The Case For In-Network Computing On Demand

Yuta Tokusashi
Keio University

Robert Soulé
Universita della Svizzera italiana
Barefoot Networks

Abstract

Programmable network hardware can run services tradition-
ally deployed on servers, resulting in orders-of-magnitude
improvements in performance. Yet, despite these performance
improvements, network operators remain skeptical of in-net-
work computing. The conventional wisdom is that the oper-
ational costs from increased power consumption outweigh
any performance benefits. Unless in-network computing can
justify its costs, it will be disregarded as yet another academic
exercise.

In this paper, we challenge that assumption, by providing
a detailed power analysis of several in-network computing
use cases. Our experiments show that in-network computing
can be extremely power-efficient. In fact, for a single watt, a
software system on commodity CPU can be improved by a
factor of X100 using an FPGA, and a factor of x1000 utilizing
ASIC implementations. However, this efficiency depends on
the system load. To address changing workloads, we propose
in-network computing on demand, where services can be
dynamically moved between servers and the network. By
shifting the placement of services on-demand, data centers
can optimize for both performance and power efficiency.

1 Introduction

Data center operators face a challenging task. On the one hand,
they must satisfy the ever-increasing demand for greater data
volumes and better performance. On the other hand, they must
decrease operational costs and their environmental footprint
by reducing power consumption.

One promising approach to increasing application per-
formance is in-network computing [22, 33, 36, 38, 69]. In-
network computing refers to a particular type of hardware
acceleration where network traffic is intercepted by the accel-
erating network device before it reaches the host, and where
computations traditionally performed in software are exe-
cuted by a network device, such as a networked FPGA [27],
smart network interface card (smartNIC), or programmable
ASIC [11].

Researchers have used in-network computing to achieve
eye-popping performance results. For example, Jin et al. [38]
demonstrated that a key-value cache implemented in a pro-
grammable ASIC can process more than 2B queries/second,
and Chung et al. [18] demonstrated support of neural net-
works at tens of tera-operations per second. And, Jepsen et

Huynh Tu Dang

Universita della Svizzera italiana

Fernando Pedone
Universita della Svizzera italiana

Noa Zilberman
University of Cambridge

al. [36] describe a stream processing benchmark that achieves
4B events/second.

But, while such orders of magnitude performance improve-
ments certainly sound attractive, to date, there has been very
little attention paid to the other side of the ledger. Power con-
sumption is a tremendous concern for cloud service providers
[29] and data center operators have expressed qualms over
the impact of hardware acceleration [56]. The conventional
wisdom is that FPGAs and programmable network devices
are power hungry, and so it is natural to ask if the benefits are
worth the cost. In this paper, we explore the question: Can
in-network computing justify its power consumption?

Answering this question is not easy, as there are many chal-
lenges for characterizing the power-vs-performance trade-offs
for in-network computing. First, there is a wide variety of
potential hardware targets (e.g., FPGAs, ASICs, etc.) and
many different vendors. It is widely known that platforms
from different vendors have different power properties. Sec-
ond, there is a diversity of applications [18, 36, 38], and each
of these applications use in-network computing in different
ways. Third, implementations of similar applications often
make different design choices, such as using on-chip or off-
chip memory. Fourth, different applications are written using
different tools and frameworks (e.g., hand-written Verilog vs.
high-level synthesis), which can impact their resource usage,
performance, and power consumption.

To mitigate these challenges, we used the following method-
ology. (i) We selected three diverse applications, allowing us
to sample from distinct use cases within the data center: a
key value store, a consensus protocol, and a domain name
system. (ii) Each of the applications was developed using a
different language and tool chain: Verilog, Kiwi/Emu [73],
and P4 [14]. (iii) We built upon the modularity of one of
the designs (KVS), to benchmark the power contribution of
different components. And (iv), we used a common acceler-
ation platform (NetFPGA-SUME [86]), and a single server
environment, allowing for an apples-to-apples comparison.
But, in order to generalize our findings, we also studied the
behavior of one application, consensus, on a switch ASIC,
and extended the discussion to SmartNICs and systems on
chip (SoC)

Our study reveals some subtle and surprising results:

o The increase in power consumption for in-network comput-
ing over standard network devices is small.

o Software-based solutions are more power efficient at idle.
But, with a very low processing load, sometimes 10% of
the CPU’s processing capability, in-network computing
becomes more power efficient.

o Increasing the processing load has little effect on the power
consumption of in-network computing.

Given these observations, we present several “rules-of-thumb”
for when and how to leverage in-network computing. Through
a modular design of the in-network computing applications,
we demonstrate the importance (or lack) of certain design
choices.

We argue that programmable network hardware can and
should be treated the same as other scheduled computing re-
sources. Services can be assigned to network devices when the
workload and operational conditions are favorable. In support
of this thesis, we propose in-network computing on demand
in data centers. This new approach to in-network computing
enables seamlessly shifting workloads from servers to the
network, in a manner that optimizes power efficiency and
saves up to 50% of the power compared with software-based
solutions.

In short, this paper makes the following contributions:

e It provides a detailed study of the power consumption of
in-network computing applications, showing only modest
additional power consumption overhead.

e It compares software-based and network-based applica-
tions, showing that in-network computing has better power
efficiency and performance starting at low loads.

e It introduces in-network computing on demand, optimiz-
ing power efficiency by shifting applications between the
software and the network.

2 Scope

Sections 4-7 describe a set of experiments that evaluate the
trade-off between performance and power-consumption for in-
network computing applications, as well as observations from
different hardware targets. Before delving into the details, we
first define the scope of this work.

Choice of Applications. We study three applications: a key
value store, a consensus protocol, and a domain name sys-
tem (DNS) server. We chose these particular applications for
several important reasons: (i) they represent three distinct
use cases within a data center, (ii) they are implemented us-
ing very different architectures, (iii) different design flows
were used in their development, (iv) they are available un-
der an open-source license, allowing to reproduce this work,
and (v) they can all be run on a common hardware platform
(NetFPGA SUME).

However, there has been significant work on accelerating
applications in the network, and there are many different
possible design choices. We did not necessarily choose ap-
plications that yielded the best performance characteristics.
Indeed, other applications have achieved better performance

through specialization (e.g., [26, 64]), running on different
hardware targets (e.g., [38]), or through design choices such
as protocol or memory type (e.g., [33, 46]). On a similar note,
we did not choose the applications based on particular feature
sets (e.g., Caribou [32] provides a wide range of functionality
that would be impossible to provide with an ASIC). It was
more important to our study to explore different architectures
and workflows on a common hardware target.

In-Network Computing vs. Hardware Acceleration. This
study focuses specifically on in-network computing, and not
on the more general topic of hardware acceleration. By in-
network computing, we mean that we study designs that serve
as both network devices and accelerators. For example, we do
not study GPUs, as they are terminating devices. Prior work
has focused on hardware acceleration [60] and alternative
deployments. For example, Catapult [67] places an FPGA
in front of a NIC to accelerate applications such as neural
networks [18]. These deployments are out of scope for this
paper.

Performance Metrics. We study power consumption for
both the low-end and high-end of utilization, not just at peak
performance. We chose throughput as the main performance
metric, as most in-network computing deployments will have
lower latency simply by virtue of their deployment. We briefly
discuss latency in Section 9.5.

Deployment. For our study, we assume that a single in-
network computing application is deployed on a network
device. Recent work has proposed virtualization techniques
for deploying multiple data-plane programs concurrently [85].
It would be interesting in future work to study the impact of
such a deployment.

3 Case Studies

Below, we provide an overview of the three applications used
in our case study: a key value store (KVS), a consensus pro-
tocol, and a domain name system (DNS) server. These ap-
plications are all good candidates for network acceleration,
as opposed to hardware acceleration, because they are I/O
bound rather than CPU bound on the host. KVS and DNS
were also shown to be latency-sensitive on the microsecond
level [65].

We stress that the architecture of these applications is not
a contribution of this paper. We describe their designs here
in order to provide the necessary background for the later
sections. For more details, we refer the readers to the original
papers [20, 21, 73, 77, 78]. All architectures either support,
or are modified to support, both application-specific and stan-
dard network functionality.

3.1 LaKe: Key-Value Store

LaKe [77, 78], a Layered Key-value store, can be considered a
hardware-based implementation of memcached [61]. It accel-
erates storage accesses by providing two layers of caching: an

user Space
| Sp——
* Kernel Space
N°rm?1 CacheA
Traffid .
Miss
Packet PR
Classifier Rd
Memcached
Traffic |cache
Hit
\/ \ FPGA-NIC

Network Interface

VAR B NN

Client Client Client Client

Figure 1. High level architecture of LaKe.

on-chip memory (BRAM) on an FPGA and DRAM memory
located on the FPGA card, as shown in Figure 1. A query is
only forwarded to software if there are misses at both layers.

LaKe was implemented in Verilog. This allows for fine-
grain control of low-level resources and avoids potential over-
heads due to compiling from high-level languages.

LaKe uses multiple processing elements (PE) to conceal
latency contributed by accesses to external memory. The
number of PEs is scalable and configurable. Each PE takes
less than 3% of the FPGA resources. 5 PEs are sufficient
to achieve 10GE line rate (roughly 13M queries/sec). LaKe
supports standard memcached functionality, unlike other solu-
tions [46], and provides x10 latency and throughput improve-
ment and X24 power efficiency improvement compared to
software-based memcached.

LaKe has several important traits that make it ideal for this
study. First, LaKe runs on a platform that also acts, at the
same time, as a NIC or a switch, allowing us to enable or
disable its KVS functionality. Second, it has a modular and
scalable design. By controlling the number of PEs, power
efficiency can be balanced against throughput. Third, LaKe
enables studying power efficiency trade-offs in the use of
different types of memories.

3.2 P4xos: Consensus

Several recent projects have used programmable network
hardware to accelerate consensus protocols, including Net-
Paxos [22], Speculative Paxos [66], NoPaxos [48], Consensus
in a Box [33], and NetChain [37]. In this paper, we focus on
the P4 implementation of Lamport’s Paxos algorithm [42]
described in Paxos Made Switch-y [21]. We refer to the im-
plementation as P4xos.

The Paxos protocol distinguishes the following roles that
a process can play: proposers, acceptors, learners, and lead-
ers [42]. P4xos provides P4 implementations of the leader
and acceptors. It optimizes the protocol because it: (i) reduces
end-to-end latency by executing consensus logic as messages
pass through the network, and (ii) avoids network I/O bottle-
necks in software implementations by executing Paxos logic
in the hardware.

One aspect of P4xos relevant to this study is that the com-
ponents are interchangeable with multiple software imple-
mentations, including the open-source libpaxos library [49],
and a variation of libpaxos ported to use the kernel-bypass
DPDK [25]. Moreover, because P4xos is written in P4, one
can use P4-to-FPGA compilers [79, 84] and P4-to-ASIC com-
pilers [16] to target both hardware devices. Thus, overall,
we can make direct comparisons between four different vari-
ations: traditional software library, software library using
DPDK, FPGA-based, and ASIC-based.

We evaluated P4xos on several hardware targets, includ-
ing a CPU, an FPGA, and a programmable ASIC. The lib-
paxos software implementation of an acceptor could achieve
a throughput of 178K messages/second. A deployment on
NetFPGA SUME could achieve 10M messages/second. And,
the ASIC-based deployment could process over 2.5 billion
consensus messages per second. Latency in the FPGA was
less than on the CPU. Latency on the ASIC was less than the
FPGA.

3.3 EMU DNS: Network Function

Several projects have explored data-plane acceleration for
DNS servers, leveraging FPGAs [73] or kernel-bypass [51,
70]. In this paper, we focus on Emu DNS [73].

Emu DNS implements a subset of DNS functionality, sup-
porting non-recursive queries. The design supports resolution
queries from names to IPv4 addresses. If the queried name is
absent from the resolution table, Emu DNS informs the client
that it cannot resolve the name.

Emu DNS was developed using Emu [73], a framework
for developing network functions on FPGAs using C#. Emu
builds on the Kiwi compiler [72], which allows developers to
program FPGAs with .NET code. Emu provides Kiwi with a
library for network functionality.

Both P4xos and Emu DNS share a similar high-level device
architecture, as shown in Figure 2. In both cases, interfaces,
queueing, and arbitration are done in shell modules provided
by NetFPGA. Both the P4xos and Emu DNS programs are
compiled to a main logical block that uses only on-chip mem-
ory. The micro-architecture of each project’s logical block is,
obviously, different.

Prior work [73] performed a benchmark comparison be-
tween Emu DNS and NSD [62], an open source, authorita-
tive only, name server running on a host. The experiments
showed that Emu DNS provides x5 throughput improvement

10G port
10G port

10G port

10G port

P4 /Emu
Input Main Output
10G port Arbiter || Logical Arbiter 10G port
Core

10G port

10G port
PCle &
DMA

Figure 2. High level architecture of P4xos and Emu DNS, as
implemented on NetFPGA. The main logical core (shaded grey)
is the output of a program compiled from P4/C#.

and approximately x70 average and 99" percentile latency
improvement.

The original Emu DNS acts only as a DNS, and not as
a NIC or a switch. To support dynamic shifting between
hardware and software, we amended the original design with
a packet classifier, similar to the one used in LaKe, allowing
Emu DNS to serve both as a NIC (for non-DNS traffic) and
as a DNS server.

3.4 Applications: Similarities and Differences

All three applications share a common property: they were
implemented on the NetFPGA SUME platform [86]. This
property is essential for our study, as it allows us to bench-
mark the application performance and power consumption
given the same underlying hardware capabilities. One of the
known problems in power benchmarking is that platforms
from different vendors have different power characteristics;
this is not the case in our study.

Beyond sharing the same platform, all three implementa-
tions are UDP based, a common case for DNS and Paxos.
While offloading TCP to hardware is possible [59, 71], ex-
isting solutions did not match the needs set in §2. All three
chosen applications use the same 10GE interfaces presented
on the NetFPGA SUME front panel.

The three applications differ in several important aspects:
their role, their development flow, and the way they are used.
In term of usage, Emu DNS represents a common network
function provided in data centers. P4xos is used to achieve
consensus in distributed systems. LaKe represents a common
data center application. As we will discuss in § 9, the usage
of the applications reflects on the ability to dynamically shift
them in a working data center, and on the limitations to doing
SO.

The applications also differ in the way they are imple-
mented, using different pipeline architectures. Moreover, LaKe
uses external memories (SRAM and DRAM), whereas P4xos
and Emu DNS use only on-chip memory.

Finally, three different design flows were used in the de-
velopment of the applications: Verilog for LaKe, P4 (using
P4-NetFPGA) for P4xos, and C# (using Emu) for Emu DNS.
This results in differences in performance, resource usage,
and potentially power consumption. We show in §4 and §5

that the effect of those is minimal, while other design de-
cisions (e.g., external memory) have a significant effect on
power consumption. The complexity of the designs is not
comparable: Emu DNS is by far the simplest design. The
scalability and modularity of LaKe makes it hard to compare
to P4xos, yet both designs tend to many intricacies.

4 Power/Performance Evaluation

One of the main criticisms of in-network computing is that it
is power hungry [56]. In this section we examine this claim,
by evaluating the power consumption of the described ap-
plications under different loads. The power consumption of
each application is evaluated for both software- and hardware-
based implementations, including overheads, e.g., power sup-
ply unit. Our evaluation focuses on the following questions:

e What is the trade-off between power consumption and
throughput of different applications?

e Is in-network computing less power efficient than host-
based solutions?

e Does an in-network computing solution require high net-
work utilization to justify its power consumption?

The results reported in this section do not report an absolute
truth for in-network computing. Different applications will
have different power consumption profiles. Different servers
will implement different power efficiency optimizations, have
a different number of cores and will achieve different peak
throughput. Similarly, different smart NICs, FPGA cards,
and programmable network devices will result in different
performance and power consumption results. Yet, we are not
trying to unravel the performance and power efficiency of
specific designs. Rather, we try to gain understanding for
different applications running on similar platforms.

4.1 Experimental Setup

The goal of our experiments was to measure the power con-
sumption under different loads. We did not evaluate function-
ality or performance, which were part of the contributions of
previous works.

Note that the setup for this evaluation differs from those in
§9. An Intel Core 17-6700K 4-cores server, running at 4GHz,
equipped with 64GB RAM, Intel X520 NIC, and Ubuntu
16.04 LTS (Linux kernel 4.13.0) was used for software-based
evaluation. For hardware-based evaluation, the NIC was re-
placed by NetFPGA-SUME [86] card. For KVS evaluation,
the Intel NIC turned out to be a performance bottleneck, and
was therefore replaced by 10GE Mellanox NIC (MCX311A-
XCCT).

We used OSNT [2] to send traffic, which enabled us to
control data rates at very fine granularities and reproduce
results. Average throughput was measured at the granularity
of a second. We used an Endace DAG card 10X2-S to measure
latency, measuring the isolated latency of the application

120 - e 180 —— 120 _ _
: i - ibpaxos Acceptor ;
100 LaKe A 160 = DPDK Acceptor 100 F NSD (SW)
memcached 140 b Pixos Acceptor Emu (HW)
= 80| — = LaKe standalone | 120 =& Standalone Leader —#= Standalone Acceptor | — 80k == Standalone /
= d & & G =
< 60 = 100 g Z o : :
£ Z 80 : H
5 5 i 5
&40 60 fre ‘—Q‘ . S 40
20 A=Y 20 | T S e
20 sy s o s s
0 L 0
0 250 500 750 1000 1250 1500 1750 2000 U(] 200 400 600 800 1000 0 200 400 600 800 1000
Throughput [kpps] Throughput [kpps] Throughput [kpps]
(a) KVS (b) Paxos (c) DNS

Figure 3. Power vs throughput comparison of KVS (a), Paxos (b), and DNS (c¢). in-network computing becomes power efficient once

query rate exceeds 80Kppsm 150Kpps and 150Kpps, respectively

under test, traffic source excluded. Power measurements were
taken using a SHW 3A power meter [6].

4.2 Key-Value Store - Power/Performance

With LaKe, in contrast to other in-network computing use
cases, the role of the server software is not eliminated by
shifting functionality to hardware. LaKe serves as a first and
second level cache. In the event of cache misses at both lev-
els, the software services the request. We used Memcached
(v1.5.1) as both the host-side software replying to queries
missed in LaKe’s cache, and as the software implementation
we benchmark against. The power consumption evaluation
of LaKe, therefore, includes the combined power consump-
tion of the NetFPGA board and the server. Note that the NIC
is taken out of the server for LaKe’s evaluation, as LaKe
replaces it.

We measure the power consumption of the KVS, starting
with an idle system, and then gradually increasing the query
rate until reaching peak performance. Peak performance is full
line rate for LaKe and approximately 1Mpps for memcached.
We verify that the CPU reaches full utilization on all 4-cores.

Figure 3(a) presents the power-to-throughput trade-off for
the KVS. The x-axis shows the number of queries sent to the
server every second, while the y-axis presents the power con-
sumption of the server under such load. We show the power
consumption for memcached (software only), LaKe within
a server, and LaKe as a standalone platform, i.e., working
outside a server and without the power consumption con-
tributed by the hosting server. As the figure shows, the power
consumption of the server while idle or under low utiliza-
tion is just 39W, while LaKe draws 59W even when idle.
However, the picture changes quickly as query rate increases.
At less than 100Kpps, LaKe is already more power efficient
than the software-based KVS, with the crossing point oc-
curring around 80Kpps. Interestingly, we found that after
replacing the Mellanox NIC with an Intel X520 NIC, the host
became more power efficient; the crossing point moved to
over 300Kpps. However, the maximum throughput the server
achieves using the Intel NIC is lower.

LaKe has a high base power consumption, but the consump-
tion does not increase significantly under load. Figure 3(a)

shows the throughput up to 2Mpps. But, we note that LaKe
reached full line rate performance, supporting over 13Mpps
for the same power consumption.

4.3 Paxos - Power/Performance

We evaluated the power consumption of the Paxos leader and
acceptor roles for three different use cases: the basic software
implementation of libpaxos, the software implementation
using DPDK, and P4xos on NetFPGA.

We start with an idle system, and gradually increase the
message rate. The libpaxos software uses one core, and we
verify that the core reached 100% utilization.

Figure 3(b) presents the power-to-throughput trade-off for
Paxos. As with the KVS, the idle power consumption of the
server is lower than the card, but as the query rate increases,
P4xos (hardware) becomes more power efficient. As P4xos
doesn’t use the external memories on NetFPGA, its base
power consumption is 10W lower than LaKe. The crossing
point between software and hardware power efficiency is at
150K messages/sec.

Note that the power consumption for the DPDK imple-
mentation is high even under low load, and remains almost
constant under an increasing load. This is as expected, since
DPDK constantly polls. This illustrates that software design
choices have a strong impact on power consumption, inde-
pendent of the hardware platform.

The power consumption results of P4xos in hardware in-
clude the power consumption of the server hosting the board.
The power consumption of P4xos outside the server is 18.2W
when idle, with the additional dynamic power consumption
(under maximum load) being no more than 1.2W. Yet, it is not
expected to have stand alone FPGA boards in a data center en-
vironment: the platforms require power supply, management
and programming interfaces (e.g., for updates). Encasing such
boards within a standard server enclosure is therefore an ex-
pected practice. Typically, multiple acceleration boards will
share a single enclosure [8], reducing the per-board power
consumption contribution to the system.

4.4 DNS - Power/Performance

The peak performance of Emu DNS is roughly 1M requests
served every second. This is comparable to the 956K requests
we measure served by the software, and a result of Emu’s non-
pipelined nature. This case demonstrates aspects of power
efficiency where in-network computing does not provide sig-
nificant performance benefits.

We measure the power consumption of Emu DNS, starting
with an idle system, and gradually increasing the query rate
until peak performance is reached.

The power consumption as a function of performance,
shown in Figure 3(c), is almost identical to P4xos. The power
consumption of Emu DNS is about 48W, starting at 47.5W
and reaching less than 48W under full load. The idle server
takes less than 40W, but less than 200Kpps are enough for the
power consumption to exceed the hardware implementation.
At peak throughput, the server draws twice the power of Emu
DNS.

5 Lessons from an FPGA

In-network computing designs often offer significant perfor-
mance improvements, but at the cost of bespoke functional-
ity [46], small memory [73], or of a limited feature set [37].
In this section we build upon the modularity of LaKe (KVS)
to explore the performance and power efficiency effects of
such design decisions.

Beyond illustrating the effects of such design decisions,
this section also highlights the challenge in comparing state-
of-the-art in-network computing solutions. For example, the
difference between a design that uses just a small on-chip
memory, and one that mitigates a miss in the cache, can be
an order of magnitude in performance and 66% in power con-
sumption. We assert that future research should take greater
care when catering for in-network computing design.

5.1 Clock Gating, Power Gating
and Deactivating Modules

The power consumption of a hardware device depends on
many aspects, from properties of the manufacturing process
(static power, leakage) to aspects depending on activity (such
as the effect of clock frequency).

For the purpose of our discussion, we focus on the case
where the in-network computing platform is given (in our
case, NetFPGA). The ASIC/FPGA device on the platform is
set as well (in our case, Xilinx Virtex-7 690T FPGA). The
operator can only change performance and power efficiency
within these limitations.

We focus on three types of power-saving techniques: clock
gating, power gating, and deactivating modules. Clock gating
refers to the case where the clock to certain parts of a design
is active only when activity is required. Power gating refers to
a similar case where the power to specific parts of the design
is disabled. As Virtex-7 does not support power gating, we

30

Power [W]

Ref. 1PE No Max Reset Reset Server Clk LaKe
NIC &no mem load mem mem no gating
mem &no &clk cards
mem gating

Figure 4. The effects of LaKe’s design trade-offs on power
consumption. Blue indicates LaKe’s power consumption. Red
refers to NetFPGA’s NIC and an i7 Server.

compare to the case where the modules in question are elimi-
nated from the design, but note that many more recent ASICs
and FPGAs do support power gating. The last case, deactivat-
ing modules, refers to the case where modules are only used
when needed (e.g., using one processing core instead of five),
and are either idle or held in reset.

Figure 4 summarizes the effect of the different power-
saving techniques for LaKe. As shown, the power consump-
tion of an idle server (without a NetFPGA card) was roughly
equivalent to the power consumption of a stand alone (host-
less) NetFPGA card programmed with LaKe but also idle.
This means that the basic power consumption of a stand-alone
accelerator (including its power supply) can be roughly the
same as a server. In §4 we refer to the power consumption
of LaKe as the combined power of the NetFPGA platform
and the server, as both build the complete multi-layered cache
platform.

Clock gating to the LaKe module and the PEs earns less
than 1W of power saving. The power contribution of each
PE is also small, about 0.25W (power gating). The biggest
contributor to power consumption is the external memories—
no less than 10W. Reset to the external memory interfaces
can save 40% of their power. Clock and power gating to the
same interfaces is not supported.

5.2 Processing Cores

On FPGAs, and in particular for the case of LaKe (and Emu
DNS), the cost of more logic is low. The power overhead
of Lake’s logic over the NetFPGA reference NIC is 2.2W,
including five processing cores, interconnects and a packet
classification module. In terms of FPGA resources, this trans-
lates to less than 3% of logical elements and on-chip memory
resources. In return, each processing core can support up to
3.3Mqgps. There is a limit on the number of cores used, which
is not the FPGA resources or power consumption, rather the
interconnect between them and the memories, as well as the
interconnect between them and the NIC data path.

5.3 Memories

Using off-chip memory is expensive: 4GB of DRAM mem-
ory costs 4.8W and 18MB of SRAM costs 6W'. There is
obviously a gain here as well. 4GB of DRAM is enough to
hold 33M entries of 64B value chunks and 268M entries of
hash table entries. This is X65k the number of entries using
only on chip memory. The SRAM holds a list of up to 4.7M
free memory chunks, x32k the number of entries using on
chip memory. Using external memories also affects the hit
ratio in the LaKe L2 cache, and consequently on the latency.
A hit in the on-chip cache takes no more than 1.4us, while
a miss in the hardware will be x10 longer (13.5ys median,
14.3 s 99™percentile). Off chip memory adds a bit of latency
compared to the on-chip cache, but saves significantly in com-
parison to software (1.67us median, 1.9us 99" percentile at
100Kgps, and up to 99" percentile of 3us at 10Mgps).

The trade-off here is clear, and depends on the number
of expected keys: if you care about low latency, you should
opt for the LaKe option using external memories, whereas
if power is your concern, on-chip memory is the right way.
Given that past work [7] had shown that in KVS the number of
unique keys requested every hour is in the order of 10? — 101!,
with the percentage of unique keys requested ranging from
3% to 35%, KVS applications would benefit from the use
of external memories. On the other hand, use cases such as
NetChain [37] will do better with on-chip memory.

5.4 Infrastructure

The cost of using a programmable card is absolute, yet the
relative power within a host strongly depends on the system
in which the card is installed. So far, we have focused on a
light-weight platform using an i7 Intel CPU. In this system,
the initial power-cost of an unused FPGA is higher than that
of the server. For comparison, we consider a single 3.5GHz
Intel Xeon E5-2637 v4 on a SuperMicro X10-DRG-Q mother-
board. In this setup, the idle power consumption of the server,
without a NIC, is 83W, meaning 20W more than the power
consumption of LaKe running at full load in our base setup
described in §5. The power difference of installing a NetF-
PGA card on this machine and running LaKe, P4xos, or Emu
DNS is the same as with the base setup, because the power
consumption of the board is constant. The peak power con-
sumption of LaKe running on the Xeon server is, obviously,
higher, as it combines the power consumption of LaKe, and
the (higher) power consumption of the Xeon server replying
to queries that are a miss in LaKe. Data centers, however, also
deploy low-power instances, e.g. ARM based, and on such
low-power platforms the relative power cost of the FPGA is
higher.

The fact that power consumption is platform dependent ap-
plies also to the FPGA devices: FPGA from different vendors
or from different generations will lead to a different power

I'These results are indicative of the NetFPGA SUME platform.

consumption. For example, Xilinx UltraScale+ achieves x2.4
performance/Watt compared with Xilinx Virtex 7 [83].

6 Lessons from an ASIC

FPGA devices are very different from ASICs, both in terms of
technology and the availability of power saving mechanisms.
As a point of comparison, we also report experimental results
on the power efficiency of in-network computing on an ASIC
using Barefoot’s Tofino chip [11].

The power consumption of programmable switches is the
same or better than fixed-function devices. In other words,
if a programmable switch is used strictly for networking, it
does not incur additional power costs. However, the question
remains: if we use a programmable switch to also support
in-network computing applications, will there be additional
power consumption costs? We explore this question below.
Due to the large variance in power between different ASICs
and ASIC vendors [52], we only report normalized power
consumption.

For the evaluation, we ran the P4xos leader and acceptor
roles on a Tofino, which required some architecture-specific
changes to the code for memory accesses. We used a 1.28Tbps
configuration of 32 x 40Gbps for the Tofino, with a “snake”
connectivity?, which exercises all ports and enables testing
the device at full capacity. The Paxos program is combined
with a layer 2 forwarding program. Hence, the switch exe-
cutes both standard switching and the consensus algorithm
at the same time. We compare the power consumption of
Tofino running only layer 2 forwarding to Tofino running the
combined forwarding and P4xos. The power consumption of
transceivers is excluded.

The power consumption when idle is the same for both the
ASIC with forwarding alone, and the ASIC with forwarding
plus P4xos. As the packet rate increases, there is only a mi-
nor difference in power consumption between the two cases;
running P4xos adds no more than 2% to the overall power
consumption. While 2% may sound like a significant number
in a data center, the diagnostic program supplied with Tofino
(diag.p4) takes 4.8% more power than the layer 2 forwarding
program under full load, more than twice that of P4xos.

While the power consumption of Tofino increases under
load, the relative increase in power using P4xos is almost con-
stant with the rate. Furthermore, in contrast to a server, where
momentary power consumption can more than double itself
(§4), the difference between the minimum and maximum
consumption is less than 20%.

It is true that the power consumption of a server is less
than that of the switch. Yet, as our experiment shows, adding
in-network computing to networking equipment already in-
stalled in a data center has a negligible effect on the power
consumption, while providing orders of magnitude improve-
ment in throughput. Even at a relatively low utilization rate

2Each output port is connected to the next input port, see [20].

(10%), our implementation of P4xos on Tofino achieves x1000
higher Paxos throughput than a server, while its absolute dy-
namic power consumption® is 1/3 of the absolute dynamic
power consumption of the server (at 180Kpps).

A common measure of power efficiency is operations per
watt. While software base consensus achieves 10K’s of mes-
sage per watt, and FPGA based designs achieve 100K’s of
messages per watt, the ASIC implementation easily achieves
10M’s of messages per watt.

7 Lessons from a Server

The evaluation in sections 4 and 5 was using an Intel Core
17-6700K 4-cores machine. We perform a limited evaluation
to study the power consumption of a Xeon class server, more
suitable to data center environments. The server that we use
in the evaluation is ASUS ESC4000-G3S using two sockets
of Intel Xeon E5-2660 v4, each CPU with 14 cores and base
frequency of 2GHz.

We evaluate the power consumption of the CPU cores on
the server under different loads, using a synthetic workload,
without I/O, and monitor using running average power limit
(RAPL). The power consumption of the server is 56W in idle,
evenly divided between the sockets, and 134W under full load
of all cores. The power consumption of the server jumps when
even a single core is used, up to 91W. Not only the power
consumption of the socket with the running core increases, but
also of the second socket, almost equally. However, once the
core is running, the overhead of an additional core running is
small, in the order of 1W-2W. We provide further breakdown
in our released dataset.

Interestingly, even at a low CPU core load, e.g., 10%, the
power consumption of the server reaches 86W. Given the
smaller overhead of running an application in the network,
it becomes desirable even when workloads under-utilize a
server’s computer resources.

8 When to Use In-Network Computing

Niccolini et al. [60] define the energy consumption as:
E=Py(f) xTy(W,) + Ps X Ts + Pi X T, (D

Where E is the energy consumption, P is power consump-
tion, f is device frequency, W the number of processed pack-
ets, and T is the time at given state. P;(f)xTy(W, f) accounts
for the energy used when actively processing packets. Ps X T
is the energy required to transition from sleep state. Finally,
P; X T; is the energy consumption at idle. Packet rate R is
defined as R = W /Ty.

In-network computing should be used when E°, the energy
of a system running an application in software, exceeds EV,
the energy of a system running the same application within
the network.

Below, we try to answer two questions:

3The difference between idle power consumption and power consumption
under a given load.

o If you use standard network devices, should you start using
programmable ones?

o If you use programmable network devices, when should
you offload to the network?

For the first question, the dominant components will be
P? and PN. Assuming the programmable network device is
not used for in-network computing, the energy penalty of
including it as part of normal network operation is the one to
worry about.

For the second question, Pl.N = Pf , as the programmable
device is the same. As in-network computing devices are part
of the network, forwarding packets and providing networking
functionality, their idle and sleep mode power is not changing
regardless of the location of a workload. Here P§ and PY
become dominant components. At low data rates P{Ij\] (R) >
Pg (R) due to the additional power consumed by now active
in-network computing logic in the device, but as R grows,
P‘Ji\] (R) < Pg (R), as in-network computing is more power
efficient at high utilization (§4,§5). The tipping point from
the software to the network occurs when R reaches PéV (R) =
P3(R).

9 In-Network Computing on Demand

In this paper, we argue that programmable network devices
should be treated as one would treat other scheduled com-
puting resources. Workloads can be assigned to network de-
vices, and one should be able to reallocate the workloads to
other computing resources. §8 provided an analysis describ-
ing when in-network computing can be optimally used, and
next we discuss the ow.

As there is no doubt that in-network computing offers sig-
nificant performance benefits (§4), the question becomes how
can we benefit from the performance of in-network computing,
without losing power efficiency?

We propose in-network computing on demand, a scheme to
dynamically shift computing between servers and the network,
according to load and power consumption. This scheme is
useful where identical applications run on the server and in the
network, as in our examples. It can be applied to a wide range
of applications, though possibly not all (as discussed later).
It is also not applicable to bespoke in-network computing
applications, which have no server-side equivalent.

The power consumption using in-network computing on
demand is illustrated in Figure 5. As the figure shows, at low
utilization power consumption is derived from the properties
of the software-based system. As utilization increases, pro-
cessing is shifted to the network, and the power consumption
changes little with utilization.

We consider the communication cost associated with in-
network computing on demand. Stateless applications will
require no additional communication cost to run, whereas
stateful application will have a communication cost that is

120

100

80

60

Power [W]

40 :

@ DNS (SW)
W KVS (SW)
« & Paxos (SW)

HE o Di\IS (On de-mand)

20 _'+ KVS (On demand)

! == Paxos (On demand)
1 1

0 i i
0 200 400 600 800 1000 1200
Throughput|[kpps]

Figure 5. Power consumption of KVS, Paxos and DNS using in-
network computing on demand. Solid lines indicate in-network
computing on demand, and dashed lines indicate software-
based solutions.

bounded by the communication cost of shifting the applica-
tion from one server to another. We discuss this further in
§9.2. The networking device providing in-network computing
services is expected to be en-route to a server running the
application (otherwise it is not in-network computing, but
standard offloading), meaning that no additional latency is
introduced.

Two components are required to support in-network com-
puting on demand. The first is a controller, deciding where the
processing should be done and when the processing should
be shifted between a server and the network. The second is
an application-specific task, which may be null, in charge of
the actual transition of an application. In §9.1 we discuss two
approaches to implementing the controller, while §9.2 reflects
on the application-specific requirements and evaluation.

9.1 In-Network Computing on Demand Controller

We propose two types of in-network computing on demand
controllers: host-controlled and network-controlled. We present
proofs-of-concept for both approaches, evaluate them and
discuss trade-offs between the approaches. The network-
controlled approach typically reacts faster, but must make
its choices based on fewer parameters.

Network-Controlled In-Network Computing. The first con-
troller design makes offloading decisions in the network hard-
ware, based on the traffic load. The goal is to reduce load on
the host as early as possible, to mitigate bottlenecks, and pro-
vide another layer of offloading (rather than encumbering the
host with an additional controller). The control is not entirely
automatic: all of its parameters are configurable.

The controller uses a pair of parameters to shift a work-
load from the host to the network. The first parameter is the
average message rate that would trigger the transition, and
the second is the averaging period (implemented as a sliding
window). If the average message rate of the accelerated appli-
cation exceeds the message rate threshold over the averaging

period, the device transitions the workload to the network. A
mirror pair of parameters is used to shift workloads from the
network back to the host. Using two sets of parameters pro-
vides hysteresis, and attends to concerns of rapidly shifting
workloads back-and-forth between the host and the network.

A disadvantage of this approach is that it does not take into
account the actual power consumption of the host. It only
has access to the packet rate. Different applications have very
different power profiles [63], and there is no suitable heuristic
that can be applied to the shifting thresholds. Our controller is
implemented in 40 lines of code within the FPGA’s classifier
module, and consumes negligible resources (order of 0.1%).

Host-Controlled In-Network Computing. The second con-
troller design makes offloading decisions at the host, using
information such as the CPU usage and power consumption.
A shift occurs when there is a clear power consumption ben-
efit, and the offloading leads to a performance gain. A shift
may also happen when computing demands exceed available
resources, and the network provides extra compute capacity.

Like the network-based controller, the host-based controller
maintains two sets of parameters: one for shifting the work-
load to the network, and one for shifting the workload back.
As long as the application is running, the controller monitors
its CPU usage. We also monitor the end-host’s power con-
sumption using running average power limit (RAPL). If the
application exceeds a (programmable) power threshold set for
offloading, and CPU usage is high, the controller shifts the
workload to the network. Monitoring the power consumption
alone is not sufficient, as a high power consumption can be
triggered by multiple applications running on the same host.
As before, the information is inspected over time, avoiding
harsh decisions based on spikes and outliers. In order to shift
back to the host from the network, the controller needs infor-
mation from the network (e.g., packet rate processed using
in-network computing). Otherwise, the shift may be ineffi-
cient, or cause a workload to bounce back and forth. Our
controller is implemented in 204 lines of code, and consumes
only 0.3% CPU usage, mainly for performing RAPL reads.

The host-controlled approach provides better control and
flexibility to the user. Yet, care needs to be taken when bench-
marking a workload [57]. The algorithms used in this pa-
per are naive, providing a proof of concept. They can be
enhanced by more sophisticated algorithms. In energy propor-
tional servers, energy efficiency is not linear, though power
consumption still grows linearly with utilization [12], and
algorithms such as those based on PEAS [81] may improve
the energy consumption. These algorithms are beyond the
scope of this paper and remain part of future work.

9.2 On Demand Applications
Key Value Store. LaKe shifts from the software to the net-

work, as query rate demands. An application using LaKe
remains oblivious to the shift. As LaKe natively acts as a NIC

to all non-KVS traffic, at the start of the day all traffic can be
sent and processed by the software. Both network-based and
host-based controllers support the transitioning of KVS.

To support in-network computing on demand, and provide
optimal power efficiency, LaKe’s memories need to be held
in reset and clock-gating to the logical modules should be
enabled. Here, the triggering of a shift means that at first all
memory accesses will be a miss, and queries will continue
to be forwarded to the software, until the cache, both on and
off chip, warms. Consequently, latency would start to drop,
but query rate will be maintained. Enabling LaKe will not
necessarily increase the throughput. As shown in Section 5,
LaKe becomes power efficient at a low query rate that is also
sustained by the software. Therefore, unless the query rate is
externally increased, the throughput will not change.

Figure 6 demonstrates the transition from running in soft-
ware to running on hardware, using host controlled in-network
computing. The red line on each graph indicates the moment
of transition. Clock gating and memories reset are not enabled
in this experiment.

We maintain the same server as described in Section 4, how-
ever we replace OSNT with a similar server running a mutilate
based [45] memcached client, using the Facebook “ETC” [7]
arrival distribution. ChainerMN [1] (Chainer v4.4.0), a deep
learning framework, is running as a second workload on the
host, passing traffic through the same LaKe card. CPU power
consumption is read from RAPL, and is increased due to
ChainerMN. Transition is triggered after three seconds of
sustained high load, and then again as ChainerMN stops.
Throughput is reported by the hardware counter on the LaKe
card. As Figure 6 shows, the transition from software to hard-
ware had no effect on KVS throughput, not even momentarily.
The latency of query-hit improves ten-fold within tens of
microseconds.

The approach described above has a minimal cost; there
is about SW gap between the power consumption of a NIC
and that of LaKe with memories in reset and LaKe module’s
clock gated. We expect that on production designs and ASICs,
this power consumption can be further minimized. Other ap-
proaches, such as partial reconfiguration of FPGA or keeping
LaKe’s cache warm all the time, are possible, but may result
in a momentary traffic halt or reduced power saving, cor-
respondingly. We therefore choose the approach that keeps
LaKe programmed but inactive, in order to get the best of
both performance and power efficiency worlds.

The eventual outcome of the on demand swap of KVS is
shown in Figure 5. At low query rate, power consumption
is low. When the traffic rate grows, in-network computing
is enabled and the power consumption of LaKe becomes
the dominant figure. We note that this graph is indicative
of a case where all queries are (after warm up) hit in LaKe.
In a case where many queries are a miss in the hardware,
more power would be consumed by server attending to these

=
& 20
= 16 ! o !
-)ocee00000h000000000q,,4500000¢
a 12 1 |
"Eo 8 | |
= 4 4 1 1
g 9 1 1
=] T T
& 0 10000 20000 30000
< 40 120
% 30 : A A Lateucyl v Power: égo E
E’ 20 —AAAAAAAAAAI’le""'v: AA‘AAAE 28 E
% 10 ivvvvvvvvvl adasandavgvvvvve o £
1 Yv
= 0 T T 0
0 10000 20000 30000

Time [msec]

Figure 6. Transitioning KVS from the software to the network
and back. The transitions are indicated by a red dashed line.

queries. The worst case power consumption strongly depends
on the workload [7].

Paxos. Modifying the deployment of Paxos is significantly
more challenging than shifting a KVS. In fact, changing the
members of Paxos—regardless of whether the roles are im-
plemented in software or hardware—requires addressing two
well-studied problems in distributed systems: leader elec-
tion (i.e., shifting the role of the leader from one member
to another) and reconfiguration (i.e., replacing one or more
acceptors) [42]. In this paper, we focus on leader election, and
describe one possible implementation. We focus on leader
election because even at low message rates, a leader can be-
come a bottleneck for end-to-end system performance. For
reconfiguration, we point readers to protocols from prior
work [35, 43, 44] which could be adapted for this setting.

In the Paxos protocol, the leader assigns monotonically
increasing sequence numbers to client requests. Thus, there
are two challenges that must be addressed for leader election.
First, there must be a mechanism to identify a non-faulty
leader from a set of candidates [42]. Second, the newly elected
leader must learn the most recent sequence number.

For the purposes of shifting on demand, the mechanism
for identifying the new leader is somewhat simplified when
compared to the general case of coping with failures. We
use a centralized controller to initiate the shift, depending on
the workload. To actually implement the shift, the controller
modifies switch forwarding rules to send messages to the new
leader.

The new leader starts with an initial sequence number
of 1 and must learn the next sequence number that it can
use (i.e., a consensus instance that has not been used by the
previous leader). We extended the acceptor logic to include
the last-voted-upon sequence number whenever the acceptor
responds to a message. Using this information, the new leader
can determine the most recent not-yet-used sequence number.

However, there are a few subtleties that must be addressed.
In the process of switching leaders, some consensus instances
may have no decision (e.g., if not enough acceptors have voted

E 14
= 12 |]
- 10
3 8]
2 6} |
w4 Po I'e]
3 2 |]
E 0 | | | |
I3 0 1000 2000 3000 4000 5000
'g 500 T T T T
@ 400 |- |4 I .
=, 300 |- | | 4 B
2 200 - | N
£ 100 A PV V>
4

0 1000 2000 3000 4000 5000

Time [msec]

Figure 7. Transitioning Paxos leader from the software to the
network and back. The transitions are indicated by a red
dashed line.

in the consensus instance). Therefore, there may be gaps in
the sequence numbers, which would prevent the protocol
from making progress. To cope with that possibility, we use
two mechanisms: a time out at the client and a time out at the
learner.

The clients resend requests after a time-out period if the
learner has not acknowledged. When a client re-tries, the
newly elected leader will increment the sequence number.
After a sufficient number of re-tries, the leader will eventually
learn the new sequence number.

The learner will look for gaps in instance numbers after
a time-out period. If it discovers a gap, then it will send a
message to the newly elected leader, asking it to re-initiate that
instance of Paxos. If that instance has previously been voted
on, then the learners will receive a new value. Otherwise, they
learn a no-op value.

Figure 7 shows the throughput and latency for consensus
messages over time as we shift the leader from software to
hardware and back. The red vertical lines indicate when a
shift occurs. We see that the throughput increases and the
latency is halved when the leader is implemented in hardware.
The shift is triggered as the in-network computing controller
replaces a forwarding rule to send client requests to the new
leader. After both shifts, the new leader fails to propose until
it learns the latest Paxos instance from the acceptors. Note
that the throughput drops to zero for about 100 msec. This
corresponds to the value of the client timeout. This timeout
value was chosen arbitrarily, and could be reduced by tuning
to the particular deployment.

DNS Server. Dynamically shifting DNS operation from soft-
ware to the network is much the same as shifting KVS. The
network-based controller is similar for both cases, due to the
similarity between the DNS and KVS packet classifiers in the
hardware. The host-based controller for DNS is simpler than
that of the KVS, if the host is a dedicated DNS server that
does not run other tasks in parallel. We omit the graphs for
brevity.

Shifting a DNS server to a programmable ASIC, like Bare-
foot’s Tofino, should also be possible. Prior work, such as
NetChain [38] and NetCache[37], have already demonstrated
the possibility of implementing a cache on Tofino, and DNS
responses fit comfortably within the storage limits for val-
ues identified in their evaluation [38]. The biggest challenge
would be supporting DNS queries that require parsing deeper
than the maximum supported depth. However, in the worst
case scenario, those queries could be treated as iterative re-
quests.

9.3 Real Workloads

We investigate the applicability of in-network computing on
demand by examining two real-world workloads, from Face-
book’s Dynamo [82] and the Google cluster data [68, 80].
The two workloads present two different use cases. In Dy-
namo, every cluster runs a unique workload. In Google, the
workloads are heterogeneous.

Dynamo provides several important insights to this work.
First, the power consumption of the webservers used by
Facebook was significantly higher than that of the i7-based
servers we used in Section 4, and doubled between genera-
tions of CPUs. Even at low loads of 10%, the dynamic power
exceeded 30W (Westmere 1.5639) and 75W (Haswell E5-
2678v3), more than the power consumption of a fully utilized
smartNIC, let alone the power contributed by in-network com-
puting. Furthermore, the power as a capping function for the
workload was a driving force of Dynamo.

Second, Dynamo had shown that on a rack level, the power
variation over three seconds was 12.8% at the 99*" percentile,
and 26.6% over thirty seconds, with the median power vari-
ation being less than 5%. Caching—one of our case study
applications—had a median power variation of 9.2% over
sixty seconds, with a 99" percentile of 26.2%. Other applica-
tions, such as a web server, had a median power variation of
37.2% and a 99" percentile of 62.2%. The appropriateness
of in-network computing depends on the power variance. If
there is low power variance over the scheduling period, it will
be safe to use in-network computing. If there is large variance,
in-network computing on demand may be incorrect or inef-
ficient, due to the variability of the power consumption over
time. Dynamo does not provide CPU utilization information.
Therefore, we cannot say if in-network computing would be
beneficial at all times or only on demand.

We explore the Google trace to understand transient ef-
fects. The lack of power consumption information and the
normalization of CPU core utilization limit our insights. In
the Google trace, 90% of resource utilization is by jobs longer
than two hours, though these jobs represent only 5% of the
total number of jobs [68]. The long run times make these
resource-hungry jobs candidates for offloading to the net-
work. Moreover, the time scale for scheduling is long, fitting
in-network computing on demand. Based on our observa-
tion that even a low utilization of a CPU core may draw more

power than in-network computing (§7), we identify more than
1.39 million unique tasks in the trace that utilize for at least
five minutes 10% or more of a CPU core, making them candi-
dates for offloading. However, on average, every node within
the cluster has 7.7 (normalized) CPU cores running such
tasks within every five minutes sample period, diminishing
the power saving benefit of in-network computing (assuming
a limited number of workloads can be offloaded at a time).

The Google trace leads us to consider a different usage
model: in-network computing on demand as load diminishes,
rather than when load increases. When a multitude of jobs
run on the same server, offloading to the network saves little
power. However, as jobs end or are migrated from the server,
moving the last (or first) job to the network will save power.
The benefit of in-network computing remains applicable when
latency or throughput, rather than power efficiency, are the
targets, regardless of the load on the CPU.

9.4 Switch On-Demand?

We analyze the benefit in in-network computing on demand
using switch ASIC. Unlike NIC, a switch serves multiple
nodes, and in the next example we focus on a Top of Rack
(ToR) switch, serving a rack of n nodes. We maintain the
notations used in 8, where we asserted that the tipping point
from the software to the network occurs when R reaches
PY(R) = P{(R).

Discussions with several silicon switch vendors confirmed
that Pl.N = Pf holds for these specific devices, and that
switches’” dynamic power consumption mostly increases lin-
early with data rate. The difference in power consumption
between fixed-function and programmable switches is small,
and favors the programmable switch (comparing Arista switc-
hes [3-5]). With switches designed to serve billions of packets
per second, taking less than 5W per 100G port [5], a million
queries will draw less than 1W*. This is unparalleled with
the CPU power consumption under similar conditions (§4).
Consequently PYY(R) will equal P5(R) when R is almost zero,
a result that is further strengthened when we remember that
both P‘Ji\] (R) and PS (R) contain a shared power consumption
element, the dynamic power consumption of the switch for-
warding packets, which based on our discussions dominates
PY(R).

This is slightly different to the case discussed for FPGA,
where the power difference between a forwarding-only and
workload-processing in not negligible, relative to the maxi-
mum power consumption of an FPGA NIC.

A different case consider the switch handling just some
of the requests, and the rest are handled by the host (e.g.,
caching). Here the host may still consume significant power,
possibly close to the saturation point. Under this scenario,
the greatest benefit will come from performance, and it is a

4assuming packets of 1500B or smaller

function of hit:miss ratio to define the efficiency of offloading
on-demand.

9.5 Further Discussion

Latency. In-network computing reduces latency by design.
By terminating a transaction within the network, instead of
reaching the host, time can be saved. P4xos, Emu DNS and
LaKe have all demonstrated significant latency improvement
at the 99" percentile. The tail latency of an in-network com-
puting application depends on its implementation: a fully
pipelined design that does not access external memories
will have an almost-constant latency (+100ns on NetFPGA
SUME) and additional pipeline stages required to implement
an application will often have nano-second scale overhead.
In these architectures, power consumption and latency will
be independent. Latency variance due to congestion will be
the result of switch-forwarding, and thus be experienced in a
software-based environment as well. Access to external mem-
ories can lead to latency increase of hundreds of nanoseconds
([78], depending on hit and miss ratio) and additional power
consumption. Still, it will be faster than going through PCle to
the host [88], processing there and accessing similar (power
consuming) memories on the host. To conclude, where latency
is the target, there is no need for in-network computing on
demand, as in-network computing will provide lower latency.

Generality of In-Network Computing on Demand. In-net-
work computing is not the magic cure-all for data centers’
problems. Not all applications are suitable to be shifted to the
network, and the gain won’t be the same for all. In-network
computing is best suited for applications that are network-
intensive, i.e., where the communication between hosts has a
high toll on the CPU. Latency sensitive applications are also
well suited for in-network computing. It is no coincidence
that the most popular in-network computing applications to
date are caching related [37, 38, 46]. Caching provides a
large benefit in the common case, and a way to handle tail
events. Other applications may find in-network computing on
demand to be hard. For example, using Paxos in the network
is hard, and doing it on demand is even harder. The effort of
implementing an in-network computing solution may just be
too high for some applications. Furthermore, each application
may have a different power consumption gain, as shown in
Figure 5.

In-Network Computing Alternatives. Readers may wonder
if there are no simpler solutions to increasing application
performance, rather than in-network computing. One solution,
for example, is using multiple standard NICs in a server to
achieve higher bandwidth [24, 30]. However, this approach
comes at the cost of more NICs, increasing power and price.
Alternatively, one may use multiple servers, or opt for a multi-
socket or multi-node architecture [47]. These may be cost and
power equivalent to an FPGA, a smartNIC, or an ASIC based
design. But, their performance per watt is unlikely to match

the ASIC-based solution. GPUs are efficient for offloading
computation-heavy applications, but as they are not directly
connected to the network, they are less suitable for network-
intensive applications.

10 FPGA, SmartNIC or Switch?

“Where should I place my in-network computing applica-
tion?” one may wonder. The answer is not conclusive. Today,
a switch ASIC can provide both the highest performance
and the highest performance per Watt. Running in a switch
also cuts in half the number of (application-specific) packets
through the switch: instead of both request and reply packets
going through the switch, only one packet goes through: en-
tering as the request, and coming out as the reply. A switch
may not be, however, the cheapest solution, with a price tag of
X10 or more compared to other solutions. Using a switch as
the place to implement in-network computing leads to other
questions. What is the topology of the network? Can and will
all messages travel through a specific (non addressed) switch?
What are the implications of a switch failure (as opposed to
a smartNIC/FPGA next to the end-host)? The answers are
all application and data center dependent. Switches also have
limited flexibility compared to other programmable devices:
they have limited resources (per Gbps) and a vendor-provided
target architecture, that may not fit all applications.

SmartNICs maintain the same power consumption as NICs,
typically limiting their power consumption to 25W supplied
through the PCI express slot, while achieving millions of oper-
ations per Watt, including external memories access [23, 54].
There are currently four architectural approaches to Smart-
NICs: FPGA based [27, 58, 74], ASIC based [59], combining
ASIC and FPGA [55], and SoC based [53]. The FPGA-based
design is closest to the NetFPGA-based design we discussed,
while the ASIC-based smartNICs are closest to the switch-
ASIC approach. SoC-based smartNICs are likely to provide
the easiest trajectory for implementing in-network computing,
but their resource and performance scalability is limited com-
pared to other solutions, as they balance both programmable
resources and processing cores, leading the networking re-
quirement to face earlier the resource wall [87]. The power
efficiency of SoC based solution depends on the type of inte-
gration between the data plane and the processing cores. Still,
the introduction of SoC FPGA by manufacturers such as Intel
is likely to increase the use of hybrid in-network computing
solutions.

Between FPGA, smartNIC and ASIC, FPGA (and FPGA-
based smartNICs) is likely to provide the poorest performance
and performance per Watt, due to its general purpose na-
ture. Yet, FPGA performance per Watt in real data centers
is not significantly below ASIC. Azure’s FPGA-based Ac-
celNet SmartNIC [27] consumes 17W-19W (standalone) on
a board supporting 40GE, providing close to 4Mpps/W for

SList prices, obtained from https:/colfaxdirect.com

some use cases. This is slightly better, but on a par with, the
FPGA-based power consumption reported in this work. The
big advantage of FPGA, and FPGA-based platforms, is their
flexibility—the ability to implement almost every applica-
tion and to use (on a bespoke board) any interface, memory
or storage device. ASIC-based smartNICs may not be suit-
able for every in-network function, but for many applications,
they will provide a good trade-off of programmability, cost,
maturity and power consumption.

11 Related and Future Work

Because green computing and power efficiency are extremely
important to cloud computing [29], there has been a consider-
able amount of prior work (e.g., [9, 31]). Much of this work
has been dedicated to power efficient computing and the as-
signment of workloads (e.g., [13, 41, 50]), including dynamic
offloading to GPUs ([34]).

Although there has recently been an uptick in interest on
in-network computing [22, 33, 36, 38, 69], the concept is not
new. Previous systems have leveraged middleboxes, hardware
accelerators, and offered network-as-a-service [17, 19, 28].
The main trend that distinguishes recent work is expressive-
ness, i.e., the ability to (relatively) easily shift applications
from software to network. The introduction of programmable
data planes [15] and domain specific languages for network-
ing [14] has increased the potential impact of previous solu-
tions, and their potential throughput by orders of magnitude
(e.g., [37]).

There are several notable examples of recent work on in-
network computing, including caching applications [38, 46,
77], distributed systems services [21, 22, 33], monitoring and
telemetry [40], and more. An advantage of these solutions
is their integration within, or replacement of, commodity
network devices, whether NICs or switches. This leads to a
reduction in power overheads, as we have demonstrated, as
well as reductions in cost, space, and equipment (e.g., cables).

In-network computing contrasts with acceleration solu-
tions offered by cloud providers today, such as Amazon’s
F1 [10] and Google’s TPUs [39]. While the power consump-
tion of such platforms is not divorced from our results [39],
the main difference is that these solutions are additions to
the data center environment, whereas in-network comput-
ing takes advantage of equipment that is already part of the
data center. In some cases, acceleration platforms are not
networked-attached, but rather all transactions go through the
CPU. This approach is ideal for applications that are computa-
tion intensive, but not suited to network intensive application

This paper has demonstrated that in-network computing
can be power efficient, and we hope that our work will inspire
future research. There are several research challenges that
stem from this work. First, exploring the extent of in-network
computing on demand and the ability to shift any application
to the network. Second, power-aware data center scheduling
that supports in-network computing on demand on a large

https://colfaxdirect.com

scale. And last, but not least, reliability of in-network com-
puting. With in-network computing providing x1000 power
saving, the future of green computing has just become better.

12 Conclusion

In-network computing is an emerging trend, but has been
criticized as being impractical under real operating conditions.
Through extensive evaluations on diverse case studies, this
work explores that assumption. Our experiments show that
although in-network computing is inefficient at low message
rates, it quickly becomes more power efficient than host-based
solutions under increased load. Inspired by this observation,
we introduced in-network computing on demand, a scheme
allowing to dynamically shift loads between software- and
hardware- based solutions, always benefiting from the best
power efficiency.

We make the results and a reproducible environment avail-
able on our website [76] and on github [75].

Acknowledgments

We thank the anonymous EuroSys reviewers and our shep-
herd, Gustavo Alonso, for their valuable feedback. This work
was partially funded by JSPS Research Fellowship, JSPS
KAKENHI Grant Number JP17J02958, Swiss National Sci-
ence Foundation (200021_166132), Leverhulme Trust (ECF-
2016-289), Isaac Newton Trust and a research award from
Western Digital.

References

[1] Takuya Akiba, Keisuke Fukuda, and Shuji Suzuki. 2017. ChainerMN:
Scalable Distributed Deep Learning Framework. In Proceedings of
Workshop on ML Systems in The Thirty-first Annual Conference on
Neural Information Processing Systems (NIPS).

Gianni Antichi, Muhammad Shahbaz, Yilong Geng, Noa Zilberman,

Adam Covington, Marc Bruyere, Nick McKeown, Nick Feamster, Bob

Felderman, Michaela Blott, Andrew W. Moore, and Philippe Owezarski.

2014. OSNT: Open source network tester. IEEE Network 28, 5 (2014),

6-12.

Arista. 2018. 7050X3 Series 10/25/40/50/100G Data Center

Switches. (2018). https://www.arista.com/assets/data/pdf/Datasheets/

7050X3-Datasheet.pdf.

Arista. 2018. 7060X and 7260X Series 10/25/40/50/100G Data Center

Switches. (2018). https://www.arista.com/assets/data/pdf/Datasheets/

7060X_7260X_DS.pdf.

[5] Arista. 2018. 7170 Series Programmable Data Center Switches. (2018).
https://www.arista.com/assets/data/pdf/Datasheets/7170-Datasheet.
pdf.

[6] System Artware. SHW 3A Watt hour meter. http://www.system-artware.
co.jp/shw3a.html.

[7]1 Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload analysis of a large-scale key-value store. In
ACM SIGMETRICS Performance Evaluation Review, Vol. 40. ACM,
53-64.

[8] Amazon AWS. Amazon EC2 F1 Instances. https://aws.amazon.com/
ec2/instance-types/f1/[Online, accessed February 2019].

[9] J. Baliga, R. W. A. Ayre, K. Hinton, and R. S. Tucker. 2011. Green
Cloud Computing: Balancing Energy in Processing, Storage, and Trans-
port. Proc. IEEE 99, 1 (Jan 2011), 149-167.

[2

—

[3

—

[4

=

[10] Jeff Bar. 2017. EC2 F1 Instances with FPGAs éAS Now Gener-
ally Available. (April 2017). https://aws.amazon.com/blogs/aws/
ec2-f1-instances- with-fpgas-now/-generally-available/.

Barefoot Tofino 2018. Barefoot Tofino. https://www.barefootnetworks.

com/products/brief-tofino/. (2018).

Luiz André Barroso and Urs Holzle. 2007. The case for energy-

proportional computing. Computer 12 (2007), 33-37.

R. Bianchini and R. Rajamony. 2004. Power and energy management

for server systems. Computer 37, 11 (Nov 2004), 68-76.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,

Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George

Varghese, et al. 2014. P4: Programming protocol-independent packet

processors. ACM SIGCOMM Computer Communication Review 44, 3

(2014), 87-95.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-

eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013.

Forwarding Metamorphosis: Fast Programmable Match-action Process-

ing in Hardware for SDN. SIGCOMM Comput. Commun. Rev. 43, 4

(Aug. 2013), 99-110.

Mihai Budiu and Chris Dodd. 2016. The architecture of the P416

compiler. https://p4.org/assets/p4-ws-2017-p4-compiler.pdf. (2016).

Brian Carpenter and Scott Brim. 2002. Middleboxes: Taxonomy and

issues. Technical Report RFC 3234. IETF.

Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,

Adrian Caulfield, Todd Massengil, Ming Liu, Daniel Lo, Shlomi Al-

kalay, Michael Haselman, et al. 2017. Accelerating persistent neural

networks at datacenter scale. In HOTCHIPS.

[19] Paolo Costa, Matteo Migliavacca, Peter R Pietzuch, and Alexander L

Wolf. 2012. NaaS: Network-as-a-Service in the Cloud.. In Hot-ICE.

Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh Lee, Hakim

Weatherspoon, Marco Canini, Noa Zilberman, Fernando Pedone, and

Robert Soulé. 2018. P4xos: Consensus as a Network Service. Research

Report 2018-01. USI. http://www.inf.usi.ch/research_publication.htm?

id=105

Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé.

2016. Paxos Made Switch-y. SIGCOMM Comput. Commun. Rev. 46, 2

(May 2016), 18-24.

Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone,

and Robert Soulé. 2015. Netpaxos: Consensus at network speed. In

SOSR. ACM, 5.

Sujal Das. 2016. The Arrival of SDN 2.0: SmartNIC Per-

formance, COTS Server Efficiency and Open Networking.

https://www.netronome.com/blog/the-arrival-of-sdn-20-smartnic-
performance-cots-server-efficiency-and-open-networking/. (2016).

[Online; accessed May 2018].

Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun,

Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and

Sylvia Ratnasamy. 2009. RouteBricks: exploiting parallelism to scale

software routers. In SOSP. ACM, 15-28.

DPDK 2015. DPDK. http://dpdk.org/. (2015).

Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel Castro, and

Orion Hodson. 2014. FaRM: Fast remote memory. In NSDI. 401-414.

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,

Alireza Dabagh, and Mike Andrewartha et al. 2018. Azure Accelerated

Networking: SmartNICs in the Public Cloud. In NSDI18. 51-66.

[28] Ben Gelernter. 1998. Help design challenges in network computing. In
Proceedings of the 16th annual international conference on Computer
documentation. ACM, 184—-193.

[29] Google. 2017. Environmental report: 2017 progress update. (Oct.
2017).

[30] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2010. Pack-
etShader: a GPU-accelerated software router. In ACM SIGCOMM Com-
puter Communication Review, Vol. 40. ACM, 195-206.

[31] Andy Hopper and Andrew Rice. 2008. Computing for the future of the
planet. Philosophical Transactions of the Royal Society of London A:

(11]
[12]
[13]

(14]

[15]

(16]
(17]

(18]

(20]

[21]

(22]

[23]

[24]

[25]
[26]

[27]

https://www.arista.com/assets/data/pdf/Datasheets/7050X3-Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7050X3-Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7060X_7260X_DS.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7060X_7260X_DS.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7170-Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7170-Datasheet.pdf
http://www.system-artware.co.jp/shw3a.html
http://www.system-artware.co.jp/shw3a.html
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/blogs/aws/ec2-f1-instances-with-fpgas-now/-generally-available/
https://aws.amazon.com/blogs/aws/ec2-f1-instances-with-fpgas-now/-generally-available/
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/
https://p4.org/assets/p4-ws-2017-p4-compiler.pdf
http://www.inf.usi.ch/research_publication.htm?id=105
http://www.inf.usi.ch/research_publication.htm?id=105
http://dpdk.org/

[32]

[33

[t

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41

[42]
[43]
[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Mathematical, Physical and Engineering Sciences 366, 1881 (2008),
3685-3697.

Zsolt Istvan, David Sidler, and Gustavo Alonso. 2017. Caribou: intelli-
gent distributed storage. VLDB 10, 11 (2017), 1202-1213.

Zsolt Istvan, David Sidler, Gustavo Alonso, and Marko Vukolic. 2016.
Consensus in a Box: Inexpensive Coordination in Hardware.. In NSDI.
425-438.

Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun,
Deokjin Kim, Sungryoul Lee, Yung Yi, and KyoungSoo Park. Kargus:
a highly-scalable software-based intrusion detection system. In ACM
CCS.

Leander Jehl and Hein Meling. 2014. Asynchronous Reconfiguration
for Paxos State Machines. In /ICDCN. 119-133.

Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate Foster, and
Robert Soulé. 2018. Life in the fast lane: A line-rate linear road. In
SOSR. ACM, 10.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee,
Robert Soulé, Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-
Free Sub-RTT Coordination. In NSDI. 35-49.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing
Key-Value Stores with Fast In-Network Caching. In SOSP. ACM, 121-
136.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, and
Gaurav et al. Agrawal. 2017. In-Datacenter Performance Analysis of a
Tensor Processing Unit. In ISCA. 1-12.

Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait
Dixit, and Lawrence] Wobker. 2015. In-band network telemetry via
programmable dataplanes. In SOSR.

Myungsun Kim, Kibeom Kim, James R. Geraci, and Seongsoo Hong.
2014. Utilization-aware Load Balancing for the Energy Efficient Oper-
ation of the Big.LITTLE Processor. In DATE. 223:1-223:4.

Leslie Lamport. 1998. The Part-time Parliament. ACM Trans. Comput.
Syst. 16, 2 (May 1998), 133-169.

Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. 2009. Vertical Paxos
and Primary-backup Replication. In PODC. 312-313.

Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. 2010. Reconfiguring
a State Machine. SIGACT News 41, 1 (March 2010), 63-73.

Jacob Leverich. 2014. Mutilate: high-performance memcached load
generator. (2014). https://github.com/leverich/mutilate

Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yonggiang
Xiong, Andrew Putnam, Enhong Chen, and Lintao Zhang. 2017.
KV-Direct: High-Performance In-Memory Key-Value Store with Pro-
grammable NIC. In SOSP. 137-152.

Hu Li. 2015. Introducing "Yosemite": the
source modular chassis for high-powered
https://code.facebook.com/posts/1616052405274961/
introducing-yosemite-the-first-open-source-modular-chassis-for-\
high-powered-microservers-/. (2015). [Online; accessed May 2018].
Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and
Dan R. K. Ports. 2016. Just Say No to Paxos Overhead: Replacing
Consensus with Network Ordering. In USENIX OSDI.

libpaxos 2013. libpaxos. (2013). https://bitbucket.org/sciascid/
libpaxos.

Dumitrel Loghin, Bogdan Marius Tudor, Hao Zhang, Beng Chin Ooi,
and Yong Meng Teo. 2015. A Performance Study of Big Data on Small
Nodes. VLDB 8,7 (Feb. 2015), 762-773.

Ilias Marinos, Robert N.M. Watson, and Mark Handley. 2014. Network
Stack Specialization for Performance. In ACM SIGCOMM. 175-186.
http://doi.acm.org/10.1145/2619239.2626311

Mellanox. Mellanox Spectrum vs Broadcom and Cav-
ium. http://www.mellanox.com/img/products/switches/
Mellanox-Spectrum-vs-Broadcom-and-Cavium.png[Online, ac-
cessed May 2018].

first open
microservers.

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Mellanox. 2018. BlueField SmartNIC Ethernet. http:
/Iwww.mellanox.com/page/products_dyn?product_family=275&
mtag=bluefield_smart_nic. (2018). [Online; accessed February 2019].
Mellanox. 2018. ConnectX-6 EN Single/Dual-Port Adapter Support-
ing 200Gb/s Ethernet. http://www.mellanox.com/page/products_dyn?
product_family=266&mtag=connectx_6_en_card. (2018). [Online;
accessed May 2018].

Mellanox. 2018. Mellanox Innova-2 Flex Open Programmable Smart-
NIC. http://www.mellanox.com/page/products_dyn?product_family=
276&mtag=programmable_adapter_cards_innova2flex. (2018). [On-
line; accessed February 2019].

Jeff Mogul and Jitu Padhye. 2017. In-Network Computa-
tion is a Dumb Idea Whose Time Has Come HotNets-XVI Di-
alogue. https://conferences.sigcomm.org/hotnets/2017/dialogues/
dialogue140.pdf. (2017).

Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F
Sweeney. 2009. Producing wrong data without doing anything ob-
viously wrong! ACM Sigplan Notices 44, 3 (2009), 265-276.

Napatech. Napatech ~ SmartNIC for Virtualization
Solutions. https://www.napatech.com/products/
napatech-smartnic- virtualization/[Online, — accessed September
2018.

Netronome. About Agilio SmartNICs. [Online; accessed February
2019].

Luca Niccolini, Gianluca Iannaccone, Sylvia Ratnasamy, Jaideep Chan-

drashekar, and Luigi Rizzo. 2012. Building a Power-Proportional
Software Router.. In ATC12. 89-100.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, David Stafford, Tony Tung, and Venkateshwaran Venkataramani.
2013. Scaling Memcache at Facebook. In NSDI.

NLnet Labs Name Server Daemon 2018. NLnet Labs Name Server
Daemon. https://www.nlnetlabs.nl/projects/nsd/. (2018).

Eva Papadogiannaki, Lazaros Koromilas, Giorgos Vasiliadis, and Sotiris
Toannidis. 2017. Efficient Software Packet Processing on Heteroge-
neous and Asymmetric Hardware Architectures. TON 25, 3 (2017),
1593-1606.

Marius Poke and Torsten Hoefler. 2015. Dare: High-performance state
machine replication on rdma networks. In HPDC. ACM, 107-118.
Diana Andreea Popescu, Noa Zilberman, and Andrew W Moore. 2017.
Characterizing the impact of network latency on cloud-based applica-
tionsGAZ performance. Technical Report UCAM-CL-TR-914. Univer-
sity of Cambridge. https://doi.org/10.17863/CAM.17588

Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind
Krishnamurthy. 2015. Designing Distributed Systems Using Approxi-
mate Synchrony in Data Center Networks. In USENIX NSDI.

Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy
Fowers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott
Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka,
James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong,
Phillip Yi Xiao, and Doug Burger. 2014. A Reconfigurable Fabric
for Accelerating Large-scale Datacenter Services. In ISCA. 13-24.
http://dl.acm.org/citation.cfm?id=2665671.2665678

Charles Reiss, John Wilkes, and Joseph L. Hellerstein. 2011. Google
cluster-usage traces: format + schema. Technical Report. Google Inc.,
Mountain View, CA, USA. Revised 2014-11-17 for version 2.1. Posted
at https://github.com/google/cluster-data.

Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini,
and Panos Kalnis. 2017. In-Network Computation is a Dumb Idea
‘Whose Time Has Come. In HOTNETS. ACM, 150-156.

Florian Schmidt, Oliver Hohlfeld, René Glebke, and Klaus Wehrle.
2015. Santa: Faster Packet Delivery for Commonly Wished Replies.
SIGCOMM Comput. Commun. Rev. 45, 4 (Aug. 2015), 597-598. http:
//doi.acm.org/10.1145/2829988.2790014

https://github.com/leverich/mutilate
https://code.facebook.com/posts/1616052405274961/introducing-yosemite-the-first-open -source-modular-chassis-for-\high-powered-microservers-/
https://code.facebook.com/posts/1616052405274961/introducing-yosemite-the-first-open -source-modular-chassis-for-\high-powered-microservers-/
https://code.facebook.com/posts/1616052405274961/introducing-yosemite-the-first-open -source-modular-chassis-for-\high-powered-microservers-/
https://bitbucket.org/sciascid/libpaxos
https://bitbucket.org/sciascid/libpaxos
http://doi.acm.org/10.1145/2619239.2626311
http://www.mellanox.com/img/products/switches/Mellanox-Spectrum-vs-Broadcom-and-Cavium.png
http://www.mellanox.com/img/products/switches/Mellanox-Spectrum-vs-Broadcom-and-Cavium.png
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic
http://www.mellanox.com/page/products_dyn?product_family=266&mtag=connectx_6_en_card
http://www.mellanox.com/page/products_dyn?product_family=266&mtag=connectx_6_en_card
http://www.mellanox.com/page/products_dyn?product_family=276&mtag=programmable_adapter_cards_innova2flex
http://www.mellanox.com/page/products_dyn?product_family=276&mtag=programmable_adapter_cards_innova2flex
https://conferences.sigcomm.org/hotnets/2017/dialogues/dialogue140.pdf
https://conferences.sigcomm.org/hotnets/2017/dialogues/dialogue140.pdf
https://www.napatech.com/products/napatech-smartnic-virtualization/
https://www.napatech.com/products/napatech-smartnic-virtualization/
https://www.nlnetlabs.nl/projects/nsd/
https://doi.org/10.17863/CAM.17588
http://dl.acm.org/citation.cfm?id=2665671.2665678
https://github.com/google/cluster-data
http://doi.acm.org/10.1145/2829988.2790014
http://doi.acm.org/10.1145/2829988.2790014

[71] David Sidler, Gustavo Alonso, Michaela Blott, Kimon Karras, Kees
Vissers, and Raymond Carley. 2015. Scalable 10Gbps TCP/IP stack
architecture for reconfigurable hardware. In FCCM. 1IEEE, 36-43.
Satnam Singh and David J. Greaves. 2008. Kiwi: Synthesis of FPGA
Circuits from Parallel Programs. In Field-Programmable Custom Com-
puting Machines. IEEE, 3—12.

Nik Sultana, Salvator Galea, David Greaves, Marcin Wojcik, Jonny
Shipton, Richard Clegg, Luo Mai, Pietro Bressana, Robert Soulé,
Richard Mortier, Paolo Costa, Peter Pietzuch, Jon Crowcroft, An-
drew W. Moore, and Noa Zilberman. 2017. Emu: Rapid Prototyping of
Networking Services. In USENIX ATC.

Netcope Technologies. Netcope unveils Netcope P4 - a
breakthrough in smart NIC performance and programmabil-
ity. https://www.netcope.com/en/company/press-center/press-releases/
netcope-unveils-np4-a-breakthrough-in-smartnic[Online, accessed
September 2018.

Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone, Robert Soulé,
and Noa Zilberman. 2019. The Case For In-Network Comput-
ing on Demand, Repository. (2019). https://github.com/cucl-srg/
INC-ondemand/.

Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone, Robert Soulé,
and Noa Zilberman. 2019. The Case For In-Network Computing on
Demand, Website. (2019). https://www.cl.cam.ac.uk/research/srg/
netos/projects/inc-ondemand/.

Yuta Tokusashi and Hiroki Matsutani. 2017. Multilevel NoSQL Cache
Combining In-NIC and In-Kernel Approaches. IEEE Micro 37, 5
(2017), 44-51.

Yuta Tokusashi, Hiroki Matsutani, and Noa Zilberman. 2018. LaKe:
The Power of In-Network Computing. In ReConFigli8.

[72]

(73]

[74]

[75]

[76]

(771

[78

[79] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivas-
tav, Nate Foster, and Hakim Weatherspoon. 2017. PAFPGA: A Rapid
Prototyping Framework for P4. In ACM SOSR.

[80] John Wilkes. 2011. More Google cluster data. Google research blog.
(Nov. 2011). Posted at http://googleresearch.blogspot.com/2011/11/
more-google-cluster-data.html.

[81] Daniel Wong. 2016. Peak efficiency aware scheduling for highly energy
proportional servers. In ISCA. IEEE, 481-492.

[82] Qiang Wu, Qingyuan Deng, Lakshmi Ganesh, Chang-Hong Hsu, Yun
Jin, Sanjeev Kumar, Bin Li, Justin Meza, and Yee Jiun Song. 2016.
Dynamo: Facebook’s data center-wide power management system. In
ISCA. IEEE, 469-480.

[83] Xilinx. Power Efficiency. https://www.xilinx.com/products/technology/
power.html[Online, accessed May 2018].

[84] Xilinx SDNet Development Environment 2014. Xilinx SDNet Devel-

opment Environment. www.xilinx.com/sdnet. (2014).

Peng Zheng, Theophilus Benson, and Chengchen Hu. 2018. P4Visor:

Lightweight Virtualization and Composition Primitives for Building

and Testing Modular Programs. In ACM CoNext. 98—111. http://doi.

acm.org/10.1145/3281411.3281436

Noa Zilberman, Yuri Audzevich, G. Adam Covington, and Andrew W.

Moore. 2014. NetFPGA SUME: Toward 100 Gbps as Research Com-

modity. IEEE MICRO 34, 5 (Sept. 2014), 32-41.

[87] Noa Zilberman, Gabi Bracha, and Golan Schzukin. 2019. Stardust:
Divide and conquer in the data center network. In NSDI. USENIX.

[88] Noa Zilberman, Matthew Grosvenor, Diana Andreea Popescu, Nee-
lakandan Manihatty-Bojan, Gianni Antichi, Marcin Wgjcik, and An-
drew W Moore. 2017. Where has my time gone?. In PAM. Springer,
201-214.

[85]

[86]

https://www.netcope.com/en/company/press-center/press-releases/netcope-unveils-np4-a-breakthrough-in-smartnic
https://www.netcope.com/en/company/press-center/press-releases/netcope-unveils-np4-a-breakthrough-in-smartnic
https://github.com/cucl-srg/INC-ondemand/
https://github.com/cucl-srg/INC-ondemand/
https://www.cl.cam.ac.uk/research/srg/netos/projects/inc-ondemand/
https://www.cl.cam.ac.uk/research/srg/netos/projects/inc-ondemand/
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
https://www.xilinx.com/products/technology/power.html
https://www.xilinx.com/products/technology/power.html
www.xilinx.com/sdnet
http://doi.acm.org/10.1145/3281411.3281436
http://doi.acm.org/10.1145/3281411.3281436

	Abstract
	1 Introduction
	2 Scope
	3 Case Studies
	3.1 LaKe: Key-Value Store
	3.2 P4xos: Consensus
	3.3 EMU DNS: Network Function
	3.4 Applications: Similarities and Differences

	4 Power/Performance Evaluation
	4.1 Experimental Setup
	4.2 Key-Value Store - Power/Performance
	4.3 Paxos - Power/Performance
	4.4 DNS - Power/Performance

	5 Lessons from an FPGA
	5.1 Clock Gating, Power Gating and Deactivating Modules
	5.2 Processing Cores
	5.3 Memories
	5.4 Infrastructure

	6 Lessons from an ASIC
	7 Lessons from a Server
	8 When to Use In-Network Computing
	9 In-Network Computing on Demand
	9.1 In-Network Computing on Demand Controller
	9.2 On Demand Applications
	9.3 Real Workloads
	9.4 Switch On-Demand?
	9.5 Further Discussion

	10 FPGA, SmartNIC or Switch?
	11 Related and Future Work
	12 Conclusion
	Acknowledgments
	References

