for training was determined by the low robustness needed for 

the classifier to cope with changes in colour and texture across the dataset. Quality of the 

classifier output was assessed by eye by myself, Dr Julia Jones and Cara Brodie and 

example images can be found in Figure 2.7. The area of CD31 (mm2) within the ROI was 

quantified and normalised to the ROI (mm2), as a surrogate for vessel density. Subsequently, 

an Area Quantification algorithm was applied to the serial ASMA stained section by Dr Julia 

Jones under my guidance. The same algorithm was used across all datasets, owing to the 

high consistency of colour and intensity in the ASMA staining. The user defined the colour 

of the ASMA staining and set an intensity threshold to define weak and strong pixel colour 

intensity. Here, strong positive pixels were defined as those  
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with ASMA staining (strong brown colour) and all other pixels were defined as weak 

positive. Then, the classifier run on the CD31 section was overlaid onto the ASMA section, 

and the Area Quantification algorithm run only in CD31 areas defined by the classifier. 

The algorithm mark-up displayed CD31 and ASMA colocalised pixels in red and CD31 

only pixels in yellow (Fig. 2.5). The area of colocalised pixels (µm2) / CD31 classified 

area (µm2) was defined as the ASMA vessel coverage (%). 

Using ImageScope, two Positive Pixel Count algorithms were applied to CAIX and 

VEGF sections by Cara Brodie and Monika Golinska under my guidance. The same 

algorithm for either CAIX or VEGF analysis was used across all datasets, owing to the 

high consistency of colour and intensity in the CAIX and VEGF stainings. The user 

defined the colour of the CAIX or VEGF staining and set an intensity threshold to define 

weak, moderate and strong positive pixel colour intensity, similar to the Area 

Quantification algorithm described above. Any pixels with colour intensity below the 

weak threshold were classed as negative. The number of positive pixels/ total number of 

pixels in the ROI was defined as the positivity of CAIX (%) or VEGF (%). 

 
2.2.5. Statistical analysis 

Statistical analysis was performed using GraphPad Prism v.9. Each tumour was 

considered as an independent biological replicate. To compare the means of STG139, 

STG321, AB580 and STG143 a one-way ANOVA was performed with Tukey’s multiple 

comparison correction, unless the data violated the assumptions of a Gaussian distribution 

or equal variances, in which case Kruskal-Wallis test with Dunn’s multiplicity correction 

and Welch’s ANOVA with Dunnett’s T3 multiplicity correction were conducted 

respectively. The same tests were performed to compare means across 3 passages. To 

compare means across passage repeats within STG139 and AB580 an unpaired student’s t-

test was performed unless the data violated the assumption of a Gaussian distribution, in 

which case a Mann-Whitney test was conducted. To compare core and outer section means 

a paired student’s t-test was performed unless the data violated the assumption of a 

Gaussian distribution, in which case a Wilcoxon test was performed. IHC vascular markers 

were correlated to tumour volume and correlation assessed by Pearson’s or Spearman’s 

correlation coefficient, depending on data distribution. Significance is assigned for p-
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values <0.05. 
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2.3. Results 

 
2.3.1. Investigating the hypoxic and necrotic microenvironment of the PDX 

tumours 

Initially, a visual inspection of H&E sections was performed that demonstrated 

vast differences in tissue morphology between the PDX models (Figure 2.3). STG139 

tumours displayed large areas of necrosis and haemorrhage (Figure 2.3A) along with a 

mixture of epithelial and mesenchymal-like tumour cells. STG321 tumour cells form 

‘islands’ of epithelial cells with necrotic centres and stroma surrounding (Figure 2.3B). 

AB580 tumours form a necrotic core (Figure 2.3C), while STG143 tumours display little 

necrosis and are the most glandular of the 4 PDXs (Figure 2.3D), with large tubular 

formation and mucus production, as confirmed by breast pathologist Dr Elena Provanzano. 

 

Upon quantification using a random forest classification mask, STG139 tumours 

were the most necrotic of the PDXs investigated, both in the core (Figure 2.4A) and outer 

(Figure 2.4B) tumour sections, while STG321 and STG143 were the least necrotic 

throughout the tumour volume (Figure 2.4A,B). Necrosis displayed little intra-tumoural 

heterogeneity in STG139, which was highly necrotic throughout the tumour volume 

(Figure 2.4C) while necrosis increased in the outer section of STG321 tumours compared 

to the core, which could be due to tissue preparation of the outer sections (Figure 2.4D). 

The outer sections were prepared by cutting the preserved tumour semi-sphere in two 

along this central axis. In STG321, this caused many of the cellular ‘islands’ around the 

rim of the tumour to fray or become damaged in this outer section. AB580 PDXs were 

also highly necrotic in the core section (Figure 2.4A) but necrosis decreased significantly 

in this model in the outer section (Figure 2.4B,E), demonstrating the central necrotic core 

present in this model. The other luminal B model STG143 had low levels of necrosis 

throughout the tumour volume (Figure 2.4F). 

 

Finally, haemorrhage was detectable only in the basal models, more often in 

STG139 (Figure 2.4G). Note that in all quantifications for the remainder of this chapter 

and throughout this thesis, basal models (STG139 and STG321) are presented in shades 

of blue contained in circles, while luminal models (AB580 and STG143) are presented in  
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burgundy and orange contained in squares. Overall, STG139 was found to be a highly 

necrotic and haemorrhagic model, while STG321 and STG143 are mostly viable and 

AB580 tumours form a necrotic core, with viable tissue surrounding. 

 

 

 

 
 

 
Figure 2.3. Tissue morphology, necrosis and haemorrhage differ between the PDXs. In all subfigures 

top left= whole H and E section, top right= whole H and E section with mask, bottom left= H and E section at 

20X magnification, bottom right= H and E section at 20X magnification with mask. Mask colours: purple= 

viable tissue, yellow= necrosis, dark blue= haemorrhage, light blue= glass. A) STG139 with large areas of 

necrosis and haemorrhage, B) STG321, forming islands with necrotic centres, C) AB580 with a necrotic 

core, D) STG143, with less necrosis and multiple tubule formation and mucin production. 
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Figure 2.4. STG139 displays a necrotic and haemorrhagic phenotype throughout the tumour volume. 

Necrosis as a percentage of the tumour area on H and E sections taken from the core of tumour (A) and from 

an outer portion of the tumour (B). Comparison of necrosis (%) in core vs. outer H and E sections for STG139 

(C), STG321 (D), AB580 (E) and STG143 (F). Haemorrhage as a percentage of the tumour area on H and 

E sections taken from the core of tumour (G) on a log scale to show presence of haemorrhage in basal models 

only. In A, B and G, data presented as a scatter dot plot with mean ±SEM. In C-F matched data from the 

same tumour are joined by a straight line. In all subfigures, each data point represents data from one section 

of one tumour (biological replicate). In A) and B) p-values for significant (p<0.05) pairwise comparisons 

are shown calculated by Kruskal-Wallis test with Dunn’s multiplicity correction and Welch’s ANOVA with 

Dunnett’s T3 multiplicity correction respectively. In C-F all p-values are shown calculated by paired t-test 

(C and E) or Wilcoxon test (D and F). p-values <0.05 considered significant. The following n numbers refer 

to the number of tumours per PDX model in each sub-figure: for (A, G) nSTG139=32, nSTG321=16, nAB580=15, 

nSTG143=9 (in G only values for STG139 and STG321 displayed in log scale). For (B-F) nSTG139=25, 

nSTG321=16, nAB580=12, nSTG143=9. 
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Next, I sought to evaluate whether the necrotic PDXs were also hypoxic, using 

CAIX IHC. As expected, STG139 was observed to have very high CAIX expression in 

most tumour cells (Figure 2.5). Upon quantification using an intensity-based threshold, 

STG139 had significantly higher CAIX positivity than all other models in the core (Figure 

2.6A) and outer (Figure 2.6B) sections, with no intra-tumoural heterogeneity (Figure 

2.6C). CAIX positivity was consistently lower in the other basal model STG321 (Figure 

2.6A, B) although expression was heterogeneous across the tumour volume, with 

significantly lower CAIX positivity in the outer tumour sections compared to the core 

(Figure 2.6D). Relatively speaking, AB580 tumours were also highly hypoxic with ~30- 

40% CAIX positivity in both core and outer sections (Figure 2.6A, B, E), although CAIX 

positivity was only significantly higher than STG321 and STG143 in the outer sections 

(Figure 2.6B). Expression was consistently low in STG143, however just like STG321 

expression was heterogeneous across the tumour volume (Figure 2.6F). Overall, hypoxic 

levels were highest in the two necrotic PDXs, STG139 and AB580, and hypoxia did not 

associate with PDX subtype. 
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Figure 2.5. Necrotic PDXs STG139 and AB580 express high CAIX levels. In all subfigures top left= 

whole CAIX IHC section, top right= whole CAIX IHC section with intensity-based threshold mark-up, 

bottom left= CAIX IHC section at 20X magnification, bottom right= CAIX IHC section at 20X 

magnification with intensity-based threshold mark-up. Mark-up colours: red= strong CAIX expression, 

orange = medium CAIX expression, yellow= weak CAIX expression, blue= nuclei (note weak haematoxylin 

(nuclei) staining in STG321 and STG143). A) STG139, B) STG321, C) AB580, D) STG143. 
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Figure 2.6. STG139 and AB580 are highly hypoxic tumours throughout the tumour volume. CAIX 

total positive pixels as a percentage of the total tumour area pixels on CAIX IHC sections taken from the 

core of tumour (A) and from an outer portion of the tumour (B). Comparison of CAIX (%) in core vs. outer 

sections for STG139 (C), STG321 (D), AB580 (E) and STG143 (F). In A and B, data presented as scatter 

dot plot with mean ±SEM. In C-F matched data from same tumour are joined by straight line. In all 

subfigures, each data point represents data from one section of one tumour (biological replicate). In A) and 

B) p-values for significant (p<0.05) pairwise comparisons are shown calculated by Kruskal-Wallis test with 

Dunn’s multiplicity correction and Welch’s ANOVA with Dunnett’s T3 multiplicity correction respectively. 

In C-F all p-values are shown calculated by paired t-test. p-values <0.05 considered significant. The following 

n numbers refer to the number of tumours per PDX model in each sub-figure: for (A) nSTG139=25, nSTG321=15, 

nAB580=11, nSTG143=5. For (B-F) nSTG139=12, nSTG321=8, nAB580=8, nSTG143=5. 
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Knowing the strong links between necrosis and hypoxia with vascular form and 

function2,5, I next sought to evaluate the vessel area and pericyte/smooth muscle vessel 

coverage in the IHC sections as a proxy for vessel density and vessel maturity respectively. 

Visual inspection of serial CD31 and ASMA sections, which label endothelial cells and 

pericytes/ smooth muscle respectively, showed STG139 to have a high density of vessels 

that were not covered by ASMA+ pericytes/smooth muscle (Figure 2.7A), which are 

considered immature. In contrast, the other basal model STG321 was found to also have 

many vessels, particularly in the stroma surrounding the cellular ‘islands’, yet these were 

consistently covered by ASMA+ pericytes/smooth muscle and could be considered 

relatively mature (Figure 2.7B). Both luminal B models, AB580 and STG143, displayed 

low vessel density with partial ASMA coverage on visual inspection (Figure 2.7C, D). 

 

Quantitative results using a CD31 mask overlaid onto an ASMA section, to identify 

CD31+ASMA+ pixels and CD31+ASMA- pixels, support the qualitative inspections. First, 

CD31 vessel area was consistently highest in STG139 compared to both luminal B models, 

and in outer sections it was also higher than STG321 (Figure 2.8A, B). STG321 CD31 

vessel area was relatively high compared to both luminal B models, which displayed low 

CD31 area, as seen visually (Figure 2.8A, B). CD31 vessel area was fairly heterogeneous 

across the tumour volume; overall CD31 vessel area increased in STG139 and decreased 

in STG321 (Figure 2.8C, D). Despite 2 outliers, CD31 vessel area was stable across 

AB580 sections (Figure 2.8E) and decreased in the outer section of STG143 (Figure 

2.8F). 

 

When assessing vessel maturity, ASMA vessel coverage was consistently highest 

in the basal model STG321 compared to the other PDXs, in both core and outer sections, 

and was particularly low in the other basal model STG139 (Figure 2.9A, B). AB580 and 

STG143 ASMA vessel coverage was in-between the two extremes presented by the basal 

models. Although not significant, AB580 presented with ~1.15-fold higher ASMA vessel 

coverage than STG143. ASMA vessel coverage showed little intra-tumoural heterogeneity 

apart from a slight decrease in STG321 from core to outer sections (Figure 2.9C-F), but it 

should be noted that tissue preparation of the outer section may have increased necrosis 

and decreased vessel density and maturity in this model. 
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Despite both basal models having considerably more vessels than the luminal B 

models, STG321 presents with a more mature vessel phenotype and less hypoxia and 

necrosis, whereas STG139 has an immature vessel phenotype and is more hypoxic, 

necrotic and haemorrhagic in comparison. 

 

 

Figure 2.7. PDXs display differences in ASMA vessel coverage. In all subfigures top left= CD31 IHC 

section at 10X magnification, top right= CD31 IHC section at 10X magnification with mask, bottom left= 

serial ASMA IHC section at 10X magnification, bottom right= serial ASMA IHC section at 10X 

magnification with mask. CD31 mask colours: purple= tissue, green= CD31 positive vessel. ASMA mask 

colours: red= colocalisation with CD31+ vessel, yellow= CD31+ vessel alone. A) STG139, B) STG321, C) 

AB580, D) STG143. 
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Figure 2.8. STG139 tumours have the highest vessel density. CD31 vessel area (green mask area 

normalised to total tumour area) on CD31 IHC sections taken from the core of tumour (A) and from an outer 

portion of the tumour (B). Comparison of CD31 vessel area in core vs. outer sections for STG139 (C), 

STG321 (D), AB580 (E) and STG143 (F). In A and B, data presented as scatter dot plot with mean 

±SEM. In C-F matched data from same tumour are joined by straight line. In all subfigures, each data point 

represents data from one section of one tumour (biological replicate). In A) and B) p-values for significant 

(p<0.05) pairwise comparisons are shown calculated by Kruskal-Wallis test with Dunn’s multiplicity 

correction and One-way ANOVA with Tukey’s multiplicity correction respectively. In C-F all p-values are 

shown calculated by paired t-test (C, D, F) or Wilcoxon test (E). p-values <0.05 considered significant. The 

following n numbers refer to the number of tumours per PDX model in each sub-figure: for (A) nSTG139=32, 

nSTG321=16, nAB580=15, nSTG143=9. For (B-F) nSTG139=25, nSTG321=16, nAB580=12, nSTG143=9. 



 

62  

 
 

Figure 2.9. STG139 has immature vessels, with low ASMA vessel coverage. ASMA vessel coverage of 

CD31+ vessels (number of red pixels/number of red+yellow pixels, expressed as a percentage) on ASMA 

IHC sections taken from the core of tumour (A) and from an outer portion of the tumour (B). Comparison 

of ASMA vessel coverage (%) in core vs. outer sections for STG139 (C), STG321 (D), AB580 (E) and 

STG143 (F). In A and B, data presented as scatter dot plot with mean ±SEM. In C-F matched data from 

same tumour are joined by straight line. In all subfigures, each data point represents data from one section of 

one tumour (biological replicate). In A) and B) p-values for significant (p<0.05) pairwise comparisons are 

shown calculated by One-way ANOVA with Tukey’s multiplicity correction respectively. In C-F all p- values 

are shown calculated by paired t-test. p-values <0.05 considered significant. The following n numbers refer 

to the number of tumours per PDX model in each sub-figure: for (A) nSTG139=32, nSTG321=16, nAB580=15, 

nSTG143=9. For (B-F) nSTG139=25, nSTG321=16, nAB580=12, nSTG143=9. 
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Finally, I sought to investigate the angiogenic potential of the 4 PDXs by assessing 

the protein level of VEGF, the most potent pro-angiogenic factor. IHC was conducted to 

target VEGF-A on sections taken from the core of each tumour. It was not possible to 

assess the level of VEGF expression in outer tumour sections, due to discontinuation of 

the VEGF antibody by the supplier and no suitable replacement could be found within the 

time constraints of the project. VEGF expression was present in most tumour cells in 

STG139, AB580 and STG143 but expression was variable in STG321 and often lower in 

this model (Figure 2.10A-D). Interestingly, expression was of a higher intensity in 

STG139 (Figure 2.10A, red colour) and although positive expression was detected in 

AB580 and STG143 this was of medium intensity (Figure 2.10C,D, orange colour). 

Overall, VEGF expression was lowest in STG321 (Figure 2.10B,E) demonstrating that 

this model is less angiogenic compared to the other PDXs, and presents with a more mature 

vessel phenotype. 
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Figure 2.10. STG321 is less angiogenic with lower VEGF expression. In all subfigures top left= whole 

VEGF IHC section, top right= whole VEGF IHC section with mask, bottom left= VEGF IHC section at 

20X magnification, bottom right= VEGF IHC section at 20X magnification with mask. Mask colours: 

red= strong VEGF expression, orange = medium VEGF expression, yellow= weak VEGF expression, 

blue= nuclei (note weak haematoxylin (nuclei) staining in STG321 and STG143). A) STG139, B) 

STG321, C) AB580, D) STG143. E) VEGF total positive pixels as a percentage of the total tumour area 

pixels on VEGF IHC sections taken from the core of tumour. In E, data presented as scatter dot plot with 

mean ±SEM, each data point represents data from one section of one tumour (biological replicate). p- 

values for significant (p<0.05) pairwise comparisons are shown calculated by Welch’s ANOVA with 

Dunnett’s T3 multiplicity correction respectively. The following n numbers refer to the number of tumours 

per PDX model for (E) nSTG139=18, nSTG321=7, nAB580=11, nSTG143=5. 
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2.3.2. PDXs have low inter-passage heterogeneity showing repeatable and 

robust vascular phenotypes 

To continue to expand and propagate PDX samples for evaluation, it is necessary 

to passage them. This means to take tumour fragments from one mouse and implant them 

into another mouse. Bruna et al.10 have previously shown that these PDXs are genetically 

stable and represent the patient from which they were derived across several passages (i.e. 

up to 15 passages after sample collection from the patient). However, little is known 

regarding the mouse stromal compartment and whether the vascular phenotypes identified 

in Section 2.3.1 are stable across passages, or whether they suffer from passage- 

dependence. 

 

To meet Aim 3 of this thesis and assess inter-passage heterogeneity of the vascular 

phenotypes, I evaluated expression of the same IHC vascular markers from 2.3.1 (except 

VEGF due to antibody shortage), in the core sections across 3 early passages of STG139 

and AB580 tumours, assessing one basal and one luminal B PDX. Additionally, one 

passage per model was repeated, where the implantation of tumour fragments from the 

previous passage was repeated in new mice, to assess how repeating a passage could also 

introduce heterogeneity in phenotype. 

 

Overall, vascular phenotypes were stable across the 3 passages in both STG139 

and AB580 (Figure 2.11). For STG139, levels of necrosis, CD31 vessel area and ASMA 

vessel coverage remained consistent. Interestingly, CAIX positivity increased slightly 

across passages such that passage 5 (P5) was almost significantly higher than P3 (p=0.06), 

suggesting some selectivity for the most aggressive, hypoxic cells (Figure 2.11A-D). 

There was a significant decrease in necrosis from P3 to P4 in AB580 tumours (Figure 

2.11E), however it should be noted there are only 2 tumours that successfully engrafted 

and grew in this passage so there is limited information available for statistical testing. 

Despite an apparent decrease in necrosis, these same tumours appeared to have slightly 

higher hypoxia (Figure. 2.11F) than the previous passage, however, this is not quite 

significant (p=0.06). CD31 vessel area and ASMA vessel coverage remained consistent 

across AB580 passages (Figure 2.11G, H). 

 

When comparing the repeated passages, some differences in vascular phenotype  
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were seen. From P4 to the repeat (P4r) in STG139, we see a significant drop in necrosis 

(Figure 2.11A) concurrent with a significant increase in CD31 vessel area (Figure 2.11C). 

From P3 to P3r in AB580, CD31 vessel area increases (Figure 2.11G) concurrent with a 

decrease in ASMA vessel coverage (Figure 2.11H). However, it should be noted that the 

outer section of both P3r tumours had a CD31 vessel area that is very similar to the original 

P3 tumours (Figure 2.8E, 0.05 and 0.038), suggesting that the result in Figure 2.11G may 

be an outlier and CD31 vessel area quantification is influenced by the sectioning. Despite 

some variation in the passage repeat, PDXs appear to show little inter-passage 

heterogeneity displaying repeatable and robust vascular phenotypes across several 

passages. 
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Figure 2.11. Vessel phenotypes are mostly stable between successive PDX passages though show some 

variation in replicate passages. In all subfigures: top= expression of marker across 3 consecutive passages 

(P) and bottom= expression of marker across one passage vs. a repeat of the same passage (r). A and E: 

Necrosis as a percentage of the tumour area on H and E sections taken from the core of tumour in STG139 

and AB580 respectively. B and F: CAIX total positive pixels as a percentage of the total tumour area pixels 

on CAIX IHC sections taken from the core of tumour in STG139 and AB580 respectively. C and G: CD31 

vessel area (green mask area normalised to total tumour area) on CD31 IHC sections taken from the core of 

tumour in STG139 and AB580 respectively. D and H: ASMA vessel coverage of CD31+ vessels (number of 

red pixels/number of red+yellow pixels, expressed as a percentage) on ASMA IHC sections taken from the 

core of tumour in STG139 and AB580 respectively. In all subfigures, data presented as scatter dot plot  
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with mean ±SEM, each data point represents data from one section of one tumour (biological replicate). In 

top subfigures p-values for all comparisons across passages shown calculated by One-way ANOVA with 

Tukey’s multiplicity correction (A,D,E,F,H), Welch’s ANOVA with Dunnett’s T3 multiplicity correction 

(B,C) or Kruskal-Wallis test with Dunn’s multiplicity correction (G). In bottom subfigures p-values for all 

comparisons across repeat shown calculated by unpaired t-test. For all, p<0.05 considered significant. The 

following n numbers refer to the number of tumours per PDX passage in each sub-figure. For top subfigures: 

(A, C, D) P3 n=5, P4 n=18, P5 n=9. (B) P3 n=5, P4 n=16, P5 n=4. (E-H) P2 n=3, P3 n=10, 

P4 n=2. For bottom subfigures: (A, C, D) P4 n=13, P4r n=5. (B) P4 n=13 P4r n=3. (E-H) P3 n=8, P3r n=2. 

 

 

 

 

2.3.3. An initial comparison to patient tumour vasculature was 

conducted  

In addition to assessing the repeatability and robustness of the breast PDXs, Aim 

3 of the thesis was to identify whether PDXs represent the diversity of vascular 

phenotypes in patients. To this end, I compared PDX IHC and histology to that arising 

from the original patient, using the limited patient tissue available. This included H&E and 

CD31 and ASMA serial tissue microarray (TMA) sections for STG321, AB580 and 

STG143 and an H&E tissue section for STG139. 

 

With an initial analysis by visual inspection, under the guidance of breast 

pathologist Dr Elena Provanzano, I found the PDX phenotypes to be similar to the patient 

from which they were derived. In STG139, the tumour cell morphology was consistent 

across patient to PDX, with a large number of mesenchymal-like tumour cells, with a 

spindle-like appearance on H&E and vacuolated nuclei (Figure 2.12A), typical of an 

aggressive breast tumour. Interestingly, there was no necrosis detectable in the patient 

H&E unlike in the PDX tissue (Figure 2.3), although this may be due to the limited tissue 

sample collected. With only the H&E section available for this model, the CD31 and 

ASMA serial sections are shown for the PDXs only, which showed a large number of 

CD31+ vessels that were without ASMA vessel coverage (Figure 2.12A, coloured arrows), 

but unfortunately the comparison to patient tumour vessels was not possible due to the 

lack of available clinical material. 

 

In STG321 H&E, I found the presence of stroma and the formation of cellular ‘islands’ 

(Figure 2.12B, black arrows) in both patient and PDX tissue. There were many  CD31+ 
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vessels, which were consistently covered by ASMA+ pericytes/ smooth muscle in    both 

the patient and PDX tissue (Figure 2.12B, coloured arrows), suggesting that the dense 

and mature vascular phenotype of STG321 is preserved from patient to PDX. It should 

be noted that the ASMA+ pericytes/ smooth muscle in patient and PDX tissue had 

differential formation, with the PDX tissue forming much thicker fibrous strands, despite 

a similar vascular phenotype overall. 

 

In AB580 the H&E showed similar tissue morphology between patient and PDX, 

with stroma and tubule formation (Figure 2.12C, black arrows). Interestingly the vascular 

phenotypes were again similar between patient and PDX on the tissue available, with low 

CD31+ vessel density and at least partial but not complete ASMA vessel coverage in both 

patient and PDX tissue (Figure 2.12C, burgundy arrow- complete coverage, orange 

arrow- partial/no coverage). 

 

A similar result was found in STG143, with tubule formation found on H and E for 

both patient and PDX tissue, demonstrating that the PDXs retained the glandular 

morphology of this tumour (Figure 2.12D). Additionally, both PDX and patient tissue 

displayed few CD31+ vessels in comparison to STG321, and at least partial but not 

complete ASMA vessel coverage in both patient and PDX tissue (Figure 2.12D, burgundy 

arrow- complete coverage, orange arrow- partial/no coverage). It should be noted that the 

ASMA+ pericytes/ smooth muscle in both AB580 and STG143 patient tumours is similar 

in morphology of the PDX stroma. These results appear to show that both AB580 and 

STG143 patient tumours have a low density and partially mature vascular phenotype that 

is preserved in the PDX tumours. However, with a lack of clinical material available for 

this thesis, a quantitative comparison could not be made. Although the TMA data provided 

an interesting indication for further investigation with larger clinical samples, it is not yet 

clear whether the PDXs truly represent the vasculature seen in patients’ tumours.  
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Figure 2.12. Comparing PDX to patient vessel phenotypes. In all subfigures H and E, CD31 and ASMA 

sections are compared (where available) across patient tumour (T), and two consecutive PDX passages (P). 

A) STG139 First column: Patient tumour H and E whole tissue section at 20X magnification showing 

presence of mesenchymal-like tumour cells (black arrows) and vacuolated nuclei (blue arrows) also present in 

subsequent PDX passages. Second column: PDX CD31 IHC at 5X magnification. Third column: 

corresponding serial ASMA IHC at 5X magnification. B) STG321: First column: Patient tumour H and E 

0.6 mm TMA core and subsequent PDX passages at 5X magnification, formation of ‘islands’ shown by 

black arrows. Second column: CD31 IHC on either patient 0.6 mm TMA core or whole PDX section at 5X 

magnification. Third column: corresponding serial ASMA IHC at same magnification. C) AB580 and D) 

STG143: First column: Patient tumour H and E 0.6 mm TMA core and subsequent PDX passages at 5X 

magnification, tubule formation shown by black arrows. Second column: CD31 IHC on either patient 0.6 

mm TMA core or whole PDX section at 5X magnification. Third column: corresponding serial ASMA IHC at 

same magnification. For all CD31 and ASMA columns: Burgundy, orange, blue and black arrows show 

CD31 vessels with corresponding area on ASMA IHC.
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2.3.4. Vascular markers do not appear to evolve as PDXs grow 

Towards Aim 4 of the thesis, I investigated whether the vascular phenotypes found 

using IHC evolved as tumours grew. This would provide some insight as to whether the PDX 

vascular phenotypes are inherent, or whether they develop over time. Core sections were 

taken from a range of STG139 and AB580 tumour volumes and expression of the IHC 

vascular markers were correlated to tumour volume (Figure 2.13). 

 

Unsurprisingly, necrosis increased significantly by ~2-fold as tumours grew in 

STG139 and necrosis also increased in AB580, albeit not significantly (p=0.15) (Figure 

2.13A, B). This is a common observation in developing tumours, due to the increasing 

distance of cells from surrounding vasculature as tumours grow48. Interestingly, CAIX 

positivity remained stable as tumours grew in STG139 but increased by ~1.7-fold in 

AB580 tumours (Figure 2.13C, D), suggesting that the levels of hypoxia are inherent to 

STG139 but develop in AB580. CD31 vessel area and ASMA vessel coverage were stable 

across tumour growth in both models (Figure 2.13E-H). Overall, there was no significant 

evolution of vessel area or vessel maturity in the PDXs investigated. 
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Figure 2.13. Hypoxia increases with tumour growth in AB580 but is stable in STG139. Expression of 

marker across tumour volumes in STG139 (A-D) and AB580 (E-H) tumours. A and B: Necrosis as a 

percentage of the tumour area on H&E sections taken from the core of tumour. C and D: CAIX total positive 

pixels as a percentage of the total tumour area pixels on CAIX IHC sections taken from the core of tumour. E 

and F: CD31 vessel area (green mask area normalised to total tumour area) on CD31 IHC sections taken from 

the core of tumour. G and H: ASMA vessel coverage of CD31+ vessels (number of red pixels/number of 

red+yellow pixels, expressed as a percentage) on ASMA IHC sections taken from the core of tumour. In all 

subfigures data shown as scatter plots where each data point is one tumour (biological replicate). Least 

square’s regression line shown in black with 95% confidence intervals denoted by dotted line in (A) and (C). 

Pearson’s or spearman’s correlation coefficient shown with all p-values, p<0.05 considered significant. The 

following n numbers refer to the number of tumours represented in each sub-figure: for (A, E, G) n=38. For (B-

H) n=18. For (C) n=31. 
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2.4. Discussion 

 
2.4.1. PDXs display distinct vascular phenotypes on IHC that are model- 

dependent 

The vascular phenotypes, assessed by measuring necrosis, hypoxia, vessel area and 

vessel maturity markers, of the chosen PDX models are highly diverse. The basal STG139 

PDX model displayed a hypoxic and necrotic microenvironment, filled with a high density 

of immature vessels that are unlikely to be capable of properly delivering oxygen to the 

tumour mass, perpetuating the hypoxic microenvironment. In stark contrast, the other basal 

model STG321 lacks angiogenic ability, and presents with a mature vessel phenotype, with 

vessels present in the stroma surrounding cellular ‘island’ structures. These vessels are 

likely more mature and less leaky than vessels in STG139, hence are able to properly 

perfuse the tumour mass and deliver oxygen, resulting in less hypoxia and necrosis in 

STG321. On average the two basal models had a 2.8-fold difference in hypoxia levels 

measured by CAIX IHC and a 1.8-fold difference in ASMA covered vessels. The luminal 

B models also present with distinct vascular phenotypes, AB580 with a highly necrotic 

core and high hypoxia, and STG143 being viable and normoxic in comparison. On average, 

necrosis in the core of AB580 tumours was 3.4-fold higher than the core of STG143 

tumours. Vessel area was low in both luminal B models, particularly in AB580, with 

STG139 having a 1.7-fold higher vessel area than AB580. Interestingly, the two luminal B 

models had similar vessel densities and vessel maturity, with AB580 even having slightly 

higher ASMA vessel coverage than STG143, raising questions regarding the origin of the 

hypoxic vs. normoxic phenotypes present in these two models respectively, which will be 

discussed further in Chapter 5 in relation to their growth patterns. 

 

Using two sections from the core and outer portions of the tumour, it was apparent 

that some intra-tumoural heterogeneity in vascular phenotypes exists. The most stable 

marker was ASMA vessel coverage, which remained stable across the tumour volume in 

all PDXs except in STG321. Interestingly, CD31 vessel area was the least stable marker 

and was heterogeneous across all PDXs except AB580, however, as vessel area mostly 

captures the number of vessels and ASMA vessel coverage captures the functionality of  
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the vessels, then CD31 vessel area will be more influenced the location of the section cut 

compared to ASMA vessel coverage. 

 

Other intra-tumoural heterogeneity included the presence of a necrotic core in 

AB580, increased necrosis from the core to outer section in STG321 and decreased 

hypoxia from core to outer sections in STG321 and STG143. In STG321, the preparation 

of the outer tumour section, which included cutting the existing FFPE block into two 

halves, disrupted cellular ‘islands’ around the tumour rim and increased necrosis here. The 

tissue appears to have been frayed and broken around the edge during the processing, which 

will result in increased necrosis upon analysis. This could explain the increased necrosis 

and decreased CD31 vessel area and ASMA vessel coverage seen in the outer sections of 

this model. The reason for the decreased CAIX expression in the outer sections of STG321 

and STG143 is unclear, but could be due to differences in CAIX signalling pathways 

across the tumour volume208. Other hypoxia markers such as pimonidazole exogenous 

staining would be useful to colocalise with CAIX expression in the future and validate that 

the CAIX expression is truly indicative of hypoxia and not confounded by expression 

arising from other pathways207. Importantly, despite some intra-tumoural heterogeneity 

when comparing the core and outer sections, the same overall conclusions remain the same 

for each marker: STG139 was the most necrotic and hypoxic PDX of the models 

investigated, with the highest vessel density while STG321 had the highest vessel maturity 

and was the least angiogenic PDX. 

 

A major finding of this chapter is that the vascular phenotypes formed are model- 

dependent, not subtype-dependent. Although only 2 models of each subtype have been 

presented due to the lack of engraftment of additional models, these findings suggest that 

there may be a huge amount of diversity in vascular phenotypes within molecular 

subtypes, such that grouping vascular features by molecular subtype may not be useful. 

Because each PDX forms its own distinct vascular phenotype, the formation of vasculature 

in PDXs is driven by the cancer cells within the PDX itself, and not by the mouse host. 

This suggests that the human PDX cancer cells are instructing the mouse stromal cells to 

form distinct phenotypes. This idea will be further explored in Chapter 5 when interpreting 

data from RNA-sequencing of the PDX cancer cells. 
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2.4.2. PDX vascular phenotypes are robust and repeatable  

STG139 and AB580 showed little inter-passage heterogeneity. The PDXs show 

variability in measurements such as necrosis, however this variability does not appear 

to be introduced by passaging and the overall phenotypes do not change significantly 

with passaging. Note, however, that all passages are related, ultimately by originating 

from a single patient tumour, but in this study through the fragments from tumours in 

the previous passage being re-implanted to create the next passage; these relationships 

are listed in Table 2.2. The nature of passaging may introduce bias, which was not 

formally assessed in this thesis, but this is also the nature of working with PDX models. 

One would therefore assume there to be little passage-dependency, unless differences in 

batches of mice or variables relating to the surgery were to dramatically influence results, 

which does not seem to be the case in this work. Interestingly, tumour fragments were 

implanted without control on the spatial location that they came from in the tumour, yet 

this does not appear to have introduced significant heterogeneity in the overall vascular 

phenotype. 

 

Despite some variability in the passage repeats, it should be noted that the data 

across three passages includes both original and repeated data and none of the conclusions 

change as a result of the passage repeats. Therefore, it seems as though the values obtained 

for the repeats fit within the permissible variability of each model. 

 

Preservation of intra-tumoural heterogeneity and the genetic landscape of the 

patient, across several passages, is considered one of the biggest advantages to using 

patient-derived xenografts as an alternative preclinical model to cell-line xenografts9. 

Although there is some debate over the evolution introduced by the mouse host 

environment on the PDX genetic landscape198,209, samples from the Caldas lab biobank, 

which is where the 4 PDXs presented here are sourced from, have been shown to 

accurately preserve gene expression, DNA methylation, copy number alterations, mutation 

profiles, morphology and importantly drug treatment response from the patient’s from 

which they were derived10. Here, I have shown that this remarkable genetic stability 

translates into vascular phenotypic stability, with preservation of vascular phenotype 

across several passages and an indication that this is also preserved from the patient 

samples. 
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In stark contrast, the ability of cell-line xenografts (CDXs) to accurately preserve 

phenotypes of clinical samples is generally poor. As a consequence of culturing 

conditions, clonal selectivity results in homogenous cell clones and tissue samples, and 

culturing can also introduce oxidative stress amounting to genetic and phenotypic changes 

which reflect adaptation to culturing conditions and not clinical samples9. One study 

directly comparing PDX and CDX melanoma models found higher expression of hypoxic 

genes including ca9 in the CDXs, supposedly due to adaptation to cell culturing conditions 

that the PDXs weren’t exposed to210. Comparing CAIX levels in the breast PDXs here to 

previous measurements in breast CDXs measured in our laboratory suggests that CAIX 

levels were similar to those measured in STG139 and AB580 but they were 3- fold higher 

than those measured in STG321 and STG143. Other studies have also demonstrated a lack 

of clinical representation by cell lines models such as one study which found drug resistant 

gene expression to be more similar between cell-lines from different tissue origins than 

they were to the clinical samples they are supposed to represent211. 

In our laboratory, the ER+ MCF-7 and ER- MDA-MB-321 breast cancer CDXs 

show stable and distinct vascular phenotypes48. CD31 vessel area was higher in the ER- 

tumours than the ER+ tumours, which is similar to the results presented in the 4 PDX 

models here. However, it should be noted that the CD31 vessel area measured in the ER- 

CDX was up to 4-fold higher than in the highest scoring PDX STG139 measured here, 

while all other PDXs had similar CD31 vessel area to the ER+ MCF-7 model, showing a 

larger effect size in the CDXs. Additionally, ER- tumour hypoxia, measured by CAIX, 

was higher while VEGF expression and ASMA vessel coverage were lower compared to 

the ER+ tumour. Here, there were marked differences in hypoxia, VEGF expression and 

ASMA vessel coverage between PDXs of the same subtype. In our previous work, the 

CDX phenotypes were considered to represent differences in breast cancer subtypes48, 

however the results from the PDXs presented in this chapter show that there is a high 

degree of diversity in vascular phenotype between PDXs of the same subtype, 

necessitating further investigation into which vascular features (if any) are subtype- 

dependent. 

 

Having shown that the vascular phenotypes appear to be preserved across several 

passages, I hypothesise that the ‘instructions’ received by the mouse host from the cancer 
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cells determines the vascular phenotype that forms in vivo and hence must originate from 

and be driven by the cancer cells themselves. The vascular phenotypes are inherent to the 

PDX, and perpetuate across several passages of the model. Therefore, I propose these breast 

PDXs to be robust and repeatable models of the disease                            vasculature. 

2.4.3. Vascular markers generally do not evolve with 

increasing tumour size 

To further investigate the inheritability of vascular phenotypes, I investigated 

whether these phenotypes evolve over time, and may therefore be driven by a more 

dynamic interaction that is heavily influenced by the mouse host, or whether the same 

phenotype is observed regardless of tumour size. Overall the latter was true, except for 

necrosis, which nearly always increases as tumours grow48,212. Vessel area and ASMA 

vessel coverage were remarkably consistent across tumour sizes in STG139 and AB580, 

indicating that these phenotypes are inherent to the PDX. It should be noted that the CD31 

vessel area is normalised to the tumour area, and therefore this result indicates that the 

density of vessels is stable, despite the absolute CD31 vessel area increasing as tumours 

grew in both STG139 and AB580. This is common in tumours as they often outgrow their 

vessel supply and ultimately develop areas of ischaemia and increased necrosis26, which 

was observed in these PDXs. 

Interestingly, hypoxia levels, measured by CAIX IHC, were constitutively high in 

STG139 but increased with tumour size in AB580. In STG139, this constitutive hypoxia 

could also be associated with the passaging element of PDX propagation. When a new 

tumour is implanted, this is actually a fragment of a much larger tumour, and so perhaps 

hypoxic pathways already ‘turned on’ in this fragment continue to be expressed in the new 

smaller tumour, and drive the formation of immature vascular networks in STG139. 

Ultimately these immature vascular networks are not able to properly perfuse the tumour, 

perpetuating and perhaps even exaggerating the hypoxic phenotype. In AB580, although 

CAIX levels begin at a high level of 30% they rise to ~50% as tumour volume increases, 

suggesting that the sparse vessel network in AB580 cannot deliver adequate oxygen to the 

growing tumour, resulting in increased hypoxia as  tumours grow. 
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2.4.4. Future work 

There are several advancements to this investigation of IHC vascular markers in 

PDXs that should be conducted in the future. 

 

The addition of further markers to more broadly characterise the microenvironment 

would help with interpretation of the findings in this chapter. Such a study could be 

enabled through multiplexed IHC in the same section, or through a technology such as 

imaging mass cytometry (IMC)73, to gain increased spatial information on the co-

localisation of vascular elements with hypoxia and fibrosis or immune cell components. 

This would provide more information on how the different TME elements interact and 

could indicate which TME elements are important for remodelling the vasculature. It 

would also be possible in future to use emerging technologies for spatial transcriptomics 

to link the vascular phenotype to the underlying genotype in a spatially resolved manner. 

These new technologies provide an exciting route to better understand the nature of the 

instructions given by the cancer cells in forming new vessels within PDX tumours. 

Additionally, the use of TUNEL staining should be conducted to mark areas of cell death 

and confirm the findings on H&E, particularly as the levels of necrosis measured on H&E 

were found to be very variable within STG139 and AB580.  

 

One element of the vascular microenvironment that was not considered during the 

preparation of this thesis was vascular mimicry (VM), as an alternative vessel forming 

mechanism in tumours. VM is defined as the ability of cancer cells to form vessel-like 

structures themselves, which are capable of carrying blood39,44,48. Hypoxia is thought to 

regulate VM and therefore, analysing stainings such as CD31/periodic-acid Schiff dual 

staining will be conducted in the future to give an indication on which vessels are lined 

with endothelial cells and which are lined with tumour cells, and whether the more hypoxic 

PDXs are also more VM prone. 

 
2.4.5. Limitations 

Despite the knowledge gained by conducting vascular IHC on the four different 

breast PDXs, there are several limitations of this work to consider. First, the use of only 

2 sections decreases the spatial heterogeneity captured, although intra-tumoural 

heterogeneity appears limited in the present PDXs (Figure 2.4-10). To increase the volume 



 

79  

captured and gain spatial information of the IHC markers, 3D IHC could be conducted and 

algorithms to enhance section co-registration between 100s of sections are being 

investigated213. Nonetheless this method is very laboursome and destroys the tissue sample 

for future use. 

 Second, I have attempted to describe inter-passage heterogeneity of markers, but 

I could only do so with 2 models over 3 passages in the time allocated for preparation of 

this thesis. Looking at IHC markers across several passages would of course provide a 

trajectory for analysis, particularly on interesting observations such as a trend for 

increased CAIX expression in STG139 across passages, which could indicate selectivity 

for a hypoxic phenotype in this model. Additionally, the engraftment rate of AB580 

across passages and repeats was very variable, such that in one passage and one repeat 

only 2 mice grew tumours, limiting the interpretation of the results. In general, luminal B 

PDXs had a much lower engraftment rate than the basal PDXs, likely due to differences 

in the aggressiveness of the tumours. The lower engraftment rate in itself could lead to 

selection effects in the emerging tumours of later passages. 

 

Finally, the comparison to patient tissue is limited due to clinical restrictions on the 

tissue blocks. Currently, only previously stained TMA sections were available for 

STG321, AB580 and STG143 and only one H&E sample for STG139. In future, whole 

sections from the original blocks should be taken and stained with the presented vascular 

IHC panel, quantified and scored blindly by a pathologist. It should be noted that 

comparison to other clinical breast IHC is also limited, due to the semi-quantitative nature 

of most studies, which only score sections and the limited sample size of clinical tissue214–

216. Nevertheless, the staining intensity and distribution of necrosis, CAIX and CD31 

vessel area in clinical breast samples is similar to that observed in this work200,214. 

Interestingly, the association of vascular phenotypes with molecular subtypes is debated, 

and perhaps the PDXs can provide more insight into the diversity of vascular phenotypes 

in breast cancer. 

 
2.4.6. Summary 

This chapter has presented quantitative IHC evaluation of the vascular phenotypes 

formed in 4 breast PDXs. The PDXs displayed distinct vascular phenotypes on IHC, with 

differences in necrosis, hypoxia, vessel area and vessel maturity. This work shows that 
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vascular phenotypes are important when selecting PDXs for specific biological assays and 

the diversity observed suggests that these are potential models to be used in imaging and 

therapeutic studies, where some models may be resistant to therapy and others more 

responsive as a result of these different vascular phenotypes. The panel of IHC markers 

presented here could be used routinely when selecting PDXs and other models for imaging 

and drug studies and perhaps for stratifying patients for therapies in future. These PDXs 

appear to be robust and reliable vascular models of the disease, with little inter- passage 

heterogeneity observed and initial comparisons to patient vasculature were made. Finally, 

little evolution in vessel density or maturity was seen as tumour size increased. 

 

IHC has provided a comprehensive molecular and cellular overview of the vascular 

phenotypes present in these breast PDXs. Nonetheless, to conduct IHC it is necessary to 

excise the tissue at a fixed time point, and by analysing just a few sections, the temporal 

and spatial dynamics of the TME are not captured by this method. Despite attempts to 

monitor evolution of the vascular markers presented here, IHC cannot accomplish truly 

longitudinal imaging as the same mice are not monitored over time. In subsequent 

chapters, the knowledge gained by IHC will be combined with non-invasive PAI 

conducted in the same mice during tumour evolution. High-resolution PAI has been 

applied to monitor the same mouse at multiple time-points to visualise vascular evolution 

of the PDXs in a volumetric mode that is not possible with IHC, while tomographic PAI 

has captured tumour vascular dynamics across an imaging session, gaining improved 

spatial and temporal information on the dynamics of the TME than with IHC alone. In 

turn, IHC is used to validate our in vivo imaging biomarkers as a gold-standard method, 

which has previously been conducted occasionally in PAI preclinical studies using cell- 

line xenografts48,107,126, and here conducted for the first time in breast PDXs. 
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3 OPTIMISING MESOSCOPIC 

PAI ACQUISITION AND 

ANALYSIS FOR 

VISUALISATION AND 

QUANTIFICATION OF 

TUMOUR VASCULATURE 

 
The work presented in this chapter is the result of a close collaboration across a large 

team, bringing together a broad range of expertise. I optimised the mesoscopic PAI 

imaging methodology for data acquisition from in vivo tumour models in the laboratory. I 

subsequently conceived the work described herein and supervised the development and 

validation of the entire analysis pipeline by: directing the work, collating and interpreting 

the results, performing all in vivo imaging and analysing the correlations between in vivo 

data and IHC. 

 

Contributions from others in the team are as follows: Dr Paul Sweeney developed the in 

silico vascular networks, the 3D ROI CNN (using in vivo data collected by myself), 

calculated blood volume and ran network structural and topological data analysis 

throughout this chapter; Dr Bernadette Stolz developed the structural and topological  
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data analysis code supervised by Professor Heather Harrington and Professor Helen 

Byrne; Dr Janek Gröhl and Thierry Lefebvre ran the photoacoustic imaging simulation 

on the in silico vascular networks; Thierry Lefebvre developed the ilastik random forest 

pipeline and optimised vesselness filtering, both under my supervision, and calculated 

SNR for in silico and phantom datasets; Dr Ziqiang Huang developed the pre-processing, 

auto-thresholding, vesselness filtering and median filtering elements of the pipeline using 

my in vivo data and under my supervision; Lina Hacker created and imaged the string 

phantom; and Dr Dominique Laurent-Couturier calculated mean-squared error and R- 

squared values for the in silico data and analysed pairwise comparisons for the in vivo 

data. The histopathology core at CRUK CI ran the IHC and created algorithms for 

analysis under my guidance. 

 

Parts of this chapter have been submitted for publication as Brown, Sweeney and Lefebvre 

et al. Quantifying Vascular Networks in Photoacoustic Mesoscopy. 

 

 

 
3.1. Introduction 

 
3.1.1. The potential of mesoscopic PAI 

Tumour blood vessel networks are often chaotic and immature15–17,121,217, with 

inadequate oxygen perfusion and therapeutic delivery27,28. The association of tumour 

vascular phenotypes with poor prognosis across many solid cancers217 has generated 

substantial interest in non-invasive imaging of the structure and function of tumour 

vasculature, particularly longitudinally during tumour development. Imaging methods that 

have been tested to visualise the vasculature include whole-body macroscopic methods, 

such as computed tomography and magnetic resonance imaging, as well as localised 

methods such as ultrasound and photoacoustic imaging217. Microscopy methods can 

achieve much higher spatial resolution but are typically depth limited at up to ~1 mm depth 

and frequently applied ex vivo217–221. 

Of the available tumour vascular imaging methods described in Chapter 1 (Table 

1.1), photoacoustic imaging (PAI) is highly scalable, being applicable for studies from  
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the microscopic to macroscopic regimes. By measuring ultrasound waves emitted from 

endogenous molecules, including haemoglobin, following the absorption of light, PAI 

can reconstruct images of vasculature at depths beyond the optical diffraction limit of ~1 

mm98–100,221. State-of-the-art mesoscopic systems now bridge the gap between macroscopy 

and microscopy, achieving ~20 μm resolution at up to 3 mm in depth111,112. Due to this 

penetration depth limitation, label-free mesoscopic PAI has been mostly considered for 

dermatological imaging in the clinic, with many advances made in imaging vascular 

structures associated with psoriasis and other skin conditions111,222. Pre- clinically, label-

free mesoscopic PAI can provide insight into several inflammatory conditions involving 

vascular network abnormalities, as well as oncology223. Mesoscopic PAI has been used to 

monitor the development of vasculature in several tumour xenograft models107,109,113 and 

can differentiate aggressive from slow-growing vascular phenotypes113. Studies to date, 

however, have been largely restricted to qualitative analyses due to the challenges of 

accurate 3D vessel segmentation, quantification and robust statistical analyses 107,109–

111,113,224. Instead, PAI quantification is typically manual and ad-hoc, with 2D 

measurements often extracted from 3D PAI data107,108,110,113,115, reducing repeatability and 

comparability across datasets. 

 
3.1.2. Segmenting and analysing vascular networks 

To assess the performance and accuracy of such vessel analyses, ground truth 

datasets are needed with a priori known features225. Creating full-network ground truth 

reference annotations could be achieved through comprehensive manual labelling of PAI 

data, but this is difficult due to: the lack of available experts to perform annotation with a 

new imaging modality; the time taken to label images; and the inherent noise and artefacts 

present in PAI data. Despite the numerous software packages available to analyse vascular 

networks121, their performance in mesoscopic PAI has yet to be evaluated, hence there is 

an unmet need to improve the quantification of vessel networks in PAI, particularly given 

the increasing application of PAI in the study of tumour biology107,111,113. 

 

To quantify PAI vascular images and yield further insights into the role of vessel 

networks in tumour development and therapy response, accurate segmentation of the  
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vessels must be performed121. A plethora of segmentation methods exist and can be 

broadly split into two categories: rule-based and machine learning-based methods. Rule- 

based segmentation methods encompass techniques that automatically delineate the 

vessels from the background based on a custom set of rules226. These methods are limited 

in flexibility and tend to consider only a few features of the image, such as voxel 

intensity107,113–115 but are easy-to-use with no training dataset requirements. On the other 

hand, machine learning-based methods, such as random forest classifiers, delineate vessels 

based on self-learned features226,227. Nonetheless, learning-based methods are data-driven, 

requiring large and high quality annotated datasets for training and can have limited 

generalisability to new datasets. To tackle some of these issues, several software packages 

have been developed in recent years, which have become increasingly popular in life 

science research121,228,229. Prior to segmentation, denoising and feature enhancement 

methods, such as Hessian-matrix based filtering, can also be applied to overcome the 

negative impact of noise and/or to enhance certain vessel structures within an 

image117,119,118. 

 
3.1.3. Summary 

This chapter will explore the capabilities of a new commercial mesoscopic PAI 

system, raster-scanning optoacoustic mesoscopy (RSOM), to image breast PDXs. In order 

to visualise vascular networks at high-resolution in vivo, optimisation of image acquisition 

was necessary, as the system had never been used in breast PDX imaging previously, and 

has only been reportedly used twice before on tumour cell-line xenograft models107,109. 

Once image acquisition was optimised, segmentation and analysis of the vascular 

networks captured was validated. Chapter 4 will subsequently describe how the RSOM 

image acquisition and analysis pipeline established in this chapter was applied to the 

characterisation of breast PDX vascular networks longitudinally. 

 

Segmentation and analysis optimisation was conducted in collaboration with other 

lab members. Ground truth PAI data was generated using simulations of synthetic vascular 

architectures generated in silico and in addition, using a string phantom as a real- life 

imaging object of known proportions. The performance of two common vessel 

segmentation methods was compared and validated, with or without the application of  
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vesselness filtering, against these ground truths. Following skeletonisation of the  

segmentation masks, structural and topological data analyses were performed to establish 

how segmentation influences the shape and structure of a vascular network acquired using 

PAI. Finally, the segmentation and analysis pipeline was applied to two breast PDXs 

(STG139 and AB580) and undertook a biological validation of the segmentation and 

subsequent structural and topological metrics using the ex vivo IHC vascular panel 

described in Chapter 2. 
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3.2. Methods 

 
3.2.1. Mesoscopic photoacoustic imaging 

3.2.1.1. Animals 
 

Breast PDXs were established as described in 2.2.1 and tumours collected for IHC 

as described in 2.2.2. For this work, 5 STG139 passage 3 tumours and 3 AB580 passage 2 

tumours were utilised specifically for RSOM image acquisition. One image of 6 STG139 

passage 4 and 8 AB580 passage 3 tumours captured when tumours were ~1 cm in diameter 

at end-point were used as a subset to test the segmentation pipelines. Details of RSOM 

PDX images used for analysis training are detailed in Table 3.1. 

 

3.2.1.2. String phantom 
 

A string phantom was used as a ground truth structure. The agar phantom was 

prepared as described previously152 including intralipid (Merck, I141-100ML) to mimic 

tissue-like scattering conditions. The string phantom was prepared according to a 

previously characterised recipe152 by mixing 1.5 g agarose (Fluka Analytical, 05039- 

500G) in 97.3 mL deionised water in a glass media bottle and heated in a microwave until 

the solution turned clear. After cooling down the solution to 60°C, 2.08 mL of pre- warmed 

intralipid (Merck, I141-100ML) was added to generate a reduced scattering coefficient of 

5.0 cm-1, which mimics tissue-like scattering conditions. The mixture was poured into a 

3D-printed phantom mould, which was designed in Autodesk Fusion 360 (San Rafael, CA, 

USA) and printed using an Anet A6 Printer with polylactic acid (PLA PRO 1.75 mm 

Fluorescent Yellow PLA 3D Printer Filament, 832-0254, RS Components, UK) as a base 

material. Figure 3.1 shows the phantom mould with and without agar. Red- coloured 

synthetic fibres (Smilco) were embedded at three different depths defined by the frame of 

the phantom to provide imaging targets with a known diameter of 126 μm. The top string 

was positioned at 0.5 mm from the agar surface, the middle one at 1 mm, and the bottom 

one at 2 mm (Figure 3.1). 
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Figure 3.1. Photographs of the string phantom. (A) 3D-printed mould with the embedded strings and 

(B) with the agar gel. The top string was positioned at 0.5 mm from the agar surface, the middle one at 1 

mm, and the bottom one at 2 mm depth. 

 

3.2.1.3. RSOM imaging 
 

Mesoscopic PAI was performed using the raster-scan optoacoustic mesoscopy 

(RSOM) Explorer P50 (iThera Medical GmbH, Figure 3.2). The system uses a 532 nm 

laser for excitation. Two optical fibre bundles are arranged either side of a transducer, 

which provide an elliptical illumination beam of approximately 4 mm x 2 mm in size. The 

transducer and lasers collectively raster-scan across the field-of-view, which has a 

maximum size of 12x12 mm, with step sizes of 20 μm in the x- and y- axes. A high- 

frequency single-element transducer with a centre frequency of 50 MHz (>90% 

bandwidth) detects ultrasound. The system achieves a lateral resolution of 40 μm, an axial 

resolution of 10 μm and a penetration depth of up to ~3 mm230. 

For image acquisition of both phantoms and mice, degassed commercial 

ultrasound gel (AquaSonics Parker Lab) was applied to the surface of the imaging target 

for coupling to the scan interface. Images were acquired at either 100% (phantom) or 85% 

(mice) laser energy and a laser pulse repetition rate of 2 kHz (phantom) or 1 kHz (mice). 

Lower energies were recommended for mice imaging by the manufacturer, so as not to 

risk burning the skin. Image acquisition took approximately 7 min. Animals were 

anaesthetised using 3-5% isoflurane in 50% oxygen and 50% medical air. Mice were 

shaved and depilatory cream applied to remove hair that could generate image artefacts; 
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single mice were placed into the PAI system, on a heat-pad maintained at 37°C. 

Respiratory rate was maintained between 70-80 bpm using isoflurane (~1-2% 

concentration) throughout image acquisition. 

 

Optimisation of RSOM in vivo tumour image acquisition was performed. Several 

mechanisms were explored to delineate the tumour including the use of marker pens, 

parafilm, ultrasound gel quantity and compression. Two different mouse body positions 

were explored: dorsal and lateral. The positions are illustrated in Figure 3.3. In this 

chapter, only images from the dorsal position are considered in the in vivo subset for 

simplicity, as these were of better visual quality in both STG139 and AB580 tumours. 

 

Figure 3.2. RSOM system design. A) RSOM imaging chamber laser illumination delivered by 2 optical 

fibres which sit either side of a single-element ultrasound transducer. A heat-pad is present for small animal 

imaging. B) Anaesthetised mouse on the heat pad, shaved and prepared for imaging, with ultrasound gel 

over the tumour region on the mouse flank, and a water bath covering the transducers and optical fibres, for 

ultrasound coupling. 
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Figure 3.3. RSOM mouse positions. Illustration demonstrating the two mouse body positions explored 

when optimising RSOM image acquisition in vivo. Images show mouse with one tumour on the flank lying 

on heat pad under anaesthesia delivered via a nose cone in A) Dorsal or B) Lateral position. Image created 

using BioRender.com. 

 

 

 

3.2.2. In silico experiments 

3.2.2.1.Generating ground truth vascular architectures 
 

To generate an in silico ground truth vascular network, Lindenmayer systems231 

were used. These are language-theoretic models that were originally developed to model 

cellular interactions but have been extended to model numerous developmental processes 

in biology232. Here, Lindenmayer systems were applied to generate realistic, 3D vascular 

architectures233,234 (referred to as L-nets) and corresponding binary image volumes. A 

stochastic grammar was used234 to create a string that was evaluated using a lexical and 

syntactic analyser to build a graphical representation of each L-net. To transfer the L-net 

to a discretised binary image volume, a modified Bresenham’s algorithm235 was used in 

3D to create a vessel skeleton. Voxels within a vessel volume were then identified using 

the associated vessel diameter for each centreline. 
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3.2.2.2.Photoacoustic image simulation of synthetic ground truths 
 

To test the accuracy of the segmentation pipelines, the L-nets were then used to 

simulate in vivo photoacoustic vascular networks embedded in muscle tissue using the 

Simulation and Image Processing for Photoacoustic Imaging (SIMPA) python package 

(SIMPA v0.1.1, https://github.com/CAMI-DKFZ/simpa)236 and the k-Wave MATLAB 

toolbox (k-Wave v1.3, MATLAB v2020b)237. Planar illumination of the L-nets on the XY 

plane was achieved using Monte-Carlo eXtreme (MCX v2020, 1.8) simulation on the L-net 

computational grid of size 10.24 x 10.24 x 2.80 mm3 with 20 μm isotropic resolution. The 

optical forward modelling was conducted at 532 nm using the optical absorption spectrum 

of 50% oxygenated haemoglobin for vessels (an approximation of tumour vessel 

oxygenation based on previously collected photoacoustic data48) and of water for the 

background. Next, the 3D acoustic forward modelling was then performed on the 

illuminated L-nets assuming a speed of sound of 1500 ms-1 in k-Wave. The photoacoustic 

response of the illuminated L-nets was measured with a planar array of sensors positioned 

on the surface of the XY plane with transducer elements of bandwidth central frequency of 

50 MHz (100% bandwidth) and using a 1,504 time steps, where a time step is 5x10-8 Hz-

1. Finally, the 3D initial PA wave-field was reconstructed using fast Fourier transform-

based reconstruction237, after adding uniform Gaussian noise on the collected wave-field. 

 
3.2.3. Segmentation and network analysis 

All acquired data were subjected to pre-processing prior to segmentation, 

skeletonisation, structural and topological data analysis (TDA), with an optional step of 

vesselness filtering also tested (Figure 3.4). Prior to segmentation, data were filtered in 

the Fourier domain in XY plane to remove reflection lines, before being reconstructed 

using a backprojection algorithm in viewRSOM software with motion correction for in 

vivo images (v2.3.5.2 iThera Medical GmbH) with a voxel size of 20 x 20 x 4 μm3 (X,Y,Z). 

Raw data was stored as MATLAB data (*.mat) file format with a unique identifier for 

tracing in subsequent downstream segmentation and analyses. To reduce background noise 

and artefacts from the data acquisition process, reconstructed images were subjected to a 

high-pass filter, to remove echo noise, followed by a Wiener filter in MATLAB (v2020b, 

Mathworks) to remove stochastic noise which potentially originates 
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during image acquisition. Then a built-in slice-wise background correction238 was 

performed in Fiji (v2.1.0)45 to achieve a homogenous background intensity (Figure 3.5). 

 

 

 
 

 
Figure 3.4. The RSOM image analysis pipeline. 1) Images are acquired and reconstructed at a resolution 

of 20 x 20 x 4 μm3 (tumour example shown with axial and lateral maximum intensity projections – MIPs). 

2) Image volumes are pre-processed to remove noise and homogenise the background signal (high-pass and 

Wiener filtering followed by slice-wise background correction). Vesselness filtering (VF) is an optional and 

additional feature enhancement method. 3) Regions of interest (ROIs) are extracted and segmentation is 

performed on standard and VF images using auto-thresholding (AT or AT + VF, respectively) or random 

forest-based segmentation with ilastik (RF or RF + VF, respectively). 4) Each segmented image volumes are 

skeletonised (skeletons with diameter and length distributions shown for RF and RF + VF, respectively). 

5) Vascular descriptors including structural and topological metrics are calculated from each skeleton to 

quantity vascular network geometry. 
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Figure 3.5. RSOM data pre-processing in MATLAB and Fiji. Mean Intensity Projection (MIP) 2D view 

of an example RSOM tumour dataset along Z axis (A-C) and Y axis (D-F) axis. Images measure 6 x 6 mm. 

From left to right: raw data (A, D), high-pass filtered data (B, E), Wiener filtered data (C, F). The images 

are processed sequentially through this pipeline, using high-pass filtering to remove echo noises and low- 

pass adaptive Wiener filtering to further remove stochastic noise in the datasets. (G) MIP Y-axis image after 

MATLAB pre-processing. (H) MIP Y-axis image after background correction with rolling ball subtraction 

in Fiji. The periodical horizontal line artefacts are mostly removed after background correction. 
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3.2.3.1. Image segmentation using auto-thresholding or a random forest classifier 
 

Using two common tools adopted in the life sciences, both a rule-based moment 

preserving thresholding method (included in Fiji v2.1.0) and a learning-based 

segmentation method based on random forest classifiers (with ilastik v1.3.325) were tested 

(Figure 3.4). These popular packages were chosen to enable widespread use of the results. 

Moment preserving thresholding, referred to as auto-thresholding (AT) for the remainder 

of this chapter, computes the intensity moments of an image and segments the image while 

preserving these moments239. Training of the random forest (RF) backend was performed 

on 3D voxel features in manually labelled regions, including intensity features, as with the 

AT method, combined with edge filters, to account for the intensity gradient between 

vessels and background, and texture descriptors, to discern artefacts in the background 

from the brighter and more uniform vessel features, each evaluated at different scales (up 

to a sigma of 5.0). 

 

A key consideration in the machine learning-based segmentation is the preparation 

of training and testing data (Table 3.1). For the in silico ground truth L-net data, all voxel 

labels are known. All vessel labels were used for training, however, only partial 

background labels were supplied to minimise computational expense by labelling the 10 

voxel radius surrounding all vessels as well as 3 planes parallel to the Z-axis (edges and 

middle) as background. For the phantom data, manual segmentation of the strings from 

background was performed to provide ground truth. Strings were segmented in all slices 

on which they appeared and background was segmented tightly around the string. For the 

in vivo tumour data, manual segmentation of vessels was made by a junior user (Thierry 

Lefebvre) supervised by an experienced user (Emma Brown), including images of varying 

signal-to-noise ratio (SNR) to increase the robustness of the algorithm for application in a 

range of unseen data. Up to 10 XY slices per image stack in the training dataset were 

segmented at different depths to account for depth-dependent SNR differences. 
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Table 3.1: Training and testing dataset split for random forest-based segmentation in ilastik. 

 
 

 
Data 

 
Ground truth labels 

 
Training 

 
Testing 

 
In silico 

 
Original binary labels of L-net 

branches and surrounding 

background 

 
30 L-nets 

 
30 L-nets 

 
Phantom 

 
Manual labelling of all X,Y slices 

containing strings and of 

surrounding background 

 
2 string 

scans 

 
phantom 

 
5 string 

scans 

 
phantom 

 
In vivo 

 
Manual labelling of 10 X,Y slices 

per image at distributed depths 

and of surrounding background 

 
20 PDX 

scans 

 
tumour 

 
14 PDX 

scans 

 
tumour 

 

 

 

Between pre-processing and segmentation, feature enhancement was tested as a 

variable in the segmentation pipeline (Figure 3.4). In Fiji, a modified version of the 

original Sato filtering (α=0.25)240 was adapted to calculate vesselness from Hessian matrix 

eigenvalues241 across multiple scales. Five scales in a linear Gaussian normalized scale 

space were used, from which the maximal response was measured to produce the final 

vesselness filtered images (20, 40, 60, 80, and 100 μm)240. 

Finally, all segmented images (either from Fiji or ilastik) were passed through a 

built-in 3D median filter in Fiji, to remove impulse noises (Figure 3.6). To summarise the 

pipeline (Figure 3.4), the methods under test for all datasets were: 
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1. Auto-thresholding using a moment preserving method (AT); 

 
2. Auto-thresholding using a moment preserving method with vesselness filtering 

pre-segmentation (AT+VF); 

 

3. Random forest classifier (RF); 

 
4. Random forest classifier with vesselness filtering pre-segmentation (RF+VF). 

 

 

 
 

 
Figure 3.6. Median filtering of segmented RSOM images. A 3D rendering of the exemplar RSOM dataset 

used in Figure 3.5 is shown. (A) Auto-thresholded dataset. (B) Auto-thresholded dataset after 3D Median 

filtering, to remove impulse noise. Images field-of-view measures 6 x 6 mm. 

 

 

 
3.2.3.2. Extracting tumour ROIs using a 3D CNN 

 

To analyse the tumour data in isolation from the surrounding tissue required 

delineation of tumour regions of interest (ROIs). To achieve this, a 3D convolutional 

neural network (CNN) was trained to fully automate extraction of tumour ROIs from PAI 

volumes. The 3D CNN is based on the U-Net architecture242 extended for volumetric 

delineation243. Details on the CNN architecture and training are provided in Appendix 1. 
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3.2.3.3. Structural and Topological Data Analysis 
 

Following segmentation of the vascular networks, the networks were skeletonised 

and their shape and structure analysed using a combination of standard structural metrics 

(vessel diameters, lengths etc.) and topological data analysis (TDA), to evaluate the 

performance of the different segmentation methods in respect of the biological 

characterisation of the tumour networks. TDA can analyse geometric features of spatial 

networks and is beginning to be applied in biomedical fields, to monitor networks such as 

bronchial trees244, and tumour vasculature in response to therapy245. Prior to TDA, 

segmented image volumes were skeletonised using the open-source package Russ- 

learn246,247. This package quantifies the following standard structural metrics: vessel 

diameters and lengths, vessel tortuosity (sum-of-angles measure, SOAM) and curvature 

(chord-to-length ratio, CLR) and number of edges and nodes. Following development of 

the package by Dr Bernadette Stolz245, topological features were quantified: the number 

of connected components (CCs, Betti number β0) and looping structures (Loops, Betti 

number β1). Table 3.2. provides descriptions of vessel tortuosity, curvature and topology 

metrics. 
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Table 3.2. Structural and topological metric descriptions. 

 
 

 

Metric 
 

Description 

 

Connected Components, β0 

 

0-dimensional topological feature i.e., the no. of subgraphs 

(vascular subnetworks). 

 

Loops, β1 

 

1-dimensional topological feature i.e., the no. of looping 

structures in vascular graph. 

 

 
Sum-of-angles measure 

(SOAM) 

 

The sum of angles between tangents to the curve taken at 

regular intervals normalised against vessel length i.e., the 

average change in angle per unit length. Measures vessel 

tortuosity. 

 

 
 

Chord-to-length ratio (CLR) 

 

The ratio between the Euclidean distance connecting the two 

ends of a blood vessel and the length of the blood vessel e.g., 

a straight vessel has a CLR equal to 1. Measures vessel 

curvature. 

 

 

 

 

3.2.4. Immunohistochemistry 

For ex vivo validation, IHC was conducted for anti-human CAIX, anti-mouse 

CD31 and anti-mouse ASMA on core tumour sections as described in 2.2.2. 

 
3.2.5. Statistical analysis 

Statistical analyses were conducted using GraphPad Prism v.9 and R v4.0.1. 

Comparison of blood volume measured between dorsal and lateral mouse positions was 

calculated using a Spearman’s rank correlation coefficient. The mean square error and R- 

squared statistics were used to quantify the accuracy and strength of the relationship 

between the segmented networks to the ground truth L-nets. For each outcome of interest,  
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the ground truth was predicted (on a scale compatible with the normality assumption 

according to model checks) by means of each method estimates through a linear model. 

As model performance statistics are typically overestimated when assessing the model fit 

on the same data used to estimate the model parameters, we used bootstrapping (R = 500) 

to correct for the optimism bias and obtain unbiased estimates248. Bland-Altman plots were 

produced for each paired comparison of segmented volume to the ground truth volume in 

L-nets and associated bias and limits of agreement (LOA) are reported. For L- nets, F1 

scores were calculated249. PAI quality pre-segmentation was quantified by measuring 

SNR, defined as the mean of signal over the standard deviation of the background signal. 

Comparisons of string volume in top, middle and bottom positions, as well as SNR, were 

completed using one-way ANOVA with Tukey multiplicity correction. 

 

For each outcome of interest, in vivo data were analysed as follows: A linear mixed 

effect model was fitted on a response scale (log, square root or cube root) compatible with 

the normality assumption according to model checks with the segmentation methods as a 

4-level fixed predictor and animal as random effect, to take the within mouse dependence 

into account. Noting that the residual variance was sometimes different for each 

segmentation group, a heteroscedastic linear mixed effect was fitted allowing the variance 

to be a function of the segmentation group. The results of the heteroscedastic model were 

preferred to results of the homoscedastic model when the likelihood ratio test comparing 

both models led to a p-value <0.05. Two multiplicity corrections were performed to 

achieve a 5% family-wise error rate for each dataset: For each outcome, a parametric 

multiplicity correction on the segmentation method parameters was first used250. A 

conservative Bonferroni p-value adjustment was then added to it to account for the number 

of outcomes in the entire in vivo dataset. The following pairwise comparisons were 

considered: AT vs. AT+VF, AT vs. RF, RF vs. RF+VF and AT+VF vs. RF+VF. 

Comparisons of blood volume, structural and topology metrics between STG139 and 

AB580 tumours were completed with an unpaired student’s t-test. Comparisons between 

IHC and blood volume, structural and topology metrics were calculated using Pearson’s 

or Spearman’s correlation coefficient, depending on the data distribution. All p-values 

<0.05 were considered statistically significant. 
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3.3. Results 

 
3.3.1. Optimisation of RSOM image acquisition enabled high-quality and 

high-resolution imaging of PDX vasculature 

Before RSOM images could be analysed, optimisation of image acquisition was 

necessary as this was the first study performed with RSOM in breast PDXs. Initially, the 

SNR was low due to breathing motion (Figure 3.7A), the tumour region couldn’t be 

delineated (Figure 3.7B), and the tumour was often cut- off in the x-axis due to poor 

positioning (Figure 3.7C). Several mechanisms were explored to delineate the tumour. 

Marker pens to outline the ROI caused a saturating effect (Figure 3.7D). Using parafilm 

to surround the mouse body with a small hole cut for the tumour, was unsuccessful. In 

collaboration with the instrument supplier a software update was installed to enable 

reconstructions to occur during image acquisition, allowing the transducers and optical 

fibres to be re-positioned and image re-taken if required. Using copious amounts of 

ultrasound gel improved coupling of the mouse skin to the membrane and increased SNR. 

Compressing the mouse body with the stage increased SNR, by reducing motion artefacts 

caused by breathing, which was particularly successful with smaller tumours. However, I 

had to ensure that excessive compression was not applied, as this could occlude blood 

vessels at the tumour surface (Figure 3.8). Breathing motion occasionally increased in the 

lateral compared to the dorsal position, as the tumour would lie closer to the ribcage. 

However, blood volume from RF segmented tumour images captured in dorsal vs. lateral 

positions is strongly correlated (r=0.77, p<0.001, Figure 3.9), so the two can be considered 

to capture a similar proportion of tumour vasculature. An optimum image is shown in 

Figure 3.10 where the whole PDX tumour ROI is visible, the SNR is high and tumour 

vasculature can be visualised at high resolution with outstanding quality. 
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Figure 3.7 Optimisation of RSOM tumour image acquisition was necessary. A) Image shows maximum 

intensity projection (MIP) in zx plane where SNR is low B) Image shows MIP in zy plane where tumour 

cannot be delineated C) Image shows MIP in zx plane where the tumour is cut-off in the x axis due to poor 

positioning. D) Image shows MIP in xy plane where using marker pens saturated the image. 
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Figure 3.8. Compression of tumour with scan interface must be balanced. Despite the fact that 

compression was necessary to reduce breathing motion artefacts and increase SNR, the user must be careful to 

not compress excessively as this causes occlusion of blood vessels at the tumour surface. Images show xy 

MIPs A) with excessive compression causes a false void and B) without compression, showing vessels that 

were occluded in A. 

 

 

 

 
Figure 3.9. Blood volume calculated from segmented RSOM images captured in dorsal and lateral 

mouse positions is highly correlated. Spearman’s rank correlation coefficient=0.77 p<:0.001. Each data 

point represents one tumour at one time point. 1:1 dotted line shown. Number of tumour images analysed 

n=162. 
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Figure 3.10. Optimal RSOM image of a breast PDX tumour. XY MIP shown. 

 

 

 

 

3.3.2. In silico simulations of synthetic vasculature enable segmentation 

precision to be evaluated against a known ground truth 

Having optimised RSOM image acquisition in breast PDXs, an analysis pipeline to 

extract features such as blood volume, vessel tortuosity and network topology metrics was 

developed and validated, which would enable characterisation and comparison of in vivo 

vascular networks using mesoscopic PAI. To enable image analysis, vessel segmentation 

must be performed. However, until this work, ground-truth mesoscopic PA images were 

not readily available to test the accuracy of segmentation algorithms. Here, in silico 

synthetic vascular networks are presented as a ground-truth solution, and 4 different 

segmentation pipelines were tested using these ground-truths. 

 

The ground truth consisted of a reference data set of vascular network binary masks 

(n=30) generated from a Lindenmayer System, referred to as L-nets (Figure 3.11A). PAI 

data was simulated from these L-nets (Figure 3.11B), and subsequently 
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vesselness filtering (VF) was used as an optional and additional feature enhancement 

method (Figure 3.11B). The four segmentation pipelines selected for testing (Figure 3.4) 

were applied to the simulated PAI data (Figure 3.11C). Visually, random forest (RF) 

methods appear to segment a more complete vascular network (Figure 3.11C) and they 

are particularly good at segmenting vessels at depths furthest from the light source (Figure 

3.11D) where SNR is lower (Figure 3.12A). 

 

The segmented and skeletonised vascular volumes from the simulated PAI data 

were compared to the ground truth known from the L-net. The learning-based RF 

segmentation outperformed auto-thresholding (AT) in making the segmentation masks, 

with significantly higher R2 (segmented BV: AT: 0.68, AT+VF: 0.58, RF: 0.84, RF+VF: 

0.89, Figure 3.12B skeleton BV: AT: 0.59, AT+VF: 0.73, RF: 0.90, RF+VF: 0.93, Figure 

3.12C) and lower MSE (Figure 3.12D), with respect to the ground truth L-net volumes. 

Bland-Altman plots, used to illustrate the level of agreement between segmented and 

ground truth vascular volumes, showed a mean difference compared to the reference 

volume of 0.61 mm3 (LOA -0.48 to 1.7 mm3, Figure 3.12E) and F1 score of 0.73 ± 0.11 

(0.49-0.88) for RF segmentation, albeit with a wide variation indicated by the LOA. 

Vesselness filtering (VF) prior to RF segmentation resulted in a similar mean difference 

0.74 mm3 (LOA -0.50 to 2.0 mm3, Figure 3.12F) and F1 score of 0.66 ± 0.11 (0.44-0.84). 

In comparison, the rule-based AT segmentation showed poor performance in segmenting 

vessels with lower signal intensity at depth (Figure 3.11C), yielding a mean difference of 

1.1 mm3 (LOA -0.60 to 2.8 mm3). VF did not improve AT segmentation, yielding the same 

mean difference as AT alone, i.e. 1.1 mm3 (LOA -0.52 to 2.8 mm3). (Figure 3.12G,H). F1 

scores were also poor for both at AT methods, with0.39 ± 0.10 (0.21-0.59) for AT and 0.37 

± 0.09 (0.16-0.52) for AT+VF. 

 

In all cases, the mean difference shown in Bland-Altman plots increased with 

ground truth vascular volume, especially in the rule-based AT segmentation. Such 

behaviour could be due to the fact that more vessel structures lie at a greater distance from 

the simulated light source, suffering a depth-dependent decrease in SNR (Figure 3.12A). 

RF segmentation was better able to deal with this variation, particularly beyond ~1.5 mm, 

compared to the AT segmentation, which consistently underestimated the vascular volume. 
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Next, each segmentation mask was skeletonised to enable structural and 

topological data analysis (TDA) to test how each segmentation method quantitatively 

influences these metrics245 and performs in respect of the biological characterisation of the 

tumour networks. In addition to the standard metrics of vessel diameters and lengths, vessel 

tortuosity (sum-of-angles measure, SOAM) and curvature (chord-to-length ratio, CLR) 

and number of edges and nodes, topology metrics were quantified: the number of 

connected components (Betti number β0) and looping structures (1D holes, Betti number 

β1) (see Table 3.2 for metric descriptions). 

 

Here, the accuracy between the segmented and ground truth was calculated by 

MSE (see Figure 3.12D). Across all skeletons, an increased number  of connected 

components (β0) and changes to the number of looping structures (β1) were measured 

from the simulations compared to the ground truth L-nets, resulting in high MSE for all 

methods (Figure 3.12D), as expected due to depth-dependent SNR and PAI echo artefacts. 

In all other structural metrics, AT+VF outperformed the other segmentation methods in its 

ability to accurately preserve the L-nets structure, with the lowest MSE values for vessel 

lengths, chord-to-length ratio (CLR), size-of-angle measure (SOAM), number of edges 

and number of nodes (Figure 3.12D). 

 

Vessel diameters are accurately preserved by both RF segmentation methods, 

supporting the observation that these methods perform accurate vascular volume 

segmentation. The number of edges and nodes were also well preserved by RF and RF+VF 

(Figure 3.12D). This further supports the high accuracy of both RF methods to segment 

vascular structures. 
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Figure 3.11. Exemplar vascular architectures generated in silico and processed through the RSOM 

image analysis pipeline. (A-C) XY maximum intensity projections of L-net vasculature. (A) Ground truth 

L-Net binary mask used to simulate PAI image shown in (B, top) and subsequent optional vesselness filtering 

(VF) (B, bottom). (C) Segmented binary masks generated using either auto-thresholding (AT), auto-

thresholding after vesselness filtering (AT + VF), random forest classification (RF); or random forest 

classification after vesselness filtering (RF+VF). (D) Segmented blood volume (BV) average across L-net 

image volumes, plotted against image volume depth (mm). For (D) n=30 L-nets analysed. 
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Figure 3.12. Learning-based random forest classifier outperforms rule-based auto-thresholding in 

segmenting simulated PAI vascular networks. (A) Depth-wise comparison of signal-to-noise ratio (SNR) 

measured in RSOM-simulated L-nets across depth. (B, C) A comparison between ground truth blood volume 

(BV) and (B) segmented or (C) skeletonised blood volumes (BV). The dashed line indicates a 1:1 

relationship. (D) Heat map displaying normalised (with respect to the maximum of each individual metric) 

MSE comparing all metrics, calculated from segmented L-nets compared to ground truth L-nets, to each 

segmentation method. Abbreviations defined: connected components, β0 (CC), chord-to-length ratio (CLR), 

sum-of-angle measure (SOAM). (E-H) Bland-Altman plots comparing volume measurements from ground 

truth L-nets with that of each segmentation method: (E) RF, (F) RF+VF, (G) AT, (H) AT+VF. Pink lines 

indicate mean difference to ground truth, whilst dotted black lines indicate limits of agreement (LOA). For all 

subfigures n=30 L-nets analysed. 
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3.3.3. Random forest classifier accurately segments a string phantom 

A phantom test object was designed to further compare the performance of the 

segmentation pipelines in a real-life ground truth scenario. Agar phantom scans (n=7) were 

acquired through raster-scanning optoacoustic mesoscopy and contained three strings of 

the same known diameter (126 μm), length (~8.4 mm) and consequently volume (104.74 

μm3), positioned at 3 different depths, 0.5 mm, 1 mm, and 2 mm, respectively (Figures 

3.1 and 3.13A). Image stacks were subsequently processed through the analysis pipeline 

(Figures 3.4 and 3.13B-C). 

 

Similar to the findings from in silico experiments, skeletonised string volumes 

decreased as a function of depth in all methods (Figure 3.13D), due to the decreased SNR 

with depth (Figure 3.13E). Interestingly, the significance of this decrease was very high 

for all comparisons (top vs. middle, top vs. bottom and middle vs. bottom) in both AT 

methods (all p<0.001), but there was an improvement in string volume predictions across 

depth for both RF methods, such that middle vs. bottom string volumes were not 

significantly different in RF+VF (p=0.42). For all segmentation methods, the segmented 

string volumes quantified are inaccurate relative to ground truth (dotted line in Figure 

3.14A). The lateral diameter of the strings is relatively accurately determined (Figure 

3.14B), however there is an underestimation of the diameter in the Z-direction arising from 

the illumination geometry of the PAI system used (Figure 3.14C). Only the top half of the 

string is illuminated in this system, so only this half produces detectable PA signal and is 

segmented. Skeletonisation likely provides a more accurate prediction of string volume as 

it fills in the bottom half of the vessel left incomplete due to this illumination artefact, to 

provide a more accurate prediction of vessel diameter in the Z-axis (Figure 3.13D and 

Figure 3.14D). 

 

In summary, RF methods performed better with depth-dependent decreases in SNR 

compared to the AT methods, which fail to segment the full extent of the string at depth. 
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Figure 3.13. Random forest classifier outperforms auto-thresholding in segmenting a string phantom. 

XY maximum intensity projections of string phantom imaged with RSOM show that random forest-based 

segmentation outmatches auto-thresholding when correcting for depth-dependent SNR. (A) RSOM imaged 

string shows measured string PA signal intensity with top (0.5 mm), middle (1 mm) and bottom (2 mm) 

strings labelled. (B) VF displays the string RSOM image following vesselness filtering. (C) Binary masks are 

shown following segmentation using: (AT) auto-thresholding; (RF) Random forest classifier; (AT+VF) 

vesselness filtered strings with auto-thresholding; and (RF+VF) vesselness filtered strings with random-

forest classifier. (D) Skeletonised string volume calculated from segmented images of 3 strings placed at 

increasing depths in an agar phantom. Results from all 4 segmentation pipelines are shown. Dotted line 

indicates ground truth volume 0.105 mm3. All volume comparisons (top vs. middle, top vs. bottom, middle 

vs. bottom) where significant (p<0.05) except middle vs. bottom for RF+VF (p=0.42). 

(E) SNR decreases with increasing depth. (D, E) Data represented by truncated violin plots with interquartile 

range (bold) and median (dotted), ****=p<0.0001. For (D) and (E) n=7 phantom scans analysed. 
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Figure 3.14. Segmented string diameters are not accurate in the Z direction resulting in inaccurate 

segmented volume relative to ground truth. (A) XY or (B) XZ diameter of each string segmented with 

the 4 segmentation pipelines. Note the ground truth diameter of 126 µm is shown with a dotted black line 

across both graphs. The XZ diameter is inaccurate in all methods due to the one-sided single-point 

illumination of the RSOM. This underestimation of XZ diameter results in an underestimation of segmented 

string volume (C) dotted line represents ground-truth volume of 0.10473 mm3. (D) Diameter of string 

skeleton with ground truth indicated by dotted line. Data represented by truncated violin plots with 

interquartile range (dotted) and median (solid). For all subfigures n=7 phantom scans analysed. 
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3.3.4. Vesselness filtering of in vivo tumour images impacts computed 

blood volume 

Having established the performance of AT and RF-based segmentation methods in 

silico and in a string phantom, the influence of the chosen method in quantifying tumour 

vascular networks from size-matched breast PDX tumours of two subtypes (STG139 n=6; 

AB580 n=8, total n=14) was investigated. 

 

Visual inspection of the tumour networks subjected to the processing pipelines 

suggests that VF increases vessel diameters in vivo (Figure 3.15A-C). This could be due 

to acoustic reverberations observed surrounding vessels in vivo, which VF scores with high 

vesselness, spreading the apparent extent of a given vessel and ultimately increasing 

volume. The quantitative analysis confirmed this hypothesis, where significantly higher 

skeletonised blood volumes were calculated in the AT+VF and RF+VF masks compared 

to AT and RF alone (Figure 3.15D). 
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Figure 3.15. Vesselness filtering increases blood volume calculations from in vivo tumour images. XY 

Maximum intensity projections of breast PDX xenograft tumours imaged with mesoscopic PAI: (A) original 

image before segmentation; (B) original image with vesselness filtering (VF) applied; (C) a panel showing 

segmentation with each method (AT: auto-thresholding, AT+VF: auto-thresholding with VF, RF: random 

forest classifier, and RF + VF: random forest with VF). (D) Skeletonised tumour blood volume (BV) from 

all 4 segmentation methods normalised to ROI volume. Structural and Topological data analysis (TDA) was 

performed on skeletonised tumour vessel vascular networks for the following metrics: (E) Total number of 

edges; (F) Connected components, β0; (G) loops, β1; (H) sum-of-angle measure (SOAM); (I) vessel lengths; 

(J) vessel diameters; (K) chord-to-length ratio (CLR). In (D-K), data are represented by truncated violin 

plots with interquartile range (dotted) and median (bold). Pairwise comparisons of AT vs. AT+VF, AT vs. 

RF, RF vs. RF+VF and AT+VF vs. RF+VF calculated using a linear mixed effects model (*= p<0.05, 

**=p<0.01, ***=p<0.001,). L) Matrix of correlation coefficients for comparisons between IHC, BV, 

structural and TDA metrics for (top) AT+VF and (bottom) RF segmented networks. Pearson or spearman 

coefficients are used as appropriate, depending on data distribution. The following n numbers  
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refer to the number of tumours represented in each sub-figure: for (D) n=14, (E-K) n=13 due to imaging 

artefact in one tumour image which will impact network structure and topology and was therefore 

excluded. For (L) comparisons involving BV n=14, all other metrics n=13. 

 

 

 

3.3.5. Topological and structural analyses of in vivo tumour vasculature are 

impacted by the choice of segmentation method 

The in vivo segmented masks were next subjected to TDA and structural analyses. 

As expected from the initial in silico and string phantom evaluations, VF led to increased 

vessel diameters and lengths (Figure 3.15E,F), and consequently blood volume (Figure 

3.15D). In comparison to RF methods, the in silico analysis indicated that AT performs 

poorly in differentiating vessels from noise and introduces many vessel discontinuities. 

This is exacerbated in vivo due to more complex vascular networks and real noise, leading 

to an increase in segmented blood volume (vs. RF p=0.01), smaller vessel lengths (Figure 

3.15F), increased looping structures (Figure 3.15G), and a greater number of edges 

(Figure 3.15H). 

 

The prior in silico and phantom experiments indicate that RF-based methods have a 

greater capacity to segment vessels at depth. Here, there was an increase in connected 

components for RF-based methods in vivo (Figure 3.15I). RF methods also show lower 

SOAM (Figure 3.15J) and higher CLR (Figure 3.15K), suggesting that RF-segmented 

vessels have less tortuosity and curvature, respectively, compared to AT+VF segmented 

vessels. Based on the in silico observations, it is possible that RF vessels are less tortuous 

than in reality, and AT+VF may better preserve this vessel feature. 

 

These findings in vivo support the indications from in silico and phantom studies 

where RF-based methods provide the most reliable prediction of vascular volume, whereas 

AT+VF best preserves vessel structure towards the tissue surface. 

 

Next, the TDA and structural metrics were correlated with the following ex vivo 

IHC metrics: CD31 staining area (to mark vessels), ASMA vessel coverage (as a marker 

of pericyte/smooth muscle coverage and vessel maturity) and CAIX (as a marker of 

hypoxia) to provide ex vivo biological validation of the in vivo metrics. The in silico, 

phantom and in vivo analyses indicated that AT+VF and RF were the top performing 
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segmentation methods and so I focussed on these. Note, none of the metrics derived from 

AT segmented networked significantly correlated with IHC metrics. 

 

Both AT+VF and RF skeletonised blood volume correlate with CD31 staining area 

(r=0.54, p=0.05; and r=0.61, p=0.02 respectively; Figure 3.15L). This is as expected as 

elevated CD31 indicates a higher number of blood vessels and consequently vascular 

volume. The following correlations are observed for ASMA vessel coverage: vessel 

diameters (r=-0.41, p=0.17; and r=-0.43, p=0.14, respectively); looping structures (r=- 

0.68, p=0.01; and r=-0.58, p=0.04, respectively); number of edges (r=-0.69, p=0.01; and 

r=-0.65, p=0.02, respectively); number of nodes (r=-0.70, p=0.01; and r=-0.65, p=0.02, 

respectively); vessel lengths (r=0.76, p=0.03; and r=0.5, p=0.08, respectively); connected 

components (r=0.38, p=0.22; and r=0.59, p=0.03, respectively). Considering the strengths 

of AT+VF and RF, these results are biologically intuitive as tumour vessel maturation may 

lead to higher pericyte coverage, lower vessel density and the pruning of redundant vessels. 

Elevated pericyte coverage is known to decrease vessel diameters251, whereas high vessel 

density resulting from high angiogenesis rates can result in immature vessel networks217. 

Pruning may lead to a reduction in looping structures and consequently an increase in 

vessel lengths or vascular subnetworks. 

 

Finally, levels of hypoxia in the tumours, measured by CAIX IHC, positively 

correlated in both AT+VF and RF methods with skeletonised blood volume (r=0.72, 

p=0.007; and r=0.72, p=0.004, respectively), number of edges (r=0.59, p=0.04; and r=0.84, 

p<0.001, respectively), nodes (r=0.72, p=0.007; and r=0.84, p<0.001, respectively) and 

looping structures (r=0.61, p=0.03; and r=0.85, p<0.001, respectively). In the case of blood 

volume, edges and nodes, these results are expected as it has been shown that breast cancer 

tumours with dense but immature and dysfunctional vasculatures exhibit elevated 

hypoxia48,217, likely due to poor perfusion. CAIX negatively correlated with connected 

components for RF networks (r=-0.87, p<0.001) (Figure 3.15L), reflecting results for 

ASMA vessel coverage. 

 

Cross-validation between ex vivo IHC and vessel network analyses indicated that 

RF and AT+VF segmentation methods can reliably capture biological characteristics in 

tumours. 
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3.3.6. Ex vivo immunohistochemistry and network structure analyses 

highlight distinct vascular networks between STG139 and AB580 

breast patient-derived xenografts 

Finally, IHC and TDA/structure analyses were compared between the two breast 

PDXs represented. Figure 3.16 presents the results of the RF segmentation method as 

similar trends and significances are observed using AT+VF (Appendix 2) unless stated 

otherwise. 

 

Analysis of  IHC images (Figure 3.16A) from  this data subset showed that 

STG139 tumours had higher CD31 staining area (Figure 3.16B), less ASMA+ pericyte 

vessel coverage (Figure 3.16C) and higher CAIX levels (Figure 3.16D) compared to 

AB580 tumours. AB580 tumours were still hypoxic with CAIX expression, however, the 

observed level of CAIX staining is significantly lower than in STG139 tumours. The IHC 

data supports the structural and TDA measurements from both AT+VF and RF segmented 

networks where STG139 tumours had denser networks, with higher blood volume, 

diameter, and looping structures (Figure 3.16E, F, G). AB580 tumours had a sparse 

network but structural and TDA analysis showed more subnetworks (Figure 3.16H) with 

longer vessels (Figure 3.16I) which was significant in AT+VF segmented networks 

(Appendix 2), which could indicate a more mature vessel network than STG139 tumours 

based on prior correlative analyses above (Figure 3.15L). Interestingly, the differences in 

network maturity were not driven by differences in vessel tortuosity (Figure 3.16J, K and 

Appendix 2). No significant differences between the two models were observed for blood 

vessel tortuosity or curvature. 
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Figure 3.16. STG139 tumours have dense and immature vascular networks which result in hypoxic 

tumour tissue. (A) Exemplar IHC images of CD31, ASMA and CAIX stained STG139 and AB580 tumours. 

Scale bar=100 µm. Brown staining indicates positive expression of marker. ASMA sections display CD31 

overlay, where red indicates areas where CD31 and ASMA are colocalised (ASMA vessel coverage) and 

yellow indicates areas where CD31 is alone. (B) CD31 staining area quantified from CD31 IHC sections and 

normalised to tumour area. (C) ASMA vessel coverage of CD31+ vessels (number of red pixels/number of 

red+yellow pixels, expressed as a percentage) on ASMA IHC sections. (D) CAIX total positive pixels as a 

percentage of the total tumour area pixels on CAIX IHC sections. (E-K) Structural and Topological data 

analyses comparing STG139 and AB580 tumours. Data are represented by truncated violin plots with 

interquartile range (dotted black) and median (solid black). Comparisons between STG139 and AB580 tumours 

made with unpaired t-test. *= p<0.05, **=p<0.01, ***=p<0.001. The following n numbers refer to the number 

of tumours per PDX model in each sub-figure: for (B-E) STG139 n=6, AB580 n=8. For (F-K) STG139 n=5, 

AB580 n=8, one STG139 tumour image is excluded with artefact that would impact network 

structure/topology. 
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3.4. Discussion 

 
3.4.1. Optimising RSOM acquisition as a novel non-invasive method for 

visualising PDX vasculature in vivo 

In order to visualise and quantify PDX vascular networks using RSOM, it was 

necessary to optimise the image acquisition, as this was a new system, not just in this lab 

but also worldwide, with very few reports of its use in imaging tumour xenograft blood 

vessels107,109 and no reports of imaging PDX blood vessels. This was a challenge owing to 

large amounts of noise introduced by RSOM imaging in vivo, particularly the impact of 

breathing motion on SNR. Breathing motion is inevitable when imaging a live subject, and 

the extent of the introduced noise in the images depended on: breathing rate, breathing 

volume, distance from tumour to mouse ribcage, and size of tumour. Breathing rate was 

kept constant at 70-80 bpm, however, breathing volume was harder to control, with some 

mice breathing heavier than others under anaesthesia. The distance of the tumour from the 

ribcage could be extended by using the dorsal instead of the lateral position, which was 

occasionally necessary. In general, smaller tumours would suffer the effects of breathing 

motion more than larger tumours, and a minimum diameter of ~0.5 cm was chosen as a 

threshold for acceptable image quality in future work. Compression of tumours and the 

mouse body with the scan interface was essential to reduce breathing motion, however, 

excessive compression occluded vessels and created false vascular voids at the tumour 

surface. An optimum balance was found where sufficient compression would result in 

high-resolution and high quality images of tumour vasculature, in dorsal and lateral 

positions, without creating vascular voids. 

 
3.4.2. Segmentation pipeline for vascular network quantification 

Once RSOM image acquisition had been optimised, an image analysis pipeline was 

created to quantify the images. To quantify the vasculature, PA images need to be 

accurately segmented. Manual annotation of vasculature in 3D PAI is difficult due to 

depth-dependent signal-to-noise and imaging artefacts. Whilst a plethora of vascular 

segmentation techniques are available121,227, their application in PAI has been limited due 

to a lack of an available ground truth for training, comparison and validation. 
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In this study, we first sought to address the need for ground truth data in PAI 

segmentation. Two ground truth datasets were generated to assess the performance of rule-

based and machine learning-based segmentation approaches with or without feature 

enhancement via vesselness filtering. The first is an in silico dataset where PAI was 

simulated on 3D synthetic vascular architectures; the second is an experimental dataset 

acquired from a vessel-like string phantoms. These allowed us to evaluate the ability of 

different segmentation methods to preserve blood volume, vessel network structure and 

topology. 

 

The first key finding was that machine learning-based segmentation using RF 

classification provided the most accurate segmentation of vessel volumes across the in 

silico, phantom and in vivo datasets, particularly at depths beyond ~1.5 mm, where SNR 

diminishes due to optical attenuation. Compared to the AT approaches, RF-based 

segmentation partially overcomes the depth dependence of PAI SNR since it identifies and 

learns edge and texture features of vessels at different scales and contrasts. Such intrinsic 

depth-dependent limitations are often ignored in the literature, where analyses are typically 

performed on 2D maximum intensity projections for simplicity107–110,113,115, suggesting that 

a fully 3D machine learning-based segmentation is needed to accurately recapitulate the 

complexity of in vivo vasculatures measured using PAI. 

 

As blood vessel networks can be represented as complex, interconnected graphs, 

structural and topological data analyses were applied to further assess the strengths and 

weaknesses of the chosen segmentation methods. This led to three further key findings: 

1) for all ground truth datasets, AT underperforms across all metrics; 2) AT+VF 

outperforms all other methods in preserving vessel lengths, loops, curvature (CLR) and 

tortuosity (SOAM); 3) RF outperforms RF+VF in preserving topology. 

 

As observed above, AT methods struggle to segment vessels with low SNR. 

Additionally, where intensity varies across a vessel structure, this results in many 

disconnected vessels when segmenting with AT alone, as only the highest intensity voxels 

will pass the threshold. Only when vesselness filtering (VF) is applied does AT do well at 

preserving network structure. VF alters the intensity values from the PA signal to a 

prediction of ‘vesselness’, generating a more homogeneous intensity across the vessel 

structures and ultimately a more continuous vessel structure is segmented. This likely 
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explains why AT+VF best preserves vessel length and subsequently vessel tortuosity, 

curvature and loops, while AT alone performs poorly. For AT, VF improved BV 

predictions in silico via better preservation of lengths but not diameters, as the phantom 

experiments indicated that AT+VF overestimates diameter. Additionally, because both RF 

methods preserve a greater number of subnetworks at depth than both AT methods, this 

likely decreased structure and topology preservation in both of these methods compared 

to AT+VF, due to some discontinuities in segmented subnetworks compared to the 

ground-truth in silico. This can be explored in future work, for example, by developing 

string phantoms with more complex topologies. 

 

Owing to the homogenous intensity of vessels introduced by VF, one could 

therefore assume that RF+VF would be the most accurate method at preserving network 

structure and topology (by combining the machine-learning accuracy of segmentation with 

the shape enhancement of VF). However, this is not the case. RF alone is able to account 

for discontinuities in vessel intensity, unlike AT, meaning it does not rely on VF to enhance 

structure and topology preservation. In fact, the slight inaccuracy in diameter preservation 

introduced by VF in silico likely decreases structure and topology preservation in RF+VF 

compared to RF alone. In comparison, RF+VF in silico improved on RF BV by reducing 

connected components as diameter and length accuracy declines, whereas BV improved in 

a string phantom by more accurate prediction of diameters. All this considered, RF 

performs feature detection across scales in the manually labelled voxels to learn 

discriminating characteristics for vessel classification and segmentation. Adding VF before 

RF segmentation may confound this segmentation framework, because VF systematically 

smooths images and removes non-cylindrical raw image information, which may have 

been vital in the RF learning of vascular structures on the training dataset. This may explain 

why RF+VF was not found to be the best segmentation method, since it can only be as good 

as the vesselness-filtered image for learning vessel segmentation. Further, the effect of 

unconscious biases on segmentation performance imposed when manually labelling 

images with and without VF to train the classifier should be considered. The segmentation 

accuracy of classifiers trained by multiple users can be explored in future to formally 

investigate these effects. 

 

Applying structural and TDA analysis to the in vivo tumour PDX subset measured  
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trends consistent with the in silico and phantom experiments, such as multiple vessel 

discontinuities in AT. I therefore chose to focus on the top performing methods, AT+VF 

and RF. Cross-validating structural and TDA analysis with ex vivo IHC confirmed that 

these two segmentation methods can reliably extract biologically relevant information 

from mesoscopic PA images. For example, predictions of BV correlated with endothelial 

cell and hypoxia markers via CD31 and CAIX staining, respectively; and metrics relating 

to the maturation of vascular structures correlated with ASMA vessel coverage. Applying 

the segmentation pipeline to compare STG139 and AB580 breast cancer PDX models 

showed structural and TDA analyses can capture the higher density and immaturity of 

STG139 vessel networks which result in decreased oxygen delivery and high hypoxia 

levels in comparison to AB580 tumours, which presented with a sparse but more mature 

vessel network. 

 
3.4.3. Limitations 

Despite the promising findings presented in this chapter, avenues of further 

development exist to: improve the realism of ground truth data, including advances in 

simulation complexity, and tissue-specific synthetic and phantom vasculatures. While the 

in silico PAI dataset incorporated the effects of depth-dependent SNR and Gaussian noise 

found in in vivo PAI mesoscopic data, further development of the optical simulations 

could, for example, recapitulate the raster-scanning motion of illumination optical fibres, 

instead of approximating a simultaneous illumination plane of single-point sources in this 

study. The limited aperture of the raster-scanning ultrasound transducer could not be 

simulated in k-Wave as it is not yet implemented for 3D structures. In terms of vascular 

complexity, the string phantom represented the simplest vessel networks but future work 

could introduce more complex and interconnected vessel-like networks in order to replicate 

more realistic vascular topologies252. 

 
3.4.4. Future work 

Interestingly, none of the ex vivo IHC metrics correlated with chord-length ratios 

or sum-of-angles-measures. This may be expected as the 2D IHC analysis does not fully 

encompass the 3D structural characteristics of the vascular network. 3D IHC, micro CT or 

light sheet fluorescence microscopy may provide improved ex vivo validation using  



 

120  

exogenous labelling to identify 3D vascular structures, such as tortuosity, at endpoint253,254. 

 

The past decade has also seen the rise of a multitude of blood vessel segmentation 

methods using convolutional neural networks and deep learning255. Applying deep learning 

to mesoscopic PAI could provide a means to overcome several equipment- related 

limitations such as: vessel discontinuities induced by breathing motion in vivo; vessel 

orientation relative to the ultrasound transducer; shadow and reflection artefacts; or 

underestimation of vessel diameter in the z-direction due to surface illumination. Whilst 

skeletonisation addressed diameter underestimation and observed the influence of 

discontinuities on the extracted TDA metrics, they were not deeply characterised or 

corrected. Nonetheless, whilst deep learning may provide superior performance when fine-

tuned to specific tasks, the resulting methods may lack generalisability across tissues with 

differing SNR and blood structures, requiring large datasets for training. In this study open-

source and widely accessible software to biologists in the life sciences were chosen. Such a 

platform shows more potential to be employed widely with limited computational expertise. 

 
3.4.5. Summary 

In summary, I have optimised RSOM image acquisition, segmentation and analysis 

with a focus on visualising and quantifying breast PDX vascular networks. Once image 

acquisition was optimised, an in silico, phantom, in vivo, and ex vivo-validated end-to-end 

framework was developed for the segmentation and quantification of vascular networks 

captured using mesoscopic PAI. In silico and phantom ground truth PAI datasets were 

created to validate segmentation of 3D mesoscopic PA images. A range of segmentation 

methods were applied to these ground-truths and to images of breast PDX tumours 

obtained in vivo, including cross-validation of in vivo images with ex vivo IHC, to analyse 

performance of blood vessel segmentation. Learning-based segmentation, via a random 

forest classifier, best accounted for the artefacts present in mesoscopic PAI, providing a 

robust segmentation of vascular volume at depth in 3D and a good approximation of vessel 

network structure and topology. Despite the promise of the  
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learning-based approach to account for depth-dependent variation in SNR, auto- 

thresholding with vesselness filtering more accurately represents structural and topological 

characteristics in the superficial blood vessels as it better preserves vessel lengths. 

Therefore, when quantifying PA images, users need to consider relative importance of 

each metric as the choice of segmentation method can directly impact the 

resulting analyses. This work has highlighted the potential of a combination of structural 

and topological data analysis to provide a detailed parameterisation of tumour vascular 

networks, from classic metrics such as vessel diameters and lengths to more complex 

topology metrics characterising vessel connectivity and loops. Our results further 

underscore the potential of photoacoustic mesoscopy as a tool to provide biological insight 

into studying vascular network in vivo by providing life scientists with readily deployable 

and cross-validated pipeline for data analysis. 
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4 PHOTOACOUSTIC IMAGING 

OF PDX VASCULATURE 

 
I conducted all in vivo imaging described herein, and worked in collaboration to analyse 

and interpret the data in relation to the PDX models, conducted statistical analyses of 

tomographic PAI and mesoscopic topology data and analysed correlations between in vivo 

data and IHC. 

 

Thierry Lefebvre segmented the mesoscopic PAI networks using the ilastik random forest 

pipeline described in Chapter 3. Dr Paul Sweeney applied a 3D ROI CNN to the segmented 

networks to calculate blood volume and ran topological data analysis developed by Dr 

Bernadette Stolz, as described in Chapter 3. Dr Michal R. Tomaszewski and Thomas Else 

authored and ran code to analyse tomographic PAI data. Dr Dominique Laurent- Couturier 

analysed the segmented blood volume longitudinally over time using a linear mixed effects 

model. 
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4.1. Introduction 

 
4.1.1. The potential of PAI to visualise breast cancer vasculature 

Several preclinical and clinical imaging techniques have emerged to probe the 

vascular microenvironment in breast cancer. These include dynamic contrast-enhanced 

(DCE)-MRI or DCE-Ultrasound to measure vascular perfusion76–78 and positron emission 

tomography (PET) agents for hypoxia visualisation, including those derived from 

nitroimidazole85,86. Preclinical intravital imaging can monitor blood flow and perivascular 

changes in hypoxia27, though this approach is invasive and has a small field- of-view. 

 

Notably, many of the existing techniques suffer from limited spatial resolution, 

poor specificity from confounding signals or the need to administer contrast agents or 

radiopharmaceuticals79,80,86. Importantly, none of the techniques mentioned are capable of 

imaging across scales. Hence, there remains an unmet clinical need for validated imaging 

biomarkers of the vascular microenvironment that can be measured cost- effectively at 

high spatial and temporal resolution with a large field-of-view, which could be applied in 

biological research and in a clinical setting. Photoacoustic imaging (PAI) could offer the 

flexibility to monitor the vascular microenvironment in vivo across scales, without the need 

to administer contrast agents, providing a more complete picture of the tumour 

microenvironment (TME). 

 

The potential of high-resolution, or mesoscopic, PAI to visualise preclinical 

tumour vasculature was introduced in Chapter 3, where I have developed a pipeline for 

accurate mesoscopic PA image acquisition and analysis of vascular networks in breast 

patient-derived xenografts (PDXs). In this chapter, the pipeline will be applied to the 4 

breast PDXs introduced in Chapter 2, to monitor development of blood vessel networks in 

these models longitudinally. This chapter will also introduce the use of tomographic PAI 

to investigate vascular phenotypes in breast PDXs, utilising multiple wavelengths to 

visualise both Hb and HbO2 and calculate imaging biomarkers related to total haemoglobin 

concentration [THb=Hb+HbO2] and blood oxygen saturation [SO2=HbO2/THb]. Multi-

wavelength tomographic PAI systems can capture whole tumour volumes pre-clinically 

and is thereby termed Multispectral Optoacoustic 
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Tomography (MSOT)48,123–126. These images are captured at a lower resolution but with a 

higher field-of-view compared to mesoscopic PAI. Mesoscopic and tomographic PAI have 

been used jointly here for the first time, to provide complementary information on the 

vascular microenvironment of the 4 breast PDXs non-invasively in vivo. 

 

Imaging biomarkers from both mesoscopic and tomographic PAI can provide 

further insight into breast vasculature. Mesoscopic PAI captures vascular networks at ~40 

µm resolution but at superficial depths of a few mm109 and has so far been used in murine 

mammary tumour models to monitor rim-core disparities in vascularisation123 and to 

monitor changes in vascular density and diameter as tumours grow108. Tomographic PAI 

achieves a resolution of ~200 µm at cm depths125, depending on the system geometry used 

and was recently applied to human breast cell-line xenograft models and demonstrated a 

correlation between SO2 measurements and vascular maturity, measured by pericyte/ 

smooth muscle coverage of vessels ex vivo48. It is likely tomographic resolutions and 

depths could be translated to clinic, and high-resolution techniques utilised to gain 

biological information pre-clinically, due to limits in penetration depth. Gas-challenge 

biomarkers, measured by altering the gas delivered to the mouse from air to 100% oxygen, 

have yet to be applied in breast cancer models but have shown promise in providing 

biomarkers for perfusion and hypoxia in prostate cell-line models125,129,130. 

In a clinical context, PAI has been applied in numerous clinical trials to monitor 

vascular features of the TME in breast cancer, where PAI can be combined with existing 

ultrasound imaging approaches for additional anatomical information. Multiple 

engineering advances have been made in recent years, with promise shown in the use of 

handheld probes104,105,135, ‘mammoscopes’139-141 and hemispherical144,145 and 

cylindrical147,148 systems that cup the breast. State-of-the art clinical systems can achieve 

up to 7 cm penetration depth141,142 with high resolutions of up to 255 µm reported148, 

enabling visualisation of vascular networks at depth in the breast. Despite these 

engineering advances, little is known about the biological significance of the vascular 

phenotypes detected with PAI in the human breast. As the use of these systems increases 

in breast cancer clinical trials136,137 it is vital that certain questions are answered, such as: 

which key features will give insight into underlying tumour biology and what drives the 

formation of these features? It is difficult to answer these questions preclinically,  
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particularly with the use of cell-line models, as these often do not accurately recapitulate 

the TME9 and present extreme phenotypes that may not be seen in patients. In this chapter, 

for the first time, the use of breast PDXs in PAI is investigated, to gain insight into different 

elements of the vascular microenvironment of breast cancer in more clinically- relevant 

models of the disease. 

 
4.1.2. Summary 

This chapter will build on the work presented in Chapters 2 and 3. Here, a thorough 

characterisation of the vascular microenvironment in 4 breast cancer PDXs was undertaken 

with 2 PAI systems at different resolutions and depths: mesoscopic PAI and tomographic 

PAI. This is the first reported combined use of these two modalities, gaining complementary 

information on PDX vasculature from the same biological source of contrast. This work 

continues to address Aim 1 of the project, and will be combined with and correlated to the 

molecular information provided by the IHC characterisation conducted in Chapter 2. First, 

blood content, oxygenation and gas-challenge analyses were conducted with already 

established methodology for tomographic PAI. This is accompanied by the use of a new 

mesoscopic PAI system and image analysis pipeline presented in Chapter 3 applied here 

to the 4 PDXs longitudinally, and blood volume is modelled against tumour volume using 

a linear mixed effects model. Structural and topological analyses were also applied to the 

vascular networks and I show how the two systems provide complementary information of 

the vascular microenvironment in the PDXs. I show that PAI is sensitive to the different 

vascular phenotypes present in the 4 PDXs, meeting Aim 2 of the project and that there is 

little evolution of vascular phenotype, suggesting these are inherent, providing data 

towards Aim 4 of the project. Finally, inter-passage variability in PAI metrics is assessed, 

to test not only the robustness and repeatability of the PDXs (Aim 3), but also the robustness 

of using the PAI systems over years in the same models, which has not been tested 

previously. 
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4.2. Methods 

 
4.2.1. MSOT experimental procedure 

MSOT was used to acquire PA images in a manner similar to previously described 

protocols48,125,152. Once tumours had reached 0.5 cm mean diameter, tumours were imaged 

with multispectral optoacoustic tomography (MSOT) on several occasions (aiming for 

fortnightly imaging sessions with flexibility to allow for the rate of tumour volume 

increase and ensure MSOT images were captured throughout tumour growth). The 

threshold of 0.5 cm was set based on previous experiments considering feasibility of 

MSOT imaging and aligned with enrolment for RSOM imaging described in Chapter 3. 

Once tumours reached ~1 cm mean diameter mice were euthanised after a final MSOT 

imaging session and samples collected as described in 2.2.1. 

 

Briefly, MSOT was performed in the inVision 256-TF scanner (iThera Medical 

GmbH)256. The system uses a tunable 660-1300 nm laser. Light is delivered through ten 

fibre bundles to create a near-uniform diffuse illumination beam across the imaging plane. 

An array of transducers covering an angle of 270° detects ultrasound waves for 

tomographic reconstruction. The system has a spatial resolution of approximately 190 μm 

at 3 cm depth125 (Figure 4.1). 

Typically, MSOT imaging was conducted immediately after RSOM, so that 

induction of anaesthesia and hair removal occurred only once at the start of the session. 

Mice were anaesthetised using 3-5% isoflurane in 50% oxygen and 50% medical air. Mice 

were shaved and depilatory cream applied to prevent hairs introducing image artefacts. 

Respiratory rate was maintained between 70-80bpm using isoflurane (~1-2% 

concentration) throughout image acquisition. As described previously48,125, a single mouse 

was wrapped in a polyethylene membrane, with ultrasound gel to couple the skin to the 

membrane, placed into the MSOT system and immersed in water inside the imaging 

chamber (Figure 4.1). Water was maintained at 36 °C throughout the procedure. Mice 

were allowed to stabilise in the water for 15 min before image acquisition. The animal 

holder was translated along the cranial-caudal axis of the tumour, with images acquired 

every 1 mm. Images were acquired using 25 wavelengths between 660-1090 nm with an 
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average of 10 pulses per wavelength. An overall imaging session lasted approximately 10 

min. 

 
 

 
Figure 4.1. MSOT imaging set-up. (A) The ultrasound transducers are arranged in a curved 270° array in 

the imaging chamber (a) immersed in water. The animal is anaesthetised in the induction chamber (b), before 

being shaved if necessary and prepared for imaging (c). Part (B) shows the mouse holder with the mouse 

wrapped in a polyethylene membrane. The holder is placed into the imaging chamber and is translated 

through the ultrasound transducer array. 
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4.2.2. OE-OT experimental procedure 

A gas challenge was conducted during the MSOT imaging session at the final time 

point prior to sacrifice, according to procedures described previously125,126. Briefly, the 

breathing gas was changed manually from medical air (21% O2) to 100% O2. Animals 

were stabilised on medical air for 5 min prior to switching. Images of a single slice in the 

centre of the tumour (which approximately co-localises with the core IHC section) were 

taken whilst the mouse was kept on medical air for a further 3 min before being switched 

to 100% O2 for 5 min. Images were acquired using 15 wavelengths between 700-880 nm 

with an average of 6 pulses per wavelength. Each slice took 11.5s to acquire. 

 
4.2.3. MSOT image analysis 

Longitudinal tomographic photoacoustic data were analysed using custom code 

written in Python257 by Thomas Else. Images were reconstructed by filtered backprojection 

over wavelengths of 700-850 nm with a band-pass filter applied between 5 kHz and 7 MHz, 

impulse response correction, and a manually-selected speed of sound. Images were 

reconstructed with a pixel size of 75 μm x 75 μm, which is approximately equal to half of 

the in-plane resolution. The photoacoustic spectrum was averaged across all pixels in the 

ROIs before applying spectral unmixing based on the optical absorption spectra of Hb and 

HbO2 using the matrix pseudoinverse function in the Python library NumPy. 

 

Due to a lack of knowledge surrounding the light fluence distribution in the mouse 

body, MSOT cannot be used to accurately calculate absolute SO2 and therefore we denote 

oxygenation within tumours as an apparent SO2
MSOT rather than absolute SO2, computed 

as the ratio of oxygenated [HbO2] to total haemoglobin [THbMSOT=HbO2+Hb]. ROIs were 

drawn manually around the largest cross section of each tumour at the final time point 

(which approximately co-localises with the core IHC section), excluding the skin. For 

earlier time points, ROIs were drawn around the tumour in same section using the 

aorta/vena cava as reference, to ensure that the same section of tumour is monitored over 

time. The mean THbMSOT and SO2 
MSOT within the tumour ROI were calculated. For 

visualization of mean THbMSOT and SO2 
MSOT spatial maps, images were down sampled to 

225 μm x 225 μm pixels to increase the signal to noise ratio, and mean THbMSOT and  
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2 

SO2 
MSOT calculated per pixel. 

OE-OT image analysis was performed in MATLAB (Mathworks) using custom 

software written by Dr Michal Tomaszewski. The processing described here is equivalent 

to the Python processing described above, the only significant difference being the 

reconstruction method chosen, which was based on speed of reconstruction (model-based 

methods are considered more quantitative but run 10x slower than backprojection methods 

in practice). Photoacoustic image reconstruction was performed using a model- based 

algorithm in ViewMSOT software (version 3.8, iThera Medical GmbH) over wavelengths 

of 700-850 nm, with impulse response correction using a manually-selected speed of sound. 

Images were reconstructed with a pixel size of 75 μm x 75 μm. In MATLAB, ROIs were 

drawn manually around the largest cross section of each tumour (which approximately co-

localises with the core IHC section), excluding the skin. The photoacoustic spectrum was 

averaged across all pixels in the ROIs and a matrix pseudoinverse function (pinv function 

in MATLAB 2018b) was used for spectral unmixing of the relative weights of oxy- [HbO2] 

and deoxy-haemoglobin [Hb]. 

OE-OT metrics were calculated as follows: THbMSOT and SO2
MSOT were captured 

under air [SO2
MSOT(Air)] prior to gas challenge, and 5 minutes after, under 100% O2 

[SO2
MSOT(O2)], with both values taken as averages of 10 consecutive measurements every 

~30s. Average ΔSO2
MSOT (SO2

MSOT(O2) - SO2
MSOT(Air)) and ‘Responding Fraction’ [ratio 

of responding to total pixels] were calculated in the tumour region of interest (ROI) These 

metrics were previously established and validated by Dr Michal Tomaszewski 125,126. 

Responding fraction was quantified by reconstructing the images on an array of 225 μm x 

225 μm pixels. A pixel was classified as responding if the ΔSO MSOT increased by more than 

2%. 

 
4.2.4. Statistical analyses 

4.2.4.1. Longitudinal modelling of mesoscopic blood volume data 
 

Once tumours had reached 0.5 cm mean diameter, tumours were imaged with 

RSOM (as described in 3.2.1) on several occasions (aiming for weekly imaging sessions 

with flexibility to allow for the rate of tumour volume increase and ensure RSOM images 

were captured throughout tumour growth). Here, 2 passages from each model were  
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analysed. Raw data was segmented using the same ilastik random-forest classifier 

framework presented in Chapter 3 with an additional 5 images included in the training to 

analyse the second passage data, to allow for a visible changes in SNR across this dataset. 

Data from the first passage of STG139 and AB580 was excluded in the analysis, owing to 

the optimization of image acquisition with these tumours. Tumour ROIs were segmented 

using a custom made 3D convolutional neural network (CNN) based on my manual 

annotations of a subset of the data (see Appendix 1). 

 

Blood volume calculated from segmented images was modelled longitudinally as 

tumour volume increased, using a linear mixed effects (LME) model. When modelling a 

response variable, such as blood volume, over time, a standard linear regression may 

suffice to observe how explanatory variables such as PDX model influence the response 

variable over time. This modelling is valid when observations can be assumed to be 

independent (different mice), but often lead to incorrect conclusions/inference with more 

complex data structures, like longitudinal data, for example, as it ignores the dependence 

between observations of the same mouse. LME models generalise the usual linear model 

to non-independent data258. They incorporate both ‘fixed effects’ and ‘random effects’ 

when explaining the response variable. Fixed effects, as the name suggests, are fixed, and 

cannot vary, and are associated with an entire population, such as the PDX model. Random 

effects, typically used to take the within-cluster dependence into account, are associated 

with individual experimental units drawn at random from a population, such as individual 

mice259. 

The random effect part of the model can be defined in many ways depending on 

the clustering pattern/structure. The simplest and most common LME model is the random 

intercept258. This model assumes that each individual within a population has its own 

unique effect on the overall population intercept, resulting in a different intercept for each 

individual. This model assumes that for each individual, the effect of the explanatory 

variable on the response variable is the same, i.e. each individual has the same slope but 

different intercepts260. If this is not the case with the data, and the effect of the explanatory 

variable on the response variable varies with each individual, then including the random 

effect of slopes may better fit the data260. Other methods to cluster random effects are 

available, although the two described here are most common and the choice of clustering  
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method will depend on the data structure258. 

Another advantage of LME models is that they allow partial pooling of the data. 

Complete pooling occurs in standard linear regression, which ignores the clustering of the 

data and typically underestimates the standard error of the regression. One could conduct 

separate regressions per individual (i.e. no pooling) however this will likely lead to 

overfitting, and it ignores the similarities amongst individuals. Partial pooling in LME 

models accounts for both similarities and differences amongst individuals in a population. 

Partial pooling is also important when there are few observations for one individual, or 

unbalanced datasets, as the partial pooling will produce a group-specific effect closer to 

the overall population effect for individuals with less observations which would not occur 

with no pooling258. 

Here, a heteroscedastic random intercept and slope linear mixed effect model was 

used to analyse the relationship between blood volume (on the cube root scale) and tumour 

volume (on the linear scale) for the 4 PDX models of interest. Blood volume was 

transformed using a cubic root to linearise the data and reduce standard error. The chosen 

model allows to estimate a regression line between blood volume and tumour volume for 

each model (by considering as fixed effect the regressor volume, the 4-level factor model 

and the interaction between both) while taking the within-mouse dependence into account 

by means of random effects and allowing the residual variance to depend on model 

(heteroscedasticity) and controlling for PDX passage. The final model was selected after a 

sequence of likelihood ratio tests which suggested that adding random slopes and a 

modelling of the heteroscedasticity of the residuals improved the adequacy of the model to 

the data. The likelihood ratio tests also suggested that blood volume was dependent on 

passage and that the effect of passage can be assumed to be the same for all models (no 

significant effect of the interaction term between tumour volume, model and passage). 

Passage was controlled for in an additive way in the final model. The later passage of each 

model analysed has a blood volume intercept which is on average 0.075 mm (on cube root 

scale) lower than the first passage analysed. Extensive model checks analysing the 

relationship of normalised residuals with different variables (group, model, passage, 

volume) as well as the distribution of the estimated residuals and random effects suggested 

a good fit of the final model to the data. 
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Wald Z-tests were used to analyse the contrasts of interest with and without a parametric 

multiplicity correction. The contrasts of interests were: pairwise comparisons between all 

4 PDX models and a comparison between the model slopes and a slope=0, as a 

measurement of blood volume evolution as tumour volume increased. 

 

In all modelling, images from both the dorsal and lateral mouse positions were 

considered (Figure 3.3). This allowed two images to be included per tumour per time 

point, which increased the number of observations per tumour as occasionally one position 

had to be excluded from analysis due to breathing motion or compression artefact. They 

were considered to capture a similar proportion of tumour vasculature, owing to their 

highly correlated blood volume values (r=0.77, p<0.001 Figure 3.9). 

 

4.2.4.2. Analysis of topology data and tomographic PAI biomarkers 
 

Statistical analysis was performed using GraphPad Prism v.9. Each tumour was 

considered as an independent biological replicate. To compare the means of STG139, 

STG321, AB580 and STG143 a one-way ANOVA was performed with Tukey’s multiple 

comparison correction, unless the data violated the assumptions of a Gaussian distribution 

or equal variances, in which case Kruskal-Wallis test with Dunn’s multiplicity correction 

and Welch’s ANOVA with Dunnett’s T3 multiplicity correction were conducted 

respectively. The same tests were performed to compare means across 3 passages. To 

compare: small (~0.1 cm3) and large (~0.4 cm3) tumour means between STG139 and 

AB580, passage repeats within STG139 and AB580 and across 2 passages an unpaired 

student’s t-test was performed unless the data violated the assumption of a Gaussian 

distribution, in which case a Mann-Whitney test was conducted. To compare small (~0.1 

cm3) vs. large (~0.4 cm3) tumour means within STG139 and AB580 a paired student’s t- 

test was performed, unless the data violated the assumption of a Gaussian distribution, in 

which case a Wilcoxon test was conducted. Comparisons between IHC and PAI metrics 

were calculated using Spearman’s correlation coefficient. All IHC metrics were averaged 

between the core and outer sections (described in 2.2.2). Significance is assigned for p- 

values <0.05. 
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4.3. Results 

 
4.3.1. End-point Tomographic PAI shows differences in blood content and 

oxygenation between the PDXs 

To provide insight into the PDX vascular phenotypes captured with PAI for Aim 1 

of the thesis, I first measured blood content (THbMSOT) and blood oxygenation (SO2 
MSOT) 

across the whole tumour area using tomographic PAI from data collected at the final time 

point (tumour ~1 cm in diameter) in the 4 breast PDX models introduced in Chapter 2 

(basal: STG139 and STG321, luminal B: AB580 and STG143). The sensitivity of these 

metrics to differing vascular phenotypes in the PDXs was considered, as part of Aim 2 of 

the thesis. 

 

THbMSOT was ~3-fold higher in STG139 than all other PDXs (Figure 4.2A), with 

evidence of haemorrhage present in the images, shown as bright intense spots (Figure 

4.2B). This observation is supported by the high CD31 vessel area (Figure 2.8) and 

haemorrhage measured ex vivo (Figure 2.4) in this model. Interestingly, comparing 

THbMSOT across the 4 PDXs reflects the pattern of CD31 vessel area on the core IHC 

section (Figure 2.7A), not only in relation to STG139, but also with the other models. The 

basal model STG321 had significantly higher THbMSOT and vessel area than the luminal B 

model AB580. Here, the other luminal B model STG143 also has higher THbMSOT than 

AB580, but there is no difference in vessel area, perhaps due to the different sample sizes 

measured. 

 

When measurements of SO MSOT were taken whilst the mouse was breathing air, 

there were no significant differences between the models (Figure 4.2C). When the 

breathing gas was changed to O2, differences in SO MSOT were observed in the basal models 

(Figure 4.2D). Here, STG321 had significantly higher SO2
MSOT(O2) than STG139, despite 

the wide range of SO2
MSOT(O2) values measured for STG139. This is corroborated by 

previous IHC measurements that showed the two basal models had 

significant differences in vessel maturity and hypoxia. THbMSOT and SO MSOT(O ) were 

sensitive to differing vascular phenotypes in the PDXs, towards Aim 2 of the thesis. 

Finally, dynamic measurements taken during the gas challenge (ΔSO2
MSOT and  
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responding fraction, Figure 4.2E, F) did not show any overall differences between the 

4PDX models measured, likely due to the large variability observed. Further work is 

needed to understand the origins of this variability, given the otherwise remarkably 

consistent results from the breast PDX models. 

 

 

 

 

 
Figure 4.2. Tomographic PAI with a gas challenge at end-point shows differences in blood content and 

oxygenation between the PDXs. Tomographic PAI metrics measured in the central slice across all 4 PDX 

models, each point representing one tumour. A) Blood content (THbMSOT) B) Exemplar tomographic slice 

for STG139 with tumour ROI drawn in light blue and haemorrhagic region labelled with purple star. 

C) Blood oxygenation whilst mouse is breathing air (SO2
MSOT(Air)) D) Blood oxygenation whilst mouse is 

breathing oxygen (SO2
MSOT(O2)) E) Difference between D and C (ΔSO2

MSOT) and F) Responding Fraction 

defined as fraction of pixels considered as responding to the gas challenge (a pixel is classed as responding if 

ΔSO2
MSOT is above 2%). Data presented as a scatter dot plot with mean ±SEM. In all subfigures, each data 

point represents data from one tumour (biological replicate). In A) and D) p-values for significant (p<0.05) 

pairwise comparisons are shown calculated by Welch’s ANOVA with Dunnett’s T3 multiplicity correction. 

In C) and F) pairwise comparisons by One-way ANOVA with Tukey’s multiplicity correction were 

conducted with no significant p-values (p<0.05) reported. In E) pairwise comparisons by Kruskal- Wallis 

test with Dunn’s multiplicity correction were conducted with no significant p-values (p<0.05) reported. The 

following n numbers refer to the number of tumours per PDX model in all sub-figures: nSTG139=24, nSTG321=12, 

nAB580=11, nSTG143=6. 
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4.3.2. Longitudinal Tomographic PAI reveals minimal evolution in 

vascular function 

Towards Aim 4 of the thesis, an initial investigation was conducted into whether 

the vascular phenotypes found using tomographic PAI evolved as tumours grew. As with 

the Chapter 2 IHC (Figure 2.13), this would provide some insight as to whether the PDX 

vascular phenotypes are inherent, or whether they develop over time. With PAI this 

measurement is truly longitudinal unlike in IHC, because the same tumour can be 

monitored non-invasively over time. Tomographic slices from the centre of small tumours 

(~0.1 cm3) and large tumours (~0.4 cm3) in a subset of the basal model STG139 and 

luminal B model AB580 were compared (see exemplar images in Figure 4.3) and are 

denoted as small or large respectively in Figure 4.3-4. 

Interestingly, the SO2
MSOT and mean THbMSOT images clearly show that the metrics 

did not significantly change as tumours grew and while SO2
MSOT is higher in AB580, 

model STG139 has more blood content, with higher THbMSOT (Figure 4.3). 

Upon quantification, SO2
MSOT remained stable as tumours grew in both PDX 

models (Figure 4.4A, B), suggesting that the blood oxygenation does not change with 

tumour size and is inherent to the PDX. Mean THbMSOT (Figure 4.4C, D) decreased by 

~1.25-fold in both models but this was not significant. It should be noted that the mean 

THbMSOT is normalised to the tumour area, and therefore this result indicates that the density 

of vessels is stable in growing tumours, similar to CD31 vessel area measured on IHC 

(Figure 2.13C, D). Model comparisons between the PDXs showed higher mean THbMSOT 

and lower SO2
MSOT in STG139 compared to AB580, regardless of whether this was 

measured in small (Figure 4.5A,B) or large (Figure 4.5C,D) tumours. Overall, there was 

minimal vascular phenotype evolution in the PDXs investigated by tomographic PAI, 

similar to the findings from IHC. Owing to an apparent lack of evolution in either THbMSOT 

or SO2
MSOT from this initial analysis, further modelling was not conducted on the full 

longitudinal dataset. 
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2 

 

 

Figure 4.3. Blood oxygenation and total haemoglobin do not evolve as PDXs grow. Images shown as 

tomographic slices with mouse body in greyscale and tumour ROI in a colour map depicting blood 

oxygenation (SO MSOT) (top row) or mean total haemoglobin (THbMSOT) (bottom row). A and E) Example 

images of a small (~0.1 cm3) STG139 tumour, B and F) Example images of a large (~0.4 cm3) STG139 

tumour, C and G) Example images of a small (~0.1 cm3) AB580 tumour, D and H) Example images of a 

large (~0.4 cm3) AB580 tumour. 

 

 

 
Figure 4.4. PDXs vessel density may decrease during growth but blood oxygenation is stable. 

Tomographic PAI metrics compared between small (~0.1 cm3) and large (~0.4 cm3) PDXs in STG139 (top 

row) and AB580 (bottom row) models. A and B) Blood oxygenation SO2
MSOT, C and D) mean total. 
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haemoglobin (THbMSOT). In all subfigures, matched data from the same tumour are joined by a straight line In 

all subfigures, each data point represents data from one tumour (biological replicate). All p-values are shown 

calculated by paired t-test (A, B, and D) or Wilcoxon test (C). p-values <0.05 considered significant. The 

following n numbers refer to the number of tumours per PDX model in all sub-figures: nSTG139=10, nAB580=8. 

 

 

 

 

 
Figure 4.5. Model comparisons are not size-dependent with blood oxygenation higher in AB580 and 

blood content higher in STG139. Tomographic PAI metrics compared between STG139 and AB580 tumours 

at small (~0.1 cm3, top row) and large (~0.4 cm3, bottom row) sizes. A and D) Blood oxygenation SO2
MSOT, 

B and E) mean total haemoglobin (THbMSOT), C and F) sum THbMSOT. In all subfigures, data presented as a 

scatter dot plot with mean ±SEM. In all subfigures, each data point represents data from one tumour 

(biological replicate). All p-values are shown calculated by unpaired student’s t-test (A, C, and D-F) or 

Mann-Whitney test (B). p<0.05 considered significant. The following n numbers refer to the number of 

tumours per PDX model in all sub-figures: nSTG139=10, nAB580=8. 
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4.3.3. End-point mesoscopic PAI reveals differences in blood volume and 

network architecture 

Mesoscopic PAI was utilised as a technique which could visualise and quantify the 

PDX vascular networks at a mesoscopic resolution, in-between the microscopic IHC and 

macroscopic tomographic imaging already conducted, providing complementary 

information on the vascular phenotypes on a sub-volume of the tumours. As described in 

Chapter 3, an analysis pipeline which was developed as part of this thesis enables blood 

volume and topology metrics to be quantified from segmented mesoscopic PA images. 

Here, this pipeline was applied across all 4 PDX models. An initial analysis of the vascular 

phenotypes quantified at end-point is now discussed to meet Aim 1 of the thesis and the 

sensitivity of the mesoscopic metrics to the differing vascular phenotypes is discussed, to 

meet Aim 2, before the longitudinal imaging was considered. 

 

The blood volume at end-point showed differences between the models that are not 

subtype-dependent (Figure 4.6), alike to the tomographic and IHC measurements. Within 

this sub-volume, STG139 had ~2-fold higher blood volume than the other PDXs, reflecting 

THbMSOT data. CD31 vessel area measured on IHC also showed STG139 to have the most 

vessels (Figure 2.8), however STG321 also had high THbMSOT and high vessel area across 

the core tumour section ex vivo but not the outer section. Blood volume measured using 

mesoscopic PAI is able to differentiate between the differing blood content in the PDXs, 

partially meeting Aim 2 of the thesis. 
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Figure 4.6. Blood volume measured at the final time-point is highest in STG139. Blood volume averaged 

between dorsal and lateral positions. Pairwise comparisons of the means between the models compared by 

Kruskal- Wallis test with Dunn’s multiplicity correction. Data presented as a scatter dot plot with mean 

±SEM. Each data point represents data from one tumour (biological replicate). p<0.05 considered 

significant. The following n numbers refer to the number of tumours per PDX model: nSTG139=25, nSTG321=16, 

nAB580=12, nSTG143=8. 

 

 

 
Once images were segmented and blood volume calculated, they were skeletonised 

and topological data analyses (TDA) conducted as part of the mesoscopic PAI analysis 

pipeline developed in Chapter 3. Due to time constraints, TDA analyses were conducted 

solely on networks imaged at end point (tumour volume ~0.4 cm3). 

Structural and TDA metrics do not appear to be subtype dependent as the basal 

models STG139 and STG321 showed distinct topologies. STG321 networks had 

significantly more connected components (Figure 4.7A, p=0.02), fewer looping structures 

(Figure 4.7B, p=0.02) and smaller diameters (Figure 4.7C, p=0.11). Considering previous 

ASMA (pericyte/smooth muscle) vessel coverage IHC data presented in Chapter 2 (Figure 

2.9), and the ex vivo validation of our analysis pipeline conducted in Chapter 3 (Figure 

3.16), these TDA metrics appear to reflect network maturity. STG321 vessel networks, 

present as a more mature network on TDA, which is corroborated by high ASMA vessel 

coverage previously measured on IHC (Figure 2.9). Conversely, STG139 networks had 

lower pericyte/smooth muscle coverage (Figure 2.9)  
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and TDA analyses present an interconnected, dense mass of vessels with a high number 

of edges (Figure 4.7D), supported by blood volume data presented in Figure 4.6 and 

CD31 vessel area data (Figure 2.7). The two luminal B models had no significant 

differences in ASMA vessel coverage measured on IHC (Figure 2.9), which was in- 

between the two extremes denoted by the basal models. In mesoscopic PAI, the two 

luminal models had no significant differences in connected components (Figure 4.7A), 

looping structures (Figure 4.7B) or diameters measured (Figure 4.7C). However, on 

average AB580 had a network structure more similar to the mature STG321 networks 

while STG143 had a network structure more similar to the immature STG139 networks 

on average. TDA metrics quantified from mesoscopic PA images appear to be sensitive to 

network maturity in the PDXs, partially meeting Aim 2 of thesis. 

 

Figure 4.7. Topological data analyses reveal mature vessel networks in STG321. All values averaged 

between dorsal and lateral positions. A) Connected components (β0) B) Loops (β1) C) Vessel diameters (µm) 

and D) Number of Edges. In all subfigures, data presented as a scatter dot plot with mean ±SEM. In all 

subfigures, each data point represents data from one tumour (biological replicate). The following n numbers 

refer to the number of tumours per PDX model in all sub-figures: nSTG139=25, nSTG321=16, nAB580=12, nSTG143=8. 

p-values for STG139 and STG321 pairwise comparisons are shown calculated by Kruskal-Wallis test with 

Dunn’s multiplicity correction. p-values <0.05 considered significant. 
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4.3.4. Mesoscopic PAI reveals differences in the evolution of PDX blood 

vessel networks over time 

Owing to the fact that photoacoustic imaging (PAI) is non-invasive, true 

longitudinal imaging of subjects over time is possible. Despite this, modelling the changes 

in PAI metrics across time is not routine. In fact, studies often comment on changes in 

metrics such as vessel density as tumours grow113 but appropriate modelling and statistical 

analysis is not conducted. I hypothesised that high-resolution mesoscopic PAI could 

capture changes in blood vessel networks in breast PDXs over time, as the networks 

developed, which were perhaps not detectable with tomographic PAI of the whole tumour. 

Towards Aim 4 of the thesis, longitudinal changes in blood volume captured by 

mesoscopic PAI were monitored in the 4 PDXs. 

 

Visual inspection of example images shows rapid development of vasculature in 

the basal model STG139, with excessive branching and a haemorrhage developing in only 

6 days (Figure 4.8A). Note that the tumour volume also increased rapidly in this example, 

while it took the luminal B STG143 tumour 20 further days, from the first imaging time 

point, to reach a similar size. Vessel density and morphology appeared to remain stable 

in the other basal model STG321 (Figure 4.8B), while vessel density rapidly increased 

in the luminal B model AB580 (Figure 4.8C) and looping structures visibly increased in  

the STG143 example (Figure 4.8D).
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Figure 

4.8. 

Visual inspection of breast PDX vessel networks captured with longitudinal mesoscopic PAI. All 

images shown are 2D snapshots of a 3D rendering. Scale bar=2 mm. A) STG139, B) STG321, C) AB580, 

D) STG143. Blue arrow marks area of haemorrhage in an STG139 tumour. Orange arrows mark looping 

structures in an STG143 tumour. 
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To initially explore the potential of mesoscopic PAI to quantify changes in blood 

vessel networks over time, the blood volume (calculated from segmented mesoscopic 

images), was measured in small (~0.1 cm3) and large (~0.4 cm3) tumours of the basal 

model STG139 and luminal B model AB580. Blood volume was normalised to ROI 

volume, in a similar manner to the THbMSOT normalisation to ROI area on tomographic 

PAI. Interestingly, the normalised blood volume increased significantly between small and 

large tumours in STG139 (Figure 4.9A) but the evolution in AB580 tumours was more 

variable, with some increase and some decrease in normalised blood volume between 

small and large tumours (Figure 4.9B). This initial evaluation indicated that the density or 

size of blood vessels within the mesoscopic field-of-view was increasing over time in 

STG139, and the differences between STG139 and AB580 tumours indicated that model 

differences in the evolution of blood volume may occur. I therefore performed a 

longitudinal analysis and modelling of the entire mesoscopic PAI dataset across all 4 

PDXs, to understand how blood volumes evolves in the sub-volume captured by 

mesoscopic PAI. 

 
 

 

Figure 4.9. Initial analyses indicate changes in blood vessel networks captured with mesoscopic PAI 

as tumours grow. Blood volume, normalised to ROI volume and averaged between dorsal and lateral 

positions, compared between small (~0.1 cm3) and large (~0.4 cm3) tumours in (A) STG139 and (B) AB580 

by Wilcoxon test or Paired t-test respectively. In all subfigures, matched data from the same tumour are 

joined by a straight line. In all subfigures, each data point represents data from one tumour (biological 

replicate). The following n numbers refer to the number of tumours per PDX model in all sub-figures: 

nSTG139=25, nAB580=12. p<0.05 considered significant. 
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Longitudinal analysis across multiple time points of all 4 models showed that blood 

volume increased with tumour volume in all models except STG321 (Figure 4.10A). 

Blood volume modelled linearly (Figure 4.10B) increased at a higher rate in basal model 

STG139 compared to the other basal model STG321 (p=0.016 without multiplicity 

correction and p=0.07 with multiplicity correction, Figure 4.10B). The two luminal B 

models also showed increased blood volume as tumours grew (Figure 4.10), with slopes 

in-between the two extremes denoted by the basal models. STG143 had a steeper slope 

than AB580, but the two were not significantly different. Interestingly, all models had 

slopes which significantly differed from zero except for STG321 (p<0.001 for STG139, 

p=0.002 for STG143, p=0.05 for AB580, p=0.19 for STG321), 

demonstrating the minimal evolution of blood volume in this model. STG321 does not 

appear to create many new blood vessels as tumour size increases, consistent with the lack 

of angiogenic potential indicated with IHC. Longitudinal mesoscopic PAI is sensitive to 

blood vessel network development, partially meeting Aim 2 of the thesis. 

 

 

 

 

 
Figure 4.10. Modelling blood volume as tumour volume increases shows the angiogenic potential of 

the PDXs. A) Increase in blood volume as tumour volume increases for STG139, AB580 and STG143. B) 

Blood volume on the cubic root scale, modelled linearly as tumour volume increases. Data in shown as line of 

best fit in bold with standard error in shaded areas. Light blue= STG139, Dark Blue= STG321, Burgundy= 

AB580 and Orange= STG143. The n numbers shown in each subfigure refer to the number of tumours per PDX 

model.  
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4.3.5. Measurements of blood content show inter-passage  variability 

To meet Aim 3 of thesis and assess inter-passage heterogeneity of the vascular 

phenotypes, tomographic PAI metrics taken during end-point imaging (THbMSOT, SO2 

MSOT(Air), SO2
MSOT(O2), ΔSO2 

MSOT and responding fraction) across 3 early passages of 

STG139 tumours was evaluated. The same data was collected in AB580 tumours, but this 

data is not sufficiently powered to be analysed. Additionally, one passage per STG139 and 

AB580 model was repeated, where the implantation of tumour fragments from the 

previous passage was repeated in new mice, to assess how repeating a passage could also 

introduce heterogeneity in phenotype. Mesoscopic PAI metrics (blood volume, connected 

components, loops, vessel diameter and number of edges) were assessed across two passages 

for all 4 models and the repeated passage for STG139 and AB580. However, measuring 

changes across two passages is not considered as powerful, as trends are not measured. 

This was also an assessment of the robustness in measurements taken by the tomographic 

and mesoscopic PAI systems, as these measurements were taken in the same models over a 

period of ~3 years. 

 

Data from Chapter 2 indicated that the PDXs showed little inter-passage 

heterogeneity in vascular phenotypes measured with IHC (Figure 2.11). Here, 

SO2
MSOT(Air), SO2

MSOT(O2), ΔSO2
MSOT and responding fraction remained consistent across 

3 passages of STG139 (Figure 4.11A-D). THbMSOT was higher in P3 compared to P4 and 

P5 (Figure 4.11E), which reflects CD31 vessel area data (Figure 2.11C) where a slight 

decrease in vessel area from the initial passage was seen. These findings show that only 

THbMSOT varies across the passages from all tomographic PAI metrics measured.  

SO2
MSOT was consistent across the repeats of the same passage of STG139 (Figure 

4.11F, G) although there was a slight increase in ΔSO2
MSOT (Figure 4.11H), which when 

the data was binarised to the responding fraction was significantly higher (Figure 4.11I). 

THbMSOT was  stable across the repeats (Figure 4.11J). PAI metrics relating to vascular 

function/oxygenation were also consistent across the passage repeat for AB580 (data not 

shown), with no significant differences. Briefly, the same trends were measured across 2 

passages of STG321 and STG143, where all metrics were stable except for THbMSOT 

which decreased in both (p=0.07 and p=0.05) between the initial and later passages 

(Figure 4.12). 



 

146  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Total haemoglobin decreased across PDX passages in STG139. Top row= PAI metric 

measured across 3 consecutive passages (P) and Bottom row= PAI metric measured across one passage vs. 

a repeat of the same passage (r). A and F: Blood oxygenation whilst mouse is breathing air (SO2
MSOT(Air)). 

B and G: Blood oxygenation whilst mouse is breathing oxygen (SO2
MSOT(O2)). C and H: Difference 

between SO2
MSOT(O2) and SO2

MSOT(Air) (ΔSO2
MSOT). D and I: Responding Fraction (RF) defined as 

fraction of pixels considered as responding to the gas challenge (a pixel is classed as responding if ΔSO2
MSOT 

is above 2%). E and J: Blood content (THbMSOT). All measurements in STG139. In all subfigures, data 

presented as a scatter dot plot with mean ±SEM. In all subfigures, each data point represents data from one 

tumour (biological replicate). In top subfigures p-values for all comparisons across passages shown 

calculated by One-way ANOVA with Tukey’s multiplicity correction (A, C, D, E), or Kruskal- Wallis test 

with Dunn’s multiplicity correction (B). In bottom subfigures p-values for all comparisons across passage 

repeats shown calculated by unpaired t-test. The following n numbers refer to the number of tumours per 

PDX passage in each sub-figure: for (A-E) P3 n=4, P4 n=14, P5 n=6. For (F-J) P4 n=10, P4r n=4. For all, 

p<0.05 considered significant. 
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Figure 4.12. Total haemoglobin decreased across passages in STG321 and STG143. PAI metric 

measured across 2 consecutive passages (P) in STG321 (top row) and STG143 (bottom row) tumours. A and 

F: Blood oxygenation whilst mouse is breathing air (SO MSOT(Air)). B and G: Blood oxygenation whilst 

mouse is breathing oxygen (SO MSOT(O2)). C and H: Difference between SO MSOT(O2) and SO MSOT(Air) 

(ΔSO2). D and I: Responding Fraction (RF) defined as fraction of pixels considered as responding to the gas 

challenge (a pixel is classed as responding if ΔSO MSOT is above 2%). E and J: Blood content (THbMSOT). In 

all subfigures, data presented as a scatter dot plot with mean ±SEM. In all subfigures, each data point represents 

data from one tumour (biological replicate). p-values for all comparisons across passages calculated by 

unpaired t-test. The following n numbers refer to the number of tumours per PDX passage in each sub-figure: 

for (A-E) P2 n=5, P3 n=7. For (F-J) P3 n=2, P4 n=4. For all, p<0.05 considered significant. 

 

 
Alike to variability in THbMSOT, blood volume measured by mesoscopic PAI was 

also variable across passages. Blood volume decreased at end-point from the first to second 

passage in all models except AB580 (although not significant for STG143, p=0.16) 

(Figure 4.13A-F). This supports the decrease in THbMSOT measured in STG321 and 

STG143 (Figure 4.12E,J). THbMSOT did not significantly decrease from P4 to P5 in 

STG139 (Figure 4.11E) but blood volume did (Figure 4.13A), suggesting that blood 

volume measured in mesoscopic PAI is not always representative of blood content across 

the whole tumour. Blood volume was stable across passage repeats of STG139 and AB580 

(Figure 4.13D, E). 
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Figure 4.13. Blood volume varies across passages in the PDXs. Blood volume measured in: (A) STG139 

across P4 and P5, (B) STG139 across P4 and repeat (P4r), (C) AB580 across P3 and P4, (D) AB580 across 

P3 and repeat (P3r), (E) STG321 across P2 and P3, (F) STG143 across P3 to P4. In all subfigures, data 

presented as a scatter dot plot with mean ±SEM. In all subfigures, each data point represents data from one 

tumour (biological replicate). In all subfigures p-values for all comparisons across passages shown calculated 

by unpaired t-test except for figures (A, D) where a Mann-Whitney test was used. For all, p<0.05 considered 

significant. The following n numbers refer to the number of tumours per PDX passage in each sub-figure: For 

(A) P4 n=16, P5 n=9. For (B) P3 n=10, P4 n=2. For (C) P2 n=7, P3 n=8. For (D) P4 n=12, P4r n=4. For (E) 

P3 n=8, P3r n=2. For (F) P3 n=4, P4 n=4. 

 

 

 
Additionally, I assessed whether the second passage of each model analysed with 

mesoscopic PAI caused a significant effect on the LME modelling. As noted in the 

methods describing the model fit I found that passaging decreased the intercept across all 

models, but did not have a significant effect on slope. Therefore, although the exact blood 

volume value at the start of tumour growth may shift with passaging, the trend in blood 

volume evolution is consistent across the 4 PDXs analysed. Assessing any effect of 

passage repeats was not possible here as this data was not sufficiently powered. 



 

149  

Structural and topology metrics were also consistent across the two measured 

passages and across passage repeats in STG139 and AB580 (Figure 4.14 subfigures A-

D, all boxes), except for the number of edges in STG139, which decreased significantly 

from P4 to P5, similarly to blood volume (Figure 4.13A). Across the two passages 

measured for STG321, connected components increased and loops, diameter and edges 

decreased (Figure 4.14 subfigure E, all boxes). The same trend was also seen in STG143, 

however none of these changes were significant (Figure 4.14 subfigure F, all boxes). 

 

Taken together, these data reveal that PAI detects variability in total haemoglobin 

and blood volume metrics between passages whereas variability in vascular function or 

oxygenation is not detected.  
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Figure 4.14. Structural and Topology metrics are fairly stable across the two passages measured. 4 

boxes of subfigures are presented for each metric examined and they are titled: Connected components 

(CCs), Loops, Vessel diameters and Number of Edges. In each box, subfigures A-F: (A) STG139 across P4 

and P5, (B) STG139 across P4 and repeat (P4r), (C) AB580 across P3 and P4, (D) AB580 across P3 and repeat 

(P3r), (E) STG321 across P2 and P3, (F) STG143 across P3 to P4. In all subfigures, data presented as a 

scatter dot plot with mean ±SEM. In all subfigures, each data point represents data from one tumour 

(biological replicate). In all subfigures p-values for all comparisons are shown calculated by unpaired t- test 

except for figure (A) in CCs, Loops and Edges, figure (C) in Loops and figure (B) in Edges where a Mann-

Whitney test was used. For all, p<0.05 considered significant. The following n numbers refer to the number 

of tumours per PDX passage in each sub-figure: for (A) P4 n=16, P5 n=9. For (B) P4 n=12, P4r n=4. For (C) 

P3 n=10, P4 n=2. For (D) P3 n=8, P3r n=2. For (E) P2 n=7, P3 n=8. For (F) P3 n=4, P4 n=4. 
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2 2 

4.3.6. PAI metrics are corroborated by underlying ex vivo IHC vascular 

markers 

Throughout the chapter, general comparisons to the IHC results presented in 

Chapter 2 have been made. It is vital that in vivo imaging metrics are compared to ex vivo 

IHC, to provide a biological explanation of the in vivo imaging signals. To conclude this 

investigation of vascular phenotypes using PAI, I formally correlated each mesoscopic and 

tomographic PAI metric measured in vivo at end-point to the IHC vascular markers 

described in Chapter 2. 

 

THbMSOT calculated from tomographic PA images was related in part to the number 

of blood vessels in the tumours, measured by CD31 vessel area (r=0.45, p=0.001, Figure 

4.15A), and is also driven by haemorrhage (r=0.71, p<0.001, Figure 4.15B), confirming 

the observations of blood pooling on the tomographic images, which gave rise to high 

THbMSOT values. Interestingly THbMSOT had a negative relationship with ASMA vessel 

coverage measured on IHC (r=-0.52, p<0.001, Figure 4.15C), reflecting the immature 

vessel phenotype present in tumours with a high vessel density here, which results in leaky 

blood vessels, poor perfusion and blood pooling. 

 

SO MSOT(O ) correlated positively with vessel maturity (r=0.5, p<0.001, Figure 

4.15D) and negatively with hypoxia measured ex vivo by CAIX staining (r=-0.44, 

p=0.004, Figure 4.15E), similar to previous measurements in breast cell-line models48, 

while the dynamic ΔSO2
MSOT also correlated with vessel maturity (r=0.37, p=0.006, 

Figure 4.15F). 

 

In mesoscopic PAI metrics, end-point blood volume and number of edges both 

correlate with THbMSOT as expected (r=0.55 p<0.001; r=0.61 p<0.001 respectively). Blood 

volume and number of edges also relate to the vessel maturity (r=-0.38, p=0.003; r=-0.43, 

p=0.001 respectively, Figure 4.15G) and ultimately the hypoxic level of the whole tumour 

in these models (r=0.41, p=0.006; r=0.57, p<0.001 respectively, Figure 4.15H). 
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Figure 4.15. PAI vascular metrics correlate with ex vivo IHC measurements of vessel content, maturity 

and hypoxia. Correlations between the following metrics are shown: Mean Total Haemoglobin (THbMSOT, 

a.u.) measured by tomographic PAI vs. (A) CD31 vessel area measured on IHC, (B) Haemorrhage (%) 

measured by H&E sections and (C) ASMA vessel coverage of CD31+ vessels (%) by ASMA IHC sections. 

SO2
MSOT measured by tomographic PAI vs (D) ASMA vessel coverage by IHC and 

(E) CAIX positivity measured by IHC. (F) ΔSO2 calculated as difference between (SO2 (O2))- (SO2(Air)) 

measured by tomographic PAI during a gas challenge vs. ASMA vessel coverage on IHC. (G) Blood volume 

measured by mesoscopic PAI vs. ASMA vessel coverage by IHC. (H) Number of Edges measured by 

mesoscopic PAI vs. CAIX positivity measured by IHC. In all subfigures data shown as scatter plots where 

each data point is one tumour (biological replicate). Least square’s regression line shown in black with 95% 

confidence intervals denoted by dotted line. All data collected from tumours at end-point (~1 cm in diameter). 

All IHC metrics are averaged across core and outer sections. In all subfigures, spearman’s rank correlation 

coefficient is reported (r) along with a p-value (<0.05 considered significant). The following n numbers refer 

to the number of tumours represented in each sub-figure: For (A-D, F) n=52 (in B only 28 data points displayed 

on log scale). For (E) n=41. For (G) n=60. For (H) n=45. 
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4.4. Discussion 

 
4.4.1. Multiscale PAI and IHC provide complementary information on 

breast PDX vascular phenotypes 

Chapter 2 introduced the 4 PDX models (2 basal: STG139 and STG321 and 2 

luminal B: AB580 and STG143) and found that they displayed distinct vascular 

phenotypes on IHC, with differences in necrosis, hypoxia, vessel area and vessel maturity. 

These PDXs appear to be robust and reliable vascular models of the disease, with little 

inter-passage heterogeneity observed. An initial comparison to patient tissue showed some 

qualitative similarities between patient and PDX vasculature, but quantitative comparisons 

are needed. Finally, little evolution in vascular markers was seen with increasing tumour 

size. 

 

In this chapter I used a combination of tomographic PAI and longitudinal 

mesoscopic PAI to visualise and quantify vessel phenotypes in the 4 PDXs at two different 

resolutions and depths. I also sought to test the mesoscopic PAI analysis pipeline described 

in Chapter 3 in vivo and generate insights into the vascular phenotypes of the 4 breast PDXs 

that were available. The knowledge gained from these non-invasive in vivo imaging 

techniques can be combined with and supported by the IHC presented in Chapter 2 to 

provide an overall picture of the vascular phenotypes in the PDXs in terms of their blood 

content, network maturity and hypoxia levels. 

 

Beginning with the assessment of blood content in the PDXs (Table 4.1) with 

tomographic PAI, THbMSOT was found to be highest in the basal model STG139 and lowest 

in the luminal B model AB580. This was complemented by blood volume and number of 

edges measurements taken from end-point mesoscopic PAI measurements and underpinned 

by CD31 vessel area measured on IHC. STG321, AB580 and STG143 all had lower blood 

content across all metrics compared to STG139, particularly the luminal B model AB580. 

Haemorrhage on IHC was also present in many STG139 tumours, which seems to drive high 

THbMSOT measurements in this model. 
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Table 4.1. Blood content metrics measured across IHC, tomographic and mesoscopic PAI. Table 

displays mean± standard error of the mean for all metrics across all 4 PDX models (STG139, STG321, 

AB580 and STG143). Measurements colour-coded in orange shading to represent relatively high and low 

values across the 4 models. CD31 normalised area was averaged across core and outer IHC sections. 

 

 

 

 

Vessel network maturity was also different between the PDXs (Table 4.2). Here, 

the basal model STG321 presents with the highest vessel maturity, with a high number of 

connected components (subnetworks), fewer looping structures and smaller vessel 

diameters measured with mesoscopic PAI. A more mature vessel network will typically 

display elevated pericyte/smooth muscle coverage, which will result in smaller vessel 

diameters251 and pruning of redundant vessels, which may lead to a reduction in looping 

structures and consequently an increase in vascular subnetworks (connected components). 

On IHC STG321 had the relatively highest ASMA vessel coverage and lowest VEGF 

expression, corroborating that this model has a mature vessel phenotype with less 

immature angiogenic vessels forming. The limited angiogenic potential of STG321 is 

reinforced by the lack of evolution of blood volume as tumour volume increased on 

mesoscopic PAI. The other basal model STG139 measures in stark contrast to STG321 and 

presents with an immature network with low pericyte/smooth muscle coverage. The 

luminal B models both have partially mature networks, with AB580 displaying slightly 

higher maturity on ASMA vessel coverage and mesoscopic PAI than the luminal B model 

STG143, which may be confounded by the low number of vessels in AB580. 
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Table 4.2. Vessel network maturity metrics measured across IHC, tomographic and mesoscopic PAI. 

Table displays mean± standard error of the mean for all metrics across all 4 PDX models (STG139, STG321, 

AB580 and STG143). Measurements colour-coded in orange shading to represent relatively high and low 

values across the 4 models. ASMA vessel coverage was averaged across core and outer IHC sections. 

 

 

 

 

Measurements of tumour hypoxia are more nuanced in the PDXs (Table 4.3). The 

basal model STG321 displayed the highest SO2
MSOT(O2) measured on tomographic PAI, 

and had the highest responding fraction on average across the 4 PDX models. This 

indicates that the mature vessel network of STG321 is capable of adequately perfusing the 

tissue and delivering oxygen, which is corroborated by the relatively low levels of necrosis 

and hypoxia (CAIX) measured in this model ex vivo. STG139 is the most necrotic and 

hypoxic of all the PDXs measured on IHC, likely as a result of its immature vessel 

phenotype, which results in relatively low SO2
MSOT(O2) and responding fraction. The two 

luminal B models have variable SO2
MSOT(O2) measurements which on average are 

relatively high in AB580 and lower in STG143. This reflects the differences in vessel 

network maturity between the two models but doesn’t reflect the differences in CAIX 

expression and necrosis, which are higher in AB580. Perhaps the blood is well oxygenated 

in AB580, but the network is too sparse to deliver oxygen sufficiently to all cancer cells. 

Differences in latency period between AB580 and STG143 will be explored in Chapter 5, 

as a possible explanation for the differences in hypoxia. 
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Table 4.3. Hypoxia metrics measured across IHC, tomographic and mesoscopic PAI. Table displays 

mean± standard error of the mean for all metrics across all 4 PDX models (STG139, STG321, AB580 and 

STG143). Measurements colour-coded in orange shading to represent relatively high and low values across 

the 4 models. Necrosis and CAIX measurements were averaged across core and outer IHC sections. 

 

 
 

 

 

 

Overall, 4 distinct phenotypes have been measured in the 4 PDX models across in 

vivo tomographic and mesoscopic PAI, which were corroborated by ex vivo IHC. In the 

two basal models, one displays a dense but immature vessel network resulting in poor 

oxygenation and hypoxia (STG139), while the other displays a mature vessel network and 

relatively sufficient oxygenation (STG321). In the luminal B models, the partially mature 

but sparse vessel network in AB580 is able to deliver oxygen to the tumour but this does 

not seem sufficient to prevent hypoxia. While in STG143, the lower maturity of the network 

and lower blood oxygenation, still delivers sufficient oxygen to tissue to prevent hypoxia 

and subsequent necrosis. 

Here, SO2
MSOT values showed a significant difference between the basal models STG139 

and STG321. Importantly these measurements were not subtype dependent. Previously, 

measurements taken from breast cell-line models in our laboratory showed differences in 

SO2
MSOT between two models representing two breast cancer subtypes (ER- vs. ER+)48. 

The results from these PDXs suggest that vascular phenotypes within breast cancer 

subtypes are more diverse than previously reported in these cell-line models. In all 4 PDXs, 
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the SO2
MSOT values were similar to those measured in the ER- MDA-MB-231 cell-line 

xenograft, possibly indicating that higher measurements taken from the ER+ MCF-7 cell 

line xenograft represent more extreme levels of blood oxygenation. 

Evolution of THbMSOT and SO2
MSOT did not occur in the subset of STG139 and 

AB580 tumours analysed, which is corroborated by a lack of evolution of CD31 vessel 

area and ASMA vessel coverage relatively on IHC (Chapter 2, Figure 2.13). It seems that 

while the sub-volume monitored longitudinally over time in mesoscopic PAI undergoes 

evolution in blood volume, changes across the whole tumour area measured by 

tomographic PAI and IHC are not detectable. 

 

In interpretation of the mesoscopic PAI findings, the penetration depth must be 

considered. While the system is capable of capturing high resolution tumour vessel 

networks, only vessel networks in the first 2 mm of the tumour are accurately captured, 

owing to the exponential decay of signal amplitude in depth caused by the scattering of 

light in tissue, the band limitation of the ultrasound detectors and the geometry of the 

system. Therefore, mesoscopic PAI will not necessarily inform on blood content across 

the whole tumour area/volume, which was instead captured in this work using 

tomographic PAI (although THbMSOT and blood volume do correlate at end-point r=0.51). 

Mesoscopic PAI images are most informative when captured longitudinally, as the 

development of the vasculature in approximately the same sub-volume of tumour tissue 

can be monitored over time. 

 
4.4.2. Dynamic measurements of oxygenation were not capable of 

delineating the PDX models 

Measurements of SO2
MSOT were taken whilst the mouse was breathing air were not 

significant between the models, however, when the breathing gas was changed to 100% 

O2 revealed differences in SO2
MSOT. This phenomenon has been reported in cell- line 

models by Tomaszewski et al., who validated the use of a gas challenge in PAI125. Perhaps 

the change to O2 resulted in perfusion changes, which exaggerate the phenotypes seen on 

air, increasing the sensitivity of the SO2
MSOTmetric to different vascular phenotypes. 
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I hypothesised the gas challenge would provide a dynamic oxygenation read-out, 

which could be used as a surrogate biomarker of perfusion in these models, as has been 

shown previously in prostate cell-line xenografts126. While measurements of ΔSO2
MSOT 

and the responding fraction were in the range of those measured in the prostate xenografts, 

no significant differences in these metrics were measured between the PDXs. In prostate 

cancer cell-line xenografts, these metrics were capable of distinguishing between a 

necrotic and haemorrhagic model125, with low ΔSO2
MSOT and responding fraction areas 

spatially correlated with areas of low perfusion and hypoxia126. The discrepancy between 

these findings may arise from spatial heterogeneity in gas challenge response, which 

would not be detectable in the average responses measured here. Further spatial analyses 

including co-registration with histology images could be conducted (as discussed in 

section 4.4.8. Future Work). Additionally, the previous thresholds for calculating 

ΔSO2
MSOT and the responding fraction were optimised for the prostate-cell line xenografts, 

and no further optimisation was conducted here. It is also possible that the effect size in 

the cell-line models is higher than observed in more clinically-relevant PDX models. 

Nevertheless, it is important to stress that ΔSO2
MSOT correlated positively with ASMA 

vessel coverage ex vivo, suggesting this measurement can provide insight into vessel 

maturity in these PDXs. 

 
4.4.3. Variability of vascular phenotype in blood oxygenation could be 

indicative of chaotic and immature vessel network with perfusion 

changes 

When assessing tomographic PAI metrics, SO2
MSOT was highly variable across all 

PDXs except STG321, which presents with a mature vessel phenotype. This finding is not 

overly surprising considering that chaotic and immature vascular networks in the other 3 

models will result in heterogeneous perfusion. Immature vessels are susceptible to changes 

in interstitial fluid pressure which can result in vessel collapse and blood flow alterations, 

which can alter perfusion on a scale of minutes to days27,261. When measuring SO2
MSOT 

therefore, it is possible that the measurement is decreased by vessel collapsing at that 

particular moment, and had the measurement been taken an hour later, after possible 

reperfusion of the vessels, more oxygen could have been delivered to the tumour and a 

higher SO2
MSOT value obtained. This assumption is supported by variability in ASMA  
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vessel coverage seen in STG139, suggesting variable pericyte/smooth muscle vessel 

coverage. This model in particular presents the most heterogeneous vessel                networks 

across multiple IHC and PAI metrics. 

The high variability in SO2 measurements suggests that this metric may not be 

sensitive enough to accurately delineate different vascular phenotypes. Despite variable 

measurements of SO2
MSOT across 3 models and particularly in STG139, there was still a 

relationship to ASMA vessel coverage and CAIX staining, showing that overall SO2
MSOT 

measurements indicate the ability of the vessel network to perfuse the tumour with oxygen 

to prevent hypoxia. However, the relationship has significant variability, indicating that 

further investigation into the underlying physiological and metabolic processes that could 

explain SO2
MSOT would be of interest to investigate in relation to the PDX models. 

Characterising the variability of SO2
MSOT 

measurements in breast cancer cell-line models 

across longer time periods, of up to 2 hours, is currently underway in the laboratory and 

could be applied to measure dynamic perfusion in PDXs. Equally, a direct measure of 

perfusion such as dynamic contrast enhanced- MSOT using a near infra-red dye such as 

the clinically approved indocyanine green could be used126, while measuring the oxygen 

consumption rate of cultured PDX cells would provide insight into the metabolic 

requirements of each tumour. 

 
4.4.4. Measurements of blood content were variable across PDX passages 

Inter-passage variability in PAI metrics was not expected, owing to the 

preservation of intra-tumoural genetic clonal architecture previously reported in these 

models10 and the IHC data presented in Chapter 2, which showed minimal inter-passage 

heterogeneity of vascular markers ex vivo. Measurements of vascular function 

(SO2
MSOT(Air), SO2

MSOT(O2), ΔSO2
MSOT and responding fraction) were consistent across 3 

passages in STG139 and across 2 passages of STG321 and STG143. While CAIX staining 

and ASMA vessel coverage data from Chapter 2 would indicate little change in hypoxia 

or vessel function across passages that would be measured by these in vivo metrics, this 

finding may also reflect a lack of sensitivity in tomographic blood oxygenation metrics, 

which rarely significantly delineated the PDX models. Other measurements of vessel 

maturity taken with structural and topological analyses of the mesoscopic PA images were 
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also stable across STG139 and AB580 passages and passage repeats but displayed an 

apparent increase in vessel maturity in the other two models, particularly STG321. However 

with only two passages measured comments on trends are only tentative and should be 

assessed with further passaging in future. Additionally, these results could be confounded 

by a decrease in blood volume (and therefore less structures captured) between the two 

passages. 

 A drop in THbMSOT was measured between P3 to P4 and P5 in STG139 was 

supported by CD31 vessel area data measured ex vivo. Additionally, THbMSOT was variable 

across the passage repeat in AB580, and across two passages in STG321 and STG143, 

which may be explained by the lower initial blood volume value in the latter passages of 

STG321 and STG143, as measured by mesoscopic PAI. Interestingly, despite a shift in 

blood volume values at the initial imaging time point for the latter passages of all 4 PDX 

models, the evolution of the blood volume remained consistent and appears robust and 

inherent to the PDX. The shift is perhaps due to increased noise in the latter passages seen 

visually on mesoscopic PAI, and is not necessarily a biological change. Measurements in 

further passages would need to be taken to confirm any trends in the mesoscopic PAI data. 

 

In the measurements taken thus far, it appears as though vascular parameters in the 

PDXs which relate the absolute vessel number or blood content in the PDXs are more 

variable than those which measure the ‘function’ of the vessels i.e. how mature they are 

and the level of hypoxia resulting. The absolute number of vessels may be influenced by 

the particular slice taken during tomographic imaging or histology for example, or perhaps 

the location of the tissue fragment on the mouse flank. The location of the PDX when 

implanted at surgery, will likely be consistent across the same passage (as the person 

conducting the surgery will implant in approximately the same place for each mouse in 

that cohort) but it may change from passage to passage as those are in different 

implantations sessions and there were no anatomical landmarks defined for implantation. 

The location of the tumour on the mouse flank will be more similar within a passage than 

between a passage. This is important, as the vascular environment surrounding the tumours 

upon implantation will likely be utilised by the tumour as it generates its own vascular 

network, so the abundance of vessels at the implantation site may influence the abundance 

of vessels upon measurement.  
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4.4.5. Potential for clinical translation 

One of the motivations for this study was to assess the sensitivity of PAI to 

different vascular phenotypes present in breast PDXs, as more clinically-relevant models 

of breast cancer, as an advancement from previous work in breast cell-line xenografts, 

which likely present extreme examples that are often not clinically-relevant and 

representative48,9. Here, correlations to IHC measurements showed that measurements 

from tomographic and mesoscopic PAI can reveal underlying vessel area, haemorrhage, 

vessel maturity and hypoxia measured ex vivo, displaying the sensitivity of PAI 

measurements to vascular phenotypes in breast cancer. However, similar studies in a wider 

range of PDXs and patients, preferentially also representing additional breast cancer 

subtypes not represented by the models presented here, should be conducted to  enable the 

sensitivity of PAI to different vascular phenotypes to be assessed on a larger scale. 

 

Owing to its limited penetration depth, the mesoscopic PAI system described in 

this chapter could not be translated for clinical use and is limited to pre-clinical studies. 

Mesoscopic PAI captures a larger portion of the tumour than IHC, with a resolution in- 

between IHC and tomographic PAI. Therefore, using mesoscopic PAI in this context has 

allowed a useful bridge between the IHC and tomographic PAI, allowing visualisation of a 

sub-volume of the vascular network at high-resolution to better understand the phenotypes. 

Additionally, engineering advances in breast clinical PAI, using systems which cup the 

whole breast144,148, have allowed tumour vascular networks of a similar resolution to be 

captured. Analyses pipelines and network features, such as the ones presented in this 

chapter, could be applied in future to provide quantitative read-outs of the networks 

captured with these systems. 

 
4.4.6. Limitations 

There are several limitations to this work that should be discussed. First, as noted 

in Chapter 3, 2D ex vivo validation of structural and topological metrics does not fully 

encompass the 3D topological characteristics of the vascular network and only provides a 

partial 2D representation of vascular phenotypes. 3D IHC, micro-CT or light sheet 

fluorescence microscopy may provide further ex vivo validation using exogenous labelling 

to identify 3D vascular structures, at end-point. Nonetheless, when applied to breast PDXs 
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the topology metrics do appear to capture features associated with vessel maturation 

measured on ex vivo IHC. 

Second, values of THbMSOT and SO2
MSOT calculated from tomographic PAI are 

only relative and not absolute. This is because the data is not corrected for the effects of 

light fluence alterations in tissue, which results in a wavelength-dependent attenuation of 

the tomographic PAI data48,125. In PAI, absorbing structures at depth may not be detected, 

or detected at an artificially lower intensity, owing to the decay of light energy (fluence) 

as it passes through tissue. This will bias the measurements made, and is why relative not 

absolute measurements are reported here. I partially controlled for the light fluence 

problem by matching tumour size and being consistent with tumour positioning in the PAI 

systems, but this is not possible with patient tumours. Therefore, accurate light fluence 

correction is under development158 and is needed to advance PAI in the clinic, but is not yet 

validated for routine use. 

 

Finally, changing the breathing gas from air to 100% O2 presented a physiological 

challenge for the NSG mice, which occasionally resulted in suffocation. Respiratory 

problems during the gas challenge have been reported before by the laboratory125, although 

not to the same extent, with the NSG mice appearing particularly sensitive to this protocol. 

This adverse effect, coupled with the lack of growth in luminal B models, lead to a 

decrease in observations made during the gas challenge in these models, and insufficient 

power to monitor tomographic PAI metrics across passages in AB580. 

 
4.4.7. Future work 

First, accurate co-registration of mesoscopic and tomographic PAI with each other 

and with IHC should be conducted, to gain increased spatial colocalisation of in vivo 

imaging biomarkers with the underlying molecular and cellular information. Achieving 

such co-registration would afford further insights into the underlying tumour biology, 

particularly in relation to those metrics which demonstrated no significant effects over the 

whole tumour area such as ΔSO2
MSOT. Co-registration between imaging modalities such 

as PAI and MRI is underway using landmarks and other methods262, however, there are 

several challenges presented by the processing of tissue ex vivo, such as tissue shrinkage, 

which makes it difficult to accurately co-register IHC with in vivo imaging. Here, an 
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approximate co-registration to tomographic PAI slices was attempted and 

indicated that a more accurate co-registration would likely be possible using appropriate 

tissue labelling and moulds in future. 

 

The tomographic PAI analyses described in this chapter have been reported and 

used in the laboratory for many years48,125,126, although this is the first report of their 

application in breast PDXs. Having collected such a large dataset of tomographic images 

in breast PDXs (~1000 images), further advancements in tomographic analyses could be 

optimised using this dataset. In particular, analyses of the whole tumour volume in 3D, 

rather than just the 2D tomographic slice, as conducted here, would provide increased 

spatial information of vascular parameters. 

 

One limitation of the mesoscopic PAI system used here is that it only uses one 

wavelength of 532 nm. This is an isobestic point of deoxygenated and oxygenated 

haemoglobin, meaning that the two absorbers have the same absorption coefficient at this 

wavelength106 but the two cannot be distinguished from one another in these images. As a 

result, only information on haemoglobin level and distribution (resulting in the blood 

vessel images) is captured. Multi-spectral mesoscopic PAI using at least 2 wavelengths 

will improve on this current system and is under commercial development. Multi-spectral 

mesoscopic PAI has been used recently in colon cell-line xenografts to distinguish 

deoxygenated and oxygenated haemoglobin and monitor oxygenation decreases upon 

vascular-targeted therapy107 and could be applied to monitor oxygenation in individual 

vessels in breast PDXs. 

 

Utilising PAI to monitor response to therapy non-invasively at early time-points 

and across many months is clinically feasible. Therefore, future work should investigate 

vascular responses of PDXs to traditional and novel therapies measured with PAI. PDXs 

have already been shown to respond to therapies in a similar manner to the patients from 

which they are derived10, and so studies focusing on PAI of PDX vascular response to 

radiotherapy or anti-angiogenics for example, could provide clinical insight on which PAI 

metrics would provide biomarkers of vascular response in patients. 
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4.4.8. Summary 

To summarise, this chapter presented data on the first combination of mesoscopic 

and tomographic PAI to image and quantify blood vessel networks in breast PDXs, 

showing distinct vascular phenotypes on longitudinal mesoscopic and tomographic PAI 

across the 4 models that correlated with IHC measurements. PDX vascular phenotypes 

displayed variability across passages in relation to blood content, whereas changes in 

blood oxygenation were not detected.  
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5 REVEALING THE 

UNDERLYING MECHANISMS 

FOR THE DEVELOPMENT OF 

DISTINCT VASCULAR 

PHENOTYPES 

 
I extracted the RNA and worked in collaboration with Dr Ashley Sawle to analyse the 

sequencing data. I interpreted all results and analysed correlations between gene 

expression and imaging data. The Genomics Core facility at the CRUK CI conducted the 

library preparation and sequencing. The Histopathology Core facility at CRUK CI ran the 

IHC. 
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5.1. Introduction 

 
5.1.1. Correlating imaging signals, immunohistochemistry and gene 

expression 

The clinical use of molecular imaging to predict tumour behaviour and treatment 

response, as well as support histopathology results, is expanding. The integration of 

imaging and molecular biomarkers has huge potential to improve breast cancer patient 

diagnosis and prognosis by providing complementary information and cross validation for 

new biomarkers of tumour progression263,264. Non-invasive imaging adds spatial and 

temporal resolution, which complements the traditional molecular biomarkers that can be 

extracted from a physical tissue biopsy265. Imaging can also be conducted longitudinally, 

at multiple patient visits, meaning that validated imaging biomarkers could provide insight 

into tumour progression and therapy response where repeated tissue biopsy may not be 

possible264. 

Many clinical studies in breast cancer patients have correlated imaging biomarkers 

with histopathological markers of subtype and grade such as ER and Ki67 expression 

levels, as a way of validating imaging parameters as markers of aggressiveness263. 

Additionally, histopathological and gene expression markers can provide insight into the 

underlying biological processes that give rise to imaging signals. For example, HIF1α IHC 

and gene expression has been shown to correlate with 18F-FDG PET266 and 13C- label 

exchange between pyruvate and lactate measured with MRI267, respectively, providing 

insight into the role of hypoxia in breast tumour metabolism267. Applied in PAI, 

histopathology markers have begun to validate PAI signals as markers of vessel density, 

vessel maturity48, hypoxia and perfusion126, in breast and prostate cell- line models; here, 

such validation has been expanded to breast PDXs for the first time. 

 

Integrating the use of imaging biomarkers with gene expression for clinical 

application is referred to as radiogenomics, an expanding field of research. Born out of 

radiomics, the study of textural features on medical images such as CT and MRI265, 

radiogenomics investigates the use of textural features to infer gene expression263,264. For 

example, using principal component analysis to group robust radiomics features from CT 

scans has been shown to create a ‘radiomics signature’ that can predict ctDNA mutant 
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allele fractions in metastatic melanoma patients265, while DCE-MRI heterogeneity 

features correlated with high expression of VEGF signalling pathways268. 

Integrating imaging biomarkers into the clinical setting to be complementary to 

histopathology and genomic profiling comes with many challenges. The studies described 

above and multiple others rely on correlations between imaging metrics and ex vivo 

expression markers, yet there will be many unknown confounding variables that influence 

these correlations which are yet to be properly understood. Standardisation between 

different imaging systems and protocols in different laboratories or hospitals is an active 

area of research across medical imaging, with new global efforts in the PAI field also157,82. 

Finally, sharing of large imaging datasets between different settings is another challenge 

to enable widespread-use of imaging biomarkers in clinic264. 

Despite advances in integrating medical imaging with genomics and 

histopathology markers, this is not routine in PAI. In fact, to the best of my knowledge 

tumours imaged with PAI pre-clinically or clinically have never been genomically profiled 

to improve understanding of the underlying biological processes that drive the PAI signals 

detected. In this chapter, gene expression, IHC and PAI metrics derived from the breast 

PDXs are integrated for the first time, to draw conclusions on the origins of PDX 

vasculature and PAI signals. 

 
5.1.2. Unanswered questions on the origin of PDX vascular phenotypes 

Throughout this thesis, in vivo PAI and ex vivo IHC metrics have shown that the 4 

breast PDXs studied display distinct and repeatable vascular phenotypes, with minimal 

evolution or development of these phenotypes as tumours grow. All 4 PDXs create blood 

vessels but they are not all made equal, suggesting there is an instructive element in the 

implanted tumour from the cancer cells themselves, because if this were simply mouse 

reactions to the human tissue transplantation the vascular phenotypes would be the same. 

 

In this chapter, I address Aim 4 of the project and gain insight into the origins of 

PDX vasculature by conducting RNA sequencing on a subset of the PDXs, taking samples 

across passages for all 4 models. The expression of a hypoxic gene signature of 52 genes269 

was evaluated, as a starting point for assessing this ‘instructive element’ in the  
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cancer cells. Correlations between hypoxic gene expression, IHC and PAI were 

conducted, to integrate knowledge on PDX vasculature from these complementary 

methods, and provide genomic validation of the PAI signals for the first time. 

Additionally, comparisons to corresponding patient and PDX gene expression data from 

the Caldas laboratory was conducted as well as an assessment of variability in hypoxic 

gene expression across PDX passages, to test whether the PDXs have representative and 

repeatable hypoxic gene expression levels. Finally, the metabolic requirements of the 

PDXs were briefly considered by assessing the proliferation and growth patterns, to 

investigate the possibility of oxygen demand as a confounding factor in the relationship 

between hypoxic gene expression and vascular phenotypes measured using PAI. 
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5.2. Methods 

 
5.2.1. RNA sequencing and analysis 

Total RNA was extracted from flash frozen tumour tissue using a Qiagen AllPrep® 

DNA/RNA/Protein Mini Kit. All samples had an RIN value of >7.3 when measured on an 

Agilent Bioanalyzer. Libraries for RNA-seq were prepared with an Illumina TruSeq 

stranded mRNA workflow and sequencing performed on Illumina NovoSeq6000 with a 

50bp paired-end run. Sequencing was conducted in 2 batches, with 7 samples included in 

both sequencing runs to assess batch to batch variability; 4 were from the first library 

preparation with the sequencing repeated in the second run and 3 samples were re-

extracted and library preparation repeated before sequencing in the second run. 

 

Quality of raw reads was assessed using FastQC (version 0.11.9). All samples were 

of good quality with ~30 million reads each. Raw reads were trimmed using Trimmomatic 

(version 0.39)270 to remove adapter contamination. Human and mouse reads were 

separated with Xenome271 using genome references GRCm38 and GRCh38 release 102 

from Ensembl272. Human reads were aligned to genome reference GRCh38 release 102 

from Ensembl using STAR (version 2.7.6a)273 and further quality assurance was carried 

out using Picard tools (version 2.21.2), which showed over 90% alignment for all samples. 

Gene expression was quantified using Salmon (version 1.4.0)274 and the GRCh38 release 

102 transcriptome from Ensembl272. 

All analyses were conducted in R. Counts were normalised using the vst function 

from the Bioconductor275,276 package DESeq2 prior to analysis. Raw counts were filtered 

for genes with at least 25 reads in at least 1 sample to eliminate counts due to noise. 

Principal component analysis (PCA) was conducted to assess variation between samples 

based on PDX model, tumour subtype, PDX passage, sequencing run, or extraction batch. 

PCA is a tool to reduce the dimensionality of the data. The first three principal components 

were used to visualize the data and the percentage variance explained was calculated. 

 

In order to compare the expression of the genes in a hypoxia gene signature  
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between samples we used a single scoring metric, which could later be easily correlated to 

imaging and IHC metrics by means of simple linear regression. The Bioconductor275,276 

package gene set variation analysis (GSVA) provides a means of generating such a score 

based on the expression of the signature genes in a similar manner to gene set enrichment 

analysis277. Expression of genes in 3 hypoxia gene signatures was assessed269,278,279, with 

similar results found for each. Results from Buffa et al. are presented and interpreted in 

detail, as the top choice signature. This signature was chosen owing to its widely cited 

prognostic capabilities in breast and other solid cancers280–284, its robustness to different 

pre-processing algorithms285, and the novel use of both a priori gene function knowledge 

with analysis of in vivo co-expression patterns to generate the signature269. Hypoxia gene 

signature expression analysis of the corresponding patient and PDX microarray gene 

expression data from the Caldas lab10 was conducted separately and qualitative 

comparisons to the PDX samples presented in this thesis were made. 

 
5.2.2. Ki67 immunohistochemistry 

Anti-human Ki67 IHC was conducted on sections from all PDXs as part of the QC 

IHC assessment as described in 2.2.2. All stained sections were qualitatively assessed by 

myself, with the guidance of Dr Elena Provanzano, to score the sections as high (>20% 

positivity) or low (<20% positivity), similarly to how the patient samples would have been 

scored clinically10.  

 
5.2.3. PDX growth curves 

Tumours were measured throughout development externally using Vernier 

callipers and tumour volumes were calculated using the formula (A x B x B x (π/6)) being 

“A” the longest axis of the tumour and “B” the shortest. 

 
5.2.4. Statistical analyses 

All statistical analyses were conducted in GraphPad Prism v.9 unless otherwise 

stated. For STG139 and AB580, the correlation between GSVA score and tumour volume 

was calculated by Spearman’s or Pearson's correlation coefficient respectively, depending 

on the distribution of the data. Mean GSVA scores for each PDX model were compared 

using the R package limma to apply a linear model with Benjamini-Hochberg  
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multiplicity correction. To compare the means across passages in STG139 and AB580 a 

one-way ANOVA was performed with Tukey’s multiple comparison correction, unless the 

data violated the assumptions of a Gaussian distribution in which case Kruskal-Wallis 

test with Dunn’s multiplicity correction was conducted. To compare means between 

passage repeats within STG139 and AB580 an unpaired student’s t-test was performed 

unless the data violated the assumption of a Gaussian distribution, in which case a Mann- 

Whitney test was conducted. Comparison of GSVA score to all in vivo PAI metrics and 

IHC vascular markers were computed using Spearman’s rank correlation coefficient. All 

IHC metrics were averaged between the core and outer sections (described in 2.2.2). 

Significance was assigned to comparisons with p<0.05. 
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5.3. Results 

 
5.3.1. Expression of a hypoxic gene signature delineates the PDX models 

Neither sequencing run nor extraction batch introduced variation in model clusters 

and therefore batch correction was not necessary (Figure 5.1A, B). Initial exploration of 

the RNA sequencing data using PCA showed that samples of the same model clustered 

together (Figure 5.1C). Interestingly, the largest first principal component (which explains 

49.67% of the variability in the data) showed that transcriptomically the basal model 

STG321 sits in-between the two luminal B models (AB580 and STG143) and the basal 

model STG139, suggesting that transcriptomically speaking, STG321 is more similar to 

the luminal models than STG139. The second principal component (which explains 

20.72% of the variability in the data) showed that STG321 is transcriptomically distinct 

from the other 3 models while the third principal component (which accounts for 12.05% 

of the variability in the data) separates STG143 from the other models (Figure 5.1C). As 

expected based on previous data for these PDX models10, there was no detectable passage 

effect on the analysis, i.e. the clustering was not influenced by samples from different 

passages (Figure 5.1D). Overall, the 4 PDX models are transcriptomically distinct and 

remarkably repeatable, with differences and similarities between models reflected by the 

different principal components. 



 

173  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Principal component 

analysis demonstrates distinct transcriptomes in the 4 PDXs that are not affected by sequencing run, 

batch extraction or passage. In all subfigures principal components (PC) 1 vs. 2 displayed on left and PC2 

vs. PC3 shown on right. (A) 4 distinct clusters seen in Sequencing (Seq) runs 1 and 2. (B) 4 distinct clusters 

seen in Extraction Batch 1 and 2. (C) 4 distinct clusters seen 
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representing models STG139, STG321, AB580 and STG143. (D) 4 distinct clusters seen across passages 

(P) and passage repeats (r). The following n numbers refer to the number of tumours per PDX model in all sub-figures: 

nSTG139=19, nSTG321=7, nAB580=13, nSTG143=4. 

Having established that distinct transcriptomes exist between the 4 PDXs, the 

expression of genes in a hypoxic gene signature was evaluated across the models, to 

investigate whether differences in expression may partially explain the ‘instructive 

element’ in the PDXs, which directs the formation of mouse host vasculature. A heatmap 

was generated to visualise the z-scaled (relative) expression for each gene in the hypoxia 

51-gene signature269 for all samples in both a subset of the PDX dataset presented in this 

thesis, as well as corresponding PDX and patient samples from the Caldas laboratory10 

(Figure 5.2). 

 

STG139 tumours had the highest relative expression of the majority of genes in the 

signature. AB580 tumours were also relatively hypoxic in the thesis PDX samples, with 

high expression of genes involved in classic hypoxia signalling pathways such as 

angiogenesis (vegfa, adm, hilpda), glycolysis (hk2, pgk1, aldoa), collagen synthesis 

(p4ha1) and lipid accumulation (hilpda). These results are in agreement with CAIX 

positivity on IHC (Figure 2.6), with the gene coding for this protein (ca9) listed in the 

signature and expressed at high levels in most AB580 and STG139 samples. Interestingly, 

a subset of 4 STG139 tumours (labelled PEN36, PEN58, PEN35, and PEN32) and a subset 

of 5 AB580 tumours (PDP24, PDP11, PDP8, PDP29 and PDP28) have lower relative 

expression of the signature than the majority for that model. In both subsets, 3 of the 

samples are derived from smaller tumours (~0.1 cm3). 

In general, STG321 basal tumours had relatively low expression of the signature, 

although they do have high expression of genes involved in microtubule spindle formation 

and cytokinesis (anln, kif20a, kif4a, tuba1c, tubb6, shcbp1), which are essential for the 

completion of mitosis. These genes have been reported to be highly expressed in breast 

cancers and are associated with poor prognosis, independently of hypoxia286,287. 

Importantly, vegfa gene expression was low in all STG321 samples compared to the other 

models, supporting IHC data that this model has less angiogenic potential. Finally, the     

luminal B model STG143 had the lowest hypoxic gene expression overall.
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Comparisons to corresponding patient and PDX data collected by the Caldas 

laboratory10 was only possible qualitatively owing to the different methods of collecting 

gene expression data (the data in this thesis was collected via RNA sequencing, whereas 

Caldas data was collected via a DNA microarray). These data was also only available for 

STG139, AB580 and STG143 (Figure 5.2). Nevertheless, it can be concluded that hypoxic 

gene expression was high in the STG139 patient tumour and this has been maintained 

across several PDX passages collected by the Caldas lab and those presented in this thesis. 

The STG143 patient tumour had relatively low hypoxic gene expression, which was 

maintained across 2 PDX passages collected by the Caldas lab and in the PDX samples from 

this thesis. Finally, the AB580 patient tumour had little hypoxic gene expression, as did 

the first PDX passage (X0), collected by the Caldas lab. Later passages analysed for this 

thesis appear to have acquired higher expression of some hypoxia- related genes in the 

signature. 
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Figure 5.2. Heatmap displaying relative expression of 52 genes in a hypoxia gene signature across PDX 

and patient samples. The heatmap is split in two with the left-side displaying 43 PDX samples described 

in this thesis (data collected by RNA sequencing) and right-side displaying 21 patient and PDX samples 

from the Caldas lab10 (data collected by DNA microarray). Sample IDs are listed across the bottom, with each 

column corresponding to one sample. Each row denotes a gene in the signature, labelled on the right-hand 

side. In each side of the heatmap, moving from left to right displays the samples from high to low relative 

z-scores (red to blue colour coding). The GSVA summary score is displayed above the heatmap as black 

dots ranging from -0.5 to 0.5 for each sample. The model that each sample belongs to is colour coded in the 

top row (Light blue = STG139, dark blue= STG321, burgundy= AB580, orange= STG143) and the 

extraction colour coded in the second row (Light green= batch 1, dark green= batch 2, yellow= Caldas lab). 

Caldas lab samples are labelled with the following abbreviations (T= patient tumour, X= passage (with 

corresponding number), X0= first passage from the patient tumour implanted in one mouse, R= relapse). 

The following n numbers refer to the number of tumours per PDX model for batch 1 and 2: nSTG139=19, 

nSTG321=7, nAB580=13, nSTG143=4. The following n numbers refer to the number of tumours per PDX model for 

Caldas lab: nSTG139=13, nAB580=1, nSTG143=4. There is 1 patient sample for STG139, AB580 and STG143 

extracted by the Caldas lab represented on the heatmap. 
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Gene set variation analysis (GSVA) was used to give an overall score of signature 

expression. As expected, STG139 tumours were the most hypoxic with the highest GSVA 

score, while AB580 tumours had a significantly higher GSVA score than the other luminal 

B model STG143 (Figure 5.3). High levels of hypoxic gene expression in STG139 may 

explain why the blood vessel networks in this model are immature, resulting from high rates 

of angiogenesis and decreased pericyte coverage due to VEGF-A and other pro-angiogenic 

signalling pathways. 

 

 

 

 
 

 

 
Figure 5.3. GSVA summary scores of the hypoxia gene signature show highest overall expression in 

STG139. Data presented as a scatter dot plot with mean ±SEM. Each data point represents data from one 

tumour (biological replicate). Means compared via the R package limma to apply a linear model with 

Benjamini-Hochberg multiplicity correction. The following n numbers refer to the number of tumours per PDX 

model: nSTG139=19, nSTG321=7, nAB580=13, nSTG143=4. 
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5.3.2. Hypoxic gene expression has minimal evolution in STG139 and is 

not passage-dependent 

Hypoxic gene expression differed between the PDX models and was highest in the 

basal model STG139 and the luminal B model AB580. This result may explain an 

instructive genetic element, which drives the formation of immature vessels. However, the 

question still remained as to which feature came first in tumour growth: the immature 

vessel networks, which poorly deliver oxygen to the tumour resulting in hypoxia, or 

hypoxic gene expression, which drives immature vessel network formation? 

 

To answer this aforementioned question on the origin of PDX vascular phenotypes, 

the relationship between hypoxic gene expression and tumour size was assessed by 

correlating GSVA score to tumour volume in STG139 and AB580, two models with which 

different sized tumours had been preserved. In STG139, there was some evidence that 

GSVA score increased with tumour volume (r=0.44, Figure 5.4A) but this was not quite 

significant (p=0.06), owing to a more variable distribution of GSVA score across the 

volumes sampled. Perhaps this suggests a heterogeneous evolution of hypoxic gene 

expression as tumour volume increases, with some tumours showing stable expression, 

which drives the formation of immature vessel networks and others increasing expression of 

hypoxia-associated genes as tumours grow. On IHC, CAIX expression does not evolve with 

tumour growth (r= -0.0069, p=0.97) and GSVA score was relatively high across all STG139 

tumours, regardless of size, suggesting a constitutive hypoxic microenvironment in this 

model. In AB580, GSVA score increased with tumour volume (r=0.74, p=0.004, Figure 

5.4B), alike to CAIX protein expression on IHC, which also increased with tumour growth 

(r=0.53, p=0.02), suggesting evolution of the hypoxic phenotype in this model. 

 

Finally, GSVA scores were stable across three passages and passage repeats of 

STG139 and AB580 (Figure 5.4C-F), which is in agreement with previous hypoxic and 

vascular IHC and PAI markers that were shown in earlier chapters to be stable in the PDXs. 
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Figure 5.4. PDXs display differences in hypoxic gene expression evolution and expression is not 

passage-dependent. Scatter plots displaying correlation between GSVA score and tumour volume in (A) 

STG139 or (B) AB580, calculated by Spearman’s and Pearson’s correlation coefficient respectively. In (B) 

least square’s regression line is shown in black line with 95% confidence intervals in dotted lines. GSVA 

score across 3 passages in (C) STG139 and (D) AB580. All p-values for pairwise comparisons are shown 

calculated by Kruskal-Wallis test with Dunn’s multiplicity correction and One-way ANOVA with Tukey’s 

multiplicity correction respectively. GSVA score compared between one passage and passage repeat (r) in 

(E) STG139 and (F) AB580. All p-values are shown calculated by Mann Whitney and Unpaired t-test 

respectively. In (C-F), data presented as a scatter dot plot with mean ±SEM. In all subfigures, each data point 

represents data from one tumour (biological replicate). In C-F mean ±SEM shown. p-values <0.05 

considered significant. The following n numbers refer to the number of tumours represented in each sub-figure: 

for (A) n=19. For (B) n=13. The following n numbers refer to the number of tumours per PDX passage in each 

sub-figure: For (C) P3 n=3, P4 n=6, P5 n=4. For (D) P2 n=2, P3 n=6, P4 n=2. For (E) P4 n=3, P4r n=3. For 

(F) P3 n=4, P3r n=2. 
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5.3.3. In vivo PAI and ex vivo IHC vascular markers reflect underlying 

hypoxic gene expression 

The final Aim 4 of the thesis also strived to determine which vascular features may 

be important to monitor in clinic. IHC markers or non-invasive PAI biomarkers could 

provide surrogate biomarkers of numerous hypoxic signalling pathways without the need 

for sequencing. 

 

To this end, the GSVA summary score of the hypoxic gene signature described 

above was correlated to all the PAI and IHC metrics acquired on the PDX samples so far. 

Reassuringly, the GSVA score correlated with CAIX protein expression (r=0.62, p<0.001, 

Figure 5.5A), supporting the use of CAIX as a marker of hypoxia207,214,288 in these models. 

GSVA score also correlated with necrosis (r=0.49, p=0.003, Figure 5.5B), which will often 

be a subsequent event to hypoxia in cells that do not adapt to the low oxygen 

conditions126,217. Interestingly, both SO2 PAI measurements taken on air and O2 correlated 

with GSVA (r=-0.46, p=0.017; r=-0.47, p=0.015 respectively, Figure 5.5C, D). 

 

Assessment of the vasculature itself gave insight into the underlying hypoxic gene 

expression in these breast PDXs. Denser vessel networks, measured by CD31 vessel area, 

and vessels with poorer pericyte/smooth muscle coverage correlated with higher GSVA 

scores (r=0.49, p=0.003 and r=-0.41, p=0.017 respectively, Figure 5.5E,F), as did tumours 

with more haemorrhage detected on histology (r=0.61, p<0.001, Figure 5.5G) and higher 

THbMSOT (r=0.47, p=0.014, Figure 5.5H) measured with tomographic PAI. These data 

suggest that dense and immature vascular networks, where blood pooling occurs more 

frequently, are associated with tumours with high hypoxic gene expression. Interestingly, 

none of the blood vessel network metrics quantified from mesoscopic PAI correlated with 

GSVA score, suggesting a need for broader investigation into angiogenic gene 

expression289 in addition to hypoxic gene expression measured here. 
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Figure 5.5. Photoacoustic imaging and vascular IHC markers correlate with the underlying hypoxic 

gene expression. In all subfigures data shown as scatter plots where each data point is one tumour (biological 

replicate). Least square’s regression line shown in black with 95% confidence intervals denoted by dotted line. 

Correlations between GSVA score and the following metrics are shown: (A) CAIX positivity measured on 

IHC (B) Necrosis measured on H&E sections, (C) SO MSOT(Air) measured by tomographic PAI, (D) SO 

MSOT(O ) measured by tomographic PAI, (E) CD31 vessel area measured on IHC, (F) ASMA vessel coverage 

of CD31+ vessels (%) on ASMA IHC sections, (G) Haemorrhage (%) measured on H&E sections, (H) Mean 

Total Haemoglobin (THb, a.u.) calculated from tomographic PAI. Each data point is one tumour (biological 

replicate). All IHC metrics are averaged across core and outer sections. For all subfigures, Spearman’s 

correlation coefficient and p-value are shown. p<0.05 considered significant. The following n numbers refer 

to the number of tumours represented in each sub-figure: for (A, B, E-G) n=34 (in G 14 data points displayed 

on log scale). For (C, D, H) n=26. 

 

 

 

5.3.4. Proliferative capacity of PDXs relates to vascular development 

There are some discrepancies in the vascular phenotypes measured in the PDXs 

and the underlying hypoxic gene expression. For example, both luminal B models AB580 

and STG143 have similar levels of vessel density and maturity measured on IHC (Figures 

2.6 and 2.7), yet differ in hypoxic gene expression, with AB580 displaying high hypoxia 

(~40% CAIX positivity) and necrosis (~20-30%) levels, particularly at end-point and 

STG143 displaying comparatively low hypoxia (~6.5-30% depending on section location) 

and lower necrosis (~10%). The proliferative capacity of the PDXs may have important 

implications for their vascular development and the phenotypes formed, as this will impact 

their metabolic profile and oxygen demand. Ki67 IHC was conducted at end- point as a 

marker of proliferation during the QC process (described in 2.2.2) and increase in tumour 
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volume monitored, hence these markers were retrospectively considered  in light of the 

gene expression analysis. 

 

When looking at Ki67 protein expression of PDXs at end-point (Figure 5.6), the 

level of expression aligns with that of patient basal and luminal B tumours, with high 

expression in all tumours (>20%, semi-quantitative score), particularly in the basal 

models290. When monitoring the growth curves of the models, important differences can 

be seen longitudinally. STG139 tumours begin growth first at 6-12 weeks post- 

implantation and they will reach their maximum permitted volume within 20 days, 

sometimes even within a few days (Figure 5.7A). Around 75% of STG139 tumours 

reached exponential growth by 70 days post-implantation. In contrast, the other basal 

model STG321 grows relatively slowly, beginning after 3-4 months and taking normally 

one month to reach maximum volume (Figure 5.7B). Around 75% of STG321 tumours 

reached exponential growth by 120 days post-implantation. Both luminal B models grew 

slower than the basal models, which is expected, however their growth patterns are 

different. In AB580, the tumours grow sooner, after ~4 months, and once they begin they 

grow relatively quickly with many only taking one month to reach the maximum volume, 

similar to the basal model STG321 (Figure 5.7C). Around 75% of AB580 tumours reached 

exponential growth by 140 days post-implantation. In contrast STG143 won’t begin 

growth until ~6 months post-implantation and once growing, can take around 2 months or 

even longer to reach maximum volume (Figure 5.7D). Around 75% of STG143 tumours 

reached exponential growth by 200 days post-implantation. These different latency periods 

from implantation to the start of exponential growth likely contribute to differing oxygen 

demands in the PDXs. Oxygen serves as a key substrate in mitochondrial energy 

production291, and therefore tumours with shorter latency periods will have a higher energy 

and oxygen demand compared to slower growing tumours with longer latency periods. 

When the oxygen demand cannot be met by the supply from the blood vessel network (due 

to low vessel density or low vessel maturity and poor perfusion), this can contribute to the 

cells developing hypoxia. Particularly in the luminal B models, differing latency periods 

may explain their differing hypoxia levels. Both models have sparse and partially immature 

vessel networks, yet AB580 has a shorter latency period than STG143, meaning that 

oxygen demand is higher in AB580 and could explain why AB580  is more hypoxic than 

STG143. 
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Figure 5.6. Ki67 expression on IHC is high in all models especially basal PDXs. (A) STG139, (B) 

STG321, (C) AB580, (D) STG143. Basal models shown on top row, Luminal B models shown on bottom 

row. Scale bar=100 µm. Expression above 20% is considered high290. 
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Figure 5.7. Differing latency periods of PDXs may impact metabolic demands. Tumour volume (cm3) 

plotted against days post-implantation for (A) STG139, (B) STG321, (C) AB580, (D) STG143. Each line is 

for one tumour (biological replicate) measured at multiple time points (data points). The following n numbers 

refer to the number of tumours per PDX model: nSTG139=31, nSTG321=17, nAB580=15, nSTG143=9. 
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5.4. Discussion 

 
Expression of a 51-gene signature269 comprising of genes upregulated under hypoxia was 

assessed in samples from the 4 breast PDXs described in this thesis thus far, as well as in 

corresponding patient samples and PDXs from the Caldas lab10. The proliferative capacity 

of the PDXs described in this thesis was also assessed. This was to investigate the 

following: 

 

1. To correlate PAI and IHC signals to the underlying gene expression and 

provide genomic validation of PAI signals for the first time. 

2. To assess how representative and reliable hypoxic gene expression is in breast 

PDXs. 

3. To gain insight into the origins of PDX vascular phenotypes. 

 

5.4.1. Hypoxic gene expression in PDXs correlates with vascular 

phenotypes measured by IHC and PAI 

A validated hypoxic gene signature was chosen to genetically assess the level of 

hypoxia in the 4 breast PDXs. The relative expression of each gene in the signature 

displayed in a heatmap, as well as a summary GSVA score, revealed STG139 tumours to 

have the highest expression of the signature, corroborating CAIX IHC data and in vivo 

SO2 PAI measurements, which showed STG139 to be less well oxygenated than the other 

PDXs, particularly in comparison to the other basal model STG321. Expression of the 

signature was also higher in the luminal B model AB580, compared to the other luminal B 

STG143, which corroborates differences seen in CAIX expression on IHC, despite the two 

having similar SO2 levels in tomographic PAI measurements and similar levels of vessel 

density and maturity on IHC. This necessitated thought into the differing oxygen demands 

of the PDXs, which is discussed below. 

 

The basal model STG321 was found to have significantly lower GSVA score than 

the basal model STG139, and interestingly there was low vegfa gene expression, 

supporting observations of low VEGF IHC for this model and suggesting it is less hypoxic 

and angiogenic. STG321 does express genes involved in microtubule spindle formation 

and cytokinesis, as expected for a highly proliferative model286,287 which highlights the  
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cross-talk between proliferation and hypoxia signalling pathways and necessitates a close 

investigation into the roles of specific genes when using signatures, to be sure that high 

expression of certain genes do not confound results. STG143 had low expression of most 

of the genes in the signature. This corroborates previous results presented in this thesis as 

STG321 and STG143 had the lowest CAIX expression on IHC and STG321 had 

consistently high oxygenation measured by SO2 in tomographic PAI. 

 

Correlations between the summary GSVA score, used as a single scoring metric of 

hypoxic gene expression, with PAI and IHC highlighted the possible insights into 

underlying gene expression that can be gained by assessing the vasculature non- invasively 

with PAI and with the vascular IHC markers presented in this thesis. Reassuringly, the 

GSVA score correlated positively with CAIX and necrosis measured on IHC, indicating 

that the score does represent hypoxia levels and associated-cell death in the PDXs. 

Measurements of SO2 taken with tomographic PAI, either whilst the mouse is breathing air 

or 100% O2, both negatively correlated with GSVA score, demonstrating the potential of 

blood oxygenation measurements taken with PAI to provide insight into hypoxic gene 

expression in breast cancer. Neither of the dynamic PAI measurements (ΔSO2 and 

responding fraction) correlated with GSVA, suggesting that the protocol may need to be 

optimised on a per model basis, as these measurements were previously shown to inversely 

spatially correlate with areas of hypoxia on IHC in prostate cell-line models126. 

Interestingly, denser and more immature networks measured on IHC by increased 

CD31 vessel area, haemorrhage and decreased ASMA vessel coverage where related to 

the GSVA score. Furthermore, vascular density and blood pooling from immature vascular 

networks can be measured using THbMSOT on tomographic PAI which positively correlated 

with GSVA score, indicating that this measurement can provide insight not only on the 

density of vessels and haemorrhagic content in breast tumours but ultimately how they 

interplay with hypoxic gene expression. The relationship between dense vascular networks 

and immature vascular networks, which relate to hypoxic microenvironments in these 

PDXs is strong, but other more diverse phenotypes may present in clinic or in other pre-

clinical models. The use of a ‘PAI signature’ combining measurements of multiple PAI 

metrics to provide robust and longitudinal insights into  
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underlying gene expression, similar to the ‘radiomics signature’ proposed by Gill et al. to 

monitor ctDNA mutations, should be investigated in future, as this may be a powerful 

approach to assessing underlying biological processes with PAI. 

 

Unfortunately, GSVA score did not correlate with blood volume or topology 

metrics measured using mesoscopic PAI. Considering that mesoscopic PAI metrics appear 

to capture the angiogenic potential of PDXs by taking measurements longitudinally, as 

well as the maturity of these networks with topological analyses, this result is unexpected. 

However, discordance may arise from the different portions of tumour assessed 

(mesoscopic PAI captures the 2 mm tumour surface whereas hypoxic gene expression was 

measured in a 2 mm cube taken from a different portion of the tumour mass). Or perhaps 

mesoscopic measurements are most powerful when quantified longitudinally, and less 

insight is gained from end-point analyses such as this. Equally, this could be related to the 

different pathways probed by each technique. Mesoscopic PAI was used to visualise the 

blood vessel network architecture longitudinally, the pattern of which may be driven by a 

range of angiogenic factors. The hypoxic signature measures many signalling pathways, 

some related and some unrelated to angiogenesis and vessel formation, including processes 

such as microtubule organisation. Therefore, closer inspection of angiogenic gene 

expression22–24,289, for example investigating endothelial and pericyte expression of focal-

adhesion kinase22,292, or angiopoietin signalling24 in the PDXs may provide genomic 

validation of mesoscopic PAI. This would require optimisation of PDX tissue processing 

to separate the human and mouse components to get enough reads, as it will be mostly the 

mouse stroma expressing the angiogenesis related genes mentioned above, of which there 

was <5% contamination found in all samples here. 

 
5.4.2. Gene expression is stable across passages and generally 

representative of patients 

Aim 3 of the thesis was to assess the robustness and repeatability of vascular 

phenotypes in the PDXs and how well these phenotypes represented the patients from 

which they were derived. To this end, the stability of expression of the hypoxic gene 

signature across passages and passage repeats was assessed in STG139 and AB580, as  
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has been routine with all metrics presented in this thesis thus far. As expected given the 

reported stability of gene expression in the breast PDXs10, GSVA score was stable across 

all passages and repeats. 

 

Genomic profiling of the breast PDXs has also been shown to be preserved from 

patient to PDX and across several passages by the Caldas laboratory10. Here, specific 

expression of the hypoxic gene signature was compared between corresponding patient 

and PDX samples generated by the Caldas laboratory to STG139, AB580 and STG143 

PDX samples generated in this thesis. Remarkable preservation of hypoxic gene 

expression was measured in STG139 and STG143, suggesting that these tumours were 

hypoxic and normoxic respectively in the patients and this is represented in the PDX 

samples presented in this thesis. In AB580, some changes have occurred in gene 

expression. In the patient and in the first (X0) passage measured by the Caldas laboratory, 

hypoxic gene expression was low and this has increased in subsequent passages measured 

in this thesis. Considering that the vessel density and maturity on IHC appeared to be 

maintained from patient to PDX in this model (Figure 2.12), and considering the vessel 

density and maturity is similar to that of STG143, I propose the shorter latency period and 

metabolic requirements of AB580 tumours measured in this thesis may have contributed 

to these changes in underlying gene expression. Anecdotally the latency period of the 

AB580 PDXs in this thesis was shorter by a few months than those kept in the Caldas lab, 

suggesting that the AB580 PDXs in this thesis had a higher energy and oxygen demand 

compared to previously measured samples, which possibly resulted in an oxygen deficit 

and hypoxic gene expression in this model. 

 
5.4.3. Evolution of hypoxic gene expression combined with PDX 

metabolic requirements provide insight into the origin of PDX 

vascular phenotypes 

Studying the true evolution of gene expression longitudinally as the breast PDXs 

grow is not possible owing to the need to excise the tissue, yet estimates were made by 

comparing tumours of different sizes in STG139 and AB580. Interestingly, GSVA score 

increased as tumour volume increased in AB580, but the same relationship was not strong 

or significant in STG139 and these results are supported by CAIX IHC measurements.  



 

189  

Tumours of different sizes were not measured for STG321 and STG143, owing to time 

restraints in preparing this thesis, but the relatively low hypoxic gene expression measured 

in both models suggests that hypoxia does not significantly drive the vascular phenotypes 

seen in these two models. 

STG139 presents a constitutively hypoxic model, where from patient to PDX and 

through several passages the hypoxic gene expression remains high. It is likely this 

constitutively hypoxic environment drives the formation of the dense and immature 

networks that are seen in STG139, which ultimately give rise to blood pooling, 

haemorrhage, poor perfusion and poor oxygenation in this model. Additionally, this model 

is the fastest growing PDX of all those measured in this thesis, suggesting that the oxygen 

demand of the tumour will be high but the supply of oxygen will be low owing to the 

immature networks described above, perpetuating this hypoxic environment. 

 

AB580 presents a diffusion-limited hypoxia model in this thesis. Smaller AB580 

tumours are not extremely hypoxic, and developing vasculature is partially mature, with 

some vessels lacking pericyte coverage likely owing to aberrant angiogenic pathways 

often seen in tumours199. Once growing after ~4 months post-implantation, these tumours 

grow relatively quickly within a month and oxygen demand will rapidly increase to meet 

the metabolic demands of the proliferating cells. It is at these later time-points that the 

sparse and only somewhat mature network in AB580 tumours cannot supply the tumour 

with the oxygen necessary resulting in hypoxia and the increase in hypoxic gene 

expression and CAIX protein expression is observed. This in turn will continue to promote 

vessel network formation with abnormal pericyte coverage, explaining the stability of 

vessel maturity measured on IHC. 

 

STG321 is an interesting basal model as it does not appear to be angiogenic or 

express many genes involved in hypoxia. Despite a relatively high proliferation and short 

latency period, expected of a basal model, the vasculature appears mature enough to meet 

the oxygen demand of the tumours. There is some necrosis and hypoxia measured on IHC, 

in the centre of cellular islands that are surrounded by vessels covered by smooth muscle. 

In fact, the vessel networks in STG321 on IHC form a somewhat ‘chicken-wire’ appearance 

that has been previously noted in lung vasculature when describing lung cancer cells that 

‘co-opt’ existing alveolar vascular networks37. It is  
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possible that STG321 is presenting as a non-angiogenic vascular model, and alternative 

vessel forming mechanisms could be explored in this model in future. 

 

Finally, STG143 presents as a slow-growing relatively normoxic luminal B model. 

Taking over 6 months to begin exponential growth and taking ~2 months to reach 

maximal volume once growth has begun, I hypothesise that the oxygen demand of this 

tumour is far lower than the other PDXs. Therefore, despite a similar vessel density to the 

luminal B model AB580 and a fairly immature vessel network, here, the network seems 

sufficient to meet the low oxygen demand of the tumour and prevent hypoxia. 

 
5.4.4. Limitations 

There are some limitations to this work that should be considered. First, the 

smallest tumours measured here were ~0.1 cm3 as this study was combined with in vivo 

imaging and so the tumours were left to grow to a reasonable size, taking into account the 

resolution and practicalities of using both the tomographic and mesoscopic PAI systems, 

to take at least one set of PAI measurements before excising the tissue. However, 

angiogenic and hypoxic signalling pathways can be activated in tumours as small as 1 mm3 

293 and therefore more refined measurements of hypoxic gene expression evolution should 

be made on tumours smaller than those presented here. 

 

Additionally, gene expression of STG143 was measured in only 4 samples from 

one passage. This was due to the slow growing nature of STG143 tumours meaning that 

these experiments were conducted before the second passage of STG143 had finished 

growing in vivo, due to time restraints for the thesis preparation. Reassuringly, there was 

little diversity in the gene expression between the 4 samples supporting the robust nature 

of PDXs, however, an increased number of samples across passages would improve 

confidence in the results presented. 

 
5.4.5. Future work 

In future, further gene expression studies could be conducted to validate the PAI 

signals presented here and gain insight into the underlying tumour biology. Here, the focus 

was on hypoxic gene expression to also investigate the interplay between hypoxia and 

vessel phenotype. However, other pathways of interest such as a focus on angiogenic  
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signalling289 could be investigated and may provide further biological insights and 

validation for mesoscopic PAI measurements. 

 

There is a focus in this thesis on the importance of angiogenesis in tumours  and 

the resulting vascular phenotypes. However, one model in particular, STG321, appears to 

lack angiogenic potential. Therefore, alternative vessel forming mechanisms such as 

co-option should be investigated in this model to define exactly how its vessels are 

formed37. Growing these tumour orthotopically in the mammary fat pad could provide 

insight into whether this model can utilise vasculature from the original tissue, which 

would explain the increased vessel maturity observed in this model. 

 

An unsupervised linear regression of all expressed genes against the imaging 

metrics was not investigated here, owing to the low number of PDXs used. In a laboratory 

with the ability to investigate several or even 100s of PDX models this could be conducted 

to identify new biomarkers and pathways which influence vascular phenotypes in breast 

cancer. 

 
5.4.6. Summary 

In summary, this chapter has presented hypoxic gene expression data, which 

underpins the measurements taken on IHC and non-invasively with PAI, providing 

genomic validation of PAI measurements for the first time. PAI measurements of blood 

oxygenation as well as total haemoglobin may provide insight into the underlying hypoxic 

gene expression in breast cancer. Hypoxic gene expression is remarkably stable across 

PDX passages, and is preserved from patient to PDX in two models. The latency period 

from implantation to the start of exponential growth likely also influences the oxygen 

demand and resulting hypoxia and vessel phenotypes in the PDXs with each model 

representing 4 different microenvironments: constitutive hypoxia, diffusion-limited 

hypoxia, non-angiogenic vessel formation and relative normoxia. 
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6 CONCLUSIONS 

 

Cancer cells live within their environmental niche known as the tumour 

microenvironment (TME), where dynamic interactions between cancer and stromal cells 

as well as chemical and physical signals, shape tumour biology and evolution1,2. The 

vasculature is a key component of the TME and is often dysfunctional and immature 

leading to areas of chronic and dynamic hypoxia which further spatially fine-tune the 

TME3,4. 

This thesis has built on previous work which shows the powerful ability of 

photoacoustic imaging (PAI) to visualise tumour vasculature and oxygenation non- 

invasively. Using a ‘light-in’, ‘sound-out’ approach, photoacoustics presents an attractive 

non-invasive method for probing tumour blood vessels95,221. It’s relatively cheap, easy- to-

use, can be easily integrated into existing ultrasound systems and does not require 

exogenous contrast agents to image blood vessel networks. The potential of PAI to capture 

breast cancer blood vessels is gaining momentum, at least from an engineering perspective 

with many new system geometries being designed and tested104,105,140,144,148. However, 

what is lacking is the biological insight into which vascular features should be monitored 

in clinic. Which features give the greatest insight into the underlying tumour biology and 

hypoxic signalling pathways? Is PAI sensitive enough to the vascular phenotypes present 

in patients? Owing to the reliance of cell-line xenograft mouse models in PAI to-date, these 

questions have not been adequately answered. 

 

Here, I have demonstrated the use of breast cancer patient-derived xenograft (PDX) 

models in PAI, establishing the use of these models in PAI for the first time, as a clinically-

relevant model of breast cancer9,10. It had already been previously shown that PDXs serve 

as powerful patient ‘avatars’, able to recapitulate and maintain the genomic architecture 

and heterogeneity of the original patients as well as respond to drug treatments in a similar 

manner to the patient tumours they are derived from9,10.  
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Considering the large impact that tumour blood vessels can have on the cancer cell 

phenotype and genotype and ultimately treatment response, this brings into question how 

PDXs are such good models of the patients from which they are derived, considering that 

the vasculature will be derived from the mouse host10,295-297. Yet until this thesis, the 

vascular microenvironment of breast PDXs had not been studied in detail, and whether the 

models develop distinct vascular phenotypes that are robust, reliable and representative 

was not known. Therefore this thesis questioned not only the sensitivity of PAI when 

visualising PDX vasculature but also whether or not breast PDXs are good vascular models 

for cancer research. 

 

I defined 4 aims for the thesis: 

 
Aim 1: To characterise the vascular phenotypes in breast cancer PDXs using a combination 

of high-resolution and tomographic PAI and immunohistochemistry (IHC). 

 

Aim 2: To determine whether PAI is sensitive to different vascular phenotypes in PDXs. 

 
Aim 3: To determine whether PDXs are robust and reliable vascular models that represent 

the patients from which they are derived. 

 

Aim 4: To question the origin of vascular phenotypes in PDXs and gain insight on which 

features may be the most significant to monitor in clinic. 

 

Beginning with Aim 1 of the thesis, I have characterised the vascular phenotypes 

of 4 breast PDXs (2 basal PDXs: STG139 and STG321 and 2 luminal B PDXs: AB580 

and STG143), originally derived from 4 patients and passaged in immunocompromised 

mice. I found STG139 to be the bloodiest of the PDXs studied, with high CD31 vessel 

area and haemorrhage measured on IHC. This underpinned in vivo PAI metrics, with high 

THbMSOT measured using tomographic PAI and a rapid increase in blood volume measured 

on longitudinal mesoscopic PAI. Despite high blood content, STG139 tumours were highly 

necrotic and expressed high levels of CAIX ex vivo. Mesoscopic PAI topology indicated 

that STG139 vessels are immature, underpinned by low ASMA vessel coverage ex vivo, 

possibly leading to poor perfusion and oxygenation of the tissue. In stark contrast to 

STG139, the other basal model STG321 had relatively mature vessels with high pericyte 

coverage measured ex vivo and STG321 does not appear to be  
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2 

angiogenic, with low levels of VEGF expression measured using IHC, supporting the 

minimal increase in blood volume over time observed with mesoscopic PAI. In vivo 

SO2 
MSOT measurements also tend to be relatively high in this model, while necrosis and 

CAIX expression are low, suggesting that the mature vessels are able to deliver 

oxygenated blood to the tumour tissue to prevent hypoxia. The two luminal B models 

(AB580 and STG143) had relatively low blood content, with low CD31 vessel area 

measured ex vivo and low THbMSOT measured in tomographic PAI. The vessels in these 

models were somewhat mature, with intermediate levels of pericyte/smooth muscle 

coverage, in-between the two extremes denoted by the basal models. AB580 tumours had a 

necrotic core and although not as hypoxic as STG139, they still had high CAIX expression 

with ~30-50% positivity. In contrast, STG143 tumours were relatively normoxic. This 

may be due to the proliferation rate of the tissue, as AB580 PDXs grow quicker than 

STG143 and will have a higher oxygen demand that is not supplied by the sparse vascular 

network, resulting in the development of diffusion-limited hypoxia over time as the tumour 

grows. In STG143, the growth is so slow that the oxygen supply and demand appear 

matched. It is clear that the 4 PDXs studied display different vascular phenotypes meeting 

Aim 1 of the thesis. 

 

PAI was able to distinguish different vascular phenotypes underscored by the IHC 

markers, meeting Aim 2. Encouragingly, despite smaller effect sizes in vascular metrics 

in the PDX models compared to breast and prostate CDX models measured 

previously48,126, PAI was still sensitive enough to delineate the vascular phenotypes 

presented by more clinically-relevant models, particularly to differences in blood content. 

Additionally, similar studies in a wider range of PDXs and patients, preferentially also 

representing additional breast cancer subtypes not represented by the models presented 

here, would enable the sensitivity of PAI to different vascular phenotypes to be assessed 

on a larger scale. Considering multiple PAI measurements together as a ‘PAI signature’ of 

a tumour would provide increased insight both pre-clinically and in clinic, considering a 

combination of oxygenation, blood content and network structure measurements to 

provide surrogate biomarkers of hypoxia, vessel density and network maturity and build a 

greater picture of the tumour vessel phenotype non-invasively. 
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2 2 

Aim 3 of the thesis questioned whether the breast PDXs were robust and reliable 

vascular models that represented the patients from which they were derived. When looking 

across 3 passages and passage repeats of STG139 and AB580, there is a remarkable 

stability in the vascular phenotypes. This was particularly true for measurements of 

‘vascular function’ i.e. measurements of hypoxia and ASMA vessel coverage (vessel 

maturity) on IHC. Despite some variation in blood content, this never skewed the 

measurements in such a way as to create an entirely new phenotype. I found the PDXs will 

always produce repeatable and functionally distinct vascular phenotypes, suggesting that 

there is an inherent ‘instruction’ from the cancer cells themselves, which instructs the 

mouse host vasculature to form a particular phenotype. 

 

Comparisons to patient IHC were briefly conducted on the clinical sections 

available and there was an indication that vessel density and maturity were preserved from 

patient to PDX. However, whole tissue sections of all the IHC vascular markers presented 

must be scored blindly by a pathologist in future. PAI was not conducted on these patients, 

however, it may be possible in future to examine images from another modality such as 

dynamic-contrast enhanced MRI, to study tumour perfusion, if these images were taken as 

part of the standard-of-care pathway and compare the phenotypes captured here to those 

captured with PAI in the PDXs. 

 

All 4 PDXs create blood vessels but they are not all made equal, suggesting there 

is an instructive element in the implanted tumour, because if they were simply mouse 

reactions to the human tissue transplantation the vascular phenotypes would be the same. 

Therefore, to address Aim 4 of the project and gain insight into the origins of PDX 

vasculature, RNA sequencing was conducted on a subset of the PDXs, taking samples 

from across passages for all 4 models. Expression of a hypoxic gene signature was 

measured, and found to be highest in STG139, while it was relatively low in the other basal 

model STG321. AB580 had higher hypoxic gene expression than the other luminal B model 

STG143, which had the lowest expression of all 4 PDXs. Expression correlated with 

measurements of hypoxia on IHC, THbMSOT and SO2
MSOT measured with PAI, 

demonstrating genetic validation of in vivo PAI metrics for the first time to my knowledge 

and the potential for PAI to inform on underlying hypoxic gene expression in tumours. 

Interestingly, expression of the signature was constitutively high in STG139 tumours,  
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regardless of size. This was supported by no evolution in IHC vascular markers in 

STG139. In AB580 hypoxic gene expression evolved, increasing from small to large 

tumours, as did hypoxia measured ex vivo. 

I only measured up to 3 early passages of PDXs during the time constraints of this 

thesis, so later passages may introduce further changes that were not measured here. Using 

early passages of the PDXs was essential for two reasons: 1. I was concerned that later 

passages may have developed changes in the vessel phenotype that would not be 

representative of the patients from which they were derived. 2. Many PDXs in the biobank 

will stop engrafting after passage 5 (except the aggressive model STG139). Therefore, one 

is limited to early passages of the PDXs, making them more likely to represent patient tissue 

but brings into question the widespread utility of the models. 

 

Engraftment success rates were limiting throughout my thesis, particularly in the 

luminal B models which are less aggressive. In some AB580 and STG143 passages, 

engraftment was as low as 40% whereas with both basal models it was always ~90% or 

more. Many mice were wasted as they never grew a tumour. The Caldas lab surgery 

protocol is one of the fastest in the PDX field, with samples from patient to mouse 

implanted within 30 minutes of excision from the patient10, and in my experience samples 

for passaging can be defrosted, washed and implanted within 15 minutes. Therefore, it 

seems this problem is inherent to PDX use, particularly with less aggressive models. 

Considering also the length of time taken for less aggressive tumour models to grow (in 

the case of STG143 this was over 6 months), this severely limits the model’s utility. 

Despite appearing to be a more diverse and representative vascular model than CDXs, cell-

line models still have a place in cancer research and in PAI, for quickly testing initial 

hypotheses or for pilot drug studies. Nonetheless, I would suggest a progression to a more 

clinically-relevant model in time. 

 

There are other limitations to the PDXs used in this thesis. Breast PDXs were 

implanted subcutaneously on the flank of the mice, not orthotopically in the mammary fat 

pad. Anecdotally speaking, the Caldas laboratory advises that this doesn’t significantly 

impact engraftment success or gene expression. I therefore chose to continue with their 

established protocol, as subcutaneous implantation was easier to perform and enabled 

access to the tumour for imaging in both mesoscopic and tomographic PAI systems.  
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However, there are numerous reports that subcutaneous vs. orthotopic implantation will 

impact the vascular phenotype formed in breast and other xenograft tumours298-302. It was 

recently demonstrated that a direct comparison of the two implantation sites resulted in 

similar breast PDX doubling times and histology303, but these potential differences should 

be investigated in full, and the whole growth environment of the PDXs considered. 

Additionally, further advances to humanize the mouse immune system in these 

immunocompromised models will be vital172 to have a more holistic approach of the 

vascular microenvironment, considering the influence of immune cells on the vasculature5. 

PDXs are considered ‘patient avatars’, with similar response to standard therapies 

than the patients they represent, and therefore are considered good models for preclinical 

testing of novel therapies9,10. The data presented in this thesis suggests that the diversity 

of vascular phenotypes observed in breast PDXs will be vital to consider when selecting 

and utilising PDXs in drug and imaging studies, as the vascular microenvironment, 

particularly blood perfusion and oxygenation, will significantly impact drug and/or 

contrast agent delivery and therapeutic efficacy1. 

Knowing the importance of hypoxia and blood vessel formation on tumour 

development and response to treatment, advances are being made to measure these features 

in patients and use this to stratify those who will and won’t respond to particular therapies. 

But currently there are no hypoxia biomarkers in routine use to aid patient management 

decisions294. This work emphasises the importance of these features and how varied they 

are across models (and presumably patients), supporting the non-invasive monitoring of 

these features in clinic. With regards to the patients represented in this thesis, the only 

tumour which continually relapsed, metastasised and caused death within 5 years of the 

initial diagnosis was the STG139 tumour. All other patients were still alive at the time of 

the biobank publication10, and were responding to therapy. Here, STG139 was consistently 

the bloodiest, hypoxic and most aggressive PDX model of those investigated. While the 

causes of relapse and metastasis in the STG139 patient tumour can only be speculated in 

this thesis, there may be a correlation between aggressive vascular phenotype and 

aggressive tumour behaviour, highlighting the vital importance of monitoring these 

features in clinic and finding appropriate therapeutic options for  
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patients that won’t’ respond to the current standard-of-care. 

 

Finally, the last takeaway point outside of my aims is the importance of 

quantification and validation in PAI measurements and IHC. In this thesis, I have 

quantified all IHC vascular marker expression (Chapter 2), and created and validated a 

new random forest classifier to quantify mesoscopic PAI (Chapter 3) and used previously 

validated algorithms for tomographic PAI analysis (Chapter 4). Quantification and 

validation of the algorithms used for analysis of these images is not a given in the field. 

By doing so, I along with previous lab members48,126, have validated PAI imaging metrics 

and gained a comprehensive understanding of biomarker expression across the 4 PDX 

models. The importance of quantification was particularly emphasised in Chapter 3, as 

quantification of mesoscopic PAI in the literature is ad-hoc, unstandardised and often 

completely lacking106–108,113. Of course, a lack of computational expertise and time taken 

to properly validate algorithms for analysis are obvious barriers to quantification. 

Additionally, creating ground-truths for mesoscopic PAI is difficult, owing to the noise 

and artefacts present and a lack of expertise and datasets in a new field. I addressed some 

of these issues in Chapter 3, in collaboration with others, by validating the use of a random-

forest classifier to segment mesoscopic PA images with an in silico, phantom, in vivo and 

ex vivo framework. Considering that the classifier is implemented in a user friendly 

software, now common in the life sciences228, I hope our results and methods can be widely 

used in the PAI field, and perhaps further afield with other vascular imaging modalities. 

 

In this thesis, I have used a combination of PAI, IHC and RNA-seq to investigate 

the vascular phenotypes of breast PDXs across scales for the first time. I have 

demonstrated the power of combining PAI systems of different resolutions and penetration 

depths, to capture complementary information on the vascular microenvironment. I have 

showcased the delicate interplay between tumour vasculature and hypoxia in a new context 

with a clinically-relevant breast cancer model. I have shown that PAI metrics give insight 

into underlying gene and protein expression, presenting a non-invasive method of probing 

these pathways, which could be utilised longitudinally throughout a patient’s treatment 

regime. I have also shown that PDXs are reliable and robust vascular models, advancing 

not only the field of PAI, but also adding knowledge to  
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the utility of breast PDXs in oncology research. 

 

Looking forward, the work conducted in my thesis has established a biobank of 

breast PDXs in the laboratory and over 1000 PA images of breast PDXs have been 

collected, along with corresponding IHC. This I hope will lead to many future works. The 

data collected could be used to advance image analysis pipelines beyond those I have 

presented in this thesis, perhaps tapping into the use of neural networks and deep-learning 

for advanced segmentation methods. An obvious advancement to the use of PDXs in PAI 

would be in treatment response studies, perhaps those targeting angiogenesis or hypoxic 

signalling pathways, considering that PDXs are considered very good models of patient 

treatment response173. Investigating how the vasculature evolves in response to treatment 

and how PAI can visualise this may provide clinically-relevant insight and could perhaps 

be matched to patient PAI or MRI data, to further validate the use of PDXs in PAI and 

learn the impact of certain vascular phenotypes on treatment response and tumour 

evolution. 

 

I see a bright future ahead for the use of photoacoustic imaging in breast cancer. 
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APPENDIX 1: 3D CONVOLUTIONAL NEURAL NETWORK    FOR 

ROI DELINEATION 

 

 
Preparation of training data for CNN 

 
Image volumes consist of a series of 8-bit grayscale Tiffs (no compression) of 600 x 600 

pixels in the XY-plane and a stack of 700 images in Z, with anisotropic voxels of size 20 x 

20 x 4 μm3. Our dataset has a total of 166 PAI volumes, each paired with a corresponding 

binary semi-manually-annotated volume, where a voxel value of 0 and 255 indicates the 

background or tumour ROIs, respectively. The annotated volumes were generated by an 

experienced user (ELB), who first identified the top and bottom image containing the 

tumour in Z. Within these upper and lower bounds, ROIs were manually drawn in the XY 

plane on approximately 4 image slices. Bound by these data, a convex hull was 

extrapolated to approximate the ROI in the remaining image slices. 

 

Prior to training, image volumes and binary masks were downsampled to an isotropic 

volume of 128 x 128 x 128 voxels to fit into computer memory. Data were normalised to a 

pixel range between 0 and 1 and the volumes randomly partitioned into training, 

validation, and testing subsets. Here, ~5% of images were allocated for testing, with the 

remaining portion split 80:20 for training and validation respectively (8 / 126 / 32 image 

volumes, respectively). 

 

Neural Network Architecture for ROI delineation 

 
The 3D convolutional neural network (CNN) is based on the U-Net architecture242 

extended for volumetric delineation243 (Figure 8.1). The structure consists of an encoder, 

which extracts spatial features from a 3D image volume, and a decoder, which constructs a 

segmentation map from these features (Figure 8.1). The network architecture consists of 

five convolutional layers. The encoder path contains two 3 x 3 x 3 convolutions, each of 

which passed through a rectified linear unit (ReLU) activation for faster convergence and 

accuracy243. Each ReLU activation is followed by 2 x 2 x 2 max pooling with strides 



 

231  

of two in each dimension. For the 3rd, 4th and 5th layers, dropout is applied to reduce 

segmentation bias and ensure segmentation is performed utilising high-level features that 

may have not been considered in our semi-manual ROI annotations. 

 

The decoder path consists of two 3 x 3 x 3 deconvolutions of strides of 2 in each dimension, 

followed by 3 x 3 x 3 convolutions, batch normalisation and ReLU activation. High-

resolution features were provided via shortcut connections from the same layer in the 

encoder path. The final layer applied an additional 1 x 1 x 1 convolution followed by 

sigmoid activation to ensure the correct number of output channels and range of pixel 

values [0, 1]. The input layer is designed to take n grayscale (one channel) tumour volumes 

as input with a pre-defined volume (128 x 128 x 128 voxels in X, Y, Z-direction used here). 

The U-Net binary mask prediction contains an equal number of voxels as the input. The 

CNN was implemented in Keras (https://keras.io) with the Tensorflow framework. The 

model was trained and tested on a Dell Precision 7920 with a Dual Intel Xeon Gold 5120 

CPU with 128 GB RAM and a NVIDIA Quadro GV100 32 GB GPU. 

 

 
 

 

Figure 8.1. 3D U-Net architecture. The blue boxes indicate feature maps with the number 

of channels denoted above. The input and output image volumes consist of 128 x 128 x 

128 voxels. 

 

Hyperparameter Optimisation 

 
Hyperparameters were optimised and evaluated using Talos 

(https://github.com/autonomio/talos) , a fully-automated hyperparameter tuner for Keras.  

https://github.com/autonomio/talos
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A random search optimisation strategy was deployed using the quantum random method. 

Here, a probabilistic reduction scheme was used to reduce the number of parameter 

permutations by removing poorly performing hyperparameter configurations from the 

remaining search space after a predefined interval. The number of filters used ranged from 

16 in the 1st layer to 512 in the 5th. Dropout at a rate of 0.2 was applied in the 3rd, 4th and 

5th layers. A Glorot uniform initialiser was used for all convolution and deconvolution 

layers. The model was trained using an Adam optimiser with learning and decay rates of 

10-5 and 10-8, respectively, and the dice coefficient (F1)249 used as the loss function. 

 

U-net training and predictions 

 
Training was performed with a batch size of 3 image volumes for a total of 120 epochs 

(Figure 8.2A). The fully-trained network achieved an accuracy of 88.3% and 87.3% on 

the training and validation sets respectively (Figure 8.2B). Following training and test, we 

applied the CNN to the entire set of volumes to compare predictions of ROI volume to the 

ground truth (Figure 8.2C). Blood volumes were then calculated within the predicted 

ROIs using the AT method and compared against the user annotations (Figure 8.2D). We 

found a significant correlation between user annotated and predicted data for both ROI 

volume (Spearman’s rank correlation: r = 0.821, p < 0.0001) and blood volume (r = 0.958, 

p < 0.0001), indicating our CNN achieves sufficient performance against the experienced 

user to be applied for extracting tumours prior to testing the segmentation pipeline. 
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Figure 8.2. U-Net training metrics and predictions from the fully-trained 

architecture. Training metrics: (A) F1 loss and (B) F1 score for the training (blue) and 

validation (orange) datasets. (C) Region-of-interest volumes calculated from the ground 

truth (GT) versus the U-Net mask. (D) Computed blood volumes using the ground truth 

and U-Net ROI estimations from (C). Note, the lines in (C) and (D) indicate a 1-to-1 

relationship, and blood volumes in (B) were calculated using our auto-thresholding 

segmentation method. 
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APPENDIX 2: NETWORK ANALYSES OF AT+VF 

SEGMENTATION MASKS COMPARING STG139 

AND AB580 TUMOURS   
 

 
Data are represented by truncated violin plots with interquartile range (dotted black) and 

median (solid black). Comparisons between STG139 (ER-) and AB580 (ER+) tumours 

made with unpaired t-test. For (A) STG139 n=6, AB580 n=8. For (B-G) STG139 n=5, 

AB580 n=8, one STG139 image is excluded with artefact that would impact network 

structure/topology. p<0.05 considered significant. 

*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001. 




