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Abstract 

Coumarins are deployed in numerous bioimaging and biosensing applications. Among various 

coumarin derivatives, 6-aminocoumarins attract increasing attention for their red-shifted emissions, 

mega Stokes shifts and significant solvatochromism. These spectral characteristics together with 

weak emission intensities have historically been ascribed to the formation of the twisted 

intramolecular charge transfer (TICT) state in 6-aminocoumarins. In this work, we demonstrate 

that it is actually substantial intramolecular charge transfer (ICT) that is responsible for these 

fluorescent properties. Based on this new understanding, we re-analyzed the sensing mechanism 

of a 6-aminocouarmin based fluorescent probe and obtained close agreement with experimental 

data. Our results lead to a deeper understanding on the photophysics of 6-aminocoumarins and will 

inspire the rational development of novel fluorescent probes. 
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1 Introduction 

Understanding the photophysics of fluorophores is essential to facilitate their widespread 

applications and enable the rational design of high-performance fluorescent probes. Among 

various chemical families of fluorophores, coumarin and its derivatives represent one of the most 

important classes of fluorophores in the blue and green region (Figure 1a).1 They are deployed in 

a broad range of bioimaging and biosensing applications,2-3 while their excellent optical properties 

also enable numerous uses in dye lasers,4 non-linear optical materials,5 and dye-sensitized solar 

cells.6-11 The optical spectra of coumarins are often tuned by attaching substituents with varying 

electron-withdrawing power at position 3 or 4, as well as an electron-donating group at position 7 

(Figure 1a).12-13 A judicious choice of these substituents permits effective control of the “push-

pull” effect and intramolecular charge transfer (ICT) characteristics in coumarins, thereby shifting 

their absorption and emission spectra.13-17 This well understood mechanism has been applied in 

the design of many fluorescent sensors. In recent years, increasing attention has also been directed 

to 6-aminocoumarins, owing to their red-shifted emission wavelengths, considerably large Stoke 

shifts, and significant solvatochromism. These spectral properties endow 6-aminocoumarins with 

great potential in multi-color imaging and environmental sensing. Yet, the underlying 

photophysics of 6-aminocoumarins remains largely controversial. 

In a pioneering study, Rettig and Klock proposed that the fluorescent characteristics of 6-

aminocoumarins are due to the formation of the twisted intramolecular charge transfer (TICT) 

state upon photoexcitation.18 In the proposed TICT state, the amino substituent, which has a 

roughly planar alignment with respect to the coumarin moiety plane in the ground state (S0), rotates 

along the N—C6 axis by ~90°, resulting in a perpendicular alignment in the excited singlet state 

(S1). The TICT explanation has subsequently been accepted and referenced by many research 
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groups.19-23 In recent years, 6-aminocoumarins have turned out to be a useful platform for 

developing various fluorescent sensors.19, 24-28  Along with this rapid development, several research 

groups started to argue that no direct experimental evidence supports the TICT model in 6-

aminocoumarins, using both fluorescence lifetime and pressure-dependent fluorescence intensity 

measurements as their justification.24, 29 To discern the working mechanisms of 6-aminocoumarins 

and facilitate their rational design for high-performance probes, it is thus essential to resolve the 

controversy over their emission mechanism. 

In this paper, we will re-analyze Rettig and Klock’s study by employing new (time-dependent) 

density functional theory (DFT/TD-DFT) calculations on a series of 6-aminocoumarins (Figure 

1a). These reveal the limitations of the original quantum chemical calculations performed by Rettig 

and Klock, and provide an alternative view on the molecular origins of 6-aminocoumarins. We 

will demonstrate that substantial ICT from the electron-donating group at position 6 on the 

coumarin scaffold is actually responsible for the unique spectral properties of 6-aminocoumarins, 

and notably, no TICT occurs during this process. Based on this new understanding, we will re-

examine the sensing mechanism of a 6-aminocoumarin derived sensor. 

2 Computational Methods 

DFT calculations were performed using Gaussian 09.30 Becke’s three-parameter and Lee-Yang-

Parr hybrid functional (B3LYP)31-33 and a 6-31+G(d, p) basis set34 were used for all calculations, 

unless stated otherwise. The geometry optimizations of coumarins 1, 4—6 and 8 in both their 

ground and the first excited singlet states (S0 and S1) were performed in vacuo. Frequency checks 

were performed after each geometry optimization to ensure that minima on the potential energy 

surfaces (PES) were found. Following this, TD-DFT calculations were carried out on the optimized 
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molecular structures to determine their peak absorption/emission wavelengths and molar 

extinction coefficients (oscillator strength). 

Atomic contributions to the highest occupied molecular orbital (HOMO) and the lowest 

unoccupied molecular orbital (LUMO) in selected compounds were calculated using Mulliken 

population analysis, based on the optimized molecular structures in the S0 state. 

The theoretical S0 and S1 PES of 4 and 5 in vacuo were constructed following the TICT model.35-

37 In these calculations, the dihedral angles (θ, as defined by the average dihedral angle of ∠C5-

C6-N-C11 and ∠C7-C6-N-C12 in the case of 4 and that of ∠C6-C7-N-C11 and ∠C8-C7-N-C12 in 

the case of 5; see Figure 1a) were fixed at various values, while other geometry parameters were 

freely optimized employing CAM-B3LYP/6-31+G(d,p) in the S1 state.38 The CAM-B3LYP 

functional describes the overall PES profile accurately in systems involving varied amounts of 

charge transfer (i.e., when both the ICT and TICT states are of concern).39 CAM-B3LYP was thus 

used to construct the PES of 4 and 5. 

3 Results and discussion 

3.1 Re-examining the TICT model in 6-aminocoumarins 

Rettig and Klock have compared the optoelectronic properties of 6-aminocoumarins and 7-

aminocoumarins from experiments, using 2 and 3 as examples (Figure 1a).18 Even though the 

emission of 2 is very weak with respect to that of 3, the Stokes shift of 2 is much larger (: ~200 

nm;  ~9500 cm-1) relative to that of 3 (: ~80 nm, ~5200 cm-1); the emission wavelength 

of 2 (~580 nm) is significantly red-shifted with respect to that of 3 (~430 nm) in alcoholic solvents. 

In addition, the fluorescence lifetime of 2 is quite long (9.4 ns in acetonitrile). These fluorescent 

characteristics of 2 are typical “signatures” of TICT emissions. To substantiate the TICT 



 6 

mechanism, Rettig and Klock performed “molecules-in-molecules” calculations, which showed 

large amounts of accumulated electron density in position 6 of the LUMO in the parent molecule, 

coumarin (Figure 1b). Attaching a donor group in position 6 consequently renders TICT 

energetically more favorable, as strong electrostatic interactions are then possible between the 

ionized donor group (positive) and the reduced coumarin moiety (negative, especially in position 

6). Based on these observations, Rettig and Klock concluded that the emission of 2 should arise 

from TICT upon optical excitation.  

 

Figure 1. (a) Molecular structures of 1 – 7 and atomic numbering schemes for 1, 4, and 5. (b) 

Individual atomic contributions to the electron density distributions in the LUMO and HOMO of 

1; the sizes of the blue/red circles are proportional to the atomic contributions, and only 

contributions greater than 0.02 are shown; Rettig and Klock’s results were obtained by normalizing 
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the squared HMO coefficients reported in reference 18. (c) The S0 and S1 PESs of 4 (left) and 5 

(right) in vacuo as a function of the rotational angle θ. 

 

More than three decades later, the rapid development of high-performance computing and the 

implementation of more accurate quantum chemical calculation methods (i.e., DFT/TD-DFT) 

allow us to re-evaluate Rettig and Klock’s conclusion. In contrast to their results, our calculations 

show that the electron density in the LUMO of 1 is actually higher in position 7 than in position 6 

(Figure 1b). This suggests that the amino group in position 7 (and not in position 6) is prone to 

TICT, and previous HMO calculations might be problematic. Indeed, further calculations of the 

potential energy surface (PES) along the rotational angle of the dimethylamino group in 4 and 5 

demonstrated that TICT is energetically unfavorable in position 6, but is potentially accessible in 

position 7 (Figure 1c). Compounds 4 and 5 are positional isomers that differ only with respect to 

the position of attachment for the donor substituent (4: position 6; 5: position 7). In the ground 

states of both 4 and 5, the torsional angle (θ) between the dimethylamino group and the plane of 

the coumarin scaffold is approximately 0°. As θ increases to 90°, which corresponds to the TICT 

state, the S1 PES of 4 reaches a maximum, concomitant with an energy increase of ~0.69 eV 

relative to that of the flat ICT state (θ = 0); TICT is thus energetically unfavorable in 4. In contrast 

to that, the TICT state of 5 corresponds to a local minimum in vacuo. This state often becomes 

accessible in polar solvents, as strong electrostatic interactions render it more stable than the ICT 

state.40 

It should be pointed out here that, so far, emissions from the TICT states of coumarins have not 

been reported.37 Moreover, reducing the solvent temperature to 77 K in experiments (which 

essentially increases the solvent viscosity and potentially reduces molecular rotations) does not 
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enhance the fluorescence of the 6-substituted aminocoumarin, 2 in ethanol.18 Conversely, 

coumarins substituted at position 7, which are susceptible to TICT, exhibit increased fluorescence 

intensity with increased solvent viscosity.37 Therefore, it can be concluded that substituents in 

position 7, but not position 6, facilitate TICT. 

One may also consider the photophysical properties of the positional isomers 6 and 7, which 

likewise differ only with respect to the position of donor attachment on the coumarin scaffold 

(Figure 1a). In aqueous solution, their Stokes shifts were measured to be 189 nm (10767 cm-1) and 

77 nm (5894 cm-1), respectively; and their emissions peaked at 524 nm and 402 nm, respectively.19 

Yet, the tremendously large Stokes shift and red-shifted emission of 6 cannot be attributed to TICT, 

as the donating amino substituent is constrained within a fused ring structure. Moreover, 6 

possesses a lower quantum efficiency (QE) than 7.19 These results indicate that the large Stokes 

shift, long emission wavelength and low QE of 2 cannot arise exclusively from TICT. 

3.2 Revealing the true molecular origins of 6-amino-coumarin 

photochemistry 

To better understand the molecular origins of the different photophysical properties in 6- and 7-

substituted coumarins, DFT and TD-DFT calculations were carried out on the ground (S0), and 

first excited state (S1) of 4 and 5. Firstly, the results showed that the first absorption band in the 

UV-Vis absorption spectrum of 4 should be located at longer wavelengths compared to that of 5 

(Figure 2a). This effect can be rationalized by considering the electron densities in the HOMO and 

LUMO of 1 (Figure 1b). In position 6 of 1, the electron density is very high in the HOMO, but 

decreases distinctly in the LUMO. Therefore, attaching an electron-donating group in position 6 

greatly destabilizes the HOMO and reduces the energy of the coumarin bandgap.41 In contrast, the 

electron density in position 7 exhibits only minor changes for the HOMO – LUMO transition. 
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Accordingly, an electron-donating group attached in position 7 induces similarly destabilizing 

effects in both the HOMO and LUMO, such that the resulting overall change of the energy bandgap 

should be relatively small. 

Secondly, the results showed that the large Stokes shifts in 6-substituted coumarins can be 

explained well by substantial amounts of ICT upon optical excitation. In 4, for example, the 

HOMO – LUMO transition is accompanied by a considerable decrease of electron density around 

the dimethylamino group in position 6, whereby the corresponding atomic contributions drop from 

0.30 to almost 0 (Figure 2b). In contrast, the atomic contributions in 5 decrease less drastically, 

i.e., from 0.25 to 0.03, indicating smaller extents of ICT (Figure 2b). The amount of ICT in 4 and 

5 can furthermore be quantified by the overlap index (Λ) of the HOMO and LUMO electron 

densities, since the S1 states predominantly involve HOMOLUMO transitions, whereby Λ 

carries a range of 0 to 1 and a smaller Λ corresponds to increased ICT.42 The obtained DFT results 

showed a smaller Λ value for 4 (0.5840) compared to that of 5 (0.6635), reflecting a larger extent 

of ICT in 4 (Table 1). The extent of ICT is positively related to the degree of geometry relaxation 

in the excited state (since movement of the atomic nucleus follows that of electron flow), and 

eventually translates into the Stokes shifts of fluorophores. Indeed, the root mean square (RMS) 

of the cumulative atomic displacements of 4 upon optical excitation is substantially larger than 

that of 5, even though these two compounds are positional isomers (Table 1). In view of the large 

amounts of ICT and associated geometry relaxation upon excitation in 6-substituted coumarins, 

the observation of a large Stokes shift is hardly surprising (Figure 2a). 
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Figure 2. (a) Theoretical UV-Vis absorption (dotted lines) and emission spectra (solid lines) of 4 

and 5 in vacuo. (b) Individual atomic contributions to the electron density distributions in the 

LUMO and HOMO of 4 and 5; the sizes of the blue/red circles are proportional to the atomic 

contributions, and only contributions greater than 0.02 are shown. (c) Representative resonance 

structures of 4 (left) and 5 (right). 
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Table 1. Dipole moments (S0), electronic excitation energy, oscillator strengths (f) during the 

S0S1 transitions, frontier molecular orbital overlap indexes (Λ), root mean square (RMS) of the 

cumulative atomic displacements upon optical excitations for 4 and 5 in vacuo. 

Compound 

Dipole moment 

(S0) [D] 

Absorption 

transition 

energy 

f (absorption) 

Emission 

transition 

energy 

f (emission) Λa 

RMSb 

(Å) 

4 7.637 

3.1113 eV 

398.49 nm 

0.0479 

2.5118 eV 

493.61 nm 

0.0425 0.5840 0.142 

5 7.460 

3.6845 eV 

336.51 nm 

0.4298 

3.4277 eV 

361.71 nm 

0.3761 0.6635 0.032 

aΛ is an index used to quantify the frontier molecular orbital overlap during the vertical S0S1 excitation of 4 and 5; 

Λ is indexed from 0 to 1 and a smaller Λ corresponds to less molecular orbital overlap and more substantial ICT.42 

bRMS measures molecular structure perturbations occurring during excited state geometry relaxation, by comparing 

the RMS of the cumulative atomic displacements with the molecular structures in the ground state. 

Intuitively, the larger ICT in 4 with respect to that in 5 upon optical excitation can be rationalized 

via resonance theory. In 5 (but not in 4), a full resonance pathway exists for electron delocalization 

between the amino donor and the ketone acceptor (highlighted in blue; Figure 2c). In other words, 

the donor group in position 7 participates more effectively in the delocalized π-system of 

coumarins. This is reflected in a more pronounced partial double-bond character of the N – C7 

bond in 5 (1.377 Å), relative to the corresponding N – C6 bond in 4 (1.393 Å). Owing to the more 

effective electron delocalization, ICT in 5 does not completely drain the electron density around 

the amino group upon optical excitation, as shown in its LUMO electron density plot. In contrast, 
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ICT in 4 is more extensive, and the electron density around the donor group in position 6 decreases 

substantially in the LUMO of 4.  

Finally, more extensive ICT in 6-substituted coumarins affords a smaller oscillator strength (f) 

compared to the 7-substituted analogues (Table 1).17 The parameter, f, is related to the intrinsic 

fluorescent lifetime (τ0) via the Einstein transition probabilities of spontaneous emissions (eq. 1).43-

44 Owing to its low f and low transition energy (E) values, the τ0 of 4 is higher than that of 5. This 

increased intrinsic emission lifetime allows the competing non-radiative decays to substantially 

reduce fluorescence, resulting in lower quantum efficiencies in 6-substituted coumarins. Indeed, 

Krystkowiak et al. have shown that hydrogen bond interactions significantly reduce the quantum 

yield of 6-aminocoumarin.45-46 

 𝜏0 =
𝑐3

2𝐸2𝑓
 eq. 1 

where τ0 is the intrinsic fluorescence lifetime, c the speed of light, E the transition energy of fluorescence and f the 

oscillator strength. All units are in atomic units. 

In summary, the spectral properties and quantum yields of 6-aminocoumarins can be explained 

well by extensive ICT from the amino group at position 6 to the coumarin scaffold. 

3.3 Re-analyzing the sensing mechanisms of 6-aminocoumarin derived 

fluorescent sensors 

Understanding the true molecular origins of ICT allows us to resolve the ostensible “mysteries” 

that have surrounded the sensing mechanism of 6-aminocoumarin derived fluorescent sensors. To 

this end, a fluorogenic probe for monoamine oxidases (8) represents probably the best example 

(Figure 3a). 
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Figure 3. (a) The fluorescence enhancement mechanism of 6 in comparison to 8. (b) Theoretical 

UV-Vis absorption spectra and corresponding oscillator strength of 6 and 8 in vacuo. (c) Selected 

molecular orbitals of 6. (d) Optimized molecular structures of 8 both in the S0 (left) and the S1 

(right) in vacuo; the amino group at position 6 becomes more planar in the excited state (S1) than 

in the ground state (S0), as highlighted in red circles. 

Sensor 8 was developed by the Sames group in a seminal work.19 The design of 8 had been 

motivated by the limiting TICT rotation of the amino group in position 6 (highlighted in blue) 

upon forming reactant 6 (Figure 3a). Surprisingly, although the fluorescence brightness of 6 is 

~40—50-fold stronger than that of 8, an ~8-9-fold greater emission manifests in 8 which originates 

from an enhanced light absorption efficiency; and the quantum efficiency of 6 is only ~5 times as 

high as that of 8. In fact, Sames and co-workers have correctly pointed out that the limiting TICT 

rotation seems to play a minor role (if any) in the fluorescence activation of 8. 

These facts are not surprising at all, in light of our demonstration herein that 6-aminocoumarins 

(including 8) do not energetically favor the TICT state (Figure 1c). Furthermore, our DFT/TD-



 14 

DFT analysis shows that the first absorption band of 6 is substantially stronger than that in 8, in 

good agreement with experimental data (Figure 3b). This strong absorption in 6 is mainly 

attributed to a significant S0S2 transition, which is dominated by a HOMO-1LUMO transition 

(Figure 3c). The HOMO-1LUMO transition in 6 experiences a small amount of ICT, as 

indicated by their large spatial overlap (Λ = 0.7430). This large overlap in turn leads to a great 

molar extinction coefficient in 6.17 Finally, the amino group in position 6 of 8 experiences a 

significant geometry change upon photoexcitation. This group becomes more planar in the excited 

state than in the ground state, as it loses electron density (Figure 3d). This structural change and 

associated hydrogen bond interactions are greatly minimized in 6 by rigidifying the amino group. 

It is thus not surprising to observe a higher quantum yield in 6 than in 8.  

In summary, the fluorescence intensification in 6 with respect to 8 is not due to blocking TICT. 

Instead, its molecular origins lie in both the ICT tuning (which enhances absorbance) and structural 

rigidification (which increases the quantum yield) of 6. In fact, the extent of ICT from the 

substituent at position 6 to coumarin scaffold plays a vital role in determining the wavelength and 

intensity of the fluorescence output. Modulating the electron-donating strength of this substituent 

thus allows the development of a broad range of fluorescent sensors. 

4  Conclusions 

Our DFT/TD-DFT calculations show that substantial amounts of ICT afford weak emissions and 

significantly large Stokes shifts and long emission wavelengths in 6-aminocoumarins; these 

spectral properties are not caused by the formation of the TICT state as previously thought. Our 

analysis is reinforced by close agreement with experimental data. Moreover, we demonstrate that 

tuning the strength of ICT allows effective control over the emission intensities in 6-
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aminocoumarin derivatives, and permits the development of “off/on” sensors. We believe that 

these results lead to a deeper understanding on the emission mechanism of 6-aminocouamrins and 

will inspire the creation of novel fluorescent sensors with enhanced performance. 
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