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Abstract

Ageing presents one of the most fundamental public health challenges of our time.
Progress in living standards, combating infectious disease and promoting safety, and
general nutritional availability, has led to an increase in lifespan across the developed
world. However, this has been accompanied by an increase in the duration of late-life frailty
and associated conditions affecting health. Metabolism is known to be a key mediator of
ageing across the diversity of living species. Many of the pathways that extend lifespan
and promote healthspan are known to be metabolic and relate to managing the balance of
energy availability to optimise resource usage and survival during times of scarcity.

The model organism Caenorhabditis elegans, a small transparent nematode worm that
ordinarily lives in the soil and eats bacteria, is one of the most common organisms used
in the study of ageing as it is easy to culture in laboratory conditions and has a short
lifespan of around three weeks under normal conditions. In this thesis, I analyse in
detail the metabolic changes that occur during ageing in C. elegans, using a multi-omics
metabolomics and transcriptomics time series of measurements in three C. elegans strains,
and mathematical modelling.

Whole-genome metabolic models are representations of all the metabolic reactions
taking place within an organism together with their metabolic inputs and outputs, and
enzymatic catalysts. I describe the development and validation of a community-wide
shared whole-genome metabolic model for C. elegans. Using this model together with
measured gene expression levels for each enzyme that catalyses a reaction, it is possible to
predict intracellular reaction fluxes using a method called Flux Balance Analysis (FBA). I
describe a novel method for the integration of metabolomics data with FBA, and the results
of a comparative analysis of the resulting fluxes in normal wild-type ageing. I then go on
to describe the differences to a germline-free strain that is long-lived and metabolically
different.

Finally, I have used the model to probe the metabolic flexibility and evidence for
trans-omics bidirectional regulation between the transcriptomic and metabolomic layers.
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1. Introduction

Across the developed world, we are witnessing a significant increase in the burden of
age-associated diseases (Beard and Bloom, 2015). Average life expectancies have increased,
thanks to advances in medical care and living standards. However, the period of relatively
good health (‘healthspan’; Hansen and Kennedy, 2016) has not been extended concordantly
with that of life expectancy, leading to a public health crisis (Partridge et al., 2018).

Ageing across multiple species is accompanied by frailty, decline in normal physiological
functioning, and disease (López-Otín et al., 2013). The diseases that occur disproportionately
in aged human populations include cardiovascular disease, metabolic syndrome and
diabetes, cancer and neurodegeneration (Hodes et al., 2016). Yet, there is ample evidence
that lifestyle and metabolic factors may delay the onset of age-associated disease and
prolong health (Chedraui and Pérez-López, 2013; Dato et al., 2013; Quach et al., 2017; Rea,
2017).

Ageing comprises a complex, interconnected series of dysfunctions that develop as
organisms grow older, and while individual aspects of this process are being elucidated in
great detail, the field still lacks a comprehensive systems-level integrated understanding
(Cohen, 2016; Kirkwood, 2008, 2011). It is becoming evident that the mysteries of normal
and perturbed ageing need to be studied as a complex temporal sequence of events to tease
apart the interrelated regulatory processes (Hastings et al., 2019b). Furthering this objective
to extend knowledge of the basic biology of ageing, and the ways in which genetic and
metabolic factors interact in a time resolved, whole-systems level to delay ageing-associated
functional decline, promises to yield improvements in health over the full lifespan (Chauhan
et al., 2015; Niccoli and Partridge, 2012; Zierer et al., 2015).

1.1 C. elegans is a popular model organism for ageing research

Much of what is known about the biology of ageing has been learned from studies using
the model organism Caenorhabditis elegans (C. elegans), a transparent nematode worm about
1mm in length, which has become the première model organism used in ageing research
(Braeckman and Vanfleteren, 2007; Gruber et al., 2015; Johnson, 2013; Torgovnick et al.,
2013). C. elegans is a popular metazoan model organism to study ageing as it bears sufficient
molecular resemblance to mammalian species in many aspects, while being amenable to
experimentation due to its relatively simple body plan and much shorter lifespan.

C. elegans has an average natural lifespan of only 2-3 weeks, making comparative
lifespan studies feasible in relatively short timeframes. It is easily grown in laboratory



2 Introduction

cultures, and can be frozen for long time periods in liquid nitrogen, hence making the
maintenance of isogenic populations straightforward (Corsi et al., 2015). It was one of the
first organisms to be genetically sequenced, and there are a wide variety of genetic tools
available for manipulation. Many of the important markers of ageing and senescence in
humans are also present in C. elegans, including decreased mobility, frailty, and increased
susceptibility to infection (Collins et al., 2008). Moreover, age-related pathology can be
directly screened in C. elegans due to the transparency of the worm body. This transparency
supports the widespread use of fluorescent reporters and the development of automated
imaging approaches for high-throughput phenotyping (Stroustrup et al., 2013). C. elegans is
robustly responsive to multiple interventions extending lifespan, and at the molecular level,
many of the pathways that extend lifespan in C. elegans are conserved across species and
have similar effects in mammals (Tissenbaum and Guarente, 2002; Torgovnick et al., 2013).

Figure 1.1 C. elegans anatomy, development and adult life course.
(A) The basic anatomy of adult hermaphrodite C. elegans. The pharynx is where bacteria are ground
up to be ready for digestion in the intestine, which extends throughout the body. The somatic
gonad produces both sperm and oocytes which are then self-fertilised to generate embryos. (B) The
developmental and adult life course timings are illustrated from the time of egg hatching into the
first larval stage. The adult worms are reproductive between days 2 and 4 of adulthood. Loss of
functionality due to ageing ensues a few days later, with onset of age-related mortality post-day-10.
Approximate timings are indicated in hours.

The majority of C. elegans individuals are self-fertile hermaphrodites. In wild type (WT)
conditions, males make up 0.1-0.2% of the population (Corsi et al., 2015). C. elegans are
ectotherms, and the durations of both developmental stages and lifespan are influenced
by the surrounding environmental temperature (Klass, 1977; Zhang et al., 2015), with
development proceeding more rapidly at warmer temperatures. Figure 1.1A shows the
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anatomy of WT adult hermaphrodite C. elegans, and Figure 1.1B shows an indicative WT
timeline of development, adulthood, reproduction and age-associated decline.

Just as is the case for humans, a complex and interconnected variety of organismal
pathologies characterise normal ageing in C. elegans: the pharynx, through which C. elegans
consume their bacterial diet, degenerates, while the intestine and gonad atrophy, and
tumours develop in the uterus (Ezcurra et al., 2018). Alongside atrophy of the intestine,
fatty pools of lipoproteins accumulate in the body cavity. Cellular pathologies are also
evident: stochastic molecular damage accumulates, and mitochondria become fragmented
and lose volume (Regmi et al., 2014; Yasuda et al., 2006) with a concurrent loss of electron
chain oxygen consumption and ATP production (Braeckman et al., 2002; Houthoofd et al.,
2005). At the same time, locomotion declines alongside a loss in muscle tissue integrity
(Glenn et al., 2004; Hsu et al., 2009). These changes do not merely occur towards the end
of the normal worm lifespan – in fact, many are fully evident prior to median lifespan,
and appear in some cases to anticipate, rather than result from, changes in messenger
RNA and protein levels that occur with advancing age (Ezcurra et al., 2018), hinting
that the age-related pathologies may be causes rather than consequences of deregulated
transcriptional processes. And it is not only the changes that occur late in ageing when
morphological decline is evident that are relevant, but also the changes during early ageing.
For example, there is a very early collapse in the ability of the organism to respond to stress,
by up-regulating the transcription of stress response proteins, that takes place roughly at
the same time as the onset of reproduction (day two of adulthood), yet can be delayed by
interventions that extend lifespan (Ben-Zvi et al., 2009).

C. elegans has consistently been at the forefront of ageing research, as the very first
genetic mutation that results in a longer lifespan was discovered in this organism. This
long-lived mutation was a loss of function in the age-1 gene, which encodes for a PI3 kinase
(Friedman and Johnson, 1988; Johnson, 2013). This gene encodes for a key component in
the signalling cascade that listens for and responds to the presence of insulin, an indicator
of the availability of nutrients, and a fundamental regulator of diverse metabolic pathways.
With this discovery, ageing was revealed as not inevitable in its decline, but rather as a
genetically controlled, plastic phenomenon amenable to possible interventions (Kenyon,
2011). Shortly thereafter, the subsequent discovery of a second longevity modulator further
cemented the relevance of metabolism for ageing.

1.2 Metabolism is a key mediator of longevity

After age-1, the next longevity enhancing mutant to be discovered was daf-2, which encodes
the C. elegans insulin/IGF receptor ortholog (Kenyon, 2011; Kenyon et al., 1993).
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Figure 1.2 The insulin/IGF signalling pathway regulates development and ageing.
(A) The life cycle of C. elegans typically proceeds from hatching through four larval stages to
adulthood and the onset of reproduction. The dauer stage is an alternative larval stage entered in
conditions of food scarcity. In this stage, the organism is hypometabolic and can survive for up
to four months, many times its normal adult lifespan. When food becomes available again, the
organism exits into the L4 larval stage and re-enters normal development. Entry into the dauer
stage is controlled by the IIS pathway. (B) In the IIS pathway, signals about food abundance are
received by the DAF-2 receptor, which activates the AGE-1 PI3 kinase signalling cascade that acts
through AKT-1 and AKT-2 to inhibit translocation of the transcription factor DAF-16 to the nucleus.
When signalling in this pathway is reduced, DAF-16 enters the nucleus and activates transcription
of stress response and pro-longevity genes.

During development, if nutrients are scarce, C. elegans may enter an alternative develop-
mental stage called ‘dauer’. Animals can stay in the dauer stage for up to several months,
surviving from their stored lipid reserves with a very low rate of metabolism (Figure 1.2A).
If food becomes abundant in the environment again, they will exit the dauer stage and
continue with normal development.

The gene daf-2 is one of several genes known as constitutive for dauer formation, as loss
of function mutations in these genes result in dauer formation during development even
when nutrients are abundant. Using a temperature-sensitive mutation in this gene to enable
selective activation in adulthood, Kenyon et al. (1993) and others were able to show that
this mutation could extend lifespan in adults, indicating that nutrient sensing pathways
could fundamentally regulate not only development, but also the process of ageing.

It was subsequently determined that daf-2 is a part of the insulin/IGF-1 signalling (IIS)
pathway (Figure 1.2B), a widely conserved nutrient sensing pathway that also includes
age-1 (Kaletsky and Murphy, 2010; Panowski and Dillin, 2009). daf-2 acts upstream of
age-1, while downstream of age-1 is the transcription factor daf-16 that has been found to
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have prolific regulatory effects on stress resistance, cellular metabolism and proteostasis
(the maintenance of proteins in their correct folded form and the removal of damaged
proteins). In humans, insulin is secreted primarily by the pancreas, and insulin signalling
has been found to regulate not only glucose homeostasis but also pleiotropically many other
pathways including growth and reproduction (Mathew et al., 2017), and, perhaps most
surprisingly, cognitive function (Tumminia et al., 2018). Impairments in insulin signalling
lead commonly to body weight deregulation and diabetes (Brown et al., 2017), and, in some
rare severe genetic mutations, developmental defects which lead to early death (Bathi et al.,
2010). Mutations that cause impairments in the insulin growth factor (IGF-1) receptor in
humans result in severe reductions in growth, and defects in metabolism (Savage, 2013).

In addition to the IIS pathway, longevity is now known to be influenced by a mul-
tifactorial array of heritable and environmental influences interrelated with metabolic
factors (Finkel, 2015). The morphological changes mentioned above that are evident in
post-reproductive wild-type C. elegans also point towards the loss of key metabolic capabili-
ties during normal ageing, e.g. atrophy of the intestine (Ezcurra et al., 2018) and loss of
mitochondrial integrity (Yasuda et al., 2006).

The remainder of this section provides a review of the interrelationships between
metabolism and ageing.

1.2.1 Dietary restriction and nutrient sensing pathways

One of the earliest discovered and most reliably conserved interventions to extend lifespan
is dietary restriction (DR), the reduction of food intake without malnutrition (Omodei
and Fontana, 2011). DR reduces the incidence of many age-associated diseases, including
cardiovascular disease, cancer and metabolic disease (Colman et al., 2009). Conversely,
over-nutrition and obesity lead to complications that shorten life span and exacerbate
age-associated decline, such as in cognitive performance (Beilharz et al., 2015).

DR acts to promote longevity through a combination of mechanisms and pathways. It
shifts the balance of active metabolism from carbohydrates to lipids, improves metabolic
flexibility and insulin sensitivity, inhibits inflammation and oxidative stress, and maintains
youthful patterns of acetylation (sirtuin activity), NAD+ levels, and autophagy (Fontana
et al., 2010; Omodei and Fontana, 2011). During the normal course of ageing, there is a
general reprogramming of metabolic function, including a decrease in the efficiency of
energy generation, which is believed to be one of the factors that is offset by DR (Feng et al.,
2016; Houtkooper et al., 2013). However, disentangling the specific effects of these various
pro-longevity pathways to understand their interrelationships and individual contributions
to overall longevity phenotypes is an ongoing challenge in the field of ageing research.



6 Introduction

In C. elegans, early research established that, as with other model organisms, DR
robustly extended lifespan (Klass, 1977). Since then, several distinct models for DR have
been developed in C. elegans, including dietary interventions such as diluting the available
bacterial food source or providing an axenic food source only, and genetic mutations such
as in the eat-2 gene that slows the pharyngeal pumping rate (Greer and Brunet, 2009). DR
results in decreased activity in nutrient sensing pathways, due to the decreased availability
of nutrients. One such pathway is the IIS pathway, already introduced above as that in
which the first longevity-promoting genetic interventions were discovered in C. elegans.
Other nutrient sensing pathways include the TOR (target of rapamycin) signalling pathway
and AMPK (AMP-activated kinase).

Figure 1.3 Dietary restriction and nutrient sensing pathways.
The TOR pathway, AMPK, and dietary restriction act via convergent interactions to detect nutrient
abundance and direct cellular metabolism accordingly, harnessing shared central metabolic and
stress response regulators such as daf-16 and pha-4.

The TOR pathway is activated by the availability of nutrients, in particular amino acids
and growth factors. The C. elegans ortholog of the mammalian TOR gene is let-363, and
reducing activity of this gene by RNAi in adult worms extends lifespan, but the effect is
not increased by simultaneous DR, indicating that it is one of the mechanisms of DR life
extension (Vellai et al., 2003). TOR exists in two complexes, TORC1 and TORC2, which
have different co-activators – daf-15 (Raptor) and rict-1 (Rictor). In addition to longevity,
the TOR pathway regulates development, lipid storage, mRNA translation, and autophagy,
operating through the downstream regulators daf-16 (in common with IIS), pha-4 and skn-1
(Lapierre and Hansen, 2012).

The energy-sensing enzyme AMP-activated kinase (AMPK) also plays a role in longevity
and interacts with the targets of the TOR and IIS pathways. In C. elegans, the gene aak-2
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encodes for a catalytic subunit of AMPK, and its overexpression extends lifespan (Apfeld
et al., 2004). AMPK is allosterically inhibited by ATP and activated by AMP, thus acts as a
sensor of a high AMP to ATP ratio, which indicates low availability of energy. It acts in part
via transcriptional co-regulator crtc-1 (Mair et al., 2011). It is a widely conserved energy
regulation and stress response signalling pathway (Carling, 2017; Garcia and Shaw, 2017)
and is frequently aberrant in cancer (Monteverde et al., 2015). AMPK also centrally regulates
neuromuscular biology, driving the physiological plasticity in response to exercise, and
is thus a target for treatments for neuromuscular conditions such as muscular dystrophy
(Dial et al., 2018).

The relationship between nutrient sensing pathways and lifespan is of paramount
importance in the quest for pharmacological agents that can be used to slow ageing and
prolong health. DR mimetics are drugs that act to inhibit the signalling pathways that
indicate nutrient abundance, thereby artificially causing cells to act as though nutrients were
scarce (Ingram and Roth, 2015; Ingram et al., 2006). One of the first such DR mimetics to be
discovered was rapamycin, a TOR inhibitor which gave its name to the TOR protein complex
(Ingram et al., 2006). Other TOR inhibitors include valproic acid (Evason et al., 2008) and
α-ketoglutarate (Chin et al., 2014). Other molecules have been found to target other
components of the overall nutrient-sensing pathway, for example 2-deoxyglucose (which
inhibits glycolysis; Ingram and Roth, 2011), metformin (which enhances insulin action via
AMPK; Onken and Driscoll, 2010), and resveratrol (which targets sirtuin pathways; Chung
et al., 2012), have all been shown to extend lifespan and lower the risk for age-related
diseases.

1.2.2 Germline signalling and lipid metabolism

In C. elegans, the removal of proliferating germline stem cells by laser ablation was found
to significantly extend lifespan (Hsin and Kenyon, 1999). Mutations in the C. elegans Notch
receptor glp-1 that phenocopy germline ablation by blocking germline proliferation, also
extend lifespan (Berman and Kenyon, 2006). This is not due merely to the absence of
reproduction (Partridge et al., 2005), since ablation of the precursor cells for the entire
gonad also cause sterility, but without any effect on lifespan (Hsin and Kenyon, 1999).
Although germline signalling does not extend lifespan in all model organisms, a negative
correlation has been observed between reproduction and longevity in multiple species
(Aguilaniu, 2015).

The lifespan-extending effect of germline ablation in C. elegans led to the hypothesis
that there may be a specific germline signal that is ordinarily countered by an opposing
signal from the somatic gonad. However, the exact details of this signal proved difficult
to elucidate. In their seminal paper Hsin and Kenyon (1999) identified daf-16, part of
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the insulin signalling pathway, as one downstream component of the germline signalling
pathway, as it was found to be essential for the longevity response to germline ablation. It
was later discovered that the longevity response was also dependent on hormone signalling
to nuclear hormone receptor daf-12 (Gerisch et al., 2007, 2001) and an intestinal gene kri-1
(Berman and Kenyon, 2006), further underscoring the dependence of the germline signal
on metabolic regulation. Reductions in TOR signalling do not further extend the lifespan
of glp-1 mutants, and the pathway shares downstream effector mechanisms with that
of IIS (Panowski and Dillin, 2009). Further research has found a staggering diversity of
pro-longevity processes at work in germline-less long-lived worms, including a reduction in
mTOR signalling accompanying an increase in pha-4 and skn-1, alterations in mitochondrial
function, and a host of other metabolic changes including increased autophagy, steroid
signalling, lipolysis, and lipogenesis (Lapierre and Hansen, 2012; Thondamal et al., 2014).

Indeed, there appears to be a broad and intimate connection between altered processing
of lipids and germline longevity. Germline-free worms are unusually fatty (O’Rourke
et al., 2009), with notable differences in their lipid composition relative to WT (Amrit et al.,
2016; Gao et al., 2017; Steinbaugh et al., 2015). There is no simple correlation between
overall fat content and lifespan, since worms under dietary restriction contain less fat, while
insulin signalling mutants and germline mutants have more fat, yet all these conditions
are pro-longevity. Rather, lipid composition, as well as rate of turnover, could be the most
relevant factor (Ackerman and Gems, 2012). Multiple studies indicate that the germline-free
longevity phenotype is dependent on both lipogenic and lipolytic pathways (Lemieux and
Ashrafi, 2016; Yamawaki et al., 2008, 2010). They are dependent for their longevity on
lipases (e.g. lipl-4) and fatty acid desaturases (e.g. fat-6 and fat-7) (McCormick et al., 2012).
These enzymes desaturase stearic acid to oleic acid, and germline mutants have been found
to have higher levels of oleic acid, which has been found to be beneficial for lifespan (Gao
et al., 2017; Han et al., 2017). Research in our lab has shown that some aspects of these
relevant pathways may be distinguishable temporally, in that their transcriptional activation
is occurring at different times (Mains, 2018). Recently, Han et al. (2017) demonstrated that
rsks-1, a conserved TOR pathway substrate, acts from the germline to limit lifespan via an
effect on fatty acid desaturation.

Many lifespan-extending treatments also alter lipid metabolism (Hou and Taubert,
2012), underlining the importance of lipid metabolism for ageing pathways. Lipids act as
signalling molecules, as stores for energy metabolism, and as structural building blocks,
interconnecting many different aspects of cellular metabolism. Moreover, marked changes in
lipid composition and distribution have been observed with age (Ackerman and Gems, 2012;
Gao et al., 2017). Lipids also serve as substrates to energy metabolism via mitochondrial
function, which we explore next.
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1.2.3 Mitochondrial function

Mitochondria are the power-houses of the cell, harnessing an electron gradient to generate
ATP by oxidative phosphorylation, thereby providing for the energy requirements of
diverse cellular processes. During the course of normal ageing in C. elegans, mitochondria
usually become fragmented and lose overall volume (Regmi et al., 2014; Yasuda et al., 2011,
2006), with a concurrent loss of electron chain oxygen consumption and ATP production
(Braeckman et al., 2002; Houthoofd et al., 2005).

Genetic mutations that prolong lifespan, for example disruptions in insulin-like sig-
nalling, have been found to also delay age-associated mitochondrial decline (Brys et al.,
2010). Mitochondria are not static organelles, but rather, they dynamically change in
shape and size in response to altered energy requirements. Increased levels of elongated
mitochondria via mitochondrial fusion have been found to be a necessary (although not
sufficient) component of several longevity phenotypes, including daf-2 mutants (Chaudhari
and Kipreos, 2017), and DR has been found to increase mitochondrial network remodelling
and flexibility (Weir et al., 2017).

Notably, insulin-like signalling mutants have been found to have higher levels of ATP
than WT organisms (Chaudhari and Kipreos, 2017). Fused and elongated mitochondria
are more efficient at generating energy, and maintaining high levels of energy at older
ages is expected to promote cellular maintenance mechanisms such as protein folding and
degradation, which both require high levels of ATP (Chaudhari and Kipreos, 2018).

The relationship between mitochondrial function and cellular health is multifaceted
and non-linear. Mitochondrial functioning generates as a byproduct multiple forms of
reactive oxygen species (ROS), including superoxide, hydrogen peroxide and others. ROS
cause oxidative stress and at high doses lead to cellular damage, but at lower doses they
actually promote health via a mitochondrial hormesis effect or ‘mitohormesis’ (Ristow and
Zarse, 2010; Schulz et al., 2007; Yun and Finkel, 2014). Intriguingly, hormesis effects may
affect different cell types differently, for example, specific hormetic effects on mitochondria
in sensory neurons have been reported as leading to an overall positive lifespan impact
(Maglioni et al., 2014). Mitohormesis is conserved in mammals (Bárcena et al., 2018), and
may underlie the notable failure of antioxidants to yield therapeutic benefits in clinical
trials (Bjelakovic et al., 2007).

The mitochondrial unfolded protein response (UPRmt) is a central part of mitohormesis.
UPRmt acts as a retrograde signalling pathway which helps coordinate nuclear transcrip-
tional responses to the intra- and extra-cellular environment (Yi et al., 2018), but this
essential response becomes less efficient with age. For example, the activity of glyoxalase-1,
one of the enzymes responsible for detoxifying mitochondrial ROS, is markedly reduced
with age despite unchanged levels of transcription, and over-expression prolongs lifes-
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pan (Morcos et al., 2008). Suppression of nutrient sensing pathways enhances lifespan
partly by increasing the activities of cellular stress response transcription factors such as
skn-1, hsf-1 and daf-16, resulting in increases in the transcription of chaperones that help
reduce the burden of misfolded proteins and other forms of cellular damage resulting
from oxidative stress. The oxidative stress response transcription factor skn-1 is itself
an important longevity modulator implicated in insulin signalling, lipid processing and
germline longevity alongside multiple other cellular functions (Blackwell et al., 2015). There
is a complex relationship between stress resistance and longevity (Zhou et al., 2011), which
is apparent even early in ageing (Ben-Zvi et al., 2009).

In order to optimise cellular energy generation as well as damage control and repair
processes, cellular biorhythms coordinate mitochondrial and metabolic processes in order
to ensure they are optimally timed (Langmesser and Albrecht, 2006). Indeed, there is some
evidence that even in C. elegans, complex temporal regulatory dynamics control interweaved
cycles of energy generation and repair (Simonetta et al., 2008). Circadian (24-hourly) and
diurnal (12-hourly) cycles play a role in C. elegans energy metabolism in a manner that is
conserved with other organisms, despite the fact that C. elegans typically live underground
in the wild (Migliori et al., 2011; Zhu et al., 2017).

1.2.4 Epigenetic modifiers are metabolic sensors

There is evidence that many effectors of the epigenetic regulation of organismal processes
respond to metabolic factors. While C. elegans does not have DNA methylation in the
same way that mammals do, the enzymes that modify histone tails, and thereby serve an
important function in modulating the cellular ‘memory’ of environmental changes, are
dynamically sensitive to intracellular levels of common intermediary metabolites (Gut and
Verdin, 2013; Katada et al., 2012). For example, histone methylation is sensitive to levels
of S-adenosyl-methionine (SAM), histone phosphorylation is sensitive to the ATP:ADP
ratio and histone acetylation to acetyl-CoA levels (Katada et al., 2012). Moreover, these
processes are themselves dynamic and there is a constantly shifting equilibrium between
the enzymes that add, e.g., acetylation marks, and those that remove them, which shifts
with environmental changes such as the time of day (Nakahata et al., 2009) and levels of
nutrient availability (Wellen et al., 2009).

Histone modifications are known to change during ageing (Pu et al., 2018) and can
promote longevity (Alvares et al., 2014; Cascella et al., 2014), although in some cases these
results have been questioned. For example, overactivation of the NAD+-dependent histone
deacetylase sir-2.1 was widely reported to promote longevity (Tissenbaum and Guarente,
2001), but this result was later found to be dependent on an unreported alteration in genetic
background (Burnett et al., 2011). Nevertheless, the close relationship between sirtuins and
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other metabolic pathways which influence longevity, such as the mitochondrial unfolded
protein response and daf-16, continues to be elucidated in greater detail (Mouchiroud et al.,
2013).

Histone modifications affect cellular processes by altering chromatin organisation and
thereby changing the levels of transcription of genes to activate specific programs, or to
guard against adverse transcriptional changes (Pu et al., 2015). For example, mitochondrial
stress causes epigenetic changes that activate protective transcriptional programs and
thereby promote longevity (Tian et al., 2016). One of the specific histone methylation mark-
ers (trimethylation of lysine 4 on histone H3) was recently shown to activate transcriptional
programs that led to the accumulation of mono-unsaturated fatty acids (MUFAs), and that
these MUFAs were themselves active in extending lifespan (Han et al., 2017). This under-
scores the complexity of the bidirectional relationship between histone modifications and
dynamic metabolic levels. In some cases, such effects can even persist transgenerationally
(Greer et al., 2016, 2011), although mechanisms explaining such intergenerational memory
are still being elucidated. These interrelationships and the ways that they shift in response
to environmental perturbations, temporally, and during the course of ageing, are the subject
of ongoing research.

1.2.5 Summary: metabolism and ageing in C. elegans

The various interrelationships that have been discussed in this section underscore the
complexity of the multifactorial relationship between cellular metabolism and longevity
(Figure 1.4).

Figure 1.4 Summary of metabolic pathways impacting lifespan and healthspan.
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There is a complex balance to be achieved between different cellular and organismal
processes, which are responsive to environmental conditions, ultimately determining the
temporal sequencing and interplay of different regulatory programs in ways that are
either beneficial or detrimental to health over the lifespan. Various metabolic interventions
regulate lifespan via a series of partially convergent and overlapping downstream mediators,
including daf-16 (FOXO), pha-4 (FOXA), hsf-1 and skn-1 as well as nuclear hormone receptors
such as daf-12. A large number of metabolites, lipids, polypeptides and also microRNAs
have been implicated as cofactors and regulatory molecules in these pathways – Denzel
et al. (2019) offer a recent review.

In the face of these complexities, the field still lacks a clear, unifying theory that explains
the impact of metabolism on ageing. There is a need to disentangle complex temporal
dynamics and elucidate the specific roles of different metabolites in these temporal changes
(Soltow et al., 2010), underscored by findings that not all metabolites that can be food
sources or metabolic intermediaries are equally important in contributing to the anti-ageing
effects of altered nutrient sensing pathways (Soultoukis and Partridge, 2016). Differences
in metabolism of cholesterol and lipids over the lifespan also suggest the importance of
independent metabolic pathways and discrepant timings for different metabolites (Morgan
et al., 2016).

Yet, detailed time series studies of the metabolic and transcriptional changes that take
place during normal and perturbed ageing in C. elegans have been rare. One reason for this
is that the worms are hermaphrodites and therefore, under ordinary conditions, produce
offspring which contaminate ageing samples. Yet, the interventions which are typically
used to prevent reproduction, such as mutations in the germline (as discussed above)
or treatment with chemicals such as fluorodeoxyuridine (FUdR) have themselves been
shown to affect ageing and metabolism (Brunquell et al., 2014; Davies et al., 2012; Feldman
et al., 2014). FUdR has been shown to affect metabolism (Davies et al., 2012) and enhance
stress response (Anderson et al., 2016). Proteostasis is also enhanced by FUdR treatments
independently of germline or gonadogenesis mutations (Brunquell et al., 2014; Feldman
et al., 2014). Thus, the study of the temporal and metabolic dynamics of ageing in C. elegans
needs new approaches.

1.3 Systems biology approaches to the study of metabolism

Recent years have witnessed a paradigm shift from the reductionist study of individual com-
ponents of biological systems in isolation, towards whole-systems integrative approaches
that assess and interpret large datasets in parallel and search for cross-cutting regulatory
interactions (Yugi et al., 2016; Yugi and Kuroda, 2017).
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Technical advances are making it possible to generate more and more high-throughput
data across several technological layers, known collectively as ‘-omics’ (McCormick and
Promislow, 2018; Zierer et al., 2015). These include metabolomics, the measure of small
molecular cofactors, nutrients and byproducts of cellular metabolism, as well as transcrip-
tomics (a comprehensive measurement of the simultaneous expression levels of genes, as
can be determined by counting messenger RNA transcripts), genomics (detection of the
presence of common genetic variants across the genome), and others (Valdes et al., 2013).
Nevertheless, the capacity for analysis of these rich data resources still lags behind the
capacity for data generation.

Systems biology approaches are needed to interpret these remarkably rich data sources
and determine their interconnections and regulatory dynamics (Van Assche et al., 2015).
Multiple such approaches have been developed, and may be broadly categorised as
knowledge-based or unbiased.

Knowledge-based approaches harness pre-existing biological knowledge in the form
of, for example, biochemical reaction pathway maps (Kanehisa et al., 2017) and databases
of gene function (The Gene Ontology Consortium, 2019). A shortcoming of knowledge-
based approaches is that while they can find new connections or interrelationships, they
necessarily capture only a fraction of well-understood core biochemistry and thus may be
limited in explorations of truly uncharted territory. They are complemented by unbiased
approaches, which, in contrast, are able to harness the full measured dataset even of
unmapped biomolecular components, and search for patterns based on complex statistical
approaches, but may suffer from their predictions being less interpretable. There are several
sophisticated methods of unbiased network and causality inference that are applicable
depending on the resolution of the dataset, including those based on Bayesian statistics and
information theory (Villaverde and Banga, 2014). Recent comparisons of multiple methods
for network inference in systems biology have emphasised that while no single method
outperforms all others, the application of multiple methods in conjunction with the results
compiled in a ‘wisdom of crowds’ fashion gives a better result than any single method
applied in isolation (Hill et al., 2016; Marbach et al., 2012).

Machine learning approaches can also be used for this purpose. For example, Barardo
et al. (2017b) use machine learning to predict lifespan-extending molecules based on
a machine learning predictor built from the DrugAge database (Barardo et al., 2017a),
which annotates information about small molecules and their effect on the lifespan of
model organisms. Their models used not only the annotated lifespan effects but also
associated Gene Ontology (GO) terms from associated enzymes and chemical descriptors
calculated from the molecules’ chemical structures. Barardo et al. (2017b) show that
the best predictive accuracy is achieved using both biological and chemical features in
combination. They were also able to determine that the most significant GO terms include
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those related to mitochondrial processes, enzymatic and immunological processes, and
metabolic and transport processes. Similarly, Liu et al. (2016) used a network-based
approach to predict lifespan-modulating drugs in C. elegans based on an annotated set of
known lifespan-modulating drugs and a set of drug-protein interactions curated from the
literature. Chemical similarity between candidate predictions was used as a validation
measure in this prediction. However, as a note of caution, a recent review of machine
learning for ageing research highlighted the importance of validation for computational
predictions of this sort with wet-lab experiments due to high levels of noise (Fabris et al.,
2017).

1.3.1 Metabolomics as a tool to study metabolic changes

Metabolomics can be defined as the comprehensive and quantitative analysis of all metabo-
lites within a biological system (Fiehn, 2002). A wide range of small molecules – which
may be intermediary metabolites, common cofactors, xenobiotics or secondary byproducts
of metabolic processes – are measured simultaneously from the same sample (Klassen et al.,
2017; Liu and Locasale, 2017; Putri et al., 2013). Metabolomics has been called the missing
link between genotype and phenotype (Fiehn, 2001).

In contrast to other methods used to measure aspects of metabolism, metabolomics
usually refers to the study of a system as a whole, rather than a specific part of that system
(Liu and Locasale, 2017). There are a range of different specific types of measurement that
are considered metabolomics. Measurements may be very broad, or untargeted, generating
‘profiles’ for both known and unknown metabolites, or they may use special standards to
detect only a targeted subset of known metabolites (Beger et al., 2016; Carneiro et al., 2019).
While untargeted measurements can only give relative quantifications, targeted experiments
allow for absolute quantification of the concentrations of molecules. Targeted experiments
also allow for clear specific molecular identifications. However, targeted experiments cover
only a fraction of the metabolome, and are not able to be used for discovery of novel
aspects of metabolism. The advent of untargeted metabolomics heralded a new era of
discovery in metabolism research, as a staggering number of unknown metabolites were
discovered, overturning the perception that most of the metabolic pathways were already
known (Zamboni et al., 2015).

There are many technical challenges in metabolomics measurement and it is not yet
possible to identify and quantify every single metabolite that may be present in a given
sample. The technology used to perform metabolomics measurements is the same as that
used in standard chemical identification: mass spectrometry (MS) coupled to liquid or
gas chromatography (LC/GC), and nuclear magnetic resonance (NMR). Neither of these
technologies is without challenges and limitations. NMR has a low sensitivity but has
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less variance between runs; MS is more sensitive, but is not suitable for certain sorts of
molecules (e.g. those that are thermally fragile) and suffers from cross-platform variation
and batch effects (Liu and Locasale, 2017). Protocols are therefore typically optimised for
the particular research question that is being studied.

In summary, metabolomics gives a readout that is closer to the actual micro-physiological
state of metabolic processes than any other. However, precisely due to the sensitivity of
metabolic changes to variability and environment, it can be more noisy than other -omics
layers.

1.3.2 Whole-genome metabolic modelling as an integrative systems biology
approach

Metabolism interacts in a complex way with signalling, gene expression and epigenetic
factors to control cellular and organismal phenotypic outcomes. Hence there is a need to
perform integrative multi-data-source studies in the context of different ageing phenotypes
(Hastings et al., 2019b).

Many studies that harness multiple -omics layers use only post-hoc results interpretation
to tie the different layers together, without using a truly integrative analysis approach (for a
review in C. elegans, see Van Assche et al., 2015). For example, Copes et al. (2015) performed
both metabolomics and proteomics in ageing C. elegans, but interpreted the changes in the
proteome and the metabolome largely separately – the underlying biological samples were
not linked, and each technological layer was analysed with separate statistics. The resulting
changes in the metabolome and the proteome were then combined and contextualised in
the accompanying discussion.

Biochemical knowledge, in the form of pathway maps – interconnected series of
metabolic reactions – can serve as a backbone for -omics data integration. For exam-
ple, Gao et al. (2018) interpret the dataset by projecting onto pathways the key alterations
associated with ageing from both the transcriptome and the metabolome of daf-2 and eat-2
(a C. elegans model for DR) mutants.

Whole-genome (‘genome scale’) metabolic modelling is a knowledge-based approach in
which a whole-genome map, or reconstruction, of all the metabolic reactions of an organ-
ism are used together with mathematical constraint-based methods to predict metabolic
phenotypes under different conditions (Mardinoglu and Nielsen, 2012; Pfau et al., 2011).
Prior to 2016, no comprehensive whole-genome model of metabolism existed for C. elegans,
and then two were published back-to-back (Gebauer et al., 2016; Yilmaz and Walhout, 2016).
Subsequently, through a workshop series that was initiated as a part of this project (Hast-
ings et al., 2017), a consensus model (named ‘WormJam’) has been created and extended
(Witting et al., 2018).
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This type of metabolic modelling approach will be used in this thesis, together with
measured data including time-resolved measures of gene expression and metabolomics.
Integrative approaches such as these have the potential to provide insights at an unparalleled
level of detail into the specific pathways and reactions affected by, or causing, the observed
temporal shifts in metabolism. They allow a whole-systems contextual understanding to be
developed of the interrelationships between ageing and metabolism.

Furthermore, various strategies are employed based on this modelling approach to
probe the evidence for metabolic regulation through the lens of evaluating the different
constraints and flexibilities in the system as a whole (Rosato et al., 2018). This gives
information about metabolic regulators in the context of known longevity modulators in
order to predict possible interventions.

1.4 About this thesis: Metabolic modelling with multi-omics data
in ageing C. elegans

A better understanding of the role of metabolic changes and remodelling during ageing
necessitates a deeper, temporally sequenced and holistic map of the metabolic landscape
during the course of normal ageing. Moreover, the search for metabolic regulators of
ageing is of crucial importance in the quest for healthspan-improving interventions, as such
metabolic controllers may potentially lead to the discovery of viable supplements (Finkel,
2015).

1.4.1 Objectives

The general objective of my PhD is to disentangle and temporally sequence the key
metabolic changes occurring during ageing in C. elegans.

To tackle this challenge, I used a time-resolved series of metabolomics measurements in
three non-reproductive strains together with metabolic modelling. This study is somewhat
different to the previous studies in the strains that were used, and in the focus on more
temporally comprehensive measurements during early ageing in order to tease apart the
very complex and synchronized metabolic alterations that are happening during early
ageing.

In addition, the metabolomics measurements were planned alongside a series of linked
gene expression measurements (reported in full in Mains, 2018). This is a rich multi-omics
dataset that allows powerful systems biology approaches to interpret changes in the context
of the perturbations of the system as a whole that take place during ageing.
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1.4.2 Publications

This work has led to the following publications:

1. Workshop report on the first WormJam meeting and subsequent community effort to
annotate and extend that model: Hastings et al. (2017).

2. Paper describing community work on developing a shared WormJam model: Witting
et al. (2018).

3. Review paper describing multi-omics integration with metabolic modelling in C. ele-
gans: Hastings et al. (2019b).

4. Research paper describing metabolic changes in ageing in C. elegans and a novel
multi-omics integrative modelling approach: Hastings et al. (2019a).

There is some natural overlap in content described in these publications with the
relevant sections of this thesis. However, no part of any of the previous publications has
been reproduced in full in this thesis. Where appropriate, these publications have been
referred to by citations within the text.

All computational methods I have used have been implemented either in R (R Core
Team, 2016) or in Python (Rossum, 1995) and are detailed accordingly. Wherever possible,
pre-existing libraries and methods have been used; these are named in the appropriate
Methods sections.

1.4.3 Organisation of the thesis

The remainder of this thesis is organised as follows.

The next chapter (Chapter 2) describes the analysis of a time-resolved metabolomics
dataset to discover the temporal sequence of changes in the metabolome that occurs during
normal ageing, including strain-specific and strain-independent features.

After that, in Chapter 3, I describe the WormJam consensus whole-genome model of the
metabolism of C. elegans that was developed as a community effort to support metabolic
modelling in this organism, and my contributions to the development and validation
thereof.

The following chapter, Chapter 4, describes an approach to Flux Balance Analysis that
harnesses metabolomics information together with transcriptomics, and interprets the
resulting series of predicted intracellular fluxes for each time period in the ageing time
series.

Chapter 5 describes the results of a series of simulations I performed with the overall
multi-omics and modelling pipeline with the objective of determining metabolic regulators
of, bottlenecks in, or influences on, the overall ageing process.
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The final thesis chapter, Chapter 6, provides a general discussion and contextualisation
of the preceding results.



2. Metabolic changes during ageing

2.1 Introduction

In this chapter, I will present the results of our time series metabolomics study which
investigated the changes in the metabolome during ageing in C. elegans.

Metabolism plays a central role in the ageing process, thus we can expect that the
measurable concentrations of metabolites in an organism – the metabolome – will change
during the course of ageing. This is indeed what has been observed in C. elegans across
several previous studies (Copes et al., 2015; Davies et al., 2015; Fuchs et al., 2010; Gao et al.,
2017; Pontoizeau et al., 2014; Witting and Schmitt-Kopplin, 2016).

For example, the metabolomic ‘signature’ in conditions of long life has been reported
(Fuchs et al., 2010), as well as under dietary restriction (Pontoizeau et al., 2014). The
particular changes associated with ageing in normal-lived as compared to long-lived
strains have also been reported (Davies et al., 2015). The metabolic and proteomic changes
accompanying ageing were assessed together in (Copes et al., 2015). Wan et al. (2017)
studied the age-associated changes in the metabolome specific to germline signalling
mutants. Table 2.1 gives a summary of these prior studies.

Study Genotype(s) Longevity Path-
way(s)

Time points Method Other info.

Fuchs et al. (2010) daf-2, ife-2 insulin signalling,
translation initia-
tion

15h, 144 h, 240 h
post-hatch

NMR Offspring re-
moved by me-
chanical filter-
ing

Pontoizeau et al.
(2014)

N2, eat-2, slcf-1 Dietary restriction 1 day, 7 days post-
hatch

NMR FuDR added

Copes et al. (2015) glp-4 Notch recep-
tor / germline
signalling

days 4 and 10 GC-
MS

Liquid culture

Davies et al.
(2015)

N2, daf-2 Insulin signalling 2.5/3.5 days
(N2/daf-2 respec-
tively) and days 6,
8, 10, 13, 16 and
10 post-hatch

NMR FuDR added

Wan et al. (2017) glp-1, glp-1;daf-
16

Notch recep-
tor / germline
signalling

days NMR,
UPLC-
MS

Gao et al. (2017) N2, glp-4 Notch recep-
tor / germline
signalling

days 1-10 (for N2),
1,3,5,7,9 (for glp-4)

LC-MS FuDR added
(for N2)

Table 2.1 Ageing metabolomics studies in C. elegans
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Fuchs et al. (2010) examined the shared aspects of the metabolome of three long-lived
C. elegans conditions: daf-2 and ife-2 long-lived strains, and dauer larvae. They identified
26 metabolites and sampled three time points, and then ranked the features they detected
for their consistency across the long-lived conditions. They found particular differences
in e.g. trehalose; choline, phosphocholine and glycerophosphocholine (associated with
lipid metabolism); acetate, malate and succinate (associated with carbohydrate metabolism),
propanoate, NAD+ and branched chain amino acids. Some of the concentration differences
they observed were daf-16 dependent, but not all, e.g. trehalose was not.

Davies et al. (2015) compared the metabolome of wild-type worms at seven different
time points to that of the long-lived daf-2 mutants at the same time points, identifying 33
individual metabolites as distinguishing between wild-type and the long-lived condition.
Trehalose was found to accumulate in the long-lived condition, while becoming depleted
in wild-type. Similar patterns were observed for branched chain amino acids. In contrast,
putrescine and tyrosine were found to be accumulating in wild type but not in the long-
lived condition. They used their metabolomics time series data to infer that the metabolome
of the older daf-2 organisms was closer to that of ‘middle-aged’ wild-type worms than
wild-type worms of a comparative chronological age.

In a similar comparative study, (Pontoizeau et al., 2014) compared the age-related
changes in the metabolome between wild-type and dietary restricted worms, using two
genetic models for dietary restriction: eat-2 (which reduces food intake) and daf-18 (part
of the insulin signalling pathway). They concluded that dietary restriction delays the
metabolic changes that occur during normal ageing.

Copes et al. (2015) explored the metabolome and proteome changes between days 4 and
10 of adulthood in liquid cultures of the C. elegans glp-4 strain. They successfully identified
186 metabolites in their assay, and described those metabolites that were significantly
different between the old and young samples, finding significant changes in free fatty acid
levels, an increase in sorbitol levels, amino acid changes, and decreases in pyrimidine and
purine metabolite levels. Furthermore, they report that supplementation with hypoxanthine
and cytidine increased lifespan. The discovery that certain metabolites decrease in level
during ageing and are able to extend lifespan when supplemented hints at bottlenecks in
metabolism arising due to the ageing process, when cellular processes, for various reasons,
are no longer able to replenish metabolites that are needed. Taken together, these results
provide strong evidence for metabolic changes not being mere by-products of the ageing
process, but closely associated with the causal processes leading to the development of
dysfunction.

Wan et al. (2017) explored the age-associated changes in the metabolome in germline
free glp-1 mutants and in the glp-1;daf-16 mutant which is not long-lived. They found
changes in ageing-related metabolites, including increased concentrations of pyrimidine
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and purine metabolism intermediates and decreased concentrations of the citric acid cycle
intermediates, many of which were not present in the double mutants indicating that they
may be related to the germline-free longevity phenotype which is abrogated by concurrent
knockout of daf-16.

The majority of these ageing-associated studies used just a few time points, e.g. one for
old worms and one for young worms, and did not aim to be temporally comprehensive.
Recently, Gao et al. (2017) performed a detailed time series of metabolomics measurements,
targeting a large number of different metabolites within the categories of fatty acids, amino
acids and lipids. They obtained one sample per day for the ten days of adulthood in
wild-type worms with FuDR added, and a sample every two days in long-lived sterile glp-4
worms. However, even this study only obtained at most one measurement per day in their
time series.

Our study follows on from these previous studies and extends them in two ways. Firstly,
in the bulk of the previous studies, fewer time points have been used compared to what
we have assayed in early ageing. For most of the preceding studies (with the exception of
Gao et al. (2017)), the timings of ageing-related changes in the metabolome have not been
investigated in detail. In contrast, our study sought to investigate the temporal sequence
of changes and to differentiate between changes that take place during early ageing and
those that take place later in ageing. Secondly, the strains we used allowed us to follow the
metabolic changes due to normal ageing while avoiding the contamination by progeny in a
way that we believe is metabolically closer to wild-type than the usual protocols used for
this purpose, as described next.

2.2 Methods

2.2.1 Strains used in the study

The strains used in this study were glp-1(e2144)ts, gon-2(q388)ts;gem-1(bc364), and fem-
3(q20)ts (hereafter referred to as GLP, GEM, and FEM). These are all temperature sensitive
mutants that operate only at restrictive temperatures. Conditional sterility was obtained by
growing L1 larvae to adulthood at the restrictive temperature (25 °C), which may induce a
slight heat stress.

The glp-1 gene is a popular model for germline longevity: GLP animals possess a
complete gonad but no germline, and are long-lived. Many studies of ageing metabolism
in C. elegans have been conducted in this or other (closely related) glp mutants, yet this
mutation is known to have pervasive effects on metabolism. Thus, our study also used two
other non-reproductive strains, not yet as widely used in ageing research, which are not
long-lived (Figure 2.1), and which we believe are metabolically closer to wild type.
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Figure 2.1 FEM and GEM strains
have lifespans comparable to wild
type, while GLP animals are signif-
icantly longer lived.
Lifespan analysis of animals at 25 °C.
Wild type (N2) have a mean lifespan of
11.51 days. GEM animals have a mean
lifespan of 11.71 days. Data shown are
representative of three biological repli-
cates. Thanks to Bhupinder Virk for this
Figure.

The gon-2 gene encodes a cation channel required for the development of gonadal tissue
(Sun and Lambie, 1997). This mutation is enhanced by the concurrent mutation of the solute
carrier gem-1 (Kemp et al., 2009). Our GEM animals mostly do not reproduce, however,
at 25 °C the penetrance of gonadogenesis failure is less than 100%. A highly variable
and degenerate gonad that in a very small number of cases results in some reproductive
capabilities is visible by day four. The gain-of-function fem-3 mutation, has 100% penetrance,
and causes the germline to become masculine (Barton et al., 1987). Thus, FEM animals
possess a normal hermaphrodite gonad but produce no oocytes, only large quantities of
sperm and no progeny.

2.2.2 Worm maintenance and sample information

Worms were maintained at 16 °C on nematode growth medium (NGM) with OP50 E. coli
as food source. Synchronised experimental populations were prepared by washing gravid
adults and eggs from plates and bleaching in a freshly prepared solution of 1% sodium
hypochlorite and 1 M potassium hydroxide. Eggs were allowed to hatch overnight at 25 °C
and all animals were arrested at the L1 stage.

Experimental populations were then placed at 25 °C on HT115 E. coli on standard
NGM plates containing 50 µg/ml Carbenicillin, 1 mM IPTG, and 10 µg/ml Nystatin until
harvesting. For GEM, samples were inspected before harvesting and visibly fertile worms
were discarded.

We have obtained two samples per day for the first three days of ageing (post-moulting).
This higher density of sampling (two per day) on the earlier days enabled a more detailed
investigation of the changes during the very early phase of ageing. Thereafter, we obtained
one sample per day on days four, five and ten of ageing. The decision to omit the
days between five and ten was based on a pilot study of the temporal changes in the
transcriptome, which found low variability in gene expression during these days (Mains,
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2018). After day ten, the worms start dying, thus, we did not further obtain samples at later
time points.

Samples were harvested at the following hours post-feeding of arrested L1:

• Day 1: Hours 41 and 49 post feeding
• Day 2: Hours 65 and 73 post feeding
• Day 3: Hours 89 and 97 post feeding
• Day 4: 117 hours post feeding
• Day 5: 137 hours post feeding
• Day 10: 257 hours post feeding

The GLP time series of metabolomics measurements is unfortunately incomplete in that
only the earlier time points (days 1-3) are available for that strain. Therefore, some of the
analyses that are reported below on the topic of overall ageing use only the FEM and GEM
strains, while for the detailed study of early ageing it was possible also to use the GLP data.

2.2.3 Metabolomics assay

Targeted metabolomics using Mass Spectrometry was performed by the Northwestern
Metabolomics Research Center1 from a batch containing approximately 2000 worms per
replicate. Worms were washed several times and snap frozen in water. Samples were
homogenized with a bullet blender at 4 °C, protein precipitated with methanol, sonication,
and centrifugation. The supernatant was removed and dried in a vacufuge (Speedvac) at 30
°C. All samples were processed in parallel to avoid batch effects.

Targeted LC-MS/MS metabolomics targeting a list of 210 metabolites was performed
on a system consisting of Shimadzu Nexera XR LC-20AD pumps coupled to a Sciex
6500+ triple quadrupole spectrometer operating in MRM detection mode through the Sciex
Analyst 1.6.3 software. The system includes a dual column setup with dedicated columns
for positive ionization mode and negative ionization mode. The results for each sample
are therefore the result of two injections. Metabolite concentrations were quantified using
Multiquant 3.0 software in a relative manner. The samples were separated on a Waters
Xbridge BEH amide column (2.5 um, 130 angstrom, 2.1 x 150 mm) operated in a HILIC
regime at 40 °C. Solvent A consisted of 95% water, 3% acetonitrile, 2% methanol, 0.2% Acetic
Acid (v/v/v/v) 10 mM ammonium acetate, pH approximately 4.2. Solvent B consisted of
93% acetonitrile, 5% water, 2% methanol, 0.2% acetic acid and 10mM ammonium acetate.
Organic solvents and acetic acid were Optima grade from Fisher Scientific USA, ammonium
acetate was from Sigma Aldrich. 18.2 MOhm water was from a Synergy UV system by
Millipore. Gradient at 0.300 mL/min was as follows: 0 – 3 minutes 95% B, 3 – 8 minutes
95 – 50% B, 8 – 12 minutes 50% B, 12-13 minutes 50 – 95% B 13 – 18.1 minutes 95% B.

1https://depts.washington.edu/mmcslu/resources/current-research/metabolomics/
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During the injection on columns of opposite polarity solvent continued at 95% B giving
each column approximately 23 minutes of equilibration time. Samples were normalised to
total protein content quantified by Bradford assay. The names and details of all measured
metabolites are listed in Supplementary Table A.1.

2.2.4 Data pretreatment and quality control

Metabolomics data generated from LC-MS platforms, such as the one used to generate our
dataset, often contain missing values (Armitage et al., 2015; Di Guida et al., 2016; Gromski
et al., 2014). Almost half of the targeted metabolites from the targeted assay used in our
case were missing across all samples in our dataset, perhaps reflecting specific challenges
with C. elegans sample preparation for metabolomics compared to the other sources of
sample material, e.g. the hard cuticle. These rows were discarded in full prior to further
analyses, leaving 125 remaining metabolites.

In keeping with the standard practice for metabolomics workflows, I then also removed
metabolites that had more than 10% such missing values across all samples (Figure 2.2A).
After removing these problem rows (metabolites), there was still one sample that had more
than 10% missing values across all metabolites in that sample (Figure 2.2B). However, this
sample was from a replicate group (day 10 FEM) that only had two replicates, thus it was
not removed. 10% is perhaps quite a conservative threshold – many protocols use 20% as
the cutoff. However, the dataset was fairly noisy so it was important to use such approaches
to reduce noise as far as possible.

The remainder of the missing values were interpolated by replacing each missing
value with the mean for that metabolite across all samples, so as not to affect downstream
analyses. This is also a standard practice in metabolomics workflows.

The dataset was then transformed using the inverse hyperbolic sine, which is linear for
small x while asymptotically approaching log(2x). In particular, zero values are mapped
to zero and all other values are mapped to positive values (which is not true for standard
log-transformation).

The data were further normalised by mean-centering and scaling so that every metabolite
had a mean of 0 and a standard deviation of 1, rendering the values comparable, again a
standard practice in metabolomics data analyses (Di Guida et al., 2016; Xia, 2017).

The dataset was still noisy, so as a further quality control measure I calculated the
sample distances between replicates (using ‘1-correlation’ as the distance metric) to obtain
an indication of individual sample quality in terms of ‘closeness’ within replicate groups.
In cases where there were three available replicates and one of them was significantly
removed from the other two, I took this as an indication of lower quality and removed those
outlying samples, as indicated by the samples coloured in red and labelled in Figure 2.3A.
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Figure 2.2 Counts of missing values per metabolite and sample.
The numbers shown on the y axis are the counts of (A) samples for which a given metabolite is
missing a value across all samples (including GLPs), and (B) metabolites missing values per sample
after removing the most problematic metabolites as identified in (A). Each dot indicates (A) a
metabolite, and (B) a sample. The horizontal rules in both plots indicate the position of 10% of the
values missing, used as a threshold. Those coloured red and labelled have above the threshold, i.e.
above 10% missing values.
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Figure 2.3 Distances to nearest replicate within a sample group.
For each sample in the full dataset (all strains), distance was calculated to the nearest replicate
using 1-correlation. Plot (A) shows the distance to the nearest replicate for each sample. Each
dot represents a single sample. The samples highlighted in red had an above-threshold distance
from the others within the same replicate group, and were thus removed. Only groups which had
three replicates available were considered for this quality control step: the dots that are above the
threshold but not highlighted in red are in a replicate pair rather than a triplicate. Plot (B) shows
the density of nearest replicate distances for all samples, illustrating the choice of threshold.

The choice of threshold for the removal of these samples was based on the observation that
the density of nearest replicate distances was distributed such that there was a ‘good’ peak
close to zero, and an outlying ‘bad’ peak above 0.10. (Figure 2.3B).

Additional sanity checks that were conducted included computing the sample to sample
correlations and distances, and visualising those by main phenotypic sources of variance.
Sample to sample correlations were calculated and plotted using the ‘corrplot’ package in R.
The density plot of sample to sample distances was plotted by categorizing the pairs (x,y)
of samples according to whether they were replicates or had the same age (but different
strains) or had the same strain (but different ages). The results of these sanity checks are
presented in Section 2.3.1 below.

2.2.5 Multivariate analysis methods: PCA and PLS-DA

Metabolomics datasets are inherently complex, with many possible hidden dependencies
between the measured concentration levels of the different metabolites in the assay. There-
fore, they are best suited to multivariate rather than single-variable analysis methods (Bartel
et al., 2013; Krumsiek et al., 2016), as multivariate approaches are able to use not only the
individual contributions of single metabolites but also their interdependencies to explain
phenotypic outcomes.

Principal Component Analysis (PCA) is an unsupervised multivariate analysis method
that computes a sequence of orthogonal ‘components’ that explain the variance in the
dataset, ordered such that the components which make the biggest contribution to explain-
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ing the variance appear first while those with the smallest contribution appear last. The
PCA returns two matrices for each component: one for scores, containing the positions of
samples in the rotated coordinate system, and one for loadings, which gives the metabolite
weights. Typically, the first two or three components are able to explain the bulk of the
variability in the dataset when taken together, thus PCA is often used for dimensionality
reduction. It is a technique that serves as a good starting point for metabolomics data
analysis, especially in the exploratory phase prior to the development of specific hypotheses
for testing.

To compute the PCA for my dataset I used the ‘prcomp’ package in R. Samples were
then visualized as projected into a plane with their positions in the first two principal
components, accounting for the majority of variability.

The other multivariate analysis method I have used with the metabolomics dataset
is Partial Least Squares – Discriminant Analysis (PLS-DA) (Brereton and Lloyd, 2014,
2018). PLS-DA can be used to infer the metabolites that have the greatest predictive value,
which means that they are changing the most in line with changes in the output variable.
Technically, PLS-DA is a latent variable regression method based on covariance between
the predictors and the response, and it has been shown to efficiently handle datasets
with multi-collinear predictors, as is the case of mass spectrometry measurements (Wold
et al., 2001). PLS-DA is a linear regression-based method, thus non-linear effects will be
overlooked. While PCA is an unsupervised approach, PLS-DA is supervised in the sense
that it uses a phenotypic outcome variable (age in hours, in this case) and then attempts to
find an optimal arrangement of predictor variables (metabolite values) to predict the given
phenotypic values.

To determine which metabolites were significantly changing with age in our metabolomics
dataset, I used the PLS-DA implementation in the R package ‘ropls’ (Thévenot et al., 2015),
with the sample time in hours as the output (response) variable. As described in Thévenot
et al. (2015), this R package implements the PLS-DA approaches with the original version of
the algorithm (Wold et al., 2001), including quality metrics which estimate the significance
of the model by permutation testing, the permutation diagnostics, computation of the
variable importance in projection (VIP) values, and score distances to detect outliers. The
VIP values reflect both the loading weights for each component and the variability of the
response explained by this component. Thus, they can be used to select those features
(metabolites) that are predictive of the response variable (in our case, age in hours) (Pinto
et al., 2012). Metabolites in the dataset were considered to be age-associated if their VIP
given by the PLS-DA model was greater than 1 (which is a standard threshold for this type
of analysis).

PLS-DA may lead to overfitting (Gromski et al., 2015), thus, its predictions must be
validated. Validation of the PLS-DA model is done by randomising the input values and
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comparing the actual predictors to the randomised predictors. The model provides a
summary statistic (Q2) for the cumulative predictive performance, and a measure of noise
in the underlying dataset (RMSEE) that is the square root of the mean error between the
actual and the predicted responses.

2.2.6 Literature and database search for longevity-modulating metabolites

To determine which metabolites were known to be longevity modulators in C. elegans, i.e.
those that extended lifespan when supplemented to C. elegans, I primarily consulted the
DrugAge database of known longevity modulators (Barardo et al., 2017a). The DrugAge
database also includes metabolites that are detrimental to longevity, and in some cases
that led to there being conflicting results in DrugAge (e.g. glucose, for which DrugAge
contained one record of an assay in which glucose supplementation had extended longevity
amid several records of assays in which glucose supplementation had reduced longevity). In
cases where conflicting reports were available in the database, we went with the majority
of reports - for example, in the case of glucose, we accepted the consensus of no positive
effect.

A second database resource that was also consulted was the JenAge Ageing Factor
Database (Hühne et al., 2014). Furthermore, the published literature was searched for
additional longevity modulators using the keywords ‘C. elegans’ and ‘longevity’/‘ageing’.

2.2.7 Pathway enrichment – Fisher’s exact test

To determine the relationship between age-associated and longevity modulating metabolites,
and to evaluate which pathways were changing the most with ageing, I used Fisher’s exact
test. This is a statistical method used to determine the likelihood of observing a set of
co-occurrences between two groups in a sample of interest. It evaluates this likelihood
based on a contingency table of values for two overlapping categories. Fisher showed
that the probability of obtaining any such set of values was given by the hypergeometric
distribution, as long as the background assignment of values to categories (marginal values)
are fixed and there is no association between the categorical values.

I calculated Fisher’s exact test using the R method ‘fisher.test’.

2.2.8 Determining metabolites with oscillations within days in early ageing

I used another statistical approach, analysis of variance (ANOVA; Harris et al., 2012), to
determine which metabolites showed a significant variation within each day during early
ageing after controlling for variation attributable to day-on-day changes.
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Each time point in the early ageing dataset was assigned to a group which was one of
‘early’ (morning) or ‘late’. These attributes were then passed in to an ANOVA model (‘aov’
in R) together with the other sample attributes, namely hour of collection and strain.

2.3 Results and Discussion

After data pretreatment as described above, the resulting dataset included 105 metabolites
and 59 samples, distributed by strain and time point as illustrated in Table 2.2.

Day Hours Sample
count
(FEM)

Sample
count
(GEM)

Sample
count
(GLP)

Day 1 41 3 3 3
49 2 2 3

Day 2 65 2 2 3
73 3 2 3

Day 3 89 3 3 3
97 3 3 2

Day 4 117 2 2 0
Day 5 137 2 2 0
Day 10 257 2 2 0

Table 2.2 Number of replicates per strain and time point for metabolomics dataset.

These time points allowed us to explore in detail the metabolic changes during early
ageing, due to the increased temporal density of samples on the first three days, as well as
allowing comparisons of young and old samples that allow us to confirm how well our
data matches the published literature.

2.3.1 Age is the primary driver of variability in the metabolome

Variability in a dataset may align with experimental factors such as, in our case, age and
strain, but may also be due to noise and technical variance. To explore the drivers of
variability in the metabolome, I calculated distances and correlations between samples.

The sample to sample correlations, shown in Figure 2.4A, indicate that samples closer in
age are more correlated than samples more distant in age. Figure 2.4A also shows that all
the samples are quite highly correlated (as would be expected given the tightly controlled
sample preparation methods). However, the effect of age was greater than the effect of
strain in this dataset: Figure 2.4B shows that the distance between samples (calculated by
1-correlation) are smaller on average for samples with the same age but different strains,
than between samples with the same strain but different ages.
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Figure 2.4 Correlation analysis of the metabolomics dataset

The Figure shows (A) the sample to sample correlations as a coloured correlation matrix, and (B)
the density plot of sample to sample distances, calculated as 1-correlation, for all samples in our
study having the same age (but different strains), and having the same strain (but different ages). In
(A), higher between-sample correlations are indicated by a blue colour while lower between-sample
correlations are indicated by a yellow colour. In (B), colour indicates comparison group (red=same
age, blue=same strain).
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Figure 2.5 Principal component analysis of the metabolomics dataset
The Figure shows the first two principal components accounting for the majority of variability in
the principal components analysis of the metabolomics dataset, coloured by (A) day of collection,
and (B) strain of sample.

Unsupervised principal component analysis (PCA) allowed further exploration of the
main determinants of variability in the dataset. In the visualisation of the first two principal
components with samples, coloured by age (Figure 2.5A), it is apparent that the ageing
process is the major contributor to variability between the samples, since the first principal
component, accounting for the majority of variability, separates young and old samples.
In both strains, early ageing and later ageing distribute the samples more broadly (there
is a larger distance between samples from the same time point), while middle age seems
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more metabolically homogeneous (samples from the same time point are closer together).
However, Figure 2.5B shows the same PCs coloured by strain, and in this plot we can
observe that strain does not cleanly separate the data along either of the first two PCs.
Neither does it do so in the third or fourth PC – illustrated in Supplementary Figure A.1.

This observation was initially surprising, since in our lab (Mains, 2018) we have found
that the sample-linked transcriptomics dataset differs more by strain than by age for the
same strains and time points, although age does align with the first principal component in
this dataset as well. One possible reason for this observed discrepancy in drivers of sample
variability between -omics layers is that the targeted metabolomics assay we used covers a
small subset of metabolites of central importance, which are likely to be highly conserved
across strains under similar environmental conditions. Conversely, transcriptomics is a
whole-genome approach that samples thousands of transcripts at a time, and is therefore
likely to be much more sensitive to strain-to-strain differences. We might thus hypothesize
that the metabolomics data would show more between-strain differences if we had used an
untargeted metabolomics assay in which the dataset comprised all metabolites.

An alternative possibility is that the largest source of metabolites in worms is the
intestine, whereas the germline may have fewer metabolites but be a large source of
transcripts. Thus, the different germline composition of GLPs, GEMs and FEMs may
explain the transcriptomics strain difference. However, the strain difference was still
apparent even when genes known to be enriched in the germline were excluded (Mains,
2018), making this less likely.

Finally, a plausible reason for the discrepancy is that there are several layers of regulation
between transcription and the end result in cellular state as reflected in the concentrations
of metabolites. The misalignment between the metabolomics and transcriptomics sources
of variability may indicate an important layer of post-transcriptional control of metabolism.
In support of this interpretation, we observe that it has been known for more than a decade
that gene expression levels for most of the genome do not change much during the course
of ageing in C. elegans (Johnson, 2013); e.g., Lund et al. (2002) reported that only 1% of the
genome shows significant changes of expression during ageing. By implication, therefore,
the physiological changes that represent the ageing phenotype in C. elegans must be to
some extent independent of transcriptional changes. In line with this, Morcos et al. (2008)
specifically show that the activity of glyoxylase-1, a metabolically important enzyme, is
‘markedly’ reduced with age despite the fact that mRNA levels remain unchanged. This
finding underscores the importance of studying the metabolome itself, as it is closer to the
ageing phenotype.

We next explored metabolite concentration changes over the full course of ageing. This
next part of our analysis uses only the GEM and FEM strains, as the full time course was
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not available for the GLP strain. The GLP abbreviated time series, and accompanying
between-strain comparisons, will be reported later in the chapter.

2.3.2 43 metabolites are significantly changing with age

We used PLS-DA to reveal those metabolites that are significantly associated with the
age in hours of the sample across all time points (GEM and FEM strains only). As
PLS-DA is a supervised method and tries to find the best projection of variability in
the dataset to match the response variable, it is important that the result is validated by
permutation testing. Supplementary Figure A.2 shows the resulting model scores, loadings
and validation statistics. Using a threshold of 1 as a cutoff for VIP as described in the
Methods, this approach distinguished 43 metabolites with a significant change in metabolite
concentration over the course of ageing, which we will therefore consider ‘age-associated’.
There are two provisos to this analysis. Firstly, it should be noted that this result applies
across the two strains and thus does not identify metabolites that may be changing with
age in only one strain – strain-specific differences will be presented in a subsequent section
below. Secondly, it should also be noted that PLS-DA is a linear approach, thus non-linear
changes with respect to ageing will be missed – although some of these will be discussed
in the final section of this chapter.

The fold changes for comparisons between young samples and old samples (days 1
and 10 respectively) are illustrated for these age-associated metabolites in Figure 2.6. The
comparison was calculated separately for the two day 1 time points (41 hr and 49 hr) and
for the two strains FEM and GEM. Oxaloacetate, an energy-related intermediate of the TCA
cycle, is the metabolite that decreases the most in concentration with advancing age, while
cadaverine, a diamine, increases the most. These are as might be expected, since the TCA
cycle is known to decrease in efficiency with age, while cadaverine is a byproduct of amino
acid degradation processes.

Most of these age-associated metabolites display a similar fold change in FEM and
in GEM strains. Among the metabolites that show a more distinct strain-specific fold
change are guanosine, a purine nucleotide that decreases with age more in FEM than
GEM, asparagine, an amino acid which decreases more with age in GEM than FEM, and
xanthosine, a nucleoside intermediary in purine metabolism, which increases more with
age in FEM than GEM.

The plot reveals mostly subtle differences in fold changes comparing the earlier Day
1 (41 hr) time point to the older samples and the later Day 1 (49 hr) time point to the
later samples, indicative of gradual age-associated changes. However, some metabolites
show a larger discrepancy between the Day 1 comparison groups. Metabolites showing a
larger discrepancy between the comparison groups include guanosine, cytidine, uridine,
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Figure 2.6 Fold changes comparing young to old concentrations for age-associated metabolites.
The Figure illustrates the log fold changes from day 1 samples (two hour groups, 41 and 49) to day
10 in our dataset, for GEM and FEM strains, calculated as mean(D10) - mean(D1) for each D1 hour
group and each strain. Squares indicate the first time point on D1 was used for the comparison
(41 hr), while diamonds indicate the second time point on D1 was used for the comparison (49 hr).
There was only one time point on D10 (257 hr). Colour indicates strain (green=FEM, yellow=GEM).
Metabolites are ordered from smallest to greatest average fold change across all comparison groups.

all nucleotides, and allantoin, a byproduct of purine catabolism. The existence of at least
some large discrepancies emphasise that the exact choice of young reference point can be
of paramount importance in the comparison of young and old samples for the purpose of
understanding ageing-related changes.

On average, the D10-D1 (49 hr) comparison showed a smaller absolute fold change than
the D10-D1 (41 hr) comparison, as might be expected if the age-related change is gradual
and linear (i.e. in Figure 2.6, diamonds are closer to zero than the squares). Exceptions to
this pattern are 2-aminoadipate, cystathionine, betaine, succinate and cadaverine. These
variations hint at the possibility of non-linear dynamics with respect to time, explored
further below.

Of these age-associated metabolites, several recapitulate what is already known about
metabolic changes in ageing C. elegans. The relationship to previous findings for each of
these age-associated metabolites is given in Supplementary Table A.2. Discordant changes
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are highlighted in italics in the Table. For example, among the metabolites in our dataset
that decrease the most with age, glutamine, guanosine, cystathionine and cytidine were also
found to be decreased with age in previous studies. Intriguingly, oxaloacetate was found
to increase rather than decrease with age in the long-lived germline-free glp-1 strain by
Wan et al. (2017), although not in their normal-lived double mutant glp-1;daf-16, suggesting
that oxaloacetate may be beneficial for longevity. Similarly, in the same study asparagine
(another of our metabolites that decreases with age) was also found to be increased in the
long-lived mutant but not in the normal-lived mutant. On the other end, those that increase
the most with age in our dataset, we find that the levels of succinate were decreased with
age in two previous studies (Davies et al., 2015; Wan et al., 2017) and allantoin decreased
with age in the wild-type strain, but not the long-lived strain, in Wan et al. (2017). However,
most of the metabolites that are increasing with age in our dataset, such as cadaverine,
xanthosine, 3-hydroxybutyrate and N-acetylputrescine, have not previously been reported
in C. elegans ageing metabolomics studies.

This comparison to the literature illustrates one of the challenges with this type
of metabolic studies: incompleteness. Unlike whole-genome transcriptomics, targeted
metabolomics is inherently selective, with just a small number of metabolites reported
per study relative to the size of the whole metabolome, which may be tens of thousands
of individual molecules (Witting et al., 2018). No single published study yet provides a
comprehensive overview of all the metabolites in C. elegans.

Furthermore, there are clear between-strain (even within the same study) and between-
study differences, which may be due to underlying strain differences or experimental
conditions such as the exact timings at which samples were collected for comparisons or
the addition of FuDR. There is a big range in timings of sample collections in previous
studies, with e.g. (Davies et al., 2015) focusing on older C. elegans by collecting young
adult (YA, equivalent to our Day 1), day 6, 8, 10, 13, 16 and 20 (although, their days are
counted post-hatching, rather than post-final-moult, again rendering exact comparison
between studies more difficult), while (Copes et al., 2015) compare only days 4/5 and 12,
and (Wan et al., 2017) uses only YA and day 10. Gao et al. (2017) report a comprehensive
time series with four larval stages and days 1 to 10, but then do not provide the details of
statistical comparisons between specific early and late time points, which might have eased
the comparison to other related studies. Lastly, few of the previous studies report the exact
timing in hours to which each of their sample days of collection corresponded.

2.3.3 Polar amino acids change the most with age

We wondered whether specific pathways were more enriched for age-associated metabolites
in our dataset than others. Using the pathway annotations associated with the metabolite as-
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say (Supplementary Table A.1 in the Appendix), we grouped the metabolites into pathways
and calculated an over-representation score (using Fisher’s exact test) for each grouping,
against the background of all metabolite-pathway annotations in the metabolomics dataset,
to determine whether that pathway included more age-associated metabolites than would
be expected by chance, given the size of the pathway and the size of the overall dataset.
This metric is obviously dependent on the selection of metabolites from each pathway
included in the dataset, over which we had no control, and which cannot be assumed to be
representative or unbiased (which would be prerequisites of a robust associated statistics).
However, this metric can still be used exploratively to compare the pathways within the
dataset.

Figure 2.7 Pathway enrichment for age-associated metabolites.
(A) Ranking of pathways by their percentage of age-associated metabolites, coloured by enrichment
score. (B) The same pathways and colours, but with the bar sizes indicating the absolute number,
rather than percentage, of ageing-associated metabolites in each pathway. Colour shows enrichment
for age-associated metabolites (red=over-representation, blue=under-representation).

Figure 2.7A shows the ranking of pathways in our dataset for the percentage of age-
associated metabolites in each pathway, while Figure 2.7B shows the number of age-
associated metabolites in each of those pathways. The colour of each bar indicates the
enrichment score. Metabolites may belong to multiple pathways (listed in full in Supple-
mentary Table A.1).

Polar, primary amino acids are the most enriched, the primary amino acids and down-
stream metabolites of amino acids are highly enriched and have the largest numbers of
age-associated metabolites in the class. Note that a single metabolite may count in sev-
eral different pathways, for example, all the polar amino acids are also members of the
broader primary amino acids pathway. TCA cycle metabolites, polyamines, and metabolites
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involved in the tryptophan cycle are also enriched for ageing-associated changes, while
the metabolites in the purines and sugars pathways are not changing with ageing in our
dataset. Fatty acids show moderate enrichment, and other lipids none, but it should be
noted that only a very small number of lipids were detected in our assay, and that in
general, specialised methods are typically required in order to measure the concentration
of specific fatty acids and lipids in biological samples (Gao et al., 2017; Willenberg et al.,
2015; Witting and Schmitt-Kopplin, 2016).

Our overarching interest is not only in the metabolic changes during the course of ageing,
but also the possibility of metabolic regulation of the ageing process. Therefore, we next
considered whether in our dataset there was evidence for a relationship between changes
in concentration levels over the course of ageing and having a causal role in ageing – i.e.
being a longevity modulator.

2.3.4 Age-associated metabolites are enriched for longevity modulators

We wondered whether the metabolites that change the most over the course of ageing might
be known to influence the ageing process in any way when supplemented. As described in
the Methods, we consulted databases and the literature to determine which of our detected
metabolites from the full dataset had previously been found to extend longevity when
supplemented to C. elegans. The results of this investigation for our dataset of metabolites
are included in Supplementary Table A.3 in the Appendix, while a summary of the overall
counts is shown in Table 2.3.

Age-associated Not age-associated
Longevity modulating 25 15

Not longevity modulating 18 47
Table 2.3 Numbers of metabolites in age-associated and longevity modulating groups.

In total, 40 of our total 105 measured metabolites were associated with beneficial effects
on lifespan in the examined databases and literature, and 25 of those – more than half –
were amongst the 43 age-associated metabolites. This is more than would be expected if the
40 were distributed according to chance: Fisher’s exact test for category over-representation
for the contingency table illustrated in Table 2.3 gives p < 0.0005. This relationship is not
unexpected, but has not been explicitly examined previously in a data-driven fashion.

We explored this relationship more deeply by interpreting it in the context of pathways.
For each pathway, we calculated the percentage of age-associated metabolites and the
percentage of longevity modulators. The results are shown in Figure 2.8. In this bubble
plot, pathways in which ageing-associated metabolites are over-represented are shown in
red, while those in which ageing-associated metabolites are under-represented are shown
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Figure 2.8 Bubble plot for pathway enrichment.
Each bubble represents a pathway. The bubble size shows the number of metabolites in that
pathway included in our dataset. Colour shows enrichment for age-associated metabolites
(red=overrepresentation, blue=underrepresentation). Position along the x axis shows the per-
centage of metabolites in the pathway that were determined to be age-associated, while along the y
axis is the percentage annotated as being longevity modulators.

in blue, as per the pathway enrichment score illustrated in Figure 2.7. Circle (bubble) size
shows the number of measured metabolites in the pathway. The axes show the two different
measures: the percentage of ageing-associated metabolites in the pathway from our study
on the x axis, and the percentage of metabolites in the pathway associated with longevity
in databases and literature on the y axis.

Figure 2.8 indicates that these measures are broadly correlated on the pathway level.
However, discrepancies are also apparent. It is evident that the amino acids have been well-
studied as a group for their influence on ageing (e.g. in Edwards et al. (2015)), since they
are represented highly on the y axis of Figure 2.8. However, the TCA cycle, polyamines,
tryptophan cycle and downstream metabolites of amino acids are lower in the y axis
(percentage of known longevity modulators) but still high in the x axis (age-associated in
our dataset). It is possible that these pathways represent opportunities for the discovery of
novel longevity modulators.
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2.3.5 Temporal patterns over the full course of ageing

The dynamic pattern of temporal changes is different for different groups of age-associated
metabolites. To explore the non-linearity of the changes further, we used a clustering-based
analysis of the subset of the dataset for the age-associated metabolites. The scaled mean
values per time point (taking the two strains, FEM and GEM, together) for these metabolites
are illustrated in the heat map shown in Figure 2.9A. This heat map has been clustered
algorithmically, from which eight main clusters have been selected by visual inspection
(Figure 2.9B-I).

The first five of the clusters include metabolites that decrease with age, while the
remaining three clusters include metabolites that increase with age.

The first cluster (Figure 2.9B) includes three metabolites that decrease with age between
days 5 and 10, which are also the three metabolites showing the most negative fold
change between days 1 and 10 (Figure 2.6). This cluster contains the TCA cycle metabolite
oxaloacetate and the amino acid glutamine, involved in energy maintenance and protein
synthesis respectively, both of which are known longevity modulators. 2-aminoadipate
is an intermediate of a lysine synthesis pathway, and although not much is known about
this metabolite in C. elegans, it has been implicated as a biomarker for human diabetes risk
(Wang et al., 2013).

Clusters two and three (Figure 2.9C and D) contain a large group of mainly amino acids
that show fluctuations of alternate increases and decreases within a range during early
ageing (which will be discussed in greater detail below), then begin to decrease during
‘middle’ age (days 4 and 5), and continue to decrease gradually between days 5 and 10. The
overall pattern of decrease of amino acids with age confirms a well-known imbalance in
amino acid metabolism with age in C. elegans that has previously been attributed to the
change in cellular volume with age (Swire et al., 2009). As C. elegans somatic cell count is
fixed from the beginning of adulthood (adult animals are post-mitotic), yet the organism
continues to grow, cellular volume increases, causing a change in the ratio of hydrophilic to
hydrophobic surfaces, which necessitates a decrease in hydrophobic amino acids in order
to maintain membrane surface to cell volume ratios (Swire et al., 2009). This phenomenon
was also mentioned in Copes et al. (2015); Gao et al. (2017); Wan et al. (2017). However,
in our lab we have found that there is a significant change in the worm size from days
1 to 5 (Figure 2.10), but not between days 5 and 10, meaning that in partial contrast to
received wisdom, the decrease in amino acid levels later in ageing cannot be due to body
size changes. An alternative explanation could be that this decrease relates to the reduction
food intake which is one of the known pathologies of ageing in C. elegans, as pharyngeal
pumping becomes inefficient (Russell et al., 2017) and the intestine atrophies (Ezcurra et al.,
2018).
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Figure 2.10 Body size (length) at days 1, 5 and
10.
Body length significantly increases between Day
1 (41 hours) and Day 5 (137 hours) in both the
GEM (P<0.0001) and the FEM (P<0.0001) strains.
Between Day 5 and Day 10 (257 hours) no signifi-
cant change in body length is observed in either
strain. Points plotted represent the mean body
length measured from at least 30 animals, biolog-
ical replicate count n=3 for each timepoint, per
strain.
This Figure appeared in the Supplementary Material of
(Hastings et al., 2019a). Thanks to Bhupinder Virk for
this Figure and associated data.

Cluster six provides further support for this hypothesis. Cluster six metabolites (Fig-
ure 2.9G) show significant increases between days 4 and 5, and a further steep increase
between days 5 and 10. This group contains several polyamines – cadaverine, putrescine
and N-acetylputrescine. Polyamines are downstream products of amino acid metabolism
and have many cellular functions. Supplementation of putrescine increases lifespan in
worms by 10-20% (Edwards et al., 2015), whilst the role of cadaverine remains unexplored.
Cadaverine is a precursor of spermidine, which has been associated with lifespan extension
by activating autophagy (Eisenberg et al., 2009; Minois, 2014; Minois et al., 2014). Although
spermidine was available in our dataset, the levels were too variable between replicates to
detect a clear pattern with respect to age.

Autophagy is a well described fasting response that recycles cellular components to
restore the energy balance. It is interesting to note that the levels of 3-hydroxybutyric acid
(3HBA) behave similarly to the polyamines (i.e. this metabolites is also in cluster 6). 3HBA
is metabolised from ketogenic amino acids and/or lipids, and it is a component of ketone
bodies, which supply energy during periods of fasting (Veech et al., 2017). At the same
time, we observe significantly increased levels of spermidine precursors. Thus, polyamine
synthesis may be enhanced in older animals so as to stimulate autophagy when nutrient
availability from food intake becomes limiting. Autophagy can also mediate the conversion
of intestinal biomass into yolk, causing documented early ageing pathologies (Ezcurra et al.,
2018). Therefore, autophagy can have positive and negative consequences for longevity.
The seemingly contradictory nature of these two observations might be further clarified
by gaining a deeper understanding of the underlying molecular mechanisms that trigger
autophagy and the physiological contexts where it is used. A plausible scenario is that the
increase in polyamines that may result from reduced food intake at day 10, may promote
a switch in autophagy away from lipoprotein pool production into a survival strategy
aimed at coping with malnutrition, which may be beneficial for survival. FEM and GEM
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level changes are similar for these metabolites, indicating that the age-related changes we
observe are independent of reproduction.

Cluster four (Figure 2.9E) contains the nucleotides uridine, cytidine and guanosine,
each of which shows a striking decrease during day 1, followed by somewhat of a recovery
and then a gradual decrease through to day 10. Cluster five (Figure 2.9F) contains both of
the medium-length fatty acids that were included in the set of measured metabolites, each
of which shows a small and steady decrease over the course of ageing, in keeping with
what was previously observed in Gao et al. (2017).

Cluster seven (Figure 2.9H) contains metabolites that are involved in central carbon
metabolism, including the TCA cycle metabolite succinate and anaerobic metabolism
byproduct lactate, increases of which are usually associated with excess exercise or other
anaerobic conditions such as hypoxia. An imbalance in the TCA cycle in 10-day old animals
has been previously described (Wan et al., 2017). These metabolic changes may reflect the
widespread fragmentation of mitochondria that begin at around this stage (Regmi et al.,
2014; Yasuda et al., 2006). Interestingly, succinate, an important metabolite for multiple
convergent longevity-related pathways (Tretter et al., 2016), displays a steep decrease in early
ageing between the two day 1 time points, then remains relatively stable before increasing
between days 5 and 10. This complex trajectory with non-linear behaviour and variability at
earlier time points may explain some of the contradictory findings with respect to whether
or not succinate increases or decreases with age (Supplementary Table A.2), as if this
pattern is typical, the level change attributed to ageing would then depend strongly on the
exact timing of the earlier sample used for comparison.

While the other clusters of increasing metabolites show their steepest increase between
days 5 and 10, cluster 8 (Figure 2.9I) contains metabolites that increase more steadily
across the time series and show significant increases already during early ageing. In this
group we have energy-related metabolites carnitine, acetylcarnitine and pentothenate as
well as intermediaries of nucleotide metabolism allantoin and hypoxanthine. Interestingly,
allantoin has been earmarked as a calorie restriction mimetic (Calvert et al., 2016), indicating
that it interacts with and potentially represses insulin signalling, leading to improvements
in healthspan and lifespan when supplemented. Copes et al. (2015) found a small but
significant lifespan benefit when supplementing hypoxanthine, and it is known to be active
both in energy metabolism and in nucleotide synthesis.

2.3.6 Strain differences and patterns during early ageing

Thus far, we have considered the overall pattern of changes during ageing from early
adulthood to old age. However, our time series included a higher temporal resolution
during early ageing specifically with the intent to tease apart early metabolic changes that
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may be related to the onset of age-related pathologies (Ezcurra et al., 2018), and the loss
of the normal ability to mount a stress response that occurs at approximately day 2 of
adulthood (Ben-Zvi et al., 2009). For these early ageing time points, all three strains were
available, which allows us also to compare the metabolism between the GEM and FEM
strains, both of which do experience a collapse in stress response, and the long-lived GLP
strain in which the collapse is delayed until after day 4 of adulthood.

Firstly, we conducted another PLS-DA analysis on the early ageing dataset, this time
using strain as the determining output (response) variable. The model statistical details are
shown in Supplementary Figure A.3 in the Appendix. In contrast to the PLS-DA model built
with hour of sample collection as response (Supplementary Figure A.2), this model is not
robustly predictive (the associated statistic, Q2, is close to 0, as illustrated in Supplementary
Figure A.3) as there is no clean separation between the strains. However, this analysis
nevertheless provides an indication as to which metabolites show between-strain differences
in concentrations in at least some of the early ageing time points. Using a VIP cutoff of 1,
35 such metabolites were determined. The full set is illustrated in Figures 2.11 (clustered
heat map) and Supplementary Figure A.4 (individual mean concentration level plots). A
selection of the concentration level plots showing metabolite scaled intensity values is
illustrated in Figure 2.12.

One cluster in the heatmap contains metabolites generally elevated in FEM relative
to the other strains, including glycerate, lactate, D-Leucic acid, 3HBA and acetylcarnitine
(Figure 2.12A). Glycerate and lactate are indicators of glycolysis, D-Leucic acid is a down-
stream metabolite of leucine degradation, 3HBA is a ketone body downstream of fatty acid
breakdown, and acetylcarnitine is an intermediary in the mitochondrial fatty acid oxidation.
Taken together, this cluster of metabolites indicate that the FEM strain may be metabolizing
diverse energy sources at a higher rate than the other two strains.

Other metabolites showing a strain-specific difference appear specifically depleted
in GEM, including hypoxanthine and cystathionine, particularly during the first time
points (day 1-2) in the early ageing time series (Figure 2.12B and C). Hypoxanthine is a
purine derivative that is a known longevity modulator, and cystathionine is an amino acid
intermediary related to energy metabolism. By contrast, another purine derivative, inosine
(Figure 2.12H), is elevated in early ageing in GEM and FEM compared to GLP, although
the trend is a decrease with time in all three strains.

A cluster of metabolites are elevated in GLP in particular, including AMP and reduced
glutathionine (Figure 2.12D and E). Glutathione is the major intracellular redox buffer, and
depletion of glutathione in C. elegans has been found to have a hormetic effect, extending
lifespan at low doses but detrimental at higher doses (Urban et al., 2017). Since the levels
of this metabolite start out at the same level for all strains then reduce in GEM and GLP
during day 2, it might be hypothesised that this shift is somehow related to the general
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Figure 2.11 Heat map of metabolites that differ by strain
The heat map shows all the metabolites that are significantly differing by strain in the early ageing
dataset with the columns ordered by (A) age and then strain, or (B) strain and then age. Strains are
indicated by column side bar colours: blue for GLP, green for FEM and gold for GEM.

loss of stress resistance in the FEM and GEM strains but not the GLP. These metabolites
are also prominently involved in energy metabolism, so we also investigated strain and
age-related differences in some additional markers of energy metabolism.

The ratio of ATP to ADP is a commonly used marker for energy metabolism. Unfor-
tunately, in our dataset ATP was not detected at all, and ADP was removed during data
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Figure 2.12 Selected metabolites showing characteristic between-strain differences.
Each plot represents a single metabolite’s scaled intensity values during early ageing, by time point
and strain. Points represent the means of available replicates at that time point and strain. Strain is
indicated by colour: blue for GLP, green for FEM and gold for GEM.

pre-treatment due to a large percentage of missing values (Figure 2.2A). While measure-
ments of AMP were available, they are perhaps less informative on their own. AMP was
neither age-associated nor significantly associated with time of day, but it does show an
effect of strain and is slightly higher on average in GLP than FEM/GEM (Figure 2.12D).

Another estimate of energy availability is the ratio of NAD+ to NADH. We did not
directly measure these cofactors, but the ratio of pyruvate to lactate can be taken as an
estimate as the related enzymes sense shifting levels. Copes et al. (2015) observed a 3-fold
decrease in NAD+ levels and 20% increase in NADH levels, leading to a 3-fold decrease in
NAD+/NADH ratio with age, which they were able to estimate by a similar decrease in
the pyruvate to lactate ratio. However, we do not see a consistent decrease in this ratio in
our dataset (Figure 2.13). The levels of both pyruvate and lactate seem to increase in the
oldest time point, and so does the ratio (indicated as “PYR/LACT” in Figure 2.13).

Copes et al. (2015) also examined the relative ratios of NADP+ and NADPH as estimated
using the ratio of pyruvate to malate, which in our dataset is similarly inconclusive
(“PYR/MAL” in Figure 2.13).

The ratio of reduced glutathione to oxidised glutathione indicates redox state. Reduced
glutathione should be substantially more abundant than oxidized glutathione, but this
ratio is reduced in neurodegenerative diseases and other pathological conditions (Caito
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Figure 2.13 Availability of energy metabolites.
This Figure shows a heat map of energy metabolites, antioxidants and their ratios as estimates of
energy availability and redox status. Rows are clustered algorithmically, while columns are ordered
first by strain and then by age. Strain is indicated by column bar colour: blue for GLP, green for
FEM and gold for GEM.

and Aschner, 2015) and is expected to decrease with age (Back et al., 2012). We do see a
suggestive if not very clean decrease with age in our dataset (“REDOX” in Figure 2.13).

Finally, there are several examples of sub-clusters with differing and non-linear trajecto-
ries with respect to time. For example, putrescine (Figure 2.12G), a polyamine representing
degradation pathways and (as discussed above) implicated in C. elegans ageing, becomes
depleted in GLP but not the other two strains later in ageing. As this metabolite strongly
accumulates in later ageing (Figure 2.9A and G, cluster 6), the depletion at this time point
in GLP can be taken as indicative of an anti-ageing trajectory, which stands alongside the
aforementioned evidence that GLP has a better redox state due to higher levels of reduced
glutathione (Figure 2.12E) to suggest a more metabolically youthful profile extends for
longer in these long-lived mutants.

Furthermore, arachidonate (Figure 2.12F), an ω-6 polyunsaturated fatty acid (PUFA)
illustrates non-linear patterns with respect to time that are noticeably different across all
three strains. Arachidonic acid is one of several PUFAs that have been found to be beneficial
to C. elegans lifespan through pathways that promote starvation resistance and longevity
through activating autophagy (O’Rourke et al., 2013). The non-linearity of these complex
trajectories during early ageing points at a reason that some of these important longevity-
modulating metabolites, such as arachidonic acid, were not revealed as age-associated in
the initial analysis of the full ageing time series. One possible explanation for some of the
metabolic non-linearity will be explored in the next section.
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2.3.7 Some metabolites vary with time of day, in what may reflect circadian
metabolic oscillations

The availability of more than one sample per day during early ageing allows us to examine
more complex temporal dynamics in metabolism than single-time-point-per-day sampling
allows. Moreover, as has been observed in the earlier sections of this chapter, some of these
temporal dynamics are clearly non-linear, yet regular with respect to sample collection
age. One of the patterns that has been visually apparent for some metabolites is a hint
of periodicity, or repeated shifts up and down between neighbouring time points, during
early ageing. For example, cluster 3 in Figure 2.9 appears ‘stripey’ in the early ageing time
points, with recurring level shifts within each day.

These temporal fluctuations during early ageing are consistent with the possibility of a
metabolic response to circadian or other biorhythms. Circadian oscillations in metabolic
intermediates have been shown to be widespread and essential for health in mice (Dyar et al.,
2018), and it is known from epidemiological studies in humans that deregulated circadian
clocks lead to a greater burden of metabolic diseases and cancer in e.g. shift workers
(Kecklund and Axelsson, 2016). In C. elegans, circadian rhythms with metabolic effects are
known to occur despite the fact that in the wild, nematodes live underground (Migliori
et al., 2011; van der Linden et al., 2010). They have been shown to be responsive not only to
the presence and absence of light, but also to fluctuating environmental temperatures (Goya
et al., 2016), although these factors are less clear in laboratory conditions. The metabolic
impact of these fluctuations may be partly mediated by feeding behaviour, but not entirely:
the same rhythms have been linked to concomitant changes in the ability of the organism
to mount a response to stress (Simonetta et al., 2008), and responses to different types of
stressor (osmotic vs. oxidative) vary in anti-phases, thus are not all aligned with differences
in feeding behaviour. A 12-hour cell autonomous oscillation in ER and mitochondrial
genes impacting stress responses has also been observed to be conserved from mammals to
C. elegans, controlled by the master regulator of the unfolded protein response, xbp-1 (Zhu
et al., 2017). The nature of the relationships between circadian rhythms and downstream
metabolite concentrations during ageing are yet to be explored in detail.

Thus, we decided to investigate whether time of day was a significant determinant
of metabolite levels in our early ageing dataset. With only two time points per day, we
cannot really determine if true circadian oscillations are present, but we can check if level
fluctuations track the time of day of sample collection. Samples were collected at the
beginning of the day (morning) and at the end of the day (evening) as follows:

• Day 1: 41 h → morning, 49 h → evening;
• Day 2: 65 h → morning, 73 h → evening;
• Day 3: 89 h → morning, 97 h → evening.
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Figure 2.14 Time of day effects in early ageing metabolism.
(A) Venn diagram and (B-E) associated heat maps for metabolites in each strain and group showing
time of day effects during early ageing. The Venn diagram (A) indicates the overall numbers of
metabolites varying in this way that are unique to each strain and shared between the strains, while
the heat maps (B-E) show the individual metabolite profiles for each of these groups. Strain is
indicated by colour: blue for GLP, green for FEM and gold for GEM.

As described in the Methods, we used analysis of variance (ANOVA) to determine which
metabolites fluctuated with time of day significantly after accounting for the fluctuations
due to age in general. There are significant strain differences with respect to these fluctua-
tions, thus, we performed this analysis on a per-strain basis. As illustrated in Figure 2.14,
using a threshold of 0.01 for the statistical significance of the time of day effect, we were
able to distinguish 42 metabolites with time of day effects in at least one strain. Each strain
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has a distinct profile of such metabolites, but GEM and FEM also share a significant subset,
while GLP has a different profile of time-of-day varying metabolites altogether.

Taking the metabolites that were varying with time of day in a shared manner between
GEM and FEM (Figure 2.14B), we find a substantial cluster of these shared metabolites
are more abundant in the mornings and lower in the evenings; these metabolites include
proteinogenic amino acids histidine, lysine, proline, phenylalanine, leucine, and arginine,
and the nucleoside guanosine and nucleotide uridine. More amino acids are apparent in
the FEM-only group (Figure 2.14C), namely tyrosine, serine and methionine, and visual
inspection shows that the trend for these metabolites is actually shared with GEM even
though their periodicity may not have reached statistical significance in the GEM strain.

It is interesting to speculate why we might be seeing higher levels of amino acids in
the mornings in our two wild-type-like strains FEM and GEM. Recently, a comprehensive
atlas of mouse tissue-specific 2-hourly metabolomics revealed that more than 50% of
the metabolome exhibited circadian temporal oscillations (Dyar et al., 2018), attributing
amino acid temporal oscillations to shifts in feeding and exercise behaviour. Feeding and
locomotory behaviour may well be the reason for the shifts between high morning and low
evening levels of amino acids in C. elegans as well. Although we did not track behavioural
phenotypes in our study, locomotory behaviour in C. elegans has been shown to peak
around the early morning in worms (Simonetta et al., 2009). Thus, a prominent hypothesis
arising from this data would be that rates of amino acid concentrations are higher when
worms are more active, in terms of both moving and feeding.

There is a smaller cluster of metabolites in the shared GEM and FEM group that are
depleted in the mornings and higher in the evenings. These are UDP-GlcNAc (uridine
diphosphate N-acetylglucosamine, a nucleotide sugar), PEP (phosphoenolpyruvate, in-
volved in glycolysis and gluconeogenesis), choline (an essential nutrient and component
of lipid head groups) and lactose (another sugar). Looking at the FEM-only group (Fig-
ure 2.14C) and the GEM-only group (Figure 2.14D), we can add further metabolites that
are depleted in mornings and higher in the evenings, including spermidine (a polyamine),
adenine (a purine nucleobase), glycerate (a sugar obtained from oxidation of glycerol),
pentothenate (an essential dietary vitamin B5), carnitine (energy metabolite involved in
mitochondrial fatty acid oxidation), glyceraldehyde (another sugar), malate (a TCA cycle
intermediary) and glucose-1/6-phosphate (involved in glycolysis).

It is very interesting to note that the time-of-day-varying metabolites in GLP (Fig-
ure 2.14E) have a different profile from GEM and FEM altogether. Depleted in the morning
and more abundant in the evenings are fatty acids linoleic acid and arachidonic acid
(arachidonate), as well as betaine, tyramine and alanine. Uracil, by contast, is elevated
in the mornings and depleted in the evenings. It is well known that the GLP animals
have a radically different profile of fats compared to wild type animals (Amrit et al., 2016;
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O’Rourke et al., 2009; Steinbaugh et al., 2015). This altered fatty profile has been linked to
altered transcriptional programming that in turn prolongs lifespan in germline-free animals.
Linoleic acid and arachidonic acid are two polyunsaturated ω-six fatty acids, which are
known to have strongly beneficial health effects. Moreover, in the full clustered early ageing
heat map (Supplementary Figure A.5), it is apparent that there are other fatty acids and
lipids clustering with these key metabolites and fluctuating similarly in GLP and not in
GEM or FEM (although not to the same extent of meeting our threshold for statistical sig-
nificance). For example, citraconic acid, maleic acid, 12-HETE (12-hydroxyeicosatetraenoic
acid, a derivative of arachidonic acid) and quinolinic acid (a neurotoxin that increases ROS
when supplemented to C. elegans, (da Silveira et al., 2018)), kynurenic acid and reduced
glutathione all form a part of the same cluster as linoleic acid and arachidonic acid, while
4-hydroxybutyrate (also known as gamma-hydroxybutyrate or GHB, a central nervous
system depressant that has been linked with lethargus in C. elegans (Dabbish and Raizen,
2011), a driver of metabolic changes during development) clusters with betaine.

Assuming feeding behaviour is also increased in GLP during the mornings, this suggests
that the organism is shifting between a daily phase in which stores of these health-positive
fatty acids and storage metabolites are built up, and a nightly phase in which stores are
reduced. In support of this hypothesis, there is a (not statistically significant) trend towards
an anti-correlation with TCA cycle metabolites malate and aconitate, at increased levels
when the fatty acids are at lower levels and at lower levels when the fatty acids are at higher
levels (Supplementary Figure A.5), suggesting that there is a day/night switch between
programs for energy storage and energy metabolism.

Moreover, intriguingly, while on average the FEM and GEM level shifts appear more
apparent on days 1 and 2 than on day 3, the GLP level shifts are more apparent on days 2
and 3 but are largely absent on day 1. This hints at a metabolic shift taking place in GLP
animals during day 1, which is consistent with large-scale transcriptional changes described
in the associated dataset (Mains, 2018). We might expect that circadian oscillations in
wild type C. elegans might be dampened with age, consistent with the reduced magnitude
shifts observed by day 3 in GEM and FEM, as Goya et al. (2016) observe that circadian
oscillations die off after day 4 of adulthood. They hypothesise that this is due to the loss of
synchronization between individual worms in populations, but another possibility is that it
is due to an ageing effect that is not explored in their study, consistent with the onset of
early age-related phenotypes noted by Ezcurra et al. (2018) and Ben-Zvi et al. (2009). In
this context, it would also make sense that the GLP level shifts carry on and even appear to
strengthen into day 3, although of course it is impossible to draw any robust conclusion
when the metabolites involved are so different.

It is intriguing to wonder how much of the time of day variance in the metabolome is
directly caused by feeding behaviour as opposed to controlled by transcriptional changes
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in gene expression that are themselves determined by clock genes or related oscillatory
programs. Gene expression oscillates extensively during C. elegans larval development
(Hendriks et al., 2014), driving the four larval stages with intervening periods of lethargus.
It is to be expected that the metabolome would be affected by these massive waves of
synchronised transcriptional oscillation. We might wonder if any of the time-of-day
variation we are observing in our post-developmental dataset might be due to continued
run-ons of developmental oscillations in gene expression. However, consistent with the
literature we have observed in the linked transcriptomics dataset that the relevant genes no
longer oscillate at our time points (data not shown).

Zhu et al. (2017) report that in C. elegans, xbp-1 controls a cell-autonomous 12-hour cycle
that increases stress resistance, and when this cycle is lost, stress resistance decreased. In
our linked transcriptomics dataset, we can observe that xbp-1 does appear to be rhythmically
shifting temporally, although our temporal density does not allow us to distinguish 12
hour cycles from 24 hour cycles, in GLP and possibly (after accounting for a general
dampening due to day) in GEM, while it is generally lowly expressed in FEM (Figure 2.15).
When compared to the metabolomics dataset, varying levels of xbp-1 are in phase with the
amino acid levels, in that the levels are higher in the morning time point and lower in the
evening time point, and thus out of phase with the shifting fatty acid levels in GLP which
are lower in the mornings. Taken together, this may provide further evidence for a complex
interrelationship between fats, stress resistance and longevity in C. elegans.

2.4 Conclusion

It is apparent from this longitudinal metabolomics dataset that many synchronised and
unsynchronised, sharp and gradual shifts in metabolism take place during the course of
adult life in C. elegans. We observed that temporal factors drive variability in the metabolome
both in advanced age and, in a non-linear fashion, early in ageing. Several metabolites were
determined to be significantly changing with age in a coordinated fashion, including those
that become depleted with age, such as oxaloacetate, glutamine and guanosine, and those
that accumulate with age, such as 3-hydroxybutyric acid, allantoin and cadaverine. There
are clear metabolic shifts during the course of aging, with a prominent decrease in the levels
of amino acids, while their polyamine derivatives increase. In addition, many metabolites
involved in the TCA cycle show a decrease in level. In general, many of the changes we
observed concurred with published literature, but we saw that for some metabolites, the
fold change when comparing young to old were dependent on the exact time of day that the
samples were taken, tying in to the observed periodicity during early ageing in a significant
portion of the metabolome.
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Figure 2.15 xbp-1 as one candidate transcriptional mediator of time of day variation in metabolite
concentrations.
The Figure shows: (A) the normalised log gene expression (read count) values for each sample for
the gene xbp-1, illustrating that for the GLP strain, some within-day temporal shifting is apparent
for this gene during the early ageing time points; (B) a heat map of the mean GLP xbp-1 expression
values, and (C) a heat map of the time-varying metabolite concentration levels for those metabolites
that show time-of-day variance in the GLP strain. Strains are indicated by colour: blue for GLP,
green for FEM and gold for GEM.

In terms of pathways, we saw that amino acids were significantly enriched for age-
associated metabolites, again in keeping with previous literature. Many amino acids are
also known to be longevity modulators, and we observed a general correlation between the
groups of metabolites that were age-associated and those that were longevity modulators. It
is interesting that amino acids were also among those metabolites that vary in early ageing
in GEM and FEM in a time-dependent manner, hinting at cycles of nutrient depletion and
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replenishment. For some of the amino acids, the age-associated phenotype of depletion is
similar to the smaller scale shifts in metabolism that take place on a daily basis.

We did not observe a clean separation between the strains in the metabolome, and only
more subtle changes are apparent between the strains, particularly the long-lived GLP strain
as compared to the FEM and GEM strains. The most striking strain difference observed is in
the exact temporal dynamics of what appeared to be periodicity in the early ageing samples,
with amino acids and sugars peaking at different times of day in GEM and FEM hinting
at possible shifts in feeding behaviour, while in GLP temporal shifts are apparent mainly
in lipids and fatty acids. Comparisons of these temporal shifts in the metabolome across
these three non-reproductive strains reveal that distinct metabolic ‘programs’, patterns or
profiles may be activated at different times in the different genetic backgrounds. But based
only on this observational dataset, it is not possible to determine which of these changes
necessarily go together, and which are merely contingently associated.

A more powerful in silico approach would ideally be able to make use of biochem-
ical knowledge about how different metabolites relate to each other within the overall
metabolism of the organism, in order to make mechanistic predictions relating shifts
in metabolism to overall phenotypes. This is the objective of whole-genome metabolic
modelling, and it is to this approach that we will now turn. As a prerequisite for such
approaches, we will need to use a whole-genome model of the metabolism of C. elegans,
which is the topic of the next chapter.





3. A consensus genome-scale model of
C. elegans metabolism

3.1 Introduction

A genome-scale metabolic reconstruction model (GSMM) is a computational representation
of the full range of known metabolic pathways and reactions across an entire genome, with
associated annotations of genes, for a given organism (Thiele and Palsson, 2010). Such
models have long been in use for unicellular micro-organisms, but have only recently begun
to be applied in more complex organisms.

Efforts to reconstruct the metabolism of C. elegans culminated in 2016 with the back-to-
back publication of two curated and validated whole-genome metabolic models (Gebauer
et al., 2016; Yilmaz and Walhout, 2016). This was followed by a third published model
shortly thereafter (Ma et al., 2017).

Each of these efforts used different strategies to reconcile their metabolic knowledge
bases, and were represented using different annotation standards, thus, they were difficult
to mutually reconcile. Each had different strengths and weaknesses, and while they
naturally overlapped to a large extent, they were not completely overlapping – each model
had some unique aspects, as well as different choices of representational abstraction that
hindered a simple combination of their contents. Thus, it was desirable to obtain a merged
and unified model which contained the best of all the knowledge represented in each of
the individual published models, while resolving duplication across them.

With this in mind, our group harnessed an opportunity offered by GENiE (an EU
COST action, www.worm-genie.eu) to host a workshop locally at the Babraham Institute to
initiate a community effort for reconciling and extending a consensus model of C. elegans
metabolism. The workshop was held in April 2017 and was a great success (Hastings et al.,
2017). The community that was established was christened ‘WormJam’ (short for Worm
Jamboree) and has since resulted in the creation and extension of a consensus model and
development of infrastructure to support the ongoing curation and extension thereof.

In this chapter, the development of and current status of this consensus model is
described.
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3.2 Methods

3.2.1 Whole-genome metabolic models

Figure 3.1 A schematic illustrating the structure of whole-genome metabolic models.
Whole-genome metabolic models describe all the metabolic reactions taking place in an organism
abstracted to the level of a single cell. Reactions take place in compartments which represent cellular
organelles, such as the cytosol, mitochondria and nucleus. The system as a whole accepts inputs
from the extracellular environment and creates outputs which are transported out of the cellular
environment.

Whole-genome models describe intracellular metabolism as a network of reactions
between metabolites (Thiele and Palsson, 2010). The general structure of these models is
illustrated in Figure 3.1. Each metabolite that is produced, consumed or intermediary in
any metabolic reaction is represented, including simple amino acids such as L-alanine,
metal ions such as Cu2+, and complex cofactors such as NAD+ and CoA. Metabolites
are related as inputs and outputs in biochemical reactions, which are stoichiometrically
balanced. Reactions take place in compartments, which represent cellular locations, such as
cytosol, mitochondria and nucleus. The system as a whole is bounded, and specified input
and output reactions are allowed at the system boundary to the extracellular environment,
representing for example nutrient and oxygen uptake and metabolic byproduct excretion.

Reactions are further associated with logical rules specifying which gene products or
combinations of gene products are known to catalyse those reactions. Depending on their
biochemical constraints, reactions are potentially bidirectional, carrying either positive or
negative flux (reaction throughput) depending on the overall required flow of metabolites.

Reactions are furthermore associated with rules for the maximum and minimum flux
that they can carry, which are ideally based on experimental knowledge. Although for the
vast majority of reactions in the knowledge base the true experimental maxima and minima
are not known, constraining key exchange reactions for nutrients and oxygen uptake
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typically limits the flux through the remainder of the network to realistic levels. A final
special type of reaction is the biomass reaction, which specifies the metabolic components
of the structure of the organism (e.g. nucleic acids, proteins and lipids), in the relative
stoichiometric quantities in which they are typically required in the growing organism to
create a unit of biomass, scaled so that the flux through this reaction equals the growth rate
µ of the organism.

For E. coli, a community effort in annotation of the whole-genome metabolism has
resulted in a widely used model for strain K-12 MG1655 (Orth et al., 2011) and several
other models for alternative strains and conditions. Similar reconstructions exist for human
cells (Swainston et al., 2016; Thiele et al., 2013) and in particular for core central human
metabolic pathways (Smith et al., 2017). The typical size of such models is thousands of
reactions and metabolites, across several compartments. These models have become an
essential tool for the study of metabolism in a wide range of cellular functions.

3.2.2 The WormJam model annotation and development pipeline

A custom pipeline for the development and extension of the shared consensus model was
developed using SBTab (Lubitz et al., 2016), a format for representing model contents as
spreadsheets. The model is represented as SBTab and the resulting spreadsheets – for
reactions, metabolites, genes, and pathways – are shared as Google spreadsheets in a folder
to which all members of the WormJam community have access via shared membership of a
WormJam Google group. Through these shared spreadsheets, all members of WormJam are
able to contribute to model curation.

The use of standards and shared identifiers in the representation of such models greatly
aids in their use and adoption by the scientific community, as well as facilitating the
community-wide integration of different models to achieve consensus reconstructions
(Herrgård et al., 2008). The standard representational format for models is the Systems
Biology Markup Language (SBML; Hucka et al., 2003). Individual entities within the model
may be annotated with meta-data cross-references to various databases and resources that
enable disambiguation of the entity, such as ChEBI for metabolites (Degtyarenko et al.,
2008; Hastings et al., 2016) or UniProt for gene products (Bairoch et al., 2005).

Periodically, the contents of the spreadsheet are built into a working model SBML
file which is then validated before being released. The build process uses a custom Java
script, which is available from the online WormJam repository1. Releases and other project
updates are advertised by email to the WormJam Google Group2.

1 Website: http://gh.wormjam.life/
2Email: wormjam@googlegroups.com

http://gh.wormjam.life/
wormjam@googlegroups.com
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3.2.3 Model validation

Genome-scale metabolic models can be validated along at least two distinct dimensions:
how complete the model is relative to the best known biochemistry, and how correct the
model is. Completeness can be benchmarked for example against databases and other
models of the same organism, while correctness can be checked manually but also tested
with quantitative simulations.

To validate the correctness of the model quantitatively, part of what is commonly done
is to check the model’s ability to make predictions. In general, the in silico predictions
made by such a model, which relate to growth under different input conditions as well as
differential use of pathways within the overall reaction network, need to be compared to
what has been measured in vivo.

Growth and energy metabolism

The most basic validation that can be applied to a genome-scale model is can it simulate
growth? To do this the model is used together with Flux Balance Analysis, a mathematical
simulation method that is able to make predictions about growth given various allowed
inputs, which will be described in full in the subsequent chapter.

In the validation steps performed for the WormJam model, the most primary validation
for each release was whether the model could ‘grow’, or carry flux in an FBA simulation,
implemented in Python using the CobraPy library (Ebrahim et al., 2013) (substantial details
presented in the subsequent chapter). Blocked reactions were assessed using CobraPy’s
analysis method ‘cobra.flux_analysis.find_blocked_reactions’. Additional information was
sometimes given by the method ‘cobra.flux_analysis.reaction.assess’, which tests for a given
reaction which of the inputs cannot be acquired from the model under current conditions
and which of the outputs cannot be consumed. However, if the broken chain of fluxes
is very long then this method is not able to provide accurate estimations of the problem
metabolites.

Furthermore, we evaluated the predicted maximal growth under different scenarios of
available inputs in order to benchmark the use of different strategies for energy metabolism
in the model. We tested a range of different allowed inputs of food intake (bacterial
digestion and glucose) and oxygen consumption. These simulations were also performed
in Python with CobraPy.
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Essential and bottlenecked gene predictions

The ability of whole-genome models to predict which genes are essential for growth or
active metabolism, i.e. predicted gene essentiality, is considered an important metric for
the quality of the annotations in a given model.

Essential genes are those that if knocked out (i.e. flux set to zero for reactions that have
that gene annotated as enzyme), the model cannot grow at all. Model-predicted essential
genes are typically compared to genes that are known to be lethal if knocked out. Of course,
there may be many reasons that a gene that is known to be lethal if knocked out may not
be predicted to be essential for sustaining growth in the model, and vice versa. Metabolic
models necessarily exclude all the complexities of cellular signalling, transcription and
translation. Moreover, tissue specific or sub-cellular location-specific gene activity is mostly
not annotated in the model, and even in cases where a particular reaction may be localised
to e.g. cytosol or mitochondria, it is often not 100% known which genes are differentially
needed in the different compartments. Thus, model annotations contain redundancy in
their gene annotations. Moreover, many of the model pathways contain reactions that are
predicted, or that are needed to plug gaps that would otherwise exist in the model if we
only included those parts of metabolism for which we have biochemical evidence in the
appropriate organism. On the other hand, there are artificial bottlenecks in the model
where insufficient alternative pathways have been included in the model.

For the WormJam model validation reported in this chapter, we compared the predicted
essential genes in the model to those that are known to be essential for C. elegans as per
the annotations of lethal phenotypes in the WormBase database, typically based on RNAi
screening (Chen et al., 2005; Lee et al., 2018).

3.2.4 Visualisation of arbitrary reaction groups

Typically, for large models of this type incorporating thousands of metabolites and reactions,
it is not possible to comprehensively visualise all the content at a level of detail which
allows tracking individual metabolites and paths through reaction chains. Various tools
exist which allow metabolic network visualisation. For example, SBML models, including
genome-scale models, can be loaded into Cytoscape (Su et al., 2014) and the resulting
network, in which both reactions and metabolites are nodes, and edges connect reactions
with the metabolites that participate in them, can be interactively visualised. Another
popular network visualisation tool is Gephi (Bastian et al., 2009). The visualisation result
for a generic visualisation tool is rather dependent on the layout algorithm which is used
to automatically lay out the content.

Visualisation tools specific for genome-scale models include MetDraw (Jensen and
Papin, 2014), MetExplore (Cottret et al., 2018) and Escher (King et al., 2015). While Escher
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only allows visualisation of pre-drawn pathway maps and is therefore not useful for whole-
model visualisation, MetExplore and MetDraw provide automated layouts. MetExplore
provides a rich source of functionality for online editing, visualisation and exploration of
genome scale models. However, for reasons that are probably relatively trivial but which
I did not investigate further, it failed to parse the WormJam SBML model. MetDraw, in
contrast, parses the model and generates a candidate visualisation relatively quickly. The
MetDraw approach to automated model visualisation segregates the model content by
annotated pathway, and then within each pathway generates a default layout in which
metabolites are shown nodes, and reactions are shown as edges connecting metabolites,
an intuitive metabolism-oriented simplification on the Cytoscape default which has both
reactions and metabolites as nodes. Figure 3.2 shows a small subset of pathways from the
WormJam model visualised with the MetDraw tool.

Figure 3.2 A subset of pathways in the WormJam model, visualised with the MetDraw tool.
A subset of pathways in the WormJam model selected from the default visualisation of the model
created with MetDraw. Within each pathway, metabolites are illustrated as nodes and reactions as
edges connecting nodes. The layout is computed automatically.

In addition to segregating the model content by annotated pathway and introducing the
simplification of reactions as edges, MetDraw offers another optimisation that is essential
for visualising genome-scale models sensibly: it defines ‘minor metabolites’, as those that
participate in a very large number of reactions, and does not necessarily connect those up
to each other. Without this optimisation, in a network visualisation, a single metabolite
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node would be connected to each of the reactions in which it participates, thus joining
those reactions together. Minor metabolites represent common cofactors and by-products
of metabolism, such as water, hydrogen and ATP. These metabolites appear regularly
in reactions that are otherwise completely unrelated, thus it is important to be able to
segregate those reactions if they do not share other metabolites. Hence the introduction of
non-unified minor metabolites improves the network visualisation.

In what follows I have made occasional use of Cytoscape and of MetDraw for model
visualisation. However, I have also implemented my own very rudimentary visualisation
library in Python which follows a similar approach to MetDraw for automated layout, but
allows arbitrary subsets of selected reactions to be visualised, regardless of their annotated
pathways. This was an important tool when I was debugging the various model releases, as
it is important to be able to visualise connections between reactions by network rendering
when attempting to ascertain blockages which prevent the model from carrying flux. I
used the same approach as MetDraw of defining ‘minor’ metabolites to simplify complex
reaction chains. Moreover, I added functionality to visualise flux distributions by colour and
thickness of reaction edges, which is functionality that is provided in Escher for pre-drawn
maps.

3.3 Results and Discussion

3.3.1 Initiation of the WormJam community

At the time of the GENiE workshop held in Babraham in April 2017, it was not yet clear to
what extent the previously published C. elegans metabolic reconstructions overlapped. The
objectives of the workshop were thus:

• To survey the current state of C. elegans metabolism research and evaluate the pub-
lished models;

• To chart a roadmap for how the different metabolic reconstructions, published and
non-published, could be integrated in a community-driven effort leading to a com-
prehensive consensus C. elegans metabolic reconstruction;

• To specifically include researchers from both ‘wet-lab’ and ‘dry-lab’ contexts in order
to exchange knowledge and experiences, sharing insights into how different types of
data can be integrated using metabolic reconstructions.

The workshop was attended by 30 scientists from three continents spanning the full
breadth of the planet, showcasing an exciting diversity of cutting-edge C. elegans metabolism
research. The outcomes of the workshop were published in (Hastings et al., 2017). In
summary:
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• The overlap, strengths and weaknesses of the existing published models were identi-
fied, and several ongoing efforts to mutually reconcile them were identified;

• The gap between metabolites represented in these models and measured in metabolomics
experiments was highlighted, and an effort to reduce this gap by working together to
fill in holes in the models was prioritized;

• An open community vision for the future was established, which had as an objective
the establishment of a community platform for the development and extension of a
shared consensus model, and the holding of future annotation workshops.

In the time since then, that WormJam vision became a reality. A shared platform was
created online using freely available Google infrastructure, with file sharing using Google
Drive and discussions and membership management achieved through use of a Google
Group. An initial consensus model was automatically created, and subsequent annotation
was enabled using editable spreadsheets powered by the SBTab utility (Lubitz et al., 2016),
which allows round-tripping between spreadsheets and SBML models. Several face-to-face
and virtual annotation ‘jamborees’ were held, and the resulting model is being used as the
basis for further research.

The remainder of this chapter will discuss in further detail several of these steps.

3.3.2 Overlaps and differences between published models

The overlap and differences between the two initially published models – ElegCyc (Gebauer
et al., 2016) and iCEL1273 (Yilmaz and Walhout, 2016) – were evaluated along several
distinct dimensions.

The numbers of different constituent parts and annotations differed between the models.
Table 3.1 lists the relevant indicators.

Table 3.1 Metrics for the size of two published models

Two published reconstructions are shown with indicative metrics for their sizes. The number of
unique (across compartments) metabolites is shown in brackets after the total number, as in these
types of models, metabolites are distinguished per compartment. Abbreviations: cyt.=cytosol,
mit.=mitochondrion, nuc.=nucleus, extra.=extraorganism/extracellular.

Model Metabolites (unique) Reactions Genes Pathways Compartments
ElegCyc 2357 (998) 1921 981 176 4 (cyt., mit., nuc., extra.)
iCEL1273 1718 (885) 1985 1289 98 3 (cyt., mit., extra.)

Using simple name comparisons, I evaluated overlaps in annotations across the models.
The results (Figure 3.3) are striking in that the overlaps appear so low, but this is clearly
an underestimate of the true overlap that would be obtained with a more comprehensive



3.3 Results and Discussion 63

reconciliation strategy. Rather, it can be taken as indicative of the plurality of naming
schemes for this type of data, and the necessity of using non-semantic standard identifiers
for the annotation of content in models of this type (McMurry et al., 2017).

Figure 3.3 Overlaps between two models based on name matching.
Exact, case insensitive name matches show a low level of overlaps between the two models as
illustrated for (A) genes, (B) metabolites, (C) reactions and (D) pathways.

An automated merge of these two precursor models was done by two members of the
WormJam community – Chintan Joshi and Nathan Lewis – and is described in (Witting et al.,
2018). In addition to being partially overlapping, the two models had different strengths
and weaknesses. ElegCyc offered the option to choose between an axenic (bacteria-free)
and a bacterial food source, and included a representation of the nucleus with details of
specific reactions taking place in that compartment. iCEL1273, on the other hand, offered
a more detailed representation of C. elegans biomass tailored to different stages of the
growing organism, and an explicit network of reactions for bacterial digestion showing
which aspects of the bacterial food source served as input to which aspects of the worm
metabolism. The initial merge retained all unique aspects of both models, but resolved
exactly duplicated reactions and metabolites. This meant that the initial build of the merge
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had several different options for food intake as well as several different options for biomass.
Some of these have been altered or removed in subsequent rounds of manual curation.

Briefly, the steps that were followed in performing the automated initial merge involved
merging genes, reactions and metabolites based on their names and annotations. Genes were
first merged based on WormBase gene identifiers (which have the form WBGeneXXXXXXXX
where XXXXXXXX is a unique number per gene) (Lee et al., 2018). Furthermore, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2017) and the Gene Ontology
(Ashburner et al., 2000; The Gene Ontology Consortium, 2019) were queried to obtain
additional gene annotations for reactions, to ensure that the gene associations were as
comprehensive as possible so that they could be used as input to the merging algorithm.

Metabolites were disambiguated using the BiGG (King et al., 2016), KEGG (Kanehisa
et al., 2017), MetaNetX (Moretti et al., 2016) and ChEBI (Hastings et al., 2016) databases.
Charge and formula were also extracted for each metabolite. Metabolites lacking any
annotated database ID were resolved by manual database searches. Duplicate metabolite
entries were merged by removing one of the instances and updating the remainder of the
references accordingly.

The most complex merging step was for reactions. The process that was followed
checked reaction stoichiometry and gene-reaction associations. Exact duplicates were
removed. If one gene-reaction association was a superset of the other, the union of the
gene-reaction associations was used. Stoichiometry was also checked without protons and
after elemental balancing. However, even after the automated process had completed, many
duplicate reactions still remained due to subtle differences in representational choices and
differences in gene-reaction association. Many of these were resolved during the subsequent
rounds of manual annotation.

3.3.3 Manual annotation of the model

The manual curation effort was completed in several phases or ‘rounds’ of curation.

Infrastructure for manual curation

The infrastructure that was used to support this annotation process consisted of sets of
read-only SBTab spreadsheets for each of the source models, as well as editable SBTab
spreadsheets for the current WormJam model version, as illustrated in Figure 3.4.

In these editable spreadsheets, within each table, content was assigned a unique iden-
tifier which was then used for references in other tables. The metabolite table unique
identifiers typically followed the form M_name_compartment where name was, e.g. ‘atp’
for ATP, and compartment was a unique code for a relevant compartment, e.g. ‘c’ for
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Figure 3.4 Overview of the infrastructure for manual model curation.
A shared Google Drive folder housed the infrastructure for manual curation. For reference purposes,
SBTab spreadsheets were available for each of the pre-existing C. elegans reconstructions. These
included iCEL1273 (Yilmaz and Walhout, 2016) and ElegCyc (Gebauer et al., 2016), as well as
CeCon (Ma et al., 2017) and the unpublished merges WormCon and CeleCon. Editable spreadsheets
included tables for metabolites, reactions, genes and pathways. After each successive round of
curation, an SBML version of the model was built and subsequently validated.

cytosol. In the reaction table, identifiers typically have the form R_rname where rname is a
unique compact identifier for the reaction. Genes are primarily identified with WormBase
identifiers as mentioned above, while pathways were assigned a simple unique identifying
and descriptive name. These identifiers were then used to facilitate references between
the tables, for example, metabolites appear in reaction formula descriptions, and genes in
reaction gene-product annotations. Automated validations ensure that all metabolites that
are referenced in the reaction table also appear in the metabolite table, and so on.

Focus and scope of manual curation rounds

The initial effort of the first round of the community manual annotation process, completed
in late 2017, was aimed at the identification and resolution of duplicate reactions that
had not been automatically removed (typically because of differences in gene annotation,
compartments, or presence of minor cofactors). Moreover, the metabolic literature was
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Figure 3.5 Counts of identifiers for metabolites
annotated in the WormJam model. These counts
are for non-unique metabolites, that is, metabo-
lites localised to compartments within the model.
Total metabs=the total number of metabolites in
the model. ChEBI IDs=number of annotated
ChEBI identifiers. KEGG IDs=number of anno-
tated KEGG identifiers. Formulae=number of an-
notated chemical formulae.

consulted to verify the presence and localisation of some of the reactions, and some reactions
determined to be not taking place in C. elegans were removed.

As mentioned, part of the WormJam effort has involved standardised metadata an-
notation. For metabolites, alongside their within-model identifier and name, charge and
formula, ChEBI identifiers (Degtyarenko et al., 2008; Hastings et al., 2016) are annotated as
primary external metadata, with KEGG compound identifiers as an alternative (Kanehisa
et al., 2017). KEGG reaction identifiers may also be associated with reactions. For genes,
WormBase identifiers are the primary metadata annotated (Chen et al., 2005; Lee et al.,
2018).

Missing ChEBI (Degtyarenko et al., 2008; Hastings et al., 2016) identifiers were annotated
manually for all metabolites in the model. Based on the ChEBI identifiers, mismatches
between annotated names, identifiers and charges of the metabolites were corrected. Having
ChEBI identifiers associated with the metabolites in the model provided disambiguation
and a link to chemical structures, which in turn allows for comparison with metabolomics
datasets (Witting et al., 2018). Figure 3.5 shows the numbers of identifiers of each type
included in the model. In some cases, this ChEBI annotation process led to the discovery of
duplicate metabolites, which often led to identification of a set of associated duplicated
reactions as well.

The second community manual curation effort, completed in late 2018, then proceeded to
enhance and extend the representation of specific aspects of biology not previously included
in any of the merged models. As described in Witting et al. (2018), the representations of
glycogen metabolism, fatty acids and sphingolipid metabolism, and epigenetic marks were
updated and extended. Pathways, reactions and metabolites were added for C. elegans-
specific maradolipids and ascarosides. All metabolites present in the model and not yet
present in ChEBI were submitted to ChEBI, together with structural representations for
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charged and neutral forms. Finally, the list of pathways annotated to reactions in the model
was disambiguated, corrected and simplified.

Debugging and validation of each model version

After each phase of the manual curation effort had been completed, the model was rebuilt
into computable SBML format from the manually curated spreadsheets in SBTab format
for evaluation. At this stage, basic automated checks were completed, such as that all
cross-references between reactions and genes and metabolites were present. At this stage,
typically after each curation round there were a few such missing references, but these
were quick to resolve. The much more difficult part of the validation process was getting
each new build to carry flux, which took in each case up to a few weeks.

It was necessary to test that the model could carry flux in all needed pathways in order
to create biomass from food sources in FBA simulations. Each build of the model was
initially not able to carry flux, hinting at the difficulties involved in manual curation of a
model this size. For example, after the first round of curation (late 2017/early 2018), the
model contained 1050 reactions that could not carry flux, including the assembly of the
primary biomass, while after validation and debugging the release version of the model
contained 685 blocked reactions, as described in (Witting et al., 2018).

Each reaction in the model was individually tested with respect to its ability to carry flux,
and each metabolite whether it could be produced. It is typical for large-scale metabolic
models to include some percentage of reactions that cannot carry flux and metabolites that
cannot be synthesized. Also, reactions that are blocked with respect to a given biomass
reaction may not be blocked with respect to another, since the block may relate to the
takeup of the reaction outputs in the appropriate way on the path to biomass construction.
However, it is important that all key pathways are fully functional and biomass can be
generated as expected from all cellular precursors.

For each blocked reaction that was on a path towards biomass construction, a step by
step ‘debugging’ procedure was completed to determine the broken steps in the various
reaction chains between model input and eventual biomass creation. A reaction chain is a
series of reactions with the inputs of one being the outputs of another, thus, if one reaction
is broken somewhere along the chain, none of the reactions in the chain will be able to
carry flux, as everything that is produced must be consumed (or exported). Moreover, of
course, reactions do not form simple chains but complex interconnected non-linear patterns
(see for example the illustration of a subset of model pathways in Figure 3.2).

Custom visualisation of chains of reactions was very important in arriving at the
correct diagnosis of a problem or multiple problems in a reaction chain, as was the
information provided by the reaction assessment implementation in CobraPy. For this
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Figure 3.6 Visualisation of arbitrary groups of reaction chains.
This Figure shows a set of reactions involved in sphingolipid metabolism, an aspect of the WormJam
model that was recently corrected by manual curation. Each metabolite that features in the reaction
chain is illustrated as a node with both ID and name displayed, while reactions are illustrated as
edges connecting nodes where reactions consume one metabolite and produce another. Edge colour
indicates flux magnitude, with red = large flux and blue = small flux. Zero flux is indicated as grey.

reason, I implemented my own reaction set visualisation utility, as described in the Methods.
For example, a subset of reactions that was added to better describe sphingolipids in the
latest release, as described in (Witting et al., 2018), is shown in Figure 3.6. While clearly
this is not the most beautiful visualisation utility ever developed, the important attributes
which aid in debugging of broken reaction chains include the display of both identifiers
and names for the metabolites as well as reaction IDs for the interlinking reactions, as well
as overlaying fluxes from a given solution onto the display of reactions with colour and
arrow width. After the initial build of this version of the model, the end-product in this
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set of reactions (C17-iso-sphinganine) was not able to be made by the model. It now is
makeable (note the flux, i.e. a blue line for reaction 3DSPHR_c). However, it should be
apparent from the large number of grey lines representing reactions with no flux that this
part of the model is still not optimally healthy and will require further curation to resolve
all blocked intermediary components.

3.3.4 The WormJam consensus reconstruction: current status

As mentioned above, the most recent release version of the WormJam model is available
online at the WormJam GitHub repository. The size of the model is given by counts of
various component parts in Table 3.2, and an overview visualisation of the model generated
with the Cytoscape network visualisation tool (Su et al., 2014) is shown in Figure 3.7.

Figure 3.7 Overview of the entire WormJam consensus model.

The interconnected whole network of reactions and metabolites visualised with the Cytoscape tool.
Nodes represent reactions and metabolites, edges participation of metabolites in reactions. The
layout was computed automatically, but clear separate clusters for the different compartments are
visible.

The WormJam model has more content than either of the pre-existing models (for which
the metrics are given in Table 3.1). The plurality of possible food types and stages of growth
that were implemented in the original models have been retained as options in the merged
model. Furthermore, some of this additional content is unique to C. elegans and unique to

https://github.com/JakeHattwell/wormjam
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Table 3.2 Metrics for the size of the WormJam consensus reconstruction

The counts of the various constituents of the WormJam consensus reconstruction model are shown.
The number of unique (across compartments) compounds is shown in brackets after the total number,
as in these types of models, compounds are distinguishable per compartment. Abbreviations:
cyt.=cytosol, mit.=mitochondrion, nuc.=nucleus, extra.=extraorganism/extracellular.

Component Size (Count)
Metabolites 2834 (1630 unique)
Reactions 3634
Genes 1520
Pathways 154
Compartments 4 (cyt., mit., nuc., extra.)

the WormJam model, such as the ascaroside biosynthesis pathways and aspects of the fatty
acids pathways. Thus, WormJam represents an advance on the pre-existing models for this
organism.

Figure 3.8 Sizes of compartments and pathways in WormJam model.
(A) The count of metabolites per compartment. (B) The counts of reactions in the top 25 most popu-
lous pathways in the model. extra.=extra-organism (extracellular); mit.=mitochondrial; nuc.=nucleus.

Figure 3.8 shows some indicators for the distribution of content in the different com-
partments and pathways within the model. The majority of the model content is localized
to the cytosol (Figure 3.8A), as would be expected firstly as this is the largest compartment
in any genome-scale model of cellular metabolism, but particularly so given that many
other cellular compartments are not explicitly represented (peroxisome, lysosome etc.). The
counts of reactions for the top 25 most populous pathways are illustrated in Figure 3.8B,
while the full set of counts for all the pathways are included as Supplementary Table A.4 in
the Appendix.

The largest pathway in terms of reaction counts is ascaroside biosynthesis, a pathway
that was added entirely in the last round of manual curation of the model. Various different
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groups of transport reactions also form a sizeable portion of the model’s content: these
reactions are mostly not annotated with active enzymatic transporters, but are needed
to ensure that metabolites can move around the different parts of the model as needed.
Fatty acids feature prominently among the largest pathways in the model, as both fatty
acid oxidation and fatty acid biosynthesis are among the top 10 pathways. This is despite
the fact that fatty acids are not well represented in the model relative to other, simpler
metabolites (Witting et al., 2018), and a more complete representation would involve a
substantial expansion of the annotation of these pathways in the model.

Lipids represent a major bottleneck in metabolic models in general, not only in C. elegans.
Lipids cover a large combinatorial space with different fatty acid combinations possible,
which is hard to represent accurately in a stoichiometric model. In addition, C. elegans
harbors several peculiarities in its lipid metabolism (Witting and Schmitt-Kopplin, 2016).

The other large pathways include purine and pyrimidine metabolism as well as
metabolism related to various amino acids.

The comparison of pathway sizes can only be considered as a guide to the proportion of
the underlying biology described in the model, as pathway sizes are also indicative to some
extent of granularity differences in the choice of reactions to include in discrete pathways,
which can be selected in a number of different ways. Indeed, one of the major differences
between the two original models was in the selection and description of pathways and
how these were associated with reactions. Individual reactions can also belong to multiple
pathways, and some reactions are inherently bridging reactions between different pathways
e.g. lipids and energy metabolism. However, for meaningful biological interpretation it is
useful to minimise overlaps as far as possible, and the pathway annotations will be used
extensively for the purpose of interpreting predicted fluxes in subsequent chapters.

3.3.5 Model validation

The basic validation of the model, as mentioned above, is whether it can ‘grow’, that is,
carry flux through to biomass creation in an FBA simulation, performed as described in
detail in the next chapter. This is true of the latest version of the model. However, we can
go further and explore the relationship between growth and input under different input
scenarios, as well as which reactions are still blocked and how well the model is able to
predictively match known metabolic phenotypes. These validations are discussed in the
remainder of this section.
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Growth as a function of varying input

Bacterial uptake or digestion is the primary food source that is made available to the model,
representing the default C. elegans experimental setup. As might be expected, growth of
the model varies as a function of the bacterial input linearly up to a limit, where other
bottlenecks start to apply. This is illustrated in Figure 3.9A. The growth rate, i.e. the amount
of biomass that can be constructed per unit of time, is linearly dependent on the rate of
allowed bacterial digestion, as long as all other variables are controlled, after an initial
minimal threshold of input has been satisfied, hence the non-linear jump from zero to the
initial starting growth rate. The actual numbers here are less relevant than the relationship
between the two variables, which indicates an importantly constraining feature of the
model, all else being equal.

Figure 3.9 Growth of the model as a function of allowed inputs.
The growth of the model is illustrated as a function of allowed inputs (A) bacterial digestion, and
(B) oxygen consumption. Growth is predicted by FBA, using a method that will be described in full
in the subsequent chapter.

The rate of growth of the model is, however, not dependent on the allowed rate of oxygen
consumption (Figure 3.9B is absolutely flat). This is a bit worrying, as ordinarily models
of this type would be expected to grow more under aerobic conditions than anaerobic,
however, in this model under default conditions it seems to have no effect.

On the one hand, this result can be interpreted to reflect only that C. elegans is able to
harness anaerobic metabolism, which is true. In fact, C. elegans has even been shown to be
long-lived under certain hypoxic conditions (Ma et al., 2017), reflecting that this is to some
extent a biochemically viable result.

On the other hand, the result may also reflect that the model is under-constrained and
too permissive with respect to alternative pathways for energy generation. However, we
do see that the rate of oxidative phosphorylation (ATP synthase) is connected to the rate
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Figure 3.10 The rate of ATP synthesis from ADP
via oxidative phosphorylation in the mitochon-
drial compartment in the model is illustrated for
different levels of oxygen consumption. ATP syn-
thesis is reaction ‘ATPS4m’ and oxygen consump-
tion is reaction ‘O2_exchange_reactions_e’ in the
WormJam model. For this study, parsimonious
FBA was used which tries to minimize the overall
flux sum.

of oxygen consumption (Figure 3.10), but only if a ‘parsimonious’ FBA implementation
is used – another method that will be presented in full in the next chapter – which tries
to minimize the overall sum of fluxes in the solution. Overall, it is likely that further
optimization of the model’s energy generating pathways will be needed in order to better
represent physiological realities.

Blocked reactions

As mentioned above, in large-scale metabolic models of this type, it is normal for a certain
percentage of the reactions in the model to be ‘blocked’, that is, not able to carry flux in an
FBA simulation, under typical conditions. Some of the blocked reactions would be able to
carry flux in alternate conditions, such as alternative input nutrients (food) or alternative
biomass compositions. However, the present evaluation relates only to a standard scenario
of inputs and outputs.

Figure 3.11 shows the percentages of blocked reactions in particular pathways, ranked
from the highest (100% blocked reactions in a pathway) to the lowest (less than 10% blocked
reactions). For ease of visualisation, the Figure includes only those pathways that include
more than ten reactions, however, the full list of reactions together with the counts of
blocked reactions is listed in Supplementary Table A.4. There are of course also pathways
with no reactions blocked at all, which are not illustrated in the figure but are included in
the supplementary table.

Several pathways are fully blocked, that is, they are never being used under ordinary
conditions when the model is used for simulations. The fully blocked pathways include
straight-chain fatty acid synthesis, steroid and steroid hormone biosynthesis, primary
bile acid biosynthesis, phosphatidylinositol phosphate metabolism, core modifications of
n-glycans, and the carnitine shuttle. It is clear that major aspects of fatty acid and secondary
metabolite biosynthesis are not fully functional in the model, a shortcoming that is shared
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Figure 3.11 Percentages of blocked reactions in model pathways.
The percentage of reactions that are blocked in the different pathways of the model are illustrated
in descending order, with the highest percentages coloured in red while the lowest percentages are
coloured in green. This Figure includes only pathways that have more than 10 reactions in total and
at least one blocked reaction. The full list of pathways is included in Supplementary Table A.4.

with many other genome-scale models, as also discussed in (Witting et al., 2018). Some
aspects of fatty acid metabolism are better represented than others. For example, while
mitochondrial fatty acid beta oxidation is close to fully blocked, interestingly, peroxisomal
fatty acid beta oxidation is in much better health, at around 20% blocked reactions. Fatty
acid biosynthesis is also well in the green, as is sphingolipid metabolism, a particular focus
of the manual curation and debugging phases of the last round of model curation. Core
central metabolic pathways such as the TCA cycle, glycolysis and gluconeogenesis, purine
and pyrimidine metabolism are all well under 20%, reflecting the better state of annotation
of core metabolic pathways.
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Comparison of essential genes to known lethal genes

One standard approach to validate models of this type is to compare the genes that have
a direct effect on the growth of the model with genes that are known to have lethal
phenotypes when knocked out. The idea is that the genes that are essential in the model
should correspond as far as possible to the genes that are known to be lethal, since growth
of the model corresponds to functional metabolism. Both of the originally published models
ElegCyc and iCEL1273 validated their model’s ability to predict genes with known lethal
phenotypes, although they used different sets of genes and different approaches in their
validations.

Taking a simple approach and just comparing the list of essential genes predicted by
the WormJam model (included as Supplementary Table A.5 in the Appendix) for standard
inputs and biomass, with known lethal gene deletion mutants from the WormBase RNAi
database, we found that only 18 of the model-predicted essential genes were known lethal
in the RNAi dataset. There were 105 genes predicted as essential by the model that were
not listed as having lethal phenotypes based on RNAi experiments (false positives). On
the other side, 36 genes that are known to have lethal phenotypes were not predicted as
essential for the model (false negatives). Among the false positives are predicted homologs
of human tRNA synthetases, e.g. lars-2 (leucyl tRNA synthetase) and gars-1 (glycine
tRNA ligase), which are required for the model representation of the composition of the
RNA component of biomass. Among the false negatives are pcyt-1, a choline-phosphate
cytidyltransferase involved in the synthesis of phosphatidylcholine. This gene is associated
with just one reaction in the model, choline-phosphate cytidyltransferase as would be
expected. However, that reaction is annotated with two genes associated with OR logic,
that is, either of the genes can catalyse the reaction, thus knocking out either of the genes
in a single gene deletion test would not knock out the reaction. The other annotation,
F28A10.10, is listed in WormBase as a non-coding pseudogene, meaning that the annotation
is probably legacy and should be removed. However, in this case, even if the reaction
itself is knocked out, the model is still able to grow, indicating that choline-phosphate
cytidyltransferase activity is not essential for the metabolism as represented in the current
biomass requirement, since phosphatidylcholine can be acquired from the bacterial food
source.

There are many ways in which such a simple analysis can be improved. Firstly, the
WormBase RNAi dataset is not a perfect source of lethal phenotype predictions as the
experiments may have been done at different times and in different genetic backgrounds. To
mitigate this challenge, an experimental collaborator has prepared a screen testing all of the
WormJam genes under precisely the same conditions and with the same genetic background,
for which we are awaiting the results. Secondly, the effects of such an intervention may be
direct or indirect, affecting other genes through regulatory mechanisms, which will not
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be accessible to the metabolic model. Finally, many of the gene-product associations to
reactions are conservative with many possible genes listed with OR annotations, and in
these cases knocking out any one of the genes will have no effect on model output, thus, a
different algorithm which marked a reaction as knocked out if any of the associated genes
are unavailable would have possibly better results – more false negatives, but possibly more
true positives.

The issue with conservative annotation in the absence of definitive biochemical knowl-
edge extends also to redundancies created by flagging reactions as reversible. Just over a
third (1,235 reactions, which is 34.9% of the total) of the reactions in the WormJam model are
currently annotated as reversible. Some of these, such as transport reactions representing
the movement of metabolites across membranes, indeed are fully reversible. Many others
are biochemically reversible, but the reverse reaction is catalysed by a different enzyme,
a fact that is not fully captured by the ‘reversibility’ model shorthand. Other annotations
are simply wrong in that the reactions may be reversible in vitro, but the reverse reaction
would never carry a significant flux in vivo as it may be energetically infeasible, for example.
Indeed, fundamental metabolic regulatory controls and segregation of cellular locations
have evolved precisely in order to avoid spurious reverse metabolic reactions which would
be wasteful. Thus, improving this aspect of the annotation of the model should also improve
the correspondence of the model predictions to physiological phenotypes.

Comparison of metabolomics studies to metabolites in model

In (Witting et al., 2018) we reported a comparison of the metabolites that are annotated in
the model with the metabolites that have been detected in previously published C. elegans
metabolomics studies. Several groups of metabolites were found to be missing in the model,
highlighting areas where future curation will be important to ‘plug’ the gaps.

Fatty acids were a group that was found to be the most under-represented in the model,
in common with other genome-scale models. Fatty acids are the building blocks of lipids,
and are also important for the synthesis of secondary messengers and signalling molecules.
Very long chain fatty acids with chain lengths up to 30:0 have recently been detected in
C. elegans (Gao et al., 2017, 2018). However, even if detailed biosynthesis pathways for each
individual lipid could be integrated into the model, there would still be a discrepancy
between detailed structure in the model and the annotation and identification capabilities
of current lipid analysis methods. With standard lipidomics analysis, usually neither the
position nor the stereochemistry of double bonds can accurately be identified. Therefore,
new approaches are needed to make it possible in the future to incorporate lipidomics data.

Relatedly, several new ascarosides were identified in the literature, containing very long
fatty acid side chains, which are currently not covered in the consensus model. There is
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growing evidence that the biosynthesis of ascarosides is more complex than previously
expected (Zhou et al., 2018). So far, only simple ascarosides have been annotated in the
model, but ascaroside biosynthesis already makes up the largest pathway with respect to
the number of reactions it includes (Figure 3.8B).

Several modified nucleotides have been detected in C. elegans (van Delft et al., 2017),
including 1-methylguanosine, 1,7-dimethylguanosine, 1-methylinosine, 5-methylcytidine,
and N6-carbamoyl-L-threonyladenosine, representing modified RNA degradation products.
These modifications play important roles in fine tuning RNA function, and their production
consumes metabolites such as SAM, thus representing an important sink for methyl groups
possibly competing with other cellular metabolic and epigenetic functions. They will need
to be added in future versions of the model.

We also compared the metabolites in the model to those included in our metabolomics
dataset as a part of the mapping to use the model together with our dataset, and this is
described in full in the next chapter.

3.4 Conclusion

While the current WormJam reconstruction is a good consensus between existing efforts,
and the most comprehensive C. elegans metabolic model to date, the task of reconstructing
the metabolism of the worm is by no means finished. The accuracy of the reconstruction
is not uniform. For example, the metabolism of carbohydrates and peptides is fairly well
described, but the coverage of nucleic acids and lipids needs improvement. The number of
different compartments is limited, and in particular some organelles featuring very specific
biochemistry, such as lysosomes and peroxisomes, are not explicitly represented. Moreover,
C. elegans is a multi-cellular organism interacting with a complex environment, and its
cellular metabolism cannot be understood in isolation. Interactions between tissues and
with the active metabolism of the bacterial food source will need to be annotated in the
future.

Community-based curation and refinement of the WormJam model promises to address
several of the challenges facing the field. It is essential that annotation of metabolites,
reactions, and of gene associations to reactions, be improved – and to record the confidence
associated with such annotations to enable more sophisticated algorithms to be developed
that are able to prioritise ‘core’, well annotated parts of the model in evaluating predictions.

With the curation undertaken thus far, the first steps have been taken toward an
improved representation of C. elegans-specific metabolism and biology. However, the
network still contains redundancy, and major parts are still missing, e.g., better biomass
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compositions for constraint-based modelling including detailed fatty acid profiles for
individual lipid classes, known to be highly important for ageing and longevity.

However, despite all the areas which still need improvement, the model is already
usable and may provide useful predictions despite its limitations. In the next chapter, we
put the model to work predicting reaction fluxes corresponding to our time series of -omics
measurements and determine whether it can offer any useful insights into C. elegans ageing.



4. Metabolic flux changes with ageing

4.1 Introduction

Metabolic fluxes are the rates of turnover of molecules through specific reactions, modulo
the reaction stoichiometry. They represent a quantity of biochemical reaction events per unit
of time, that when multiplied by the stoichiometries for each molecule that is consumed or
produced, provide the rates of molecule consumption or production.

Metabolic fluxes are tightly controlled via direct and indirect regulatory mechanisms,
and are responsive to different environmental conditions. The fluxes through central carbon
metabolism are the most tightly regulated to balance cellular energy and maintenance
needs. Reaction fluxes are the outcome of gene expression, translation, post-translational
modifications and protein-metabolite interactions, and can be considered to be one of the
closest readouts of cellular phenotypes.

As previously mentioned, Flux Balance Analysis (FBA) is a metabolic modelling ap-
proach that uses a whole-genome model of metabolism together with various assumptions
and constraints in order to predict intracellular fluxes through every reaction in the model.
Because FBA calculates the flow of metabolites throughout the global metabolic network,
it allows the elucidation of how changes in one aspect of metabolism affect other path-
ways and phenotypes (such as overall growth rate, or the rate of production of a certain
metabolite), and in this way it can provide valuable mechanistic insights (Orth et al., 2010).

In this chapter I introduce a novel FBA multi-omics integrative method that I developed
to predict fluxes using a linked time series of both metabolomics and the transcriptomics
datasets. This method was published in (Hastings et al., 2019a), and some of the figures
presented in the relevant section below are taken from that publication (acknowledged
where appropriate in the Figure legend). I then go on to use this novel method to evaluate
and discuss the detailed dynamic changes in metabolic fluxes that are occurring over time
and as compared between the different strains in my dataset, findings which were not
incorporated into the publication.

4.2 Methods

4.2.1 Flux Balance Analysis

Flux balance analysis (FBA; Orth et al., 2010; illustrated in Figure 4.1) is a mathematical
modelling technique that uses reaction stoichiometry from a whole-genome metabolic
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Figure 4.1 A schematic illustrating Flux Balance Analysis.
A whole-genome metabolic model (A) is transformed into a stoichiometric matrix S (B) with rows
for metabolites M and columns for reactions R. The product of the matrix S with the flux vector v
is 0 (steady state assumption). The solution space for this problem is still infinite (D), but together
with additional reaction constraints (E), it is possible to select an optimal solution.

model, together with linear optimization and an assumption of steady state metabolism,
to generate predictions of fluxes through each reaction in the full metabolic network for a
specific organism.

The basic mathematical problem is formulated as follows. Given a set of metabolites
mi ∈ M which are involved in a set of reactions Ri ∈ R with stoichiometry matrix S, and
assuming that the system is at a steady state, i.e. all metabolites which are produced are
consumed at the same rate, we can say that the product of the vector of fluxes v through
the reactions and the stoichiometric matrix S is 0: S.v = 0.

This problem clearly still has a vast and underconstrained solution space, since the only
information included thus far are the reaction stoichiometries and the fact that the system
is at steady state. To include knowledge about the physiological constraints on various
reactions (where known), upper and lower bounds may be set on the allowable flux for
specific reactions. That is, for each vi in v (the set of reaction fluxes), the model specifies a
lower bound Li and an upper bound Ui such that Li < vi < Ui.

Although these constraints reduce the size of the solution space, given these constraints
alone, the solution space for any given metabolic model is still infinite. To arrive at a
defined solution, it is thus also necessary to specify an objective for the solver to aim for
maximising or minimising. Typically, the objective that is used in metabolic modelling is
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to maximise flux vBIO through the biomass reaction RBIO, i.e. to maximise growth (µ). A
wide range of alternative objective functions can also be used, for example to maximise the
yield of various exported metabolites (a common scenario in synthetic biology) or cofactors;
any reaction or combination of reactions may be optimised.

The resulting mathematical problem is then solved using linear programming. A
solution of an FBA problem is a vector of quantitative flux values vi ∈ V, with one vi for
every reaction Ri in the network. Fluxes are specified in units of mmol per gram of dry cell
weight per hour (mmol.gDCW-1.h-1). This type of model includes no information about the
concentrations of metabolites, only the rates at which metabolites are converted in reaction
fluxes.

In what follows, I used the CobraPy library in Python (Ebrahim et al., 2013) to run FBA
and as a basis for the implementation of FBA-associated methods, including integration of
transcriptomics and metabolomics data (described below).

Model version and input constraints

The version of the WormJam model used for most of the analyses in the chapter was a
development build dated 2018-10-12 (available from WormJam repository, as described in
Chapter 3). Using a development version allowed me to incorporate the most up-to-date
changes in model content and to fix errors discovered while running these simulations.
However, it means that the version I used may not have been fully validated for official
release. In our publication (Hastings et al., 2019a), which includes material partially
overlapping with some of the analyses in this chapter, an earlier (January 2018), officially
released version of the model was used. Most of the analyses reported in this chapter were
re-calculated with the newer version of the model; where this is not the case it is specifically
indicated.

All sources of input (uptake) were constrained to zero except:

• Oxygen (maximum of 100 units allowed uptake);

• Water (maximum of 100 units allowed uptake);

• Bacterial input as food source via bacterial digestion (maximum of 30 units allowed
uptake). Bacterial input is broken down into component pools of DNA, RNA,
peptides, protein, glycogen, lipids, and a pool of soluble metabolic components
including cholesterol.

• Essential amino acids (Braeckman et al., 2009) (arginine, histidine, lysine, tryptophan,
phenylalanine, methionine, threonine, leucine, isoleucine and valine; 5 units each of
allowed uptake);
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• Heme, which C. elegans requires exogenously (Rao et al., 2005), maximum of 10 units
allowed uptake;

• Pantothenate, which is required for Coenzyme A synthesis (Lu and Balachandar,
2005), maximum of 10 units allowed uptake; and

• Trace minerals and ions (Ca2+, Cu2+, K+, Mg2+, Mn2+, Na+, Zn2+; one unit each of
allowed uptake)

To some extent, these values are arbitrary, as there are few studies evaluating exactly how
much of these nutrients are taken up by C. elegans. The limits that were chosen mostly do
not constrain the system (the actual uptake is lower than the allowed uptake) and thus
are chosen only to prevent the model being able to bypass ordinary energy generation
pathways by overusing pathways that would not normally be physiologically possible.

The biomass reaction used as the default objective function included glycans, phospho-
lipids, collagens, DNA, RNA, free fatty acids, glycogens, proteins, triacylglycerols, and
trehalose.1 Again, to some extent the biomass reaction is arbitrary – biomass composition
has been flagged as an important limitation across genome-scale models, not just C. elegans
(Dikicioglu et al., 2015) – and thus is an area open to improvement in the future. How-
ever, what is included is reasonably comprehensive with regard to the different molecular
constituents to ensure balanced flux predictions.

FBA implementation

There are many variations and extensions on the core method of FBA, improving the
underlying assumptions to move closer to the underlying biological reality, and supporting
answering a wide variety of questions (Lewis et al., 2012).

Given that there are typically multiple flux states that are compatible with a given objec-
tive function, the principle of overall flux minimization, or parsimony is believed to give the
most realistic flux values within the solution space (Holzhütter, 2004). The implementation
of parsimonious FBA involves a two-step solution, where in the first instance the maximum
value of the objective function is determined using linear programming as for standard
FBA, and then in a subsequent second step the total flux through the matrix of reactions
is minimized at the given fixed value of the objective function. An alternative strategy
for parsimonious FBA is to minimise the count of active reactions rather than the total
sum of fluxes (Schuetz et al., 2007). Minimising the number of active fluxes can be seen
as a proxy for minimising the burden of protein expression, while minimising the sum of
overall fluxes can be seen as a proxy for maximising efficiency.

1The precise biomass reaction with stoichiometries for these components is ‘BIO0100’ in the model: 0.03
trehalose + 0.12 triacylglycerols + 0.06 glycans + 0.13 phospholipids + 0.19 DNA and RNA + 0.21 collagens +
0.23 glycogens + 1.15 mitochondrial protein + 4.03 other proteins + 1e-05 minor components of biomass.
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Practically, I have implemented my FBA pipeline using COBRApy’s parsimonious FBA
method “cobra.flux_analysis.pfba”.

4.2.2 Integration of -omics data with FBA

As noted above, the FBA problem is typically underconstrained, and techniques are needed
to further reduce the solution space to match what is biologically feasible. Biomolecular
-omics measurements can improve the predictions of FBA by constraining the solution
space and by clarifying the objective for optimisation.

Figure 4.2 Integration of -omics data with Flux Balance Analysis.
This schematic illustration shows different ways that -omics data can be incorporated together with
a whole-genome model for FBA. Methods are divided based on the data source they incorporate
and whether the data is used to apply constraints to the model or to inform the objective function
that will be optimised.This Figure has been adapted with minor changes from the one presented in our
publication (Hastings et al., 2019b), and was originally created by Manusnan Suriyalaksh.

Figure 4.2 illustrates a number of different ways in which -omics data can be used
together with whole-genome models to obtain more biologically relevant FBA solutions.
Gene expression data and metabolomics data can both be used in different ways to constrain
analyses on the network model, reducing the solution space accordingly to those that are
biologically consistent with the observed data.

Each of these methods for integrating gene expression and metabolite concentration
data with metabolic network models, however, relies on a mapping from the measured
genes and metabolites onto the network model. Measured genes and metabolites that are
not represented in the network model cannot be used by these methods. (The mapping
of our measured metabolites to the WormJam metabolic model is listed in Supplementary
Table A.6 in the Appendix.)
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Measurements corresponding to enzyme levels, i.e. proteomics or transcriptomics, are
the most straightforward to use for adding biological constraints to the FBA problem,
although even this is not completely straightforward as enzyme levels and activity rates
may differ, e.g. due to substrate availability etc.

Proteomics provides direct estimates of enzyme concentrations, although not necessarily
of the active form, and not for all enzymes. Transcriptomics data tends to be more
comprehensive, but transcriptional readouts are only a proxy for enzyme concentration.

There are multiple tools to use gene expression data together with metabolic network
models (Lewis et al., 2012), and a systematic evaluation has found that none of the methods
outperforms all others for all conditions, but rather that different methods show strengths
and weaknesses in different scenarios (Machado and Herrgård, 2014), while keeping in
mind that the overall quantitative correlation between gene expression levels and metabolic
flux catalysed by the encoded gene products is known to be low (Yang et al., 2002).

In the earliest such methods developed (Akesson et al., 2004; Becker and Palsson, 2008),
the problem of the low correlation between gene expression and metabolic flux was avoided
by having the integration hinge on whether or not a particular gene was expressed at all (i.e.
gene expression was binarised). If a particular gene was not expressed (Akesson et al., 2004),
or was expressed below a given threshold (Becker and Palsson, 2008), then flux through
any reactions which depend on that enzyme were constrained to zero (shown as ‘gene
product presence or absence’ in Figure 4.2). This results in a reduced size, context-specific
metabolic network consistent with the genes known to be expressed in the given condition.

Moving towards a more quantitative use of gene expression data, Colijn et al. (2009)
introduce the E-Flux method where the presence of higher enzyme levels is taken to
imply that more of the reaction (flux) can take place, corresponding to a ‘pipe size’. In
this integration approach, maximum constraints for enzyme-catalysed reactions in the
model are set in proportion to measured levels of enzyme expression (shown as ‘pipewidth
constraint’ in Figure 4.2).

Using even more of the quantitative information available in the gene expression, the
iMAT method (Shlomi et al., 2008; Zur et al., 2010) tries to make the obtained flux solution
proportional to the measured enzyme levels by using both low gene expression and high
gene expression in a given condition to constrain the solution of the model. Fluxes are
minimized through parts of the network that are lowly expressed, and maximized through
parts of the network that are highly expressed.

Other methods exist which use alternative approaches to incorporate quantitative
information from gene expression to constrain fluxes in the network, including fold changes
between differential conditions (Jensen and Papin, 2011).
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In the pipeline developed for this study, the available transcriptomics data were first log-
transformed and then means were obtained for biological replicates in order to have a single
expression value per time point and strain. These were integrated with the model using a
two-step approach. First, a context-specific model was built by removing reactions mediated
by genes whose expression was below a threshold (gene product presence/absence, Akesson
et al., 2004). The threshold used was arbitrarily set to 0.8 in log-transformed read counts.
Then, for the remaining reactions, the E-flux approach (Colijn et al., 2009) was used, in
which reaction upper (and lower if the reaction is reversible) bounds are set in proportion
to the expression level. Where multiple genes were annotated to a reaction using OR logic
(i.e. any of the annotated genes may catalyse the reaction), their expression levels were
added together to determine the reaction bound. For complexes, where multiple genes are
annotated to the reaction using AND logic (i.e., all of the annotated genes are required to
catalyse the reaction), the minimum of their expression levels was used.

4.2.3 Differential flux pathway analysis

Once a set of reaction fluxes have been obtained from an FBA pipeline, these values still
need to be interpreted and their biological significance determined.

Which flux differences are significant?

Comparisons between predicted flux values are challenging due to the nature of the flux
data. Flux values are not normally distributed, and flux values may be either positive
or negative (negative values are a convention reflecting that for a reversible reaction, the
reverse reaction is in fact taking place and not the forwards reaction).

Absolute flux values (and consequently absolute flux differences) are known to vary in
range dramatically for different parts of the reaction network (Almaas et al., 2004), further
hindering determination of which flux differences can be considered ‘significant’ when
comparing between conditions, since it cannot be assumed that reaction fluxes that are
more different are prima facie thereby more interesting.

To associate some form of significance to the flux predictions, I therefore predicted
fluxes separately for each of the transcriptomics replicates in each study group. For each
condition in our dataset there were several flux predictions available per condition, and
a statistical comparison (a simple student’s t-test) was then used on the resulting fluxes
to determine which of the differences were significant. The datasets of replicates flux
predictions were normalised by growth rate (biomass production, per sample) prior to
performing comparisons, as otherwise almost all flux-carrying reactions differ since many
reactions are coupled indirectly or directly to the growth rate.
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The output of the flux comparison is a list of reactions that can be considered signifi-
cantly different between conditions. The t-test is not a robust statistic for this dataset, since
as mentioned the flux values are not normally distributed, but the underlying read counts
on which the constraints for the flux predictions are based are normally distributed, and
it does have heuristic value in that it predicts a reasonable subset of flux differences are
significant. I tried a non-parametric alternative statistic (Wilcoxon-Mann-Whitney) and was
not able to determine any significant flux differences with that statistic.

Moreover, I also tried flux sampling from the solution space, an approach that has
previously been suggested as a method to address flux comparisons between conditions.
Flux sampling as implemented in CobraPy is based on (Megchelenbrink et al., 2014).
However, flux sampling is intended to sample the full solution space, not just the optimal
solution space. As the solution space is large, the flux solutions selected by flux sampling
were very broad and varied dramatically from the optimal solution selected by optimisation
in conjunction with the principle of parsimony.

Thus, significance was associated to comparisons between reaction fluxes based on the
predicted fluxes for the replicates. To further validate this approach, I checked that the repli-
cates do indeed cluster together in a PCA analysis, which they largely do (Supplementary
Figure A.6 in the Appendix).

Which pathways have significant differences?

Using the list of relevant differences in reaction fluxes between conditions, to investigate
which pathways are most responsible for the changes observed between different conditions
(strains and times), I used Fisher’s exact test for category over-representation (already
introduced in Chapter 2) to identify which pathways included more different fluxes
between two given conditions than would be expected by chance alone, when tested against
the background list of all reactions in the model.

Fold enrichment for each enriched pathway, a quantitative measure of how enriched the
pathways is aside from the statistical significance of the enrichment, is calculated standardly
as it is in other category enrichment analysis tools such as (Zhang et al., 2005), as the ratio
of the two proportions:

fold enrichment =
m/n

M/N
(4.1)

where m is the number of significantly changed reactions in the pathway of interest, n is the
number of reactions that are significantly changed overall (all pathways), M is the number
of reactions in a given pathway, and N is the total number of reactions in the whole model.
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4.2.4 Flux visualisation

In this chapter, predicted fluxes are mainly visualised either directly, with simple bar plots,
or in the context of specific reaction groups with the Escher pathway flux visualisation
utility (King et al., 2015). Escher relies on hand-drawn maps of metabolic reactions, and
offers options to colour reactions by a single set of flux values or by a comparison of two
sets of flux values. Where a flux comparison is visualised, reaction colours indicate the
magnitude of the differences in flux values rather than absolute flux values.

4.3 Results and Discussion

4.3.1 A novel method for integrating metabolomics data with FBA

Motivation: Standard FBA does not accurately recapitulate fluxes measured in vivo

We performed standard FBA, i.e. FBA with integrated transcriptomics data as described in
the Methods. As objective function, we maximised biomass production (i.e., growth). When
using differential flux pathway enrichment to detect which pathways were significantly
changed in day 10 compared to day 5 FEM animals (Figure 4.3), we found that some
pathways that are expected to change with age were enriched, such as fatty acid metabolism,
glycolysis and gluconeogenesis, and growth rate (biomass assembly). Similar predictions
were reached in previous studies where FBA was applied to ageing networks (Gebauer et al.,
2016), indicating that standard FBA can broadly recapitulate overall metabolic functionality.

However, some pathways that are known to change with age are noticeably missing
from the list, including the TCA cycle, which is amongst the most dramatic observed losses
of function with age, yet (as discussed in Chapter 2) a significant component of these
changes appear to be post-transcriptional and are therefore not necessarily reflected in
the transcriptomics dataset. Looking at the differences between standard FBA-predicted
fluxes for the FEM animals at day 5 and 10, (Figure 4.4), we can see that the differences
are largely minor (blue arrows) except for a switch from the NAD-consuming isocitrate
dehydrogenase reaction to the NADP-consuming isocitrate dehydrogenase reaction, which
may be merely a stochastic switch in cofactor preference.

Thus, a standard FBA pipeline encompassing an objective function geared only towards
biomass production, and constraints derived only from transcriptomics data, does not
appropriately reflect the biology of post-mitotic somatic cells in adult ageing animals. To
obtain more accurate flux predictions during ageing, we enhanced our FBA pipeline by
integrating our linked metabolomics dataset into the objective function together with the
biomass production. We christened this novel method ‘Metab FBA’.
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Figure 4.3 Pathway enrichment comparing fluxes between days 5 and 10 in standard FBA
Differential pathway enrichment results are shown for the comparison between standard FBA
predicted fluxes at days 5 and 10 in FEM animals. Bar size shows the negative log of the p value
as an indication of the significance of the enrichment, while the category enrichment ratio, shown
by bar colour, indicates the magnitude of the enrichment in terms of the proportion of affected
reactions.

Method: Metab FBA

It is less straightforward to combine metabolomics data with FBA than gene expression
data, as there is no straightforward correspondence between fluxes in FBA and measured
metabolite concentration levels (Töpfer et al., 2014, 2018). However, several approaches
have been developed which harness metabolomics data for this purpose in different ways,
and the approach we have developed builds on these.

GIM3E (Schmidt et al., 2013) is an approach that relates metabolic concentration data
to the model by creating ‘sink’ reactions (similar to biomass components) for measured
metabolites and forcing flux through those reactions to be non-zero. Metabolomics data can
also be used to inform the biomass composition or objective function (Töpfer et al., 2015).

Other approaches require a time series of measurements so that a change in metabo-
lite level, rather than a direct measured value, can be related to the appropriate flux
values. Where such measurements correspond to extracellular metabolite levels (i.e. ex-
ometabolomics), they can be directly used as constraints on the input and output (exchange
reaction constraints) for dynamic FBA approaches. Exometabolomic measurements can be
used to constrain the model uptake rates by determining the net consumption between two
time points to give a value for nutrients per unit of dry cell weight, which is the flux unit.
Typically, nutrients in the extracellular environment decrease (are consumed), and then the
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Figure 4.5 Overview of Metab FBA approach

(A) Schematic overview of the Metab FBA approach, where t1 and t2 are two consecutive time
points (t2>t1). (B) Schematic representation of the underlying assumption that metabolite level
changes between time points correspond to sustained differences in fluxes within the time frame.
This Figure has been incorporated from our publication (Hastings et al., 2019a), and was originally created by
Bhupinder Virk and Sharlene Murdoch.
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net uptake flux is negative; in case the nutrients or byproducts have seen a net excretion
the uptake flux bound is positive.

In MetDFBA (Willemsen et al., 2015) and similarly in TREM-Flux (Kleessen et al., 2015),
a time series of measured metabolite levels are used to determine changes in metabolite
concentration levels between time points. These between-time-point changes are then used
as constraints on the reaction fluxes for reactions involving those metabolites in a dynamic
FBA time series. A recent approach, called ‘unsteady state’ FBA (Bordbar et al., 2017),
goes beyond comparing individual time points by fitting a linear function to a series of
measured values over a period of time to obtain a rate of change for a given metabolite over
time, and uses this information to constrain allowed departures from steady state between
time points.

The approach we introduce, Metab FBA, is similar to TREM-flux and ‘unsteady state’
FBA in that we require a time series of metabolomics measurements, but in contrast to
those approaches we do not use the metabolomics values to constrain the model, but rather
to alter the objective function. While ordinarily, the objective function for FBA is linked
to growth, for multicellular organisms, growth can no longer be assumed to be the sole
cellular objective and other phenotypically appropriate proxies are needed (Hastings et al.,
2019b). We consider that, from a cellular perspective, if a metabolite level has increased
between two time points, then this implies that within that timeframe the sum of fluxes
through all reactions producing that metabolite (i.e. its supply) must have exceeded the
sum of the fluxes through all reactions consuming it (i.e. its demand). Conversely, if the
metabolite level decreased, then within that timeframe, the demand must have exceeded
the supply (Figure 4.5). Accordingly, we added the net-production or net-consumption
of changed metabolites as an additional objective function alongside the production of
biomass, simultaneously maximizing biomass and production or consumption of the
relevant metabolites.

We chose this approach because our first experiments using standard FBA on this
dataset showed that using a constraints-based metabolomics data integration approach
would lead to the model not being able to grow at some of our time points, as incompatible
constraints are generated (Figure 4.6A). We observed that incorporation as constraints, in
some cases, narrows the solution space too much, due to incompatible metabolomics and
transcriptomics constraints, leading to the inability of the model to generate biomass under
that setup, e.g. time point 65 hours in Figure 4.6A. This highlights that incorporation of the
metabolomics information as objective function gives the maximal flexibility to the system
to find the best possible solution, maximizing congruence between the transcriptomics and
metabolomics datasets.
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Figure 4.6 Comparison of overall indicators for Standard and Metab FBA methods

(A) Growth values for different times points when metabolomics data is used as a constraint or as
objective function. (B) Mean of predicted flux variability range for the standard and Metab FBA
methods. This Figure has been incorporated from our publication (Hastings et al., 2019a).

Our method can be formulated mathematically as follows:

∀t ∈ (2 ≤ t ≤ N), maximise (cTv + uTv − dTv) (4.2)

s.t. Sv = 0, (4.3)

trL ≤ v ≤ trU , (4.4)

uT = ∀m ∈ M, 1 if xmt > xmt−1 , else 0, (4.5)

dT = ∀m ∈ M, 1 if xmt < xmt−1 , else 0 (4.6)

where N is the total number of time points, t is the index of a particular time point, cT is
the vector of coefficients of the biomass equation, uT is the vector of coefficients for demand
reactions corresponding to the metabolites with level increases between time points t and
t − 1, dT is the vector of coefficients for demand reactions corresponding to the metabolites
with level decreases between time points t and t − 1, S is the stoichiometric matrix for all
reactions in the model, v is the vector of fluxes, M is the set of all measured metabolites
that could be mapped to the model, xmt is a metabolite level for a particular metabolite m
at a given time point t, and trL and trU are flux lower and upper constraints set from the
transcriptomics data using the method described above.

For each metabolite per strain, a t-test was used to determine which metabolite levels
had changed significantly between consecutive time points. A comparison of the means was
then used to determine if the metabolites with level changes had increased or decreased.
We were only able to do this for (N − 1) of the N time points; flux predictions at the initial
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time point are thus unaffected by the metabolomics data. Only metabolites which could be
mapped to model metabolites were included; this was the case for 78 of the 105 measured
metabolites. Of those, 70 metabolites had at least one significant between-time-point
difference, while 8 were unchanged across all time points.

Validation: Improved prediction of age-related changes in TCA cycle

Previous approaches to incorporate -omics data with FBA have been validated by confirming
that the overall variability of flux predictions – the sum of the range of flux variabilities
for each reaction – is reduced (e.g. Kleessen et al. (2015)). Flux variability is a measure of
how constrained a solution space is in an FBA problem, and it will be introduced in full in
the next chapter where we use it to explore the changing regulatory landscape of ageing.
A large variability usually represents a large solution space that is reduced by applied
constraints. We have similarly ascertained the variability range for our flux predictions
(Figure 4.6B), and can confirm that the inclusion of the transcriptomics data as constraints
does reduce the flux variability ranges, in line with what has been previously reported, but
inclusion of metabolomics data alongside biomass as the objective function on top of the
transcriptomics-derived constraints does not appreciably reduce the flux variability further.
This is to be expected, since the method of integration – as an additional component of the
objective function – does not aim to constrain the solution space, but rather helps to guide
the selection of an optimal solution within the solution space to be more physiologically
accurate.

To validate the performance of the novel method, we focused on the TCA cycle because
it is conserved between C. elegans and mammals, and well annotated in the whole-genome
model. We also looked at FEM animals as these metabolically correspond the most closely
to wild type without contamination from progeny.

The addition of metabolomics data to the objective function alters the profile of enriched
pathways for the comparison between days 5 and 10 in FEM animals. While many of the
same pathways as appear in the standard FBA ageing enrichment (Figure 2.7) are still
enriched in Metab FBA (Figure 4.7), many new pathway enrichments appear including the
expected TCA cycle and oxidative phosphorylation.

The overall sum of fluxes for three indicative pathways across the time series for the
two methods is shown in Figure 4.8, illustrating that Metab FBA predicts different fluxes to
standard FBA in several aspects of central metabolism.

In particular, the depletion of TCA cycle flux in the later stage of ageing (days 5 to 10)
in FEM animals is apparent in Metab FBA but not in standard FBA (i.e. the green square at
257 h in Figure 4.8 is significantly lower than the green square at 137 h). We looked into
this prediction in greater detail, as a case study for the effectiveness of the new method.
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Figure 4.7 Flux enrichment for Metab FBA fluxes, FEM days 5 to 10

Differential pathway flux enrichment for the comparison of predicted fluxes between FEM days 5
and 10 of ageing, showing the pathways whose reactions are significantly changing between days 5
and 10, including the TCA cycle.

Figure 4.8 Predicted overall fluxes for three pathways

Predicted overall flux sums (the sum of the absolute flux values for all reactions in a pathway) for
(A) glycolysis and gluconeogenesis, (B) the TCA cycle, and (C) oxidative phosphorylation, for the
two methods: standard FBA (triangles) and Metab FBA (squares). Strains are indicated by colour:
blue for GLP, green for FEM, gold for GEM. Metab FBA time points are a subset of the time points
available for standard FBA.

As illustrated in Figure 4.9, Metab FBA predicts that fluxes through the reaction
MDH_m, which represents the conversion of malate to oxaloacetate by malate dehydroge-
nase in the mitochondria, was dramatically reduced between the last two time points in
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Figure 4.9 TCA cycle fluxes with three different objective functions

(A-C) TCA cycle reactions represented with Escher between days 5 and 10 in FEM animals for
standard FBA (A), Metab FBA (B), and Metab FBA (no OAA) (C), which does not include (A) or
includes information regarding all quantified metabolites (B) or all except oxaloacetate (C) in their
respective objective functions. Red represents increased flux, blue represents decreased flux. (D) The
differences between the two time frames are illustrated per reaction for each of the three FBA variants.
The reaction identifiers from the WormJam model shown in (D) are as follows: RMC0001: isocitrate
hydro-lyase (reaction 1); ACONITATEHYDR_RXN_m: aconitase - isocitrate hydrolase (reaction 1a);
RMC0001: Cytosolic isocitrate hydrolase (reaction 2) ; AKGDH_m: Mitochondrial 2-oxoglutarate
dehydrogenase (reaction 3); RXN909_8_m: Mitochondrial succinate dehydrogenase (reaction 4);
RM02164: Succinate:ubiqui oxidoreductase (reaction 5), FUM_m: Mitochondrial fumarate hydratase
(reaction 6), MDH_m: Mitochondrial malate dehydrogenase (reaction 7), CITL_m: Citrate lyase
(reaction 8), ISOCITDEH_RXN_m: Mitochondrial isocitrate dehydrogenase (reaction 9). This Figure
has been adapted from the one published in (Hastings et al., 2019a) (using the January 2018 version of the
model), and was originally created by Olivia Casanueva.
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FEM. At the same time, CS_m, which represents the conversion of oxaloacetate to citrate in
the mitochondria, was also substantially reduced, consistent with the measured reduction
of oxaloacetate with age in the metabolomics dataset. As this information was given to
the model in the form of the modified objective function incorporating metabolic shifts,
one possibility is that the predicted decrease in flux through these reactions is based solely
on the direct measurements of oxaloacetate. To validate the predictive capability of the
model with modified objective function, we re-executed Metab FBA without including the
measurement information for oxaloacetate, and called this variant ‘Metab FBA (no OAA)’.
In this prediction, Figure 4.9C, we observed that fluxes through MHD_m (reaction 1 in Fig-
ure 4.9C) remained the most affected within the TCA cycle. This indicates that even without
information for this specific metabolite, the model still correctly predicted a substantial
drop in oxaloacetate production given the information about the other metabolites.

Considering that if a metabolite becomes limiting with age, then supplementation of
the metabolite in the diet should increase survival, or in other words, extend lifespan, it
is interesting to note that while supplementation of most TCA metabolites either does
not affect lifespan, or has only a small effect (Edwards et al., 2015, 2013), oxaloacetate
extends lifespan by 25% and it depends on both AMP-activated protein kinase (AMPK)
and insulin signaling (Williams et al., 2009). Oxaloacetate supplementation elevates the
levels of NAD+ and restores redox balance, acting through sirtuins and AMPK (Roth and
Ingram, 2016). In mouse models of stroke, oxaloacetate administration has been reported
to reduce neural damage and traumatic brain injury (Roth and Ingram, 2016). The fact
that oxaloacetate supplementation has been shown to have such an important impact on
lifespan also indicates that dysfunctional mitochondria are not just a co-morbidity related
to age deterioration, but rather that this is one of the drivers of the aging process. Moreover,
the predicted flux changes due to age bear a resemblance to flux changes due to explicit
models of TCA dysfunction, such as fluxes reported for an idh-1 knock-out mutant (Vergano
et al., 2014), illustrated in Supplementary Figure A.7 in the Appendix.

Taken together, these studies illustrate how the composite objective function in Metab
FBA outperforms a standard objective function based on growth alone by providing more
accurate predictions.

Limitations

The most significant limitation of the Metab FBA approach is that it relies on an underlying
comparison of the metabolomics concentration values between neighbouring time points,
which means that the resulting flux predictions are applicable, strictly speaking, to the time
frame that represents the comparison between those two original time points. Thus, for
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comparisons outside of the sequential progression of time (e.g. between strains, or between
non-sequential time points) it is not possible to interpret fluxes predicted with this method.

Another important limitation of this approach is that incorporation of the metabolomics
differences in the objective function without quantitative constraints may result in the
model having too much freedom to optimize production or consumption of those specific
metabolites, unbalancing the overall metabolic flux away from realistic levels. It is apparent
that the Metab FBA predictions in Figure 4.8 show a wider range of variation than the
standard FBA predictions – e.g. in Figure 4.8B, the TCA cycle flux predictions, both the
highest and the lowest yellow squares that represent Metab FBA GEM total fluxes at
different time points, are outside of the range of the yellow-ish triangles that represent
standard FBA total fluxes at different time points. Later, I will argue that this variability
in part derives from greater biological accuracy – the metabolic fluctuations with time
of day, for example, that were described in Chapter 2, are more apparent in Metab FBA
than standard FBA – but the metabolomics integration only provides information of the
direction of change rather than the magnitude of change. To mitigate against unconstrained
optimisation of flux through the added metabolomics-derived boundary reactions, an
arbitrary maximum threshold has been incorporated for boundary fluxes implementing
the metabolomics integration.

Of course, it would be better in the future to add a quantitative element to the
metabolomics data integration with the flux prediction. Moreover, the use of neighbouring
time points rather than overall trends in the metabolomics time series measurements to
calculate differences for incorporation into the model may amplify noise. For both of
these reasons, it would be desirable to calculate a linear rate of change for metabolite
level changes across a number of time points (as is done, for example, in Bordbar et al.
(2017)) and use those per-metabolite linear rates of change as constraints on the relevant
reactions that are added to the objective function. However, this enhancement has not been
implemented and is indicated for future work.

The analysis that follows is mindful of these possible pitfalls. In particular, we limit the
use of Metab FBA to pairwise comparisons between neighbouring time points, thus falling
back to standard FBA for interpreting the overall metrics.

4.3.2 Overall growth rate and environmental exchanges (Standard FBA)

Figure 4.10A shows the optimal (maximized) growth rate achieved for standard FBA for
each of the strains and time points. Growth rate – flux through the biomass reaction – in
post-mitotic adults can be thought of as a proxy for metabolic rate, i.e. the turnover of
constituent energy sources in order to provide fuel for the maintenance of an organism.
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Figure 4.10 Overall metrics for the growth of the organism

The Figure shows important indicators selected from the standard FBA predicted fluxes across all
strains and time points. (A) Growth rate: flux through the biomass reaction. (B) Network usage:
total number of reactions with non-zero flux in the solution. (C) Oxygen consumption: uptake
of oxygen into the model. (D) Water consumption: uptake of water into the model. Strains are
indicated by colour: blue for GLP, green for FEM and gold for GEM.

It is apparent that, broadly speaking, the GLP strain is consistently hypometabolic (lower
growth rate) compared to the FEM and GEM strains, i.e. in Figure 4.10A the GLP (blue)
values are lower than the other two strains. Moreover, the metabolic rate of GEM animals
appears to be increasing with age in a way that may correspond to the contamination of
the samples with progeny related to the incomplete penetrance of the mutation, while the
FEM strain, which can be considered closest to wild type metabolically, shows a gradual
decline in maximal growth rate with the course of ageing.

Interestingly, while the GLP shows on average lower growth rates, it is using more of
the network to achieve that: the total network usage is consistently higher in that strain
(Figure 4.10B). Oxygen consumption is predicted to be lower in GLP animals at most time
points, corresponding to lower rates of oxidative phosphorylation, although not consistently
and also not linearly with respect to time (Figure 4.10C). Intriguingly, the GLP strain is
predicted to require greater consumption of water during ageing (Figure 4.10D), hinting at
quite different metabolic processing taking place in that strain.

Still using standard FBA, I explored the exchange fluxes more generally (Figure 4.11).
Interestingly, the GLP strain is the only strain that shows regular and active use of the
glyoxylate shunt pathway (Figure 4.11A), indicating a differential pattern of energy usage
compared to wild type. As discussed earlier, GLP animals are known to be fatty relative to
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wild types, and their altered pattern of fatty acid metabolism has been shown to be related
to their longevity.

The model also predicts that GLP animals systematically excrete more acetate than
the other two strains (Figure 4.11B), derived from an excess of acetyl-coA relating to
the activation of energy sources from lipids, even though we do not specifically provide
information about lipids to standard FBA, and the fat-related pathways are not well
annotated in the model.

GLP animals also consistently excrete more ribose than GEM and FEM (a sugar; Fig-
ure 4.11C), and they are the only strain to consistently excrete guanine (a nucleobase,
Figure 4.11D), although they only start this at day 2 (65 h). Moreover a pattern of altered
nucleotide metabolism is clearly reflected in the shift between days one and two (49 - 65 h)
from xanthine excretion towards guanine excretion (Figure 4.11F). By contrast, hypoxan-
thine (a known longevity modulator) excretion is absent in GLP while apparent in the other
two strains (Figure 4.11E). Taken together, these differences reflect an increased reliance on
nucleotide and fatty acid metabolism for energy in GLP.

Supplementary Figure A.8 in the Appendix illustrates the comparison of fluxes between
FEM and GLP at 49h, the time point at which the GLP metabolism starts to shift noticeably
away from the other strains according to the overall indicators. It is apparent that many of
the reactions in the TCA cycle are notably different, including the predicted switch-on of
the glyoxylate shunt pathway in GLP which is not seen in the other strains, coupled to an
increase in electron transport chain complex I. Malate dismutation is also more active in
GLP, and we see differences in amino acid production and consumption rates as well as in
nucleotide metabolism.

In addition, breakdown of malonyl-CoA and acetyl-CoA is seen to generate higher rates
of acetate and acetaldehyde. The predicted export of acetate (and also acetaldehyde – data
not shown) hints at a potential connection to epigenetic histone modifications. We can
speculate that the greater availability of acetyl-CoA that is driving the export of acetate in
the model might, in vivo, facilitate a greater level of donation of acetyl groups to histone
acetylation processes, leading to overall higher levels of acetylation.

4.3.3 Age-related changes in pathway fluxes (Metab FBA)

Using Metab FBA and differential pathway flux enrichment, we can explore the sequence of
altered flux profiles between each consecutive time point in the time series, in order to better
understand the metabolic changes that take place during ageing. Metab FBA has fewer time
points than standard FBA because our metabolomics dataset contained fewer time points
than our transcriptomics dataset (i.e. only a subset of samples were sent for metabolomics).
Moreover, because Metab FBA works on the basis of a comparison of metabolomics
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Figure 4.11 Fluxes through key reactions indicating energy usage

The Figure shows standard FBA predicted fluxes through key reactions in the metabolic network
related to energy usage and by-product excretion. (A) Glyoxylate shunt: fluxes through the
isocitrate cleavage to glyoxylate reaction. (B) Acetate excretion: flux through acetate excretion at the
system boundary. (C) D-Ribose excretion: flux through ribose excretion at the system boundary.
(D) Guanine excretion: flux through ribose excretion at the system boundary. (E) Hypoxanthine
excretion: flux through hypoxanthine excretion at the system boundary. (F) Xanthine excretion: flux
through xanthine excretion at the system boundary. Strains are indicated by colour: blue for GLP,
green for FEM and gold for GEM.

measurements at neighbouring time points, the first metabolomics measurement is not able
to be used predictively.
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Normal C. elegans ageing – FEM animals

For reasons described earlier, we consider the FEM strain the most wild type-like in our
study and thus use it as a proxy for normal C. elegans ageing.

To summarise the overall time series, Figure 4.12 gives the enriched pathways for
each of the neighbouring comparisons between consecutive time points in the time series,
indicating which pathways have a significant number of reactions within them that can be
considered meaningfully different between those time points.

Figure 4.12 Pathways with flux differences between consecutive time points in FEM

Pathways enriched for flux differences between consecutive time points across the full time series
for FEM animals. Each column represents a comparison between two consecutive time points. As
there are no Metab FBA flux predictions at time 41 h, the 49-41 h comparison in the table shows the
comparison of 49 h Metab FBA fluxes with 41 h standard FBA fluxes. A pathway being different
between two time points means that more reactions in that pathway had different fluxes than would
be expected by chance alone, but does not say which direction the changing flux was in.

According to these predictions, some pathways, such as oxidative phosphorylation, are
affected both during early ageing and later ageing. Others, such as alanine, aspartate and
glutamate metabolism, are only affected during later ageing, while amino sugar metabolism
is only changing during early ageing. In general, each pathway has a slightly different
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profile with respect to temporal changes, reflecting that each time point a slightly different
metabolic subsystem is predicted to be optimal given the multi-omics dataset that is framing
the search space. Moreover, Figure 4.12 is suggestive that there are shifts back and forth
during the earlier time points. However, the pattern of enrichment for between-time-point
changes in predicted pathway fluxes does not give any information about whether flux is
increasing or decreasing, or indeed exactly which reactions are affected. To understand the
flux enrichments better, it is necessary to dig deeper into the predicted fluxes.

Figure 4.13 Metab FBA total sum of fluxes predicted for selected pathways

The figure shows the sum of the absolute value of predicted fluxes for reactions belonging to
selected pathways: (A) oxidative phosphorylation; (B) alanine, aspartate and glutamate metabolism;
(C) amino sugar and nucleotide sugar metabolism; (D) fatty acid biosynthesis; (E) TCA cycle; (F)
collagen biosynthesis. Colours indicate strain: blue for GLP, green for FEM, and gold for GEM.

Figure 4.13 shows the overall sum of absolute predicted flux values per pathway for a
selected subset of the pathways that are enriched for age-related changes between at least
one pair of neighbouring time points. Some of the changes due to later ageing (between
hours 137 and 257, i.e. days 5 and 10 in our time series) have already been discussed above,
e.g. the decrease in flux through the TCA cycle. Between days 5 and 10, there is also a
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decrease in flux through oxidative phosphorylation (Figure 4.13A), alanine, aspartate and
glutamate metabolism (Figure 4.13B), and fatty acid biosynthesis (Figure 4.13D).

It is apparent that many of the pathways show relatively large variability in flux values
during the early ageing time points. Some of the flux changes between earlier time points
appear rhythmic, indicating they may be related to possible time of day effects which may
correspond to the observed influence of circadian changes in the metabolome discussed
in Chapter 2. In FEM animals, this is most pronounced in the TCA cycle (Figure 4.13E),
having the highest predicted flux during the earlier (morning) time points, corresponding
to when the animals would be more active. A similar pattern is observed in alanine,
aspartate and glutamate metabolism (Figure 4.13B), again linking the TCA cycle to flux
through these amino acids. By contrast, in FEM animals, predicted fluxes through fatty acid
biosynthesis (Figure 4.13D) are relatively stable throughout the time series, and amino sugar
and nucleotide sugar metabolism (Figure 4.13C) shows a non-rhythmic steady decrease
over the full course of the ageing time series.

Although we do not discuss the GEM strain predicted fluxes in detail, it is also apparent
that some strain differences are predicted. In particular, the GLP animals (for which we do
not, unfortunately, have metabolomics measurements at the later ageing time points, thus
are not able to use the Metab FBA during later ageing) show a quite different pattern in
these selected pathways during early ageing, which we discuss next.

Early ageing in a longevity model – GLP animals

Based on Figure 4.13, we can make several observations about the predicted differences
in GLP metabolism during early ageing relative to our model of normal ageing, FEM.
Oxidative phosphorylation is predicted to be somewhat lower in GLP than FEM, and
interestingly is predicted to vary rhythmically in GLP but not noticeably in FEM, decreasing
noticeably in GLP during the evening time points. By contrast, fatty acid biosynthesis
(Figure 4.13D) is predicted to be generally higher in GLP animals, in particular during the
evening time points. This is of course consistent with our observation in the metabolomics
dataset (discussed in Chapter 2) that the GLP animals appear to be more fatty in the
evenings. Alanine, aspartate and glutamate metabolism (Figure 4.13B) is also predicted
to be elevated in GLPs in the evenings. Interestingly, trehalose degradation is predicted
to steadily rise in GLPs during the course of early ageing (Figure 4.13F), while staying
relatively low and constant in the other two strains. Trehalose is a pro-longevity storage
molecule (Honda et al., 2010). Blocking an age-related shift from storage of excess energy
as trehalose (which occurs early in ageing) to storage as glycogen (which occurs later in
ageing), i.e. storing excess sugars as trehalose rather than glycogen for longer, has also
been shown to be pro-longevity in C. elegans (Seo et al., 2018).
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Figure 4.14 Pathways with flux differences between consecutive time points in GLP

Pathways enriched for flux differences between consecutive time points across the full time series
for GLP animals. Each column represents a comparison between two consecutive time points. As
there are no Metab FBA flux predictions at time 41 h, the 49-41 h comparison in the table shows the
comparison of 49 h Metab FBA fluxes with 41 h standard FBA fluxes. A pathway being different
between two time points means that more reactions in that pathway had different fluxes than would
be expected by chance alone, but does not say which direction the changing flux was in.

Looking at the enrichment for changing fluxes in pathways for GLP animals (Figure 4.14),
it is apparent that many pathways are shifting between day 1 and 2 (time points 49 and 65),
including glycerolipid metabolism, pyrimidine metabolism, lysine metabolism, glyoxylate
metabolism and n-glycan biosynthesis.

We can explore some of these pathways further in Escher, as illustrated in Supplementary
Figure A.9 in the Appendix, which shows individual predicted reaction flux discrepancies
in multiple reactions in glycolysis and the pentose phosphate pathways, connected to
increased trehalose production. Moreover, some of the most different reactions in the
network relate to fatty acyl CoA metabolism, as indicated for example for palmitoyl-CoA
and linoleoyl-CoA, indicating greater energy metabolism through fats, as would be expected
for the strain at that time point, which is the timing at which GLP animals undergo a
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fundamental metabolic shift and gain their pro-longevity metabolic patterning (Mains,
2018).

As mentioned above, it is intriguing that the GLP animals, while being ‘hypometabolic’
with respect to growth rate (i.e. having a predicted lower biomass production rate), are
predicted to be using more of the available reaction network to achieve that growth (i.e.,
more metabolic reactions are active; Figure 4.10). This is even more the case in the Metab
FBA prediction than in the standard FBA prediction (Figure 4.15).

Figure 4.15 Predicted reaction network usage and total flux sum

(A) Network usage: the count of non-zero reactions within the metabolic network in a given flux
solution. (B) Total flux sum: the sum of the absolute value of predicted fluxes through all reactions
in the network.

If accurate, this would be consistent with what is known about the germline-free
longevity phenotype, i.e. that it is dependent on a global rewiring of the metabolic network,
and that it is fragile in the sense that the GLP longevity is dependent on many otherwise
unrelated aspects of metabolism (Mains, 2018).

4.4 Conclusion

Overall, we observe that the use of FBA together with a multi-omics dataset can provide
intriguing predictions with respect to different patterns of metabolism during ageing. FBA
is a well established method in unicellular organisms such as E. coli and yeast, but has only
recently been available for C. elegans.

We developed a novel approach to harness metabolomics measurements together with
transcriptomics measurements in order to improve the accuracy of FBA predictions. We
validated our method through evaluation of a case study of the TCA cycle in ageing FEM
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animals, for which we were able to demonstrate that our method is able to predict changes
in metabolite levels for which no metabolite information is provided, thus with the addition
of relatively easily obtainable data (e.g. metabolites for which good standards exist), our
model may be used to predict system level metabolic shifts or changes in metabolites that
are more difficult to quantify (i.e. those without appropriate standards).

We used this integrative method to probe the changes due to ageing during our time
series. During later ageing the model is able to reproduce several known aspects of ageing
C. elegans physiology, such as a decline in oxidative phosphorylation and TCA cycle. During
early ageing, the predicted fluxes further illuminate the rhythmic shifts that take place in
the metabolome during early ageing. Several aspects of metabolism differ between the
normal-lived strains and the GLP longevity model, and these are also apparent in our
predicted fluxes: GLPs have higher levels of fatty acid metabolism in various aspects and
altered processing of nucleotides and waste products such as acetate.

There are several limitations to the work presented in this chapter. Assessing and
interpreting predicted fluxes in a large-scale model such as this is inherently challenging,
and the methods that have been used for the interpretation of predicted fluxes – differential
flux analysis, flux pathway enrichment, total flux sums for pathways, visualisation of
individual reaction fluxes with Escher pathway maps – all suffer from limitations and offer
only a partial view on the underlying, hugely complex, genome-scale flux predictions.
Various thresholds are used in these analyses which are to some extent arbitrary, in the
selection of which I have had to be pragmatic. More research is needed in these areas to
make FBA better applicable to be used in the context of large-scale multi-omics time series
experiments.

The flux predictions may be noisy, both due to redundancy (alternative optimal
pathways) in the underlying network model, and due to the method of integrating the
metabolomics data, which only provides a guide as to the direction of fluxes and not their
magnitude. Moreover, as discussed in the previous chapter, the underlying model is still
incomplete in several areas, and even of the network that has been annotated, it is far
from fully used in the flux predictions. There are several pathways that are not used at
all by any of the the flux solutions and which would be very interesting if they were, e.g.
various epigenetic modification pathways such as histone acetylation. At present, within
the steady-state solution optimising both biomass production and metabolomics changes,
there is nevertheless no incentive for the model to use the histone modification pathways.
With an appropriate integration method, it would be ideal to add yet another -omics layer
to give appropriate information about this aspect of biology to the predictive model.

While it may be difficult to interpret the predicted fluxes, the wealth of information
provided by FBA is so rich as to yield many and diverse insights when probed in different
ways. In this chapter I have looked at the fluxes themselves and their evolution over time
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in the context of pathways. In the next chapter, among other network-based approaches to
interpret the dataset as a whole, I look at some properties of the flux balance problem as a
whole, in terms of how flexible and how constrained it is in each of the different conditions.





5. Metabolic regulation of ageing

5.1 Introduction

Thus far, the previous chapters have reported observations about the changes in metabolism
taking place during ageing. However, the key question that arises in pursuit of greater health
across the lifespan is How can we intervene to promote health for longer? Ideally, interventions
in the ageing process to promote health would take the form of small molecules that can be
developed towards treatments. To this end, in this chapter I seek to go one step beyond
the observational studies reported in previous chapters, and investigate our dataset for
evidence of novel modulators of the ageing process.

Firstly, I explore the flux variability and sensitivity parameters associated with the
network of predicted fluxes arising from the time series of FBA flux predictions to identify
whether the flexibility or constraints of the network change over time.

Secondly, considering only the metabolomics dataset, I look at how the measured
metabolites cluster together with respect to their concentration level changes over time.
Those metabolites that behave similarly to known longevity modulators are good candidates
to be longevity modulators themselves. I introduce a novel network-based ranking for
metabolites based on their similarity to known longevity modulators.

Finally, I harness the linked transcriptomics dataset and consider a trans-omics approach
relating genes to metabolites based on a joint correlation analysis. The resulting bipartite
network can inform enquiries across the levels and uncover novel aspects of metabolic
regulation during ageing.

5.2 Methods

5.2.1 Regulation and Bottlenecks in Flux Predictions

Flux Variability Analysis

As the FBA problem is underconstrained, each optimal solution is in principle compatible
with a range of flux values in all but the most constrained reactions. To assess the possible
range of flux values for each reaction compatible with the same optimal solution, the
variability of flux through each reaction can be explored in a multi-step linear optimiza-
tion known as flux variability analysis (FVA). This approach alternately maximises and
minimises flux through each reaction one by one in order to determine the maximum and
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minimum possible flux for each reaction compatible with the same objective function value
(Burgard et al., 2001).

In my pipeline, flux variabilities are computed using the CobraPy ‘cobra.flux_analysis.
flux_variability_analysis’ method, as a second step after obtaining the optimal value for the
objective function. Flux variability gives a maximum and a minimum flux for each reaction;
to obtain the flux variability range I calculated (maximum - minimum). Constraints and
objective function corresponding to standard FBA as described in the previous chapter
were used in this analysis, thus the full time series of data including in GLP animals can be
presented.

Within the predicted flux variabilities, there were two outliers: time points 117 and 257
in the GLP strain. These groups consistently show a far greater flux variability than the
average of all the other groups, without having any other significantly different parameters
(growth rate, metabolic inputs etc.). The most likely reason for this discrepancy is technical.
For example, there may be an undiagnosed flux loop that is enabled only in those cases
and not in the others. These two GLP time points were therefore regarded as outliers and
ignored in this analysis.

Reduced costs for reactions and shadow costs for metabolites

Reduced costs and shadow prices are measures of sensitivity that are returned from the
CobraPy implementation that solves the FBA problem. Shadow prices of metabolites repre-
sent the sensitivity of the objective function value (that is being maximised or minimised)
to changes in the availability of those metabolites. The value given for the shadow price
can be negative, zero, or positive, depending on the intrinsic value of the metabolite. When
the objective value is being maximised, the most constrained metabolites will be assigned
negative shadow prices.

Similarly, reduced costs of reactions represent the sensitivity of the objective function
value to additional flux through a particular reaction. Reduced costs of reactions can also
be negative, zero or positive, and similarly, when the objective value is being maximised,
the most constrained reactions will have negative reduced costs.

These metrics are interrelated, in that flux limiting metabolites will lead to reactions
involving those metabolites being similarly constrained. For our analysis in this chapter,
we focus mainly on the reduced costs of the reactions rather than the shadow prices
of the metabolites, as the reactions are annotated to pathways which can be used for
interpretation. For interpretation I have used a variant of the pathway enrichment analysis
that was introduced in the previous chapter, again using Fisher’s exact test, but this time
rather than comparing two conditions, I have used the set of reactions with reduced costs <
0 for a given time point and strain, with the whole set of model reactions as the background.
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This gives a predicted enrichment (over-representation) statistic for each pathway for each
time point and strain.

5.2.2 Clustering and network inference

Metabolite network inference

A network was inferred based on standard Pearson correlations between metabolites across
all replicates within the metabolomics study. A threshold of 0.65 in absolute strength
of correlation, and an adjusted p-value of 0.05 was used to define an edge between two
metabolites being present in the network. Correlations were calculated and assigned
p-values with the ‘psych’ library (Revelle, 2018) function ‘corr.test’ in R. The resulting
correlation network was visualised using Cytoscape (Su et al., 2014).

Gene-metabolite network inference

Correlation analysis of measured values between genes and metabolites can discover
clusters of co-regulated genes and metabolites that vary together across conditions and
samples, as was done for the set of transcripts and metabolites found in human blood in
(Bartel et al., 2015). Statistical whole-systems approaches along these lines can also be used
to make predictions about causal relations (Rosato et al., 2018).

For the gene-metabolite network inference I present in this chapter, the metabolomics
dataset was combined with a subset of the transcriptomics datasest that was taken from the
same samples across strains and time points. A network was inferred based on standard
Pearson correlations between genes and metabolites across all replicates. Only positive
correlations were considered, as negative correlations were more numerous and may be
harder to interpret. A threshold of 0.7 in correlation strength was applied, and an adjusted
p-value of 0.05 was used to define an edge being present in the network. Correlations
were calculated and assigned p-values with the ‘psych’ library (Revelle, 2018) function
‘corr.test’ in R. As for the metabolite–metabolite network, the resulting correlation network
was visualised using Cytoscape (Su et al., 2014).

5.3 Results and Discussion

5.3.1 Flexibility and constraint in the metabolic network

FBA predicts reaction fluxes through metabolic reactions in a constrained overall system
under the assumption of a steady state. Alongside predicted fluxes, FBA offers sensitivity
parameters with each solution, which indicate which parts of the overall network are
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constrained in that solution, as compared to which are free to vary around a range.
These parameters can then be compared between different time points to understand how
flexibility is changing during the ageing process.

Flux Variability Analysis

FVA gives a prediction of the flux variability (FV) range compatible with a given optimal
solution, indicating which reactions are more constrained and which have more flexibility.
I calculated the FV range for every reaction in the network for each of the time points and
strains. I then amassed these data into sums by pathway for broad interpretation. The
overall differences in FV range and a selection of pathways are indicated in Figure 5.1.

It is apparent in Figure 5.1A that the overall sum of flux variability ranges indicates
what we might expect with regard to strain differences in overall temporal profile: the FEM
strain starts off with the largest flexibility but then decreases, gradually during early ageing
and more sharply between time points 137 and 257 at the end of the time series, while
GEM appears to increase somewhat during middle age, possibly corresponding to the
contamination due to incomplete penetrance in that strain, and GLP has lower metabolic
flexibility on average but also maintains a more stable trajectory in later ageing.

The TCA cycle (Figure 5.1B) is perhaps one of the pathways that shows the effect of
ageing the most: there is a gradual depletion of FV range with age in this pathway across
all strains, showing that the system overall has less flexibility in key aspects of energy
generation as it ages. Intriguingly, one of the pathways that shows the greatest discrepancy
between the strains is nuclear transport (Figure 5.1C): the movement of metabolites such as
S-adenosyl-methionine and NAD, involved for example in histone modifications, into and
out of the nucleus. The variability range of these reactions are significantly depleted in GLP
as compared to the other strains, and shows an ageing-characteristic depletion with age
in GLP and FEM, but not the GEM strain. In fact, in GEM the variability range in nuclear
transport increases steadily throughout the time series, indicating that the GEM incomplete
mutation penetrance may be affecting this pathway, which may be expected as if a subset
of GEM animals are fertile, these animals would be undergoing active cell division.

Mitochondrial transport (Figure 5.1D) shows a similar pattern to nuclear transport,
although less pronounced, which interestingly is also very similar to the pattern for fatty
acid metabolism (Figure 5.1F), indicating that the transport of metabolites (such as acetate
and carnitine) into and out of the mitochondrion is a rate limiting factor for fatty acid
metabolism, as might be expected. Flux variability in fatty acid metabolism is lower in
GLP animals, indicating that this strain is more dependent on fatty acid metabolism for
achieving normal growth, as might be expected based on what is known about the GLP
phenotype.
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Figure 5.1 Flux Variability range sums per pathway

The Figure shows the Flux Variability (FV) ranges summed up for (A) the whole network, and (B-F)
specific pathway subsets of reactions within the network: (B) TCA cycle; (C) Nuclear transport;
(D) Mitochondrial transport; (E) Lysine degradation; (F) Fatty acid metabolism. In each plot, time
points are indicated by labels and strain by colours: blue for GLP, green for FEM and gold for GEM.
The GLP FV range at time points 117 and 257 have been removed as they were outliers. Constraints
corresponding to standard FBA were used in this analysis.

An example of a pathway that shows a sharp drop in FV range with age across all strains
is lysine degradation (Figure 5.1E), a pathway that produces energy intermediates such
as S-adenosyl-methionine from amino acid precursors. In mammals, lysine degradation
has been implicated as important for promoting healthy brains over the life course (Hallen
et al., 2013).
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Reduced costs and shadow prices

The reduced cost of a reaction represents the sensitivity of the objective function value
(optimal predicted outcome flux) to changes in the flux value of that reaction. That is,
reduced costs of reactions capture the dependence of the final optimized solution value on
a particular reaction value. Shadow costs of metabolites, on the other hand, are sensitivities
to availability in a given metabolite (Maarleveld et al., 2013) – that is, they track the
dependence of the final optimized solution value on availability of a particular metabolite.
Shadow prices have been shown experimentally to anti-correlate with degrees of growth
limitation of intracellular metabolites (Reznik et al., 2013), underlining the biological
relevance of model parameters relating to the overall flexibility of the system. The same
study found that metabolites with negative shadow prices (i.e. that are predicted to be
growth-limiting) show lower temporal variation following a perturbation, indicating that in
vivo their concentrations are more buffered and tightly regulated. These two parameters
are related, in that reduced costs of exchange reactions point to uptake constraints on
metabolites that are limiting for the solution, while the shadow costs may directly identify
the metabolites themselves. In what follows, we focus on the reduced costs of reactions
in order to simplify interpretation, since reactions are already annotated with pathways
within the model, while metabolites are not directly annotated to pathways.

We calculated the reduced costs for each time point and strain with the model objective
and constraints set as per standard FBA, as discussed in the Methods. The overall counts of
reactions with reduced costs below zero for each condition are indicated in Supplementary
Figure A.10. There is no overall trend with respect to age in any of the strains, however,
GLP has a larger number of reactions with reduced cost below zero at most of the time
points than the other two strains, providing evidential support indicating that GLP depends
on more pathways acting at optimal level than the other strains.

We can further explore the distribution of reactions with reduced costs below zero by
performing pathway enrichment to identify pathways that are over-represented for such
reactions for each time point and strain, as described in the Methods.

Looking at the pathway enrichments for the reactions with reduced costs below zero,
i.e. those reactions that would lead to an increased optimal value if they were able to carry
more flux (Figure 5.2), we can see that only a few pathways are regularly enriched for
constrained reactions. These pathways are the ones that ‘throttle’ the system as a whole.

A few subtle strain differences are immediately apparent. The GLP strain has enrich-
ments at almost all the time points in mitochondrial transport, while FEM and GEM have
few time points with enrichments in this pathway – the older time points in FEM, a few of
the younger time points in GEM. In GLP, the fact that the transport reactions in particular
are throttling the growth of the system can be expected to correspond to the shuttling of
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Figure 5.2 Pathway enrichment for reactions with reduced costs below zero

The Figure shows the results of pathway enrichment for the reactions with reduced costs below zero,
grouped by strain and then by age. Within the plot, colour indicates significance of enrichment,
with yellow the most significant followed by orange, red and then grey as not significant. Column
top bar colour indicates strain: green for FEM, gold for GEM and blue for GLP.

byproducts of altered fatty acid metabolism into the mitochondrion for oxidation, although
intriguingly mitochondrial fatty acid beta oxidation as a pathway is not enriched at most
time points in GLP, indicating that it is the transportation rather than the oxidation that is
setting the constraint on the system in this case. Exchange reactions as a whole are more
enriched, at more time points, in the GEM strain than the FEM and GLP, indicating that
this strain might be able to grow more if more inputs were allowed from the environment.
Glycolysis and gluconeogenesis seem slightly more enriched in GLP, particularly at the
earlier time points in the time series, while purine metabolism is more enriched in FEM
during middle age.

During the early ageing time points, we see once again the ‘switching’ behaviour char-
acteristic of the metabolic oscillations that we observed in the metabolome, in this case
indicating different distribution of system constraints under the different time of day condi-
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tions. For example, riboflavin metabolism, ether lipid metabolism, glycerophospholipid
metabolism and inositol phosphate metabolism appear to be behaving that way at least in
some of the strains.

Overall, it is apparent that there is considerable complexity in which aspects of the
system are more constrained as revealed by this analysis. Almost every time point and
strain has a different profile in terms of which combination of pathways are enriched and
at what significance, suggesting that different aspects of the overall metabolic flexibility of
the organism are more relevant in different conditions and underscoring the importance of
detailed, whole-systems approaches to tease apart complex dependencies.

5.3.2 Prediction of novel longevity modulators based on metabolite network
distances

As discussed in Chapter 2, several of our metabolites are known longevity modulators –
extending lifespan when supplemented. Given the broad and untargeted nature of the
measured dataset, without a priori selection of metabolites for specific purposes, it may
fortuitously allow for the discovery of entirely novel regulators of the ageing process.

Based on a simple correlation analysis and a threshold, we can induce a network among
the metabolites where edges represent correlation and anti-correlation, as illustrated in
Figure 5.3. Looking at this simple correlation network, it is clear that some metabolites
are more central while others are more peripheral. Moreover, there are potential apparent
clusters of longevity modulators, and it can be hypothesised that metabolites that are
clustering together with longevity modulators are themselves more likely to be longevity
modulators.

To formalise this intuition, we can define a network index dL for a given metabolite
that represents an average of the density of longevity modulators in the immediate neigh-
bourhood of the metabolite, weighted to favour metabolites that are more central and
correlations that are more strong, as follows:

dL = 1 if dL ∈ {longevity modulators} (5.1)

else dL =
∑n

i=1 dLi ∑n
i=1 |ci|

(n + 1)
(5.2)

where n is the number of edges around the metabolite, i ∈ {1, ..., n} is an index for each
edge, and ci is the correlation strength of that edge. Informally, this measure consists
of the sum of the scores as longevity modulators of the immediate network neighbours,
modulated by a measure for (local, degree-based) centrality based on the number of edges
and the strengths of the correlations. The score for longevity modulators depends on the
score for the neighbouring nodes, which in turn depends on the next neighbouring nodes,
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Figure 5.3 Network of correlations and anti-correlations for all metabolites with correlation
threshold > 0.65 and p(adj) of corr <0.05.

The Figure shows the network of correlations and anti-correlations for all metabolites with correlation
threshold > 0.65 and p(adj) of corr <0.05. Blue colour nodes represent metabolites that are decreasing
with age according to our metabolomics dataset analysis, while red indicates those that are increase
with age. If the node is surrounded by a solid black box that means it is known to extend longevity
when supplemented. Dashed line edges show negative correlation, while solid line edges show
positive correlation.

but the recursion is only one level deep. Only the strength of correlation matters, not the
direction.

Computing this measure for each metabolite in the network gives a score for each
metabolite that is 1 for those metabolites that are known longevity modulators, and a value
between 0 and 1 for those that are not yet known to be longevity modulators, related to
their network neighbourhoods. Higher values indicate higher predictive scores. Metabolites
scoring highly on this metric are central and closely related to a number of known longevity
modulators, while metabolites scoring lowly are peripheral and not related to any known
longevity modulators.
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The full table of predictions (for non-longevity-modulating metabolites) is included
as Supplementary Table A.7, while the highest and lowest predictions together with the
distribution of the score predictions are illustrated in Figure 5.4.

Figure 5.4 Network-based predictions of longevity modulating scores for metabolites

(A) Density of predictions for non-longevity-modulating metabolites, indicating that the metric dL

is fairly evenly distributed in this dataset. (B) The top end of the metric shows the metabolites with
the highest predictions. (C) The lower tail end of the metric shows the metabolites with the lowest
predictions.

The highest predicted metabolite according to this metric is phenylalanine, an essential
amino acid with many known biological roles. At least one study has tested phenylalanine
supplementation and not found an effect on longevity (Copes et al., 2015), but this finding
may not generalise to all strains and conditions.

The next highest are uracil, a nucleobase, aconitate, part of central energy metabolism
via the TCA cycle, and pentothenate, a vitamin with complex roles in energy production.
Moreover, while this metric did not explicitly take into consideration whether the metabo-
lites were changing significantly with age (Chapter 2), it is of course apparent from the
network graph (Figure 5.3) that the highest density nodes are amongst those found to be
increasing or decreasing, i.e. the age-associated metabolites, as one might expect.

The top scoring metabolites according to this metric seem eminently plausible candidates
for longevity modulation and it is possible to hypothesise that some of the top 10 or 20
might well be novel longevity modulators. On the bottom end of the prediction scale, we
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find metabolites that are less likely to be modulators of longevity according to this metric.
However, in the absence of experimental testing, how can we best validate if the score is
accurate?

One possible validation would be to determine to what extent the metric can predict
known longevity modulators, if the information that they are known to be such is removed
from the dataset (a ‘leave-one-out’ validation design). The results of this experiment are
encouraging: for the most part, the known longevity modulators score more highly than
the unknown metabolites (Figure 5.5). However, there are some exceptions, and the tail end
of the prediction metric validation includes the metabolites spermidine, PEP, cytidine and
glycine, which are all non-central in the network and not well connected to other longevity
modulators (Figure 5.3). It is interesting to note that while spermidine is a well-known
longevity modulator, it was also highly variable in our dataset.

Figure 5.5 Validation of predicted longevity modulating scores for metabolites

The Figure shows the density of predictions for known longevity modulating metabolites, computed
in a leave-one-out validation approach, for the longevity modulators (red line) and the remainder of
the dataset, i.e. non-longevity-modulators. On average, the known longevity modulators receive a
higher predicted longevity modulation score, as would be hoped.

Interestingly, PEP is a known longevity modulator that is not age-associated and in
this network analysis is far removed from the main cluster of age-associated metabolites,
hinting at different underlying mechanisms. In (Feng et al., 2016; Yuan et al., 2016), a
progressive decline in PEP carboxykinase with age and reciprocal increase in pyruvate
kinase shunt energy metabolism was observed to lead to a metabolic shift with age from
oxidative metabolism to anaerobic glycolysis, a metabolic event that is retarded by caloric
restriction.

What more can we learn from considering the metabolites fluctuations together with
the gene expression fluctuations from the associated, linked transcriptomics dataset? We
evaluate this next.
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5.3.3 Exploring mechanisms of metabolic regulation by predicting gene–metabolite
interactions

As our study had linked samples from which both transcriptomics and metabolomics data
were obtained, it was possible to do a ‘trans-omics’ (Yugi et al., 2016) correlation analysis
across the two different omics layers, and thereby induce a simple network with edges
linking genes to metabolites.

As there are many more genes in the transcriptomics dataset than metabolites in the
metabolomics dataset, this type of analysis may be somewhat uneven in predictive power
for the different data types, resulting in a different noise level for genes and metabolites.
Therefore, to mitigate this problem, only a subset of genes were used in the analysis: those
that have been indicated as having a metabolic role in the analysis of the full time series in
our lab (Mains, 2018). The resulting induced network is shown in Figure 5.6.

Figure 5.6 Network of correlations between genes and metabolites with correlation threshold >
0.7 and p(adj) of corr <0.05.

The Figure illustrates the bipartite network of correlations between genes and metabolites with
correlation threshold > 0.7 and p(adj) of corr <0.05. Metabolites are coloured green, while genes are
coloured blue. Edge width represents correlation strength.
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Based on this network, similarly to the approach we used above for the metabolite–
metabolite network, we can define a simple ranking of metabolites for how central they
are. Here, the emphasis is on degree centrality, i.e. in terms of how many connections a
node has, rather than overall network centrality. The assumption is that the more central
the metabolite, the more likely it is to have a potentially regulatory role. The centrality of a
metabolite, cM is defined as:

cM =
n

∑
i=1

(
cim
M

) (5.3)

where n is the edge count for a particular metabolite, i is an index for that metabolite’s
edges to genes, ci is the correlation strength for the particular edge to the gene connected
by edge i, m is the count of edges for that correlated gene to further metabolites, and M is
the total possible gene-metabolite edges for a single gene across the whole network.

This gives a ranking of the metabolites present in the network (i.e. those that do have
above-threshold correlations with genes). The scores are shown in Table 5.1.

Metabolite Centrality Score Longevity modulator
Oxaloacetate 3.24 Yes
Phenylalanine 2.13 No
Linolenic Acid 1.60 Yes
Cystathionine 1.12 No
Lysine 1.11 Yes
Glutamine 1.05 Yes
Methionine 0.73 Yes
Aconitate 0.73 No
Carnitine 0.63 Yes
2-Hydroxyisovaleric Acid 0.62 No
2-Aminoadipate 0.62 No
Allantoin 0.55 Yes
Lactose 0.53 No
GMP 0.51 No
Pentothenate 0.43 No
Leucine 0.31 Yes
Putrescine 0.21 Yes
Inositol 0.10 Yes
Linoleic Acid 0.10 No
Table 5.1 Centrality scores for metabolites in gene–metabolite network.

This is of course just a tentative analysis, as the dataset of metabolites is not necessarily
representative of all the changes that are taking place in the metabolism of the organism,
and therefore cannot be assumed to reflect an unbiased result. However, it is reassuring to
observe that oxaloacetate, which emerged as a key rate-limiting metabolite in central energy
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metabolism in our FBA analysis (Chapter 4) and a robust longevity modulator, appears
as the highest ranked metabolite for centrality according to this definition in our induced
gene–metabolite network.

The genes most closely associated with oxaloacetate in this correlation study include lbp-
7, an ortholog of human fatty acid binding proteins; lipl-5, an intestinal gene with hydrolase
activity and a member of a family that also includes lipl-4, a known longevity promoter
that is required for both germline-free and insulin mutant longevity (Hou and Taubert,
2012); acdh-1, an acyl-coA dehydrogenase that catalyses the first step of mitochondrial fatty
acid beta-oxidation, and for which reduction of its activity shortens lifespan (RNAi data in
WormBase); and daf-36, part of the daf-12 hormonal signalling pathway.

Phenylalanine appears next, in second place, a metabolite that was also highly ranked
in the predictive score based on the metabolite-metabolite network above, highlighting that
even if this metabolite is not itself a longevity modulator, it must play a key role in the
intermediary metabolism that underlies the pathways that lead to longevity. It correlates
strongly with alh-13, a mitochondrial gene involved in glutamate metabolism, and pho-1, an
intestinal acid phosphatase, that also correlates with linolenic acid, along with pho-13.

Among the further notably strong correlations in this network is pentothenate correlat-
ing with aak-1, a notable AMP-activated protein kinase that mediates lifespan, oxidative
metabolism and fat composition (Greer et al., 2009; Moreno-Arriola et al., 2016; Webster
et al., 2017). Pentothenate is not a known longevity modulator, but it is required for
normal development. While it has a low score for centrality based on the metabolite–gene
correlations, it does obtain a high score as a predicted longevity modulator based on
metabolite–metabolite correlations (Figure 5.4B).

5.4 Conclusion

This chapter explored several different network-based and trans-omic approaches to better
understand flexibility and regulation within our time series multi-omic dataset. Metabolite–
metabolite correlation analysis revealed metabolites that would be good candidates for
testing as candidate longevity modulators, while a metabolite–gene correlation analysis
revealed trans-omic connections that can be further probed to explore possible cross-layer
regulatory connections. The genome-scale modelling approach was used to explore both
flux variability under the different conditions of the study (i.e. the different time points in
the time series, and different strains) and determine which aspects of the network were the
most bottlenecked in the shadow cost analysis. These analyses are exploratory and have
not been comprehensively validated, but show some promise for new directions to probe
the interrelationships between metabolism and the genetic control of longevity pathways in
C. elegans.
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Despite extensive progress in understanding the metabolic and gene regulatory pathways
underlying the processes of ageing, its effects remain a pervasive challenge and better
treatments an urgent necessity. Systems approaches are needed which are able to link
together hugely complex synchronized maps of regulatory connections under different
conditions in order to make truly predictive modelling possible in this field (Hastings et al.,
2019b; Sweetlove et al., 2014). Technical advances in measurement technologies enable
large-scale -omics data to probe many different layers more comprehensively, yet truly
integrative analyses still lag behind (Alyass et al., 2015).

In this thesis, I have harnessed several different computational approaches to try to
better understand the changes due to ageing in a detailed time series of gene expression
and metabolic -omics measurements. I evaluated the changes in metabolome levels due to
age and observed a subset of metabolic fluctuations associated with time of day during
early ageing. I also compared the metabolome of two normal-lived strains with a long-
lived germline-free strain and determined that at least in some aspects, the long-lived
strain appeared more youthful for longer, although in other aspects such as differential
metabolism of fats, it is quite different. I developed and validated a novel method for the
integration of metabolomics data with time series metabolic modelling (Hastings et al.,
2019a). This is the first such study to use two different -omics layers integratively together
with a genome-scale metabolic network in C. elegans, and moreover contributed to the
development of a consensus metabolic network that will serve as a resource for the whole
community to further this type of systems-based analysis approach (Witting et al., 2018).
Using this modelling approach, I was able to predict fluxes for every reaction in the network
and compare the flux predictions between different times and strains, and to highlight
parts of the network that are more constrained and more flexible.

Several complexities of ageing metabolism have not been covered in my analyses and
are thus limitations on this work. I have made no attempt to consider the relationship
between C. elegans and the metabolism of its bacterial food source, nor the tissue specificity
of the various different aspects of metabolism taking place in the organism.

C. elegans are bacteriovores and are usually cultured with E. coli as their monoxenic food
source. It is known that some of the dietary interventions that affect ageing in C. elegans are
mediated by active bacterial metabolism, such that the bacterial diet constitutes not only a
food source but also an active agent in the phenotypic effects, similarly to the operation of
the human microbiome (Cabreiro et al., 2013; Cabreiro and Gems, 2013; Virk et al., 2012,
2016). The provision of different strains of E. coli as food source can profoundly affect
the worm metabolism and lifespan (MacNeil et al., 2013). It has also been shown that the
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pro-longevity effect of the anti-diabetic drug metformin (a calorie restriction mimetic) exerts
its effect on the folate and methionine metabolism of the co-culture bacteria (Cabreiro et al.,
2013) and a similar pro-longevity effect occurs when C. elegans are fed with. E. coli mutant
in the folate pathway (Virk et al., 2012). These findings illustrate that it will be essential
to develop composite models which represent both the metabolism of C. elegans and its
bacterial food source.

In terms of tissue specificity, an important element that is completely overlooked in
the approaches presented thus far is the complexity of neuronal control of metabolism.
For example, Entchev et al. (2015) discuss an important mechanism for the rewiring of
metabolism in response to sensory perception, while Riera and Dillin (2016) discuss further
mediators these relationships, altering organismal responses to metabolic signals from the
environment.

In addition, several aspects of our approach can be improved, and such improvements
remain for future work. Many of the analyses presented in this thesis are exploratory and
need to be further validated on other datasets, as well as – crucially – tested experimentally.
The set of metabolites available for the study was limited and may have introduced bias to
the results. In future a more comprehensive, untargeted metabolomics assay might be used
to obtain a whole-metabolome view on systemic changes due to ageing.

Another significant limitation of our study is the incomplete state of annotation of
the model of C. elegans metabolism. While the WormJam model represents a consensus
of the knowledge represented across all the available published models, it is a work in
progress and there are known problems which require further manual curation to resolve
(Witting et al., 2018). For example, the annotation of worm-specific metabolites is poor,
as is the annotation of pathways involving fatty acids and lipids. Large-scale community
involvement is essential for this to succeed, as no single group has access to all the expertise
that is required for such a large scale knowledge building activity to be brought up to date
with everything that is currently known in the field. Moreover, visualisation of predicted
fluxes in such a large-scale network remains a challenge, and although tools such as Escher
do exist, this is an area which urgently needs more sophisticated tooling.

Crucially, we anticipate that other approaches to changing the objective function will
also enhance the use of FBA for the study of ageing in C. elegans (Hastings et al., 2019b). For
example, the addition of in vivo measured oxygen consumption and total ATP production
data at matching timepoints would enable the accurate scaling of central energy metabolism
to better match the physiological decline that is known to occur with age (Braeckman et al.,
2002), yet is not fully transcriptionally evident. This would force the model to find other
pathways for energy generation and would no doubt lead to further insights into the
network-based complexity of the loss of functioning during the ageing process.
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Systems biology and multi-omics approaches to the study of ageing in model organisms
such as C. elegans have the potential to reveal novel insights about mammalian and human
ageing processes, as most of the genes and pathways involved in ageing worms are
conserved and have similar effects in humans. Age-associated phenotypes such as the
accumulation of molecular and cellular damage, the decline of physiological functions such
as energy generation and stress resistance, and the increase in risk of disease morbidity
and mortality, are also shared between model organisms and humans, driven by the same
conserved genes. However, model organisms are experimentally tractable and are thus
able to be used in large-scale screening studies that lead to the development of novel
interventions targeting the extension of health and longevity in humans. Both for basic
discovery of novel aspects of the biology of ageing, and for the more applied challenge
in determining novel treatments, good in silico models that are able to represent the
physiological environment and make predictions based on large-scale omics measurements
in model organisms are important, and these predictions can be translated to humans via
gene orthology.

Many of the findings of this study recapitulate ageing-associated effects that are known
to occur similarly in humans. For example, the depletion of amino acids and decline of
TCA cycle function that we observe with age in C. elegans is paralleled by a decline in
metabolic function generally and in particular in the maintenance of muscle tissue, which
forms the main amino acid repository of the human body (Timmerman and Volpi, 2010).
Using systems biology approaches to tease apart the relative contribution of each of these
different aspects to systemic phenotypes enables specific causal predictions to be made
for the different interacting pathways. One of the main contributions of this thesis is to
enhance the systems biology predictive capability with a more comprehensive model of
C. elegans metabolism during ageing. While there are limits to what can be inferred from
C. elegans to humans, as some aspects of C. elegans ageing physiology – such as the excess of
yolk production post-reproduction – are not conserved (Gruber et al., 2015), it nevertheless
provides an efficient and tractable system for manipulation and discovery.
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Appendix A. Supplementary Tables And
Figures

Supplementary Tables

Table A.1 Names, pathways and additional information for measured metabolites in
metabolomics assay

Name Mass / RT Pathway Formula ChEBI ID
Pyruvate 87.0 / 43.0 Glycolysis C3H3O3 CHEBI:15361
Lactate 89.0 / 43.0 Glycolysis; TCA cycle C3H5O3 CHEBI:24996
Oxaloacetate 131.0 / 113.0 Glycolysis; TCA cycle C4H2O5 CHEBI:16452
PEP 167.0 / 79.0 Glycolysis C3H5O6P CHEBI:44897
DHAP 167.0 / 79.0 (2) Glycolysis; Gluconeogenesis C3H7O6P CHEBI:16108
D-GA3P 167.0 / 97.0 Glycolysis; Gluconeogenesis C3H5O6P CHEBI:59776
Glucose 179.0 / 89.0 Glycolysis; Gluconeogenesis C6H12O6 CHEBI:17234
G1P/G6P/F6P/F1P 259.0 / 97.0 Glycolysis C6H13O9P CHEBI:29042
3HBA 103.0 / 59.0 TCA cycle C4H8O3 CHEBI:20067
Maleic Acid 115.0 / 71.0 (2) TCA cycle C4H4O4 CHEBI:18300
Succinate 117.0 / 73.0 TCA cycle C4H5O4 CHEBI:26806
Malate 133.0 / 115.0 TCA cycle C4H4O5 CHEBI:25115
Aconitate 173.0 / 85.0 TCA cycle C6H3O6 CHEBI:22210
Glycine 76.0 / 30.1 Amino acid C2H5NO2 CHEBI:15428
Alanine 90.0 / 44.0 (2) Amino acid C3H7NO2 CHEBI:16449
Cadaverine 103.0 / 86.0 Amine C5H14N2 CHEBI:18127
Serine 106.0 / 60.0 (2) Amino acid C3H7NO3 CHEBI:17822
Proline 116.0 / 70.0 Amino acid C5H9NO2 CHEBI:26271
Valine 118.0 / 72.0 Amino acid C5H11NO2 CHEBI:27266
Threonine 120.0 / 74.0 (2) Amino acid C4H9NO3 CHEBI:26986
Leucine 132.0 / 86.0 Amino acid C6H13NO2 CHEBI:25017
iso-Leucine 132.0 / 86.0 (2) Amino acid C6H13NO2 CHEBI:24898
Asparagine 133.0 / 74.0 Amino acid C4H8N2O3 CHEBI:22653
Tyramine 138.0 / 121.0 Amine C8H11NO CHEBI:15760
Glutamine 147.0 / 84.0 Amino acid C5H10N2O3 CHEBI:28300
Lysine 147.0 / 84.0 (2) Amino acid C6H14N2O2 CHEBI:25094
Glutamic Acid 148.0 / 84.0 Amino acid C5H9NO4 CHEBI:18237
Methionine 150.0 / 61.0 Amino acid C5H11NO2S CHEBI:16811
Histidine 156.0 / 110.0 Amino acid C6H9N3O2 CHEBI:27570
Tryptamine 161.0 / 144.0 Amino acid C10H12N2 CHEBI:16765
Phenylalanine 166.0 / 120.0 Amino acid C9H11NO2 CHEBI:28044
1/3-Methylhistidine 170.0 / 96.0 Amino acid (Histidine

Metabolism)
C7H11N3O2 CHEBI:70958

Arginine 175.0 / 70.0 Amino acid C6H14N4O2 CHEBI:29016
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Continuation of Table A.1
Name Mass / RT Pathway Formula ChEBI ID
Tyrosine 182.1 / 136.0 Amino Acid C9H11NO3 CHEBI:18186
Cystine 241.1 / 120.0 Amino Acid C6H12N2O4S2 CHEBI:17376
2-Hydroxyisovaleric Acid 117.0 / 71.0 Amino Acid C5H10O3 CHEBI:60645
3-Methyl-2-Oxovaleric Acid 129.0 / 101.0 Amino Acid C6H10O3 CHEBI:35932
Aminoisobutyrate 104.0 / 86.0 Amino acids

metabolism/Val, Leu,
iso-Leu

C4H8NO2 CHEBI:49096

Betaine 118.0 / 58.0 Amino acids
metabolism/Gly,Ser, Thr
metabolism

C5H11NO2 CHEBI:17750

Homoserine 120.0 / 74.0 Amino acids
metabolism/Thr, Met,
Asp

C4H9NO3 CHEBI:30653

Creatine 132.0 / 90.0 Amino acids
metabolism/Arg, Gly

C4H9N3O2 CHEBI:16919

Aspartic Acid 134.0 / 74.0 Amino Acid C4H7NO4 CHEBI:22660
Carnitine 162.0 / 85.0 Amino acids

metabolism/Lys
C7H15NO3 CHEBI:17126

Quinolinic Acid 168.0 / 150.0 Amino Acid/ Tryptophan,
bela alanine metabolism

C7H5NO4 CHEBI:16675

Glycerate 105.0 / 75.0 Amino Acid
metabolism/Gly, Ser

C3H5O4 CHEBI:33871

N-Acetylglycine 116.0 / 74.0 Amino Acid metabolism C4H7NO3 CHEBI:40410
Citraconic Acid 129.0 / 85.0 Amino Acid

metabolism/Val, Leu,
IL

C5H6O4 CHEBI:17626

D-Leucic Acid 131.0 / 85.0 Amino Acid
metabolism/Leu

C6H12O3 CHEBI:55534

Glutaric Acid 131.0 / 87.0 Amino Acids/lys, trp, fatty
acids

C5H8O4 CHEBI:17859

2-Hydroxyglutarate 147.0 / 129.0 Amino-acid metabolism and
Glycine/Serine/Threonine
metabolism

C5H7O5 CHEBI:132941

2-Aminoadipate 160.0 / 116.0 Amino acids
metabolism/Lys

C6H9NO4 CHEBI:84981

PPA 163.0 / 91.0 Amino acids
metabolism/Phe

C9H13NO CHEBI:8104

Pentothenate 218.1 / 88.0 Amino acids
metabolism/alanine, CoA

C9H16NO5 CHEBI:16454

Cystathionine 221.1 / 134.0 Amino acids
metabolism/cys

C7H14N2O4S CHEBI:17755

Tryptophan 205.1 / 146.0 Tryptophan Cycle C11H12N2O2 CHEBI:27897
L-Kynurenine 209.1 / 94.0 Tryptophan Cycle C10H12N2O3 CHEBI:16946
Kynurenic Acid 188.0 / 144.0 Tryptophan Cycle/Amino

Acid metabolism
C10H7NO3 CHEBI:18344
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Continuation of Table A.1
Name Mass / RT Pathway Formula ChEBI ID
Xanthurenic Acid 204.1 / 160.0 Tryptophan Cycle/Amino

Acid metabolism
C10H7NO4 CHEBI:10072

Cytidine 244.2 / 112.1 Nucleotide/Pyrimidine
metabolism

C9H13N3O5 CHEBI:17562

Uridine 245.2 / 113.1 Nucleotide/Pyrimidine
metabolism

C9H12N2O6 CHEBI:16704

Adenosine 268.2 / 136.1 Nucleotide/Purine
metabolism

C10H13N5O4 CHEBI:16335

Inosine 269.2 / 137.1 Nucleotide/Purine
metabolism

C10H12N4O5 CHEBI:17596

1-Methyladenosine 282.2 / 150.1 Nucleotide/Purine
metabolism

C11H15N5O4 CHEBI:16020

Guanosine 284.2 / 152.1 Nucleotide/Purine
metabolism

C10H13N5O5 CHEBI:16750

8-Oxo-2’-deoxyguanosine 284.2 / 168.1 Nucleotide/Purine
metabolism

C10H13N5O5 CHEBI:40304

1-Methylguanosine 298.2 / 166.1 Nucleotide/Purine
metabolism

C11H15N5O5 CHEBI:19062

GMP 364.1 / 152.0 Nucleotide/Purine
metabolism

C10H14N5O8P CHEBI:17345

Uracil 111.0 / 42.0 Nucleotide/Pyrimidine
metabolism

C4H4N2O2 CHEBI:17568

Adenine 134.0 / 107.0 Nucleotide/Purine
metabolism

C5H5N5 CHEBI:16708

Hypoxanthine 135.0 / 92.0 Nucleotide C5H4N4O CHEBI:17368
Xanthine 151.0 / 108.0 Nucleotide C5H4N4O2 CHEBI:15318
Allantoin 157.0 / 114.0 Nucleotide Degradation C4H6N4O3 CHEBI:15676
Urate 167.0 / 124.0 Nucleotide/Purine

metabolism
C5H3N4O3 CHEBI:46818

Xanthosine 283.1 / 151.0 Nucleotide/Purine
metabolism

C10H12N4O6 CHEBI:18107

DTMP 321.1 / 79.0 Nucleotide/pyrimidine C10H15N2O8P CHEBI:17013
CMP 322.0 / 97.0 Nucleotide/Pyrimidine

metabolism
C9H14N3O8P CHEBI:17361

cGMP 344.0 / 150.0 Nucleotide/Purine
metabolism

C10H12N5O7P CHEBI:16356

AMP 346.1 / 79.0 Nucleotide C10H14N5O7P CHEBI:16027
IMP 347.1 / 79.0 Nucleotide/Purine

metabolism
C10H13N4O8P CHEBI:17202

DCDP 386.0 / 159.0 Nucleotide/Pyrimidine
metabolism

C9H15N3O10P2 CHEBI:28846

PRPP 389.0 / 79.0 Nucleotide/Purine
metabolism

C5H13O14P3 CHEBI:17111

ADP 426.0 / 134.0 Nucleotide/Purine
metabolism

C10H15N5O10P2 CHEBI:16761

Choline 104.0 / 60.0 Vitamins C5H14NO CHEBI:15354
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Continuation of Table A.1
Name Mass / RT Pathway Formula ChEBI ID
4-Pyridoxic Acid 182.1 / 138.0 Vitamins/B6 C8H9NO4 CHEBI:17405
4-Hydroxybutyrate 105.0 / 77.0 Lipids/phospholipids, lig-

and
C4H7O3 CHEBI:16724

Deoxycarnitine 147.0 / 87.0 Lipids/phospholipids, lig-
and

C7H15NO2 CHEBI:16244

Glycerol-3-P 171.0 / 79.0 Lipids/Glycerollipid C3H9O6P CHEBI:15978
13-HODE 295.1 / 195.0 Lipids/phospholipids, lig-

and
C18H32O3 CHEBI:72639

Arachidonate 303.3 / 59.0 Lipids/phospholipids, lig-
and

C20H31O2 CHEBI:32395

12-HETE 319.2 / 179.0 Lipids/phospholipids, lig-
and

C20H32O3 CHEBI:19138

Acetylcarnitine 204.1 / 85.0 Fatty acid metabolism C9H17NO4 CHEBI:73024
Azelaic Acid 187.0 / 125.0 Fatty acid metabolism C9H16O4 CHEBI:48131
Margaric Acid 269.1 / 251.3 Fatty acid metabolism C17H34O2 CHEBI:32365
Linolenic Acid 277.1 / 259.0 Fatty acid metabolism C18H30O2 CHEBI:25048
Linoleic Acid 279.1 / 261.0 Fatty acid metabolism C18H32O2 CHEBI:17351
Glyceraldehyde 89.0 / 59.0 Sugar C3H6O3 CHEBI:5445
Inositol 179.0 / 87.0 Glucose/inositol metabolism C6H12O6 CHEBI:24848
Sorbitol 181.0 / 89.0 Sugar C6H14O6 CHEBI:30911
Glucoronate 193.0 / 73.0 Amino sugar and nucleotide

sugar metabolism
C6H9O7 CHEBI:24297

Lactose 341.0 / 59.0 Sugar/Galactose C12H22O11 CHEBI:17716
Sucrose 341.0 / 59.0 (2) Sugar C12H22O11 CHEBI:17992
UDP-GlcNAc 606.0 / 385.0 Amino sugar and nucleotide

sugar metabolism
C17H27N3O17P2 CHEBI:16264

Ornithine 133.0 / 70.0 Urea cycle C5H12N2O2 CHEBI:18257
Citrulline 174.0 / 131.0 Urea Cycle C6H13N3O3 CHEBI:18211
Benzoic Acid 121.0 / 77.0 Nicotinate and nicotinamide

metabolism
C7H6O2 CHEBI:30746

Reduced Glutathione 306.3 / 143.1 Oxidative Damage C10H17N3O6S CHEBI:16856
Oxidized Glutathione 611.2 / 306.0 Oxidative Damage C10H17N3O6S CHEBI:16856
Oxalic Acid 89.0 / 61.0 Glyoxylate and dicarboxy-

late metabolism
C2H2O4 CHEBI:16995

Acetoacetate 101.0 / 57.0 Ketone C4H5O3 CHEBI:13705
Putrescine 89.0 / 72.0 Polyamine Metabolism C4H12N2 CHEBI:17148
Agmatine 131.0 / 72.0 Polyamine Metabolism C5H14N4 CHEBI:17431
N-Acetylputrescine 131.0 / 114.0 Polyamine Metabolism C6H14N2O CHEBI:17768
Spermidine 146.0 / 72.0 Polyamine Metabolism C7H19N3 CHEBI:16610
Ribose-5-P 229.0 / 79.0 Pentose phosphate pathway C5H11O8P CHEBI:52742
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Table A.2 Significantly age-associated metabolites relationship to known metabolic changes in
the literature . ↑–metabolite level increases with advanced age. ↓–metabolite level decreases
with advanced age.

Metabolite ↑ / ↓ Literature
Oxaloacetate ↓ Increased with age in (Wan et al., 2017), in glp-1, although notably

much less so (only barely significant) in N2 and in the double
mutant daf-16;glp-1.

Glutamine ↓ Decreased with age in (Wan et al., 2017) in N2, glp-1 and the
double mutant daf-16;glp-1. Decreased with age in (Davies et al.,
2015) in N2 but not in daf-2. Increased with age in N2 and slcf-1
strains in (Pontoizeau et al., 2014), but not eat-2. Decreased with
age in (Gao et al., 2017).

2-Aminoadipate ↓ Not previously reported.
Guanosine ↓ Reported as differing between strains in (Wan et al., 2017), but

not as varying significantly with age.
Cystathionine ↓ Decreased with age in (Wan et al., 2017) in N2, glp-1 and the

double mutant daf-16;glp-1. Decreased with age in daf-2, but not
N2, in (Davies et al., 2015). Also decreased with age in all strains
in (Pontoizeau et al., 2014).

Cytidine ↓ Decreased with age in (Copes et al., 2015).
Asparagine ↓ Decreased with age in (Gao et al., 2017). Increased in glp-1, but

no significant increase in N2 and slightly decreased in double
mutant daf-16;glp-1 reported in (Wan et al., 2017).

Uridine ↓ Not previously reported.
GMP ↓ Not previously reported.
Methionine ↓ Decreased with age in (Copes et al., 2015) in glp-4. Not changing

with age in (Davies et al., 2015). Decreased with age in (Gao et al.,
2017).

Aconitate ↓ Not previously reported.
Xanthurenic Acid ↓ Decreased with age in (Wan et al., 2017).
Phenylalanine ↓ Decreased with age in (Copes et al., 2015) in glp-4, and in (Wan

et al., 2017) in glp-1 (not significant in N2 or the double mutant
daf-16;glp-1). Decreased with age in daf-2 but not in N2 in (Davies
et al., 2015). Decreased with age in N2 and slcf-1 but not eat-2 in
(Pontoizeau et al., 2014). Decreased with age in (Gao et al., 2017).

iso-Leucine ↓ Decreased with age in daf-2 but not N2 in (Davies et al., 2015).
Decreased with age in WT and slcf-1 in (Pontoizeau et al., 2014).
Decreased with age in (Gao et al., 2017).

Lysine ↓ Decreased with age in (Gao et al., 2017). Decreased with age in
glp-1 and in the double mutant glp-1;daf-16, but interestingly, not
in N2, in (Wan et al., 2017). Decreased with age in daf-2 but not in
N2 in (Davies et al., 2015). Decreased with age in all three strains
in (Pontoizeau et al., 2014).

Tryptophan ↓ Decreased with age in (Gao et al., 2017). Increased with age in
(Wan et al., 2017) in N2.
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Continuation of Table A.2 (Age-associated metabolites)
Metabolite ↑ / ↓ Literature
Leucine ↓ Decreased with age in (Wan et al., 2017) in N2, glp-1 and the

double mutant daf-16;glp-1. Decreased with age in (Gao et al.,
2017).

Homoserine ↓ Increased with age in (Wan et al., 2017).
Linolenic Acid (C18:3) ↓ Decreasing with age in (Gao et al., 2017).
Threonine ↓ Increased in N2 and glp-1, but decreased in the double mutant

daf-16;glp-1 in (Wan et al., 2017). Increased in daf-2, no change in
N2 in (Davies et al., 2015).

Arginine ↓ Decreased with age in (Gao et al., 2017). Increased with age in
(Wan et al., 2017) in N2, less so in glp-1 and not at all in the
double mutant glp-1;daf-16. Decreased in daf-2, no change in N2
in (Davies et al., 2015). Decreased in N2 and slcf-1 but not eat-2
in (Pontoizeau et al., 2014).

Agmatine ↓ Not previously reported.
Serine ↓ Decreased with age in (Wan et al., 2017) in N2, glp-1 and the

double mutant daf-16;glp-1. Increased with age in N2, and only
very slightly in daf-2, in (Davies et al., 2015). Decreased with age
in (Gao et al., 2017).

Linoleic Acid (C18:2) ↓ Appears to initially increase with age, but then decrease again at
D10 in (Gao et al., 2017).

Hypoxanthine ↑ Decreased with age in (Copes et al., 2015) in glp-4 and N2 (with
FuDR).

Uracil ↑ Not previously reported.
D-Leucic Acid ↑ Not previously reported.
Putrescine ↑ Increasing with age in wild type, but not daf-2, in (Davies et al.,

2015).
2-Hydroxyisovaleric Acid ↑ Not previously reported.
Lactate ↑ No change with age in (Davies et al., 2015). Decreased with age in

N2, but not other strains in (Pontoizeau et al., 2014).
Betaine ↑ No change with age in (Davies et al., 2015) or (Pontoizeau et al.,

2014).
Choline ↑ No change with age in (Davies et al., 2015). Increased with age

in eat-2 but not other strains in (Pontoizeau et al., 2014).
Kynurenic Acid ↑ Not previously reported.
Acetylcarnitine ↑ Not previously reported.
Carnitine ↑ Not previously reported.
Succinate ↑ Decreased with age in (Wan et al., 2017) in N2, glp-1 and the double

mutant daf-16;glp-1. Also decreased with age in daf-2 and N2 in
(Davies et al., 2015). Not significantly changed in (Pontoizeau
et al., 2014).

Pentothenate ↑ Not previously reported.
1/3-Methylhistidine ↑ Not previously reported.
Xanthosine ↑ Not previously reported.
3-Hydroxybutyric Acid ↑ Not previously reported.
Allantoin ↑ Decreased with age in (Wan et al., 2017) in N2 and double mutant

daf-16;glp-1, only barely significant in glp-1.
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Continuation of Table A.2 (Age-associated metabolites)
Metabolite ↑ / ↓ Literature
N-Acetylputrescine ↑ Not previously reported.
Cadaverine ↑ Not previously reported.

Table A.3 Longevity modulating metabolites in the literature and DrugAge database.

Metabolite DrugAge Other literature
Pyruvate No Extends lifespan when supplemented, reported in (Mishur et al.,

2016).
Lactate Yes
Oxaloacetate Yes
PEP Yes
DHAP No
D-GA3P No
Glucose No
G1P/G6P/F6P/F1P No
3HBA Yes
Maleic Acid No
Succinate Yes
Malate Yes
Aconitate No
Glycine Yes
Alanine Yes
Cadaverine No
Serine Yes
Proline Yes
Valine Yes
Threonine Yes
Leucine Yes
iso-Leucine Yes
Asparagine Yes
Tyramine No
Glutamine Yes
Lysine Yes
Glutamic Acid Yes
Methionine Yes
Histidine Yes
Phenylalanine No
1/3-Methylhistidine No
Arginine Yes
Tyrosine Yes
Cystine No
2-Hydroxyisovaleric Acid No
3-Methyl-2-Oxovaleric Acid No Extends lifespan when supplemented, reported in (Mishur et al.,

2016).
Aminoisobutyrate No
Betaine Yes
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Continuation of Table A.3 (Longevity-modulating metabolites)
Metabolite DrugAge Other literature
Homoserine No
Creatine No
Aspartic Acid Yes
Carnitine Yes
Quinolinic Acid No
Glycerate No
N-Acetylglycine No
Citraconic Acid No
D-Leucic Acid No
Glutaric Acid No
2-Hydroxyglutarate Yes
2-Aminoadipate No
Pentothenate No
Cystathionine No
Tryptophan Yes
L-Kynurenine No
Kynurenic Acid No
Xanthurenic Acid No
Cytidine No Increased lifespan ‘slightly’ when supplemented in (Copes et al.,

2015).
Uridine No
Adenosine No
Inosine No
1-Methyladenosine No
Guanosine No
8-Oxo-2’-deoxyguanosine No
1-Methylguanosine No
GMP No
Uracil No
Adenine No
Hypoxanthine No Increased lifespan ‘slightly’ when supplemented in (Copes et al.,

2015).
Xanthine No
Allantoin Yes
Urate No
Xanthosine No
CMP No
cGMP No
AMP No
IMP No
PRPP No
Choline No
4-Pyridoxic Acid No
4-Hydroxybutyrate No
Glycerol-3-P No
13-HODE No
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Continuation of Table A.3 (Longevity-modulating metabolites)
Metabolite DrugAge Other literature
Arachidonate No Extends lifespan when supplemented, reported in (O’Rourke

et al., 2013).
12-HETE No
Acetylcarnitine No
Azelaic Acid No
Margaric Acid No
Linolenic Acid No Extends lifespan when supplemented, reported in (Qi et al., 2017).
Linoleic Acid No
Glyceraldehyde No
Inositol Yes
Sorbitol No
Glucoronate No
Lactose No
UDP-GlcNAc No
Ornithine Yes
Citrulline No
Benzoic Acid No
Reduced Glutathione Yes
Oxidized Glutathione No
Acetoacetate No
Putrescine Yes
Agmatine Yes
N-Acetylputrescine Yes
Spermidine Yes
Ribose-5-P No

Table A.4 Pathway metrics

Pathway No. reactions No. blocked % blocked
Acetyl-CoA conversions 23 5 22%
Alanine, aspartate and glutamate metabolism 49 7 14%
Amino sugar and nucleotide sugar metabolism 32 9 28%
Amino sugar metabolism 10 6 60%
Aminoacyl-tRNA biosynthesis 40 0 0%
Arachidonic acid metabolism 18 1 6%
Arginine and proline metabolism 46 4 9%
Ascaroside biosynthesis 379 0 0%
Ascorbate and aldarate metabolism 9 0 0%
Bacterial digestion 31 0 0%
Beta-alanine metabolism 17 9 53%
Biomass assembly 23 0 0%
Biosynthesis of unsaturated fatty acids 15 0 0%
Branched-chain fatty acid synthesis 21 18 86%
Butanoate metabolism 4 0 0%
Carnitine shuttle 60 60 100%
Chitin degradation 6 5 83%
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Continuation of Table A.4, pathway metrics
Pathway No. reactions No. blocked % blocked
Chondroitin and dermatan biosynthesis 5 5 100%
Chondroitin sulfate degradation 3 3 100%
Collagen biosynthesis 9 0 0%
Core modifications of n-glycans 26 26 100%
Cyanoamino acid metabolism 7 0 0%
Cysteine and methionine metabolism 41 6 15%
Ether lipid metabolism 21 0 0%
Exchange reactions 284 74 26%
Extracellular transport 115 26 23%
Fatty acid biosynthesis 128 9 7%
Fatty acid metabolism 25 0 0%
Fatty acid oxidation 185 56 30%
Folate biosynthesis 40 11 28%
Fructose and mannose metabolism 26 11 42%
Galactose metabolism 16 4 25%
Gamma-glutamyl cycle 7 0 0%
Genetic information processing 4 0 0%
Glutathione metabolism 29 4 14%
Glycerolipid metabolism 37 3 8%
Glycerophospholipid metabolism 80 19 24%
Glycine, serine and threonine metabolism 54 6 11%
Glycoaminoglycan-protein linkage region biosynthesis 6 6 100%
Glycogen metabolism 8 0 0%
Glycolysis and gluconeogenesis 41 7 17%
Glyoxylate and dicarboxylate metabolism 31 8 26%
Heparan sulfate degradation 1 1 100%
Histidine metabolism 13 4 31%
Histone modification 14 13 93%
Inositol phosphate metabolism 91 29 32%
Iron-sulfur cluster biosynthesis 2 0 0%
Keratan sulfate degradation 1 0 0%
Lipoic acid metabolism 4 4 100%
Lysine degradation 20 5 25%
Lysine metabolism 15 0 0%
Methane metabolism 3 1 33%
Methylglyoxal degradation 5 1 20%
Miscellaneous 41 22 54%
Mitochondrial fatty acid beta oxidation 18 17 94%
Mitochondrial transport 114 15 13%
Molybdenum cofactor biosynthesis 14 5 36%
N-acetylglucosamine degradation 4 1 25%
N-glycan biosynthesis 82 44 54%
N-glycan degradation 6 6 100%
Needed glycerolipid metabolism 3 0 0%
Nicotinamide adenine dinucleotide metabolism 23 10 43%
Nicotinate and nicotinamide metabolism 11 1 9%
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Continuation of Table A.4, pathway metrics
Pathway No. reactions No. blocked % blocked
Nuclear transport 46 13 28%
Nucleotide interconversion 16 11 69%
O-glycan synthesis 5 4 80%
One carbon pool by folate 9 0 0%
Oxidative phosphorylation 18 1 6%
Pantothenate and coenzyme A biosynthesis 11 0 0%
Pentose and glucuronate interconversions 10 1 10%
Pentose phosphate pathway 32 14 44%
Peroxisomal fatty acid beta oxidation 25 5 20%
Phenylalanine degradation 10 2 20%
Phenylalanine metabolism 6 0 0%
Phosphatidylinositol phosphate metabolism 19 19 100%
Porphyrin and chlorophyll metabolism 9 2 22%
Primary bile acid biosynthesis 28 28 100%
Propanoate metabolism 14 2 14%
Protein hydroxylation 10 0 0%
Protein methylation 3 3 100%
Protein modification 9 5 56%
Purine metabolism 152 16 11%
Pyrimidine metabolism 120 11 9%
Pyruvate metabolism 13 0 0%
Retinol metabolism 19 17 89%
Riboflavin metabolism 11 0 0%
Selenocompound metabolism 27 12 44%
Sphingolipid metabolism 35 5 14%
Starch and sucrose metabolism 17 1 6%
Steroid biosynthesis 13 13 100%
Steroid degradation 1 1 100%
Steroid hormone biosynthesis 11 11 100%
Straight-chain fatty acid synthesis 26 26 100%
Sucrose degradation 8 3 38%
Sulfur metabolism 15 1 7%
Taurine and hypotaurine metabolism 7 0 0%
TCA cycle 31 6 19%
Terpenoid backbone biosynthesis 37 4 11%
Thiamine metabolism 3 0 0%
Thioredoxin pathway 3 0 0%
Transport 293 81 28%
Trehalose degradation 3 1 33%
Triterpenoid biosynthesis 3 3 100%
Tryptophan metabolism 42 1 2%
Tyrosine biosynthesis 2 1 50%
Tyrosine metabolism 32 9 28%
Ubiquinol-9 biosynthesis 18 2 11%
Ubiquinone and other terpenoid-quinone biosynthesis 11 0 0%
Valine, leucine and isoleucine degradation 68 18 26%
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Continuation of Table A.4, pathway metrics
Pathway No. reactions No. blocked % blocked
Vitamin B12 metabolism 8 0 0%
Vitamin B6 metabolism 13 4 31%

Table A.5 Essential genes in WormJam model

Gene ID (WormBase) Gene name Description
WBGene00000197 aars-2 ortholog of human alanyl-tRNA synthetase
WBGene00004679 rars-1 ortholog of human arginyl-tRNA synthetase
WBGene00003815 nars-1 ortholog of human asparaginyl-tRNA synthetase
WBGene00000800 cars-1 predicted cysteine-tRNA ligase activity
WBGene00001744 gars-1 ortholog of human glycyl-tRNA synthetase
WBGene00002152 iars-1 ortholog of human isoleucyl-tRNA synthetase
WBGene00013678 Y105E8A.20 ortholog of human methionyl-tRNA synthetase, mitochondrial
WBGene00001497 fars-1 ortholog of human phenylalanyl-tRNA synthetase, alpha subunit
WBGene00005663 sars-1 ortholog of human seryl-tRNA synthetase
WBGene00006617 tars-1 ortholog of human threonyl-tRNA synthetase
WBGene00006945 wars-1 ortholog of human tryptophanyl-tRNA synthetase
WBGene00001094 dars-1 ortholog of human aspartyl-tRNA synthetase
WBGene00005662 sars-2 ortholog of human seryl-tRNA synthetase 2, mitochondrial
WBGene00000196 aars-1 ortholog of human alanyl-tRNA synthetase
WBGene00004680 rars-2 ortholog of human arginyl-tRNA synthetase 2, mitochondrial
WBGene00013447 nars-2 ortholog of human asparaginyl-tRNA synthetase 2, mitochondrial
WBGene00002153 iars-2 ortholog of human isoleucyl-tRNA synthetase 2, mitochondrial
WBGene00003074 lars-2 ortholog of human leucyl-tRNA synthetase 2, mitochondrial
WBGene00013361 fars-2 ortholog of human phenylalanyl-tRNA synthetase 2, mitochon-

drial
WBGene00004190 pars-2 ortholog of human prolyl-tRNA synthetase 2, mitochondrial
WBGene00006946 prx-10 ortholog of human tryptophanyl-tRNA synthetase 2, mitochon-

drial
WBGene00006935 vars-1 predicted to have aminoacyl-tRNA editing activity
WBGene00016524 C39B5.6 ortholog of human glutamyl-tRNA amidotransferase subunit B
WBGene00013433 Y66D12A.7 ortholog of human glutamyl-tRNA amidotransferase subunit C
WBGene00021508 Y41D4A.6 ortholog of human glutaminyl-tRNA amidotransferase subunit

A
WBGene00001095 dars-2 ortholog of human aspartyl-tRNA synthetase 2, mitochondrial
WBGene00020696 T22F3.3 ortholog of human glycogen phosphorylase
WBGene00002891 let-767 ortholog of human hydroxysteroid 17-beta dehydrogenase 12
WBGene00020517 hpo-8 ortholog of human HACD1 and HACD2 (3-hydroxyacyl-CoA

dehydratases)
WBGene00000198 art-1 ortholog of human TECR and TECRL (enoyl-CoA reductases)
WBGene00001243 elo-5 predicted acyltransferase
WBGene00009342 fasn-1 ortholog of human FASN (fatty acid synthase)
WBGene00000254 bli-4 ortholog of human PCSK5 (proprotein convertase)
WBGene00000253 bli-3 ortholog of human DUOX1 and DUOX2 (dual oxidases)
WBGene00001508 fut-8 ortholog of human FUT8 (fucosyltransferase)
WBGene00019322 ahcy-1 ortholog of human ACHY (adenosylhomocysteinase)
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Continuation of Table A.5, essential genes
Gene ID (WormBase) Gene name Description
WBGene00013024 cept-2 ortholog of human CEPT1 and CHPT1 (phosphotransferases)
WBGene00009057 cept-1 ortholog of human CEPT1 and CHPT1 (phosphotransferases)
WBGene00012936 pola-1 ortholog of human POLA1 (DNA polymerase alpha 1 catalytic

subunit)
WBGene00009368 pole-1 ortholog of human POLE (DNA polymerase epsilon catalytic

subunit)
WBGene00017237 pole-2 ortholog of human POLE2 (DNA polymerase epsilon 2, accessory

subunit)
WBGene00008645 F10C2.4 ortholog of human POLD1 (DNA polymerase delta 1, catalytic

subunit)
WBGene00019380 K04C2.2 predicted to have DNA binding and polymerase activity
WBGene00013258 polg-1 ortholog of human POLG (DNA polymerase gamma, catalytic

subunit)
WBGene00013150 Y53F4B.3 ortholog of human POLE4 (DNA polymerase epsilon 4, accessory

subunit)
WBGene00017696 polk-1 ortholog of human POLK (DNA polymerase kappa)
WBGene00020823 T26A5.8 predicted to have protein heterodimerization activity
WBGene00008722 F12F6.7 ortholog of human POLD2 (DNA polymerase delta 2, accessory

subunit)
WBGene00004181 pri-2 ortholog of human PRIM2 (DNA primase)
WBGene00014115 gld-4 ortholog of human TENT4A and TENT4B (terminal nucleotidyl-

transferases 4A and 4B)
WBGene00008781 rpoa-2 ortholog of human POLR1B (RNA polymerase I subunit B)
WBGene00004411 rpc-1 ortholog of human POLR3A (RNA polymerase III subunit A)
WBGene00017300 rpc-2 ortholog of human POLR3B (RNA polymerase III subunit B)
WBGene00010408 mboa-2 ortholog of human DGAT1 (diacylglycerol O-acyltransferase)
WBGene00012911 acl-7 ortholog of human GNPAT (O-acyltransferase)
WBGene00016384 cdgs-1 ortholog of human CDS2 (phosphatidate cytidylyltransferase)
WBGene00021677 pgs-1 ortholog of human PGS1 (CDP-diacylglycerol-glycerol-3-

phosphate 3-phosphatidyltransferase)
WBGene00017763 crls-1 ortholog of human CRLS1 (cardiolipin synthase)
WBGene00022781 pmt-1 exhibits phosphoethanolamine N-methyltransferase activity
WBGene00018811 pmt-2 exhibits phosphatidyl-N-dimethylethanolamine N-

methyltransferase activity and phosphatidyl-N-
methylethanolamine N-methyltransferase activity

WBGene00013920 pssy-1 ortholog of human PTDSS1 (phosphatidylserine synthase 1)
WBGene00012897 pisy-1 ortholog of human CDIPT (CDP-diacylglycerol-inositol 3-

phosphatidyltransferase)
WBGene00012148 inos-1 ortholog of human ISYNA1 (inositol-3-phosphate synthase)
WBGene00015021 B0205.6 ortholog of human NFS1 (cysteine desulfurase)
WBGene00012885 Y45F10D.4 an ortholog of human ISCU (iron ion binding and iron-sulfur

cluster binding)
WBGene00002010 hsp-6 ortholog of human HSPA9 (heat shock protein family A (Hsp70)

member 9)
WBGene00020437 stt-3 ortholog of human STT3B (catalytic subunit of the oligosaccha-

ryltransferase complex)
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Continuation of Table A.5, essential genes
Gene ID (WormBase) Gene name Description
WBGene00015162 algn-11 ortholog of human ALG11 (alpha-1,2-mannosyltransferase)
WBGene00020820 algn-1 ortholog of human ALG1 (chitobiosyldiphosphodolichol beta-

mannosyltransferase)
WBGene00008775 mogs-1 ortholog of human MOGS (mannosyl-oligosaccharide glucosi-

dase)
WBGene00019276 H43I07.3 ortholog of human ALG5 (dolichyl-phosphate beta-

glucosyltransferase)
WBGene00001645 gly-20 ortholog of human MGAT2 (mannosyl (alpha-1,6-)-glycoprotein

beta-1,2-N-acetylglucosaminyltransferase)
WBGene00010720 K09E4.2 ortholog of human ALG3 (alpha-1,3- mannosyltransferase)
WBGene00022629 ZC513.5 ortholog of human ALG12 (alpha-1,6-mannosyltransferase)
WBGene00007043 tag-179 ortholog of human ALG10 (alpha-1,2-glucosyltransferase)
WBGene00001338 ears-2 ortholog of human EARS2 (glutamyl-tRNA synthetase 2, mito-

chondrial)
WBGene00014054 dbt-1 ortholog of human DBT (dihydrolipoyllysine-residue (2-

methylpropanoyl)transferase)
WBGene00002497 let-268 ortholog of human PLOD1, PLOD2, and PLOD3 (procollagen-

lysines, UDP-glucose:glycoprotein glucosyltransferases)
WBGene00011409 T04A8.7 ortholog of human GBE1 (1,4-alpha-glucan branching enzyme 1)
WBGene00001793 gsy-1 ortholog of human GYS1 and GYS2 (glycogen synthases 1 and 2)
WBGene00011050 agl-1 ortholog of human AGL (amylo-alpha-1, 6-glucosidase, 4-alpha-

glucanotransferase)
WBGene00011058 fdps-1 ortholog of human FDPS (farnesyl pyrophosphate synthase)
WBGene00019460 idi-1 ortholog of human IDI1 and IDI2 (isopentenyl-diphosphate delta-

isomerases)
WBGene00021534 mvk-1 ortholog of human MVK (mevalonate kinase)
WBGene00009335 F32D8.13 ortholog of human PMVK (phosphomevalonate kinase)
WBGene00006465 fntb-1 ortholog of human FNTB (farnesyltransferase, beta subunit)
WBGene00019823 fnta-1 ortholog of human FNTA (farnesyltransferase, CAAX box, alpha

subunit)
WBGene00001149 bcat-1 ortholog of human BCAT1 and BCAT2 (branched chain amino-

transferases)
WBGene00016020 sptl-1 ortholog of human SPTLC1 (serine C-palmitoyltransferase)

Table A.6 Mapping of metabolomics measured metabolites to WormJam model metabolites

Metabolomics measured metabolite Model metabolite
Pyruvate (87.0 / 43.0) pyr_m
Lactate (89.0 / 43.0) lac_L_c
Oxaloacetate (131.0 / 113.0) oaa_m
PEP (167.0 / 79.0) pep_c
DHAP (167.0 / 79.0 (2)) dhap_c
D-GA3P (167.0 / 97.0)
Glucose (179.0 / 89.0) glc_aD_c
G1P/G6P/F6P/F1P (259.0 / 97.0) g6p_A_c
3HBA (103.0 / 59.0)
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Continuation of Table A.6, model metabolite mapping
Metabolomics measured metabolite Model metabolite
Maleic Acid (115.0 / 71.0 (2))
Succinate (117.0 / 73.0) succ_m
Malate (133.0 / 115.0) mal_L_m
Aconitate (173.0 / 85.0) acon_C_m
Glycine (76.0 / 30.1) gly_c
Alanine (90.0 / 44.0 (2)) ala_L_c
Cadaverine (103.0 / 86.0)
Serine (106.0 / 60.0 (2)) ser_L_c
Proline (116.0 / 70.0) pro_L_c
Valine (118.0 / 72.0) val_L_c
Threonine (120.0 / 74.0 (2)) thr_L_c
Leucine (132.0 / 86.0) leu_L_c
iso-Leucine (132.0 / 86.0 (2)) ile_L_c
Asparagine (133.0 / 74.0) asn_L_c
Tyramine (138.0 / 121.0) tym_c
Glutamine (147.0 / 84.0) gln_L_c
Lysine (147.0 / 84.0 (2)) lys_L_c
Glutamic Acid (148.0 / 84.0) glu_L_c
Methionine (150.0 / 61.0) met_L_c
Histidine (156.0 / 110.0) his_L_c
Phenylalanine (166.0 / 120.0) phe_L_c
1/3-Methylhistidine (170.0 / 96.0)
Arginine (175.0 / 70.0) arg_L_c
Tyrosine (182.1 / 136.0) tyr_L_c
Cystine (241.1 / 120.0)
2-Hydroxyisovaleric Acid (117.0 / 71.0)
3-Methyl-2-Oxovaleric Acid (129.0 / 101.0)
Aminoisobutyrate (104.0 / 86.0)
Betaine (118.0 / 58.0) glyb_c
Homoserine (120.0 / 74.0)
Creatine (132.0 / 90.0)
Aspartic Acid (134.0 / 74.0) asp_L_c
Carnitine (162.0 / 85.0) crn_c
Quinolinic Acid (168.0 / 150.0) quln_c
Glycerate (105.0 / 75.0) glyc_R_c
N-Acetylglycine (116.0 / 74.0)
Citraconic Acid (129.0 / 85.0)
D-Leucic Acid (131.0 / 85.0)
Glutaric Acid (131.0 / 87.0)
2-Hydroxyglutarate (147.0 / 129.0) 2hglut_c
2-Aminoadipate (160.0 / 116.0) L2aadp_c
Pentothenate (218.1 / 88.0) pnto_R_c
Cystathionine (221.1 / 134.0) cyst_L_c
Tryptophan (205.1 / 146.0) trp_L_c
L-Kynurenine (209.1 / 94.0) Lkynr_c
Kynurenic Acid (188.0 / 144.0) kynate_c
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Continuation of Table A.6, model metabolite mapping
Metabolomics measured metabolite Model metabolite
Xanthurenic Acid (204.1 / 160.0) xanate_c
Cytidine (244.2 / 112.1) cytd_c
Uridine (245.2 / 113.1) uri_c
Adenosine (268.2 / 136.1) adn_c
Inosine (269.2 / 137.1) ins_c
1-Methyladenosine (282.2 / 150.1)
Guanosine (284.2 / 152.1) gsn_c
8-Oxo-2’-deoxyguanosine (284.2 / 168.1)
GMP (364.1 / 152.0) gmp_c
Uracil (111.0 / 42.0) ura_c
Adenine (134.0 / 107.0) ade_c
Hypoxanthine (135.0 / 92.0) hxan_c
Xanthine (151.0 / 108.0) xan_c
Allantoin (157.0 / 114.0)
Urate (167.0 / 124.0) urate_c
Xanthosine (283.1 / 151.0) xtsn_c
CMP (322.0 / 97.0) cmp_c
cGMP (344.0 / 150.0) 35cgmp_c
AMP (346.1 / 79.0) amp_c
IMP (347.1 / 79.0) imp_c
PRPP (389.0 / 79.0) prpp_c
Choline (104.0 / 60.0) chol_c
4-Pyridoxic Acid (182.1 / 138.0)
4-Hydroxybutyrate (105.0 / 77.0)
Glycerol-3-P (171.0 / 79.0) glyc3p_c
13-HODE (295.1 / 195.0)
Arachidonate (303.3 / 59.0) arachd_c
12-HETE (319.2 / 179.0)
Acetylcarnitine (204.1 / 85.0) acrn_c
Azelaic Acid (187.0 / 125.0)
Margaric Acid (269.1 / 251.3)
Linolenic Acid (277.1 / 259.0)
Linoleic Acid (279.1 / 261.0) lnlc_c
Glyceraldehyde (89.0 / 59.0) glyald_c
Inositol (179.0 / 87.0) inost_c
Sorbitol (181.0 / 89.0) sorbitol_c
Glucoronate (193.0 / 73.0) glcur_c
Lactose (341.0 / 59.0) lcts_c
UDP-GlcNAc (606.0 / 385.0) uacgam_c
Ornithine (133.0 / 70.0) orn_c
Citrulline (174.0 / 131.0) citr_L_c
Benzoic acid (121.0 / 77.0)
Reduced Glutathione (306.3 / 143.1) gthrd_c
Oxidized Glutathione (611.2 / 306.0) gthox_c
Acetoacetate (101.0 / 57.0) acac_c
Putrescine (89.0 / 72.0) ptrc_c
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Continuation of Table A.6, model metabolite mapping
Metabolomics measured metabolite Model metabolite
Agmatine (131.0 / 72.0)
N-Acetylputrescine (131.0 / 114.0) aprut_c
Spermidine (146.0 / 72.0) spmd_c
Ribose-5-P (229.0 / 79.0) r5p_c

Table A.7 Predicted network-based longevity modulation scores for metabolites

Metabolite Edges (n) Centrality Sum (dLi
) Score (dL)

Maleic Acid 8 0.7555 3.0833 0.2588
Aconitate 26 0.7619 21.1180 0.5959
G1P/G6P/F6P/F1P 9 0.7473 3.3893 0.2533
DHAP 6 0.7107 3.9212 0.3981
Cadaverine 7 0.6797 4.6866 0.3982
Phenylalanine 22 0.7859 18.5575 0.6341
Tyramine 12 0.7577 4.4997 0.2623
Quinolinic Acid 13 0.7443 4.6923 0.2495
Glycerate 10 0.6839 7.6629 0.4764
2-Aminoadipate 11 0.7502 8.6400 0.5401
Citraconic Acid 12 0.7605 5.1569 0.3017
Cystathionine 8 0.7177 5.5840 0.4453
Kynurenic Acid 1 0.6879 0.3210 0.1104
Pentothenate 22 0.7606 17.8897 0.5916
Uridine 7 0.7510 4.0999 0.3849
Inosine 5 0.6975 1.6024 0.1862
D-GA3P 1 0.9071 0 0
GMP 4 0.6672 2.8657 0.38245
1-Methyladenosine 3 0.6674 1.5810 0.2638
AMP 3 0.7623 0.3991 0.0761
Xanthurenic Acid 22 0.7384 13.2443 0.4252
Guanosine 13 0.7485 8.8048 0.4707
Adenine 6 0.7104 3.8884 0.3946
Choline 25 0.7389 20.1090 0.5715
4-Hydroxybutyrate 1 0.7086 0.1396 0.0494
Azelaic Acid 6 0.7120 0.9302 0.0946
12-HETE 4 0.6981 1.4280 0.1993
Acetylcarnitine 5 0.6934 4.2668 0.4931
cGMP 11 0.7185 6.2664 0.3752
N-Acetylglycine 6 0.7428 1.8287 0.1940
Sorbitol 7 0.7091 2.8821 0.2554
Margaric Acid 4 0.6849 0.4280 0.0586
Pyruvate 1 0.6850 0.2829 0.0969
Xanthosine 6 0.7061 4.6434 0.4684
2-Hydroxyisovaleric Acid 1 0.6683 0.3765 0.1258
PRPP 2 0.6563 1.3210 0.2890
Glucoronate 3 0.7297 1.3046 0.2379
Uracil 6 0.7035 6 0.6030
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Continuation of Table A.7
Metabolite Edges (n) Centrality Sum (dLi

) Score (dL)
Xanthine 2 0.7325 2 0.4883
Urate 1 0.9070 0 0
IMP 2 0.7901 0.5001 0.1317
Glycerol-3-P 7 0.6949 5.6090 0.4872
13-HODE 1 0.6764 1 0.3382
Arachidonate 4 0.7126 2.8042 0.3996
Linoleic Acid 1 0.7345 1 0.3672
Lactose 2 0.6964 1.2993 0.3016
UDP-GlcNAc 8 0.7544 3.0666 0.2570
Citrulline 1 0.6788 0 0
Benzoic Acid 11 0.7760 4.1968 0.2714
Acetoacetate 4 0.7073 2 0.2829
N-Acetylputrescine 16 0.7112 11.6922 0.4891
Ribose-5-P 2 0.6941 0.2986 0.0691
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Supplementary Figures

Figure A.1 Additional PCA plots for the third and fourth PC

This Figure shows (A) a breakdown of the percentages of variability explained by the first several
dimensions in the PCA; (B) PC2 and PC3 (C) PC3 and PC4; (D) PC1 and PC3; (E) PC1 and PC4. All
PC plots are coloured by strain – blue=GLP, gold=GEM, green=FEM.
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Figure A.2 The PLS-DA model of the ageing metabolome with hour of collection as response

The PLS-DA model overview, diagnostics and scores plots for the PLS-DA analysis computed by
the ‘ropls’ library for the metabolomics dataset using hour of sample collection as the response
variable are illustrated in this Figure. The summary statistics show that the model provides good
predictions (Q2 is close to 1) but with the proviso that the underlying data are noisy (RMSEE is
large). R2X (respectively R2Y): is the cumulative percentage of predictor (respectively response)
variance explained by the full model. Q2 is the cumulative predictive performance of the model
estimated by cross- validation. Pre is the number of components required to achieve predictive
performance. Top left panel: significance diagnostic: the R2Y and Q2Y of the model are compared
with the corresponding values obtained after random permutation of the y response; Top right
panel: inertia barplot: the graphic here suggests that 3 components may be sufficient to capture
most of the inertia; Bottom left panel: outlier diagnostics, suggesting that the labelled samples might
be outliers (very young and old, reflecting the relatively homogenous ‘middle age’ with younger
and older time points further removed from the remainder); Bottom right panel: x-score plot: the
number of components and the cumulative R2X, R2Y and Q2Y are indicated below the plot. In the
scores plot, the ellipse corresponds to 95% of the multivariate normal distribution with the samples
covariance. Legends ‘OEAxxx’ (where x is numeric) indicate sample names. Colour represents age
of sample - blue young, red old.
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Figure A.3 The PLS-DA model of the early ageing metabolome with strain as response

The PLS-DA model overview, diagnostics and scores plots for the PLS-DA analysis computed by the
‘ropls’ library when strain is used as the response variable in the early ageing metabolomics dataset
are illustrated in this Figure. The summary statistics show that the model is not robustly predictive
(Q2 is close to 0) and the underlying data are noisy (RMSEE is large). R2X (respectively R2Y): is the
cumulative percentage of predictor (respectively response) variance explained by the full model.
Q2 is the cumulative predictive performance of the model estimated by cross-validation. Top left
panel: significance diagnostic: the R2Y and Q2Y of the model are compared with the corresponding
values obtained after random permutation of the y response; Top right panel: inertia barplot: the
graphic here suggests that 3 components may be sufficient to capture most of the inertia; Bottom
left panel: outlier diagnostics, suggesting that the labelled samples (all three from the GEM strain)
might be outliers; Bottom right panel: x-score plot: the number of components and the cumulative
R2X, R2Y and Q2Y are indicated below the plot. In the scores plot, the ellipses correspond to 95%
of the multivariate normal distribution with the samples covariance. Legends ‘OEAxxx’ (where x is
numeric) indicate sample names. Colour represents strain - blue for FEM, red for GEM, green for
GLP.
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Figure A.4 Individual level plots of metabolites that differ by strain
This Figure shows the metabolites that differ by strain during early ageing. Each plot shows the
normalised relative concentration levels for a given metabolite and strain at each of the time points
in the early ageing dataset. Strains are indicated by colour: blue for GLP, green for FEM and gold
for GEM.
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Figure A.5 Clustered heat map of full early ageing dataset
This Figure shows the full dataset of early ageing metabolomics relative concentration values as
a heat map. Rows are clustered algorithmically. Columns are ordered by strain and then by time
point. Strains are indicated by column top bar colour: blue for GLP, green for FEM and gold for
GEM.
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Figure A.6 PCA of flux values predicted for individual replicate samples.

In the FBA pipeline, flux values predicted using transcriptomics only (standard FBA), or transcrip-
tomics with metabolomics (Metab FBA). To arrive at single flux predictions per group, the means
of the transcriptomics replicates are used. However, to determine which reaction flux differences
are significant, a distribution of flux values is needed, thus, flux predictions are made using the
individual transcriptomics replicate values to give ‘replicate’ flux predictions. This Figure shows (A)
the replicate flux predictions for the Metab FBA method, and (B) the replicate flux predictions for
the standard FBA method. Colours indicate strain: blue for GLP, green for FEM and gold for GEM.
Points are labelled with their collection time in hours. The Figure illustrates that replicates cluster
together very well in Metab FBA, and broadly although not so well in standard FBA. However,
this should be interpreted in the context of the fact that standard FBA flux values are less variable
overall.
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Figure A.7 Comparison of TCA cycle in aged worms to idh-1 mutants.

Metabolite measurements show that aged worms have a defective TCA cycle. Metabolites that
are found changed due to altered fluxes in (A) our dataset of old worms, and (B) idh-1 mutants
compared to wild type from (Vergano et al., 2014). The metabolites are color coded as follows: blue
and red were found to be decreased and increased respectively; black represents metabolites that
do not change with age and white represents unmeasured metabolites. This Figure first appeared in
(Hastings et al., 2019a) and was originally created by Olivia Casanueva.
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Figure A.9 Comparison of Metab FBA fluxes for several pathways between GLP 49 and 65 h

The comparison of metab FBA fluxes GLP between 49 h and 65 h (Day 1 and 2) through an
interconnected network of pathways including the TCA cycle and glycolysis is visualised in the
Escher tool. Grey arrows indicate no difference in flux, blue indicates small differences only, while
pink or red indicates large differences in compared fluxes. The colours do not provide information
about whether the fluxes were increased or decreased in GLP relative to FEM, just the absolute
magnitude of their difference. Reactions are labelled with their IDs from the WormJam model, as
well as the predicted flux at the two time points and the calculated difference.
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Figure A.10 Numbers of reactions with reduced costs < 0 per strain and time point

The Figure shows the number of reactions which have reduced costs < 0 per strain and time point
calculated from the standard FBA model. There is no overall trend in any of the strains or with
respect to age, however, it is clear that GLP has more such constrained reactions at several of the
time points than the other two strains, indicating that GLP depends on more pathways acting at
optimal level than the other strains. Colour indicates strain: blue for GLP, green for FEM and gold
for GEM.
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