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Abstract

MultiBUGS is a new version of the general-purpose Bayesian modeling software BUGS
that implements a generic algorithm for parallelizing Markov chain Monte Carlo (MCMC)
algorithms to speed up posterior inference of Bayesian models. The algorithm paral-
lelizes evaluation of the product-form likelihoods formed when a parameter has many
children in the directed acyclic graph (DAG) representation; and parallelizes sampling
of conditionally-independent sets of parameters. A heuristic algorithm is used to decide
which approach to use for each parameter and to apportion computation across compu-
tational cores. This enables MultiBUGS to automatically parallelize the broad range of
statistical models that can be fitted using BUGS-language software, making the dramatic
speed-ups of modern multi-core computing accessible to applied statisticians, without
requiring any experience of parallel programming. We demonstrate the use of Multi-
BUGS on simulated data designed to mimic a hierarchical e-health linked-data study
of methadone prescriptions including 425,112 observations and 20,426 random effects.
Posterior inference for the e-health model takes several hours in existing software, but
MultiBUGS can perform inference in only 28 minutes using 48 computational cores.

Keywords: BUGS, parallel computing, Markov chain Monte Carlo, Gibbs sampling, Bayesian
analysis, hierarchical models, directed acyclic graph.

1. Introduction

BUGS is a long running project that makes easy to use Bayesian modeling software available to
the statistics community. The software has evolved through three main versions since 1989:
first ClassicBUGS (Spiegelhalter, Thomas, Best, and Gilks 1996), then WinBUGS (Lunn,
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Thomas, Best, and Spiegelhalter 2000), then the current open-source OpenBUGS (Lunn,
Spiegelhalter, Thomas, and Best 2009). The software is structured around the twin ideas of
the declarative BUGS language (Thomas 2006), through which the user specifies the graphical
model (Lauritzen, Dawid, Larsen, and Leimer 1990) that defines the statistical model to be
analyzed; and Markov chain Monte Carlo simulation (MCMC; Geman and Geman 1984;
Gelfand and Smith 1990), which is used to estimate the posterior distribution. These ideas
have also been widely adopted in other Bayesian software, notably in JAGS (Plummer 2017)
and NIMBLE (de Valpine, Turek, Paciorek, Anderson-Bergman, Lang, and Bodik 2017), and
related ideas are used in Stan (Carpenter et al. 2017).
Technological advances in recent years have led to massive increases in the amount of data
that are generated and stored. This has posed problems for traditional Bayesian modeling,
because fitting such models with a huge amount of data in existing standard software, such as
OpenBUGS, is typically either impossible or extremely time-consuming. While most recent
computers have multiple computational cores, which can be used to speed up computation,
OpenBUGS has not previously made use of this facility. The aim of MultiBUGS is to make
available to applied statistics practitioners the dramatic speed-ups of multi-core computation
without requiring any knowledge of parallel programming, through an easy-to-use implemen-
tation of a generic, automatic algorithm for parallelizing the MCMC algorithms used by
BUGS-style software.

1.1. Approaches to MCMC parallelization

The most straightforward approach for using multiple computational cores or multiple central
processing units (CPUs) to perform MCMC simulation is to run each of multiple, independent
MCMC chains on a separate CPU or core (e.g., Bradford and Thomas 1996; Rosenthal 2000).
Since the chains are independent, there is no need for information to be passed between the
chains: The algorithm is embarrassingly parallel. Running several MCMC chains is valuable
for detecting problems of non-convergence of the algorithm using, for example, the Brooks-
Gelman-Rubin diagnostic (Gelman and Rubin 1992; Brooks and Gelman 1998). However, the
time taken to get past the burn in period cannot be shortened using this approach.
A different approach is to use multiple CPUs or cores for a single MCMC chain, with the aim of
shortening the time taken for the MCMC chain to converge and to mix. One way to do this is
to identify tasks within standard MCMC algorithms that can be calculated in parallel, without
altering the underlying Markov chain. A task that is often, in principle, straightforward to
parallelize, and is fundamental in several MCMC algorithms, such as the Metropolis-Hastings
algorithm, is evaluation of the likelihood (e.g., Whiley and Wilson 2004; Jewell, Kypraios,
Neal, and Roberts 2009; Bottolo et al. 2013). Another task that can be parallelized is sampling
of conditionally-independent components, as suggested by, for example, Wilkinson (2006).
MultiBUGS implements all of the above strategies for parallelization of MCMC. There are
thus two levels of parallelization: Multiple MCMC chains are run in parallel, with the com-
putation required by each chain also parallelized by identifying both complex parallelizable
likelihoods and conditionally-independent components that can be sampled in parallel.
There are numerous other approaches to MCMC parallelization. Several authors have pro-
posed running parts of the model on separate cores and then combining results (Scott, Blocker,
Bonassi, Chipman, George, and McCulloch 2016) using either somewhat ad hoc procedures or
sequential Monte Carlo-inspired methods (Goudie, Presanis, Lunn, De Angelis, and Wernisch
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2018). This approach has the advantage of being able to reuse already written MCMC soft-
ware and, in this sense, is similar to the approach used in MultiBUGS. A separate body
of work (Brockwell 2006; Angelino, Kohler, Waterland, Seltzer, and Adams 2014) proposes
using a modified version of the Metropolis-Hastings algorithm which speculatively considers a
possible sequence of MCMC steps and evaluates the likelihood at each proposal on a separate
core. The time saving tends to scale logarithmically in the number of cores for this class
of algorithms. A final group of approaches modifies the Metropolis-Hastings algorithm by
proposing a sequence of candidate points in parallel (Calderhead 2014). This approach can
reduce autocorrelations in the MCMC chain and so speed up MCMC convergence.

1.2. MultiBUGS software

MultiBUGS is available as free software, under the GNU General Public License version 3, and
can be downloaded from https://www.multibugs.org/. MultiBUGS currently requires Mi-
crosoft Windows, and version 8.1 or newer of the Microsoft MPI (MS-MPI) parallel program-
ming framework1. Note that the Windows Firewall may require you to give MultiBUGS per-
mission to communicate between cores. The source code for MultiBUGS can be downloaded
from https://github.com/MultiBUGS/MultiBUGS. The data and model files to replicate all
the results presented in this paper can be found within MultiBUGS, as we describe later in the
paper, or can be downloaded from https://github.com/MultiBUGS/multibugs-examples.
The paper is organized as follows: In Section 2 we introduce the class of models we consider
and the parallelization strategy adopted in MultiBUGS; implementation details are provided
in Section 3; Section 4 summarizes the basic process of fitting models in MultiBUGS; Section 5
demonstrates MultiBUGS for analyzing a large hierarchical dataset; and we conclude with a
discussion in Section 6.

2. Background and methods

2.1. Models and notation

MultiBUGS performs inference for Bayesian models that can be represented by a directed
acyclic graph (DAG), with each component of the model associated with a node in the DAG.
A DAG G = (VG, EG) consists of a set of nodes or vertices VG joined by directed edges
EG ⊂ VG × VG, represented by arrows. The parents paG(v) = {u : (u, v) ∈ EG} of a node v
are the nodes with an edge pointing to node v. The children chG(v) = {u : (v, u) ∈ EG} of
a node v are the nodes pointed to by edges emanating from node v. We omit G subscripts
here, and throughout the paper, wherever there is no ambiguity.
DAGs can be presented graphically (see Figures 1 and 3), with stochastic nodes shown in ovals,
and constant and observed quantities in rectangles. Stochastic dependencies are represented
by arrows. Repeated nodes are enclosed by a rounded rectangle (plate), with the range of
repetition indicated by the label.
To establish ideas, consider a simple random effects logistic regression model (called “seeds”)
for the number ri of seeds that germinated out of ni planted, in each of i = 1, . . . , N = 21
experiments, with binary indicators of seed type X1i and root extract type X2i (Crowder

1Available at https://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx.

https://www.multibugs.org/
https://github.com/MultiBUGS/MultiBUGS
https://github.com/MultiBUGS/multibugs-examples
https://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx
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Figure 1: DAG representation of the seeds model.

1978; Breslow and Clayton 1993).

ri ∼ Bin(pi, ni)
logit(pi) = α0 + α1X1i + α2X2i + α12X1iX2i + βi

βi ∼ N(µβ, σ2
β)

We choose normal priors for the regression parameters α0, α1, α2, α12, with mean µα = 0 and
standard deviation σα = 1000. We fix µβ = 0, and choose a uniform prior on the range
σmin = 0 to σmax = 10 for the standard deviation σβ of the random effects βi. Figure 1 shows
a DAG representation of the “seeds” model. The data are presented in Crowder (1978).
For ease of exposition of the parallelization methods used by MultiBUGS, we assume through-
out this paper that the set of nodes VG includes all stochastic parameters SG ⊆ VG and
constant quantities (including observations and hyperparameters) in the model, but excludes
parameters that are entirely determined by other parameters. As a consequence, the DAG
for the seeds example (Figure 1) includes as nodes the stochastic parameters SG = {α0,
α1, α2, α12, β1, . . . , β21, σβ}, the observations {ri, X1i, X2i, ni : i = 1, . . . , 21} and the constant
hyperparameters {µα, σα, µβ, σmin, σmax}, but not the parameters that are deterministic func-
tions of other parameters (the germination probabilities pi), which have been assimilated into
the definition of the distribution of ri before forming the DAG. Arbitrary DAG models can
nevertheless be considered by assimilating deterministic intermediary quantities, such as lin-
ear predictors in generalized linear models, into the definition of the conditional distribution
of the appropriate descendant stochastic parameter; and considering deterministic prediction
separately from the main MCMC computation. For example, in the seeds example, the ran-
dom effect precision τβ = σ−2

β is deterministically related to the standard deviation σβ, so
it would not be considered part of the graph if it were of interest: Posterior inference for τβ
could instead be made either by updating its value in the usual (serial) manner after each
MCMC iteration, or by post-processing the MCMC samples for σβ.
In DAG models, the conditional independence assumptions represented by the DAG mean
that the full joint distribution of all quantities V has a simple factorization in terms of the
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conditional distribution p(v | pa(v)) of each node v ∈ V given its parents pa(v):

p(V ) =
∏
v∈V

p(v | pa(v))

Posterior inference is performed in MultiBUGS by an MCMC algorithm, constructed by as-
sociating each node with a suitable updating algorithm, chosen automatically by the program
according to the structure of the model. Most MCMC algorithms involve evaluation of the
conditional distribution of the stochastic parameters S ⊆ V (at particular values of its argu-
ments). The conditional distribution p(v | V−v) of a node v ∈ S, given the remaining nodes
V−v = V \ {v} is

p(v | V−v) ∝ p(v | pa(v))L(v), (1)

where p(v | pa(v)) is the prior factor and L(v) =
∏
u∈ch(v) p(u | pa(u)) is the likelihood factor.

2.2. Parallelization methods in MultiBUGS

MultiBUGS performs in parallel both multiple chains and the computation required for a
single MCMC chain. In this section, we describe how the computation for a single MCMC
chain can be performed in parallel.

Parallelization strategies

MCMC entails sampling, which often requires evaluation of the conditional distribution of
the stochastic parameters S in the model. MultiBUGS parallelizes these computations for a
single MCMC chain via two distinct approaches.
First, when a parameter has many children, evaluation of the conditional distribution is com-
putationally expensive, since Equation 1 is the product of many terms. However, the evalua-
tion of the likelihood factor L(v) can easily be split between C cores by calculating a partial
product involving every Cth child on each core. With a partition {ch(1)(v), . . . , ch(C)(v)} of
the set of children ch(v), we can evaluate

∏
u∈ch(c)(v) p(u | pa(u)) on the cth core, c = 1, . . . , C.

The prior factor p(v | pa(v)) and these partial products can be multiplied together to recover
the complete conditional distribution.
Second, when a model includes a large number of parameters then computation may be slow
in aggregate, even if sampling of each individual parameter is fast. However, parameters
can clearly be sampled in parallel if they are conditionally independent. Specifically, all
parameters in a set W ⊆ S can be sampled in parallel whenever the parameters in W are
mutually conditionally-independent; i.e., all w1 ∈W and w2 ∈W (w1 6= w2) are conditionally
independent given V \W . If C cores are available and |W | denotes the number of elements
in the set W , then in a parallel scheme at most d|W |/Ce parameters need to be sampled on a
core (where dxe denotes the ceiling function), rather than |W | in the standard serial scheme.
To identify sets of conditionally-independent parameters, MultiBUGS first partitions the
stochastic parameters S into depth sets Dh

G = {v ∈ S : dG(v) = h}, defined as the set of
stochastic nodes with topological depth dG(v) = h, where topological depth of a node v ∈ V
is defined recursively, starting from the nodes with no parents.

dG(v) =
{

0 if paG(v) = ∅
1 + maxu∈paG(v) dG(u) otherwise
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Note that stochastic nodes v ∈ S have topological depth dG(v) ≥ 1, since the constant
hyperparameters of stochastic nodes are included in the DAG.
Sets of conditionally-independent parameters within a depth set can be identified by noting
that all parameters in a set W ⊆ Dh

G are mutually conditionally-independent, given the other
nodes V \W , if the parameters in W have no child node in common. This follows from the
d-separation criterion (Definition 1.2.3, Pearl 2009): All such pairs of parameters w1 ∈ W
and w2 ∈W (w1 6= w2) are d-separated by V \W because no “chain path” can exist between
w1 and w2 because these nodes have the same topological depth; and all “fork paths” are
blocked by V \W , as are all “collider paths”, except those involving a common child of w1
and w2, which are prevented by definition of W .

Heuristic for determining parallelization strategy

A heuristic criterion is used by MultiBUGS to decide which type of parallelism to exploit for
each parameter in the model. The heuristic aims to parallelize the evaluation of conditional
distributions of “fixed effect”-like parameters, and parallelize the sampling of “random effect”-
like parameters. The former tend to have a large number of children, whereas the latter
tend to have a small number of children. Each depth set is considered in turn, starting
with the “deepest” set Dh?

G with h? = maxv∈S dG(v). The computation of the parameter’s
conditional distribution is parallelized if a parameter has more children than double the mean
number of children ch = meanv∈S | chG(v)|, or if all parameters in the graph have topological
depth h = 1; otherwise the sampling of conditionally independent sets of parameters is
parallelized whenever this is permitted. The special case for h = 1 ensures that evaluation
of the conditional distribution of parameters is parallelized in “flat” models in which all
parameters have identical topological depth. When a group of parameters is sampled in
parallel we would like the time taken to sample each one to be similar, so MultiBUGS assigns
parameters to cores in order of the number of children that each parameter has.
MultiBUGS creates a C-column computation schedule table T , which specifies the paralleliza-
tion scheme: Where different parameters appear in a row, the corresponding parameters are
sampled in parallel; where a single parameter is repeated across a full row, the evaluation
of the conditional distribution for that parameter is split into partial products across the C
cores. A single MCMC iteration consists of evaluating updates as specified by each row of the
computation schedule in turn. The computation schedule includes blanks whenever a set W
of mutually conditionally-independent parameters does not divide equally across the C cores;
that is, when |W | mod C 6= 0, where mod denotes the modulo operator. The corresponding
cores are idle when a blank occurs. Appendix A describes the algorithms used to create the
C-column computation schedule table T in detail.
We illustrate the heuristic by describing the process of creating Table 1, the computation
schedule for the seeds example introduced in Section 2, assuming C = 4 cores are avail-
able. The model includes 26 stochastic parameters S = {α0, α1, α2, α12, β1, . . . , β21, σβ};
and | ch(α0)| = | ch(α1)| = | ch(α2)| = | ch(α12)| = | ch(σβ)| = 21 and | ch(β1)| = · · · =
| ch(β21)| = 1. MultiBUGS first considers the parameters β1, . . . , β21, since the topologi-
cal depth d(β1) = · · · = d(β21) = 2 = maxv∈S d(v). None of the likelihood evaluation
for β1, . . . , β21 is parallelized, because all these parameters have only 1 child and ch ≈ 4.8.
However, β1, . . . , β21 are mutually conditionally-independent and so these parameters are dis-
tributed across the 4 cores as shown in the first 6 rows of Table 1. Since 21 mod 4 6= 0,
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Core
Row 1 2 3 4
1 β1 β2 β3 β4
2 β5 β6 β7 β8
3 β9 β10 β11 β12
4 β13 β14 β15 β16
5 β17 β18 β19 β20
6 β21
7 α12 α12 α12 α12
8 α1 α1 α1 α1
9 α2 α2 α2 α2
10 α0 α0 α0 α0
11 σβ σβ σβ σβ

Table 1: Computation schedule table T for the seeds example, with 4 cores.

cores 2, 3 and 4 will be idle while β21 is sampled. Next, we consider α0, α1, α2, α12 and σβ,
since d(α0) = · · · = d(α12) = d(σβ) = 1. Since all of these parameters have 21 children and
ch ≈ 4.8, MultiBUGS will spread the likelihood evaluation of all these parameters across
cores, and these are assigned to the computation schedule in turn.

Block samplers

MultiBUGS is able to use a block MCMC sampler when appropriate: that is, algorithms that
sample a block of nodes jointly, rather than just a single node at a time. Block samplers are
particularly beneficial when parameters in the model are highly correlated a posteriori (see,
e.g., Roberts and Sahu 1997). The conditional distribution for a block B ⊆ S of nodes, given
the rest of nodes V−B = V \B, is

p(B | V−B) ∝
∏
b∈B

p(b | pa(b))×
∏
b∈B

∏
u∈ch(b)

p(u | pa(u)).

Block samplers can be parallelized in a straightforward manner: If we consider a block B
as a single node, and define ch(B) = ∪b∈B ch(b), then the approach introduced above is
immediately applicable, and we can exploit both opportunities for parallelization for block
updates. A mixture of single node and block updaters can be used without complication.
In the seeds example it is possible to block together α0, α1, α2, α12. The block then has 21
children, and so our algorithm chooses to spread evaluation of their likelihood over multi-
ple cores. The computation schedule remains identical to Table 1, but the block sampler
waits until all the likelihoods corresponding to rows 7 to 10 of Table 1 are evaluated before
determining each update for the {α0, α1, α2, α12} block.

3. Implementation details
BUGS represents statistical models internally using a dynamic object-oriented data structure
(Warford 2002) that is analogous to a DAG. The nodes of the graph are objects and the edges
of the graph are pointers contained in these objects. Although the graph is specified in terms
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of the parents of each node, BUGS identifies the children of each node and stores this as a list
embedded in each parameter node. Each node object has a value and a method to calculate
its probability density function. For observations and fixed hyperparameters the value is fixed
and is read in from a data file; for parameters the value is variable and is sampled within
a MCMC algorithm. Each MCMC sampling algorithm is represented by a class (Warford
2002) and a new sampling object of an appropriate class is created for each parameter in the
statistical model. Each sampling object contains a link to the node (or block of nodes) in
the graphical model that represents the parameter (or block of parameters) being sampled.
One complete MCMC update of the model involves a traversal of a list of all these sampling
objects, with each object’s sampling method called in turn. Lunn et al. (2000) provide further
background on the internal design of BUGS.
The MultiBUGS software consists of two distinct computer programs: a user interface and a
computational engine. The computational engine is a small program assembled by linking to-
gether some modules of the OpenBUGS software plus a few additional modules to implement
our parallelization algorithm. Copies of the computational engine run on multiple cores and
communicate with each other using the message passing interface (MPI) protocol (Pacheco
1997), version 2.0. The user interface program is a slight modification (and extension) of the
OpenBUGS software. The user interface program compiles an executable “worker program”
that contains the computational engine required for a particular statistical model. It also
writes out a file containing a representation of the data structures that specify the statistical
model. It then starts a number of copies of the computational engine on separate computer
cores. These worker programs then read in the model representation file to rebuild the graph-
ical model and start generating MCMC samples using our distributed algorithms. The worker
programs communicate with the user interface program via an MPI intercommunicator object.
The user interface is responsible for calculating summary statistics of interest.
Both sources of parallelism described in Section 2.2 require only simple modifications of
the data structures and algorithms used in the BUGS software. Each core keeps a copy of
the current state of the MCMC, as well as two pseudo-random number generation (PRNG)
streams (Wilkinson 2006): a “core-specific” stream, initialized with a different seed for each
core; and “common” stream, initialized using the same seed on all cores. Initially, each core
loads the sampling algorithm, the computation schedule, and the complete DAG, which is
then altered as follows so that the overall computation yields the computation required for
the original, complete DAG.
When the calculation of a parameter’s likelihood is parallelized across cores, the list of children
associated with a parameter on each core is thinned (pruned) so that it contains only the
children in the corresponding partition component of ch(v). The BUGS MCMC sampling
algorithm implementations then require only minor changes so that the partial likelihoods are
communicated between cores. For example, a random walk Metropolis algorithm (Metropolis,
Rosenbluth, Rosenbluth, Teller, and Teller 1953) is performed as follows: First, on each
core, the prior factor and a partial likelihood contribution to the conditional distribution
are calculated for the current value of the parameter. Each core then samples a candidate
value. These candidates will be identical across cores, since the “common” PRNG stream
is used. The prior and partial likelihood contributions are then calculated for the candidate
value, and the difference between the two partial log-likelihood contributions can be combined
across cores using the MPI function Allreduce. The usual Metropolis test can then be applied
on each core in parallel using the “common” PRNG stream, after which the state of Markov
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Figure 2: The specification tool in MultiBUGS, including the “distribute” button, which is
used to initialize the parallelization.

chain is identical across cores. Computation of the prior factor and the Metropolis test is
intentionally duplicated on every core because we found that the time taken to evaluate these
quantities is usually shorter than the time taken to propagate their result across cores.
When a set of parameters W is sampled in parallel over the worker cores, the list of MCMC
sampling objects is thinned on each core so that only parameters specified by the correspond-
ing column of the computation schedule are updated on each core. The existing MCMC
sampling algorithm implementations used in OpenBUGS can then be used without modifica-
tion with each “core-specific” PRNG stream. The MPI function Allgather is used to send
newly sampled parameters to each core. Note we need to run Allgather only after each core
has sampled all of its assigned components in W , rather than after each component in W is
sampled. For example, in the seeds example, we use Allgather after row 6. This considerably
reduces message-passing overheads when the number of elements in W is large.
Running multiple chains is handled via standard MPI methods. If we have, say, two chains
and eight cores, we partition the cores into two sets of four cores and set up separate MPI
collective communicators (Pacheco 1997) for each set of cores for Allreduce and Allgather
to use. Requests can be sent from the master to the workers using the intercommunicator
and results returned. We find it useful to designate a special “lead worker” for each chain
that we simulate. Each of these lead workers sends back sampled values to the master, where
summary statistics can be collected. Only sampled values corresponding to quantities that
the user is monitoring need to be returned to the master. This can considerably reduce the
amount of communication between the workers and the master.

4. Basic usage of MultiBUGS
The procedure for running a model in MultiBUGS is largely the same as in WinBUGS or
OpenBUGS. MultiBUGS adopts the standard BUGS language for specifying models, the
core of which is common also to WinBUGS, OpenBUGS, JAGS and NIMBLE. A detailed
tutorial on the use of BUGS can be found in, for example, Lunn, Jackson, Best, Thomas, and
Spiegelhalter (2013).
An analysis is specified in MultiBUGS using the Specification Tool (Model Specification... ) by
checking the syntax of a model ( check model ), loading the data ( load data ), compiling ( compile )
and setting up initial values ( load inits and gen inits ).



10 MultiBUGS: A Parallel Implementation of BUGS for Faster Bayesian Inference

We then specify the total number of cores to distribute computation across by entering a
number in the box labeled num cores (Figure 2) and then clicking distribute . This should be
set at a value less than or equal to the number of processing cores available on your computer
(the default is 2). If multiple chains are run, the cores will be divided equally across chains.
We recommend that users experiment with different numbers of cores, since the setting that
leads to fastest computation depends both on the specific model and data being analyzed and
on the computing hardware being used. While increased parallelization will often result in
faster computation, in some cases communication overheads will balloon to the point where
parallelization gains are overturned. Furthermore, Amdahl’s bound (Amdahl 1967) on the
speed-up that is theoretically obtainable with increased parallelization may also be hit in
some settings. Note that changing the number of cores will alter the exact samples obtained,
since this affects the PRNG stream used to draw each sample (as described in Section 3).
Samples are drawn using the Update Tool (Model Update... ). The use of the Sample Monitor
Tool ( Inference Samples... ) to monitor parameters; to assess MCMC convergence, using, for
example, the Brooks-Gelman-Rubin diagnostic (Gelman and Rubin 1992; Brooks and Gelman
1998); and to obtain results is the same as in WinBUGS and OpenBUGS. Analyses can
be automated in MultiBUGS using the same simple procedural scripting language that is
available in OpenBUGS. The new command modelDistribute(C) can be used to specify
that parallelization should be across C cores; for details see Manuals MultiBUGS User Manual
Scripts and Batch-mode .

4.1. Seeds example

The model, data and initial conditions for the seeds examples can be found within MultiBUGS
in Examples Examples Vol I Seeds: random effects logistic regression . This is a simple model in-
volving a small number of parameters and observations, so computation is already fast in
OpenBUGS and is no faster in MultiBUGS (both take less than a second to do 1000 MCMC
updates) because the benefit of parallelization is canceled out by communication overheads.
However, for some more complicated models, MultiBUGS will be dramatically faster than
OpenBUGS. We illustrate this with an example based on e-health data.

5. Illustration of usage with hierarchical e-health data
Our e-health example is based on a large linked database of methadone prescriptions given
to opioid dependent patients in Scotland, which was used to examine the influence of patient
characteristics on doses prescribed (Gao, Dimitropoulou, Robertson, McTaggart, Bennie,
and Bird 2016; Dimitropoulou et al. 2017). This example is typical of many databases of
linked health information drawn from primary care records, hospital records, prescription
data and disease/death registries. Each data source often has a hierarchical structure, arising
from regions, institutions and repeated measurements within individuals. Here, since we are
unable to share the original dataset, we analyze a synthetic dataset, simulated to match the
key traits of the original dataset.
The model includes 20,426 random effects in total, and was fitted to 425,112 observations. It is
possible to fit this model using standard MCMC simulation in OpenBUGS but, unsurprisingly,
the model runs extremely slowly and it takes 32 hours to perform a sufficient number of
iterations (15,000) to satisfy standard convergence assessment diagnostics. In such data sets
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it can be tempting to choose a much simpler and faster method of analysis, but this may not
allow appropriately for the hierarchical structure or enable exploration of sources of variation.
Instead it is preferable to fit the desired hierarchical model using MCMC simulation, while
speeding up computation as much as possible by exploiting parallel processing.
The model code, data and initial conditions can be found within MultiBUGS in Examples
Examples Vol IV Methadone: an E-health model .

5.1. E-health data

The data have a hierarchical structure, with multiple prescriptions nested within patients
within regions. For some of the outcome measurements, person identifiers and person-level
covariates are available (240,776 observations). These outcome measurements yijk represent
the quantity of methadone prescribed on occasion k for person j in region i (i = 1, . . . , 8; j =
1, . . . , Ji; k = 1, . . . ,Kij), and are recorded in the file ehealth_data_id_available.txt.
Each of these measurements is associated with a binary covariate rijk (called source.indexed)
that indicates the source of prescription on occasion k for person j in region i, with rijk = 1
indicating that the prescription was from a General Practitioner (family physician). No person
identifiers or person-level covariates are available for the remaining outcome measurements
(184,336 observations). We denote by zil the outcome measurement for the lth prescription
without person identifiers in region i (i = 1, . . . , 8; l = 1, . . . , Li). These data are in the
file ehealth_data_id_missing.txt. A binary covariate sil (called source.nonindexed)
indicates the source of the lth prescription without person identifiers in region i, with sil = 1
indicating that the prescription was from a General Practitioner (family physician). The final
data file, ehealth_data_n.txt, contains several totals used in the BUGS code.

5.2. E-health model

We model the effect of the covariates with a regression model, with regression parameter
βm corresponding to the mth covariate xmij (m = 1, . . . , 4), while allowing for within-region
correlation via region-level random effects ui, and within-person correlation via person-level
random effects wij ; source effects vi are assumed random across regions.

yijk =
4∑

m=1
βmxmij + ui + virijk + wij + εijk

ui ∼ N(µu, σ2
u), vi ∼ N(µv, σ2

v), wij ∼ N(µw, σ2
w), εijk ∼ N(µε, σ2

ε)

The means µw and µε are both fixed to 0.
The outcome measurements zil contribute only to estimation of regional effects ui and source
effects vi.

zil = λ+ ui + visil + ηil

ηil ∼ N(µη, σ2
η)

The error variance σ2
η represents a mixture of between-person and between-occasion varia-

tion. We fix the error mean µη = 0. We assume uniform priors for σu, σv, σw, σε, ση on
the range σmin = 0 to σmax = 10, and normal priors for β1, . . . , β4, µu, µv and λ with mean
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yijk zil

βm xmij εijkrijk wij ui vi sil ηil λ

µε µw µησ2
ε σ2

w σ2
ηµu σ2

u
µv σ2

v

σmin σmaxµmean µsd

µλ σ2
λβmean βsd

m = 1, . . . , 4

k = 1, . . . , Kij

j = 1, . . . , Ji

l = 1, . . . , Li

i = 1, . . . , 8

Figure 3: DAG representation of the e-health model.

βmean = µmean = µλ = 0 and standard deviation βsd = µsd = µλ = 100. Figure 3 is a DAG
representation of this model.
The data have been suitably transformed so that fitting a linear model is appropriate. We do
not consider alternative approaches to analyzing the data set. The key parameters of interest
are the regression parameters β1, . . . , β4 and the standard deviations σu and σv for the region
and source random effects.
This model can be specified in BUGS as follows:

model {
# Outcomes with person-level data available
for (i in 1:n.indexed) {

outcome.y[i] ~ dnorm(mu.indexed[i], tau.epsilon)
mu.indexed[i] <- beta[1] * x1[i] +

beta[2] * x2[i] +
beta[3] * x3[i] +
beta[4] * x4[i] +
region.effect[region.indexed[i]] +
source.effect[region.indexed[i]] * source.indexed[i] +
person.effect[person.indexed[i]]

}

# Outcomes without person-level data available
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for (i in 1:n.nonindexed) {
outcome.z[i] ~ dnorm(mu.nonindexed[i], tau.eta)
mu.nonindexed[i] <- lambda +

region.effect[region.nonindexed[i]] +
source.effect[region.nonindexed[i]] *

source.nonindexed[i]
}

# Hierarchical priors
for (i in 1:n.persons) {

person.effect[i] ~ dnorm(0, tau.person)
}
for (i in 1:n.regions) {

region.effect[i] ~ dnorm(mu.region, tau.region)
source.effect[i] ~ dnorm(mu.source, tau.source)

}

lambda ~ dnorm(0, 0.0001)
mu.region ~ dnorm(0, 0.0001)
mu.source ~ dnorm(0, 0.0001)

# Priors for regression parameters
for (m in 1:4) {

beta[m] ~ dnorm(0, 0.0001)
}

# Priors for variance parameters
tau.eta <- 1/pow(sd.eta, 2)
sd.eta ~ dunif(0, 10)
tau.epsilon <- 1/pow(sd.epsilon, 2)
sd.epsilon ~ dunif(0, 10)
tau.person <- 1/pow(sd.person, 2)
sd.person ~ dunif(0, 10)
tau.source <- 1/pow(sd.source, 2)
sd.source ~ dunif(0, 10)
tau.region <- 1/pow(sd.region, 2)
sd.region ~ dunif(0, 10)

}

5.3. E-health initial values

For chain 1, we used the following initial values:

list(lambda = 0, beta = c(0, 0, 0, 0), mu.source = 0, sd.epsilon = 0.5,
sd.person = 0.5, sd.source = 0.5, sd.region = 0.5, sd.eta = 0.5)

and for chain 2 we used:
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Figure 4: Run time against number of cores for 15,000 iterations of the e-health example
model, running 2 chains simultaneously. The run time in each of 3 replicate runs are shown.
Both time and number of cores are displayed on a log scale.

list(lambda = 0.5, beta = c(0.5, 0.5, 0.5, 0.5), mu.source = 0.5,
sd.epsilon = 1, sd.person = 1, sd.source = 1, sd.region = 1, sd.eta = 1)

5.4. Parallelization in MultiBUGS

After setting the number of cores, the computation schedule chosen by MultiBUGS can
be viewed in Info Show distribution . MultiBUGS parallelizes sampling of all the person-
level random effects wij , except for the component corresponding to the person with the
most observations (176 observations); MultiBUGS parallelizes likelihood computation of this
component instead. The likelihood computation of all the other parameters in the model is
also parallelized, except for the mutually conditionally-independent sets {µu, µv} and {σ2

u, σ
2
v},

which are sampled in parallel in turn.

5.5. Run time comparisons across BUGS implementations

To demonstrate the speed-up possible in MultiBUGS using a range of number of cores, we
ran two chains for 15,000 updates for the e-health example. This run length was chosen to
mimic realistic statistical practice, since, after discarding the first 5,000 iterations as burn-in,
visual inspection of chain-history plots and the Brooks-Gelman-Rubin diagnostic (Gelman
and Rubin 1992; Brooks and Gelman 1998) indicated convergence. We ran the simulations
(each replicated three times) on a 64-core machine consisting of four sixteen-core 2.4Ghz
AMD Operon 6378 processors with 128GB shared RAM.
Figure 4 shows the run time against the number of cores on a log-log scale. Substantial time
savings are achieved using MultiBUGS: On average using one core took 8 hours 10 minutes;
using two cores took 4 hours and 8 minutes; and using 48 cores took only 28 minutes. In con-
trast, these simulations took 32 hours in standard single-core OpenBUGS 3.2.3; and 9 hours
using JAGS 4.0.0 via R 3.3.1.
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mean median sd MC_error val2.5pc val97.5pc start sample ESS
beta[1] -0.07124 -0.07137 0.01272 5.784E-4 -0.09561 -0.0461 5001 20000 483
beta[2] -0.2562 -0.2563 0.02437 9.186E-4 -0.3036 -0.208 5001 20000 704
beta[3] 0.1308 0.1311 0.0114 5.7E-4 0.1085 0.1528 5001 20000 399
beta[4] 0.13 0.1305 0.0182 7.083E-4 0.09474 0.1651 5001 20000 660
sd.region 1.259 1.157 0.4606 0.005305 0.7024 2.445 5001 20000 7536
sd.source 0.3714 0.3417 0.1359 0.001611 0.2057 0.7153 5001 20000 7116

Table 2: Posterior summary table for the e-health example.

The scaling of performance with increasing number of cores is good up to sixteen cores and
then displays diminishing gains. This may be due to inter core communication being much
faster within each processor of 16 cores compared to across processors, or the diminishing
returns anticipated by Amdahl’s law (Amdahl 1967). Running only one chain approximately
halved the run time for two chains.

5.6. Results

The posterior summary table we obtained is shown in Table 2.

6. Discussion
MultiBUGS makes Bayesian inference using multi-core processing accessible for the first time
to applied statisticians working with the broad class of statistical models available in the
BUGS language software. It adopts a pragmatic algorithm for parallelizing MCMC sampling,
which we have demonstrated speeds up inference in a random-effects logistic regression model
involving a large number of random effects and observations. While a large literature has
developed proposing methods for parallelizing MCMC algorithms (see Section 1), a generic,
easy-to-use implementation of these ideas has been heretofore lacking. Almost all users of
BUGS language software will have a multi-core computer available, since desktop computers
typically now have a moderate number (up to ten) of cores, and laptops typically have 2–4
cores. However, workstations with an even larger number of cores are now becoming available:
For example, Intel’s Xeon Phi x200 processor contains between 64 and 72 cores.
The magnitude of speed-up provided by MultiBUGS depends on the model and data being
analyzed and the computer hardware being used. Two levels of parallelization can be used in
MultiBUGS: Independent MCMC chains can be parallelized, and then computation within a
single MCMC chain can be parallelized. The first level of parallelization will almost always
be advantageous whenever sufficient cores are available, since no communication across cores
is needed. The gain from second level of parallelization is problem specific: The gain will
be largest for models involving parameters with a large number of likelihood terms and/or
a large number of conditionally independent parameters. For example, MultiBUGS is able
to parallelize inference for many standard regression-type models involving both fixed and
random effects, especially with a large number of observations, since fixed effect regression
parameters will have a large number of children (the observations), and random effects will
typically be conditionally independent. For models without these features, the overheads
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of the second level of parallelization may outweigh the gains on some computing hardware,
meaning only the first level of parallelization is beneficial.
The mixing properties of the simulated MCMC chains are the same in OpenBUGS and
MultiBUGS, because they use the same collection of underlying MCMC sampling algorithms.
Models with severe MCMC mixing problems in OpenBUGS are thus not resolved in Multi-
BUGS. However, since MultiBUGS can speed-up MCMC simulation, it may be practicable
to circumvent milder mixing issues by simply increasing the run length.
Several extensions and developments are planned for MultiBUGS in the future. First, at
present MultiBUGS requires the Microsoft Windows operating system. However, most large
computational clusters use the Linux operating system, so a version of MultiBUGS running on
Linux is under preparation. Second, MultiBUGS currently loads data and builds its internal
graph representation of a model on a single core. This process will need to be rethought for
extremely large datasets and graphical models.
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A. Technical algorithmic details

A.1. Identifying conditionally independent parameters

The following algorithm (called find_conditionally_independent) is used by MultiBUGS
to identify sets of conditionally-independent parameters W1, . . . ,Wl ⊆ U :
Input: G = (E, V ), a DAG; U , a set of nodes (with identical topological depth)
l← 1
M ← ∅
while |U | > 0 do

for u in U do
if chG(u) ∩M = ∅ then
Wl ←Wl ∪ {u}
U ← U \ {u}
M ←M ∪ chG(u)

end if
end for
M ← ∅
l← l + 1

end while
Output: {W1, . . . ,Wl}

A.2. Identifying parallelizable likelihoods

Nodes for which the likelihood calculations should be partitioned across cores are identified
using the following algorithm, called find_partial_product_parallel:
Input: G = (E, V ), a DAG; C, a number of cores; h, a topological depth; h?, the maximum

topological depth in G; T , a computation schedule; r, the current schedule row
U ← Dh

G

ch← meanv∈SG
| chG(v)|

for u in U do
if | chG(u)| > 2× ch or h? = 1 then
r ← r + 1
for c in 1 to C do
Trc ← u

end for
U ← U \ {u}

end if
end for

Output: {T,U, r}

A.3. Building a computation schedule

The overall algorithm for allocating computation to cores is as follows:
Input: G = (E, V ), a DAG; C, a number of cores
Initialize T , a table with C columns
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r ← 0
h? ← maxv∈SG

dG(v)
for h in h? to 1 do
{T,U, r} ← find_partial_product_parallel(G,C, h, h?, T, r)
{W1, . . . ,Wl} ← find_conditionally_independent(G,U)
for i in 1 to l do
c← 0
for j in maxw∈Wi | chG(w)| to 1 do

for x in {w ∈Wi : | chG(w)| = j} do
if c mod C = 0 then
r ← r + 1
c← 0

end if
Tr(c+1) ← x
c← c+ 1

end for
end for

end for
end for

Output: T
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