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ABSTRACT

The standard approach to assess reliability of automatic speech
transcriptions is through the use of confidence scores. If accurate,
these scores provide a flexible mechanism to flag transcription er-
rors for upstream and downstream applications. One challenging
type of errors that recognisers make are deletions. These errors are
not accounted for by the standard confidence estimation schemes
and are hard to rectify in the upstream and downstream processing.
High deletion rates are prominent in limited resource and highly
mismatched training/testing conditions studied under IARPA Babel
and Material programs. This paper looks at the use of bidirectional
recurrent neural networks to yield confidence estimates in predicted
as well as deleted words. A simple weighting scheme is examined
for combination. To assess usefulness of this approach, the com-
bined confidence score is examined for untranscribed data selection
that favours transcriptions with lower deletion errors. Experiments
are conducted using IARPA Babel/Material program languages.

Index Terms— confidence score, deletion error, bidirectional
recurrent neural network

1. INTRODUCTION

Recent years have seen an increase in demand for speech enabled
solutions. These range from speech transcription to personal assis-
tants [1, 2] designed to handle ever increasing in complexity human-
machine interactions [3]. The perceived usefulness of these appli-
cations depends on the quality of the underlying automatic speech
recogniser which for some tasks has been reported to approach the
agreement level of human annotators [4, 5]. Even in such favourable
conditions a measure of reliability in hypothesised words can prove
useful for flagging up words that may need to be handled differently.
For more challenging scenarios such measure can prove fundamen-
tal for achieving high performance [6] and yielding reliable feedback
[7]. The development cycle of speech recognisers may itself bene-
fit from the measure of reliability. Rather than expending resources
on annotating data that can already be reliably transcribed a more
challenging set can be automatically identified in a live data and in-
corporated into training these recognisers.
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Confidence scores [8] have been traditionally used as the mea-
sure of reliability of automatic speech transcriptions in both down-
stream as well as upstream tasks. In the simplest form these scores
are posterior probabilities associated with words in hypothesised
transcriptions. These probabilities however are believed to be over
estimated [9] which could hamper their utility as the confidence
measure. A range of approaches have been examined to improve
accuracy of confidence estimates. This includes simple piece-wise
linear mappings in the form of decision trees [9], generalised lin-
ear models [10], highly non-linear feed-forward neural networks
[11] and sequence models, such as conditional random fields (CRF)
[12, 13] and recurrent neural networks [14]. All these approaches
reported gains over posterior based confidence scores using a range
of evaluation metrics. This paper examines a neural network model
that takes into account information about not only the current word
and its history but also about all the following words. The bidirec-
tional nature of this model is expected to be well suited for the task
of confidence estimation given the complete knowledge of the entire
hypothesised sequence. This work thus combines the benefits of
neural networks for feature extraction and context modelling with
the whole sequence context of CRFs in a single model.1

The standard formulation of confidence scores is focused on
assigning estimates to hypothesised words only. This leaves any
deleted word out of consideration. Deletions, however, are a very
challenging type of error to recover from in both downstream and up-
stream tasks. Moreover, drifts in deployment domains either planned
[16] or unplanned [17] typically lead to large increases in deletion
errors. Though schemes such as frame weighting [18, 19] could be
used to alleviate the impact of deletions to a certain extent, an ex-
plicit deletion prediction is expected to be more appropriate. The
previous work on deletion prediction [20] has looked at predict-
ing whether a deletion occurs between current and next word us-
ing CRFs. This paper extends that work by predicting deletions by
means of a bidirectional recurrent neural network (BiRNN) model
[21]. For these deletion predictions to be useful a mechanism is
needed to incorporate them in upstream and downstream tasks. This
paper examines utterance selection for unsupervised training as the
target task and shows how simple combinations of confidence and
deletion predictions can yield selected data with different deletion
error rate characteristics. Experiments with IARPA Babel/Material
program languages show promise of this approach for confidence
estimation and deletion prediction.

The rest of this paper is organised as follows. Section 2 dis-
cusses confidences and evaluation metrics. The following section 3
examines interactions between these scores and deletions. Section 4

1This part of the work was completed prior to the publication of an inde-
pendent study on confidence prediction using BiRNNs [15].



describes the proposed BiRNN architecture for confidence and dele-
tion prediction. Experimental results are presented in Section 5. Fi-
nally, conclusions drawn from this work are given in Section 6.

2. CONFIDENCE SCORES

Quantifying uncertainty in predictions is a challenge that modern
speech recognisers are faced with due to their ubiquitous use in an
ever growing number of applications. Confidence scores have been
a traditional measure of certainty of a speech recogniser in its pre-
diction [8]. These scores are typically derived for each hypothe-
sised word. The simplest form of a confidence score is a posterior
probability of a hypothesised word that can be estimated over a lat-
tice of possible transcriptions generated by the speech recogniser
[22, 23]. This simple approach has been found [9] to significantly
over-estimate these scores. The reason most often stated is a lim-
ited size of lattices over which these posterior probabilities are nor-
malised. In order to adjust confidences so they better reflect the true
values a number of approaches have been examined. These can be
divided into simple mappings that make use of only original scores
and more complex approaches that make use of additional informa-
tion. The most prominent example of the former are decision trees
[9]. This simple approach estimates a monotonic piece-wise linear
mapping given some held-out data. The latter group, including the
work reported in this paper, make use of more complex approaches,
such as CRFs [12], feed-forward [11] and recurrent neural networks
[14] to estimate confidence scores from manually designed features.
These features may include various statistics extracted from audio,
acoustic models, language models and lattices [24].

In the ideal, limiting, case, confidence scores of correctly hy-
pothesised words are one and zero otherwise. In order to measure
how far any given set of confidence scores is from the ideal sce-
nario a number of metrics could be used. One popular metric is a
normalised cross-entropy (NCE) [25]. This metric measures a rela-
tive change in the cross-entropy caused when an empirical estimate
of ASR correctness is replaced by hypothesised confidences. The
estimate of ASR correctness can be computed from reference confi-
dences c∗ = {c∗1, . . . , c∗T } by

P (C = 1) =
1

T

T∑
t=1

c∗t (1)

where P (C = 1) is the probability of ASR system being correct
and P (C = 0) = 1− P (C = 1) is for the opposite event, T is the
number of hypothesised words. The average binary cross-entropy
between this estimate and reference confidences is given by

H(c∗) = − 1

T

T∑
t=1

c∗t log(P (C = 1)) + (1− c∗t ) log(P (C = 0))

(2)
On the other hand, the average binary cross-entropy between hypoth-
esised c = {c1, . . . , cT } and reference confidences is given by

H(c|c∗) = − 1

T

T∑
t=1

c∗t log(ct) + (1− c∗t ) log(1− ct) (3)

If the hypothesised confidences c are systematically better than the
estimate of ASR system being correct, P (C = 1), the relative
change in cross-entropy or NCE given by

NCE(c, c∗) =
H(c∗)−H(c|c∗)

H(c∗)
(4)

is positive. In the opposite case it is negative. The maximum value
of NCE is 1 which corresponds to the case where hypothesised con-
fidences match reference confidences exactly.

Though popular NCE may not be the most optimal metric to
assess confidence scores. For these scores to be the perfect cor-
rect/incorrect predictor, it is not necessary to match reference confi-
dences exactly. It is however sufficient to yield correct rank ordering
such that confidences of all incorrectly hypothesised words are be-
low some threshold and those of all correctly hypothesised words
are above. This suggests that an area under the curve (AUC) type
metric may be more suitable. When choosing which curve to use it
is important to know the balance of positive and negative class ex-
amples. For balanced data it is common to use a receiver operating
curve (ROC) of false positive (FP) rate (FPR) against true positive
(TP) rate (TPR) for a range of threshold θ values

TPR(θ) =
TP(θ)

TP(θ) + FN(θ)
, FPR(θ) =

FP(θ)
FP(θ) + TN(θ)

(5)

where TN(θ) and FN(θ) are true negatives and false negatives. The
AUC of a random guess under the ROC curve is 0.5. Values larger
than that signal better than random performance. For imbalanced
data it is more appropriate to use a precision-recall curve [26]

Precision(θ) =
TP(θ)

TP(θ) + FP(θ)
, Recall(θ) =

TP(θ)
TP(θ) + FN(θ)

(6)
The AUC associated with a random guess under the precision re-
call curve depends on the ratio between positive P and negative N
examples and is given by P

P+N
. For a perfectly balanced data set

this yields 0.5 and less and larger than 0.5 for data sets dominated
by negative and positive examples respectively. Speech recognisers
described in this work operate in the region where there are more
correctly than incorrectly hypothesised words. However, as the dif-
ference is not large the ROC curve will be used in this work.

Confidence scores are used not only in downstream applications
but also in upstream tasks. For instance in semi-supervised training
confidence scores are routinely used for selecting high-confidence
hypotheses for training acoustic models [19]. This requires extend-
ing the definition of confidence scores to an utterance (segment)
and audio recording level. Given a sequence of confidence scores
cr = {cr,1, . . . , cr,Tr} associated with recording r, a common so-
lution is to compute frame-weighted confidence score [18, 19]

cr =

∑Tr
t=1 λr,tcr,t∑Tr

t=1 λr,t

(7)

where Tr is the number of hypothesised words and λr,t is the num-
ber of frames associated with hypothesised word wr,t. This enables
the complete dataset to be rank ordered and manipulated to yield
subsets of the data with suitable confidence characteristics. The
frame-weighting applied in equation (7) ensures that long, high con-
fidence, regions do not get penalised unfairly by short, low confi-
dence, regions. The fundamental problem with using equation (7)
for data selection is that it does not take into account deletion errors
and may select transcriptions embedding large numbers of deletions.

3. DELETION ERRORS

Errors made by a speech recogniser are traditionally partitioned into
3 types: substitution, insertion and deletion. The former two have
a direct realisation in the form of hypothesised words whereas dele-
tions do not. The precise nature of partitioning into these error types



is a complex issue. First, the errors are computed by a Levenshtein
alignment that weighs different types unequally [27]. This balance
is further affected non-uniformly by the task at hand, the forms of
acoustic and language models used, decoding approaches. Any mis-
match between training and testing conditions typically would lead
to an additional imbalance. Although some forms of imbalance may
not necessary be harmful, high levels of deletion errors do not in-
teract well with a range of techniques such as discriminative adap-
tation/training, semi-supervised training, forms of minimum Bayes’
risk decoding. Therefore, keeping deletion error under control is an
important attribute of building speech recognisers.

The standard confidence estimation and confidence-based ap-
proaches do not explicitly address the presence of deletions [20].
This may not necessary lead to a problem however. Figure 1
shows an example of the impact that the average frame-weighted
confidence-based data selection has on word error rate (WER). The
underlying is a narrow-band conversational telephone speech (CTS)
recogniser for a limited resource language. As can be seen from
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Fig. 1. Example impact of data selection approaches on word error
rate (WER) in selected transcriptions

Figure 1, the WER of the full data set is above 30%. The top, filled
squares, line shows that as the amount of selected data is decreased,
by imposing ever increasing minimum average frame-weighted con-
fidence constraints, the WER decreases approaching 10%. The mid-
dle, hollow squares, oracle line shows what would have happened
if correct confidences were available. The bottom, filled circles,
oracle line shows the impact of also using the knowledge of deletion
errors. These lines show that large improvements are possible if
better confidence scores were used and unless limited quantities of
data are selected the impact of deletion errors can be small. The lat-
ter observation however does not take into account the presence of
correlation between substitutions, insertions and deletion errors that
can be exploited if deletions were taken into account by the data se-
lection scheme. Figure 2 provides an insight into the individual error
distributions during the selection process. As the amount of confi-
dence required to be selected increases the relative reduction in all
error types increases up to 0.8 average frame-weighted confidence
level where the speech recogniser starts to delete progressively more
words. Thus, the transcriptions that the speech recogniser is most
confident about may have worst deletion characteristics. Table 1
shows what happens when this narrow-band speech recogniser is
used to bootstrap a wide-band speech recogniser on some untran-
scribed news broadcast data. The first line shows the narrow-band
recogniser error characteristics on a set of narrow-band development
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Fig. 2. Example of relative reduction in substitution, deletion, inser-
tion and total error in confidence-based data selection

Type Band Error (%)
Model Data Sub Del Ins Tot

Sup Narrow Narrow 24.1 8.3 3.1 35.5
Narrow Wide 23.4 19.0 1.3 43.7

Unsup Wide Wide 15.6 25.5 0.9 42.0

Table 1. Impact of band mismatch on unsupervised training

data. The middle line shows its performance on a down-sampled set
of wide-band data containing news and topical broadcasts. As can
be seen this mismatch has largely affected deletions. The last line
shows that automatic transcriptions produced in such mismatched
configuration, when used to train a wide-band recogniser, lead to
an additional increase in deletions. Thus schemes that can lower
deletions in selected automatic transcriptions would be of interest in
such mismatched configurations.

If confidence estimates are supplemented with deletion esti-
mates the standard confidence-based selection scheme needs to be
altered. A range of schemes can be devised that weigh confidences
and deletions in a number of different ways. One approach would be
to discount confidences in equation (7) by scaled deletion estimates

ĉt = ct − θddt (8)
ĉ1 = c1 − θdd1 − θss (9)

This scheme has two free parameters and degenerates to the standard
confidence-based selection scheme when θd and θs are zero. An
alternative approach would be to threshold both estimates to yield
estimates of correct hypotheses

Cor(c; θc) =
T∑

t=1

δ(ct ≥ θc) (10)

substitution and insertion errors

Inc(c; θc) =
T∑

t=1

δ(ct < θc) (11)

as well as deletions

Del(d; θs, θd) = δ(s ≥ θs) +
T∑

t=1

δ(dt ≥ θd) (12)



where θc and θs, θd are thresholds for correct hypotheses and dele-
tions, dt is an estimate of deleting a word following the hypothesis
at time t and s is an estimate of deleting a word prior to the first hy-
pothesised word. The confidence and deletion based data selection
can be performed by rank ordering utterances/recordings according
to an estimate of WER given by

WER(c,d;θ) =
Inc(c; θc) + Del(d; θs, θd)
θp · Inc(c; θc) + Cor(c; θc)

(13)

where θp is a penalty term to reduce over-estimation of reference
words in the denominator since Inc(c; θc) counts both substitu-
tion and insertion errors. Omitting Inc(c; θc) term in the numerator
would enable to perform data selection based on the estimate of dele-
tion error alone, however, some safe guarding mechanism would be
required to ensure that the overall WER is low. The thresholds θ can
be optimised by minimising mean squared error between the true
and predicted WER on some held-out data using, for instance, a grid
search or a constrained derivative free method [16].

4. BIDIRECTIONAL RECURRENT NEURAL NETWORKS

In this work bidirectional recurrent neural networks (BiRNN) [21]
are used for estimating confidences and deletions. Figure 3 (a) shows
the simplest form of BiRNNs that predicts confidence at time t by
means of two recurrent units modelling past

−→
h t and future

←−
h t in-

formation. Various options exist how the past or history information

ht

ht

xt

tc

(a) confidence prediction

ht

ht

xt

tt c d t
s

(b) deletion prediction

Fig. 3. Bidirectional recurrent neural networks

can be updated at the following time t+ 1. In the simplest case

−→
h t+1 = σ(W(

−→
h )−→h t +W(x)xt+1) (14)

where xt+1 is an input feature vector, W(x) is an input matrix,
W(
−→
h ) is a history matrix and σ is a non-linearity such as sigmoid.

The future information is typically modelled in the same fashion
though this is not a requirement. The past and future information
at any time t can be combined into a single context vector

ht =
[−→
h t

←−
h t

]T
(15)

Given ht, the confidence ct can be modelled by

ct = σ(w(c)Tht + b(c)) (16)

where w(c) is a parameter vector and b(c) is a bias, σ is any non-
linearity mapping confidences into [0, 1] range.

One possible way to extend this BiRNN from predicting just
confidences to also predicting deletions is shown in Figure 3 (b).
Here, at any time t an additional, deletion, prediction dt is made that
a deletion occurred between current and the following word

dt = σ(w(d)Tht + b(d)) (17)

At time t = 1 an additional prediction is made to yield an estimate
of deletion prior to the first hypothesised word

s = σ(w(s)Th1 + b(s)) (18)

Not that such definition cannot take into account multiple consec-
utive deletions. Training can be performed by minimising cross-
entropies between true and predicted values of confidences and dele-
tions

F(θ) =
R∑

r=1

(
Tr∑
t=1

c∗r,t log(cr,t) + d∗r,t log(dr,t)

)
+ s∗r log(sr)

(19)
where the asterisk ∗ denotes true target values. For improved gener-
alisation the objective function above can be regularised by adding a
scaled L2 norm of model parameters θ.

For this approach to be successful, the input features should in-
clude information about hypothesised word sequence that is corre-
lated with different error types. A large body of work has been pro-
duced on hand-crafted features for these general machine learning
approaches [24, 11, 28, 20]. For this preliminary exploration a sim-
ple and compact form was examined for each hypothesised word

xt =



λt

ct
e(wt)

O(wt|wt−1, . . .)
log(P (wt|wt−1, . . .))

|wt|
δt−1

δt+1


(20)

This includes duration λt, confidence ct as estimated by the decision
tree, word wt embedding e(wt), n-gram language model statistics
in the form of log-probability log(P (wt|wt−1, . . .)) and the highest
non-backoff n-gram order O(wt|wt−1, . . .), character length |wt|
and any time gap between the current word and preceding δt−1 and
following δt+1 word. Though this set is limited it provides a suffi-
cient ground for exploring confidence and deletion prediction.

5. EXPERIMENTS

Experiments were conducted on three languages: Georgian, Taga-
log and Swahili. These languages originate from different language
families and possess limited resources available for the development
of speech recognisers. All three languages were a subject of research
under the IARPA BABEL program for developing agile and robust
speech recognition technology that can be rapidly applied to any lan-
guage. The latter two languages have also been included into the
new IARPA initiative for machine translation for English retrieval
and summarisation of text and speech (MATERIAL). For each lan-
guage only limited quantities of transcribed narrow-band conversa-
tional telephone speech (CTS) data are available. This consists of



40-60 hours for training, 10 hours for development and 10-15 hours
for evaluation. The Material program interested in both narrow-band
CTS and a range of wide-band domains has also released 10 hours
of transcribed wide-band news and topical broadcasts for performers
to analyse how well they can handle large domain mismatches.

All speech recognisers made use of lattice-free maximum mu-
tual information (LF-MMI) interleaved time-delay and long short-
term memory neural network (TDNN-LSTM) [29, 30] acoustic
models and n-gram language models [31]. Unless otherwise stated,
all acoustic models were trained on narrow-band CTS data. Input
features for acoustic models consisted of 24 dimensional filter bank
coefficients, probability of voicing and pitch [32]. All language
models were obtained by interpolating multiple source language
models on transcriptions of development data. The source lan-
guage models were built on training data transcriptions and various
sources of web data harvested by Babel/Material program perform-
ers [33, 34]. The amount of web data varied from 140 million words
for Georgian to 1 billion words for Tagalog and Swahili. Pronun-
ciations for these words were obtained by a grapheme-to-phoneme
model [35]. Table 2 shows performance of these recognisers on
Babel development (dev) and evaluation (evalpart1) data. The

Language Test set Error (%)
Sub Del Ins Tot

Georgian dev 26.7 10.3 2.9 39.9
evalpart1 22.9 8.0 2.9 33.8

Tagalog dev 26.4 9.9 4.3 40.6
evalpart1 25.6 9.4 4.2 39.2

Swahili dev 24.1 8.3 3.1 35.5
evalpart1 23.4 8.2 3.4 35.0

Table 2. Speech recognition performance on narrow-band develop-
ment and evaluation data

total error rate, WER, in these limited resource conditions is high,
ranging between 35 and 40%. For all languages the development
data provides a good match to the evaluation data. In particular, the
Georgian evaluation data appears to be significantly easier.

Two approaches for confidence estimation are examined in this
work: baseline decision trees (DT) and bidirectional recurrent neu-
ral networks (BiRNN) in Figure 3 (a). The continuous bag of words
representation was chosen to train 50-dimensional word embeddings
on all available text data using fastText library [36]. These em-
beddings provided the majority of input features in equation (20).
The BiRNN made use of single layer 64-dimensional LSTM units to
model the past and future information. The development sets were
used to train BiRNNs parameters using TensorFlow library [37].
Table 3 contrasts performances of the original confidence scores as
given by the recogniser (CN), after decision tree mapping (DT) and
after BiRNN estimation. As the proportion of positive examples is
not high the ROC curve was used to compute areas under the curve
(AUC). The CN and DT columns show that decision trees have sig-
nificantly reduced cross-entropies between true and estimated con-
fidences thus leading to lower normalised cross-entropy (NCE) val-
ues. However, as expected the AUC values have not changed as this
is a monotonic mapping not capable of changing the rank ordering.
The last column shows that BiRNNs examined in this work provide
small but consistent gains in the NCE and AUC values.

For confidence and deletion prediction the topology of BiRNN
is adjusted according to Figure 3 (b). Apart from doubling dimen-
sionality of LSTM units no other changes were made. For consis-

Language Metric Confidence Estimation
CN DT BiRNN

Georgian NCE -0.376 0.256 0.282
AUC 0.831 0.831 0.847

Tagalog NCE -0.428 0.219 0.249
AUC 0.810 0.810 0.825

Swahili NCE -0.297 0.372 0.392
AUC 0.832 0.832 0.846

Table 3. Normalised cross-entropy and area under the ROC curve
performance on narrow-band evaluation data

tency with the previous results Table 4 shows areas under the ROC
curve. The first block repeats the results in Table 3. The first line in

Predictor Prediction Language
Swahili Tagalog Georgian

Cor/Inc Cor/Inc 0.846 0.825 0.847

+Del
Cor/Inc 0.846 0.826 0.847

Next Del 0.742 0.740 0.726
Start Del 0.746 0.646 0.644

Table 4. Area under the ROC curve performance of BiRNNs for
correct/incorrect, sentence start and next word deletion prediction
on narrow-band evaluation data

the second block shows that the AUC performance remained largely
unaffected from the introduction of two additional tasks. The next
line shows that predicting whether a deletion occurred before the
following word is challenging with AUC values going down by as
much as 0.1. The last line shows that, apart from Swahili, predicting
that a deletion occurred prior to the first hypothesised word is even
more challenging. Both are believed to be the consequence of small
number of positive examples and limited features used in this work.

The next experiment examined whether the AUC values in Ta-
ble 4 are high enough to enable untranscribed data selection with
desirable error characteristics. Of particular interest in this work are
transcriptions with low numbers of deletions to counter-balance the
impact of domain mismatch between the narrow-band CTS Babel
and wide-band news and topical broadcast Material data. For this
investigation only Swahili was used. Two data selection schemes
described in Section 3 were investigated. The discounting coeffi-
cients in equations (8)–(9) were estimated using a grid search. For
simplicity a single discounting coefficient was estimated θd = θs =
5. For the thresholding scheme in equations (10)–(12) the optimal
thresholds were found by minimising mean squared error between
the true WER and its estimate in equation (13) using grid search.
This yielded thresholds for correct/incorrect hypotheses θc = 0.528,
deletion of the following word θd = 0.941 and deletion prior to
the first hypothesised word θs = 0.043. Figure 4 shows how the
number of deletions varies with the amount of data selected. Both
schemes achieve lower deletion numbers for all quantities of the se-
lected data with the thresholding scheme showing lowest numbers.
Figure 5 shows the impact these schemes have on WER. The thresh-
olding scheme largely follows the profile of the decision tree ap-
proach whereas the discounting scheme leads to higher WERs. As
the parameters in these schemes were estimated on narrow-band data
it is interesting to examine whether the estimated values would gen-
eralise to other domains. The equivalent of Figure 4 for the Material
wide-band data is shown in Figure 6. This figure shows that the
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thresholding scheme generalised better to the wide-band data.
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0 20 40 60 80 100
0

5

10

15

Data (%)

D
el

et
io

n
(%

)

Decision tree
BiRNN threshold
BiRNN discount
Minimum WER

Fig. 6. Impact of data selection schemes on deletion error rate on
Material wide-band data

The final experiment examined whether any of these schemes

could lead to WER improvements. As there is only general knowl-
edge of the Material wide-band data domain composition (news and
topical broadcast) a guess had to be made which of many possible
Swahili wide-band audio files available on the internet to use. A
subset of untranscribed Voice of America (Africa) data totalling 500
hours was selected and transcribed by the narrow-band recogniser
from Table 2. A quarter of that data was chosen by each scheme to
train a wide-band acoustic model. According to Figures 4 and 6 this
should yield transcriptions with lower numbers of deletions. The
WER performance of these models is compared in Table 5. The first

Selection Error (%)
Sub Del Ins Tot

narrow-band 23.4 19.0 1.3 43.7
confidence 15.6 25.5 0.9 42.0
threshold 16.5 25.2 1.1 42.8
discount 16.9 23.7 1.1 41.7

Table 5. Word error rate performance of data selection schemes on
Material wide-band data

line is the narrow-band recogniser. The next three lines shows the
standard confidence-based scheme and BiRNN-based thresholding
and discounting schemes. The standard confidence-based selection
yields gains over the narrow-band recogniser although this comes
with a significant increase in the number of deletion errors such
that they become the dominant source of errors. The thresholding
scheme shows worse generalisation from the VOA data compared
to the standard confidence-based approach. This may be attributed
to the mismatch between the VOA and Material data. The final
line shows that the discounting scheme shows better generalisation.
This may be attributed to a lesser degree of divergence between the
curves of the decision tree and the discounting scheme in Figures 4-
6 than it is for the thresholding scheme. Both schemes show better
deletion error characteristics. Overall these results show promise in
confidence and deletion-based data selection schemes and highlight
challenges faced in building general purpose wide-band recognisers
without any available transcribed data.

6. CONCLUSIONS

This paper examined the problem of assigning accurate confidence
scores to hypothesised words and predicting deletions produced by
speech recognisers. The former, confidence estimation, problem has
been researched before and a number of approaches have been pro-
posed. This paper has examined bidirectional recurrent neural net-
works (BiRNN) - a powerful approach capable of incorporating in-
formation from both past and future words for predicting confidence
in any given word. The latter, deletion prediction, problem has been
researched less even though deletions are an important type of error
that is hard to deal with in downstream and upstream tasks. This
paper proposed a modification to the standard topology of BiRNNs
to enable deletion prediction. The performance of BiRNNs was ex-
amined in challenging limited resource conditions across 3 different
languages. The confidence prediction was found to yield better per-
formance metrics than deletion prediction possibly due to the limited
number of positive examples and features used in this exploration.
The combination of the two predictions has been examined for un-
supervised data selection in a highly mismatched domain. A simple
weighting approach was found to provide small gains over the stan-
dard average frame-weighted confidence-based approach that does
not take deletions into account.
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