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Abstract— This tutorial provides an introduction to the topic
of neuromodulation as an important control paradigm for
natural and artificial neuronal networks. We review how neu-
romodulation modulates excitability, and how neuromodulation
interacts with homeostasis. We stress how modulating nodal
excitability provides a robust and versatile control principle to
dynamically reconfigure the connectivity of rhythmic circuits
and to shape the spatio-temporal synchrony of large popula-
tions.

Index Terms— Neural circuits, neuromodulation, excitability,
homeostasis, robustness, adaptation.

I. INTRODUCTION

Neuromodulation is an important control principle of
neuroscience. In a physiological context, neuromodulation
designates the regulation of the electrical activity of neuronal
circuits by ignaling molecules called neuromodulators. They
include ACh, dopamine, norepinephrine, GABA, glycine,
glutamate, serotonin, histamine, octopamine, and neuropep-
tides. In a medical context, neuromodulation designates the
increasing body of technologies aiming at interacting with
the electrical activity of neuronal circuits. Minimally invasive
technologies have been rapidly developing in the recent
years. They include electromagnetic stimulation (e.g. deep-
brain stimulation as a treatment for Parkinson’s disease),
pharmacological drug delivery, and optogenetics. The mecha-
nisms of medical neuromodulation are still poorly understood
and largely empirical, but, ultimately, they can be regarded
as an external interaction with the internal physiological
mechanisms of neuromodulation.

Neuromodulation is a natural entry point to neuroscience
for control theorists and control engineers. A theory of
physiological neuromodulation is ultimately a control theory
of neuronal circuits. One of the earliest books on neuromodu-
lation is entitled Neuromodulation: The Biochemical Control
of Neuronal Excitability [35]. It could serve as a title of
this tutorial. The recent review [48] by Eve Marder should
speak to control theorists as a remarkable invitation to study
neuronal circuits. The following two quotes of the paper are
illustrative: “Because the output of all biological circuits
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results from the interaction of many nonlinear elements,
computational models are needed to understand them. How
realistic do these models need to be, and what data are
needed to constrain these models? How will modulation alter
these processes? ” and “How can highly modulated circuits
be stable in the face of parameter changes brought about by
modulation?” The central questions of neuromodulation are
all control theoretic in nature: How do neuronal circuits cope
with uncertainty, heterogeneity, and variability ? How do
neuronal circuits dynamically reconfigure to process sensory
signals and execute motor tasks ? Medical neuromodulation
is largely regarded as the future of neuroengineering and
investigated as a potential treatment for a rapidly expanding
range of pathologies.

Traditionally, the emphasis in modeling the nervous sys-
tem has been on neurotransmission rather than neuromodu-
lation. The focus of neurotransmission is on the excitatory
or inhibitory synaptic transmission of electrical signals in
neuronal networks. In contrast, neuromodulation is about the
permanent modulation (another name for control) of cellular
or synaptic properties of neurons by neuromodulators. Neu-
romodulators are released by specific sets of neurons. Those
neuromodulatory neurons are localized in specific regions
of the brains but they project broadly. Neuromodulation
can radically alter the processing properties of neurons and
synapses over short time scales and large spatial scales.
Neuromodulators are major players in the control of neuronal
circuits and suggest a diversity of possible behaviors for a
given connectome.

The focus of this tutorial is to introduce some of the
basic mechanisms of neuromodulation in a control theoretic
language. We minimize the reference to biological details and
provide cartoon illustrations of general principles that could
also be of potential importance in artificial neuromorphic
circuits or artificial neural networks.

The aim of this tutorial is to inspire control theorists
and control engineers. Specific examples will be selected to
illustrate that neuromodulation raises novel control questions
that directly connect the classical language of circuit theory
to some of the most fascinating challenges of neuroscience
and neuroengineering.

II. A BRIEF HISTORY OF NEUROMODULATION

Irrespective of background, many engineers will have an
informal picture of a neuron as an excitable electrical device,
coupled in a circuit to sensory organs, muscles and other
neurons. This view emerged early in the history of physi-
ology, where the pioneering work of Galvani (1737-1798)
and Ramon y Cajal (1852-1934) respectively revealed the



electrical basis of neural activity and unpicked the intricate
‘wiring’ of the brain as a network of interconnected cells.
Later work in the early 20th century revealed that neurons
signal in discrete pulses, or action potentials [1], [43]. It was
not obvious at the time that the interconnections - synapses
- between circuit elements were chemical in nature: neurons
influence their neighbours by secreting tiny puffs of amino
acids, peptides and other small molecules [6], [7], [16], [70].

Neurotransmitters act as a chemical key, binding to recep-
tor proteins that are structurally maintained in close apposi-
tion to their site of release. Receptor proteins, in turn, are
physical pores that selectively allow ions to pass when open.
The action of synaptic transmission can be conveniently
and accurately modelled as a variable conductance in series
with a potential difference that represents the electrochemical
driving force of different ionic species. This driving force can
be negative or positive with respect to the resting membrane
voltage of a neuron. Synaptic transmission may thus excite
or inhibit a target. Similarly, the maximal conductance of a
synapse may vary.

Since the 1930s it was known that there are multiple
types of neurotransmitters [6] and distinct types of neurons
that secrete specific neurotransmitters. Accordingly, there are
multiple types of neurotransmitter receptors, each with its
own biophysical characteristics. To a loose approximation,
one can summarize this picture of neural circuits as a
collection of excitable elements that are interconnected via
positive or negative (excitatory or inhibitory) synapses.

This picture of a neural circuit as a network of excitable
elements with signed interconnections is very appealing. It
suggests that circuit principles in electrical engineering can
be directly applied to understand the function of any neural
circuit, provided the connectivity (or wiring diagram) and
the signs and relative strengths of synapses are known [66],
[69].

The 70s saw a surge in interest in mapping the connections
of small and experimentally tractable circuits [22], [3], [36].
Often, these circuits belonged to molluscs, crustaceans and
other simple marine organisms that were found to have large,
easily identifiable and physically robust nervous systems that
controlled relatively simple behaviors [46]. The belief at the
time was that the schematic, or wiring diagram of a neural
circuit would be sufficient to explain its function, modulo
some standard system identification applied to the circuit
elements themselves.

Over the course of the 70s and 80s this belief unravelled
[63]. Most notably, the doctrine that synapses represent the
sole inputs to neurons was found to be wrong. Similarly,
the convenient taxonomy of neurons into two classes, ‘ex-
citatory’ and ‘inhibitory,” turned out to be incorrect, as did
the assumption that neurons can only secrete one type of
neurotransmitter.

Pioneering work in invertebrate motor circuits revealed the
existence of chemical signals that act diffusively in the circuit
[30], [18], [9], [40], [27], [31], [32]. These signals, termed
neuromodulators, are secreted by neurons in a similar way to
classical neurotransmitters. However, instead of acting only

at the synapse, many neuromodulators diffuse long distances
and are capable of targeting populations of neurons. More-
over, the mode of action of many neuromodulators is funda-
mentally different to classical neurotransmitters. Instead of
merely exciting or inhibiting neurons, neuromodulators — as
their name suggests — modulate the biophysical properties of
target neurons.

In later sections we will clarify the kinds of biophysical
properties that are affected by neuromodulators. Informally,
these can include synaptic conductances or the intrinsic con-
ductances that control the excitable behaviour of a neuron.
Neuromodulators can thus directly reconfigure the wiring
diagram of a circuit by changing interconnection strengths.
They can ‘switch’ the nodes in the circuit from generating
discrete pulses to oscillations. They can also alter the de-
gree of excitability of neurons, making otherwise quiescent
circuits highly active.

Contemporary neuroscience research has been transformed
by experimental methods that allow neural circuits in more
complex organisms, including humans, to be mapped in
increasing detail. Modern connectomics allows exhaustive
mapping of the connectivity of entire nervous systems.
Similarly, recording and stimulation technology allows mea-
surement and control of neurons at a level of precision
that permits intentions, sensations and actions to be reliably
decoded in awake, behaving animals.

This wave of technological progress understandably fuels
promises that neural circuits in ‘higher’ organisms can be un-
derstood mechanistically. This excitement mirrors the hopes
that were ignited over 40 years ago in small invertebrate
circuits. Paradoxically, the same lessons about neuromod-
ulation are being rediscovered [38], [44]. The confounds,
surprises and shifts in thinking that followed the discovery of
neuromodulation are playing out for a second time on a much
bigger scale. Progress in neural engineering as well as basic
science requires us to develop a systems theoretic approach
to neuromodulation. Medical devices such as brain implants
minimally exploit this fundamental model of signalling to
dramatic effect, essentially reversing the debilitating effects
of Parkinson’s disease at the flick of a switch [2]. There has
never been a greater need for a solid theoretical foundation
for understanding neuromodulation.

III. NEUROMODULATION AS A CONTROL PROBLEM
A. Models and system properties

A neuronal circuit is modelled as an electrical network
of N nodes (neurons) with nodal voltages V; and passive
dynamics

CiVi = —gi(Vi— E;)) +I;, 1<i<N. (1)

The current I; into node ¢ is the sum of (possibly many)
currents determined by three types of conductances: intrinsic
(Gion), synaptic (gsyn), and diffusive (ggqp). Each resulting
current into node ¢ obeys Ohm’s law: I;on, = Gion(Vi— Eion)s
= —Gsyn(Vi = Esyn), and Igap = —ggap(Vi — Vj).
Without those currents, the neuron model reduces to a
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Fig. 1. The block diagram of a neuronal model. Intrinsic conductances are
feedback amplifiers. Synaptic conductances are feedforward amplifiers.

RC circuit with capacitance C; and resistance R; i

The (battery) potentials E;, Fj,n, and El,, are constant
parameters. Also the gap conductances gg,, are constant
parameters. An additional current I, is often added in the
model as well to mean an external current applied to the
neuronal circuit.

Electrical conductances account for gap junctions (or
electrical synapses), modeled as a resistor of conductance
Jgap between two nodes ¢ and j. They model diffusive
couplings in the electrical network. What makes neuronal
circuits distinct from other electrical networks is that intrinsic
conductances and synaptic conductances are voltage depen-
dent. Intrinsic conductances depend on the nodal voltage V;
whereas synaptic conductances depend on the pre-synaptic
voltage.

Intrinsic and synaptic conductances are modeled as nonlin-
ear voltage amplifiers. They are difficult to model because
they account for the mean-field gain at a cellular scale of
discrete events at a molecular scale. Their gain is amplitude
dependent and has fading memory. A simple conductance
model that captures those two properties has the form

gS(Vy)
—Vf +V

.g =

Tf Vf = (2)

The parameter g is called the maximal conductance. The
nonlinearity S(-) modulates the conductance in a normalized
range [0, 1]. It has sigmoidal shape, meaning that the differ-
ential gain S’(-) is bell-shaped and vanishes away from an
amplitude of maximal activation. The time-constant 7 models
the fading memory of the amplifier.

The key difference between intrinsic and synaptic conduc-
tances is illustrated in Figure 1. Intrinsic conductances are
feedback amplifiers of the nodal voltage whereas synaptic
conductances are feedforward amplifiers from the presy-
naptic voltage to the nodal voltage. Feedforward neuronal
networks necessarily exclude intrinsic conductances.

In the absence of intrinsic and synaptic conductances,
a neuronal network is a passive electrical network, made
of passive nodes interconnected by passive resistors. The
intrinsic conductances equip the nodal dynamics with feed-

back amplifiers. The synaptic conductances augment the
passive interconnections with feedforward amplifiers. The
mathematical modeling of a neuronal network as passive
electrical nodes interconnected by nonlinear voltage ampli-
fiers is rather general. It encompasses many mathematical
models of both animal and artificial neural networks. We
review three examples of different nature below.

Example 1: [Hopfield model] The seminal Hopfield
model [33] of associate memories consists of /N nodes with
nodal dynamics

v :———&—Zw”

Each current w;;S(V;) models a synaptic current from node
j to node i. The term S(V;) is a sigmoidal amplifier of
the presynaptic voltage V;. The synaptic weight w;; is a
parameter that is positive for an excitatory synapse and
negative for an inhibitory synapse. The simplification I,,,, =
—Gsyn(V;)(Vi — Egyn) = w;;S(V}) is a simplification of
the Ohmic dependence when the battery potential g, is
always larger than V; (excitatory) or always smaller than V;
(inhibitory). Also the dynamics of the amplifier is neglected
in Hopfield model (7; = 0), which corresponds to a synapse
with instantaneous activation. a

Example 2: [Hodgkin-Huxley model] The seminal model
of Hodgkin-Huxley [29] consists of a single neuron with
dynamics

app i (3)

CV = —gi(V-V)—gxa(V—Ena)— 9k (V—Ex)+Lapp (4)

The model includes two intrinsic conductances: a potassium
conductance gk and a sodium conductance gn,. The model
of the potassium conductance is

4

gK = JgKn )
(V) = —n+n,(V)
while the model of the sodium conductance is
gNa = gNamB h
(V) = —m+me(V) (6)
Th(V)h = —h+h(V)

Both the potassium and the sodium conductances have the
interpretation of a fading memory amplifier of the voltage
V. In neurophysiology, the variables n, m, and h are called
gating variables. They are all defined in the finite range [0, 1].
The variables n and m are called activation variables be-
cause N (+) and my(+) are monotonically increasing (with
sigmoidal shape). The variable & is called an inactivation
variable because 1 — ho(+) is sigmoidal. All the parameters
of Hodgkin-Huxley model were determined through careful
curve fitting of experimental data. Modeling a particular
intrinsic conductance with one activation and one inactivation
variable in the same way as in Hodgkin-Huxley model
is still the most prevalent conductance model in today’s
detailed models of neurophysiology. Those models are called
conductance-based models. a



Example 3: [Neuromorphic circuit] The artificial circuit
recently proposed in [59] consists of a single neuron with
dynamics

cV = _IP<V) - lei + Lopp
Iy = Fr(Va) (7
Ve = —Vy+V

Here the passive current I,,(V') is a nonlinear resistor. Each
active current I models an independent current source
controlled by a voltage amplifier. Each amplifier has a
sigmoidal static characteristic F, with positive or negative
derivative F!.. The dynamics of each amplifier is a first-
order lag. Such active circuit elements have an elementary
realization with MOSFET-based transconductance amplifier
operating in the weak inversion regime. They are core circuit
elements of neuromorphic analog architectures proposed in
[52]. The circuit architecture is neuromorphic in that each
current source mimicks in silico the contribution of a specific
intrinsic conductance in a physiological neuron.

An early example of neuromorphic circuit is the circuit
of Nagumo [53] designed to reproduce in silico the math-
ematical model proposed by FitzHugh [17] to approximate
the behavior of Hodgin-Huxley model. FitzHugh-Nagumo
circuit corresponds to model (7) with the passive current
I,(V) = %3 an instantaneous negative conductance current
I=(V) = =V, and a slow positive conductance current
IF (V) = kVs, with a slow-lag 75 > 0. In Nagumo’s circuit
realization, the slow current flows through an inductor in
series with a resistor, whereas the fast current models the
negative conductance of a tunnel diode. a

B. Control by neuromodulation

Neuromodulators modulate intrinsic and synaptic conduc-
tances. We model this external control by considering the
maximal conductance parameters g as control variables. This
mean-field parameter accounts for a variety of neuromodula-
tion mechanisms at the molecular level. Those mechanisms
are not discussed in the present tutorial. Regardless of the
underlying molecular mechanisms, the neuromodulation of a
neuronal network can be studied by analyzing the sensitivity
of the network behavior to specific maximal conductance
parameters.

Neuromodulators modulate intrinsic conductances as
much as they modulate synaptic conductances. Historically,
the modulation of synaptic conductances has received much
more attention than the modulation of intrinsic conductances.
This is because the maximal conductances of synaptic con-
ductances, or synaptic weights, are also the control parame-
ters of synaptic plasticity. They are adapted via various rules
in order to model learning capabilities of the network. Learn-
ing by adaptation of synaptic weights has been extensively
studied both in animal and artificial models. Often those
models exclude intrinsic conductances and have a purely
feedforward structure.

Neuromodulation differs from synaptic plasticity. It affects
intrinsic conductances as much as synaptic conductances. To

stress that difference, the illustrations in this tutorial will only
consider the neuromodulation of intrinsic conductances.

By definition, the modulation of an intrinsic conductance
is the modulation of a feedback amplifier. This is why
the question of neuromodulation is fundamentally about the
sensitivity analysis of a feedback system, a core question
of control theory. In a single cell, a neuromodulator modu-
lates the loop gain of a feedback system. The many-to-one
structure of the feedback block diagram in Figure 1 suggests
the richness of neuromodulation as a control mechanism:
a single neuromodulator can modulate the gain of many
intrinsic conductances, and many distinct neuromodulators
can modulate the gain of a single conductance. In short,
neuromodulation is an exquisite source of loop shaping. In
a network, neuromodulation can affect the intrinsic conduc-
tances of many neurons. It raises the interesting question of
controlling a network by shaping the sensitivity of the nodes
rather than by shaping the sensitivity of the interconnections.
In a neuromorphic circuit realization like the one discussed
in Example 3, the maximal conductance of each element is
controlled by the base current of a transistor.

Returning to the basic model architecture (1) and the
block diagram in Figure 1, one can think of each neuron
of a neuronal circuit as a simple passive device controlled
by a parallel array of feedback amplifiers (the intrinsic
conductances) and a parallel array of feedforward amplifiers
(the extrinsic conductances). Neuromodulation makes the
gain of each of those amplifiers a potential control variable.
In the language of circuit theory, each neuron is a one-port
circuit controlled by many parallel voltage amplifiers. Each
voltage amplifier is potentially under the control of one or
several neuromodulators.

C. Excitability, thresholds, and loop-shaping

To appreciate the importance of neuromodulation as a
loop-shaping mechanism, it is instructive to connect loop-
shaping to excitability. Neuronal excitability is a key property
of neuronal networks. Excitable systems are characterized by
a sharply distinct sub-threshold and supra-threshold behav-
iors [64]. The sub-threshold behavior of an excitable system
is its small-signal behavior : it is determined by the passive
response of the neuron for small voltage deviations from
equilibrium. The supra-threshold behavior is its large-signal
behavior. It is determined by the all-or-none response of the
neuron for voltage variations exceeding a threshold. This all-
or-none response takes the form of specific discrete events
such as spikes. Figure 2 illustrates the sub-threshold and
supra-threshold behaviors of Hodgkin-Huxley model.

The existence of a threshold is easy to understand in the
static approximation of a neuronal model :

(CV :)O = _I(V) + Iapp )

The curve I(V) is called the I-V curve of the neuron. The
existence of a threshold is related to the monotonicity of
the I-V curve. If the curve I(V') is monotone, there is no
(static) threshold : the variation of voltage is a monotone
function of the variation of current. Instead, a non-monotonic
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Fig. 2. The threshold property of an excitable circuit illustrated with

Hodgkin-Huxley model. The large voltage excursion (= 100mV’) over a
short time-interval (2 5ms) is called an action potential or a spike.

I-V curve has a threshold at the minimum voltage of zero
conductance, that is the point V where I'(V) = 0. A
continuous variation of the current around the threshold
produces a discontinuous variation of the voltage. Around the
threshold, the static model is ultra-sensitive: a small variation
of the current results in a large variation of the voltage. Hence
the neuron static model has a threshold if and only if the I-
V curve has a range of negative differential conductance,
that is a voltage range where % < 0. A range of negative
conductance implies that the model is non invertible and
has ultra-sensitivity around the point of zero conductance
% = 0. In a static model, the point of zero conductance
identifies the threshold.

In the block-diagram representation of Figure 1, the differ-
ential conductance of the neuron is equal to the differential
loop gain of the feedback system. As an example, consider
the static approximation of Hodgkin-Huxley model

Topp = gi(V = Vi) + gna(V)(V = Exa) + g (V)(V — Ex)

with
' gaV) = Gl (V) hoo(V)
gk (V) = grni (V)

The linearized equation around V' is

9tot0V = 0lapp = (9na (V) (V = ENa) — g (V) (V — Ex))0V

€))

where the total conductance is defined as

Grot = g1 + gna(V) + g (V).

In the terminology of control theory, this circuit admits the
representation of a unity feedback system with loop gain
L(V'). The loop gain is the function

_ vV = Bna) + g (V)(V — Ex)

LV .
) Gtot
The sensitivity function § = 1 is
S(V Jtot

)= G T IV~ Bxa) + V)V — B

The sensitivity of the feedback system becomes infinite
for the threshold voltage at which the total differential
conductance gior + g (V)(V — Ena) + 9k (V)(V — Ek)
vanishes.

The reader will observe that for any voltage V &
[Ex, ENa), the terms gyt and gy (V)(V — Ek) are always

positive. Only the term gi,(V)(V — Exa) is negative when
gna (V) > 0. In other words, the potassium conductance
always provides negative feedback amplification and only the
sodium conductance can provide positive feedback amplifi-
cation. Ultra-sensitivity arises as a balance between positive
and negative feedback amplification. By modulating the gains
JgNa and gg, neuromodulation can regulate this balance. This
indicates the core reason why the neuromodulation of intrin-
sic conductances provides feedback control of excitability. In
contrast, as feedforward amplifiers, synaptic conductances do
not contribute to the loop-shaping of the sensitivity function.

D. Dynamic conductances

Excitability and its threshold property are harder to quan-
tify in a nonlinear dynamical model of the neuron. One
way to proceed is to consider the linearized model of the
neuron around an equilibrium voltage. The loop-gain and
the sensitivity functions in the previous section then become
transfer functions of the linearized models parametrized by
the equilibrium voltage : L(s;V) and S(s; V). The static
quantities defined in the previous section correspond to the
static gains L(0; V") and S(0;V’). This approach however
ignores that the threshold property is only approximately
captured by the small-signal model of the neuron.

An alternative approach is to rely on the sharp separation
of time-scales observed in neurophysiological models. This
time-scale separation was acknowledged since the early
experimental work of Hodgkin and Huxley, who immediately
recognized the value of separating the early current from the
late current in dissecting the role of intrinsic conductances.
In neurophysiology, the capacitive current is regarded as
instantaneous, the sodium activation is regarded as fast, and
both the potassium activation and sodium inactivation are
regarded as slow.

The sharp time-scale separation allows for a quasi-static
approximation of the conductances in distinct time scales.
We illustrate this decomposition in Hodgkin-Huxley model.

The instantaneous approximation neglects the capacitive
dynamics (C' = 0) and freezes the gating variables to their
initial equilibrium conditions. The resulting instantaneous
conductance is giot, Which is the total quasi-static con-
ductance of the neuron when the frozen gating variables
are treated as parameters. The fast approximation neglects
both the capacitive dynamics C' = 0 and sodium activation
(Tm = 0), but freezes the gating variables i and n, adding
the contribution of the fast conductance

g1 (V) = gnad3m?(V)m!

oo(V)h(V - ENa) (10)
where h is a constant parameter frozen at the equilibrium
value hoo(Veq). Finally, the slow approximation considers
the total static approximation of the neuronal model, adding

the contribution of the slow conductance
9s(V) = gna(3m*(V)mi, (V) (hoo(V) — h)+-

+m, (V)h (V))(V — Exa) + gK4n§o(V)né&(K)



Fig. 3. The mixed-feedback representation of an excitable model : positive
feedback in the fast time-scale, negative feedback in the slow time-scale.

This decomposition of the total differential conductance
into the sum of an instantaneous, fast, and slow conduc-
tances is very useful to understand the role of the intrinsic
conductances in shaping the loop-gain of an excitable model.
The instantaneous model of the neuron is a passive resistor
with open-loop gain R, = ﬁ The fast conductance
provides fast positive feedback amplification as the sign
of gf(V) is always negative. As a consequence of this
positive feedback loop, the I-V curve has a range of negative
differential conductance in the fast time-scale of sodium
activation. For that reason, the fast positive feedback is the
source of a fast threshold. The slow conductance provides
slow negative feedback amplification as the sign of g4(V) is
always positive. The negative feedback loop is the source of
refractoriness in the slow time-scale of potassium activation,
restoring the monotonicity of the I-V curve and allowing for
the slow repolarization of the neuron to its equilibrium value.

The mixed-feedback representation of the neuronal model
in Figure 3 is not specific to Hodgkin-Huxley model. It is a
central motif of neuronal excitability.

Figure 4 illustrates how the instantaneous, fast, and slow
differential conductances of a neuron can be determined from
the current step response to a small voltage variation V+AV.
This experiment is called a voltage-clamp experiment as
the voltage is clamped to a prescribed value by an external
feedback amplifier. By repeating this experiment for different
voltages, one can obtain the differential conductances curves
Grot(V), g;(V), and gs(V) from input-output data. It is
through a series of voltage-clamp experiments that Hodgkin
and Huxley identified their model. For a more detailed
description of dynamic conductances and how they can
be determined analytically or experimentally, the reader is
referred to [12].

IV. NEUROMODULATION OF EXCITABILITY
A. Excitability is modulated

The excitable behavior of any neuron is made of action
potentials, or spikes. And every spike is generated by the
mechanism described in Section III-C : fast positive feedback
amplification followed by slow negative feedback amplifica-
tion. But this does not mean that every neuron has the same
electrophysiological signature. Instead, the neuronal activity
comes in a great variety in different neurons. Even more im-
portantly, the same neuron can exhibit different firing modes

1 0) V(t) %

Fig. 4. The current response of an excitable neuron to a voltage step AV
around a voltage V' close to threshold provides an approximation of the

. 0 7 s
three quantities giot (V') & %’ gr(V) = AA—IV, and gs(V) = ﬁ—lv.

or states depending on the environment. Neuromodulation
plays a critical role in controlling the transition between such
states.

As early as in 1948, before the 1952 model, Hodgkin
distinguished between three classes of excitability on the
basis of spiking patterns observed in crustacean axons [28].
Type I axons were capable of spiking repetitively across
a broad range of rates (5-150 spikes/s) in proportion to
the stimulus intensity. Type II axons were also capable of
spiking repetitively but across a narrower range (75-150
spikes/s). In particular, they could not spike at a regular
slow frequency. Type III axons were not capable of sustained
periodic spiking. This early classification is still used today
and has generated a great amount of experimental and
modeling papers.

Another classical type of classification is between spiking
and bursting. Bursts are discrete events composed of high-
frequency trains of spikes interspaced by long inter-burst
intervals without spikes. Bursts also come in many forms.
Their classification has been the source of a vast literature.

Classifying firing patterns has proven difficult, both for
neurophysiologists and for mathematicians.

The neurophysiologist likes to associate different firing
patterns to different types of intrinsic conductances. Experi-
ments often consist in asserting the role of a particular con-
ductance by blocking its activation pharmacologically. Such
experimental sensitivity analysis can be fragile because the
outcome of blocking one type of conductance is sometimes
highly dependent of many other conductances. The reader is
referred to [14] for a further discussion about the fragility
of sensitivity analysis in the presence of many redundant
intrinsic conductances.

The mathematician likes to associate different firing pat-
terns to different mathematical models or to different bi-
furcations in a same mathematical model. Because of the
complexity of high-dimensional models that include many
different conductances, this analysis is often confined to
low-dimensional models that are not easily connected to the
neurophysiology. It makes it challenging to relate the role of
a neuromodulator to a particular bifurcation parameter.

Efforts to classify firing patterns has led to an increasing
divide between experimental neurophysiology and mathe-
matical neuroscience. Conductance-based classification has
led to contradictory experimental and/or numerical obser-



vations in high-dimensional models of apparent daunting
complexity for the mathematician. Bifurcation-based classi-
fication has led to a diversity of mathematical models that
are technically challenging and difficult to relate to concrete
physiological mechanisms or experiments.

The perspective of neuromodulation offers an opportunity
to resolve this divide. It constrains mathematical modeling
with the requirements of robustness and modulation. Classifi-
cation only requires that a mathematical model reproduces a
particular type of attractor with a particular set of parameters.
This task is daunting in a high-dimensional set of nonlinear
differential equations and combinatorial in the dimension of
the parameter space. Neuromodulation constrains a math-
ematical model to exhibit robust modulatory paths in the
parameter space. The model must account for the continuous
deformation from one attractor into another attractor in the
parameter space of maximal conductances. Morover, this
continuous deformation must be robust to uncertainty in the
remaining model parameters to account for the large vari-
ability observed in nature. As further illustrated in Section
V, neurons may exhibit the same neuromodulation properties
in spite of vastly different conductances.

Constraining a mathematical model to combine robustness
and modulation properties is highly discriminant and a very
task of control theory. This is why input-output and loop-
shaping paradigms are necessary in addition to state-space
models of a neuron. The next section will illustrate how
elementary loop-shaping ideas can help understanding key
modulation mechanisms at the single cell level.

B. Fast and slow excitability

A key insight into the question of neuromodulation comes
from the excitability motif discussed in Section III-C. The
combination of fast positive and slow negative feedback
localizes a range of ultra-sensitivity both in amplitude and
in time. The threshold amplitude is localized in a range of a
few mV around -55mV whereas the full voltage range of the
neuronal voltage exceeds 100 mV. The duration of a spike is
a few ms whereas firing patterns extend over hundreds of ms.
This localization is primarily determined by the kinetics of
sodium activation, which only provides positive feedback in a
narrow temporal and voltage range. In short, sodium channels
determine the scale of fast excitability and the possibility of
spiking.

Much of the modulation of the neuronal activity comes
from replicating the same excitability motif in a slower time-
scale and a lower voltage range, with the help of addi-
tional intrinsic conductances. In particular, calcium channels
activate very much in the same way as sodium channels,
but in a significantly slower time scale. They provide slow
positive feedback amplification, that is, positive feedback
amplification with an activation time-constant that is 5 to
10 times bigger than the activation time-constant of sodium
channels. Calcium channels come in great varieties and
allow for considerable tuning of the temporal and amplitude
range of slow excitability. For instance, T-type calcium
channels are frequently associated to neurons that exhibit

continuous transitions between spiking and bursting. They
are characterized by a slow time-scale and a low voltage
range of activation relative to sodium activation. Because
of those properties, they can create a second threshold
around -65 mV and with the longer latency characteristic
of burst initiation or slow spiking. The slow positive feed-
back provided by calcium channels is balanced by ultra-
slow negative feedback provided for instance by calcium-
activated potassium channels. Those channels are similar to
the potassium channels of Hodgkin-Huxley model, but their
activation can be much slower (e.g. 200-300 ms) and is
dependent on the intra-cellular calcium concentration rather
than the voltage amplitude.

Slow excitability does replicate the motif of fast excitabil-
ity but in a distinct amplitude and temporal scale. Four
distinct types of intrinsic conductances are necessary to
provide the four feedback amplifiers that define fast and
slow excitability but many more conductances can contribute
to tune this balance of feedbacks in specific temporal and
voltage ranges. In nature, the channels that provide positive
feedback seem few and attached to specific time scales.
Sodium activation is the main contributor of fast positive
feedback, and calcium activation is the main contributor of
slow positive feedback. But slow positive feedback is also
provided by the slow inactivation of fast potassium channels.
This is a distinctive role of the A-type potassium current
first highlighted by Connors and Stevens [5] to explain Type
I excitability. Most potassium currents primarily contribute
to negative feedback amplification through their activation
variable. Potassium currents come in great variety and their
activation covers a broad range of time scales and voltages.
The variety of channels encountered in nature matches
the view that only two localised negative conductances
are needed to define fast and slow excitability but that a
continuum of positive conductances allows to continuously
deform the spiking and bursting activity of neurons.

C. Control by balancing the gains of four feedback loops

Conceptually, it is not difficult to imagine the modulation
capabilities of a neuronal model with two distinct sources
of excitability. Fast excitability accounts for the fast time-
scale of spiking whereas slow excitability accounts for the
slow time-scale of first-spike latency and burst excitability.
The combination of fast and slow excitability accounts for
bursting and the modulation between spiking and bursting or
between different types of bursting.

The view of a neuron as a feedback control system
regulated by two positive and two negative feedback loops
that balance each other to localize two thresholds in narrow
amplitude and temporal ranges is illustrated in Figure 5.
Each threshold defines a discrete state that can be turned
on (1) and off (0). The resting state has no threshold (00).
The spiking state has a fast threshold but no slow threshold
(10). The bursting state has a fast and a slow threshold
(11). The slow oscillatory state has a slow threshold but not
fast threshold (01). This last state is not physiological but
such slow oscillatory potentials (SOPs) have been reported
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Fig. 5. A. The double mixed-feedback motif of a neuron. The on (1)
or off (0) state of each of the two thresholds define four discrete states
for the neuron : resting state (00), spiking state (10), bursting state (11),
and slow oscillatory state (01). The figure also illustrates the corresponding
current response of a volage-clamp step perturbation in the threshold voltage
range. Both the fast and slow thresholds have a distinct negative conductance
signature in their respective time scales. B. An illustration of how modu-
lating the feedback gains of a neuron can tune the bursting attractor. (Left)
Stronger gains in the feedback loops that control slow excitability increase
the burstiness of the attractor : the fast and slow excitability properties
of the attractor become increasingly decoupled. (Right) Modulating the
amplitude range of the slow positive feedback gain modulates how the
intra-burst frequency evolves during the slow oscillation of the burst. The
three illustrated bursters are reminiscent of have been called square-waved,
parabolic, and triangular in the neurodynamics literature.

in many experiments that block the activation of sodium
channels.

Both the fast and slow thresholds have a distinct neg-
ative conductance signature in their respective time scales
and voltage ranges. Those signatures have a robust input-
output representation in the dynamic conductances defined
in Section III-D. This input-output representation of the
neuron is independent of any state-space model. The dynamic
conductances are shaped by the intrinsic conductances, that
is, by the gains of the feedback amplifiers of the neuronal
model. The positive feedback loops shape the ranges of neg-
ative conductance and localize the thresholds. The negative
feedback loops shape the ranges of positive conductance and
tune the refractory periods of spikes and bursts.

From a mathematical viewpoint, a key question is to
relate the loop-shaping of dynamic conductances to the
attractors of corresponding dynamical state-space models.
This question is not discussed in details in the present
paper but is addressed in the papers [19] and [20] in the
mathematical language of singularity theory and geometric
singular perturbation theory. The hysteresis singularity is
shown to organize the one-treshold motif of fast excitability,
whereas the cusp singularity is shown to organize the two-
threshold excitability of fast-slow excitability. The discrete
states of the neuronal model are separated by transition
varieties in the space of unfolding parameters. There is

a remarkable match between the unfolding parameters of
singularity theory and the maximal conductance parameters
of the four feedback loops of the two-threshold excitability
motif. This classification is achieved in the singular limit of
a three-time scale model with strong separation between the
fast, slow, and ultra-slow time scales. This classification is
simple in that it ignores many bifurcations that occur away
from this singular limit. Our ansatz is that the simplicity of
this classification matches the robustness of attractors that
are insensitive to most model parameters of high-dimensional
state-space realizations.

From a neurophysiological viewpoint, the control per-
spective suggests that a specific type of ion channels or
neuromodulator contributes to the firing pattern of the neuron
insofar that it affects the balance of a few feedback gains.
Dynamic conductances provide a bridge between the low-
dimensional space of the four feedback gains that shape the
conductances and the high-dimensional space of maximal
conductance parameters. The excitability thresholds are iden-
tified from local properties of the dynamic conductances,
and the sensitivity of dynamic conductances to a specific
neurophysiological parameter can be easily assessed from a
detailed conductance-based model. This analysis is detailed
in the papers [10], [12], and [21].

We provide a tutorial illustration in the two next sections.

D. Spiking-bursting modulation in a neuromorphic circuit

The continuous modulation of a neuron between a spiking
mode and a bursting mode has been described in many neu-
rophysiological experiments. We will return to the physiolog-
ical significance of such a transition in Section VII. Here, we
reproduce this transition in an artificial neuromorphic circuit
studied in [59]. The circuit uses the general architecture in
Example 3 and is shown in Figure 6. The four active elements
of the circuit match the four feedback gains of the double
mixed-feedback motif in Figure 5. We assume that the fast
negative conductance element z?(V) is instantaneous. The
circuit admits a three-dimensional state-space representation.
The model consists of the electrical equation

CV = —ip(V) =iy (V) =i (Vo) —ig (V) — iy (Vi)

S

the. slow lag 7,V = —V, + V, and the ultra-slow lag
TsVus = —Vus+ V. The dynamic conductances of the model

take a simple expression: the fast dynamic conductance
g (V) = ZZ—(;(V) is by definition always negative. The slow
dynamic conductance is gs(V) = ‘f;‘; V) + ‘flg (V), the
sum of two conductances of opposite signs. The ultra-slow
dynamic conductance g,,s(V') = %(V) is always positive.

The four dynamical conductances of the circuit shape the
loop-gain of the feedback system in the three time-scales.
In [59], the behavior of the circuit is predicted solely from
the shapes of the fast, slow, and ultra-slow I-V curves. The
ultra-slow I-V curve includes all currents. The slow I-V
curve excludes the ultra-slow current. The fast I-V curve
excludes both the slow and ultra-slow currents. The fast
and slow thresholds are controlled by a range of negative
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Fig. 6. The neuromorphic circuit of a neuron with four active current
sources to match the four feedback gains of the double mixed-feedback
motif.
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Fig. 7. Continuous transition from bursting to spiking in the neuromorphic
circuit of Figure 6 by decreasing the maximal gain o of the slow negative
conductance current i3 (V). Adapted from [59].

conductance in the fast and slow I-V curves, respectively.
A spiking attractor only requires a fast threshold, meaning
an N-shaped fast I-V curve, but a monotone slow and ultra-
slow I-V curves. A bursting attractor requires both a fast
and a slow threshold, meaning N-shaped fast and slow -V
curves, and a monotone ultra-slow I-V curve.

Figure 7 illustrates a simple control mechanism for spike-
bursting modulation in this circuit. Only the gain of the slow
negative conductance is modulated to control the monotonic-
ity properties of the slow I-V curve. The initial gain is strong
enough to create a range of negative conductance in the
slow I-V curve, resulting in a bursting attractor. The gain
is continuously decreased and eventually makes the slow I-
V curve monotone, resulting in a spiking attractor. Although
the circuit model is highly simplified with respect to detailed
neurophysiological models, it captures an important impor-
tant property: intrinsic conductances that contribute to the
slow negative conductance of the neuron play a critical role
in the control of bursting and slow spiking. This property is
further illustrated in the next section.

E. Excitability modulation in Connors-Stevens model

The work of Connors and Stevens [5] in the early 70’s is an
early demonstration that particular intrinsic conductances can

control the excitability of a physiological neuron. Through a
series of voltage-clamp experiments in a (gastropod) neuron,
the authors isolated two distinct types of potassium cur-
rents: a potassium current Ix with slow activation (and no
inactivation), similar to the potassium current of Hodgkin
and Huxley model, and a potassium current I, with fast
activation and slow inactivation. They showed that a model
including a current /4 in addition to the two currents In,
and Ix of Hodgkin-Huxley model could exhibit arbitrarily
slow firing. In the 1948 classification of Hodgkin, Connors-
Stevens model is a model of Type I excitability whereas
Hogdkin-Huxley model is a model of Type II excitability.
Connors-Stevens model was recently revisited in [15]
to clarify the role of the current I4 from a loop-shaping
perspective. Through its slow inactivation, the current I 4 is a
source of slow negative conductance. Hence its inactivation
contributes to the slow positive feedback amplification of
the circuit, or, equivalently, to shaping the negative range
of the slow dynamic conductance. This is counter-intuitive
because the potassium current is an outward current. The
static conductance of an outward current is always posi-
tive. But transiently, it can contribute to positive feedback
amplification in the same way as the slow activation of an
inward current (like calcium). The two currents Iy and I4
contribute to the slow dynamic conductance of the neuron in
the same way as the currents i and i in the neuromorphic
circuit of the previous section : through its slow activation,
I contributes to the slow positive conductance of the
neuron; through its slow inactivation, /4 contributes to the
slow negative conductance of the neuron. Both currents
can balance each other to result in a range of nearly zero
conductance like in the middle I-V curve of Figure 7. As
explained in [15], a nearly zero conductance is the very
impedance property required for long interspikes intervals.
The dynamical conductance analysis in [15] resolves a
number of puzzling experimental and modeling paradoxes
associated to the role of the I 4 current. For instance, Connors
and Stevens showed that the current I4 could control a
transition from Type II to Type I excitability, but other
experiments conducted on other neuron types concluded that
I4 currents could instead favor a transition from Type II
to Type I. A dynamic condutance analysis shows that the
type of transition is determined by the relationship between
I 4 current kinetics and the kinetics of other currents: if [4
inactivation is slow as compared to sodium current activation,
the channel provides a source of slow negative conductance
and promotes a transition from Type II to Type I excitability.
If instead the I, activation is slow as compared to sodium
current activation, then its inactivation becomes ultraslow.
In that case, the channel contributes to the slow positive
conductance and promotes a transition from Type I to Type
II. Many examples of both situations can be found in the
experimental literature (see e.g. Fig. 6 of [15]).

V. HOMEOSTASIS, REGULATION AND DYSREGULATION

For a neuron to maintain a specific conductance profile,
ion channels need to be synthesized and expressed at appro-



priate levels in the membrane. This is a dynamic process.
The lifetime of an individual ion channel is of the order of
hours or days [47], while its dwell-time at the membrane
where it contributes a conductance may be shorter. The fact
that channels are continually synthesized and broken down
implies that some form of cellular feedback control must
exist to maintain a stable net conductance density [58], [47].

Widespread experimental evidence supports the existence
of internal cellular mechanisms that sense ongoing voltage
fluctuations and exert negative feedback control to maintain
stable conductance densities. These feedback mechanisms
are found to compensate for external perturbations to neurons
that change average input over extended periods. For exam-
ple, if neurons are artificially depolarized for many hours, the
conductance densities and therefore the excitable behaviour
adapts to make the neuron less excitable [55]. Conversely,
a long-lived reduction in the amount of excitatory input
that a neuron receives results in a net increase in the
neuron’s intrinsic excitability [8]. Existing theoretical models
attempt to capture this kind of regulation and explore its
consequences for neural circuits [4], [56], [57], [42], [39].
In fact, the existence of such a feedback mechanism was
hypothesized before it was shown experimentally [39].

Several models of ion channel regulation [4], [56], [57],
[42], [39] assume, in line with experimental evidence, that
ion channel densities are controlled using intracellular cal-
cium concentration as a feedback signal. Calcium tracks
membrane potential fluctuations due to the existence of
voltage gated calcium channels that operate over a wide
range of membrane potentials. In turn, a host of calcium
sensitive enzymes transduces this signal into changes in
the density of channels at the membrane via a number of
mechanisms that are still poorly understood.

A recent model [57], hypothesizes that (approximate) in-
tegral feedback control is employed to maintain intracellular
calcium c at a nominal reference concentration cr:

TmM =cCr — C
Tgg=m—g

where g represents the maximal conductance, or con-
ductance density of a particular channel type, m is the
corresponding channel precursor, or mRNA. The implicit
assumption in these models is that neurons use calcium con-
centration as a proxy for neural activity. The timeconstants,
Tm, Tg are assumed to be several orders of magnitude longer
than the slowest timeconstant in the membrane potential
dynamics of the neuron. This timescale separation means
that the controller maintains calcium concentration at the
nominal concentration on average. This is important because
membrane potential fluctuations are necessary for neuronal
signalling.

There are several complicating factors that neurons must
have overcome to achieve reliable function. We will focus
on two of these:

1) ion channel degeneracy
2) reliable neuromodulation

There is a large degree of degeneracy in the kinds of ion
channels expressed in many neurons and excitable cells. For
example, the human genome contains 40 known voltage-
gated potassium channel genes. Each gene typically encodes
multiple versions of a protein subunit that is in turn combined
with other subunits to make ion channels, resulting in a
surprisingly large array of ion channel types. The biophysical
properties (such as voltage dependence, ion selectivity, gating
dynamics) of these channel types might differ substantially,
or somewhat subtly. They provide a large number of redun-
dant degrees of freedom for controlling neuronal excitability
[23].

For concreteness, we can express this degeneracy in the
notation we introduced above. Recall the decomposition of
membrane conductances:

OV = —ip(V) =7 (V) =it (Vi) = ig (V) = i (Vus).

Let us enumerate these dynamic conductances using an
index, j € {1,...,5} so that i1(V) = —i,(V),i2(V) =
—iy(V),... and so on. Now denote the contribution of N
individual ion channel types by {ix(V)}_,. Under the
assumption that dynamic conductances capture the behaviour
of a neuron, we have

oV = Z@(V) = ir(V).

k

Generically N >> 5 and we therefore have a degenerate
mapping between the ion channel type and the dynamic
conductances,

i(V) = W(V)i(V)

for an appropriately chosen weighting matrix, W(V) =
{w(V)}x. This degeneracy matters because neurons control
their conductance properties by controlling the expression
of genes that encode ion channels. Any effective regulation
mechanism must therefore implicitly take into account this
degenerate mapping.

A consequence of ion channel degeneracy is that it permits
variability in the expression of ion channels in neurons.
This is in fact seen in experimental data: repeated mea-
surements of the abundances of ion channel channel genes
show several-fold variation in channel expression in the same
neuron class [24], [61], [62]. It remains an open question
whether channel regulation mechanisms impose specific con-
straints on channel expression beyond those induced by a
simple feedback regulation of the form described above.

One potential drawback of degenerate channel expression
is the danger that variable channel density leads to unreliable
neuromodulatory responses. This is illustrated in Figure 8. To
achieve reliable neuromodulation, channel densities need to
be tuned such that the modulated state corresponds to an ap-
propriate physiological behaviour. These dual requirements
- nominal physiological behaviour and nominal modulatory
response - imply the existence of feedback mechanisms that
sense the physiological state of a neuron and control ion
channel expression to maintain that state.
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Fig. 8.  Channel expression variability poses a problem for reliable
neuromodulation. Figure reproduced from [49].

At present, there is no experimentally identified mecha-
nism for achieving this tuning. It is possible that cellular sig-
nals that transduce the modulatory signal themselves interact
with feedback mechanisms to fine-tune channel expression.
It is also possible that cellular sensors of ongoing neural
activity feed back on the release of neuromodulators to
ensure appropriate switches in activity. In either case, it
is also clear than none of these mechanisms are perfectly
reliable. Neurons and nervous systems as a whole are not
capable of compensating for many kinds of perturbations to
channel expression, or environmental perturbations that alter
channel physiology [54]. These failure modes may provide
further clues as to how modulation and homeostasis interact.

VI. CELLULAR NEUROMODULATION FOR RHYTHMIC
CIRCUIT CONTROL

So far, we have focused our attention on the neuromodu-
lation and homeostasis properties of a single cell. In the last
part of this tutorial, we illustrate how the neuromodulation of
cellular properties provides control principles for circuits and
synchrony mechanisms for possibly large and heterogeneous
populations.

A. Cellular control of an I-I circuit

The I-I motif is central to the circuit neurophysiology of
central pattern generators [46]. It is arguably the most ele-
mentary and most comprehensively studied neuronal circuit.
It consists of two bursting neurons reciprocally intercon-
nected with inhibitory synaptic conductances that activate
in the slow or ultraslow time scale of neuronal excitability.
Even if the neurons do not endogeneously burst in isola-
tion, an endogenous circuit anti-phase rhythm emerges from
interconnecting the two cells.

OFF ON OFF

Fig. 9. The influence of the nodal mode of excitability on the basic I-I
motif. The motif defines a behavior at the circuit scale distinct from the
behavior at a nodal scale. The circuit behavior is turned on and off by
modulating the excitability mode of the nodes. Adapted from [65].

Conceptually, the rhythmic nature of the circuit is simple
to understand : A burst in neuron /; induces a hyperpolar-
izing synaptic current into neuron I5. The termination of a
burst in neuron /; acts as a depolarizing step input, eliciting
a burst in neuron Is. The reciprocal interconnection from
neuron /5 to neuron I; closes a network loop that can sustain
an autonomous anti-phase rhythm in the circuit. This circuit
oscillation is illustrated in the ‘on’ phase of Figure 9. It is
turned off in the ‘off” phase of the figure. The on-off control
of the circuit rhythm is the neuromodulation of the slow
intrinsic negative conductance of any of the two neurons.
In the absence of slow positive feedback amplification, the
neurons become spike excitable rather than burst excitable.
This modulation from burst excitability to spike excitability
disconnects the neuron from the circuit by strongly reducing
the synaptic drive from neuron I» to neuron I.

This simple neuromodulation control mechanism is sig-
nificant because it provides a cellular switch for the circuit
rhythm. The ’on’ mode is a circuit behavior. The circuit
rhythm is defined by a robust phase arrangement of the
cellular bursts. Only the phase arrangement is dictated by the
circuit connectivity. The ‘off’ mode is a cellular behavior:
each cell in the ‘off” mode becomes functionally discon-
nected from the circuit because only the synaptic drive of
bursts is sufficient to couple the cellular behaviors.

The neuromodulatory control illustrated in Figure 9 is
robust to parameter heterogeneity. The reader is referred
to [12] for an extensive investigation of the robustness of
the circuit rhythm in the parameter space of both intrinsic
and synaptic conductances. In the ‘on’ mode, the circuit
rhythm persists over a broad range of parameters, allowing
for asymmetric coupling between heterogenous neurons. This
robustness of the control to parameter variations is what al-
lows a continuous tuning of circuit oscillation properties such
as frequency or duty cycle. In contrast, a circuit thythm in
the ‘off” mode is difficult to observe and highly non generic.
It requires careful tuning of the parameters and, in particular,
a precise relationship between intrinsic (cellular) parameters
and synaptic (connectivity) parameters. The resulting thythm
is rigid, that is, lacks tunability properties, and it is also
fragile to any parameter variations. No circuit rhythm exists
in the ‘off” mode.

B. Cellular control of a central pattern generator

The neuromodulatory cellular control of the I-I motif
provides a versatile control principle for circuits composed



of excitable nodes interconnected by inhibitory synaptic
currents. In neurophysiology, such circuits have long been
associated to rhythmic functions such as breathing, chewing,
swallowing, walking or heart beating [25], [26], [41], [34].
We will briefly illustrate how nodal control shapes the
behavior of the five-node circuit illustrated in Figure 10.
We refer the interested reader to [13] for a detailed analysis
of the circuit. The circuit architecture is inspired by the
neuronal topology of the crab somatogastric ganglion (STG),
which has served as a key experimental model to study the
neuromodulation of rhythmic circuits over the past forty
years [45]. In experiments, two different rhythms coexist
within the STG circuit. One corresponds to the fast pyloric
rhythm, which is constantly active, whereas the second
corresponds to the slow gastric mill thythm, which can be
turned on and off by afferent neuromodulatory inputs and
neuromodulators. Each node in the circuit is a conductance-
based model that includes seven different types of nodal
currents. Those currents are not discussed in detail here but
their conductances can be shown to shape the four feedback
amplifiers of an endogeneously bursting neuron. In particular,
the model includes two calcium currents that provide the
critical source of slow negative conductance necessary for
burst excitability. Our control parameter is the maximal
conductance of those two currents, that can modulate the
nodal excitability of each node between the two modes of
excitability. The topology of the network is indicated in
Figure 10. It includes passive currents between nodes 2, 3,
and 4, and a number of inhibitory synaptic currents with slow
and ultraslow activation. Reciprocal inhibitory connections
between nodes 1 and 2 and between 4 and 5 define two
elementary I-I motifs, one for the fast rhythm between nodes
1 and 2, one for the slow rhythm between nodes 4 and 5.
The two distinct I-I motifs interact through the central node
3.

The figure illustrates the different rthythms that can coexist
in the circuit by controlling the excitability mode of the
nodes. The significance of this nodal control is that the
interconnections gains (and in particular the maximal con-
ductances of the synaptic currents) are kept unchanged in the
five circuit rhythms shown in Figure 10. The circuit behavior
is modulated by nodal control rather than by network control.
Nodal control modulates the functional connectivity of the
network without changing the synaptic connectivity. The
circuit behavior is easily inferred from the I-I motif behavior
because the circuit topology only orchestrates the phase
relationships between discrete events defined at a smaller
scale.

Although the circuit in Figure 10 is a highly simplified
cartoon of the physiological STG circuit, the robustness
and tunability of the proposed neuromodulatory control
principle provide a biologically plausible hypothesis. The
recent experimental investigation in [60] adds further biolog-
ical plausibility by discussing two distinct neuromodulatory
mechanisms that produce similar changes in the circuit
connectivity. Consistently with our proposed analysis, the
voltage clamp experiments reported in the paper illustrate
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Fig. 10. Nodal control of a circuit behavior with a fixed synaptic
connectivity. Left, circuit connectivity diagrams. Filled circles represent
neurons, which are numbered from 1 to 5. Neurons with thick orange
edges are controlled by neuromodulatory inputs that increase the maximal
conductance of calcium currents. Center, membrane potential variations
over time for neurons 1 to 5 (from top to bottom) in the different control
configurations. Synaptic connections are identical in all cases. Neurons are
colored in blue when they participate in the fast rhythm, in red when
they participate in the slow rhythm, in purple when they participate in a
global rhythm, and in black when they do not participate in the circuit
rhythm. Right, functional connectome in the different control configurations.
Adapted from [13]

that both neuromodulatory mechanisms modulate intrinsic
slow negative conductances of the STG circuit.

VII. CELLULAR NEUROMODULATION FOR NETWORK
CONTROL

A. Cellular control of an E-I circuit

The E-I motif is another central circuit of neurophysiology.
The circuit consists of two neurons interconnected by a
fast excitatory synapse and a slow inhibitory synapse. As
illustrated in Figure 11, the E-I circuit exhibits a ‘on’ and
a ‘off’ modes analogously to the I-I circuit. The control
mechanism is however different. In the I-I circuit, the control
is through the modulation of the intrinsic slow conductance
of the neuron. It involves neuromodulators that change
the balance between ion channels providing positive and
negative feedback in the slow time scale of excitability. In
the E-I circuit, the control is through the modulation of the
membrane equilibrium potential. It involves neuromodulators
that change the static balance between inward and outward
currents. Control of the I-I circuit necessarily involves the
modulation of intrinsic conductances, whereas control of the
E-I circuit can be achieved by modulation of either intrinsic
or synaptic conductances. In contrast, the modulation of the
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Fig. 11. The cellular (Coff’) mode and the circuit ("on’) mode of a E-
I circuit. The control mechanism specifically requires a 7-type calcium
channel to ensure spike excitability in a depolarized membrane and burst
excitability in a hyperpolarized membrane. The switch between the two
modes is then controlled by any neuromodulator that modulates the mem-
brane polarization. Adapted from [65].
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Fig. 12. A robust network switch that is compatible with global neuro-

modulation, synaptic plasticity and homeostasis. Adapted from [11].

E-I circuit specifically requires an intrinsic negative conduc-
tance that only activates at low potentials. This is the property
that makes the neuron spike excitable by depolarization and
bursting by hyperpolarization. In neurophysiology, slow acti-
vation in a low-voltage range is a defining characteristic of T-
type calcium channels, also known as low-threshold calcium
channels. The role of T-type calcium channels has been
emphasized in important sensorimotor circuits including the
relay neurons of thalamocortical-circuits and the neurons of
the subthalamic nucleus in the basal ganglia. Those two types
of neurons are prime examples of neurons that have been
shown to exhibit a continuous transition from bursting to
spiking by depolarization.

The control mechanism suggested in Figure 11 is robust.
We refer the interested reader to the recent work [11] for a
detailed exploration of the robustness of the switch to param-
eter variations. Control by hyperpolarization was simulated
in a thousand different circuits with random perturbations in
both intrinsic and synaptic maximal conductances. Figure 12
C illustrates that the switch is observed in the vast majority
of networks. This robustness is significant as it decouples
the control of the circuit mode from the tuning of the
circuit rthythm. The frequency and duty cycle of the circuit
oscillation can be modulated without loosing the switching

property.

What is also illustrated in the Figure is that this robust
switching property depends critically of the slow activation
of T-type calcium channels. When the simulations are re-
peated with an instantaneous activation of the channels, the
switch is completely lost for all generic perturbations of the
parameters. This is because the instantaneous activation of
the channels eliminates the slow positive feedback loop that
is critical to bursting. This is clearly illustrated in the voltage
clamp step response shown in Panel B of the figure. The
model has no slow negative conductance without the slow
activation of T-type calcium channels.

This feedback property is not properly understood in
the modeling literature of T-type calcium channels. Many
computational studies assume an instantaneous activation,
ignoring the consequence of that simplification on the feed-
back properties of the neuron. The discussion of the E-I and
I-I circuit thythms in the literature is most often in terms of
the rebound (RB) or post-inhibitory rebound (PIR) properties
of the model. Panel A of the figure shows that the neuron
can possess those rebound properties both with slow and
instantaneous activation of the T-type calcium channels. Yet
only the neurons with slow activation can exhibit a robust
switch between spiking and bursting. This misconception
illustrates the subtle and sometimes overlooked role of feed-
back properties in neuronal behaviors.

B. Synchrony in heterogeneous populations

The robustness of the cellular control of the E-I circuit is
significant for neuromodulatory control of large populations
of neurons. Rhythmic synchrony in large populations is
instrumental in defining network states with a clear mean-
field signature that can be detected with large electrodes
or even EEGs. Such signatures have long been reported as
brain states that control attention in cortical circuits [50],
[51], attention and arousal in the thalamus, and movement
initiation in the subthalamic nucleus [37]. The most stud-
ied example is probably the thalamo-cortical circuitry. The
thalamus acts as a plastic relay between sensory systems,
different subcortical areas and the cerebral cortex, by gating
and modulating neuronal signal flow under the modulatory
effect of cortical feedback [67], [68].

Figure 12 shows that the neuromodulatory control of the
E-I circuit provides a robust and versatile control mechanism
to control synchrony in large and heterogeneous populations.
The ‘off” mode of the circuit corresponds to an asynchronous
population state with no specific mean-field signature. In-
stead, the ‘on’ mode corresponds to a synchronous popula-
tion state with a clear mean-field signature. The modulation
between the asynchronous and the synchronous population
states can be fast and accurately controlled spatially because
the receptors of each neuron in the population can be tuned
to respond or not to the neuromodulator. It is also robust to
the heterogeneity of the population: the mean-field neuronal
behavior is robustly controlled by the neuromodulator in
spite of a variety of different rhythms at the cellular level and
in spite of weak synaptic connections. The robustness of this
population behavior and its tunability at a cellular resolution
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Fig. 13.  Neuromodulation controls synchrony in a large population of
heterogenous E-I circuits. Adapted from [11].

confer biological plausibility to the proposed neuromodula-
tion mechanism. This mechanism is in sharp contrast with
the consensus or synchronization models of control theory.
Those models compensate for stronger heterogeneity with
stronger coupling. Controlling population synchrony through
the sensitivity of nodes rather than through the strength of
the coupling is another inspiring lesson of neuromodulation
for network control theory.

VIII. CONCLUSIONS

Neuromodulation is an important property of physiological
neuronal networks. This tutorial has stressed the importance
of neuromodulation as a feedback control mechanism. By
modulating the maximal gain of intrinsic conductances,
neuromodulators shape the loop gain of feedback amplifiers
in specific time scales and voltage ranges. In particular
they modulate excitability thresholds, which correspond to
localised ranges of nearly zero conductance, or, equivalently,
of nearly infinite sensitivity. We have shown the importance
of both fast and slow thresholds in neuronal excitability. Slow
thresholds control the type of excitability and the modulation
between spike excitability and burst excitability. This cellular
neuromodulation is potentially very important for the robust
and versatile control of circuit rthyhtms and synchrony in
large populations. Cellular thresholds are feedback proper-
ties. They cannot be modulated by the modulation of synaptic
conductances.

The modulation of intrinsic conductances has received
less attention in the modeling literature than the modulation
of synaptic conductances. It requires feedback analysis as
opposed to feedforward analysis. Feedback control theory
might clarify apparent paradoxes from the experimental or
modeling literature with a loop-gain analysis adapted to loop
gains that are voltage-dependent and time-scale dependent
rather than frequency dependent. This analysis has a close
connection to the voltage-clamp analysis of experimental
electrophysiology. The concept of dynamic conductances is
a step in that direction.

Conversely, a better understanding of neuromodulatory
principles is a source of inspiration for engineered circuits

or artificial neuronal networks. Neuronal excitability can
be understood as a form of localized nodal ultrasensitivity.
Modulating nodal sensitivity of nodes by feedback may
inspire unexplored avenues in the robust control of networks
and in the control of rhythmic circuits. The potential of those
ideas for control across scales is further developed in [65].
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