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Abstract

This thesis reports on the construction and operation of an ultracold atom-
based quantum simulator for studying the kagome lattice and the associated flat
band. Despite a copious amount of theoretical effort to elucidate the physics of the
kagome lattice, experimental kagome physics is still in its infancy. In the case of
ultracold atoms, this is mainly due to considerable technical challenges involved in
creating an optical kagome lattice, such as the need for active phase stabilization
for bichromatic superlattices. We show that we have overcome these challenges
and give a thorough account of our machine’s technical details. Furthermore, we
present calculations and measurements that fully characterise the kagome quantum
simulator.

Much of the theoretical work on the kagome lattice has focussed on its flat band.
Populating flat bands with ultracold atoms has proven to be difficult and it has so
far not been possible to prepare flat bands in thermodynamic equilibrium. We show
a route towards studying quantum manybody physics in the flat band of the kagome
lattice using negative temperatures. In addition we report, for the first time, on the
creation of a negative temperature state in a triangular lattice.

This thesis additionally serves to collect and consolidate theoretical research that
we can directly study with our machine. In particular, we will discuss the properties
of bosons in flat bands and their experimental signatures, with the aim of guiding
and accelerating the near-term developments and experiments.

Finally, we detail our progress towards realizing a quantum gas microscope for
the kagome lattice. In this context, we present a new method for super-resolution
microscopy of ultracold atoms in optical lattices.
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1 Introduction

1.1 Quantum simulation

Quantum computers hold the promise of efficiently solving computational problems that
would take state-of-the-art supercomputers billions of years to solve [1]. In fact, they
have already been used to crack such problems [1–3] and could one day be used to help
shed light onto open problems in e.g. proteomics [4], quantum chemistry [5], material
development [6], and unresolved questions in the field of quantum matter [7]. In addition,
quantum computers can be used to efficiently solve a variety of optimization problems [8].

In contrast to quantum computers, quantum simulators are designed with a specific
model in mind and can only be used effectively for a limited and hardware-specific set
of problems. Nevertheless, quantum simulation has seen enormous growth in the last 20
years owing to considerable technical advances. Quantum simulators are already capable
of reaching computationally intractable regimes in a variety of different fields, including
spin models [9–11] and Fermi-Hubbard physics [12] and have been used extensively to
benchmark classical algorithms [13–16]. The interplay between theory and experiment
has led to significant advances in both directions, such as new algorithms for classical
computers [17] and the implementation of various theoretical models, such as the SSH
[18], Haldane [19], Heisenberg [20], and Hofstadter [21] models.

Another factor that has contributed to the rise of quantum simulation is the continuing
intractability of building a powerful quantum computer. Current gate-based quantum
computers are limited to ∼50 qubits and have so far only shown quantum advantage
for relatively obscure and ad hoc problems [1–3]. For powerful, universal, and error-
corrected quantum computation, a fully-connected architecture of several hundreds or
thousands of logical qubits is required. To implement full error-correction with currently
achievable gate fidelities and coherence times, each logical qubit would have to be encoded
in thousands of physical qubits [22], which increases the necessary qubit numbers to well
beyond what is currently possible. It will likely take several years, if not decades, until
a universal quantum computer with thousands of qubits becomes operational. However,
with increasing gate fidelities, more sophisticated architectures and improved coherence
times, it should only be a matter of time until powerful quantum computers are ubiquitous
and analogue, model-specific, quantum simulators become obsolete.

For the foreseeable future, quantum simulators will have the upper hand in extracting
useful information from complex quantum systems [16].

1.2 Ultracold atoms & optical lattices

With the ability to cool atomic clouds to quantum degeneracy it becomes possible to
prepare ground states of model Hamiltonians and measure system properties in both
real- and momentum space. A large variety of Hamiltonians have been engineered using
cold atoms in optical and magnetic potentials.

Several achievements have paved the way for ultracold atoms to be at the forefront
of contemporary quantum simulation. Among these are the realization of Bose-Einstein
condensates (BECs) [23, 24] and quantum-degenerate Fermi gases [25]. These states of
matter, in which particles obey Bose-Einstein statistics or Fermi-Dirac statistics are a
crucial resource for ultracold atom-based quantum simulation. Shortly after the creation
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of BECs, Feshbach resonances were observed [26, 27]. Feshbach resonances are routinely
targeted to vary the inter-particle interaction strength and thus constitute another key
ingredient for any versatile quantum simulator. The field of ultracold atoms has since
branched out in several different directions, including the creation of molecules that host
large electric dipole moments [28], quantum degenerate gases of elements with large mag-
netic dipole moments such as Er and Dy [29, 30] and alkaline-earth (and alkaline-earth
like) atoms such as Sr and Yb that host ultra-narrow transitions that are routinely used
for optical clocks [31, 32].

Optical Lattices are commonly formed by interfering at least two laser beams in such
a way that the resulting intensity pattern is stationary. Ultracold atoms are influenced by
this static intensity distribution via the AC Stark shift, which causes them to experience
a spatially varying potential (see Fig. 1.1). In this way it is possible to implement both
periodic [18, 33–37] and non-periodic [38, 39] lattices.

t
t

Figure 1.1 – Analogy between solid-state ionic lattices (left) and optical lattices (right).
The Hubbard parameters t and U determine the tunnelling rate and interaction strength,
respectively. Figure adapted from [40].

The realization of the Mott insulator to superfluid transition with ultracold atoms in an
optical lattice is often considered the paradigmatic example of quantum simulation with
ultracold atoms [41]. In this experiment the tunability of the lattice potential made it
possible to prepare different phases of the Bose-Hubbard model and probe the associated
quantum phase transition. This experiment set the stage for the rapid development of
novel, more tunable, and more complex quantum simulators [42, 43]. Among the most
important developments in optical lattice-based quantum simulators for our research are
the realization of bichromatic superlattices [18, 36, 44], topological Bloch bands [18, 19,
45], Floquet engineering [46, 47], negative temperatures [48], and quantum gas microscopy
of bosonic [49–54] and fermionic [55–60] atoms.

In addition, a multitude of technical improvements, such as the incorporation of evolu-
tionary algorithms and machine learning [61–64], all-optical production of BECs [65–67],
and optical transport [68–70] have made quantum simulators simpler, more robust, and
increased their repetition rate.

Properties of optical lattices The kinetic energy of quantum particles subjected to
a periodic potential is governed by a band structure, which determines single-particle
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behaviour. This is analogous to bands found in solid-state systems, where the location of
the Fermi energy determines whether a material is conducting, semi-conducting or insu-
lating. Thus, an optical lattice quantum simulator can be used to simulate electrons in
solid-state systems. Upon introducing interactions between particles, the single-particle
band structure description is insufficient and more complex models are required to de-
scribe particle dynamics. Interacting particles in a periodic potential are often described
by either the Bose-Hubbard or Fermi-Hubbard models and various extensions thereof.
There are a number of key differences between solid-state-based and optical lattice-based
implementations of the Hubbard model.

One of the strengths of ultracold atoms in optical lattices is tunability. While the
lattice geometry and lattice spacing is generally fixed for each apparatus, the lattice depth
can be controlled via the lattice beam power. In addition, the dimensionality of the lattice
can be changed easily by freezing out motion in unwanted directions. The tunability of
the optical lattice depth along with the tunability inherent to ultracold atoms, such as
the control over interactions and the ability to use both bosonic and fermionic particles,
can be combined to create extremely versatile quantum simulators.

In addition, ultracold atoms are easily scalable to many tens to hundreds of thousands
of particles, making it possible to access regimes that are difficult or impossible for classical
algorithms to simulate. This scalability is in stark contrast to other quantum simulation
platforms such as ions in ion traps, photons, and superconducting circuits [71].

Optical lattices are also inherently defect-free. Solid-state materials often suffer from
imperfections and defects which can obscure signatures of effects that only occur in very
pure samples, such as the fractional quantum Hall effect [72].

In the case of fermions, optical lattice quantum simulators allow us to easily change
the Fermi level over a wide range by simply changing the number of atoms in a degenerate
Fermi gas [73]. In solid-state systems the Fermi level can be changed in a narrow range by
e.g. doping the compound [74]. However each sample has a fixed Fermi level, so changing
the Fermi level in solid-state systems usually requires growing a new compound [75].

One of the most severe limitations to quantum simulation with ultracold atoms in
optical lattices has been, perhaps paradoxically, that it is currently not possible to reach
the low temperatures required to observe certain strongly correlated phases of matter
such as spin-liquids and long-range antiferromagnetic order. In solid-state systems the
temperature can be reduced to about 1/10,000 of the Fermi temperature (TF) [76], whereas
for ultracold, fermionic atoms temperatures are typically on the order of 1/10 TF [77–79].
This means that ground states with small energy gaps to excited states (e.g. spin liquids)
cannot be currently explored straightforwardly with optical lattice quantum simulators.

1.3 The kagome lattice & flat bands

The kagome lattice is a periodic lattice of corner-sharing triangles and is closely related
to the triangular and honeycomb lattices (see Fig. 1.2). It occurs naturally in certain
minerals such as Herbertsmithite, pyrochlores and in recently discovered vanadium-based
compounds [74, 80–82]. The kagome lattice is highly geometrically frustrated and, as a
result, hosts a flat motional band. These properties are expected to give rise to a number
of interesting phases for both fermions and bosons. We will summarize the most relevant
physics in what follows.
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Figure 1.2 – Left: triangular lattice, centre: honeycomb lattice, right: kagome lattice.
The black points indicate lattice sites and the coloured links connect the nearest neigh-
bours.

Single-particle properties of flat bands A band is called flat when all associated
Bloch states have the same energy. They can arise due to geometric frustration such
as in the pyrochlore lattice in 3D [83], the kagome lattice in 2D [84], and the sawtooth
chain in 1D [85]. Frustration is typically associated with models of antiferromagnetically
interacting spins on a lattice such as the XY model on the triangular lattice or the
classical Heisenberg model on the pyrochlore lattice. In these models the ground state
is degenerate since many different spin configurations minimize total magnetic energy.
For antiferromagnetically interacting spins on the kagome and pyrochlore lattice, the
number of degenerate ground states scales as the number of lattice sites, which causes a
macroscopically degenerate, flat band to emerge.

--

+

+

-

-

-

+

+

+

Figure 1.3 – Top left (right): tight-binding band structure of the Lieb (kagome) lattice.
The flat band in the Lieb (kagome) lattice is the second (third) of three bands. Bottom
left (right): localized state of the Lieb (kagome) lattice. Red & blue signify the amplitude
of the localized wave function. Localized states on the kagome lattice form hexagons.
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Frustration is not limited to antiferromagnetically interacting spin systems but, as we will
outline below, also affects bosonic and fermionic particles.

A unique property of flat bands is that they can be expressed in a basis of localized
eigenstates. These states can be thought of as the Fourier transform of a flat (i.e. constant)
band in momentum space. Fig. 1.3 shows the tight-binding dispersion relations, i.e. energy
(E) as a function of momentum (kxa & kya), and the localized states for the Lieb and
kagome lattices. The localized states are constructed such that tunnelling of the wave
function to neighbouring sites is cancelled due to destructive interference of the wave
function with itself. As a consequence, localized states have zero group velocity (vg) and
infinite effective mass (meff),

vg =
1

~
∂E(k)

∂k
→ 0⇒ meff = ~2

(
∂2E(k)

∂k2

)−1

→∞. (1.1)

The infinite effective mass of particles in flat bands make flat band systems promising can-
didates for studying heavy-fermion materials, which are expected to host superconductors
with high critical temperatures [86, 87].

In real systems a band will never be perfectly flat; disorder and interactions will
generally cause some flat band states to have lower energy than others.

Bosons in flat bands

High density A BEC forms when the phase-space density of bosons surpasses a
critical value. At this critical phase-space density all available energy states are occupied
and any additional atoms will occupy the ground state. The critical density can be
calculated by noting that ∫ ∞

0

f(ε)g(ε)dε = Ntherm , (1.2)

where Ntherm is the thermal atom number, g(ε) is the density of states, which is specific
to each potential, and f(ε) is the thermal distribution function. The exact shape of g(ε)
determines whether a BEC forms or not. If the integral diverges, which is the case for
1D and 2D free-space systems, then the critical density diverges and no BEC can form.
On the other hand, in dimensions higher than two in free space or harmonic potentials in
2D, the integral is finite and BECs can form.

Figure 1.4 – In free space in 3D (left) and in a 2D harmonic oscillator (centre) the
integral over the product of density of states and Bose-Einstein distribution is finite. This
is not the case for bosons in the flat band of the (inverted) kagome band structure (right).
Note the divergence in density of states due to the flat band at the lower band edge.
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In the case of a flat band, the density of states is effectively a delta-function; there are
infinitely many states with the same energy, i.e. this state is macroscopically degenerate
(see Fig. 1.4). If we use the single-particle dispersion relation we would therefore not
expect a BEC to form in the flat band of the kagome lattice. It was however shown that
bosons can condense in flat bands in the presence of interactions [88, 89]. Interactions
lift the single-particle degeneracy and determine into which momentum state bosons ulti-
mately condense. This constitutes an interaction-driven formation of a BEC, which is in
stark contrast to normal BEC formation where condensation can be understood entirely
from the single-particle picture.

In the mean-field approximation and for strong repulsive interactions, the Bose-Hubbard
(BH) model,

ĤBH = −t
∑
〈i,j〉

(â†i âj + h.c.) +
U

2

∑
i

n̂i(n̂i − 1), (1.3)

where t and U > 0 are the tunnelling energy and interaction energy, respectively, maps
onto the classical XY model,

ĤBH,MF ≈ −tn
∑
〈i,j〉

cos(φi − φj). (1.4)

Here, n is the mean particle number per site and φi is the mean-field wave function’s
phase on site i. In the classical XY model, the phase φi encodes the orientation of a 2D
spin on site i (see Fig. 1.5).

Figure 1.5 – Equivalence of frustrated, mean-field BH model with repulsive interac-
tions (left) and classical XY model (right) on the triangular lattice. The in-plane vector
orientation in the XY model is mapped onto the phase of the superfluid wave function.

For t > 0, the BH model is therefore equivalent to a ferromagnetic XY model and the
lowest energy state has equal phase (spin orientation) on each site. This in turn corre-
sponds to the q = 0 Bloch state. For t < 0, the mean-field BH model is equivalent to the
antiferromagnetic XY model. In this case the phases (spins) on each site are not equal
and the lowest energy state is at some point other than q = 0. This mapping between
mean-field BH model and classical XY model can be used to simulate the classical XY
model on frustrated lattices, such as the triangular [90] and kagome [88, 91] lattices, with
ultracold atoms.
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Studying the antiferromagnetic XY model with bosons requires inverting the tun-
nelling term of the BH model. This can be done by e.g. Floquet shaking [46, 47, 92] or
negative temperatures [48, 93]. In our experiment we aim to create negative temperatures
to study frustrated bosonic phases in the triangular and kagome lattices. The distinctive
phase pattern of frustrated superfluids manifests itself in the momentum distribution of
the wave function, which can be directly probed with our machine.

Low density Below a certain density, localized hexagon states (see Fig. 1.3) consti-
tute an exact ground state of repulsively interacting particles (or atoms) in a flat band. As
the density is increased, atoms fill up more and more hexagon states until a critical atom
number of Nc = 1

9
N is reached, where N is the number of lattice sites. At the critical den-

sity, the atoms are closely packed and form a charge-density wave (CDW), but the system
does not contain any interaction energy since the atomic wave functions do not overlap
(see Fig. 1.6) [83]. Any increase in density above the critical density will invariably come
at the cost of some kinetic or interaction energy. In [84] it was shown that an increase
in density will not immediately destroy the CDW, but rather cause condensation into
interstitial sites of the CDW, i.e. superfluid order emerges. A system that displays both
superfluid and CDW order is commonly referred to as being supersolid [94–96]. Superfluid
order breaks the continuous U(1) symmetry associated with the condensate phase, and
CDW order breaks a discrete or continuous translational symmetry. In the case of the
kagome lattice supersolid, the CDW is imposed by the lattice and a discrete translational
symmetry (in this case Z3) is broken. This is in contrast to supersolid formation in the
bulk where a continuous translational symmetry is broken [96].

Figure 1.6 – Close packing of repulsively interacting bosons in the flat band of the
kagome lattice. Each hexagon state (shown in blue) contains one boson with a phase
pattern as shown in Fig. 1.3. The CDW state breaks Z3 symmetry since two other tight-
packing configurations can be constructed. It can thus be seen as the bosonic analogue
of a Wigner crystal [97].

Fermions in flat bands Fermionic physics in the kagome lattice has received con-
siderable attention for a variety of reasons. Flat bands give rise to high-temperature
superconductivity [98] and are integral to the fractional quantum Hall effect [99, 100]. Fur-
thermore, the Fermi-Hubbard model maps onto the antiferromagnetic Heisenberg model
at half-filling and strong repulsive interactions [83, 101]. The ground state of the HAFM
on the kagome lattice is predicted to be a quantum spin-liquid [102, 103].
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BCS theory Fermions in flat bands can be treated with BCS theory, which predicts
that the superconducting pairing gap should scale linearly with the interaction strength
in systems with a diverging density of states [104–106]. This behaviour is in stark contrast
to conventional superconductors for which the pairing gap and, consequently, the critical

temperature, only scales as e
− 1
Uρ(EF ) , where U is the inter-particle interaction strength

and ρ(EF ) is the density of states at the Fermi level [105, 107]. Thus, flat band materials
hold the promise of displaying high-Tc superconductivity. Recently, it was shown that
magic-angle bilayer graphene can host a flat band and indeed becomes superconducting
at a remarkably high temperature1 when the Fermi energy is tuned to lie within the flat
band [76]. Open questions include the exact pairing mechanism and what the limits are
to the pairing gap’s scaling with density of states and interaction strength [108, 109].

Fractional Chern insulators In the years since the discovery of the fractional
quantum Hall effect (FQHE) many theoretical proposals suggested that FQH physics
and Laughlin states could emerge in systems other than the 2D electron gas [110–113].
FQH states are highly entangled many-body wave functions and are extremely hard to
simulate classically [114], making it desirable to have a dedicated quantum simulator
for FQH physics. A recent experimental highlight was the creation of Laughlin states
made of light [100]. While this was the first implementation of Laughlin states beyond
2D electron gases, the number of involved particles was limited to two, whereas in 2D
electron gases the Laughlin state is composed of several million electrons [115]. Cold
atom-based quantum simulators could act as an intermediate platform that could host
Laughlin states composed of several hundreds or thousands of particles. To this end,
fractional Chern insulators (FCIs) have been proposed as a way to observe Laughlin
states in optical lattice quantum simulators [110, 116].

FQH physics requires four basic ingredients.
Firstly, a FQH system needs to display macroscopic degeneracy. For a 2D electron gas

in a strong magnetic field this condition is naturally fulfilled by Landau levels. In FCIs
this condition can be met by invoking flat-band models [111] such as the Lieb [116] and
kagome [110] lattice.

Second, the flat band needs to be topologically non-trivial. An external magnetic field,
such as that needed to create degenerate Landau levels, additionally breaks time-reversal
symmetry (TRS) and leads to Landau levels acquiring a non-trivial topological invariant
and, consequently, a quantized Hall conductance. Optical lattice quantum simulators use
neutral atoms, which, in contrast to electrons, do not pick up an Aharonov-Bohm phase
in the presence of an external magnetic field. Fortunately, it is still possible to break
TRS and thus create topologically non-trivial bands by inducing complex next-to-nearest
neighbour (NNN) tunnelling [110, 116, 117] (see Fig. 1.7). Experimentally, complex NNN
tunnelling can be induced in optical lattices via Floquet shaking [19, 64], resulting in
dispersive bands with non-zero Chern number. The same technique could be used to
create topological flat bands [118].

1High when expressed in units of TF, but still only on the order of a few kelvin.
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ϕ ϕ

Figure 1.7 – In the Haldane model [117] (left), complex next-to-nearest neighbour tun-
nelling (green arrows) breaks time-reversal symmetry. Nearest-neighbour tunnelling is
real and is indicated by dashed lines between lattice sites (black dots). A particle moving
counterclockwise around a hexagon picks up a phase φ. Right: creating a nearly flat topo-
logical band on the kagome lattice. Dashed lines, dots and green arrows are equivalent to
the left plot.

Third, the inter-particle interaction has to be much larger than the band width while
simultaneously being much smaller than the band gap to higher bands. In the 2D elec-
tron gas, this can be achieved by increasing the external magnetic field which increases
the gap between the lowest Landau level and higher Landau levels. For cold atoms in
optical lattices both the interaction strength as well as the band gap can be controlled
independently making it possible to find regimes in which ∆� U � BW [99].

Finally, it is necessary to be able to fine-tune the particle number or the degeneracy
of the topological flat band. This is easily achieved in 2D electron gases since the lowest
Landau level degeneracy is proportional to the external magnetic field which can be easily
and accurately tuned. For cold atoms the total atom number can be tuned but it is difficult
to accurately prepare a precise atom number. However, recent technical innovations, such
as potential shaping with digital micromirror devices might make it possible to overcome
this limitation.

Kagome Heisenberg antiferromagnet To finish the introduction to kagome lat-
tice physics we will briefly outline perhaps the most studied aspect of the kagome lattice:
frustrated quantum magnetism. We briefly discussed previously how the repulsively in-
teracting Bose-Hubbard model can be mapped onto the classical XY model. In a similar
manner, the Fermi-Hubbard model can be mapped onto the antiferromagnetic Heisenberg
model (HAFM). In the regime of a balanced two-component Fermi mixture and strong
repulsive interactions, the site-occupation of individual fermions maps directly onto spin
in the Heisenberg model [101]. The Fermi-Hubbard model is commonly written as

ĤFH = −t
∑
〈i,j〉,α

(ĉ†i,αĉj,α + h.c.) +
U

2

∑
i

n̂i,↑n̂i,↓ , (1.5)

where α ∈ {↑, ↓} labels the fermion flavour. In ultracold atom quantum simulators,
different spins are commonly encoded in different hyperfine states [20, 119, 120]. For
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strong repulsive interactions double occupancies are suppressed and the system will turn
into a n=1 Mott insulator. The Fermi-Hubbard model can then be rewritten as

ĤHB = J
∑
〈i,j〉

Ŝi · Ŝj , (1.6)

where J = 4t2

U
, Ŝi =

∑
α,β ĉ

†
i,ασα,β ĉi,β, and σ = (σx,σy,σz)

T is the Pauli vector [101].
Note that the prefactor to Eq. 1.6 is positive, i.e. the spin-exchange interactions are
antiferromagnetic.

The Heisenberg model was recently realized with ultracold fermions in a square optical
lattice [20], but has so far not been realized on frustrated lattices such as the triangular
or kagome lattices.

The Heisenberg Hamiltonian (Eq. 1.6) on the triangular and kagome lattices can be
rewritten as a sum over triangular plaquettes (∆) [121],

ĤHB =
J

2

∑
∆

Ŝ∆,1 · Ŝ∆,2 + Ŝ∆,2 · Ŝ∆,3 + Ŝ∆,3 · Ŝ∆,1

=
J

4

∑
∆

(
Ŝ∆,1 + Ŝ∆,2 + Ŝ∆,3

)2

+ const.

(1.7)

It is easy to see from this expression that the ground state must satisfy

Ŝ∆,1 + Ŝ∆,2 + Ŝ∆,3 = 0. (1.8)

In the triangular lattice case, this equation imposes three constraints on six degrees of
freedom (two for each spin), meaning that the ground state has SO(3) symmetry. In-
tuitively this can be thought of as the freedom to simultaneously rotate all spins along
the three principal axes in 3D (Eq. 1.8 remains fulfilled if the three spins are rotated
simultaneously) [121].

Figure 1.8 – Two different spin configurations on the kagome lattice that obey Eq. 1.8.
Left:

√
3×
√

3 spin configuration that is allowed also on the triangular lattice [122, 123].
Right: q = 0 spin configuration that is forbidden on the triangular lattice (hexagons
cannot be filled with appropriate spin.)[122, 123].
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Since each triangle in the triangular lattice shares two sites with a neighbouring triangle,
any increase in the lattice size will not increase the degrees of freedom of the ground state.
The spins on a single triangle determine the spins on the entire lattice (see Fig. 1.5). The
kagome lattice is composed of corner-sharing triangles instead of edge-sharing triangles.
This means that the spin distribution is not fixed by a single triangle and that the ground
state degeneracy increases as the system size increases. The number of degrees of freedom
in the ground state of the kagome lattice is thus comparable to the total number of degrees
of freedom.

The Heisenberg model allows for the formation of spin singlets which is classically
forbidden. It can be shown that the formation of spin singlets in the HAFM can lower
the ground state energy with respect to the classical Néel order [124]. Spin singlets also
lead to an overall reduction of the staggered magnetization.[20, 123, 125, 126].

The HAFM on the triangular and kagome lattices has been extensively studied [102,
123, 124, 127–129], the main focus being the calculation of ground state energies and stag-
gered magnetization and the gap between ground state and first excited state. Numerical
simulations have revealed that the triangular lattice displays a finite (non-zero) staggered
magnetization in its ground state [127]. The ground state of the kagome lattice HAFM
however has proven to be a hard problem to crack. No consensus has emerged on whether
the ground state of the kagome lattice HAFM displays magnetic order, or whether it is
gapped or gapless. Numerical and experimental observations indicate that the ground
state staggered magnetization is strongly suppressed and that the energy gap between
ground and first excited state (if there is one) is much smaller than the spin-exchange
energy [129].

Figure 1.9 – Two distinct valence bond tilings on the kagome lattice. The ground state
of the kagome HAFM is predicted to be a superposition of many different configurations
of singlet-tilings [130].

P. W. Anderson argued in 1972 that a resonating valence bond (RVB) state should have
a lower energy than a classical Néel ordered state on a triangular lattice [124]. The
RVB state is a macroscopic superposition of different singlet tilings (see Fig. 1.9) and
has a number of fascinating properties. Firstly, since each spin forms a singlet state
with another spin, the net staggered magnetization is zero, i.e. there is no spontaneous
symmetry breaking at T=0 and no long-range order even in the ground state. This
property matches quite well with what is observed numerically in the kagome lattice
[131]. Furthermore, the RVB state is a quantum liquid, often referred to as a spin liquid,
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since singlet states can propagate freely in the lattice. The RVB state, just as the Laughlin
and BCS states, thus presents us with another example of a quantum fluid of fermions.
RVB states were shown to have non-local topological order [132, 133] and present a
promising platform for topological quantum computing [134]. Very recently, experiments
with optical tweezer arrays have explored the RVB state on the kagome lattice [11].

1.4 Quantum simulation with an optical kagome lattice

Having outlined various kagome and flat-band specific physics, it is worth mentioning ex-
isting quantum simulators for the kagome lattice. The optical kagome lattice is technically
very demanding as it requires a minimum of six lattice beams and active lattice phase
stabilization [36]2. An optical kagome lattice was first implemented in Berkeley in 2012
[36]. Many fascinating experiments have been conducted with 87Rb on this machine to
date, including the realization of the Mott insulator to superfluid transition in a kagome
lattice [137], trimerized kagome lattice physics [138], and population of the flat band via
transport in momentum space [139]. However, several regimes of kagome physics have
so far not been explored. First and foremost is the exploration of flat-band physics in
thermodynamic equilibrium. Secondly, 87Rb lacks broad Feshbach resonances preventing
complete control of interaction strength. Finally, the Berkeley machine is restricted to
bosonic physics only. Any of the aforementioned fermionic flat band physics is thus cur-
rently out of reach. The machine that was built in the course of my PhD is the second
optical kagome lattice machine. We incorporated a number of features that we think will
allow us to explore physics beyond what the Berkeley machine can do. This includes
the possibility of loading both bosonic 39K and fermionic 40K into the lattice which both
have broad Feshbach resonances. Tunable interactions allow for negative temperatures,
which in turn give us access to flat band physics in thermal equilibrium. In addition,
we are working towards implementing a quantum gas microscope. With a quantum gas
microscope, we can measure local observables, such as density and spin correlations, and
directly measure CDW order in a bosonic Wigner crystal and magnetic properties of
fermions in the kagome lattice at low temperatures.

As of writing, our machine is reliably creating superfluids and Mott insulators of
87Rb and 39K in the optical kagome lattice and can create robust population inversion
via negative temperatures in the optical triangular lattice. Negative temperatures in
triangular lattices have not been achieved before and are interesting in their own right.
However, our immediate aim is to use negative temperatures to populate the flat band of
the kagome lattice with 39K. This will open up the world of bosonic flat band physics.

1.5 Thesis outline

This thesis gives a detailed account of machine design and operation, and our progress
towards simulating bosonic flat band physics.

Chapter 2 covers various kagome-related theory, including how to create optical tri-
angular, honeycomb, and kagome lattices and the numerical calculation of their band
structures. Furthermore, we discuss using a band-projected position operator approach to

2Other proposals for creating an optical kagome lattice exist but are even more demanding from a
technical point of view [135, 136].
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calculate maximally localized Wannier states on the triangular, honeycomb, and kagome
lattices, which we use to calculate Hubbard parameters.

We move on to discuss the theory of negative temperatures and of bosons in the flat
band of the kagome lattice in chapter 3. The focus will be primarily on the mean-field
properties at high densities and the transition from charge-density wave to supersolid at
low densities.

Chapter 4 gives an in-depth, technical description of the kagome machine. We intro-
duce our vacuum system and describe the various optical setups for cooling and trapping
39K, 40K and 87Rb, and to create the optical lattices.

In chapters 5 and 6 we detail the experimental sequence and give details on machine
calibration and operation.

Chapter 7 summarizes preliminary data taken with our machine. We will focus on
the analysis of the superfluid to Mott insulator transition in the triangular and kagome
lattices, and present data showing negative temperatures in the triangular lattice.

In chapter 8 we discuss our progress towards implementing a quantum gas microscope
for the kagome lattice. We will outline several design choices we made and introduce
a novel super-resolution technique that should allow for single-site resolved fluorescence
imaging.

Finally, chapter 9 gives a brief summary and discusses ongoing and future develop-
ments in the kagome lab.

This thesis as well as Dan Reed’s thesis [140] are the first PhD theses to come out
of this experiment. A lot of the experimental details, such as the machine design and
experimental sequence, are similar between our theses, reflecting the fact that we both
contributed extensively and worked together closely. Though our work overlapped signif-
icantly, we cover different aspects of the kagome experiment in our theses. While Dan’s
thesis contains a detailed description of our phase detection and locking scheme, and
shows detailed measurements of the phase stabilization performance, my thesis is more
geared towards calculating properties of the kagome lattice and unravelling the physics of
bosons in flat bands with the aim of guiding near-term experiments. We made an effort
to reference the other thesis if a more in-depth description is provided.
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2 The optical kagome lattice

The interference of two or more laser beams creates an optical lattice, a stationary pattern
of peaks and troughs in light intensity. Depending on the wavelength of the lasers forming
the optical lattice, neutral atoms will feel, via the AC Stark shift, either an attractive
force towards, or a repulsive force away from regions of high intensity. Typical lattice
depths are on the order of 1 µK-100 µK. Thus, in order for optical lattices to have any
appreciable effect, neutral atoms need to be cooled to ultracold temperatures via e.g. a
magneto-optical trap and subsequent evaporative cooling. The theory of the AC Stark
shift is well-established [141]. We will therefore forgo a detailed theoretical derivation and
instead focus on the implementation of the optical kagome lattice instead. We will start
by discussing how to implement an optical triangular lattice.

2.1 Optical triangular lattice

There are two basic ways to implement a triangular lattice with three beams. In the
following section both schemes are introduced and their differences in various lattice
parameters are discussed.

2.1.1 Interfering lattice

In the interfering lattice implementation, three beams are polarized in-plane and enclose
an angle of 120◦ with respect to each other (see Fig. 2.1).

Figure 2.1 – Layout of the lattice beams for an interfering triangular lattice.

The time-averaged intensity distribution can be written as

I(r) =
cε0

2
|Etot(r)|2 = I0

∣∣∣∣∣
3∑
j=1

pje
ikj ·r

∣∣∣∣∣
2

, (2.1)

where I0 is the intensity of each lattice beam and
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)
, k3 = k

(
0
−1

)
,

k = |k1| = |k2| = |k3|

(2.2)

are the corresponding wavevectors3. pj are the lattice beam polarizations. They are
normalized and obey pj · kj = 0. Eq. 2.1 can be rewritten as

I(r) = I0

{
3− cos

(
−
√

3kx
)
− cos

(
k

2

(√
3x− 3y

))
− cos

(
k

2

(√
3x+ 3y

))}
= 2I0

3∑
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cos2(κj · r−
π

2
),

(2.3)

where  κ1

κ2

κ3

 =
1

2

 1 −1 0
−1 0 1
0 1 −1

 k1

k2

k3

 . (2.4)

The second line of Eq. 2.3 gives an explicit link to the retro-reflected implementation of a
triangular lattice, which is discussed later in this chapter. Note that the intensity minima
form a triangular lattice, while the intensity maxima form a honeycomb lattice.

We now introduce individual phases for each lattice beam,

I(r) = I0

∣∣∣∣∣
3∑
j=1

pje
ikj ·r+iφj

∣∣∣∣∣
2

= I0

{
3− cos

(
−
√

3kx+ φ1 − φ2

)
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(
k

2

(√
3x− 3y

)
+ φ3 − φ1

)
− cos

(
k

2

(√
3x+ 3y

)
+ φ2 − φ3

)}
= 2I0

3∑
j=1

cos2(κj · r + Φj −
π

2
),

(2.5)

where  Φ1

Φ2

Φ3

 =
1

2

 1 −1 0
−1 0 1
0 1 −1

 φ1

φ2

φ3

 . (2.6)

3Note that we chose these particular lattice vectors because they correspond to the orientation of our
experimental images. The lattice beam labels are also how we label the lattices in our machine hardware
and software.
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The above equation shows that there are two phase degrees of freedom. In particular, if
φ1− φ2 and φ3− φ1 are fixed, then φ2− φ3 = − (φ3 − φ1)− (φ1 − φ2) is fixed as well. We
can rewrite the phase degrees of freedom as positional degrees of freedom by solving the
following equation for x0 and y0 in terms of φ1, φ2 & φ3,

I0

{
3− cos

(
−
√

3kx+ φ1 − φ2

)
− cos

(
k

2

(√
3x− 3y

)
+ φ3 − φ1

)
− cos

(
k

2

(√
3x+ 3y

)
+ φ2 − φ3

)}

!
= I0

{
3− cos

(
−
√

3k(x− x0)
)
− cos

(
k

2

(√
3(x− x0)− 3(y − y0)

))
− cos

(
k

2

(√
3(x− x0) + 3(y − y0)

))}
.

(2.7)

This results in x0 = 1√
3k

(φ1 − φ2) and y0 = 1
3k

(−φ1 − φ2 + 2φ3).
Any change in one of the three lattice beam phases thus results in a translation of the

lattice. The shape of the lattice potential stays the same regardless of the lattice beam
phases.

In general we will assume that the intensities of all three beams are equal so that we
get an undistorted triangular lattice. For completeness, we want to briefly discuss the
case in which the three lattice intensities are not equal, which is the most general case.
The total potential of an interfering lattice with beam-specific phases and intensities can
be written as

I(r) =

∣∣∣∣∣
3∑
j=1

√
Ijpje

ikj ·r+iφj

∣∣∣∣∣
2

=
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√
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−
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)
−
√
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k

2
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)
+ φ3 − φ1

)
−
√
I2I3 cos

(
k

2

(√
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)
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))
= Ioff + 2

3∑
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Ij cos2(κj · r + Φj −
π

2
),

(2.8)

where

I1 =
√
I1I2 , I2 =

√
I1I3 , I3 =

√
I2I3 ,

Ioff =
∑
j

(Ij − Ij). (2.9)

Note that Ioff is constant and thus can be omitted when calculating the potential energy.
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A second way to implement a triangular lattice with three beams is by overlapping
three 1D-lattices in a 120◦ configuration (see Fig. 2.2).

Figure 2.2 – Layout of the lattice beams for a retro-reflected triangular lattice. Note
that each beam only interferes with its retro-reflected counterpart. Thus the polarization
of each beam is irrelevant as long as it is linear. To avoid interference between different
lattice beams, the frequencies can be shifted by a small amount with respect to each other.
Here, different colours correspond to different frequencies4.

1D lattices are commonly implemented by retro-reflecting a laser beam,

I1D(x) = I0

∣∣eikx + e−ikx+iφ
∣∣2 = 4I0 cos2

(
kx− φ

2

)
. (2.10)

The potential for a 1D retro-reflected lattice thus reduces to a cos2 function. The phase φ
can be controlled via the laser frequency or via the position of the retro-reflecting mirror.
The retro-reflected triangular lattice can be written as

I(r) = 4I0

3∑
j=1

cos2
(
kj · r−

π

2

)
. (2.11)

Comparing this expression to Eq. 2.3 reveals that the retro-reflected lattice is rotated by
90◦ with respect to the interfering lattice and has a smaller lattice spacing. Additionally,
the lattice depth is twice as large in the retro-reflected case for the same lattice beam
intensity. Practically speaking, a triangular lattice formed of three interfering (retro-
reflected) 532 nm lattice beams will have a lattice spacing of 354.7 nm (307.2 nm)5. This
mapping between retro-reflected and interfering implementations of the triangular lattice
allows us to calculate lattice-specific quantities such as band widths, tunnelling rates,
and on-site interaction strengths, for e.g. only the retro-reflected lattice. If we want to
calculate the lattice-specific quantities for an interfering lattice, we then just have to
use the results obtained for the retro-reflected implementation and redefine the recoil

4In practice, the fractional frequency difference between lattice beams is on the order of 4× 10−7.
5Note that interfering three 1064 nm beams at 120◦ will form a honeycomb lattice for 39K, 40K and

87Rb, which can be thought of as an inverted, ‘repulsive’ triangular lattice. This is due to the fact that
1064 nm is red-detuned with respect to the D1 and D2 transitions of these isotopes.
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energy. While we currently implement our triangular lattices using interfering lattice
beams, we will potentially move to the retro-reflected implementation in the future, see
appendix B, making it desirable that we be able to calculate lattice quantities for both
implementations.

2.1.2 Phase degrees of freedom

We will now look at the phase degrees of freedom of the retro-reflected triangular lattice.
Each 1D-lattice can have its own phase, resulting in three independent phase degrees of
freedom,

I(r) = 4I0

3∑
j=1

cos2
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kj · r +

ψj
2

)
= 2I0

{
3 + cos
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)
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(
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√

3x
)

+ ψ2

)
+ cos (−2ky + ψ3)

}
.

(2.12)

We saw above that two phases can be absorbed by lattice translation. From this we can
deduce that the lattice structure keeps its shape when

ψ3 = −ψ2 − ψ1. (2.13)

By comparing Eq. 2.12 with Eq. 2.3 we can see that the triangular lattice is formed in
the retro-reflected case if ψ1 = ψ2 = ψ3 = π. Using Eq. 2.13 we can make the broader
statement that the retro-reflected lattice will be a triangular lattice if∑

j

ψj ≡ π (mod 2π). (2.14)

The sum of the three phases modulo 2π defines a lattice structure. The set of lattice
structures spans a 1-dimensional space. Furthermore, in a retro-reflected lattice, it is
always possible to turn intensity maxima into intensity minima through a phase change.
With

I1(r) = 4I0

3∑
j=1

cos2(kj · r), (2.15)

we find that the intensity pattern is inverted (apart from a global intensity offset) upon
shifting the phase of each 1D lattice by π/2,
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Being able to invert the lattice intensity is a major advantage of retro-reflected lattices
as it allows for effects arising due to the red- and blue detuning of the lattice beams to
be corrected by changing the lattice beam phases6. This broader tunability comes at the
cost of having to stabilize an additional phase.

2.1.3 Lattice potential

Having derived the intensity distribution of interfering and retro-reflected triangular lat-
tices, we can move on to calculate the potential. Due to the AC Stark shift ultracold
atoms feel a potential proportional to laser intensity [141],

V (r) = UI(r). (2.17)

The sign and magnitude of U depends on the detuning of the lattice light with respect to
the electronic transition of the atomic species7.

Triangular lattices can be either ‘attractive’ or ‘repulsive’, meaning that either the
potential minima or maxima form a triangular lattice. A repulsive triangular lattice is
equivalent to an attractive honeycomb lattice and vice versa. Table 2.1 and Fig. 2.3 show
the different cases. The lattice beams of red (blue) detuned lattices have frequencies that
are smaller (larger) than the principal atomic transition.

Detuning Polarization Lattice
Red In plane repulsive triangular
Red Out of plane attractive triangular
Blue In plane attractive triangular
Blue Out of plane repulsive triangular

Table 2.1 – Different combinations of detuning and polarization of three interfering lasers
and the resulting lattice geometry. The geometry of the beams is shown in Fig. 2.3.

6This does not apply to the confinement of the overall lattice potential, which still depends directly
on the detuning of the lattice beams and is independent of phase.

7For rubidium and potassium in the ground state the principal transitions are the D1 and D2 lines,
which lie between 766.7 nm and 795 nm for both species.
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Figure 2.3 – Lattice beam configurations (left) and corresponding potentials (right). The
potentials are created by three blue-detuned beams with wavelength λ. In the left plots,
the red arrows represent lattice beams and the black arrows represent their polarizations.
In the bottom left plot, the black dots surrounded by black rings indicate that the polar-
ization is in the plane perpendicular to the page. Magenta dots in the lattice potentials
on the right signify points of minimum energy.

2.2 Optical kagome lattice

The kagome lattice can be implemented by superimposing two triangular lattices with a
2:1 ratio of lattice constants. An attractive ‘short’ lattice (with smaller lattice constant),
creates a triangular lattice and a repulsive ‘long’ lattice (with larger lattice constant) lifts
the energy of every fourth site of the short lattice, effectively creating the kagome pattern
shown in Fig. 2.4.
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Figure 2.4 – Left: overlaying a short, attractive triangular lattice (magenta) with a long,
repulsive triangular lattice (green) results in a kagome lattice. Right: optical potential of
the interfering kagome lattice. The wavelength of the long lattice is given by λL.

Depending on whether the kagome lattice is implemented with two interfering or two retro-
reflected triangular lattices there are 4 or 6 phase degrees of freedom, respectively. Only
two of these phases can be translated into lattice displacements while preserving the lattice
structure. The other phase degrees of freedom cause changes in the lattice structure. Due
to the two additional phases in the retro-reflected kagome lattice, the space of different
lattices that can be implemented is correspondingly larger. In section 4.3.5 we discuss
how we actively stabilize the lattice beam phases in our experiment.

Figure 2.5 – Left: polarization at honeycomb lattice sites. Alternating sites have opposite
circular polarizations which causes mF 6= 0 to have a different energy on the two sites.
Right: polarization at kagome lattice sites. At the kagome sites the optical lattice light
is linearly polarized.

We initially planned to implement the kagome lattice with retro-reflected beams but
eventually opted for the interfering implementation due to better compatibility with the
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quantum gas microscope. We are planning to replace our current lattice with a retro-
reflected lattice in the future however, see appendix B.

Lattice site polarization The polarization of lattice light at the lattice sites can lead to
extra inhomogeneous energy shifts if the light at the lattice sites is circularly polarized and
atoms are prepared in Zeeman states with non-zero mF

8. In this case, circularly polarized
light will lead to an additional vector Stark shift, which depends on the handedness of the
lattice light at the lattice sites (see Fig. 2.5). This effect was observed in Kapitza-Dirac
measurements with an optical honeycomb lattice [142]. For the kagome lattice, however,
the lattice light is linearly polarized at the lattice sites and the atoms do not see a vector
Stark shift. Since the scalar AC Stark shift is independent of the orientation of linearly
polarized light, the energy at all lattice sites is equal in the optical kagome lattice.

2.3 Kagome band structure

We will now turn to the band structure of the kagome lattice, show that a flat band
emerges in the tight-binding limit, and calculate the Bloch states.

We start by deriving the tight-binding band structure on a general bipartite lattice
before discussing the tripartite, kagome lattice. In the tight-binding limit only tunnelling
processes between adjacent sites are allowed. The Hamiltonian is thus

H = −t
∑
〈n,m〉

(
ĉ†nĉm + ĉ†mĉn

)
. (2.18)

The brackets indicate nearest-neighbour tunnelling, ĉn and ĉ†n are the annihilation and
creation operator for a particle on site n, respectively, and t is the tunnelling energy. The
sites of a bipartite lattice can be labelled such that any site A only connects to sites B
and vice versa. The lattice constructed by all A sites and that composed of all B sites
form the two sublattices of the bipartite lattice. Since tunnelling is restricted to nearest
neighbours, any tunnelling process between two sites will be from an A site to a B site or
vice versa, never between A and A or B and B.

The number of B sites that any site A is connected to depends on the lattice structure.
The square lattice and the honeycomb lattice are bipartite lattices. However, sites of
the square lattice connect to four other sites, while it is only three for the honeycomb
lattice. We can rewrite the tight-binding Hamiltonian in terms of creation and annihilation
operators on the A and B sites,

H = −t
∑
n

∑
{j}(n)

(
â†nb̂j + b̂†j ân

)
(2.19)

where ân and b̂n are the annihilation operators for the nth A and B site, respectively. The
second sum indicates that for each site A a particle can only tunnel to the respective
nearest-neighbour B sites. To obtain the tight-binding Hamiltonian in momentum space,
we want to express Eq. 2.19 in momentum space coordinates. We can write

8In our machine all atoms are prepared in Zeeman states with non-zero mF .
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ân =
1√
N

∑
k

eik·rA,n âk , b̂n =
1√
N

∑
k

eik·rB,n b̂k , (2.20)

where rA,n and rB,n are the positions of the nth A and B site, respectively. The tight-
binding Hamiltonian finally takes the form

H = − t

N

∑
n

∑
{j}(n)

∑
k,k′

(e−ik·rA,neik
′·rB,j â†kb̂k′ + h.c.)

= − t

N

∑
n

∑
j

∑
k,k′

(eik
′·r jNNei(k

′−k)·rA,n â†kb̂k′ + h.c.)

= −t
∑
k

∑
j

(eik·r
j
NN â†kb̂k + h.c.)

=
∑
k

(
âk b̂k

)† ( 0 −t
∑

j e
ik·r jNN

−t
∑

j e
−ik·r jNN 0

)
︸ ︷︷ ︸

H(k)

(
âk
b̂k

)

=
∑
k

εkγ̂
†
kγ̂k.

(2.21)

Here we used the identity
∑

n e
i(k′−k)·rA,n = Nδ(k′ − k) and set rB,j = rA,n + r jNN, where

{r jNN} are the vectors connecting an A site to its nearest-neighbour B sites. The eigenval-
ues of H(k), εk, are typically referred to as the tight-binding bands. The operator γ̂k is
the annihilation operator for a quasiparticle with energy εk. The weights of âk and b̂k in
γ̂k are given by the eigenvectors of H(k) and we can find the band structure of a bipartite
lattice by diagonalizing H(k). The derivation above is equally applicable to lattices that
are tripartite or more. Thus, the tight-binding Hamiltonian on the kagome lattice can be
written as a sum over Hkag(k) with

Hkag(k) = −2t

 0 cos(k · δAB) cos(k · δCA)
cos(k · δAB) 0 cos(k · δBC)
cos(k · δCA) cos(k · δBC) 0

 . (2.22)

Here, δAB, δBC, δCA are the differences in position between nearest-neighbour A & B,
B & C, and C & A sites, respectively (see Fig. 2.7). The eigenvalues of Hkag(k) are the
three bands of the tight-binding band structure and are given by

E1(k) = t

−1−
√

3 + 2
∑
j

cos(2k · δj)

 ,

E2(k) = t

−1 +

√
3 + 2

∑
j

cos(2k · δj)

 ,

E3(k) = 2t.

(2.23)
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The lowest two bands (E1 & E2) are equivalent to the tight-binding bands of the honey-
comb lattice, i.e. they have the same shape and display Dirac cones. The third band (E3)
is not a function of momentum and is thus flat (see Fig. 2.6).

Figure 2.6 – Kagome lattice tight-binding band structure. Left: band structure in 2D.
Right: band structure along a one-dimensional path through points of high symmetry (Γ,
M, K). Inset: one-dimensional path in reciprocal space.

The band width of the tight-binding bands is

BW = 6t, (2.24)

where t is the nearest-neighbour tunnelling energy. With this relation we can calculate
the tunnelling rate from the band width for deep lattices.

Optical kagome lattice We will now derive the band structure for an optical kagome
lattice. We will see that for deep lattices the band structure approaches what we derived
in tight-binding. For conceptual simplicity, we derive the band structure for the retro-
reflected kagome lattice. The band structure of the interfering case is equivalent, apart
from the orientation of the real-space lattice and the Brillouin zone9. The Bloch theorem
states that the wave function of a particle with momentum ~q in a periodic potential is
the product of a plane wave and a function that has the same periodicity as the lattice,

ψq(r) = uq(r)eiq·r,

uq(r) = uq(r + Rn,m),
(2.25)

where Rn,m = na1 +ma2 is a vector connecting two unit cells of the lattice (see Fig. 2.7).
This allows us to write uq(r) as

uq(r) =
∑
n,m

cq,n,me
i(ng1+mg2)·r . (2.26)

9We chose to fix the orientation of our k-vectors such that they are the same in the interfering and
retro-reflected case, instead of fixing the orientation of the lattice itself. For the rest of this chapter, and
in chapter 3 and appendix D all the real- and momentum space images have an orientation corresponding
to the retro-reflected case. For the experimental sections (chapter 5, chapter 6, chapter 7 & chapter 8)
we use the orientation of the interfering implementation.
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The vectors g1 and g2 span the reciprocal lattice (see Fig. 2.7). The reciprocal lattice
vectors can be calculated using the periodicity condition given in Eq. 2.25, which reduces
to

gi · aj = 2πδij. (2.27)

The lattice is fully described by the real-space and reciprocal lattice vectors

a1 = a

(
1
0

)
, a2 =

a

2

(
1√
3

)
, g1 =

2π√
3a

( √
3
−1

)
, g2 =

4π√
3a

(
0
1

)
, (2.28)

where a = |a1| = |a2|. Fig. 2.7 shows the kagome lattice, its unit cell and the various
vectors that are used to describe it. The kagome lattice can be thought of as a triangular
lattice with equilateral triangles at the lattice sites. The unit cell contains three sites and
the lattice can be obtained by translating the unit cell along linear combinations of the
vectors a1 and a2.

Figure 2.7 – Left: kagome lattice in real space. The vertices are the lattice sites, whose
position is described by linear combinations of a1, a2,δAB, δBC, and δCA. The dashed
purple line encloses the unit cell. A (blue), B (green) and C (red) label the three sites
of the unit cell. Right: corresponding reciprocal lattice in momentum space. The first
Brillouin zone is shown in orange.

The energy of a Bloch wave is a function of its momentum and can be calculated by
putting the ansatz in Eq. 2.25 into the time-independent Schrödinger equation:(

− ~2

2m
∇2 + V (r)

)
ψq(r) = Eqψq(r). (2.29)

The potential of the retro-reflected implementation of the kagome lattice can be written
as

V (r) = VS

3∑
j=1

cos2
(

2kj · r +
π

2

)
+ VL

3∑
j=1

cos2(kj · r), (2.30)
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where VS > 0 and VL > 0 are the lattice depths of the short and long triangular lattice,
respectively, and k1, k2, k3, and k are as in Eq. 2.2. We can express the magnitude of
the wavevectors in terms of the lattice spacing, k = 2π√

3a
, which results in

k1 =
π√
3a

(
−
√

3
1

)
= −g1

2
, k2 =

π√
3a

( √
3

1

)
=

g1 + g2

2
,

k3 =
2π√
3a

(
0
−1

)
= −g2

2
.

(2.31)

After inserting Eq. 2.30, Eq. 2.26 and the relations of Eq. 2.31 into Eq. 2.29, we obtain

(
~2

2m
|q +mg1 + ng2|2 −

3

2
VS +

3

2
VL

)
cq,m,n

−VS

4
(cq,m−2,n + cq,m+2,n + cq,m−2,n−2 + cq,m+2,n+2 + cq,m,n−2 + cq,m,n+2)

+
VL

4
(cq,m−1,n + cq,m+1,n + cq,m−1,n−1 + cq,m+1,n+1 + cq,m,n−1 + cq,m,n+1)

= Eqcq,m,n.

(2.32)

We can reexpress this equation in terms of the long lattice recoil energy, ER = ~2k2

2m
,

1

k2
|q +mg1 + ng2|2 cq,m,n

−sS

4
(cq,m−2,n + cq,m+2,n + cq,m−2,n−2 + cq,m+2,n+2 + cq,m,n−2 + cq,m,n+2)

+
sL

4
(cq,m−1,n + cq,m+1,n + cq,m−1,n−1 + cq,m+1,n+1 + cq,m,n−1 + cq,m,n+1)

= εret
q (sS, sL)cq,m,n,

(2.33)

where sS and sL are the lattice depth of the short- and long-wavelength lattices, respec-
tively, in units of ER and εret

q (sS, sL) is the energy of the Bloch wave with momentum q
in units of ER. We have also omitted the constant energy shift 3

2
sS + 3

2
sL

10.
By solving Eq. 2.33 numerically, we can find values for cq,m,n and εret

q , from which we
can reconstruct the Bloch waves and energies.

Interfering lattice Keeping the definition of ER fixed (single photon recoil energy of
the long lattice wavelength), the Bloch state energy in the interfering implementation is
given by

εint
q (sS, sL) =

3

4
εret
q

(
4

3
sS,

4

3
sL

)
. (2.34)

The factor 4
3

arises since the effective lattice recoil energy in the interfering case is a factor

of
(
aint

aret

)2

=
(

2√
3

)2

= 4
3

lower than that of the retro-reflected implementation. Thus, for

10This is allowed because it only causes a constant shift to all energy levels. Any physical quantities
only involve energy differences, which means that the constant offset can be omitted.
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the same lattice depth in units of ER, the lattice depth of the interfering case is a factor
4
3

larger in terms of its lattice recoil energy than in the retro-reflected case. Since the
lattice recoil energy in the interfering case is only 3

4
of that of the retro case, the energy

in terms of ER must also be a factor 3
4

lower in the interfering case.
Fig. 2.8 shows the dispersion relation of the lowest four bands of the interfering kagome

lattice for different lattice depths.

Figure 2.8 – Band structure of the interfering kagome lattice along a path through points
of high symmetry in the Brillouin zone. sS and sL refer to the lattice depth of the short-
and long-wavelength lattices, respectively. Only the lowest four bands are shown.

The third band of the kagome lattice only becomes visibly flat for sufficiently deep lattices.
From the tight-binding model, one expects the third band to be analytically flat. The
discrepancy between the above and the tight-binding calculation is due to the fact that
the tight-binding model is only a good approximation for sufficiently deep lattices. For
shallow lattices higher-order tunnelling processes cause the third band to be dispersive.

Fig. 2.8 shows that we will have to perform experiments at lattice depths above sS =
sL = 3 to see effects of the flat band.

Including lattice beam phases and intensities For completeness we will also briefly
derive the Bloch state equation when each lattice beam has an individual phase and
intensity. The potential in this case is

V (r) =
3∑
j=1

VS,j cos2(2kj · r +
ψS,j

2
) +

3∑
j=1

VL,j cos2(kj · r +
ψL,j

2
), (2.35)

Here, {ψS,j} and {ψL,j} label the phases of the short and long lattice beams, respectively.
The Bloch states can be calculated by solving
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1

k2
|q +mg1 + ng2|2 cq,m,n

+sS,1e
−iψS,1cq,m−2,n + sS,1e

iψS,1cq,m+2,n

+sS,2e
iψS,2cq,m−2,n−2 + sS,2e

−iψS,2cq,m+2,n+2

+sS,3e
−iψS,3cq,m,n−2 + sS,3e

iψS,3cq,m,n+2

+sL,1e
−iψL,1cq,m−1,n + sL,1e

iψL,1cq,m+1,n

+sL,2e
iψL,2cq,m−1,n−1 + sL,2e

−iψL,2cq,m+1,n+1

+sL,3e
−iψL,3cq,m,n−1 + sL,3e

iψL,3cq,m,n+1

= εret
q (sS, sL)cq,m,n.

. (2.36)

The Bloch state equation for the interfering lattice can be straightforwardly derived from
this by using Eq. 2.14 and Eq. 2.34.

Lattice beam power The lattice depth is determined by the intensity of the lattice
beams at the position of the atoms. The intensity of a Gaussian beam at its focus is given
by

Imax =
2P

πwhwv

, (2.37)

where wh, wv are the horizontal and vertical beam waist at the focus, respectively, and
P is the beam power. Comparing Eq. 2.11 with Eq. 2.30 we find for the retro-reflected
lattice that

Vi(P ) = 4 |Ui| Imax =
8P |Ui|
πwhwv

⇔ si(P ) =
8P |Ui|
πwhwv

(
~2k2

2m

)−1

, (2.38)

where i ∈ {S, L} and Ui is the AC Stark shift per unit intensity at λi, the wavelength of
lattice i. Similarly, we find by comparing Eq. 2.3 and Eq. 2.30 that

Vi(P ) = 2 |Ui| I ⇔ si(P ) =
4P |Ui|
πwhwv

(
~2k2

2m

)−1

(2.39)

for the interfering lattice.

Tunnelling rate and band gap We now have all the necessary tools to calculate the
tunnelling rate, band gap and flat band width in the kagome lattice as a function of
lattice depth and lattice power. For the rest of this chapter, we restrict our discussion
to 39K in the interfering kagome lattice11 and assume beam waists of 100 µm × 50 µm
(horizontal × vertical)12. Furthermore, the lattice wavelengths are set to be λS = 532 nm
and λL = 1064 nm. To calculate the tunnelling rate, we calculate the band width of the
three lowest energy bands (s-bands) and apply Eq. 2.24. The band gap is given by the
difference of the lowest energy of the fourth band and the highest energy of the third band.

11appendix B contains calculations done with the retro-reflected kagome lattice.
12These are our design beam waists.
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The numerically determined tunnelling rate and band gap as functions of the lattice depth
are shown in Fig. 2.9 and Fig. 2.10, respectively.

Figure 2.9 – Top: tunnelling rate t in the s-band of the interfering kagome lattice as
a function of lattice depth. The power per 532 nm beam required to create a short-
wavelength lattice depth of sS (P532) is specified on the top of both plots. Red dashed
line: sL = 1

2
sS. Blue line: sL = sS. Green dashed line: sL = 2sS. Bottom: potential of the

kagome lattice with different power ratios. The white line in the 2D potentials indicates
the trajectory along which the 1D potentials are plotted.

Fig. 2.9 shows that the short-wavelength lattice almost completely determines the tun-
nelling rate and that the long-wavelength lattice only causes a small perturbation to the
tunnelling rate. This behaviour applies to the band gap, the flat band width and the
on-site interaction as well. The band gap between the third and fourth energy level ap-
proaches the on-site trap frequency as the lattice depth goes to infinity. Note that for
deep lattices the band gap increases as the square root of the lattice depth. This is the
behaviour expected from calculating the trap frequency directly. The band gap at 3 W per
532 nm beam is about 250 kHz, which is comparable to values reported for fluorescence
imaging in other quantum gas microscope experiments [52, 56, 57, 59].
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Figure 2.10 – Band gap between s and p bands for the interfering kagome lattice as a
function of lattice depth. Red dashed line: sL = 1

2
sS. Blue line: sL = sS. Green dashed

line: sL = 2sS.

Flat band width as a function of lattice depth Fig. 2.11 shows the ratio of the
band widths of the third (flat) band and the s-band of the kagome lattice. The flat band
width decreases exponentially with lattice power. Strikingly, the flat band also becomes
exponentially flat relative to the s-bands, whose band width also decreases exponentially
with lattice beam power. Thus, it is possible to have a large tunnelling rate in the
kagome lattice and still have a small flat-band width. For example, for 39K in a lattice
with sS = sL=15, the tunnelling rate is roughly 140 Hz and the flat band width is 0.1 Hz.

Figure 2.11 – Left: optical kagome lattice band structure. ∆3 and ∆13 are the band
widths of the flat band and full s-band, respectively. Right: ∆3/∆13 as a function of
lattice depth for sL = 1

2
sS (red dashed), sL = sS (blue), and sL = 2sS (green dashed).

2.4 Wannier states

In this section we will calculate Wannier states for the kagome lattice and use them to
determine the Hubbard parameters t and U . Knowing the prefactors to the terms in the
Hubbard model and how they scale with lattice beam power is crucial for benchmarking
our quantum simulator and for targeting specific phases of matter. It is worth noting that
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knowledge of the Wannier states allows us to precisely tune the Hamiltonian to the exact
parameters we want to conduct an experiment at.

Knowing beyond nearest-neighbour tunnelling rates is also useful to determine regimes
in which these can be neglected, i.e. when only nearest-neighbour tunnelling has to be
taken into account, and can be used to find parameter regimes to engineer complex NNN-
tunnelling for e.g. creating topological bands [19, 110]. Calculating higher band tunnelling
rates can also be used to determine the total tunnelling rate during fluorescence imaging
where higher band occupation is unavoidable.

Band-projected position operator There are two standard methods to calculate
multi-dimensional Wannier states and, in particular, Wannier states in non-separable
lattice potentials. The first method was introduced by Marzari and Vanderbilt [143]. The
idea is to numerically minimize the spatial spread of the Wannier function so as to get a
maximally localized Wannier state. This method is known to occasionally converge to a
local minimum that is not the maximally localized Wannier function [143–146]. It is also
computationally intensive [146].

The second approach is to use band projected position operators [147–149]. The
procedure here is to calculate the Wannier state directly by finding the eigenstates of
the projected position operator. By projecting the position operator onto a suitably
chosen subset of bands it is possible to numerically determine the maximally localized
Wannier states for any site and any orbital (band) to arbitrary precision. While this
method has been used to calculate Wannier states on simple cubic [148] and skewed
honeycomb lattices [148, 149], it has so far not been used to calculate Wannier states
on the triangular, symmetric honeycomb, and kagome lattices. Our adaptation of the
band-projected position operator approach to the kagome lattice will be the subject of
this chapter.

Setting up the equation Our calculation of the Wannier states closely follows [148].
We first want to express the position operator in the Bloch state basis. The real-space
representation of a Bloch state, |k,α〉, is given by

〈r|k,α〉 =
∑
n1,n2

ck,α
n1,n2

ei(n1g1+n2g2+k)·r. (2.40)

Here k is the Bloch state momentum and α labels the Bloch band. We discretize the
position operator r̂ by calculating overlap integrals of the form 〈k,α| r̂ |k′,α′〉 for a discrete
set of Bloch states in the Brillouin zone. The discretized position operator takes the form
of a matrix, whose eigenvalues are the positions of lattice sites and eigenvectors are the
Wannier states in the Bloch state basis.

For a two-dimensional lattice, we need to determine the discretized, band-projected
position operator along two directions. These two directions are ideally orthogonal (this
simplifies the math), but in a non-separable lattice this is not possible. For lattices with
triangular geometry (i.e. triangular, honeycomb, and kagome lattices), we define
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r̂1 =
1

2π
g1 ·

(
x̂
ŷ

)
= κ

(√
3x̂− ŷ

)
, r̂2 =

1

2π
g2 ·

(
x̂
ŷ

)
= 2κŷ,

Rj =
∑
k,k′

∑
α,α′

〈k,α| r̂j |k′,α′〉 |k,α〉 〈k′,α′|
(2.41)

where κ = 1√
3a

and Rj is the discretized and band-projected version of the position

operator r̂j.
13 The reciprocal lattice vectors, g1 and g2, are defined in Eq. 2.28. To ensure

that Rj is a matrix, we introduce the indexing function I(k,α), which assigns a unique
index to all combinations of k and α 14. The elements of R1 and R2 are given by

R
(1)
I(k,α),I(k′,α′)

:= 〈k,α| r̂1 |k′,α′〉

= κ

∫
dx dy

∑
n1,n2

∑
n′1,n′2

(
ck,α
n1,n2

)∗
ck
′,α′

n′1,n′2

× e−i(n1g1+n2g2+k)·r ei(n
′
1g1+n′2g2+k′)·r

(√
3x− y

)
,

R
(2)
I(k,α),I(k′,α′)

:= 〈k,α| r̂2 |k′,α′〉

= 2κ

∫
dx dy

∑
n1,n2

∑
n′1,n′2

(
ck,α
n1,n2

)∗
ck
′,α′

n′1,n′2

× e−i(n1g1+n2g2+k)·r ei(n
′
1g1+n′2g2+k′)·r y .

(2.42)

The expression to calculate R
(2)
I(k,α),I(k′,α′) can be rewritten as

R
(2)
I(k,α),I(k′,α′) = 2κ

∑
n1,n2

∑
n′1,n′2

(
ck,α
n1,n2

)∗
ck
′,α′

n′1,n′2

×
(∫

dx dy e−i(n1g1+n2g2+k)·r ei(n
′
1g1+n′2g2+k′)·ry

)
︸ ︷︷ ︸

K2(k,k′)

.
(2.43)

The integral can be evaluated analytically,

K2(k, k′) =

∫
dx dy e−i(n1g1+n2g2+k)·r ei(n

′
1g1+n′2g2+k′)·ry

=

∫
dx dy ei(

2π
a (n′1−n1)+(k′x−kx))x e

i
(

4π√
3a

(n′2−n2)− 2π√
3a

(n′1−n1)+(k′y−ky)
)
y
y

=

∫
dx eiλ(k,k′)x

∫
dy eiµ(k,k′)y y .

(2.44)

13We introduced the extra factor of 1
2π to ensure that the eigenvalues of the position operators are

multiples of 1, not 2π.
14This allows us to calculate eigenvalues of Rj .
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Similarly,

K1(k, k′) =

∫
dx eiλ(k,k′)x

∫
dy eiµ(k,k′)y

(√
3x− y

)
. (2.45)

We call Ki(k, k′) the geometric tensors15. To evaluate these integrals we need to set
sensible real-space integration bounds. We use the integration bounds shown in Fig. 2.12

Figure 2.12 – Triangular, honeycomb, and kagome lattices with the real-space integration
region (blue, dashed line). Here, L=5.

The real-space integration is separated into three parts, as shown in figure Fig. 2.13.

Figure 2.13 – Left: the integration over a parallelogram in real space is split into three
integrals (labelled I, II & III). Right: discretization of the Brillouin zone. Here, L=5.
The orange line is the boundary of the BZ, the black points are the points at which K1

& K2 are evaluated.

Eq. 2.44 can thus be rewritten as the sum of three integrals,

K2(k, k′) =

∫
dxeiλ(k,k′)x

∫
dyeiµ(k,k′)yy

=

(∫ 1
2
aL

x=0

∫ √3x

y=0

+

∫ aL

x= 1
2
aL

∫ √
3

2
aL

y=0

+

∫ 3
2
aL

x=aL

∫ √
3

2
aL

y=
√

3(x−aL)

)
dxdyeiλ(k,k′)xeiµ(k,k′)yy .

(2.46)

15Not to be confused with the metric tensor or the quantum geometric tensor.
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The geometric tensors, K1(k, k′) and K2(k, k′), can be calculated analytically which sig-
nificantly speeds up calculating the Wannier states.

Discretizing a non-separable Brillouin zone Fig. 2.13 shows a possible discretiza-
tion of the Brillouin zone. We choose

kij = −
(

1− 1

L

)(g1

2
+

g2

2

)
+

1

L
(ig1 + jg2) i, j ∈ {0, ...,L− 1}. (2.47)

The geometric tensors, K1 & K2, are square matrices of dimension L2 × L2. Each entry
is a matrix of dimension N2 ×N2, where N is the number of orders of g1 and g2 used to
determine the Bloch states.

Eigenvalues of R1 and R2 The eigenvalues of R1 and R2 are equal to the positions
of the lattice sites along g1 and g2, respectively. Each eigenvalue of R1 and R2 is L-fold
degenerate, since all lattice sites get projected to a line spanned by g1 or g2. For example,
if there are two lattice sites that have the same coordinate in units of g1 · r, R1 will have
two degenerate eigenvalues corresponding to that coordinate. To determine a Wannier
state on some site in the 2-dimensional lattice, we first find the eigenvalues of R1, choose a
degenerate subspace belonging to one of these eigenvalues, project R2 onto this degenerate
subspace and then diagonalize R2. The eigenvalues of R1 and R2 will have a structure as
shown in Fig. 2.14.

Figure 2.14 – Left (centre): eigenvalues of R1 (R2) for the optical kagome lattice. Right:
lattice sites reconstructed from eigenvalues of position operators R1 & R2. L=5.

By choosing an uneven L, we ensure that there is only one site in the centre of the lattice.
To determine this central site’s Wannier state, we project R2 onto the subset of eigenstates
of R1 with eigenvalue L/2. The eigenvalues of projected R2 are equal to the coordinates
along g2 of those sites whose coordinate along R1 is L/2. We can now choose the unique,
non-degenerate eigenvalue L/2 of projected R2 to give us the lattice site at the centre of
the lattice.

The associated eigenvector, with coefficients wk,α, is the Wannier state expressed in
a Bloch-state basis (k-state basis). To obtain a real-space representation of the Wannier
state, we need to multiply the eigenvector of the (band-projected) position operator with
the real-space representation of the Bloch states,
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w(r) =
∑
k,α

wk,α 〈r|k,α〉

=
∑
n1,n2

∑
k,α

wk,αc
k,α
n1,n2

ei(n1g1+n2g2+k)·r.
(2.48)

Note that the geometric tensor and the real-space integration bounds can be applied to
the triangular, honeycomb, and kagome lattices interchangeably. Only the Bloch states
and energies change between the lattice types; the geometry of the Brillouin zone and unit
cell are unchanged. To find the maximally localized Wannier states in the s-band of the
triangular, honeycomb, and kagome lattices it is necessary to include the first, first two,
and first three bands, respectively, when constructing the position operators. The lattice
depth and type is encoded in the Bloch states. Bloch states are calculated by solving the
Schrödinger equation as we did previously for the kagome lattice (Eq. 2.33).

Making use of translational symmetry We find that the numerical accuracy of
the calculated Wannier states is higher for central sites. Therefore, we calculate the
Wannier state at the central site of the lattice16 and make use of translational symmetry
to determine Wannier states on other lattice sites,

w(r− (pa1 + qa2)) =
∑
n1,n2

∑
k,α

wk,αc
k,α
n1,n2

ei(n1g1+n2g2+k)·(r−(pa1+qa2))

=
∑
n1,n2

∑
k,α

wk,αc
k,α
n1,n2

ei(n1g1+n2g2+k)·re−ik·(pa1+qa2)

=
∑
k,α

wk,αe
−ik·(pa1+qa2) 〈r|k,α〉 ,

(2.49)

where a1 and a2 are the lattice vectors (defined in Eq. 2.28), p and q are integers, and
we have made use of the relations in Eq. 2.27. The vector wk,α is the eigenstate of the
band-projected position operators on the central site. For lattices with multiple sites per
unit cell, such as the honeycomb and kagome lattices, we first determine the Wannier
state of each site in a unit cell at the centre of the lattice. Wannier states on sites outside
the central unit cell can then be calculated by using Eq. 2.49.

Wannier state phase A Wannier function calculated with Eq. 2.48 is generally com-
plex, but can be made to be real by multiplying it with a phase factor e−iφ where

φ = arg

(∑
n1,n2

∑
k,α

wk,αc
k,α
n1,n2

)
. (2.50)

In practice, the magnitude of the calculated Wannier states’ imaginary part is negligible
(on the order of machine precision) when incorporating this phase factor.

16Or central unit cell for lattices with multiple sites per unit cell.
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Triangular lattice The triangular lattice only contains one site per unit cell, which
causes the lowest band to split from higher bands. The maximally localized, s-wave
Wannier states are thus the eigenstates of the position operator projected onto the lowest
band. We determine the Bloch states by solving

1

k2
|q +mg1 + ng2|2 cq,m,n

−s
4

(cq,m−1,n + cq,m+1,n + cq,m−1,n−1 + cq,m+1,n+1 + cq,m,n−1 + cq,m,n+1)

= εret
q (s)cq,m,n ,

(2.51)

where s is the depth of the triangular lattice in units of ~2k2

2m
.

Fig. 2.15 shows the numerically calculated, maximally localized, s-wave Wannier state
in the optical triangular lattice.

Figure 2.15 – s-wave Wannier state in the triangular lattice with s=10. The region
bounded by the blue line is a unit cell.

Honeycomb lattice As shown previously, the optical honeycomb lattice can be imple-
mented by inverting the optical triangular lattice. The Bloch state equation is thus

1

k2
|q +mg1 + ng2|2 cq,m,n

+
s

4
(cq,m−1,n + cq,m+1,n + cq,m−1,n−1 + cq,m+1,n+1 + cq,m,n−1 + cq,m,n+1)

= εret
q (s)cq,m,n .

(2.52)

Note the sign change of s compared to Eq. 2.51. To determine the maximally localized
Wannier state in the honeycomb lattice, the position operators are projected onto the two
lowest bands. This is necessary since the honeycomb lattice contains two sites per unit
cell. Fig. 2.16 shows the eigenvalues of the position operators and the calculated Wannier
functions for both sites in the unit cell.
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Figure 2.16 – Top left (centre): eigenvalues of R1 (R2) for the honeycomb lattice po-
tential. Top right: lattice sites reconstructed from eigenvalues of position operators R1 &
R2. L=5. Bottom: s-wave Wannier states on the honeycomb lattice for s=100. Colour
function is as in Fig. 2.15.

Figure 2.17 – Left (centre): eigenvalues of R1 (R2). Right: lattice sites reconstructed
from eigenvalues of position operators R1 & R2. L=5. Bottom: s-wave Wannier states
on the kagome lattice for sS=sL=15. Colour function is as in Fig. 2.15.
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Kagome lattice To determine the Bloch states of the kagome lattice we solve Eq. 2.33.
The kagome lattice contains three sites per unit cell so we project the position opera-
tors onto the three lowest bands to determine the maximally localized s-wave Wannier
states. The energy spectra of the projected position operators and the resulting real-space
representations of the Wannier functions on the kagome lattice are shown in Fig. 2.17.

Kagome flat band One of the kagome lattice’s unique features is that it has a flat
band. As discussed in chapter 1, it is possible to construct flat band eigenstates that
are localized in real space. These can also be thought of as eigenstates of the position
operator projected onto the flat band. By employing the same method used to construct
the maximally localized, s-wave Wannier functions, we can also determine the shape of
the flat band’s localized eigenstates (Fig. 2.18)

Figure 2.18 – Maximally localized eigenstate of the position operator projected onto the
third band of the kagome lattice with a lattice depth of sS=sL=5. Note the hexagonal
structure and the alternating sign of the wave function’s amplitude.

We can determine Wannier states on the flat band individually since any superposition of
flat band Bloch states is again a flat band eigenstate. Projecting the position operators
onto one of the dispersive sub-bands does not result in a physically relevant Wannier
state.

2.5 Tunnelling rates (Hubbard t)

We saw previously that the lowest bands of an optical lattice approach the tight-binding
limit for deep lattices (s > 5) and that we can calculate the nearest-neighbour tunnelling
rate by numerically calculating the band width. However, this approach does not allow
us to calculate further than nearest-neighbour tunnelling or tunnelling in higher motional
bands (e.g. p-wave and d-wave bands). Wannier states can be used to determine tunnelling
rates beyond nearest-neighbour, which could prove useful for future experiments involving
Floquet shaking [19] and creating topological bands [110, 150]. We can express the single-
particle optical lattice Hamiltonian (H) in the lattice site basis,
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tij = Hij = 〈i|H |j〉 =
∑
k,k′

∑
α,α′

〈i|k,α〉 〈k,α|H |k′,α′〉︸ ︷︷ ︸
Ek,αδk,k′δα,α′

〈k,α′|j〉

=
∑
k

∑
α

Ek,α

(
wik,α

)∗
wjk,α ,

(2.53)

where Ek,α is the energy of the Bloch state in band α at momentum k. We made use
of the fact that H is diagonal in the Bloch state basis. In Eq. 2.48 we showed that two
Wannier vectors on the same sublattice but in different unit cells are related by

wjk,α = wik,αe
ik·(ri−rj) . (2.54)

Thus, for two sites i, j on a lattice with only one site per unit cell, Eq. 2.53 simplifies to

tij =
∑
k

Ek

∣∣wik∣∣2 eik·(ri−rj) =
1

L2

∑
k

Eke
ik·(ri−rj) , (2.55)

where L2 is the number of k points we use to discretize the two-dimensional Brillouin
zone. Calculating the tunnelling rate on a lattice with a single site per unit cell, such
as the triangular lattice, does not require us to calculate the Wannier state. However,
for the honeycomb and kagome lattices Eq. 2.54 does not hold and the Wannier states in
general have to be calculated to determine the tunnelling rate.

In Fig. 2.19 we show various tunnelling rates in the triangular, honeycomb, and kagome
lattices calculated using Eq. 2.53. Note that for deep kagome lattices, the nearest-
neighbour tunnelling rate obtained via the Wannier state approach is identical to the
tunnelling rate calculated using the band structure (see Fig. 2.9). For small lattice depths
in the honeycomb and kagome lattices the calculated higher-order tunnelling rates deviate
from the monotonic behaviour seen for deeper lattices. This is likely due to the fact that
we only take into account the lowest two (three) bands when determining the Wannier
states in the honeycomb (kagome) lattice. For shallow lattices the band gap is small and
neglecting higher bands leads to inaccurate Wannier states.
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Figure 2.19 – Tunnelling rates for 39K in the interfering triangular (top), honeycomb
(centre), and kagome (bottom) lattices. The colours on the right correspond to the
tunnelling term shown on the left.
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2.6 Interactions (Hubbard U)

The Wannier states allow us to calculate the on-site interaction (Hubbard U) via

U =
4π~2as
m

∫
d3r |w(r)|4 . (2.56)

In terms of ER, U can be written as

U

ER

=
2m

~2k2

4π~2as
m

∫
d3r |w(r)|4 . (2.57)

We can simplify the calculation of the integral by going to dimensionless units, i.e. by
substituting r with ax 17, ∫

d3r |w(r)|4 =
1

a3

∫
d3x |w(x)|4 , (2.58)

where a is the spacing between unit cells. This dimensionless integral depends only on
the lattice depth (in units of ER) and can be numerically calculated for Wannier states
of the form Eq. 2.48. The interaction energy in terms of ER is thus

U

ER

=
8πas
k2a3

∫
d3x |w(x)|4 . (2.59)

Note that the interaction energy scales as 1
λ

for a constant lattice depth s. The interaction
energy for the triangular, honeycomb, and kagome lattices can be separated into a vertical
(z) and horizontal (xy) component,

U =
4π~2as
m

∫
d3r |w(r)|4 =

4π~2as
m

∫
dxdy |wxy(x, y)|4

∫
dz |wz(z)|4 . (2.60)

The spatial extent of a Wannier function along the vertical direction is affected by the
vertical lattice depth. Deeper lattices cause the Wannier function to be more localized
and thus lead to an increase in interaction energy. In contrast to the tunnelling rate,
the interaction energy depends on the depth of the vertical lattice and must be taken
into account when calculating U . Generally we are interested in knowing the interaction
strength as a function of the depth of the horizontal lattice, since this is what is varied in
a typical experiment.

Therefore, to visualize how the interaction strength varies as a function of horizontal
lattice depth, we fix the vertical lattice depth to sV = 30. The vertical component of the
Wannier integral will just factor out as a constant. We calculate the vertical component
of the Wannier state in the same way as we do the horizontal components, i.e. by finding
the eigenstates of the band-projected position operator. Fig. 2.20 shows the interaction
strength, nearest-neighbour tunnelling rate, and U/t for 39K in the triangular, honeycomb,
and kagome lattices. We find that the nearest-neighbour tunnelling rate in the kagome
lattice is virtually identical to that of the triangular lattice.

17The additional factor of 1
a3 can be derived by ensuring normalization of the Wannier function. For

a more detailed discussion, see [148].
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Figure 2.20 – Hubbard U & t (left) and U/t (right) for 39K in the interfering triangular
(top), honeycomb (centre), and kagome (bottom) lattices as a function lattice depth.
We assume aS=300 a0 and a vertical lattice depth of 30ER. We also assume that the
horizontal lattice beams have waists of 100 µm× 50 µm. Note that for the kagome lattice
plots (bottom row), sL = sS. The wavelengths of the short-wavelength, long-wavelength,
and vertical lattices are 532 nm, 1064 nm, and 1064 nm, respectively. The power per beam
required to reach lattice depths sS or sL (P532 or P1064, respectively) are specified on top
of each plot.

This shows that the Hubbard parameters in the kagome lattice are dominated by the
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short-wavelength lattice. Fig. 2.20 also shows that the honeycomb lattice requires much
larger lattice depths than the triangular lattice to suppress the tunnelling rate to a given
value. In practice this means that we need about twice the amount of 1064 nm power
forming a honeycomb lattice to reach the same tunnelling rate as a triangular lattice
formed of 532 nm lasers18.

The tunnelling rates and interaction strengths our code produces agree with those
cited in [20, 41, 137, 145, 148, 151].

18The polarizability of 87Rb and 39K at 1064 nm is about -2.2 times the polarizability at 532 nm.
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3 Negative temperatures & bosons in flat bands

In this chapter we show how to prepare a negative temperature state in an optical lattice
system and we discuss expected signatures of bosons in the flat band of the kagome lattice.
Our intention is to reconcile the various different points of view that have emerged in the
study of bosonic phases of the kagome lattice. Since there are still many unknowns with
regard to how closely our machine implements various established theoretical models for
the kagome flat band, we will first discuss the expected single-particle behaviour and
expected signatures before moving on to the interacting case. For interacting bosons we
will summarize the effects expected in the high density [88, 152] and low density [84]
regimes.

3.1 Negative temperatures

Temperature is a property of a system in equilibrium. A classical system in thermody-
namic equilibrium is described by Boltzmann statistics and quantum systems are generally
described by either fermionic or bosonic statistics (Fermi-Dirac or Bose-Einstein, respec-
tively). We will begin by taking a quick look at negative temperatures in a classical spin
system [153].

3.1.1 Classical negative temperatures

Already in the mid 1950s, Ramsey derived various quantities at negative temperatures
and discussed some of the consequences of negative temperature Carnot machines [153].
A simple model system for understanding the consequences of negative temperatures is a
classical Ising spin system in an external magnetic field. Defining the magnetic moment
per spin to be µ and the external magnetic field strength to be B, the partition function
for a system of N spins is

Z =
∑
i

e−βEi =

N/2∑
n=−N/2

e−2βµBn

= eβµBN
N∑
n=0

e−2βµBn = eβµBN
(

1− e−2βµB(N+1)

1− e−2βµB

)
=
eβµB(N+1) − e−βµB(N+1)

eβµB − e−βµB
=

sinh(βµB(N + 1))

sinh(βµB)
,

(3.1)

where β = 1/kBT and kB and T are the Boltzmann constant and the temperature, respec-
tively. From the partition function we can calculate various thermodynamic quantities,
such as internal energy U and entropy S,
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A = − 1

β
log(Z),

U =
∂(βA)

∂β
= µB

{
coth(βµB)− (N + 1) coth(βµB(N + 1))

}
,

S = kBβ
2∂A

∂β
= kB log

(
sinh(βµB(N + 1))

sinh(βµB)

)
+ kBβµB

{
(coth(βµB)− (N + 1) coth(βµB(N + 1))

}
.

(3.2)

Fig. 3.1 shows how the total internal energy and the entropy change as a function of
−βµB.

Figure 3.1 – Left: internal energy (red) and entropy (blue) of an Ising spin system as
a function of inverse temperature. As −β goes to −∞ (+∞), T goes to 0+ (0−). At
−β = 0, T = ±∞. Right: S vs U . The spin system has zero entropy at maximum or
minimum energy.

We use −β as a measure for temperature rather than T , since the thermodynamic quanti-
ties are continuous as we vary β from −∞ to∞. This is not the case for T . Intuitively this
makes sense since at T = −∞ and T = +∞ the system has the same statistical mixture
of spin distributions, whereas for T = +0 (T = −0) all spins are parallel (anti-parallel)
to the magnetic field.

We can see from these considerations that if we define temperature as the inverse of
the derivative of entropy with internal energy,

1

T
=
∂S

∂U
, (3.3)

and the internal energy is bounded, then there are situations in which the entropy de-
creases as the internal energy is increased19. This is shown schematically in Fig. 3.1 for the
spin system. Note that negative temperatures can also be stable in the thermodynamic
limit, for which the energy and the particle number diverge. For the infinite system,
negative temperatures are stable if the energy density, or per-particle energy is bounded.
Without an upper bound on per-particle energy, the Boltzmann distribution at negative

19If the spectrum is bounded and the energy is increased, then eventually the system will only occupy
the highest energy state and entropy is zero.
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temperature is not normalizable and hence will not be stable. Note also that pumping
entropy into a system at negative temperature will cause the internal energy to decrease,
which is the opposite of what happens in the positive temperature case.

At this point we may ask ourselves what keeps a system at negative temperature from
simply decaying to lower energy states like an out-of-equilibrium system might do. The
answer is that a system with negative temperature has ‘too much’ energy. If the system
is closed, there is no way of depositing energy that would be freed from a decay process.
Since the excess energy that would be acquired through decay to lower energy states
cannot be deposited, the decay process is suppressed and the negative temperature state
remains intact. This is the same argument to why repulsively bound pairs are stable [154].

How can we create a negative temperature state? Negative temperatures manifest
themselves by population inversion, i.e. states with high energy are populated more than
those at low energy. Starting from a positive temperature state, pumping infinite heat into
the system will only lead to an infinite temperature state at which all energies are equally
occupied, not however to a state with population inversion. Pumping heat into the system
also creates entropy, which drives it further away from population inversion, since negative
temperatures very close to zero are also states with very low entropy. Thus, starting from
a positive temperature state, it is not possible to create a negative temperature state via
a purely thermodynamic process.

It is possible to overcome this limitation however. Rather than act upon the particles
or spins, one can suddenly change the Hamiltonian itself so that some initial configuration
is mapped onto the highest energy state of the new Hamiltonian. For example, we can
prepare a low entropy state in the spin system discussed above, e.g. by increasing the
magnetic field strength or lowering the temperature. At low entropies and positive tem-
peratures, all spins are aligned with the external magnetic field. To create a low-entropy
negative temperature state we only need to flip the magnetic field quickly so that the
magnetic field and the spins are anti-aligned. This needs to be done quickly to avoid
spins changing their orientation. By flipping the magnetic field we have now prepared
the highest energy state at low entropy, i.e. the system is in a negative temperature state.
Purcell and Pound used this protocol to create negative temperatures in nuclear spin
systems [155]. We will use the same ideas developed here to show how we can create a
negative temperature state in an optical lattice system.

3.1.2 Negative temperatures in optical lattices

Bose-Hubbard energy terms Negative temperatures are intuitive for spin systems as
there is both an obvious lower bound on energy (all spins aligned with an external magnetic
field) as well as an upper bound (all spins anti-aligned with an external magnetic field).
In optical lattices it is not obvious, and indeed not always the case, that there is an upper
bound on per-particle energy. If one were able to engineer an optical lattice system with
an upper bound on per-particle energy then a negative temperature state would be stable.
We will discuss the relevant energy scales in an optical lattice system independently and
will show how an upper bound can be engineered provided that certain parameters in
the Hamiltonian can be changed. Using the (Bose-)Hubbard Hamiltonian to describe the
optical lattice system,
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Ĥ = −t
∑
〈i,j〉

â†i âj︸ ︷︷ ︸
Ĥkin

+
U

2

∑
i

n̂i(n̂i − 1)︸ ︷︷ ︸
Ĥint

+V
∑
i

n̂ii
2

︸ ︷︷ ︸
Ĥconf

, (3.4)

we can identify three independent energy scales:

Kinetic energy (Ĥkin) The kinetic energy describes tunnelling of bosons between
nearest-neighbour lattice sites. For deep optical lattices, the per-particle kinetic energy is
always bounded from below and above. In tight-binding (see section 2.3) this is obviously
true since the allowed single-particle energies are restricted to lie within the tight-binding
bands. It is however not as obvious why the per-particle energy should be bounded for a
finite-depth lattice, where higher bands are separated by a finite band gap.

The solution to the presence of higher bands is to work at deep enough lattices so that
we can restrict the kinetic energy to the s-bands. A closed, ergodic system in thermo-
dynamic equilibrium will explore all states that have a certain energy. Ultracold atoms
exchange momentum and thermalize via collisions. If the energy gap between the s-bands
and the next band is large enough, the higher-lying states will be decoupled and any
ensemble prepared in the s-bands will not be able to explore states beyond the energy
gap.

Since ultracold atoms are usually prepared in the lowest band of an optical lattice,
there is nothing further one needs to do to impose an upper bound on kinetic energy.
Note that this is in stark contrast to a particle in free space, whose energy in bounded
below but unbounded above20.

Interaction energy (Ĥint) The interaction energy is given by the second term of
Eq. 3.4. Only contact interactions are considered, so that interactions are purely on-site.
We can distinguish between two cases.

For repulsively interacting particles, there is only a lower bound on per-particle energy
but no upper bound (in the thermodynamic limit). In a n=1 Mott-Insulator, each lattice
site is populated by one particle. As a consequence, the interaction energy is zero. This is
the lowest energy state the system can be in and thus there is a lower bound on energy. In
contrast, in the thermodynamic limit, there is no upper bound on per-particle interaction
energy, since an infinite number of particles on the same site will result in each particle
having infinite energy. It is thus not possible to prepare a stable negative temperature
state in a repulsively interacting cloud.

In the case of attractive interactions, the highest energy state is that in which all
sites are occupied by at most one particle. In this case the interaction energy again
vanishes. Thus there is an upper bound on per-particle interaction energy, permitting the
construction of a negative temperature state. On the other hand, there is no lower bound
on interaction energy in the thermodynamic limit since an infinite amount of particles
sitting on the same site leads to a per-particle energy of negative infinity.

20The kinetic energy of a free particle is given by Ĥkin = p2

2m , where p2 is the particle momentum and
can be arbitrarily large.
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Confinement/potential energy (Ĥconf) The third term of Eq. 3.4, which we call
the confinement term, is caused by the ‘curvature’ of the optical lattice potential21 (see
appendix C for more details). Lattice curvature is an artefact of the Gaussian intensity
profile of the lattice beams. We can distinguish between positive confinement and negative
confinement (or anti-confinement).

In a confining (i.e. positive confinement) optical lattice, sites at the centre of the lattice,
i.e. the point at which all lattice beams have maximum intensity, have lowest energy and
the lattice site offset energy increases quadratically22 with distance from the centre. This
situation corresponds to V > 0 in Eq. 3.4. In general, all optical lattices created with red-
detuned wavelengths, such as 1064 nm for 87Rb, 39K, and 40K, are confining. Confining
lattices have a lower bound on per-particle energy, but no upper bound.

In an anti-confining (i.e. negative confinement) optical lattice the situation is reversed
and the lattice site offset energy decreases quadratically as a function of distance from the
lattice centre (i.e. V < 0 in Eq. 3.4). Anti-confining potentials display an upper bound
on per-particle energy but no lower bound, making them suitable for the preparation of
a negative temperature state. Blue-detuned optical lattices are always anti-confining.

Note that the overall confinement does not only depend on the lattices themselves,
but is also affected by any additional optical or magnetic potentials.

In summary, the Hubbard model has an upper bound on per-particle energy when the
lattice is sufficiently deep, such that the first band gap is large, U is negative, i.e. atoms
interact attractively, and V is negative.

How to prepare a negative temperature state Now that we know how to engineer
an upper bound on per-particle energy in an optical lattice system, it is time to dis-
cuss how to actually prepare a negative temperature state. One fundamental issue arises
immediately: we are faced with a positive-temperature world. How does one prepare a
negative temperature state starting from a positive temperature state? It is much like
creating anti-matter in a universe composed of ordinary matter, as soon as a positive
temperature and negative-temperature system meet, they form a system with a temper-
ature closer to infinity. Just like preserving anti-matter in a universe full of matter, we
need to isolate the negative-temperature state from its detrimental positive-temperature
surroundings. Luckily, cold-atom systems are some of the most isolated systems available
and are decoupled from their surroundings, making them exquisitely suited for negative
temperatures.

The question remains how to turn an isolated positive-temperature system into a
negative-temperature system. Much like the classical spin system we discussed previously,
we need to find some intermediate state that is simultaneously the lowest energy state
of some initial Hamiltonian and the highest energy state of the target Hamiltonian. In
the classical spin system we found that such a state is given by a spin configuration in
which all spins are aligned with an external magnetic field. In the Hubbard model the
intermediate state can be chosen to be the n=1 Mott insulating state. When |U | � t,V
and V > 0,U > 0, the n=1 Mott insulator is the lowest energy state. Simultaneously,

21We will always use the term ‘lattice curvature’ to describe the global, slow variation of the lattice
potential, not the curvature on length-scales of single lattice sites.

22The curvature is quadratic close to the centre of the lattice. Anharmonicities in the confining potential
become more relevant as the distance to the centre increases.
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it is the highest energy state when the energy terms are flipped, i.e. |U | � t,V and
V < 0,U < 0.

Figure 3.2 – Schematic showing the negative temperature preparation protocol in mo-
mentum space (left) and real space (right). In the kagome lattice the lower band is
dispersive and the upper band is flat. I: Positive temperature, 0 < U � t, V > 0
(superfluid). II: Positive temperature, U � t > 0, V > 0 (Mott insulator). III: Neg-
ative temperature, −U � t > 0, V < 0 (Mott insulator), IV: Negative temperature,
0 < −U � t, V < 0 (superfluid). The initial superfluid has a well-defined momentum,
but is extended in real space. The Mott insulator state is effectively a tensor-product of
maximally localized Wannier states on each site. Thus, in the Mott insulator, the particle
position is well-defined, but the momentum state distribution is extended.

BECs are usually created at repulsive interactions and in a confining potential. In this
case it is straightforward to create a low-entropy, positive temperature Mott insulator by
simply increasing the lattice depth. In the n=1 Mott insulator, the interaction energy is
zero, regardless of whether the interaction is repulsive or attractive. Thus a sudden switch
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from repulsive to attractive interactions will not change the distribution of particles and
will not change the system’s entropy. Similarly, a sudden inversion of confinement does
not cause the atomic distribution to change since atoms are blocked from redistributing
to compensate for a modification of the external potential.

Once we have flipped the interactions and confinement, the system will be in the
highest energy state, the n=1 Mott insulator at negative temperature. At this point
we can change the lattice potential adiabatically to e.g. create a negative temperature
superfluid [156]. Fig. 3.2 shows the steps required to create the negative temperature
state in an optical lattice. Note that this protocol is agnostic with respect to lattice
geometry.

Why bother with negative temperatures? As discussed above negative temper-
atures can be used to explore the highest energy states of a Hamiltonian. From the
quantum simulation point of view, preparing a negative temperature state is only useful
if the highest energy states of a Hamiltonian are different from the lowest energy states.
In many cases, there is a symmetry between highest-lying and lowest-lying states. For
example, the highest-lying states of an Ising spin Hamiltonian are simply inverted with
respect to the lowest-lying states. The physics of the highest energy states is thus exactly
the same as that of the lowest energy states and there is no incentive to study the highest
energy states separately.

In optical lattices, we are primarily concerned with tight-binding models and so how
useful it is to be able to prepare a negative temperature state comes down to whether
the bottom and top of the tight-binding band structure are related by symmetry or not.
One can straightforwardly prove that bipartite lattices (e.g. the square lattice, the Lieb
lattice, the honeycomb lattice) always have symmetric tight-binding band structures, i.e.
the upper band (highest energy states) is an inverted version of the lower band23. Thus,
for bipartite lattices, the physics of the highest energy states is the same as that for
the lowest energy state. On the other hand, for several non-bipartite lattices this is not
true any more and the upper tight-binding band can be different from that of the lower
band. Examples include the triangular and kagome lattices. In these systems, a negative
temperature state is not just a symmetric version of the positive-temperature state, but
can display unique properties that are not accessible via positive temperatures.

For the kagome lattice in particular, the top tight-binding band is flat, meaning that
a low-entropy negative temperature state could be used to study interacting particles in
a flat band in thermodynamic equilibrium [157]. We will discuss flat band physics with
bosons in section 3.3 and section 3.4.

The partition function contains all relevant information about a thermodynamic sys-
tem,

Z(H,T ) = f

(
H

T

)
= f

(
−H
−T

)
, (3.5)

where f is some system-specific function, H is the system’s Hamiltonian, and T is the
temperature. The thermodynamic properties don’t change if we simultaneously invert the

23For a lattice with two sites per unit cell, HTB(k) =

(
0 α(k)

α∗(k) 0

)
⇒ E±k = ±|α(k)|, i.e. the

spectrum is symmetric around zero. Similar arguments can be made for other bipartite lattices.
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Hamiltonian and the temperature. Applied to the Bose-Hubbard Hamiltonian this means
that

Z(HBH,AFM,T ,V ,U) = f

 1

T

t∑
〈i,j〉

â†i âj +
U

2

∑
i

n̂i(n̂i − 1) + V
∑
i

n̂ii
2


= f

 1

−T

−t∑
〈i,j〉

â†i âj −
U

2

∑
i

n̂i(n̂i − 1)− V
∑
i

n̂ii
2


= Z(HBH,FM,−T ,−V ,−U).

(3.6)

Here, AFM (FM) labels the BH model with positive (negative) tunnelling. We see that
we can simulate a Bose-Hubbard Hamiltonian with inverted kinetic energy, t < 0, if we
are able to invert the temperature, the interaction energy and the potential (confine-
ment) energy. Thus, a negative temperature state with attractive interactions and anti-
confinement in the kagome lattice is equivalent to a repulsively interacting, harmonically
confined cloud in a flat band.

3.2 Kagome flat band signatures

We will now discuss what signatures a negative temperature state of non-interacting
particles will have and how these can be probed experimentally. Since we are working
within the single-particle framework, we will assume that all flat band Bloch states are
equally occupied. We will see in section 3.3 that finite dispersion and interactions will
cause the flat band degeneracy to be lifted.

Figure 3.3 – Left: band-mapping in 1D. I, II, and III label the 1st, 2nd, and 3rd Brillouin
zone, respectively. Grey, dashed lines show the plane-wave dispersion. Bloch functions
with momentum k in the first band (blue line) are mapped onto a plane wave with
momentum k. Particles with momentum k in the second band (red line) are mapped onto
the plane wave dispersion centred at 2π

a
or −2π

a
, i.e. they are mapped onto the plane wave

with momentum k − 2π
a

or k + 2π
a

, depending on the sign of k. Right: first four Brillouin
zones (BZs) of the kagome lattice in the extended zone scheme24. Atoms in the nth band
are mapped to the nth region of the extended zone scheme.
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Momentum space (band-mapping) A well-established technique in optical lattice
experiments to measure the population of a motional band is band-mapping. In band-
mapping, the quasimomentum distribution of atoms in the optical lattice is mapped onto
real momentum. The momentum of an atom occupying the nth band of the optical lattice
is mapped onto a momentum in the nth Brillouin zone (see Fig. 3.3), making it possible
to extract the population of individual bands [151, 158, 159].

To map the quasimomentum distribution onto real momentum at the end of an exper-
iment, the lattice depth is slowly switched off before performing a time-of-flight measure-
ment25. The population of the different Brillouin zones can be extracted and converted
into band occupation in the optical lattice.

Band-mapping of the flat band Assuming we have populated the flat band of the
kagome lattice with a non-interacting gas, we would expect only the 3rd Brillouin zone
(green region in Fig. 3.3) to be occupied. In the real experiment we will inevitably
also populate the upper regions of the second band (corners of the star formed by the
2nd Brillouin zone, see Fig. 3.3) due to residual interactions, lattice inhomogeneities and
experimental imperfections. However, this is a crucial signature of flat band population
and can be directly used to optimize the experimental sequence for higher flat band
occupations.

The distribution of non-interacting particles in the flat band is also expected to be
very homogeneous (due to its flatness), which is another property that can be measured
via band-mapping. In the kagome tight-binding model, the classical thermal occupation
of a given momentum state k is given by

ni(k) =
1

Z
e
−Ei(k)

kBT , (3.7)

where i ∈ {1, 2, 3} denotes the band index and band 3 is assumed to be the flat band.
The partition function, Z, is defined as

Z =
3∑
i=1

∫
k∈BZ

e
−Ei(k)

kBT dk. (3.8)

We can evaluate the integral in Eq. 3.8 numerically,∫
k∈BZ

e
−Ei(k)

kBT dk ≈
∑
ki

e
−Ei(k)

kBT , (3.9)

where {ki} ∈ BZ is a random sample of momentum states in the first Brillouin zone.
Fig. 3.4 shows the band-mapped momentum distribution in the tight-binding limit of
the kagome lattice for a small positive and a small negative temperature. Note that for
positive temperatures, low-energy momenta are predominantly occupied, indicating that
the cloud is in the lowest band (around the Γ point). For negative temperatures, high-
energy momentum states dominate the distribution, indicating that the third (flat) band

24Note that the Brillouin zone structure for the triangular and honeycomb lattices is the same as for
the kagome lattice.

25A switch-off ramp is chosen that is fast enough to avoid atoms redistributing in the band and slow
enough to avoid atoms being excited to other bands [160].
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is populated. States in the flat band have the same energy (in the tight-binding limit),
causing them to be equally occupied.

Figure 3.4 – Left (right): numerically calculated, band-mapped momentum distribu-
tion of the tight-binding Hamiltonian at a temperature of −t/kB (t/kB), where t is the
tunnelling energy. The distribution is normalized to the maximum value.

Using Eq. 3.7, we can also extract the three bands’ filling fractions. The filling fraction
of band i at temperature T is given by

ni(T ) =

∫
k∈BZ

ni(k,T ) =

∫
k∈BZ

e
−Ei(k)

kBT∑3
i=1

∫
k∈BZ

e
−Ei(k)

kBT

. (3.10)

We can express T in units of the tunnelling energy t to find how the thermal population
of the three bands scales with temperature (see Fig. 3.5).

Figure 3.5 – Band population as a function of temperature. Blue, green, red, and
magenta lines are the occupation of the first, second, third, and upper two bands (second
& third), respectively. For small positive (negative) temperatures, the lowest (highest)
energy band, Band 1 (Band 3), is predominantly occupied. The population of Band 1
(Band 3) tends to 1 as T → 0+ (T → 0−).

At a temperature of −2t (−0.5t) we can expect a combined excited state (bands 2 & 3)
population of 0.9 (0.99) and a flat band population of 0.56 (0.75).
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Bloch state momentum distribution By suddenly switching off the lattice potential,
a Bloch state with quasimomentum k is mapped onto plane wave states with momentum
k + ng1 +mg2, where g1 and g2 are the reciprocal lattice vectors. Fig. 3.6 shows the nu-
merically obtained momentum distribution of Bloch states in the flat band of the kagome
lattice.

Figure 3.6 – Predicted momentum distribution of the flat kagome band, where all Bloch
states are equally occupied. This image shows the average of 5,000 flat band Bloch state
momentum distributions at a lattice depth of sL = sS = 10. The white hexagon indicates
the first BZ.

3.3 Flat band BEC (high density)

Bose-Einstein distribution and flat band Instead of looking at a classical thermal
distribution as we did in chapter 3.2 we can also ask what happens when we consider
bosons and the Bose-Einstein distribution.

Figure 3.7 – Analytical density of states for the tight-binding model on the kagome
lattice. This is a modified version of the density of states derived for the honeycomb
lattice in [161]. The flat band is located at ε = 6t. The kagome lattice additionally
displays Van Hove singularities at ε = 2t and ε = 4t and a vanishing density of states at
the Dirac points at ε = 3t.
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The canonical approach would be to determine the density of states of the system and
combine it with the Bose-Einstein distribution to obtain thermodynamic quantities such
as total energy, total atom number and condensed and thermal fractions. The density
of states of the tight-binding model on the kagome lattice is shown in Fig. 3.7. Using
the tight-binding density of states to determine thermodynamic properties is obviously
an ill-fated endeavour, since both the (negative-temperature) Bose-Einstein distribution
as well as the density of states diverge as ε→ 6t. However, as we showed in section 2.3,
the optical kagome lattice only approaches the tight-binding limit for deep lattices. For
shallow lattices, the flat band is dispersive with a maximum around Γ ((kx, ky) = (0, 0)).
Fig. 3.8 shows the second and third bands of the numerically calculated band structure
in the vicinity of Γ.

Figure 3.8 – 1D cuts through the numerically calculated band structure of the kagome
lattice with sS = sL = 3. Green and red lines are the third and second band, respectively.

All three bands are quadratic around Γ and we can therefore determine an effective mass
for these bands,

m∗ij = ~2

(
∂2E(kx, ky)

∂ki∂kj

)−1

. (3.11)

Fig. 3.9 shows the numerically calculated effective mass of the three kagome bands as a
function of lattice depth.

Figure 3.9 – Absolute value of the effective mass at Γ for the first (red), second (blue),
and third (green) band of the kagome lattice. For deep lattices, the second band is the
inverted version of the first band. Thus, the effective masses approach each other, but
have opposite sign, as the lattice depth is increased. The curvature of the dispersion and,
consequently, the effective masses, are symmetric around Γ, i.e. m∗xx = m∗yy.
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Note that the effective masses of the second and third bands are negative. The effective
mass in the third band can be varied by several orders of magnitude by changing the
lattice depth between 0 and 30ER. Note also that the third band’s effective mass very
quickly becomes orders of magnitude larger than that of the other two bands. In the
presence of external harmonic confinement, e.g. due to Gaussian lattice beams, the lattice
Hamiltonian around Γ approaches that of a harmonic oscillator (HO),

H =
~2k2

2m∗
+

1

2
mω2r2 =

~2k2

2m∗
+

1

2
m∗ω2

effr
2, (3.12)

where m∗ is the effective mass and ω2
eff = m

m∗
ω2 is the effective HO frequency. Thus, for

low enough temperatures, bosons in a (2D) optical lattice are expected to display the
same physics as bosons in a 2D HO trap. Since it is possible to create BECs in a 2D
harmonic oscillator, one might expect there to be a BEC phase transition at a non-zero,
critical temperature Tc. The critical temperature can be calculated analytically [162] and
is given by

Tc =

√
6N

π2

~ωeff

kB

=

√
6N

π2

~ω
kB

√
m

m∗
, (3.13)

where N is the atom number. Expressed in units of t/kB, the critical temperature is

T tc =

√
6N

π2

~ω
t

√
m

m∗
. (3.14)

This shows that the critical temperature decreases for increasing effective mass and van-
ishes for a perfectly flat band.

Figure 3.10 – Critical temperature (T tc ) of the BEC transition in the first (left) and
third (right) band for a positive and negative temperature state, respectively. Note that
the value of t decreases with increasing s. In the third band, the critical temperature is
reduced as the lattice depth is increased due to the exponential increase of the effective
mass. These plots assume an atom number of 104 and broadly agree with what was
derived in [163] for the square lattice.

We express the critical temperature in terms of t/kB, as this is what we generally extract
from our fits to the thermal momentum distribution (see section 7.1.2). Fig. 3.10 shows T tc
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as a function of lattice depth and harmonic confinement for the first band of the kagome
lattice at positive temperature and for the third band of the kagome lattice lattice at
negative temperatures26. In both cases, the critical temperature increases with increasing
harmonic confinement. The two cases starkly differ in their behaviour with increasing
lattice depth. While the critical temperature in units of t increases with lattice depth
for the first band, it quickly decreases for the third band. This is due to the third
band becoming exponentially flat as the lattice depth increases, causing the effective HO
frequency to decrease. Thus as the lattice depth is increased, in the third band, more and
more states need to be filled before the excited states are saturated and a BEC can form.
Assuming we are able to prepare the same atom number and temperature in the third
band and can vary the lattice depth independently, we expect the BEC to ‘melt’ above
some critical lattice depth. This critical lattice depth depends on the temperature of the
cloud and the initial atom number. The temperature required to see a BEC emerge at
the Γ point is feasible with our machine. We reach temperatures of roughly 0.5kBt in the
triangular lattice at positive temperature (see section 7.1.2). Fig. 3.11 shows the Bloch
states at Γ in the first and third band.

Figure 3.11 – Expected signature of the first and third band BECs. The central hexagon
is the first Brillouin zone. Left (right): Bloch state at Γ in the first (third) band. The size
of the black points indicate the weight of the associated plane-wave. Since the second and
third bands touch at Γ, the highest energy state is two-fold degenerate. For this image
we took the superposition that has a symmetric momentum distribution.

3.3.1 Mean-field approach

The problem of interacting bosons in flat bands can be approached using mean-field theory.
We will closely follow [152] and [88] for this calculation. To study interacting bosons in
the flat band of the kagome lattice, we aim to solve the Bose-Hubbard Hamiltonian with
positive tunnelling,

26t in Fig. 3.10 is not calculated with Wannier states, but with the band width approximation.
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HBH = t
∑
〈ν,µ〉

(â†ν âµ + h.c.) +
U

2

∑
ν

n̂ν(n̂ν − 1)

=
∑
α,α′

∑
i,j

t(i,α),(j,α′)b̂
†
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U

2

∑
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∑
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b̂†i,αb̂i,α

(
b̂†i,αb̂i,α − 1

)
,

(3.15)

where i, j label unit cells and α ∈ {A, B, C} labels the site within a unit cell. In the
second line we explicitly sum over sites in the unit cell, which will make the rest easier to
follow. Note that the flat band in this case has the lowest energy of the three tight-binding
bands.

We already saw in section 2.3 that the kinetic energy can be written as a sum over
momentum states

Hkin =
∑
k

b̂†kH(k)b̂k =
∑
α,α′

∑
k

b̂†k,αHα,α′(k)b̂k,α′ , (3.16)

where H(k) is as in Eq. 2.22. Similarly, we can also express the interaction term in terms
of momentum operators. With b̂i,α = 1√

N

∑
i e
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(3.17)

where we made the substitution q → k − q. To calculate the mean-field energy as a
function of momentum, we substitute b̂k,α and b̂†k,α for mean-field amplitudes

√
Nψk,α

and
√
Nψ∗k,α, respectively. Additionally, we assume that bosons are condensed, i.e. that

b̂†k,αb̂k−q,αb̂
†
k′,αb̂k′+q,α 6= 0 only when q = 0 and k = k′. The resulting mean-field energy

functional is

EMF(k)[ψk] = ψ∗kH(k)ψk +
U

2
(|ψk,A|4 + |ψk,B|4 + |ψk,C|4), (3.18)

where ψk = (ψk,A,ψk,B,ψk,C)T. The mean-field energy at some momentum k with fixed
U and particle density ρ = |ψk,A|2 + |ψk,B|2 + |ψk,C|2, is obtained by minimizing the mean-
field energy functional over ψk. Note that ρ is the particle density per unit cell. Fig. 3.12
shows the mean-field energy along a path through points of high symmetry in momentum
space.
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Figure 3.12 – Left: tight-binding band structure for non-interacting particles. We de-
fine the lowest single-particle energy as E0 = −2t. Right: lowest mean-field energy of
interacting bosons in the kagome lattice. Red, green, and blue lines show the mean-field
energy for ρU = 0.2t, ρU = t, and ρU = 3t, respectively.

Fig. 3.12 shows that interactions lift the degeneracy of the flat band such that the energy at
the K and Γ points is minimal, with ψK = 1√

3
(−1,−1, 1)T and ψΓ = 1√

3
(1, e±

2π
3
i, e∓

2π
3
i)T.

At these momenta, the Bloch functions simultaneously minimize kinetic and interaction
energy. Interactions prefer wave functions that have equal amplitude on the three sublat-
tices, while the kinetic energy term in Eq. 3.18 imposes a 3-colour phase pattern on the
wave function, i.e. the phase on neighbouring sites differs by 2π/3. The 3-colour phase
arrangement is a manifestation of kinetic energy frustration and is analogous to antifer-
romagnetically interacting spins in the classical XY model on a geometrically frustrated
lattice.

Figure 3.13 – Left (right): vortex ferromagnet/Γ-point wave function (vortex
antiferromagnet/K-point wave function) on the kagome lattice. Red, green, and blue
points represent phases 0, 2π

3
, and 4π

3
, respectively. This state is equivalent to the q = 0

(q =
√

3 ×
√

3) state in the AFM XY model on the kagome lattice [91, 123]. The cir-
cular arrows indicate vorticity. Note that both the Γ and K wave functions are two-fold
degenerate, corresponding to the freedom in choosing vortices or anti-vortices.

Fig. 3.13 shows the phase pattern of the Γ and K wave functions, which can be regarded
as a ferromagnetic and antiferromagnetic arrangement of vortices, respectively27. As we

27Both the Γ and K wave functions have U(1) × Z2 symmetry. The U(1)-symmetry arises out of the
freedom to choose a global phase, while the Z2, chiral symmetry is due to the freedom to have either
vortices or anti-vortices.
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mentioned in chapter 1, the mean-field Hamiltonian in the flat band of the kagome lattice
maps onto the classical AFM XY model. The emergence of the three-colour pattern and
vortex ferro- and antiferromagnets and their properties, such as the (topological) order
parameters and the BKT transition temperature, have been extensively studied elsewhere
[91, 164, 165] and many parallels can be drawn to the bosonic case.

The flat band degeneracy is lifted by interactions, but there is still an unresolved
degeneracy between the K and Γ points. This degeneracy is lifted when we take into
account quantum fluctuations. To this end, we expand HBH around the mean-field energy
and only keep terms to second order that couple to the BEC at kc

28, which we assume
is macroscopically occupied, i.e. b̂kc,α =

√
Nρ 〈α|ψkc〉. Here, 〈α|ψkc〉 is the amplitude of

ψkc on sublattice α, and is equal to 1/
√

3 for both kc = K and kc = Γ. We are left with
terms proportional to b̂†kc+k,αb̂kc+k,α, b̂kc−k,αb̂

†
kc−k,α, b̂kc−k,αb̂kc+k,α, and b̂†kc+k,αb̂

†
kc−k,α, and

obtain a Bogoliubov Hamiltonian for the excited states of the form [89]

HB(k) =
1

2

∑
k 6=kc

Ψ†kHB(k)Ψk, (3.19)

with

HB(k) =

(
H(k)− µeff ∆

∆∗ H(2kc − k)− µeff

)
,

Ψk = (bk,A, bk,B, bk,C, b†2kc−k,A, b†2kc−k,B, b†2kc−k,C)T,

∆i,j = δi,jUρ 〈α|φ0〉2 = δi,j
Uρ

3
,

µeff = (−2t− Uρ

3
)δi,j.

(3.20)

Here, we substituted k−kc for k, so that the minimum of HB(k) is located at kc and not
at k = 0. The Bogoliubov spectrum of the K and Γ condensates is shown in Fig. 3.14.

Figure 3.14 – Left (right): Bogoliubov spectrum of the K (Γ) condensate for Uρ = 0.6t.
Note that the positive branch of the eigenvalues of σzHB(k), which preserves bosonic
commutation relations [89, 166], is plotted here. Zero energy corresponds to the mean-
field energy of K and Γ.

28We assume that kc = K or kc = Γ.
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The Bogoliubov dispersion around K is less steep, i.e. the sound velocity is lower29. In the
presence of quantum fluctuations, the K BEC thus has lower zero-point energy (ZPE)30

than the Γ condensate [88]. The difference in ZPE between the Γ and K condensate is
expected to be on the order of ∼10−3t [88].

Condensation into the K-point BEC can be understood as a manifestation of the
order-by-disorder mechanism [167, 168]. Given a system in which the ground state is de-
generate, states with energetically lower-lying excitations will be preferred. The presence
of thermal fluctuations, or quantum fluctuations due to interactions, causes particles to
‘explore’ some of the excited states. In a quantum system at zero temperature, quantum
fluctuations cause a shift in ZPE depending on the energy of the excited states. In clas-
sical systems, the free energy F , defined as F = U − TS, where U is the internal energy,
T is temperature, and S is entropy, is similarly affected by the density of excited states.
The lower the energy of the excited states, the higher the entropy at some temperature
and the smaller the free energy.

In the context of the classical XY model on the kagome lattice, it has been shown that
ferromagnetic NNN interactions or order-by-disorder through spin-wave fluctuations sim-
ilarly cause the vortex-antiferromagnet state (q =

√
3×
√

3) to be energetically favourable
to the vortex-ferromagnet (q = 0) [122, 164].

Flat band BECs and quantum metric Julku et al. [89] recently found that the
sound modes (Bogoliubov spectrum) in a flat band are intimately related to geometric
properties of the flat band Bloch states. We will focus on the K BEC, i.e. kc = K. From
Fig. 3.12 it is apparent that there is a large gap separating the flat band K point from
higher bands. For small momenta around the K BEC and for weakly interacting particles
we can therefore project the Bogoliubov Hamiltonian onto the lowest (flat) band [89],

Lp(q) := P (q)†(σzH(q))P (q) =
Uρ

3

(
1 α(q)

−α∗(q) −1

)
, (3.21)

where α(q) = 〈u1(K + q)|u1(K− q)〉 and u1(k) is the flat band eigenstate at momentum
k. The projection operator P is given by

P (k) =

(
|u1(k)〉 〈u1(k)| 0

0 |u1(2K− k)〉 〈u1(2K− k)|

)
. (3.22)

The energy of the flat band Bogoliubov mode can thus be written as

E(K + q) =
Uρ

3

√
(1− |α(q)|2) =

Uρ

3
D̃(q). (3.23)

Here, D̃(q) =
√

1− |〈u1(kc + q)|u1(kc − q)〉|2 [152]. This is equal to the quantum dis-

tance between the flat band Bloch states at kc + q and kc − q [169] and is plotted in
Fig. 3.15.

29This can already be seen in Fig. 3.12, where the curvature of the dispersion is consistently higher
around the Γ point compared to the K point.

30The zero-point energy scales as the square of the speed of sound [166].
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Figure 3.15 – Quantum distance D̃(q) from the K-point condensate. The quantum
distance is zero for q = K. Note that the quantum distance, and thus the excitation
fraction, is finite around the K point. The K′ wave function has opposite chirality to
the K wave function. The derivation used to extract properties of the K BEC is equally
applicable to the K′ BEC.

The speed of sound is given by the derivative of the dispersion relation with momentum
at K,

cs =
Uρ

3
lim
q→K

D̃(q)

q
=
Uρ

3
lim
q→K

√
D̃2(q)

q2
=
Uρ

3

√
g1(K) , (3.24)

with

g1(K) := g1
xx(K) = g1

yy(K),

g1
µν(k) = 〈∂µu1(k)| (1− |u1(k〉 〈u1(k|) |∂νu1(k)〉 ,

(3.25)

and ∂µ = ∂
∂kµ

[152]. We see that for the flat band BEC at K, the speed of sound is

determined entirely by the quantum metric of the flat band (g1
µν), i.e. the infinitesimal

quantum distance [169]. Additionally, the speed of sound scales linearly with the interac-
tion strength instead of with

√
U as encountered in the weakly interacting BEC [166].

Geometry in Bloch bands always boils down to taking some specific scalar product of
Bloch states and governs how Bloch states evolve when transported. The Berry curvature
and quantum distance can be thought of as the imaginary and real part of a generalized
quantum geometric tensor [169, 170]. The quantum metric quantifies the infinitesimal
change of the overlap between Bloch states while the Berry curvature quantifies the in-
finitesimal change of the Bloch functions’ phase [171]. In a flat band the effect of dispersion
vanishes and the speed of sound depends entirely on geometric properties of the Bloch
waves. A finite speed of sound simultaneously implies that there is a finite overlap between
the condensed state and neighbouring states even in the limit of vanishing interactions
[89]31. This means that there is a non-zero excited state fraction in the flat-band BEC,
even in the non-interacting limit. This is in stark contrast to BECs in dispersive bands,
where the excited state fraction necessarily tends to zero as the interactions are reduced

31The fraction of particles in the excited state can be calculated by adding up all the Bogoliubov modes.
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[166]. Thus, the flat band causes quantum fluctuations to be strongly enhanced compared
to a dispersive band [89]. On the other hand, the quantum geometry of the Bloch band
stabilizes the flat band BEC even in the non-interacting limit. Taking quantum geometry
into account thus leads us to conclude that flat band BECs should exist even for deep
lattices, when the band structure approaches the tight-binding limit.

Introducing temperature We have so far only discussed the ground state properties
of the flat band BEC. We will briefly discuss the results found by You et al. [88] that
calculate the consequences of finite temperature in the kagome flat band.

Via the mean-field approach we found two states that fulfil the three-colour rule and
thus minimize kinetic energy. However, there are many more three-colour arrangements
on the kagome lattice that are non-periodic32 and have the same mean-field energy as the
Γ and K points. In fact, any wave function that has equal amplitude on all lattice sites
and whose phases in each triangle obey the three-colour rule minimizes kinetic energy and
is a valid mean-field ground state. By finding the eigenvalues of a real-space Bogoliubov
Hamiltonian33, You et al. [88] showed numerically that all three-colour arrangements34

have a ZPE between that of the K and Γ points, with a small gap between the absolute
ground state, K, and the other states. This gap was calculated to be on the order of
10−3t, where t is the tunnelling parameter. At temperatures significantly below this value
a BEC will form at the K point. The associated long-range order of the wave function
phase will lead to sharp peaks in the momentum distribution at the K point.

At elevated temperatures, J � T � t, where J is the gap between the ZPEs of
the K and Γ condensates, all wave functions that obey the three-colour pattern will
be roughly equally occupied. This state was dubbed the ‘trion superfluid’ as it dis-
plays long-range order in b̂3

i instead of b̂i and has a finite ‘trion’ superfluid density,
ρ3
S = lim|i−j|→∞〈(b̂†i )3b̂3

j〉 6= 0 [88, 91]. Since the phase colouring is imposed by the kinetic
energy, it should remain stable up to temperatures on the order of t.

Finally, as the temperature is increased beyond t, the system undergoes a BKT tran-
sition to a disordered state in which the three-colour rule no longer holds [88, 91]. To
estimate the critical temperature for the BKT transition, we can look at the free energy,
F = U − TS. If the interaction energy is much larger than the kinetic energy, we can
assume that the sublattice density is homogeneous and that any change in internal energy
is due to a deviation from the three-colour pattern. For low temperatures, the ordered
states which have low entropy and minimize the kinetic energy will be preferred. However,
above a critical temperature TKT, the entropy contribution to the free energy dominates
the kinetic energy term and the system goes into a high-entropy, disordered state. Con-
sequently, above TKT ∼ t, vortices will proliferate and break the three-colour rule, thus
destroying long-range trion correlations. The random distribution of phases among the
lattice sites then leads to a normal, thermal state and the trion superfluid density, ρ3

S,
vanishes.

32and thus not captured by the mean-field treatment, which only can give us lattice-periodic wave
functions.

33This real-space Bogoliubov Hamiltonian is analogous to the momentum-space version we derived
previously with the difference that non-periodic phase colourings can be analysed as well.

34from the trial wave functions that were considered.



3.4 CDW & supersolid (low density) 65

3.4 CDW & supersolid (low density)

For the following considerations, we will again use the Hubbard model as written in
Eq. 3.15 and find the ground state in the low density regime. As shown previously, this
Hamiltonian is equivalent to an attractively interacting Bose-Hubbard model at negative
temperature.

Constructing localized eigenstates We start by deriving the localized states asso-
ciated with the flat band of the kagome lattice which we alluded to in chapter 1 and
section 2.4. The Bloch states of the kagome lattice flat band can be written as

γ̂k = u1(k) ·
(
b̂k,A, b̂k,B, b̂k,C

)
, (3.26)

where b̂k,A, b̂k,B, and b̂k,C are the Bloch state annihilation operators on sublattices A, B,
and C, respectively. In the tight-binding limit, u1(k) is given by

u1(k) =
1

N (k)

 sin(k · δBC)
sin(k · δCA)
sin(k · δAB)

 , (3.27)

where δAB, δBC & δCA are the same as in section 2.3 (see also Fig. 3.16) and

N (k) =

√∑
i

sin2(k · δi) . (3.28)

Any arbitrary superposition of flat band states will again be a flat band state. To obtain
the localized states, we take a weighted superposition of all Bloch states,

Γ̂i =
∑
k

2iN (k)γ̂(k)eik·ri

=
∑
k

2i(sin(k · δBC)b̂k,A + sin(k · δCA)b̂k,B + sin(k · δAB)b̂k,C)eik·ri

=
∑
k

eik·(ri+δBC)b̂k,A︸ ︷︷ ︸
ĥi,1

−
∑
k

eik·(ri−δBC)b̂k,A︸ ︷︷ ︸
ĥi,4

+
∑
k

eik·(ri+δCA)b̂k,B︸ ︷︷ ︸
ĥi,5

−
∑
k

eik·(ri−δCA)b̂k,B︸ ︷︷ ︸
ĥi,2

+
∑
k

eik·(ri+δAB)b̂k,C︸ ︷︷ ︸
ĥi,3

−
∑
k

eik·(ri−δAB)b̂k,C︸ ︷︷ ︸
ĥi,6

=
1√
6

6∑
j=1

(−1)jĥi,j.

(3.29)

Here, ri is the position of the centre of the ith hexagon (see Fig. 3.16). The last line
shows that the localized state is confined to a hexagon and has alternating phases on the
hexagon sites.
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Figure 3.16 – The black point in the centre marks the centre of a hexagon in the kagome
lattice, i.e. the point to which ri points. Red, green, and blue points are A, B, and C
sites, respectively.

The localized state is a direct result of Fourier transforming the momentum-space rep-
resentation of the flat band Bloch states (γ̂k)35. Any superposition of localized states is
again a localized state, as shown in Fig. 3.17.

Effect of interactions For a non-interacting system we expect all Bloch states in the
flat band to be equally occupied, which should manifest itself in momentum space as the
distribution shown in Fig. 3.6. In the case of repulsively interacting bosons at a filling
fraction36 (ν) below 1/9, the energy is minimized when atoms occupy non-overlapping
hexagon states. The momentum distribution can be calculated by taking a weighted sum
over all real-space coherences,

n(k) =
∑
α,α′

〈b̂†k,αb̂k,α′〉 =
1

M

∑
α,α′

∑
n,m

〈b̂†n,αb̂m,α′〉eik·(rm,α−rn,α′), (3.30)

where the sum is taken over all lattice sites and M is a normalization constant. As
the particle density is increased from zero, the average spatial extent of the particle
wave function must necessarily decrease to avoid wave function overlap, which would
introduce interaction energy. The momentum distribution thus evolves from Fig. 3.6 to
the distribution shown on the left side of Fig. 3.17. The interacting case is subtly different
from the non-interacting case, since, in the non-interacting case, the sum in Eq. 3.30 also
contains states that have long-range coherence. At ν=1/9, bosons are densely packed and
any increase in density will cause a penalty to either interaction energy (if particle wave
functions overlap) and/or kinetic energy (if the added particle is not a flat band state,
i.e. violates the hexagon arrangement). Using Eq. 3.30, we can calculate the momentum
distribution of the charge-density wave (CDW) at ν=1/9 to be

n(k) = n0

(
cos

(
akx

2

)
− cos

(√
3aky

2

))2

sin2

(
akx

2

)
, (3.31)

35We can also think of the localized state as being the Fourier transform of a constant in momentum
space. We are effectively creating a delta function in real space.

36The number of particles per site.
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where k = (kx, ky)T and a is the spacing between lattice sites.
The CDW momentum distribution does not display any sharp peaks due to the absence

of long-range coherence. Fig. 3.17 shows the localized hexagon state and an example of a
superposition of hexagon states that is suppressed in the tightly-packed case.

Figure 3.17 – Left: maximally localized hexagon state in real space (top) and momentum
space (bottom). This momentum distribution is expected for a filling fraction of 1/9 and
repulsive interactions. Right: example of a superposition state of maximally localized
hexagon states in real space (top) and momentum space (bottom). The state on the right
is a ground state of a low-density or non-interacting system, whereas it is not a ground
state in a system with repulsive interactions close to the critical density.

Note that occupation at the reciprocal lattice vectors is suppressed due to destructive
interference of the alternating phases between nearest neighbours in the hexagon state.

The tightly packed CDW can be seen as a Wigner crystal of bosons [83, 97]. Wigner
crystals are usually discussed in the context of 2D electron gases where below certain
particle densities electrons crystallize into triangular patterns [172, 173], thereby breaking
continuous translational symmetry. In the case of the flat band CDW the discrete Z3

symmetry associated with the three different valid CDW configurations is broken (see
Fig. 3.18).

Superfluid peaks above critical density Huber et al. [84] showed that doping the
CDW with particles above the critical filling (ν=1/9) leads to the emergence of superfluid
order without destroying CDW order. Additional bosons condense into interstitial sites
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between the localized states. Fig. 3.18 shows that the interstitial sites form a kagome
lattice, albeit rotated and with a lattice spacing that is

√
3 times larger with respect to

the underlying kagome lattice. A system displaying both diagonal (CDW) and off-diagonal
(superfluid) long-range order is commonly referred to as being supersolid.

Figure 3.18 – Left: densely-packed CDW. The red (green) arrow indicates one of the
kagome (CDW) lattice vectors. Bosons are expected to condense into the interstitial sites
above a critical density of 1/9. Right: first Brillouin zones of the underlying kagome
lattice (red) and the kagome lattice formed by the interstitial sites of the CDW (green).
Beyond a filling of 1/9 and in the presence of repulsive interactions, a BEC forms at
the reciprocal lattice vectors of the CDW, which coincide with the K, K′ points of the
underlying lattice.

The hexagons of the kagome lattice form a triangular lattice. The tightly packed CDW is
thus equivalent to a triangular lattice in which only every third site is occupied. Huber et
al. showed that particle doping causes an effective AFM interaction between the triangular
lattice sites to emerge [84], causing the ground state to display the familiar three-colour
arrangement of phases. In the underlying kagome lattice this three-colour arrangement
can be thought of as the ‘locking’ of relative phases between hexagons, which is unlike
in the pure CDW state where there is no phase coherence between hexagon states. The
long-range phase coherence due to the three-colour arrangement manifests itself as peaks
at the K or K′ points (depending on the chirality of the three-colour pattern) of the tri-
angular lattice Brillouin zone37 or, equivalently, at the Γ-points of the CDW Brillouin
zone (see Fig. 3.18). The occupation at the Γ-points is strictly zero, due to both the
destructive interference of hexagon states due to their alternating phases, and the de-
structive interference of the three-colour phase pattern of the superfluid. Perfect CDW
order and perfect superfluid order are mutually exclusive, but they can coexist together,
albeit imperfectly in the regime ν > 1/9.

We previously discussed the mean-field approach on the kagome lattice and found that
interactions cause a flat-band BEC to emerge in the ground state. Mean-field theory on

37The triangular lattice of hexagons of the kagome lattice is the same as the Brillouin zone of the
kagome lattice itself.
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the kagome lattice breaks down at low densities because we exclude the possibility of
there being spatially non-uniform density distributions such as the hexagon and CDW
states. It is not entirely clear if and at what density CDW order vanishes and how to
reconcile the results found in [84] with those of [88] and [152]. More precise results in the
intermediate regime between low and high densities, e.g. via exact diagonalization [84],
could shed light on how these two regimes are connected.

Which phases can our machine observe? In this chapter we introduced negative
temperatures as a means to prepare ultracold atoms in the flat band of the kagome
lattice. We then summarized previous theoretical work studying the ground state of the
Bose-Hubbard model on the kagome flat band in different density regimes and showed
measurable signatures of the predicted flat band BEC, trion superfluid and supersolid
states. While we have shown that we can create negative temperature states with our
machine (see section 7.1.2), it is still unclear which of the above models we will be able
to implement. There are several ways in which our preparation of the kagome flat band
could cause discrepancies between our system and the ideal models.

Firstly, we are always working at a finite temperature. If the gap between the ground
and excited states is too small, we will not be able to prepare the ground state using
adiabatic methods. This is likely true for the flat band BEC, which requires temperatures
below 10−3t, which is currently not feasible in cold-atom experiments. However, since
the trion superfluid is predicted to exist up to temperatures of roughly 0.1t, it should be
possible to observe this state with our machine provided there are no other limitations to
our approach. The CDW has a gap on the order of U or t (whichever is smaller), so it
should be fairly straightforward to observe from a temperature point of view.

Secondly, it is unclear if we can reach the bosonic flat band phases by melting a Mott
insulator, which is at the heart of our negative temperature preparation scheme [174].
Specifically, it is not clear whether the frustrated phase pattern will appear with high
fidelity from the initial Mott insulating state. It might be that it takes prohibitively long
for the frustrated phase pattern to emerge. Based on previous experiments with Floquet
shaking in a triangular lattice [47] and our experiments with the triangular lattice, the
frustrated phase arrangement is indeed realizable, so this should also apply to the kagome
lattice.

Finally, the kagome flat band is only asymptotically flat and always displays some
finite dispersion. Especially in the case of the flat band BEC at Γ, with only a small
energy difference to the K state, the fact that the optical kagome lattice flat band always
has slightly higher energy at Γ than at K could cause the K BEC to be experimentally
unobtainable (never mind the temperatures needed!). However, this should not affect the
emergence of a trion superfluid which should be robust even in the presence of finite flat
band dispersion.

Given these constraints, it seems feasible to observe the kagome trion superfluid with
our protocol. Immediate goals are to observe a stable population inversion by band-
mapping. If at this point our temperature is sufficiently low, we might be able to also
observe the trion superfluid.

One way to prepare a K condensate despite large temperatures could be to prepare
the K wave function directly via a Wilson line, i.e. non-adiabatic transport in momentum
space. As calculated in appendix D, there is a Wilson line that connects the Bloch state
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of the kagome lattice at Γ in the lowest band (where the positive temperature BEC forms)
to the flat band Bloch state at K. Such a diabatic protocol has been shown to be effective
in preparing higher-band states in the honeycomb lattice [175]. Direct preparation of the
K condensate might also prevent the Γ-point from becoming occupied, since the Γ and K
wave functions are topologically distinct38.

38They are topologically distinct because it would require a phase transition to change the vortex
antiferromagnet (K) to a vortex ferromagnet (Γ).
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4 Machine design

This chapter gives a detailed account of the kagome machine as it currently stands. Our
machine has gone through roughly four build stages after each of which we ran sequences
and performed experiments.

Our first operational machine configuration consisted of just the 2D and 3D MOT
chambers. On the experimental side we achieved MOTs of 87Rb, 39K, and 40K, evapo-
rative cooling of 87Rb and hybrid trapping and Bose-condensation of 87Rb. During this
time we made various decisions concerning implementation of the kagome lattice and the
microscope including whether to put the objective in or out of vacuum, whether to use
one or two objectives and which wavelength to use for the lattice. We also designed
the science chamber, installed our experiment control software39, built and tested optical
transport on a test setup and designed and tested the microscope objective40.

The second operational machine configuration began when the science chamber was
incorporated and baked. In this stage we optically transported atoms into the science
chamber, made 87Rb BECs in the science chamber, installed the Feshbach and gradient
coils, condensed 39K, and installed the vertical lattice and the monolithic mount. For this
stage, while we were designing the final layout of optics around the science chamber, we
used a temporary dipole trap41.

Shortly before we received the lattice laser, we rebuilt the dipole trap to conform to
our comprehensive plan detailing the layout of the optics around the science cell. We
installed most of the lattice optics hereafter, but were still waiting for lenses to obtain
our desired beam waists. During this third stage of development the lattice beams had
waists of only 30 µm. We took our first Kapitza-Dirac superlattice images and managed
to produce a superfluid in the 532 nm triangular lattice. We were still missing some
electronics to be able to adiabatically load the 1064 nm honeycomb lattice and electronics
needed for phase-stabilization. We also did not have the phase stations installed at this
point42.

The fourth operational machine configuration is the current state of the experiment.
We have installed the correct lattice optics and phase stations and incorporated the ver-
tical dipole beam. Achievements include implementing active phase stabilization and
creating a superfluid and Mott insulator of 87Rb and 39K in the kagome lattice and ob-
serving a negative temperature state in the triangular lattice.

Future machine upgrades will focus on including various elements required for single-
site resolved imaging, such as the imaging lattice, imaging optics, and Raman beams
(more about this in chapter 8). This upgrade will likely only happen after we have taken
some data on negative temperatures in the triangular and kagome lattices.

4.1 Vacuum system

The vacuum system is at the heart of the kagome machine and is designed specifically
to implement a kagome lattice quantum gas microscope with bosonic 39K and 87Rb, and
fermionic 40K. It should be seen as the next version in a long line of vacuum chambers

39QControl3 (python-based); kindly provided by the Max-Planck-Institute for Quantum Optics.
40MOT chamber bake-out started on 22/09/2018, science chamber bake-out finished on 18/12/2020.
41This stage lasted roughly from early January 2021 to mid-August 2021.
42This stage lasted roughly from mid-August 2021 to late November 2021.
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that have been proven to work for optical lattice experiments. Our vacuum chamber is
based our group’s quasicrystal machine [176, 177], which itself is in large parts copied
from a previous experiment based in Munich [160, 178]. We also drew inspiration from
numerous other quantum gas microscope experiments when we designed our microscope
chamber [179–187].

Figure 4.1 – Diagram of the full vacuum chamber. Taken from [140].

Fig. 4.1 shows a model of the full vacuum chamber. It consists of four different chambers
connected via differential pumping sections.

We use two 2D MOTs, one for 87Rb, one for 39K and 40K. This allows us to indepen-
dently tune the temperature, and therefore the vapour pressure inside the two 2D MOTs.
The 3D MOT chamber is at the centre of the vacuum system. The main purpose of the
3D MOT chamber is to cool down atoms from room temperature to a few µK, and even
to quantum degeneracy if desired. The science chamber is the largest chamber and is
connected to the 3D MOT chamber via a long differential pumping section.

Apart from these main chambers, there are various smaller active and passive compo-
nents that in their entirety seal the vacuum system, maintain and measure the internal
pressure and allow for optical access for the ∼50 different laser beams we need during the
sequence.
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Each of the four chambers is connected to a respective CF40 valve43, providing inde-
pendent access to each chamber from the outside44. Each chamber can also be isolated
from all of the other chambers via CF16 valves45, which was particularly important for
baking out the science chamber while keeping the MOT chamber under UHV conditions.

The MOT and science chambers are actively pumped with ion pumps and non-
evaporable getters (NEGs)46 and the pressure in both chambers is measured using an
ion gauge47.

Finally, the chamber was designed to incorporate various coils we require for producing
magnetic fields and by the overarching principle of compactness and simplicity, to give us
as much room as possible to place optics outside the vacuum chamber.

The entire vacuum chamber is mounted onto a floatable, non-magnetic optical table48

such that its central plane is horizontal and 270 mm above the optical table. We chose
270 mm as the height of the vacuum chamber’s central plane such that our standard
optics, with a nominal height of 70 mm, will work for our vacuum chamber when placed
on 200 mm tall breadboards. The breadboards give us more room to operate and place
optics, which is necessary considering that a large part of the experiment table is occupied
by the vacuum chamber.

Material Our vacuum components are, where possible, manufactured out of 316LN
steel, which has a magnetic susceptibility <5× 10−3 [188]. We use non-magnetic steel to
minimize stray magnetic fields caused by magnetization. Our coils can produce magnetic
fields up to 750 G which is sufficient to magnetize normal steel to such a level that it is
detrimental to our experiments49. Our 2D MOTs are made of titanium which is an arte-
fact from previous chamber designs. Titanium and aluminium are two metals that have
negligible magnetic susceptibilities and thus would be even better than 316LN steel for a
cold-atom vacuum chamber. However, titanium is much more expensive and aluminium
is only rarely used as vacuum chamber material. A future version of this chamber could
be made out of aluminium, which has superior cost, weight, magnetic, outgassing and
bake properties compared to steel and titanium [188, 189].

Assembly The chamber was assembled in two stages. In the first stage, the 2D MOTs
and 3D MOTs were connected and baked out. About 2 years later we completed the
chamber by connecting the science chamber and baking it. We decided to go for this
approach as we quickly realized that designing the science chamber and objective would
take a considerable amount of time. The parts for the first assembly stage were ordered
within three months of us starting the experiment and the bake-out of the MOT chambers

43VAT 54132-GE02-0001
44This is only necessary for baking. After baking, the vacuum chamber ideally remains sealed until the

machine is decommissioned.
45VAT 48124-CE01-0001
461 x NEXTorr D200 in the MOT chamber and 2 x NEXTorr Z100 in the science chamber.
47VACOM BAT40C
48Newport M-RS4000 with 316 stainless steel top.
49We learned this the hard way with steel screws placed around the 3D MOT chamber. These be-

came magnetized to such a degree as to produce gradients strong enough to affect our atomic cloud.
Unfortunately removing them would require us taking out the 3D MOT coils, which is not worth the
effort.
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was completed about a year after starting. While designing the science chamber and the
objective we got the MOT chamber side of the experiment up and running.

Atom sources

Rubidium ampoule The rubidium ampoule50 is commercially available and con-
tains 1 g of rubidium in an argon atmosphere51. The sealed ampoule was placed in a
custom-made holder and inserted into the rubidium source bellow. After baking out the
MOT chamber (see section 4.1.1 for details), we broke the 87Rb ampoule by bending the
source bellow, thus releasing 87Rb into the chamber.

Potassium ampoule The potassium ampoule contains 100 mg of 3% enriched 40K,
the rest being predominantly 39K. Sources enriched in 40K are critical for reaching suffi-
ciently large atom numbers [190, 191]. We proceeded in the same way with the potassium
ampoule as we did with the 87Rb ampoule. After breaking the ampoule in vacuum we
wrapped the source bellow in aluminium foil, thin wire and another layer of aluminium
foil. A small power supply drives a continuous current through the wire and causes heat
to dissipate. In this way we heat the source bellow up to a temperature of 65 ◦C, ensuring
a vapour pressure of ∼1× 10−6 mbar [192].

2D MOT chambers The 2D MOT chambers are the first of the four chambers. They
are kept at an estimated pressure of ∼1× 10−7 mbar - 1× 10−6 mbar52 and are only
pumped via the differential pumping section between 2D and 3D MOT chambers (see
Fig. 4.2). The 2D MOT chambers have a rectangular cross section, with their long axis
pointing toward the 3D MOT chamber and the short axes being the directions of colli-
mation. The apertures and windows on the rectangular sides of the 2D MOT chambers
are also rectangular and allow for the 2D MOT cooling and repump beams to enter. The
windows were glued onto the 2D MOT chambers using vacuum-compatible epoxy53 and
cured at 150 ◦C for 1 day. Trapped air in the glue was removed by exposing the glue
to a low vacuum (∼2× 10−2 mbar) in a desiccator before application to the 2D MOT
frames. Thin spacers made of kapton were immersed in the glue and the window was
placed on top. The thin spacers of kapton were used to ensure that there is no direct
contact between chamber and window, which might lead to a bad vacuum seal.

The 2D MOT chambers are each connected to respective differential pumping sec-
tions54 which in turn are connected to the 3D MOT chamber via a respective valve. We
glued a 1” polarizer and 1” mirror onto the 2D MOT side of each differential pumping
section (see Fig. 4.2) and drilled holes into these mirrors and polarizers through which the
atoms travel on their way to the 3D MOT. The mirror and polarizer are used to reflect
a variable amount of axial 2D MOT cooling light back along the 2D MOT chamber axis.
The 2D MOT chamber components are identical on the rubidium and potassium side.

50https://www.alfa.com/en/catalog/044214/
51The natural abundance of 87Rb is 27.8%.
52Approximate vapour pressure of rubidium at 20 ◦C [193] and potassium [192] at 65 ◦C.
53Epo-Tek 353ND
54Inner diameter: 1.5 mm, length: 62 mm.
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Figure 4.2 – Left: cut through exploded view of 2D MOT chamber. Right: exploded
view of 3D MOT chamber.

3D MOT chamber The 3D MOT chamber is located in the centre of the vacuum setup
and connects to both the 2D MOT chambers and the science chamber. In the 3D MOT
chamber, atoms from the 2D MOT chamber are collected, cooled down and transported
to the science chamber. Its shape is primarily governed by five considerations:

1. Optical access for the MOT beams The MOT requires three counter-
propagating pairs of lasers, which in turn requires the 3D MOT chamber to have six
viewports through which these beams can enter. The viewports must be arranged such
that all beams intersect and each beam pair is perpendicular to the other two.

2. Space for strong quadrupole coils In addition to the six MOT beams, the
MOT requires a quadrupole field. This quadrupole field is provided by a pair of large
coils. These coils also create the magnetic trap, which requires a much larger magnetic
field gradient than the MOT. To reach a strong gradient, it is beneficial to have the MOT
coils be very close to each other. This constrains the MOT chamber to be very narrow
along one axis.

3. Optical transport Optical transport requires an input and output viewport for
the transport laser. We chose a CF16 viewport for the input of the transport laser, which
is just about large enough to not clip the transport beam.

4. Connections to 2D MOTs We decided to angle the 2D MOTs away from the
science chamber (in contrast to [160, 177]) so that we have more space for optics.
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5. Pump Finally, we had to find a way to incorporate an ion pump/getter to
maintain the MOT chamber’s vacuum pressure.

The design we came up with is shown in Fig. 4.1 and Fig. 4.2. The 3D MOT chamber
has the shape of an octagon, its axis lying in the horizontal plane. The axial dimension of
the 3D MOT chamber is narrow to allow for the 3D MOT coils to be placed close to each
other. The viewports for the MOT beams are situated along the chamber axis and the
45◦-faces of the octagon. Optical access for the transport beam is provided on the vertical
faces of the octagon. The bottom of the chamber is connected to an SAES pump, while
the top face connects to a cross which in turn connects to a gauge and a valve. The top
of this cross is sealed by a viewport, giving us optical access to the MOT chamber from
above. We use this top viewport primarily to measure a fluorescence signal while loading
the 39K, 40K and 87Rb MOTs. We additionally have two cameras, one each for potassium
and rubidium, that can image the fluorescence55. Finally, we have two extra ports placed
symmetrically and horizontally next to the input port of the transport beam. These are
connected via various components to the 2D MOT chambers. The angle between the two
2D MOT ports of the 3D MOT chamber is 60◦.

The 3D MOT chamber is made of 316LN steel and was manufactured by VACOM. In
order to minimize the diameter of the viewports along the coil axis, we had the viewports
be welded to the chamber (see Fig. 4.2). We did this so that the 3D MOT coils could have
a small internal diameter which boosts the maximum obtainable magnetic field gradient.
For the other viewports we use gaskets and screws, making them more bulky.

Some of the flanges, specifically the four diagonal CF40 flanges that provide optical
access to the 3D MOT beams, are angled by 3◦. This ensures that back-reflections from
the viewports don’t propagate and form a standing wave inside the chamber. It also
prevents unwanted back-reflections from hitting the cloud. All our 3D MOT chamber
viewports are DUV grade (Corning HPFS 7980 Fused Silica), brazed and broadband
AR-coated for 650 nm-950 nm. The viewport flanges are made of 316LN steel.

The pressure in the 3D MOT chamber, as measured on our gauge and ion pump, is
3× 10−10 mbar and 1× 10−10 mbar, respectively.

Science chamber The science chamber is connected to the 3D MOT chamber via a
valve, bellow and a 170 mm long differential pumping section with an inner diameter of
10 mm. Several constraints informed the design of the science chamber:

1. Objective in vacuum The main constraint on our chamber is that it should
contain a high-NA microscope objective. This requirement immediately throws out the
possibility of using a glass cell, since mechanical parts are required to mount the objective
inside the vacuum chamber.

2. Stability It is paramount that the objective is mounted securely such that it
cannot vibrate. Any vibration could cause the objective to become misaligned. Good
stability requires a large mass and methods to damp vibrations.

55We rarely use the MOT fluorescence cameras however and usually opt for either the side fluorescence
camera or one of the 3D MOT absorption cameras.
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3. Optical Access The chamber is designed to support an optical kagome lattice,
which requires at least six viewports for the lattice beams. In addition, the lattice axes
should ideally not overlap with the transport axis as this would require sending lattice
beams down the entire length of the chamber. If we additionally want a symmetric
chamber, then the lowest-order regular polygon that fulfils the lattice beam requirement
is the dodecagon.

4. Pumps The vacuum pressure in the science chamber should be as low as possi-
ble. The lower the background pressure, the longer the lifetime of trapped atoms, since
collisions with background gases are minimized. We thus require additional ion pumps
and getters attached either directly or indirectly to the science chamber.

5. Valve and Gauge We also need independent access to this chamber from the
outside, for pumping purposes. Since we assembled the 2D and 3D MOT chambers in a
first step and added the science chamber later, we wanted to be able to bake the science
chamber independently of the other chambers. We therefore added another angled CF40
valve to the science chamber. In addition, we added another gauge. This helped us a lot
during the science chamber bake and is useful for monitoring the pressure in the science
chamber.

Figure 4.3 – Diagram of the science chamber vacuum components.

A detailed schematic of the science chamber is shown in Fig. 4.3. We decided to have
a dodecagonal chamber with CF40 ports on each of the twelve sides and CF200 ports
on the top and bottom56. The top and bottom of the science chamber are sealed by
custom made CF200 ‘buckets’. The bottom bucket is attached to four 50 mm diameter
aluminium posts, which are clamped to the optical table. We filled the posts supporting
the science chamber with lead shot and sand to dampen any acoustic modes which might

56The science chamber was manufactured by Pfeiffer Vacuum.
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be detrimental to phase stabilization57. Those faces of the science chamber to which
viewports are directly attached (8 faces) are angled by 3◦ with respect to the regular
dodecagon. This is to prevent any back-reflections from striking the atoms and prevents
any standing waves between viewports on opposite ends of the chamber. All other faces
are flat, i.e. they are not angled with respect to the regular dodecagon. The flat faces
are along the transport axis (12-6) and the pump axis (2-8). The viewports are brazed
and their flanges are made of 316LN steel. The windows are DUV grade fused silica and
broadband anti-reflection coated on both sides for the 532 nm-1178 nm range. Since our
chamber is dodecagonal, we label the faces clockwise (when looking from the top) from 1
to 12 (see Fig. 4.4).

Figure 4.4 – Looking at the science chamber from the top. The 12 faces of the science
chamber are labelled 1-12, where 12 is closest to the MOT chamber.

Objective mounting Our objective sits on two mounts which are welded onto the
bottom bucket and held in place with a vented set screw. This scheme was chosen so that
the axis of the objective is naturally perpendicular to the bottom viewport. The science
chamber and top bucket are only connected to the table via gaskets, which in principle
could lead to small angles between these components. We tightened all connections on the
science chamber metal-to-metal. It is especially important that the in-vacuum objective is
well aligned to the bottom viewport, because the angle of the lattice plane is determined
by the angle of the bottom viewport. For the objective to achieve maximum resolution,
it is crucial that the angle between the lattice plane and the axis of the objective is as
close to 90◦ as possible. More details on the objective itself can be found in section 8.5.

Pumps We chose not to use big ion pumps or titanium sublimation pumps in addi-
tion to SAES NEXTorr pumps, since this would have significantly cut into our space to
place optics. Also, since these pumps would be connected via a CF40 flange on the sci-
ence chamber, the pump speed would be significantly reduced due to finite conductance.

57We used a heat gun to dry the sand before pouring it into the science chamber legs. This was to
make sure we did not create steam or cause the legs to explode during the bake.
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Another problem with a titanium sublimation pump is that it could potentially coat the
microscope objective if they were in line-of sight with each other.

We decided to attach two SAES pumps directly to the science chamber. This minimizes
loss of pump speed due to conductive elements and makes the chamber more compact,
thus freeing up space for optics. One drawback of this pump configuration is that we
block two of the science chambers’ twelve CF40 flanges. An alternative would have been
to connect the pumps via T-pieces and preserve optical access. However, we were willing
to sacrifice the enhanced optical access in favour of having a more compact system and
higher pump speeds.

The pumps are connected to faces 2 and 8 of the science chamber. We chose these faces
for the pumps because blocking optical access from these directions was least disruptive
to our optical lattice scheme.

Valve and gauge The valve and gauge are mounted on a respective T-piece, elon-
gating the chamber to a total length of about 1 m. Optical access along the transport
axis is thus preserved and the transport beam has a clear path to exit the chamber.

Buckets The top and bottom buckets58 are made of 316LN steel and are connected
to the science chamber via CF200 connections. The top bucket contains an annular
extrusion in which the top Feshbach coil is placed. The central, non-recessed cylinder of
the top bucket has an extrusion with an inner diameter of 70.1 mm, slightly wider than
the outer diameter of the objective (60 mm). The central cylinder is sealed from the top
by a CF63 viewport. Light collected by the objective will pass through this viewport and
be collected on an EMCCD.

The science chamber is sealed from the bottom by the bottom bucket via a CF200
connection. The central region of the bottom bucket is recessed and contains a CF40
connection in its centre. The bottom bucket is sealed from the bottom by a re-entrant
viewport59. This viewport reflects the vertical lattice and transmits absorption imaging
light and the vertical dipole beam. Imaging light passing through this viewport is imaged
onto a camera for low-resolution in-situ or time-of-flight (TOF) absorption imaging. The
recessed space of the bottom bucket contains the bottom Feshbach coil on the outside
and the gradient coil on the inside (more on this in section 4.4).

4.1.1 Baking & vacuum maintenance

MOT chamber bake We baked the 2D MOTs and 3D MOT for a total of 11 days
at 140◦C, the main limitation to temperature being the ion pump. At the end of the
bake and after turning on the ion pumps the MOT chamber gauge measured a pressure
of 1× 10−10 mbar. After breaking the ampoules, the pressure in the MOT chamber rose
to a steady-state value of about 3× 10−10 mbar as measured with the 3D MOT chamber
gauge60. The valve separating the 3D MOT chamber from the (at that point non-existent)
science chamber was sealed with a viewport and the valve was left open during the bake.

58Manufactured by VACOM.
59The re-entrant viewport was manufactured by MPF.
601× 10−10 mbar on the ion pump controller.
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Science chamber bake Our science chamber was baked separately from the 3D
MOT and 2D MOT chambers. By the time we were ready to bake the science chamber
we had already installed optics and coils around the 2D and 3D MOT chambers and had
produced 87Rb BECs and 39K and 40K MOTs in the 3D MOT chamber. We wanted to
avoid taking away all the elements we had already installed around the 2D and 3D MOTs,
since we would have had to rebuild and realign all these optics again. We installed a shield
around the existing setup to prevent insulation and heat from disturbing the MOT optics
(see [140] for more information).

The science chamber was baked for 5 weeks at 95◦C. We chose 95◦C because the
objective is only certified up to 100◦C. Some of the auxiliary components, such as the
T-pieces, gauge, and valve were stabilized at 115◦C while baking.

The non-evaporable getters in the science chamber were activated shortly before cool-
ing back down to room temperature at the end of the science chamber bake. We wanted
to protect the objective and prevent radiative heating from the getters to cause the ob-
jective to heat up too quickly. We first cooled down the entire chamber to 80◦C and then
started activation. We turned the current of the getters up to 4.4 A, corresponding to
an estimated temperature of 375◦C over 11 hours61. Then we kept the current running
for 24 hours, after which we reduced the current in the getters back down to 0 A over 11
hours. We found that the hot getters produced a significant heat load and that we had
to turn down the variacs supplying the heating tapes while increasing the current to the
getters, to keep the temperature at 80◦C 62. After activation, we turned on the ion pumps
and closed the valve to the turbo pump. The final pressure of the science chamber after
cooling to room temperature was 1× 10−10 mbar and <2× 10−11 mbar as measured on
our gauge and ion pumps, respectively, and has remained there ever since.

4.2 Red & high power table lasers

4.2.1 Cooling and imaging lasers

The red table is one of our three optical tables. Laser beams prepared on the red table
are mostly used for cooling and imaging and are exclusively near-resonant lasers targeting
the D2 transitions of 39K and 40K at 767 nm, and of 87Rb at 780 nm. Compared to beams
created on the high power table (discussed below), beams created on the red table are
relatively low in power. Roughly one third of this table contains the lasers and optics
for the preparation of 87Rb lasers and two thirds are used for 39K and 40K lasers. In
total we have 8 home-built tapered amplifiers (TAs) and 2 home-built injection-locked
diodes (IJDs). A schematic of the entire red table as it currently stands can be found in
appendix A.

Transitions Fig. 4.5 shows the atomic levels we target for cooling, repump, and imaging
of 87Rb, 39K, and 40K, and for spin-polarization (spin-pol) in 87Rb.

61The recommended activation parameters are 5 A for 1 hour.
62Once we had brought the getters up to maximum temperature, they produced almost the entire

heating power.
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Figure 4.5 – Level scheme for 87Rb, 39K, and 40K. All numbers in parentheses are in
units of MHz. Green arrows show the reference light for 87Rb and potassium, and red
arrows indicate lasers derived from the reference light.

Our Rb cooling master light is locked to 53.4 MHz below the F = 2→ F ′ = 2, 3 crossover
transition using saturated absorption spectroscopy [140, 177]. Rb repump master light is
offset-locked to Rb cooling master light. We choose the offset frequency so that the Rb
repump master is blue-shifted by 220 MHz with respect to the F = 1→ F ′ = 2 transition.
All subsequent frequency shifts are done with acousto-optic modulators (AOMs).

Our potassium reference light is locked to the F = 1, 2 → F ′ crossover transition
of 39K 63. All our 39K and 40K lasers are referenced to this master light. Note that
the hyperfine structure of 40K is inverted with respect to 39K. This causes the role
of repump and cooling to be ‘reversed’ between 39K and 40K. Instead of labelling the
potassium lasers with ‘cooling’ and ‘repump’, which is ambiguous, we label our lasers
‘A’ and ‘B’, where ‘A’ always refers to a laser that is red-shifted with respect to the
reference laser. Therefore, A (B) is cooling (repump) light for 39K and vice versa for 40K.
If we want to conduct experiments with 40K we shift A and B light by −431.9 MHz and
+369.2 MHz, respectively. This shifts light that was resonant to the |F = 2〉 → |F ′ = 3〉
(|F = 1〉 → |F ′ = 2〉) transition in 39K to be resonant with the |F = 7/2〉 → |F ′ = 9/2〉
(|F = 9/2〉 → |F ′ = 11/2〉) transition in 40K.

63The hyperfine splitting in the excited state is too small for us to lock to a specific line.
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Rubidium (Rb) lasers The Rb lasers are derived from two IJDs, one for cooling and
one for repump, which are locked to a small amount (3 mW-5 mW) of reference light from
the quasicrystal experiment. The IJDs, which emit 150 mW of light with a linewidth of
∼100 kHz, provide light for injecting the three Rb TAs and for imaging, push and spin-pol.
All Rb TAs are seeded with ∼10 mW of power and emit ∼2.5 W 64.

The output of the repump IJD is sent directly to a TA whose output is split between
2D repump and 3D repump. Both 2D and 3D repump light pass through double-pass
AOMs for frequency shifting. Some of the 2D repump light is picked off after the double
pass AOM to provide light for imaging repump and spin-pol repump. We thus also act on
the 2D repump double pass AOM to control the frequency of all additional Rb repump
beams. The 3D repump light is coupled into one of the fibre cluster input fibres. The
fibre cluster is a compact optics setup that evenly distributes our repump and cooling
light among the six 3D MOT fibres.

A small amount of light is split off directly from the output of the Rb cooling IJD to
feed Rb imaging, push and spin-pol. The rest is distributed among the 2D cooling and
3D cooling TAs. The double passes for 2D and 3D cooling light are located before their
respective TAs. The 3D cooling light is coupled into the other fibre cluster input fibre. We
have additional AOMs after the 2D and 3D cooling TAs for fast switching. Rb imaging,
push and spin-pol also have their own respective double passes for frequency shifting. In
chapter 5 we list all relevant powers on the experiment table during the sequence.

Potassium (K) lasers Five TAs generate light for the 39K & 40K setup. One TA is
used as a preliminary amplifier (Pre-Amp TA) that takes 25 mW of master light from
the quasicrystal lab and emits roughly 1.6 W which is directed to the rest of the 39K &
40K setup. Some of the output of the Pre-Amp TA (∼70 mW) is split off to feed various
low-power beams, such as push, spin-pol and imaging. The rest is roughly evenly split
between the A and B paths and is used to seed the K 2D A, K 2D B, K 3D A, and K 3D
B TAs.

Before being split into the various paths leading to the TAs, the A and B light is
directed through respective 200 MHz double pass AOMs. These double pass AOMs act
as isotope switches. When running experiments with 39K, the switches are off and light
in the A and B paths are not frequency-shifted. When running 40K sequences, A light is
shifted by −431.9 MHz and B light is shifted by +369.2 MHz.

After the isotope switches, both A and B light is split into respective 2D and 3D paths.
Seed light for the respective 2D (3D) TA is directed through a 2D (3D) double pass AOM
before reaching the TA. The K 2D A, K 2D B, K 3D A, and K 3D B TAs are seeded with
20 mW-25 mW of power and emit between 1.4 W and 1.6 W.

The outputs of the K 3D TAs additionally pass through a respective 200 MHz AOM
which we use for fast switching. The K 3D A (B) light is then overlapped with with Rb
cooling (repump) before being coupled into the appropriate fibre cluster input fibre.

64Our TA chips are Eagleyard EYP-TPA-0780-03000-4006-CMT04-0000 for rubidium and Coherent
TA-0765-2000 for potassium.
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4.2.2 Dipole and lattice lasers

All our high power lasers (>40 W) are located on the high power (HP) table. These lasers
create dipole and lattice beams for the later stages of the sequence.

Dipole trap setup Fig. 4.6 shows a schematic of the optics setup for producing various
dipole beams on the high power table.

Figure 4.6 – Transport, dipole trap, vertical lattice and vertical dipole beam setup on
the high power table. A component glossary can be found in appendix A.

We derive the crossed dipole trap beams, the vertical lattice and the transport beam from
a Coherent Mephisto MOPA 42, which emits >42 W at 1064 nm. We use λ/2 waveplates
in conjunction with polarizing beam splitters (PBSs) to split the main beam into four
different paths. Each of the four beams is diffracted by an AOM and then coupled into a
respective photonic crystal fibre (PCF)65 leading to the experiment table. The AOMs66

in the 1064 nm path are used to stabilize and control the power of each beam. The power

65NKT Photonics LMA-PM-15
66G&H AOMO 3110-197 & 3080-197
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is controlled via an analog output channel connected to the non-inverting in port of a PI
controller. The power on the experiment table is measured by two photodiodes which are
situated behind a respective mirror67. One photodiode is connected to the inverting in
port of the PI controller, while the other provides an independent (witness) measurement.
The AOMs shift the frequency of the beams by several tens of MHz with respect to each
other. This ensures that their mutual interference is at a frequency that is too high for
the atoms to respond to. As a consequence, they only see an averaged, time-independent
potential. We typically achieve >80% diffraction efficiency into the first order. We let
the zeroth and first diffracted orders propagate over a distance of 15 cm-20 cm from each
AOM after which we separate the diffracted beam using a mirror. The zeroth order beam
is directed into a water-cooled beam dump. Due to the high powers in the 1064 nm beams,
we do not use irises or shutters.

The beams are coupled into photonic crystal fibres using custom home-built couplers.
These SMA couplers are used with an aspheric lens68 and we typically achieve >80%
coupling efficiency.

Lattice lasers Our optical lattice beams are derived from a Coherent Mephisto MOPA
55 and a custom second-harmonic generator (SHG) manufactured by Toptica. The
Mephisto emits 57 W of 1064 nm light. We use a waveplate and a PBS to split about
6W of 1064 nm light to use for the 1064 nm lattice. The remaining light is directed to the
SHG, where it is converted to 532 nm. The SHG has a conversion efficiency of roughly
70%, meaning that at maximum input power we get up to 36.5 W of 532 nm light.

Power considerations We choose to maximize the 532 nm power while still giving
us a small amount of light to use for the 1064 nm lattice. During fluorescence imaging (i.e.
single-site resolved imaging) we intend to pin the atoms solely in the 532 nm triangular
lattice. We don’t expect that we will need the 1064 nm lattice for fluorescence imaging.
To achieve sufficiently small tunnelling rates we initially planned for a 532 nm lattice
beam power of 3 W. Considering the higher than expected output power of the SHG, we
should be able to get up to 5 W per lattice beam, assuming that we lose 50% of the power
between the SHG and the atoms69.

Since 1064 nm lattice light will only be used for physics (and not for imaging), we will
only need a few hundred mW in each beam. Diverting 6 W into the 1064 nm lattice path
should thus give us about 1 W per 1064 nm lattice beam at the atoms.

Optics setup A schematic of the optical lattice setup on the high power table is
shown in Fig. 4.7

67The 1064 nm beam is intense enough for light to transmitted through our AR coated mirrors.
68Thorlabs CME280-1064
6980% AOM efficiency, 80% coupling efficiency, 80% due to losses at optical interfaces (i.e. mirrors,

lenses, cubes, waveplates).
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Figure 4.7 – Optical lattice setup on the high power table. Green: 532 nm. Red:
1064 nm. A component glossary can be found in appendix A.

The 532 nm and 1064 nm lattice setups are functionally identical. An initial beam passes
through an attenuation stage and is split into the three lattice paths. Each of the three
lattice beams passes through a respective AOM70. We allow the zeroth and first diffraction
orders of the 1064 nm (532 nm) AOMs to propagate for ∼15 cm (∼40 cm) after which the
orders are separated with a mirror (see Fig. 4.7). The zeroth orders are dumped while
the first orders are used as lattice beams.

After passing through a respective telescope, the three pairs of 532 nm and 1064 nm
lattice beams are overlapped on a PBS. After the overlapping PBS, the 532 nm and
1064 nm lattice beams have orthogonal polarizations. We therefore use a multiple-order
waveplate, that acts as a λ-waveplate for 1064 nm and a λ/2 waveplate for 532 nm, to make

70MCQ110-A2-VIS from AA Opto-Electronic for 532 nm, AOMO 3110-197 from G&H for 1064 nm. We
use a Minicircuits ZHL-03-5WF+ as a power amplifier for the RF input of the 532 nm AOMs.
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the beam polarizations equal. We additionally have a dual-wavelength half-waveplate,
which is λ/2 for both 532 nm and 1064 nm, to polarization-maintain the optical fibre.

We installed piezo-mirrors on two of the 532 nm lattice beam paths and two of the
1064 nm lattice beam paths. These are actuated to actively stabilize the lattice phases.
The interferometer signals measured on the experiment table are fed to PI controllers that
feed back on the high power table piezo mirrors.

Lattice fibres We send the lattice beams through three photonic crystal fibres
(PCFs)71. Each PCF carries one 532 nm and one 1064 nm lattice beam. The PCFs
are capable of delivering both 532 nm and 1064 nm at high power.

We achieve coupling efficiencies of 70%-80% for both 532 nm and 1064 nm in the three
lattice fibres. There are additional 2:1 telescopes on the three 532 nm paths before over-
lapping with 1064 nm72. The second lens of the telescope is mounted on a translation
stage. This extra degree of freedom allows us to compensate for the focal shift of the
coupling lens.

An open question is how the PCFs perform at high power. We know from using
PCFs for the dipole trap that they can handle 1064 nm powers above 25 W, with coupling
efficiencies above 80%. What we do not currently know is how the fibres perform at
532 nm at high power. The fibres need to be able to handle up to 6 W of 532 nm at the
input for single-site resolved imaging. An open question is at what power stimulated
Brillouin scattering starts to limit the output power and what the minimum bend radius
is. We tested the fibres up to an input power of 1.2 W at 532 nm and found that the
coupling efficiency does not noticeably drop.

Vertical dipole To create stable negative temperature states, we need to create an anti-
confining potential (see section 3.1.2). We use a 532 nm beam for this purpose which we
call the ‘vertical dipole’ beam. This beam is derived from the output of a Coherent Verdi
G8. It is sent through an AOM for intensity stabilization and coupled into a standard
optical fibre leading to the experiment table.

4.3 Experiment table optics

4.3.1 MOT

2D MOT 2D MOTs are an established component of most modern cold-atom experi-
ments involving rubidium and potassium [194–196]. Apart from being more compact, our
2D MOTs are identical to those in the quasicrystal experiment [176, 177]. Both the Rb
and K 2D MOTs are set up in the 2D+ configuration [194] with an additional push beam.
The cooling, repump and push beams are brought to the experiment table from the red
table via standard optical fibres.

71NKT Photonics LMA-PM-15
72The mode-field diameter of the PCF is roughly equal at 532 nm and 1064 nm.
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Figure 4.8 – 2D MOT optics for 87Rb (top), and 39K and 40K (bottom). A component
glossary can be found in appendix A.

Rubidium (Rb) 2D MOT On the experiment table, a small amount of Rb 2D
cooling light is diverted and overlapped with the push beam and is used for axial cooling.
The rest of the power is overlapped with 2D repump on a 50:50 beam splitter. The
two output beams of the 50:50 beam splitter serve as the transverse cooling and repump
beams for the 2D MOT. Both the vertical and horizontal 2D MOT beams go through
the same series of telescopes. One telescope uses circular lenses (−50 mm & 250 mm) to
increase the beam size by a factor of 5. The other telescope is cylindrical (−75 mm &
150 mm) and increases the horizontal beam waist by a factor of 2, for a final beam waist
of 20 mm x 10 mm (horizontal x vertical)73. The transverse beams travel through the 2D
MOT chamber and a 52 mm x 27 mm, rectangular, zero-order, quarter waveplate and are
retro-reflected through the 2D MOT (see Fig. 4.8). The quarter waveplate ensures that
the polarization is rotated to the correct circular polarization. The 2D MOTs are very
compact, which allowed us to place them in the v-shape shown in Fig. 4.1. It also ensures
that we have enough optical access to install the transport beam optics.

73In the remainder of this section, we will always quote cylindrical beam waists such that the horizontal
(vertical) beam waist is the first (second) number.
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The axial cooling beam propagates along the axis of the 2D MOT chamber and through
a polarizer in vacuum before being retro-reflected by a mirror attached to the 2D MOT
differential pumping section (see Fig. 4.2). The beam is linearly polarized and its polar-
ization can be adjusted with a λ/2-waveplate. The amount of light retro-reflected into the
2D MOT chamber depends on the polarization of the axial cooling beam. The waveplate
thus allows us to control the amount of light being retro-reflected. The motivation behind
this feature is that we want to create an imbalance of forces along the axial direction so
that the cloud feels a force towards the MOT chamber.

We found that the push beam does not lead to substantial improvements in MOT
loading and decided not to use it. We did however find that the power, alignment and
polarization of the axial cooling beam has a strong influence on MOT loading.

Potassium (K) 2D MOT The K 2D MOT is set up in exactly the same way as
the Rb 2D MOT, apart from the fact that K 2D A and K 2D B light are overlapped on
a 50:50 beam splitter before light is split off for axial cooling. This ensures that cooling
light for both 39K and 40K propagates along the axial direction of the 2D MOT.

We also found that the K push beam does not significantly improve 39K MOT loading,
so we do not currently use it. We have not checked whether K push increases the 40K
MOT loading as of yet.

A list of powers, detunings and field gradients for the 2D MOTs is provided in chap-
ter 5.

3D MOT Our 3D MOT is composed of six individual beams, each being connected to a
respective fibre cluster output port. The configuration of beams is slightly unconventional
in that four of the MOT beams propagate along axes 45◦ rotated with respect to the
principal axes. This configuration gives us optical access along the transport axis. The
MOT beams have a waist of 1 cm. Two of the beams propagate along the axis of the
MOT coils. The optics for these beams consist of the fibre couplers, a collimating lens,
two 2” mirrors and a quarter waveplate (see Fig. 4.9). The optics for each of the four
other MOT beams are mounted in ‘fibre launchers’, consisting of the fibre out-coupler,
a quarter waveplate and a collimating lens. The fibre launchers are rigidly connected to
the MOT chamber (see Fig. 4.1) This is a compact solution, but also means that we are
lacking degrees of freedom to steer the MOT beams74.

Imaging Since the machine is designed to evaporatively cool atoms and can pro-
duce 87Rb BECs in the MOT chamber, we implemented absorption imaging in the MOT
chamber. With absorption imaging, we can accurately determine the atom number and
precisely align the transport beam75. The imaging beam passes through a lens and a PBS
for polarization cleaning before passing through the MOT chamber. The imaging beam
and atoms are then imaged on a camera76. We use a 4f -imaging system [177] with a
magnification of 75:250.

74We often wished that we had these extra degrees of freedom when aligning the MOT beams, i.e. it
is probably good to have them.

75See [197] for a comprehensive explanation of absorption imaging.
76IDS UI-3252LE
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Spin-pol Like the imaging beam, the spin-pol beam propagates through the MOT
chamber at a slight angle with respect to the 3D MOT coil axis. The polarization of the
beam is cleaned with a PBS and then made circular with a quarter waveplate. Spin-pol is
used for 87Rb when running 87Rb alone, but not used for 87Rb or 39K in the dual-species
scripts.

Figure 4.9 – Horizontal 3D MOT beams (Out 1 & Out 2), absorption imaging and
spin-pol in the 3D MOT chamber. A component glossary can be found in appendix A.

A list of powers, detunings and field gradients for the 3D MOT is provided in chapter 5.

4.3.2 Optical transport

Theory We transport atoms from the MOT chamber to the science chamber by shift-
ing the focus position of a high power (>5 W) 1064 nm beam with a focus-tunable lens77

(FTL). Optical transport has been successfully implemented in several cold-atom ma-
chines to date [68, 198, 199] and is attractive due to its simplicity and speed compared
with magnetic transport [200, 201]. Using FTLs for optical transport is a relatively recent
development [68, 69]. They can be used for optical transport without a mechanical stage
and therefore promise to be more reliable and create fewer vibrations during transport.
The FTL changes its focal length in response to an applied current. Our current supply
is custom-built, can be programmed via ethernet from our timing system and allows for
correction of temperature drifts and thermal lensing. Additionally, we actively stabilize
the temperature of the FTL mount to 25 ◦C using a Peltier element. More details on the
design of the FTL current source can be found in [202] and [140]. The transport sequence
is discussed in chapter 5. We found that stabilizing the temperature of the FTL mount
sufficed to get transport working reliably and that we do not need to change the FTL
current to correct for temperature drifts or thermal lensing.

At its core, optical transport consists of only one laser beam and two lenses, one static
and one focus-tunable (see Fig. 4.10). The focus position (xF) and waist (wF) of a beam,
with initial waist w0 and wavelength λ, passing through two lenses with focal lengths f1

and f2 and separated by a distance d are given by78

77Optotune EL-16-40-TC
78This can be straightforwardly calculated using ray transfer matrices.
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Here, xF is the distance between the first lens and the position of the focus after the
second lens. This shows that we can change the position of the focus by varying either f1

or f2.

Figure 4.10 – Approximate beam waist propagation at the beginning (left) and end
(right) of transport. The black line at x = 0 mm (x = 500 mm) indicates the focus-
tunable (static) lens.

We ideally want the trap shape to stay the same during transport which entails keeping
the beam waist constant. This holds true when d = f2, for which the equations above
simplify to

xF = f2

(
2− f2

f1

)
, wF =

λ

πw0

f2. (4.2)

In this case we can change the position of the focus by simply changing f1 which simulta-
neously keeps the beam waist constant. We chose to separate the centres of the MOT and
science chambers by 50 cm and wanted a transport beam waist of 50 µm. We therefore
use a final lens with a focal length of 500 mm (f2). Fig. 4.10 shows a schematic of the
transport beam waist as a function of distance when focused in the MOT and science
chambers.

Optics setup Fig. 4.11 shows the transport beam path on the experiment table. The
transport beam is emitted from a photonic crystal fibre (PCF) on the experiment table.
It is directed through a waveplate and a Glan-Laser-Prism79 to clean its polarization. The
beam waist is then expanded via a telescope to w0 ≈ 3.5 mm before passing through the

79Thorlabs GL10-C26
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FTL. The FTL is mounted horizontally to avoid gravitational sag of the FTL liquid, which
can lead to severe aberrations. Finally, the beam is directed via two mirrors onto the final
500 mm lens placed a few mm away from the CF16 viewport of the MOT Chamber80.
The final lens focuses the beam down to a waist of roughly 50 µm. The transport beam
power is stabilized with light transmitted through a mirror.

Figure 4.11 – Optics setup around the vacuum chamber for optical transport. Note that
the FTL is mounted horizontally and that the transport beam height changes from 70 mm
to 270 mm before the chamber and back to 70 mm after it passes through chamber. A
component glossary can be found in appendix A.

We deflect >99% of the transport beam power into a beam dump after the chamber.
The remaining <1% can be imaged with a camera to e.g. indirectly infer the waist of the
transport beam during transport.

4.3.3 Dipole trap

The dipole trap is formed by two 1064 nm beams, which we label dipole 10-4 and dipole
7-1 according to their input and output ports (see Fig. 4.4), intersecting at a right angle
to each other. The dipole trap optics are built around the lattice optics and are designed
to have waists of 200 µm x 50 µm. Similar to the transport beam, the dipole beams
pass through a Glan-Laser prism for polarization cleaning and are stabilized with light
transmitted through a mirror. Fig. 4.12 shows the optics layout for the dipole trap, lattice,
and imaging lattice81 as well as various absorption imaging beams we use for alignment.

80The mirror before the final lens is mounted in a 2”, piezo-actuated mirror mount (Newport New
Focus 8821).

81At the time of writing the imaging lattice had not been installed.
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Figure 4.12 – Optics layout for the dipole trap (blue), kagome lattice (green), and
imaging lattice (orange) around the science chamber. Imaging beams are shown in red.
Transfer path optics are not shown (see Fig. 4.16 instead). A component glossary can be
found in appendix A.

4.3.4 Kagome lattice

Kagome lattice optics The three bichromatic pairs (532 nm & 1064 nm) of lattice
beams propagate along the 7-1, 11-5 and 3-9 axes of the science chamber (see Fig. 4.12).

Each lattice beam goes through the same set of lenses. Both colours along one axis
are coupled into a respective fibre, i.e. each fibre emits both 532 nm and 1064 nm lattice
light. The mirrors, cubes and lenses after the lattice fibres are coated for both 532 nm and
1064 nm. We have design waists of 100 µm x 50 µm (horizontal and vertical) for the lattice
beams at the atoms, which requires both spherical as well as cylindrical telescopes. The
lenses and distances between the optics were chosen so that both 532 nm and 1064 nm
have the same waist and are focused in the centre of the science chamber.
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Chamber Center
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Figure 4.13 – Top (bottom): theoretically calculated evolution of a lattice beam’s hor-
izontal (vertical) beam waist as it propagates through the lattice optics. Blue (red):
532 nm (1064 nm) lattice beam. All lattice axes are built with the same optics. Lens part
numbers are shown at the top.

The distances between the lenses were optimized using Zemax82 (see Fig. 4.13). Where

82Special thanks to Luca Donini who determined the required lenses and performed the Zemax simu-
lations.
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necessary, we prioritized that the 532 nm lattice beams be closer to design specifications
and pushed any extra uncertainty onto the 1064 nm lattice beams. For the microscope,
it is more important that the 532 nm lattice beam waists are close to the design waists,
since even small increases in waist will lead to a substantial reduction in maximum lattice
depth.

The lattice beams emitted from the couplers are not simultaneously collimated. This is
rectified by adding a doublet lens consisting of a biconvex and a plano-concave lens after
the coupler. After the doublet, the 532 nm and 1064 nm lattice beams are collimated
(though not perfectly).

We bought standard uncoated optics from Thorlabs and had them custom coated for
532 nm and 1064 nm. Using these optics we calculate that the two colours should have the
same waist at the focus to within 2 µm and should be focussed at the same axial position
to within 5 µm (see Fig. 4.14).

Propagation of the beam from the coupler through the coupler lens, doublet, cylindrical
and spherical telescopes, the final focusing lens and the viewport were taken into account
when optimizing the beam waists and focus positions in Zemax.

Figure 4.14 – Left (right): simulated horizontal (vertical) waist of the lattice beams
around the focus position. The calculated focal shift between 532 nm (blue) and 1064 nm
(red) lattice beams is less than 5 µm for both the horizontal and vertical waist and for
the two colours.

4.3.5 Phase stabilization

As we showed in chapter 2, it is critical that we can control the lattice beams’ relative
phases. Any phase drifts between the 532 nm and 1064 nm lattices will cause these to
move with respect to each other and thus will lead to the kagome pattern being distorted
(see Fig. 4.15). Phase stabilization of optical lattices is a significant technical challenge
and has only been successfully implemented in a handful of machines [36, 203]. To under-
stand why this is the case, let us look at the example of 532 nm and 1064 nm travelling
through air. For 532 nm, the index of refraction in air changes by about 1ppm when
the temperature changes from 21.5◦C (our table temperature) to 22.5◦C. This change in
refractive index is enough to change the phase of a 532 nm beam by π over a distance of
30 cm. For 1064 nm the phase shift is slightly less than half of this value. The absolute
(equivalent) displacement is therefore 285 nm for 532 nm and 281 nm for 1064 nm. The
relative displacement between the two colours is thus 4 nm over a distance of 30 cm and
a temperature change of 1◦C. This shows that in general the absolute phase shift of the
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individual colours is much larger than the relative phase shift. Humidity and air pressure
affect the index of refraction as well.

Figure 4.15 – Effect of changing the lattice beam phases on the lattice potential. Left:
phases chosen such that a kagome lattice is formed. Centre: change in absolute position
of kagome lattice. Right: change in relative phase between 532 nm & 1064 nm lattice. A
relative phase shift between colours changes the optical potential.

Another source of phase instability is fluctuations in the distance of unstabilized paths.
These are caused by mechanical vibrations from water-cooling and air-conditioning or
expansion and contraction of optical elements due to temperature fluctuations. These
distance fluctuations only have an effect if they are not common mode. Common mode
phase noise does not affect the absolute position of an interfering triangular lattice. It is
therefore important that any unstabilized path length is equal for all three paths. To this
end, we minimized the unstabilized path in each beam and installed the phase sensitive
optics on a solid ring of titanium that fits around the science chamber83. Titanium has a
small coefficient of thermal expansion and, due to the symmetry of the monolithic mount,
expansion and contraction due to temperature fluctuations are common mode (see [140]
for more information).

Phase stabilization design As discussed in section 2.2 the interfering kagome lattice
has four phase degrees of freedom. To ensure that the lattice is stable in space and the
kagome pattern is preserved, these four phases need to be stabilized. Our experimental
implementation of phase stabilization follows that of [36] very closely. The basic idea is
to pick off a small amount of light from the input of each lattice beam and interfere the
pick-offs from different lattice beams on a photodiode. The resulting voltage will depend
on the relative phase between the two lattice beams,

V λ
ij ∝ cos2

(
1

2
(φλi − φλj )

)
, (4.3)

where λ ∈ {λS,λL} and i, j ∈ {1, 2, 3} are the wavelength and lattice index, respectively.
We can now build an active feedback loop in which e.g. a piezo-actuated mirror changes
the path lengths of one of the interferometer paths in response to the photodiode voltage.

83We refer to this ring as the ‘monolithic mount’. More details are provided in [140].
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Figure 4.16 – Top: 3-7 transfer path. Bottom: 11-7 transfer path. Yellow, magenta,
blue: 532 nm & 1064 nm overlapped, red: 1064 nm, green: 532 nm. Components and
beam paths that are magenta (blue) are part of only the Michelson (Mach-Zehnder)
interferometers. A component glossary can be found in appendix A.

The voltage change per unit phase shift is maximized when the phase difference between
the two lattice beams is π/2. Therefore, the feedback loop will be most sensitive to
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phase shifts when it is told to lock at π/2 and the phase can be locked with higher
precision. For more information about how this lock is implemented on our machine, see
Dan Reed’s thesis [140]. Since we split the lattice beams before the lattice AOMs (see
Fig. 4.7) and recombine them on the experimental table to measure the relative phases, we
have effectively built four Mach-Zehnder (MZ) interferometers (yellow and blue-coloured
components in Fig. 4.16).

For the Mach-Zehnder interferometer feedback loops, we actuate piezo-actuatable mir-
rors before the fibres (see Fig. 4.7). We have piezo mirrors in all but the 532 nm 7-1 and
1064 nm 7-1 paths. We thus lock the 11-5 and 3-9 phases to the 7-1 beam. Provided all
phases are locked, any change in the 7-1 beam phase will not result in a change in po-
tential, since the interfering kagome lattice only cares about relative phase shifts between
different lattice beams (see chapter 2).

In an ideal world, we would only need four interferometers to lock the four phase
degrees of freedom. However, in the real world (and in our experiment), there will always
be some path difference between where the light is picked off and where it is made to
interfere. This path difference is also susceptible to phase fluctuations due to fluctuations
in e.g. air temperature, humidity and pressure and microscopic movement of the optics
in this path. We thus have another four phase degrees of freedom, two for each colour,
associated with what we call the ‘transfer paths’, i.e. the paths between the pick-off
elements and the elements combining the pick-offs. We measure and lock the transfer
path phases via four Michelson interferometers in addition to the MZ interferometers (see
the yellow and magenta-coloured components in Fig. 4.16).

One issue with locking the transfer path phases is that the two colours of each lattice
axis are overlapped when they are emitted from their respective fibres. This prevents us
from having two separate piezo-actuated mirrors in each transfer path to fix the phase
of the two colours separately. We instead opted to install only one piezo-actuated mirror
in each transfer path which only locks the transfer path phase of one of the colours. On
a timescale of a few hours, we rely on the passive stability of the relative phase between
532 nm and 1064 nm along the transfer path. Over long times (a few days) we observe that
the relative phase can drift significantly84. To correct for relative phase shifts between
colours, we use movable glass wedges in the transfer paths (see Fig. 4.16). Using glass
wedges for relative phase adjustment is problematic since beams are displaced from each
other and propagate in different directions after passing through the wedge. We rectify
this issue by using two wedges in each transfer path, one of which is fixed and the other
moveable [151].

4.3.6 Imaging breadboard

The vertical lattice beam is derived from the dipole Mephisto (see section 4.3.3) and is
transported to the imaging breadboard via a PCF. The imaging breadboard sits above
the science chamber. On the imaging breadboard, the vertical lattice passes through a
Glan-Laser cube, an optical isolator and a telescope before being sent through the hole
in the objective onto the atoms. The design waist at the atoms is 100 µm. The vertical
lattice beam is retro-reflected off the bottom viewport, propagates back through the hole
in the objective, and is rejected and dumped at the optical isolator. Fig. 4.17 shows the

84chapter 6 contains more information on how we measure relative phases.
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vertical lattice optics on the imaging breadboard.

Figure 4.17 – Vertical lattice, absorption imaging and vertical dipole setup on the imag-
ing breadboard. A component glossary can be found in appendix A.

Our Verdi laser creates the vertical dipole beam which we use to create an anti-confining
potential. The vertical dipole beam propagates through a telescope, through the hole in
the objective and through the bottom viewport, after which it is dumped. The design
waist is 50 µm.

Finally, we have a vertical imaging beam for absorption imaging which also passes
through the hole in the objective and the bottom viewport. This imaging beam can be
directed onto either an in-situ camera85 or a camera for TOF86. Most of the experimental
images shown in chapter 6 and chapter 7 are taken with these two cameras.

4.4 Experiment coils

Cold-atom experiments typically operate with fields of up to 1000 G (0.1 T) and gradients
of up to 400 G/cm, which can be readily reached with compact solenoids. These fields
typically require currents of up to 200 A and usually the coils need to be water-cooled if
they are operated for several seconds in a sequence.

We use hollow-core wire for all our ‘big’ coils, i.e. the 3D MOT coils, Feshbach coils
and the gradient coil87. For all the other coils, including 2D MOT offset coils, 2D MOT
quadrupole coils, 3D MOT offset coils, spin-pol coils, science chamber offset coils, and the
Stern-Gerlach coil, we use 1 mm thick, enamelled copper wire.

The 2D MOT offset, MOT chamber offset and science chamber offset coils are supplied
by standard, low-power current supplies and are continuously running. The power supplies

85IDS UI-3252
86Andor Zyla 5.5
87Our hollow-core wire has a square profile with a side length of 4 mm and a (circular) hole diameter

of 2.5 mm.
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for the 2D quadrupole coils are programmable. Finally, we use discharge units88 to supply
the spin-pol coil and Stern-Gerlach coils. These only need to be on for a few ms during
the sequence during which they produce a relatively strong field.

We will only elaborate on the high-current coils in what follows. Table 4.1 specifies
the number of windings and the fields of the 3D MOT, Feshbach, and gradient coils.

Windings
(per coil)

Field (G/A) Gradient (G/cm/A)

3D MOT coils 46 N/A 1.5
Feshbach coils 32 3.81 0.61
gradient coil 28 1.5 0.48

Table 4.1 – Select parameters of the high-current coils.

We added values for both the gradient and offset field for the Feshbach coil because we
intend to use these coils in both the Helmholtz- and anti-Helmholtz configurations (see
section 8.4). The gradient coil produces both an offset field as well as a gradient.

Figure 4.18 – Left: exploded view of the 3D MOT chamber with its mounts, the 3D
MOT coils and the fibre launchers. Top right: 3D MOT coil drawing with number of
radial windings in each layer. Bottom right: calculated, on-axis magnetic field gradient
of the 3D MOT coils.

3D MOT coils The 3D MOT coils are the machine’s most powerful. They also have the
most complicated shape (see Fig. 4.18). The somewhat unusual shape is a consequence

88A discharge unit is effectively a capacitor in series with a resistor and can supply 10 A-20 A for a few
ms.
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of the 3D MOT chamber’s angled connections leading to the 2D MOT chambers. The
3D MOT coils produce a magnetic field gradient of 1.5 G/cm/A. The maximum current
they operate at is 200 A, during the magnetic trap stage, corresponding to a maximum
field gradient of 300 G/cm. Their inner and outer diameters are 47 mm and 107 mm,
respectively.

The 3D MOT coils are held in place by casts that connect to a moveable dovetail
clamp on a short rail. The axial position of the 3D MOT coil can thus be changed by a
few mm if required. Both the 3D MOT and the Feshbach coils are supplied by the same
power supply89. For fast switch-off of the MOT coil current, we use dedicated MOSFETs.
A schematic of the power supply, coil, and MOSFET wiring is shown in Fig. 4.19. We
installed two MOSFET boxes in parallel to reduce the load on each individual MOSFET.
This increases the lifetime of the MOSFETs, especially if we are running sequences where
the duty cycle of the power supply is high. We toggle between the two MOSFETs at the
start of every sequence using a multiplexer (see Fig. 4.19).
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Figure 4.19 – Circuit diagram of the 3D MOT coils and Feshbach coils. The safety
margin circuit ensures that the H-bridge polarity cannot be switched while current is still
flowing.

Feshbach coils Our Feshbach coils have a simple cylindrical shape. Each coil has 8
radial windings and 4 layers (32 windings in total). The inner (outer) diameter is 118 mm

89Delta Elektonika SM 18-220. We can use the same power supply for both the 3D MOT and Feshbach
coils since they are only needed in separate parts of the sequence.
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(186 mm) and the height is 17 mm. The coils are placed as close to the ideal Helmholtz
configuration as possible in order to minimize radial field curvature. After they were
wound, we cast the coils in resin90 (see Fig. 4.20). Casting our Feshbach coils ensures
the coils’ rigidity and makes them easier to install on the science chamber. They are
held in place by custom, acetal coil mounts that push the Feshbach coil casts against the
chamber91. Wherever possible, we chose the inner and outer diameters of the casts and
Feshbach coil mounts to fit tightly into the buckets so that the room to move is minimized
and the axes of the coils and the chamber are as well aligned as possible.

Figure 4.20 – Diagram of the science chamber, microscope objective, and gradient and
Feshbach coils. Figure adapted from [140].

Using a simple voltage divider circuit, we measured the inductance of each Feshbach coil
to be 155 µH. Switch off times from 100 A are on the order of 100 µs. However, we believe
that eddy currents persist for several ms upon switching off the Feshbach coils. We see
that it takes 10 ms - 15 ms after switch-off until we are able to see the cloud in absorption
imaging at the zero-field imaging frequency.

The polarity of one of the Feshbach coils can be flipped via an H-bridge (see Fig. 4.19).
The H-bridge will be used for our single-layer selection scheme (see section 8.4).

Gradient coil The last of the ‘big’ coils is the gradient coil, which will be used for
single layer selection. It is located in the bottom bucket between the CF40 (re-entrant)
viewport and the inner surface of the bottom Feshbach coil cast (see Fig. 4.20). It has 4
radial windings and 7 layers, an inner diameter of 37 mm, an outer diameter of 54 mm,
and a height of 30 mm. Like the Feshbach coils, the gradient coil is cast in resin. It is
held in place by a cylindrical acetal mount that presses the gradient coil cast against the
science chamber and holds it in place. We measured the inductance of the gradient coil
to be around 85 µH. The current in the gradient coil is generated by a power supply92

with a nominal relative current stability of 1× 10−5.

90Polytek EasyFlo 60
91We chose acetal to minimize eddy currents.
92FuG NLN 700-6,5.
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4.5 RF and MW setup

We have various components dedicated to the delivery of microwave (MW) and radio-
frequency (RF) radiation.

MW in the 3D MOT chamber We use MW radiation between 6.500 GHz and
6.850 GHz for forced evaporative cooling of 87Rb on the F = 1 → F = 2 transition.
A local oscillator signal of 6.850 GHz is mixed with the output of a DDS. The output
of the mixer is amplified and sent through a circulator before being emitted by a MW
antenna placed close to the MOT chamber. The circulator prevents reflected power, e.g.
due to a mismatch of impedances, from making it back into the amplifier.

Fig. 4.21 shows a schematic of the MW setup for the 3D MOT chamber.
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Figure 4.21 – MW setup in the MOT chamber.

RF & MW in the science chamber To transfer atoms between mF states and, in
particular, to prepare the atoms in the absolute ground state after transport, we use a RF
antenna mounted close to the bottom viewport of the science chamber. The output of a
DDS is amplified and coupled into the RF antenna. We use the RF setup for frequencies
between 500 kHz and 300 MHz. In addition to RF radiation, we can also send MW
radiation in the range 500 MHz-1.4 GHz through the RF antenna. MW radiation in the
science chamber will be used to target the 4s1/2 hyperfine transition of 39K and 40K for
single layer selection (see section 8.4). We mix the output of a DDS with a programmable
local oscillator and send the mixed signal through a 6 W amplifier. The amplifier output
is then sent through one of two circulators (depending on the isotope) and to the RF
antenna. Fig. 4.22 shows a functional diagram of the RF and MW setup for the science
chamber.
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Figure 4.22 – RF and MW setup for the science chamber.
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5 Experimental sequence

This chapter details the different stages in the experimental sequence for creating BECs
of 87Rb and 39K and for loading the optical lattice. Most of the sequence time (∼28 s) is
dedicated to cooling atoms to quantum degeneracy and actual experiments usually only
take a few 100 ms. The sequence consists of roughly five stages. First, atoms are collected
from background vapour in a magneto-optical trap and cooled to roughly 100 µK. They
are subsequently transferred to a magnetic trap and evaporatively cooled to 10 µK. A
transport beam then moves the cloud from the MOT chamber to the science chamber.
After further evaporative cooling in a crossed dipole trap a BEC is formed. Finally, the
cloud is loaded into the optical lattice in which we conduct our experiments.

We have separate sequences for 87Rb and 39K, the main difference being that we control
the scattering length via a magnetic offset field (which we call the ‘Feshbach field’) for
39K 93. We will focus on the 39K sequence in this chapter. Note that 87Rb is also used in
the 39K sequence.

5.1 MOT

Ultracold-atom experiments universally use magneto-optical traps (MOTs) to trap atomic
clouds and cool them to 10 µK-100 µK. A MOT consists of a magnetic quadrupole field
and, typically, six laser beams red-detuned with respect to a strong atomic transition (such
as the D1 and D2 lines for alkali atoms). This combination causes atoms to be pushed
towards the centre of the quadrupole field while simultaneously being cooled through
scattering of red-detuned light [205].

At the start of our sequence, the 2D MOT and 3D MOT light is switched on along with
the 2D MOT and 3D MOT coils. We load the MOT for 3 s. Table 5.1 and Table 5.2 list
our MOT parameters for 87Rb and 39K, respectively. Detunings for cooling and repump
are referenced to the |F = 2〉 → |F ′ = 3〉 and |F = 1〉 → |F ′ = 2〉 transition, respectively.

MOT load duration 3 s
2D field gradient 19 G/cm
2D cooling power 150 mW

2D cooling detuning −3 Γ 94

2D repump power 10 mW
2D axial cooling power 32 mW
2D repump detuning 0 Γ

3D cooling power 90 mW
3D cooling detuning −3.5 Γ
3D repump power 11 mW

3D repump detuning 0 Γ

Table 5.1 – 87Rb MOT parameters.
Powers are per beam.

MOT load duration 0.9 s
2D field gradient 15 G/cm
2D cooling power 90 mW

2D cooling detuning −3.9 Γ
2D repump power 110 mW

2D axial cooling power 2.2 mW
2D repump detuning −1.4 Γ

3D cooling power 20 mW
3D cooling detuning −1.3 Γ
3D repump power 41 mW

3D repump detuning −3.4 Γ

Table 5.2 – 39K MOT parameters.
Powers are per beam.

93BECs of 39K are not stable at zero magnetic field, since the zero-field scattering length is negative
[204].

94Here, Γ ≈ 2π × 6 MHz is the natural linewidth of the D1 and D2 transitions of 87Rb and 39K.
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Figure 5.1 – Left: fluorescence signal of 87Rb (red) and 39K (blue) during MOT loading.
Note that MOT loading starts at 1 s 95. Right: 3D MOT quadrupole gradient (∂zB),
repump power (PRep) and 2D MOT Enable during the last 50 ms of MOT loading. Time
0 marks the end of the compressed MOT stage.

Fig. 5.1 shows an image of a typical MOT fluorescence signal. The 3D MOT quadrupole
field is kept at 12 G/cm during MOT loading. We compress the MOT in the last 7 ms of
the MOT loading stage to 51 G/cm 96. 50 ms before the MOT stage is complete, we turn
off the 2D MOT light and 2D quadrupole fields (i.e. 2D MOT Enable is set to 0), while
simultaneously reducing the power in the 39K 3D repump beam (see Fig. 5.1) [176, 177].

We have additional blue-detuned push beams for 87Rb and 39K that propagate along
the axial directions of the respective 2D MOTs. We found however that these do not
significantly increase the MOT size or reduce the MOT load duration. We therefore do
not use push beams during the sequence.

5.2 Molasses

Molasses cooling (also know as Sisyphus cooling) is a common method for additional
cooling after the MOT loading stage. During the molasses stage, atoms selectively absorb
lower energy photons than they emit through spontaneous emission [207]. This cools the
cloud to a temperature of typically a few tens of µK.

3D cooling power 18 mW
3D cooling detuning −11.8 Γ
3D repump power 5 mW

3D repump detuning −8.3 Γ
Final atom number ∼4× 109

Final temperature97 40 µK

Table 5.3 – 87Rb molasses parameters.

3D cooling power 2.8 mW
3D cooling detuning +0.2 Γ
3D repump power 1.7 mW

3D repump detuning −11.4 Γ
Final atom number ∼4× 108

Final temperature 90 µK

Table 5.4 – 39K molasses parameters

After MOT loading is complete, we switch off the 3D MOT coil current but keep the 3D
MOT light enabled. We suddenly change the detuning of the cooling and repump light

95We reserve 1 s at the beginning of each sequence to send commands to various devices connected via
ethernet.

96This compressed MOT stage is a common element of experiments with 39K [206].
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for both species and additionally reduce their power. The total duration of the molasses
stage is 5.5 ms. Table 5.3 and Table 5.4 list the molasses parameters for 87Rb and 39K,
respectively.

Figure 5.2 – Quadrupole field strength (∂zB), Rb 3D cooling power (PCool), and 3D
cooling and repump enables during the molasses stage. Time 0 marks the end of the
compressed MOT stage.

At the end of molasses, the 87Rb (39K) cloud contains ∼4× 109 (∼4× 108) atoms and has
a temperature of 40 µK (90 µK). We switch off the 3D repump light 1 ms before switching
off the cooling light (see Fig. 5.2). This pumps atoms into the |F = 1〉 hyperfine manifold.
At this point, the atoms are evenly distributed among the three mF states of the |F = 1〉
hyperfine manifold.

Spin-pol In the 87Rb sequence we have an additional spin-polarization (spin-pol) stage
that pumps atoms into the low-field seeking, and hence magnetically trappable
|F = 1,mF = −1〉 state. In the 39K sequence we skip the spin-pol stage and move straight
to the magnetic trap stage98. We will briefly discuss spin-pol in the 87Rb sequence before
returning to the 39K sequence.

Fig. 5.3 shows how spin-pol can be used to optically pump atoms into a desired Zeeman
state. 300 µs after the end of molasses, a bias field of ∼10 G is switched on along the
direction of the 3D MOT coil axis. 180 µs later, the spin-pol beam and an overlapped
spin-pol repump beam are shone onto the cloud for 245 µs (see Fig. 5.4). During this time,
atoms are pumped toward the |F = 1,mF = −1〉 and |F = 2,mF = −2〉 states. The spin-
pol repump beam is then switched off so that the still-present spin-pol light can pump
atoms out of the |F = 2〉 manifold. This final pumping stage lasts for 275 µs. The bias
field is switched off 3 ms after the magnetic trap has started ramping up which ensures
that there is always a fixed quantization axis. Adding spin-pol before the magnetic trap

97Temperature is measured for a small MOT (150 ms load duration).
98We did not find any benefit in using spin-pol for the 39K sequence.
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increases our atom number after MW evaporation by roughly 50%. Table 5.5 lists the
relevant sequence parameters.

Figure 5.3 – Left: spin-pol schematic. Atoms can be pumped into the low-field seeking
|F = 1,mF = −1〉 state via a red-detuned and circularly polarized laser beam. Red (blue)
arrows indicate that the transition is shifted to lower (higher) frequencies as the magnetic
field is increased. Note that in 87Rb and 39K atoms can also spontaneously decay into
the F=2 hyperfine manifold. Atoms in |F = 2〉 (|F = 1〉) are targeted by the spin-pol
(spin-pol repump) beam. Right: measured 87Rb atom number after MW evaporation vs
spin-pol waveplate angle.

Figure 5.4 – 87Rb spin-pol sequence.
Time 0 marks the end of molasses.

Spin-pol power 1.3 mW
Spin-pol detuning −4.2 MHz

Repump power 0.4 mW
Repump detuning −12 MHz

bias field ∼10 G

Table 5.5 – Spin-pol parameters
for 87Rb.

5.3 Magnetic trap & MW evaporation

The magnetic trap is turned on in two steps. In the first step, the magnetic field is ramped
up from zero to 53 G/cm in 0.5 ms. This ramp is followed by a slower, 20 ms ramp up
to 270 G/cm. We initially found that 39K quickly leaves a strong magnetic trap within
a few ms. We attributed this loss to the cloud being heated too much in the transfer
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process. While not a problem for 87Rb, too high temperatures will cause 39K to probe
magnetic fields at which it becomes high-field seeking and be lost as a consequence. While
we could hold 39K in a shallow magnetic trap for a few seconds, we were not able to get
sympathetic cooling to work efficiently. We solve this problem by turning on the MW
field, which we use for evaporation, at large detuning (∆ = −285 MHz) from the zero-
field |F = 1,mF = −1〉 → |F = 2,mF = −2〉 transition in 87Rb before we ramp up the
magnetic trap. This causes 87Rb to be evaporated in the magnetic trap loading process,
which allows us to transfer a sufficient amount of 39K into a strong magnetic trap.

Once the magnetic trap is ramped up fully, we start increasing the MW frequency for
sympathetic cooling. We target the |F = 1,mF = −1〉 → |F = 2,mF = −2〉 transition in
87Rb (see Fig. 5.5) for cooling both 87Rb and 39K. By sweeping the MW frequency from
a low frequency to a high frequency, we can remove the hottest atoms from the cloud,
thereby effectively cooling the remaining, trapped atoms. We sweep the MW frequency
from ∆ = −165 MHz to ∆ = −105 MHz over 450 ms and then to ∆ = −6.3 MHz in 12 s.
At the end of MW evaporation we are left with 2× 107 39K atoms and 1.5× 107 87Rb
atoms at 18 µK and 6 µK, respectively.

Figure 5.5 – Left: Zeeman shift of the 5s1/2 manifold in 87Rb. We target the
|F = 1,mF = −1〉 → |F = 2,mF = −2〉 transition for MW evaporation. Right: detuning
of MW radiation (−∆) and magnetic field gradient during the MW evaporation stage.

See section 4.5 for details on the MW electronics setup.

5.4 Hybrid trap

Combining a magnetic trap and a single dipole beam is commonly called a ‘hybrid’ trap,
as it is part optical and part magnetic [208]. The dipole beam provides strong confinement
along two axes, while confinement along the dipole axis is predominantly provided by the
magnetic trap (see Fig. 5.6).

Our transport beam acts as the dipole beam in the hybrid trap and is ramped up to
7 W at the beginning of magnetic trap loading. At this stage of the sequence the transport
beam has virtually no effect on temperature or atom number. However, the importance
of the transport beam increases as the temperature of the cloud is reduced. Its focus is
located a few tens of µm below the centre of the magnetic trap. At temperatures close to
1 µK-10 µK, the magnetic trap suffers from Majorana losses when atoms cross the zero-
field region [209]. This ‘hole’ in the magnetic trap can be avoided with the transport
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beam, which distorts the potential in such a way so as to spatially separate the zero-field
region of the magnetic trap and the potential minimum. The potential minimum of the
hybrid trap is thus located at a finite field, ensuring a well-defined quantization axis.
Atoms consequently stay spin-polarized in the |F = 1,mF = −1〉 state.

Figure 5.6 – Hybrid trap potential for 87Rb before evaporation to a MOT chamber BEC
along the three principal axes. We assume P , w0, λ, and ∂zB to be 7 W, 50 µm, 1064 nm,
and 61 G/cm, respectively. x: transport direction, y: vertical (gravity) direction, z:
strong axis of MOT coils. The black dashed line shows the contribution of the quadrupole
trap to the hybrid trap potential. Note the additional contribution of gravity in the y-
direction. Confinement along the transport beam’s axial direction (x) is dominated by the
quadrupole field, while confinement along the other two axes (y & z) is primarily provided
by the transport beam. The cuts through the potential along the x and z directions are
at the height of the trap minimum, i.e. the height of the transport beam. Bottom right:
final evaporation to BEC in the hybrid trap. During evaporation, the quadrupole field is
fixed to compensate for gravity, while the transport beam power is lowered.

Potential The total hybrid trap potential can be written as
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where ∂zB := ∂B
∂z

∣∣
(x,y,z)=(0,0,0)

is the magnetic field gradient in the centre of the trap along

the strong axis, P , w0, and λ are the power, waist, and wavelength of the transport beam,
m is particle mass, µ is the atomic magnetic moment99, g is the gravitational acceleration,
and U0 is light shift per unit intensity.

Alignment We initially aligned the transport beam using fluorescence imaging along
the transport axis. In this way, both the transport beam and the cloud in the magnetic
trap can be imaged and the transport beam can be aligned precisely. For alignment,
the cloud in the magnetic trap is evaporated to a very small size and measured in-situ.
The centre of the cloud in-situ is assumed to be the centre of the magnetic trap. Since
getting optical transport to work, we exclusively image the cloud in the MOT chamber
via absorption imaging along the z axis (strong axis of the MOT coils). We align the
transport beam by maximizing the atom number in the transport beam after switching
off the MOT coils.

Hybrid trap BEC Fig. 5.6 shows the expected potential of the hybrid trap after loading
is complete and before final evaporation to the BEC in the MOT chamber.

Figure 5.7 – Hybrid trap BEC Sequence. PT, ∆, and ∂zB are the transport beam power,
MW detuning, and magnetic trap gradient along the strong axis, respectively.

After MW evaporation, the magnetic trap gradient is lowered to ∼68 G/cm (strong axis)

99µ = 1
2µB for both 87Rb and 39K in the |F = 1,mF = −1〉 state.
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until the gradient along the vertical direction exactly cancels gravity100. We call this the
levitation gradient. Further evaporation to BEC is performed with the MOT coil current
fixed at the levitation current, i.e. the current needed to produce the levitation gradient.
We found that it is crucial to sit as close to the levitation current as possible to achieve
reasonably-sized BECs. If the current is set too low, non-compensated gravity will cut
into the dipole potential. If the current is too high, the hybrid trap potential will be
confining in every direction and atoms will not have a way to escape the trap (though in
practice they still do at slightly elevated currents).

We evaporate the 87Rb cloud to BEC in the hybrid trap by reducing the power in the
transport beam, see Fig. 5.6 and Fig. 5.7. Atoms exclusively escape along the vertical
direction, as seen by vertical streaks in the time-of-flight (TOF) images, since only this
direction is untrapped beyond a certain distance from the trap minimum.

We can produce 87Rb BECs of up to 6× 105 atoms in the MOT chamber in the
hybrid trap. Note however that creating the BEC in the MOT chamber is unnecessary
for transport and that this stage constitutes a branch from the main sequence.

5.5 Transport

To load the transport beam we ramp down the magnetic trap to zero over 850 ms.

Figure 5.8 – Transport beam power (PT), dipole trap power (PD), FTL current (IFTL),
and MOT coil field gradient (∂zB) during transport loading, transport, and dipole trap
loading. Transport loading, transport, and dipole trap loading end at roughly 17.4 s,
20.3 s, and 23.3 s, respectively.

100The levitation current depends on the atomic species; the quoted levitation gradient value is for 87Rb.
Since 39K requires a Feshbach field, we can only create a hybrid trap BEC with 87Rb.
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We transport by ramping the current supplied to the focus-tunable lens (FTL) from
100 mA (MOT chamber focus) to −24 mA (science chamber focus) in an s-shaped ramp
(see Fig. 5.8). This current ramp causes the transport laser’s focus to be displaced by
50 cm (see Fig. 5.9).

Temperature before transport 10 µK
N(87Rb) before transport 1× 107

N(39K) before transport 1.6× 107

Temperature after transport 13 µK
N(87Rb) after transport 7× 106

N(39K) after transport 8× 106

Table 5.6 – Atom numbers and tempera-
tures before and after transport. Note that
the two species have the same temperatures.

Figure 5.9 – FTL current (red) and trans-
port distance (blue) as a function of time
during optical transport. Time 0 marks the
beginning of transport.

We tried several different ramp shapes and found that the ramp used in [68] gave us both
the best transport efficiency and the shortest transport times. Table 5.6 lists our typical
transport parameters. In addition, as part of our transport optimization, we measured the
lifetime of the cloud at various positions between MOT and science chamber. To this end,
we transported the atomic cloud from the MOT chamber to a variable distance between
MOT and science chamber, held for some time and moved the cloud back to the MOT
chamber. We then imaged the cloud and extracted the atom number. As seen in Fig. 5.10,
we get a steady increase in lifetime as the distance to the MOT chamber increases. This is
consistent with the vacuum pressure in the science chamber being lower than in the MOT
chamber, as we mentioned in section 4.1.1. For a more detailed discussion, see [210].

Figure 5.10 – Left: decay of atom number (NRb) in transport beam with hold time (thold)
at a distance of 5 cm from the MOT chamber. Right: 1

e
-lifetime (τ) of atomic cloud in

transport beam vs transport distance (x).
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5.5.1 RF transfer

In the magnetic trap and during transport, atoms occupy the |F = 1,mF = −1〉 state.
We find that transport does not change the mF state of the atomic cloud despite the fact
that we do not apply an offset field around the differential pumping section connecting the
MOT and science chambers. At the end of transport, we turn on an RF field and sweep
the frequency from 1000 kHz to 700 kHz in a 1 G-1.5 G bias field over 100 ms 101. This
transfers both 87Rb and 39K with nearly perfect efficiency to the |F = 1,mF = 1〉 state.
Note that the frequency needs to be swept from high to low, as the mF = −1→ mF = 0
transition is at a higher frequency than the mF = 0 → mF = 1 transition. We confirm
that RF transfer is successful by using a Stern-Gerlach field and TOF to spatially separate
different mF states and measure their respective populations.

Figure 5.11 – Left: Zeeman level splitting at low field for 39K and ∆mF = 1 transition
frequencies for a field of 1.25 G. Right: images of 87Rb BECs in the mF = 1 or mF = −1
state with (∇B 6= 0) and without (∇B = 0) a Stern-Gerlach pulse before imaging. Images
are taken after 25 ms of TOF. The atomic density is proportional to the optical density
(OD), which is extracted from absorption images [197].

5.6 Dipole trap

Loading from the transport beam In the science chamber, the two beams of the
crossed dipole trap are ramped up to 5.25 W immediately after transport is complete
(see Fig. 5.8). We simultaneously ramp down the transport beam power. Roughly 50%
of atoms are transferred from the transport beam to the dipole trap. We end up with
roughly 3× 106 39K atoms and 3× 106 87Rb atoms at 6 µK in the dipole trap.

Evaporation The Feshbach field is ramped from 0 G to 316 G at the end of transport
to target the 87Rb - 39K inter-species Feshbach resonance at 318 G [211]. At this field,
the scattering length is 170 a0, where a0 is the Bohr radius. The dipole trap power is
then lowered exponentially over 3 s to evaporatively cool the cloud. As the dipole trap
power is lowered, the potential minimum is shifted downward due to gravity. The relative
separation between the potential minima of 87Rb and 39K also increases (See Fig. 5.12). If

101The bias field is on continuously.
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the separation becomes too large, the overlap between the 87Rb and 39K clouds is small and
evaporative cooling becomes less efficient. This is one reason we chose cylindrical beam
waists with a horizontal to vertical waist ratio of 4:1 for our dipole trap beams. Since
87Rb is heavier than 39K, 87Rb is less strongly trapped and will be primarily evaporated
during the dipole trap ramp down. Thus, 39K is sympathetically cooled with 87Rb.

Figure 5.12 – Gravitational sag of 87Rb (red) and 39K (blue) in a 1064 nm crossed dipole
trap with waists of 200 µm×50 µm as a function of dipole beam power. The green, dashed
line shows the relative displacement.

39K BEC Below a certain trap depth, 87Rb drops out of the trap and only 39K is left
(see Fig. 5.13). At this point we increase the strength of the Feshbach field to 394 G
(intra-species scattering length of 160 a0), thereby targeting the intra-species Feshbach
resonance at 402 G [212] of 39K atoms in the |F = 1,mF = 1〉 state.

Figure 5.13 – Left (right): vertical (horizontal) trap frequency in a 1064 nm crossed
dipole trap with waists of 200 µm × 50 µm as a function of dipole beam power. Solid
(dashed) lines are calculated trap frequencies with (without) taking into account gravi-
tational sag. For high powers, the exact trap frequency approaches the theoretical value
without gravitational sag. As the power approaches the drop-out power, the exact trap
frequency increasingly diverges from the zero-gravity approximation.

After 2 s of evaporation at the intra-species Feshbach field a pure BEC of up to 1.5× 105

39K atoms is formed (see Fig. 5.14 and Fig. 5.15).
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Figure 5.14 – Dipole trap power (PD) and Feshbach field (B) during evaporation to
BECs of 39K. The 39K BEC emerges at around 26 s.

To get 87Rb BECs we run a dedicated 87Rb sequence, which is optimized to get large 87Rb
BECs. We can get 87Rb BECs with up to 1.2× 106 atoms102. The BEC transition for
87Rb is shown in Fig. 5.15.

Figure 5.15 – Onset of 87Rb (top) and 39K (bottom) BECs as the dipole trap power is
lowered. Note the emergence of a sharp boundary and an aspect ratio different from 1.
Images are taken after 25 ms (23 ms) of TOF for 87Rb (39K).

5.7 Lattice

For our lattice scripts, we ramp the intra-species scattering length to 10 a0 over 100 ms
immediately after the 39K BEC has formed. After holding the BEC for 100 ms, we ramp up
the dipole trap to 0.5 W over 500 ms. At this point the lattice sequences diverge depending
on whether we load the lattice adiabatically or perform lattice pulses for Kapitza-Dirac.
We will only describe the lattice sequences in broad terms since we are still in the process
of optimizing them.

102Measured after recompressing the dipole trap.
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Apart from the Feshbach field, our 87Rb lattice scripts are identical to those used for
39K. For all 87Rb lattice sequences there is only a small 1 G-1.5 G offset field.

Adiabatic loading For the vertical, triangular and honeycomb lattice experiments, we
ramp up the lattice beam powers exponentially over a few tens of ms to some lattice depth
and hold for a few ms. We then ramp the lattice powers down linearly to zero over a few
tens of ms. Fig. 5.16 shows an example lattice ramp up sequence. We switch off all lattice
beams at some variable time during the final ramp down.

We control which combinations of lattice beams we want enabled during adiabatic
loading, i.e. we can switch easily between running the triangular only or the honeycomb
only or the triangular and vertical lattice or the honeycomb and vertical lattice.

If we want to create a superfluid, we ramp up the desired lattice beams to a shallow
lattice depth, hold and switch off the lattice beams when ramp down starts (see Fig. 5.16).
For creating a Mott insulator we ramp up to deeper lattices, apart from which the sequence
is the same. The final ramp down to zero power serves two main purposes. Firstly,
by ramping back to zero lattice depth, it allows us to check how adiabatic our lattice
sequence is. By comparing the temperature of the cloud before and after the lattice
sequence is performed, we can estimate how much our protocol is heating the atomic cloud.
Secondly, we can create a negative temperature superfluid if we switch the interactions and
confinement during the Mott insulator stage. This ramp down from the Mott insulator is
also crucial to determine the temperature of the negative temperature state.

Figure 5.16 – Sequence for adiabatic loading of the optical lattice. Here, the additional
power ramp for phase stabilization is drawn. If we only work with the triangular or
honeycomb lattices we skip the ramp to sφ and ramp directly to sL. ta is the time by which
we advance switching off all lattice and dipole trap lasers. All times are approximate.

Phase stabilization To adiabatically load the kagome lattice we use a slightly
modified sequence that allows us to engage phase stabilization. The phase controllers
require a small amount of lattice light to enable phase locking. Thus, we ramp up the
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lattice depth to sφ ∼ 0.5-1 and hold for a few ms, during which we lock the phase. We then
ramp the lattices up to the full lattice depth, sL (see Fig. 5.16). We found that locking
the phase can heat the cloud to an unacceptable degree if the phase PI controllers are
not properly set up. We therefore generally only use phase stabilization for the kagome
lattice and not for the triangular or honeycomb lattices. A more detailed description of
the phase locking protocol can be found in [140].

Kapitza-Dirac scattering For Kapitza-Dirac scattering we suddenly enable selected
lattice beams at our desired lattice depths. Our lattice beam intensity stabilization loops
typically have rise times of 1 µs-1.5 µs, which is not ideal for creating sharply bounded,
rectangular pulses. The AOMs we use for intensity stabilization have rise times of∼100 ns.
To reduce our switch on and switch off times we use a sample & hold scheme. The PI
controllers are connected to the AOM RF amplifiers via a sample & hold circuit (see
chapter 4). We switch on the lattices during optical transport to the lattice powers we
use for Kapitza-Dirac and engage the hold of the sample & hold board. This ‘stores’
the voltage that the PI controller supplies to the RF amplifier. The RF amplifier is now
fed from this stored voltage and the PI controller is taken out of the control loop. After
sampling and holding we switch off the lattice beams by switching off the RF source
(usually a DDS). The sequence then proceeds through dipole trap loading, evaporation
and BEC creation as described above. For the Kapitza-Dirac pulse we reenable the RF
source of the AOMs, which causes the lattice power to rise to the sampled value within
the rise time of the AOM. There is an additional delay of ∼1 µs due to the time it takes
for the acoustic wave to travel from the transducer to the laser beam in the AOM crystal.
We advance the RF switch-on and switch-off to take out this delay. Fig. 5.17 shows the
behaviour of key channels during our Kapitza-Dirac sequence.

Figure 5.17 – Key channels during the Kapitza-Dirac sequence showing both intensity
(left) and phase (right) sample & hold protocols. tL marks the time at which the phase
lock is engaged. For the right plot, tL = 0.

Phase stabilization Similarly to the adiabatic case, we need to engage phase stabi-
lization for Kapitza-Dirac in 1D superlattices and the kagome lattice. We make extensive
use of Kapitza-Dirac scattering with 1D superlattices to monitor and correct the relative



5.8 Negative temperature protocol 119

phase between the 532 nm and 1064 nm lattices. To stabilize the phase for Kapitza-Dirac
with a superlattice we ramp up the lattice beams over 100 ms to a small depth and engage
the phase lock PI controller. The sequence for this is somewhat tricky since we need to
be able to bypass the sample & hold circuit to ramp up the lattice for phase locking
before the actual Kapitza-Dirac pulse happens. 200 µs before the Kapitza-Dirac pulse is
triggered, the phase lock is engaged. 110 µs later, the phase is sampled via the sample &
hold circuit on the phase stabilization box (see [140]). At this point the piezo voltage is
kept constant and is not being actively actuated to stabilize the phase. We do not notice
any phase drift in the 90 µs between holding the piezo voltage and the start of the KD
pulse.

The RF is disabled after the phase has been sampled and the intensity sample & hold
boxes are switched from bypass mode back to hold mode 50 µs before the RF is enabled
for the Kapitza-Dirac pulse. Fig. 5.17 shows a schematic of the relevant channels and
sequence of events for Kapitza-Dirac with a superlattice.

5.8 Negative temperature protocol

As shown in Fig. 5.18 the negative temperature protocol proceeds through four stages
(I-IV). After creating a BEC and ramping up the dipole trap power, we increase the
scattering length to ∼300 a0. We then ramp up the triangular or kagome lattice to ∼18ER

which is well above the superfluid to Mott insulator transition (see chapter 7).

Figure 5.18 – Negative temperature sequence. PL, aS, PD and Pvd denote the lattice
depth, scattering length, dipole beam power and vertical dipole power, respectively. Ro-
man numerals correspond to steps in the negative temperature protocol (see Fig. 3.2).
I: positive temperature superfluid, II: positive temperature Mott Insulator, III: negative
temperature Mott Insulator, IV: negative temperature superfluid.

In the Mott insulator stage we suddenly change the Feshbach coil current from below to
above the Feshbach resonance, thereby changing the scattering length from ∼300 a0 to
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∼−300 a0. We also ramp up the vertical dipole beam in 2 ms to create an anti-confining
potential. With this we have prepared the highest energy state of the system and just
need to melt the Mott insulator to end up with a negative temperature superfluid. To
this end, we ramp the scattering length to ∼−50 a0 and lower the lattice depth to ∼6ER.
The negative temperature protocol is schematically drawn in Fig. 5.18.

Fig. 5.19 shows to evolution from Mott insulator to negative temperature superfluid
in the triangular lattice in momentum space. As the lattice depth (sS) is reduced, the
central region of the Brillouin zone is depleted and atoms start to predominantly occupy
the corners and edges.

Figure 5.19 – Melting a 39K Mott insulator to a negative temperature state in the
triangular lattice. Images are taken after 11 ms of TOF.

We find that we can get negative temperature states even without using the vertical dipole
beam. We have yet to conclusively determine the effect of the vertical dipole beam on
the lifetime of the negative temperature state.
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6 Alignment and calibration

Since our quantum simulator is designed to implement the Hubbard model, it is imperative
that we know how the Hubbard parameters (‘model parameters’) depend on quantities we
can program via the timing system (‘machine parameters’). In section 2.5 and section 2.6
we calculated Hubbard t and U as a function of lattice depth, which we expressed in units
of the recoil energy. However, in practice we have control over the lattice beam power.
Thus, we need to find the relationship between beam power and lattice depth to be able
to compare theory with experiment. Similarly, we calibrate the scattering length as a
function of Feshbach coil current, and the trap frequencies (confinement) as a function of
dipole trap and lattice powers. This chapter covers our procedure for aligning the lattice
beams and calibrating these parameters of the kagome quantum simulator.

6.1 Lattice beam alignment

On each axis, the respective 532 nm and 1064 nm lattice beams are overlapped before
entering the science chamber. We therefore only need to align one of the colours to the
atoms and the other colour should be automatically aligned as well. In practice we see
that this is indeed the case.

Figure 6.1 – Alignment of lattice beams onto 87Rb atoms trapped in a single beam of
the dipole trap. The single 532 nm lattice beams split the cloud (top) in a single dipole
trap beam, while single 1064 nm lattice beams create a dipole trap when overlapped with
one of the dipole trap beams. Note that because the 7-1 dipole and 7-1 lattice beams are
co-propagating, we choose to overlap the 7-1 lattice beams with atoms in the dipole 10-4
beam for alignment. The white lines in each plot show the position of the 87Rb BEC in
the crossed dipole trap.

We prioritize the alignment of the 532 nm lattice since achieving a high lattice depth
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for 532 nm is critical for the microscope103. Each pair of lattice beams can be precisely
aligned with piezo-actuated mirror mounts104. We align the 532 nm beams to the atoms
in two steps. We first try to split a 87Rb cloud in a single beam of the dipole trap with
each 532 nm lattice beam105 (see Fig. 6.1). To load only a single beam of the dipole trap,
we first evaporate in the dipole trap and then ramp one of the dipole trap beams to zero
power. We image the atomic cloud in-situ along the vertical direction.

We initially found that the two colours on one axis were not well overlapped at the
position of the atoms106. We managed to fix this by walking the doublet and one of the
mirrors in the lattice beam path (see Fig. 4.12 for a layout of the lattice beam optics).
Thus, we can independently move the 532 nm and 1064 nm lattice beams with respect to
each other if necessary.

To fine-align the lattice beams to the 39K BEC, we split the BEC with each 532 nm
lattice beam and ensure the cloud is split evenly (see Fig. 6.2).

Figure 6.2 – Final alignment of 532 nm beams onto 39K BEC. Each 532 nm beam splits
the BEC into two equally sized parts. The white lines indicate the position of the 39K
BEC when no lattice beams are enabled.

We align the vertical lattice by ensuring that the BEC is in the same place in the horizontal
plane with and without the vertical lattice. Once the lattice beams are aligned we can
proceed to calibrate the lattice depths of each of the seven lattice beams.

6.2 Lattice depth & phase (Kapitza-Dirac)

Kapitza-Dirac (KD) scattering is a simple and powerful method to calibrate lattice depths
and is widely used in optical lattice experiments [151, 176, 213]. The protocol requires
the initial preparation of a BEC. We subject the BEC to a pulse of lattice light for a few
µs, which causes diffraction into higher momentum states. The exact distribution among
the momentum states depends on the length and intensity of the pulse, allowing us to

103We also require more 532 nm power, compared to 1064 nm, to reach the same lattice depth.
104Newport 8821.
105Since 532 nm is blue-detuned with respect to the D1 and D2 transitions of 87Rb and 39K, atoms are

repelled from regions of high-intensity.
106This was the first lattice axis we built. For the other lattice axes, we refined our alignment method

and found that the colors were well overlapped at the atoms.
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accurately calibrate each lattice beam. This technique is analogous to scattering of light
off a diffraction grating, with the atoms playing the role of light and the lattice the role
of the grating [214].

We use KD scattering to calibrate our vertical lattice, the 532 nm and 1064 nm lattices
separately and to measure the relative phase between the 532 nm and 1064 nm lattices.

Vertical lattice

Theory The Hamiltonian for a particle with momentum q and mass m in a 1D
lattice with lattice depth V0 is given by

H(q) =
~2q2

2m
+ V0 cos2(kz), (6.1)

where k is the lattice beam wavevector and z is the position. This Hamiltonian is com-
monly expressed in units of the recoil energy, ER = ~2k2

2m
,

1

ER

H(q) =
q2

k2
+
s0

4

(
2 + e2ikz + e−2ikz

)
, (6.2)

where

s0 =
V0

ER

(6.3)

is the lattice depth in units of ER. It is straightforward to see that the lattice potential
couples different plane-wave states by recognizing that

eiµz |λ〉 = |λ+ µ〉 , (6.4)

where |λ〉 is a plane-wave state with momentum λ. If we assume that the system is
prepared at q = 0, then the Hamiltonian can be expanded in the momentum basis |2n~k〉
(n ∈ Z), where n is the diffraction order,

Hn,m = 4n2δn,m +
s0

4
(δn,m+1 + δn,m−1) . (6.5)

Experiment We apply the vertical lattice KD pulse to the BEC in the dipole trap.
After the KD pulse is complete, the dipole trap is switched off and we wait ∼25 ms (TOF)
before taking an image along the horizontal direction. During this time the different
momentum states (diffraction peaks) separate in space. Fig. 6.3 shows experimental data
and a least-squares fit of KD diffraction peak population as a function of vertical lattice
pulse duration.

For a retro-reflected lattice, the lattice depth in units of ER and the lattice beam
power are related by

s0 =
V0

ER

=
1

ER

× 4× 2U0

πw2
0

× P . (6.6)



124 Alignment and calibration

Here, U0, w0, and P are the light shift per unit intensity at the lattice wavelength, the
beam waist (assuming a circular beam), and the lattice beam power, respectively107. The
lattice depth thus scales linearly with lattice power and we can convert vertical lattice
power (machine parameter) to lattice depth in units of ER (model parameter).

Figure 6.3 – KD scattering of 87Rb in the vertical lattice. Left: normalized population
in different diffraction orders (averaged over positive and negative orders) as a function
of pulse duration. Blue is the zeroth order population and yellow, green, red, and purple
are the average of ±2~k, ±4~k, ±6~k, and ±8~k diffraction peak populations, respec-
tively. Dots indicate experimentally determined populations; lines are theory curves for
a lattice depth of 61.7ER. Right: KD image at 15 µs. We use images like this to extract
the population in different diffraction orders. Different diffraction orders have different
momentum and are thus separated after TOF.

Triangular & honeycomb lattices Several different conventions can be used to quan-
tify the depth of a triangular lattice. One convention is to equate the lattice depth with
the difference between the maximum and minimum value of the optical lattice potential
[36, 151]. This form is convenient because it normalizes the lattice potential and is simple
to understand. However, it cannot be used to express lattices for which the lattice inten-
sities are unequal. It also does not easily connect to our timing script since we define the
powers of each beam individually. We therefore decided to define the individual lattice
depths of the three lattice beams (similarly to [34, 90]). This means that our calibra-
tions are more directly related to what we program and that we can also easily handle
imbalanced lattices.

We calibrate the depth of the three lattice beams forming one triangular lattice108 by
taking three KD measurements, one with each pair of beams. Note that ‘lattice depth’ is
not a well-defined quantity for single beams in an interfering lattice since any single beam
does not form a lattice. ‘Depth’ is used as a way to express the beam intensity.

107The additional factor of 4 is due to the peak intensity of the retro-reflected lattice being 4 times the
peak intensity of a single beam.
108We will refer to both the 532 nm triangular and 1064 nm honeycomb lattice as ‘triangular lattices’.
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Figure 6.4 – Schematic of KD scattering with either the triangular or honeycomb lattice
in the science chamber. Vectors and diffraction pattern are not to scale. Atoms get
scattered along the vectors {κj}, defined in Eq. 2.4.

Assuming the lattice wavevectors to be as in Eq. 2.2 (see also the arrangement in Fig. 6.4),
we can write the intensity distribution created by the interference of lattices 1 & 2 as109

I12 = I1 + I2 −
√
I1I2 cos

(√
3kx

)
. (6.7)

The 1D lattice potential is thus

V12 = −2U0

√
I1I2 cos2

(√
3

2
kx

)
, (6.8)

where U0 is the light shift per unit intensity. Constant energy terms were omitted. Eq. 6.8
can be rewritten in units of ER,

V12 = − 2U0

√
I1I2

~2
(√

3
2
k
)2

2m︸ ︷︷ ︸
sint

~2
(√

3
2
k
)2

2m︸ ︷︷ ︸
Eint

R

cos2

(√
3

2
kx

)

= sintE
int
R cos2 (kintx) ,

(6.9)

where kint =
√

3
2
k. This is the familiar form of 1D lattices that we also encountered for the

vertical lattice and we can use this expression to straightforwardly determine the lattice
depth of a 1D lattice in units of Eint

R .

109We refer to the 7-1, 11-5, and 3-9 lattice beam as lattice 1, 2, and 3, respectively.
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Figure 6.5 – KD traces of 532 nm (left) and 1064 nm (right) 1D lattices for 39K at
programmed beam powers of 400 mW and 200 mW, respectively. Blue, orange, green,
and red points (lines) are experimental data (theoretical fits) for the 0th (0~kint), 1st

(±2~kint), 2nd (±4~kint), and 3rd (±6~kint) diffraction orders, respectively. We choose the
lattice depth (sint) and a time delay (∆t) as free parameters for the fits. For 532 nm,
a small delay in the fit ensures that the fit overlaps with the data. sij1064 is defined in
Eq. 6.11.

Since we have two triangular lattices with different wavelengths, we also have to decide
which units we want to use to express our lattice depths. In this case there are again
multiple different definitions we can choose from:

1. Define the lattice depth in terms of the wavelength of the lattice. This means that
ER would have a different magnitude for the 532 nm and 1064 nm triangular lattices.

2. Define the lattice depth in terms of the 1D lattice spacing of a 1D lattice. This
makes the evaluation of 1D lattice KD data very simple, but ER is different for
different lattice wavelengths.

3. Define all lattice depths in units of a ER at one wavelength. This makes the compar-
ison of lattice depths between different triangular lattices straightforward. However,
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the wavelength with which ER is defined may be different from the wavelength of
the lattice.

We chose the third approach, i.e. we express all our lattice depths in units of

E1064
R =

~2

2m

(
2π

λ

)2

, (6.10)

where m is the mass of the atomic species and λ = 1064 nm. After extracting sint from
the 1D KD traces, we calculate the lattice depth in units of E1064

R via

sij1064 = sijint

Eint
R

E1064
R

, (6.11)

where i and j label the two lattice beams involved in the relevant 1D lattice. Note
that Eint

R is different for the 532 nm triangular and 1064 nm honeycomb lattice. For the
532 nm triangular lattice and 1064 nm honeycomb lattice, sij1064 = 3sijint and sij1064 = 3

4
sijint,

respectively. Fig. 6.5 shows data from a typical calibration run.

Total lattice potential From the above considerations we can see that

2U0

√
IiIj = sij1064E

1064
R . (6.12)

The total triangular lattice potential can therefore be written as

Vtot = −U0

{√
I1I2 cos((k1 − k2) · r) +

√
I1I3 cos((k3 − k1) · r)

+
√
I2I3 cos((k2 − k3) · r)

}
= ±E

1064
R

2

{
s12

1064 cos((k1 − k2) · r) + s13
1064 cos((k3 − k1) · r)

+ s23
1064 cos((k2 − k3) · r)

}
,

(6.13)

where U0 > 0 (U0 < 0) for 532 nm (1064 nm) in the first line and − (+) for 532 nm
(1064 nm) in the second line. If all lattice depths are equal, i.e. s12

1064 = s13
1064 = s23

1064 =
s1064, the resulting potential forms a symmetric triangular (honeycomb) lattice where the
difference between maximum and minimum energy is

Vmax − Vmin =
9

4
s1064E

1064
R . (6.14)

This last expression can be used to convert between our units (s1064) and the units used in
[36, 151] (Vmax − Vmin). For the remainder of this thesis we will only refer to ER := E1064

R
110.

110We already implicitly did this when we derived the band structure in section 2.3.
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Kagome lattice Combining the 532 nm triangular and 1064 nm honeycomb lattices
results in a six beam superlattice. As we showed in section 2.2, the relative phases between
the short (532 nm) and long (1064 nm) wavelength lattices determine the superlattice
potential. To ensure that we reproducibly create a kagome lattice, we need to have a way
of measuring what potential the atoms are experiencing. KD diffraction fortunately also
gives us information about the superlattice potential. Fig. 6.6 shows three KD diffraction
images for which the relative phases of the superlattice are not stabilized.

Figure 6.6 – Different shots of KD diffraction of 87Rb in the unstabilized superlattice
formed of the 532 nm triangular and 1064 nm honeycomb lattices. The four phase degrees
of freedom fluctuate in between shots, leading to different KD diffraction patterns.

When the phases are not stabilized, the diffraction pattern changes from shot to shot.
This is in contrast to diffraction patterns obtained with the triangular and honeycomb
lattices individually, which are only affected by the lattice intensities, not the lattice
phases. Since phase information is imparted onto the KD images of the superlattice, it is
possible to extract the lattice phases and correct for any relative phase shifts.

To understand how the lattice phases play a role in KD diffraction it is instructive to
look at a single 1D superlattice,

V (x) = VS cos2 (2kx) + VL cos2

(
kx+

φ

2

)
. (6.15)

For the 1D superlattice, the KD Hamiltonian can be written as

Hn,m = 4n2δn,m +
sS

4
(δn,m+2 + δn,m−2) +

sL

4

(
e−iφδn,m+1 + eiφδn,m−1

)
, (6.16)

where sS and sL are the lattice depths of the short and long lattice in units of ER,
respectively.

The population of |1〉 = |2~k〉 is given by
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p1 =
∣∣〈1| e−iHt |0〉∣∣2

=

∣∣∣∣〈1|(1− iHt+
(iHt)2

2
+O(t3)

)
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32
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LsS sin(2φ)t3 +O(t4).

(6.17)

This shows that the population of the first order diffraction peaks depends on the relative
phase of the 532 nm and 1064 nm lattices. The interference term vanishes if either of
the lattices is switched off. The occupation of |−1〉 = |−2~k〉, p−1, can be calculated
analogously to Eq. 6.17, so that

p1 − p−1 = − 1

16
s2

LsS sin(2φ)t3 +O(t5). (6.18)

Thus, we can measure the relative phase between the 532 nm and 1064 nm lattices by
measuring the difference in occupation between the |1〉 and |−1〉 orders. To be insensitive
to atom number fluctuations, we work with the imbalance between ±1 orders, i.e. (p1 −
p−1)/(p1 + p−1).

Figure 6.7 – Left: imbalance of KD diffraction orders as a function of the wedge posi-
tion/phase. Blue (yellow) points: imbalance between ±1 (±2) orders. Lines are theoreti-
cally calculated curves for sS = 12 and sL = 14.5. The phase changes by 0.068π per turn
(of the translation stage actuator). Since this data was taken we installed a motorized
linear translation stage. Right: KD images at 9, 12, and 15 turns. The imbalance between
the ±1 and ±2 diffraction orders visibly changes when we move the wedge. Note that
we actively stabilize the phase for this data and rely on passive phase stability on the
transfer path for shot-to-shot reproducibility.

We control the relative phases using moveable glass wedges in the transfer paths (see
section 4.3.5). Fig. 6.7 shows the imbalance in a 1D superlattice as a function of the wedge
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position. We numerically calculate the population in all diffraction orders as a function
of phase, lattice depth, and KD pulse duration, which allows us to fit experimental KD
data. We use our numerically calculated KD distribution to determine the pulse duration
at which the first order population is most sensitive to phase and adjust the wedge at this
pulse duration. When phase stabilization is engaged, the relative phases are fixed. We
cannot currently change the relative phases during the sequence.

6.3 Calibration of Feshbach coil current

With a calibration of the lattice depth, we can precisely determine the shape of the lattice
potential and can calculate the tunnelling energy t. To calculate the interaction strength
in the lattice, we additionally need to know the scattering length, which is a function
of the Feshbach field. Hubbard U depends linearly on the scattering length and scales
roughly as the square root of the lattice depth. The Feshbach field is proportional to the
Feshbach coil current (our machine parameter).

Figure 6.8 – Top left: RF transfer efficiency (p) vs RF frequency (ν) at a Feshbach
coil current (I) of 110 A. The red line shows a Lorentzian fit. The RF frequency is kept
constant for 500 ms for each data point. The efficiency is broadened due to Feshbach
coil current fluctuations. Top right: transition frequency (f) of the |F = 1,mF = −1〉 →
|F = 1,mF = 0〉 transition in 87Rb as a function of Feshbach coil current. Blue points
show the centre of a Lorentzian fit to transfer efficiency vs RF frequency data. Red points
are obtained by finding the frequency at which we get maximum population transfer with
LZ sweeps over a 500 kHz-wide window; the resonance is assumed to be in the centre of
the LZ window. Bottom left: magnetic field (B) vs Feshbach coil current. Bottom right:
scattering length (aS) of 39K as a function of magnetic field.
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We calibrated the Feshbach coils by finding the transition frequency of the
|F = 1,mF = −1〉 → |F = 1,mF = 0〉 transition in 87Rb for different Feshbach coil cur-
rents and compared this with the theoretically expected frequency (see Fig. 6.8). We drive
the transition with RF radiation and measure the fraction of atoms in the |F = 1,mF = 0〉
state after a short Stern-Gerlach pulse. The resonance frequencies are then converted to
magnetic fields via the theoretically calculated Zeeman splitting as a function of magnetic
field. This gives us an accurate calibration of magnetic field vs Feshbach coil current.

6.4 Trap frequency measurements

The last parameter in the Hubbard model left to calibrate is the potential energy (or
confinement). For small distances around the centre of the lattice, confinement can be
considered harmonic, i.e. we can quantify confinement by a trap frequency. The dipole
trap, vertical dipole, and the honeycomb, triangular, and vertical lattices all contribute to
confinement and the total trap frequency (ωtot) is generally a complicated function of five
machine parameters: The dipole trap power, vertical dipole power, and the three lattice
powers,

ωtot =
√
ω2

hon + ω2
vert + ω2

cd − ω2
tri − ω2

vd , (6.19)

where ωtri, ωhon, ωvert, ωcd, and ωvd are the trap frequencies of the triangular lattice,
honeycomb lattice, vertical lattice, crossed dipole trap, and vertical dipole, respectively111.
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Figure 6.9 – Horizontal trap frequencies in the dipole trap. Left: horizontal oscillations
of 87Rb in the dipole trap at 0.4 W (programmed). x is the horizontal position of the
atomic cloud and t is the oscillation duration. The red line is a sinusoidal fit used to
extract the horizontal trap frequency, ωh/(2π). Right: red (blue) diamonds show the
measured trap frequencies for 87Rb and 39K, respectively, as a function of dipole trap
power (PD). The solid lines are fits of the form a(P − P0)α, where a, P0, and α are fit
parameters112. α ≈ 0.46 for both species.

In practice, one of the trap frequencies in Eq. 6.19 usually dominates and we can ne-
glect the other contributions. We are also usually only interested in the horizontal trap
frequency113. Trap frequencies are commonly measured by inducing oscillations in the

111Note that ω2
tri and ω2

vd are subtracted, since the triangular lattice and vertical dipole potentials are
anti-confining.
112We can use this fit to express the dipole trap power in terms of trap frequency in the lattice scripts.
113For most experiments the vertical direction is frozen out due to the vertical lattice.
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atomic cloud (e.g. by suddenly moving the cloud or the trap) and recording the subse-
quent oscillatory motion as a function of oscillation duration. For all lattices, the lattice
depth and trap frequency cannot be decoupled as they both depend on power. However,
the dipole trap and vertical dipole beam can be used to tune the trap frequency inde-
pendently of lattice parameters. We will thus restrict ourselves to trap frequencies in the
crossed dipole trap.

Fig. 6.9 shows the horizontal trap frequency of 87Rb and 39K in the dipole trap as a
function of dipole trap power. We start from a BEC and induce oscillations by quickly
(∼5 ms) ramping up the dipole trap to the desired power. We then hold the cloud in
the dipole trap for a variable amount of time during which the cloud oscillates. Finally,
the cloud is released and the cloud’s horizontal position is recorded after TOF. The trap
frequency changes roughly as the square root of power.

Similar methods can be used to determine the trap frequencies of the lattices and the
vertical dipole beam114.

114For blue-detuned beams (which create an anti-confining potential), the trap frequency as a function
of power can be inferred from a reduction in trap frequency in the dipole trap.
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7 Kagome Mott insulators and triangular lattice neg-

ative temperatures

This chapter contains preliminary measurements involving the triangular and kagome
lattices. We will first discuss results with the triangular lattice and will focus on the su-
perfluid to Mott insulator transition and the observation of a negative temperature state.
We will then walk through our measurements of the superfluid to Mott insulator transition
in the kagome lattice. We only recently managed to load the lattice and implement phase
stabilization, so the quality of most of the data in this section will likely be improved in
the future. All quoted lattice depths were calibrated with Kapitza-Dirac measurements.

7.1 Triangular lattice

Triangular & honeycomb lattice superfluid Upon adiabatically ramping up the
optical lattice, the BEC will be loaded into the ground state of the lattice. This state
is a Bloch state with quasimomentum q = 0, i.e. a superposition of plane-wave states,
with relative weights determined by the lattice depth115. These relative weights can be
calculated numerically, as we did in section 2.3. Fig. 7.1 shows the momentum distribution
of superfluids of 39K in the 532 nm triangular and 1064 nm honeycomb lattice.

Figure 7.1 – Experimental (top) and calculated (bottom) momentum distribution of a
39K superfluid in the triangular (left) and honeycomb (right) lattices at a depth of s = 15.
Grey hexagons indicate the first Brillouin zones. The sizes of the black points indicate
the weight of the associated plane-waves. Experimental images are taken at a TOF of
11 ms. Note that the optical density of the central peak is much higher than 0.6.

115The larger the lattice depth, the stronger the coupling between momentum states, i.e. higher-order
peaks will become more populated as the lattice depth is increased.
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Note that the area of the first Brillouin zone of the 532 nm triangular lattice is four times
larger than that of the 1064 nm honeycomb lattice.

7.1.1 Superfluid to Mott insulator transition

As we showed in section 2.5 and section 2.6, the lattice depth determines the tunnelling
energy t and, in combination with the scattering length, also the interaction strength U in
the Hubbard model. Above a critical value of U/t, the system becomes Mott insulating,
i.e. repulsive interactions are strong enough to localize atoms to individual sites. The
transition from superfluid to Mott insulator manifests itself as a reduction and eventual
elimination of long-range coherence of the many-particle wave function. This leads to a
broadening of superfluid peaks [41]. We quantify the coherence by measuring the width
of the central superfluid peak and use this to determine the superfluid to Mott insulator
transition point116.

Figure 7.2 – Superfluid to Mott insulator transition for 87Rb in the 532 nm triangular
lattice. Top row: TOF images (25 ms) for different triangular lattice depths (sS) for a
vertical lattice depth of sV = 31. Bottom left: width (FWHM of Gaussian fit) of the
central momentum peak as a function of triangular lattice depth. The red line shows a
piecewise linear fit used to extract the transition point of the superfluid to Mott insulator
transition. Bottom right: transition point of superfluid to Mott insulator transition as
a function of vertical lattice depth. Each point is extracted from fits like the one shown
in the bottom left image. The error bars are estimated fit errors. The red line is the
theoretical superfluid to Mott insulator transition point according to [216] with no free
parameters.

116A more precise measure of coherence is the visibility of the interference fringes [215]. This approach
unfortunately did not lend itself to our preliminary data.
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Superfluid to Mott insulator with rubidium For 87Rb, we are not able to tune
the interactions between particles, so the superfluid to Mott insulator transition can only
be observed by changing the lattice depth. Since U/t increases with lattice depth, the
system is superfluid (Mott insulating) for small (large) lattice depths. Fig. 7.2 shows how
the momentum distribution of 87Rb in the triangular lattice evolves as the lattice depth
is increased.

As expected, the sharp peaks in momentum space due to long-range coherence in
the superfluid broaden and eventually disappear above a certain lattice depth. We use
a piecewise linear fit to determine at which lattice depth the central peak width starts
increasing and equate the position of the kink with the critical value for the superfluid to
Mott insulator transition.

Since the momentum distribution of the Mott insulator is very similar to a thermal
state, we made sure that we could restore coherence by ramping the lattice back to zero.
Restoring the BEC after ramp down confirms that the diffuse distribution for deep lattices
is not thermal [41].

Since the superfluid to Mott insulator transition point depends on the interaction
strength which itself depends on the vertical lattice depth, we decided to measure the
transition point as a function of vertical lattice depth. Higher vertical lattice depths
cause tighter confinement and, as a result, larger interaction strengths. This behaviour
is reflected in our data, which shows that the transition point is lowered as the vertical
lattice depth is increased (see Fig. 7.2).

Mean-field theory predicts that the transition is located at (U/(zt))c ≈ 5.8 [217], where
z is the coordination number and is equal to 6 for the triangular lattice. More precise
theoretical calculations predict that the transition happens at (U/(zt))c ≈ 4.9 [216], which
is slightly lower than the mean-field result. We use the result in [216] in conjunction with
U and J calculated via Wannier states (section 2.4) to determine where the transition is
theoretically supposed to occur as a function of lattice depth.

We see that both the trend and the order of magnitude between the measured and
theoretically calculated data agree. However, the experimentally measured transition
point is systematically lower by about 1.2ER compared to what we expect from theory.
This could be explained by a systematic error in calibrating the triangular lattice depth
or a discrepancy between how we define the transition point in our fits, i.e. via the kink
in the piecewise linear function, and the actual location of the transition. There is also a
roughly 10% uncertainty in the theoretical value of (U/t)c [216, 218, 219]. Measurements
like these are useful to reconcile our machine’s behaviour with our code for determining
the Hubbard parameters.

Superfluid to Mott insulator with potassium With 39K we can tune the interaction
strength U independently of the tunnelling energy t. We can thus map the superfluid to
Mott insulator transition as a function of lattice depth, which affects both U and t, and
the scattering length, which affects only U . Fig. 7.3 shows the momentum distribution of
39K in the triangular lattice as a function of scattering length and lattice depth.
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Figure 7.3 – TOF images (11 ms) of 39K in the triangular lattice for different values of
the scattering length aS and the lattice depths (sS, sV). The vertical and triangular lattice
have equal depths.

We again quantify the coherence by measuring the width of the central peak. This is
shown in Fig. 7.4. As for 87Rb, we use our Wannier state code to calculate the tunnelling
rate and interaction strength as a function of lattice depth and scattering length. For each
scattering length, we numerically determine the lattice depth required so that U/(zt) = 4.9
[216]. This theoretical transition line is also shown in Fig. 7.4.

Our measured values are in good agreement with the theoretical prediction. This
shows that our calibration scheme is accurate and that our code produces physically
meaningful results. It would be good to extend our data to lower scattering lengths and
deeper lattices to check whether theory and experiment still agree.

The critical U/t should be mass- and therefore species-independent. Comparing the
theoretical transition point at aS = 100a0 in 39K with the result we obtained for 87Rb at
sV ≈ 16 confirms this. Our experimental data also is consistent with a mass-independent
transition point. In our units of lattice depth, the superfluid to Mott insulator transition
occurs at a triangular lattice depth of roughly 14ER − 16ER

117 at aS = 100a0.

117For vertical lattice depths of 15ER - 30ER.
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Figure 7.4 – Measured width (FWHM) of the central peak as a function of the scattering
length and the lattice depth. The black line marks the theoretically calculated transition
point.

7.1.2 Preparation of negative temperature states

We will now discuss our recent observation of a negative temperature state in the triangu-
lar lattice. As far as we are aware, this marks the first time a negative temperature state
has been prepared in a non-bipartite lattice. This should open a path towards studying
bosonic and fermionic phases in a triangular lattice with inverted tunnelling. As of writ-
ing, our entropy in the negative temperature state is probably too large to properly study
effects of frustrated bosonic phases on the triangular lattice.

Figure 7.5 – Left: tight-binding dispersion in the lowest band of the triangular lattice.
The white hexagon indicates the BZ. Right: numerically calculated density of states of
the triangular lattice in the tight-binding limit. The triangular lattice displays a van Hove
singularity at the M-point.

A low-entropy, negative temperature state should cause occupation of the highest energy
states. In a superfluid, for which kinetic energy dominates, we thus expect the momentum
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states with the highest energies to be predominantly occupied. The triangular lattice hosts
a single tight-binding band in which the highest energy states are located at the corners
of the first Brillouin zone (BZ), i.e. the K and K′ points (see Fig. 7.5).

The highest tight-binding energy is two-fold degenerate and condensation at negative
temperatures will break the associated Z2 symmetry118. The Bloch states at K and K′

correspond to the vortex and antivortex antiferromagnet, both of which obey the three-
colour arrangement (see section 3.3.1). Fig. 7.6 shows an image of a negative temperature
state alongside the theoretically expected momentum distribution at the K and K′ points.

Figure 7.6 – Left: Bloch states at K and K′ (red and blue) in the lowest band of the
triangular lattice. The BZ is shown in grey. Right: momentum distribution (11 ms TOF)
of the negative temperature state in a triangular lattice with sS = 6. The BZ boundary is
shown in black. It is inferred from positive temperature superfluid peaks (white points).

In our system we do not see spontaneous symmetry breaking and see peaks at both K
and K′ simultaneously. We believe that there are two reasons for this. On the one hand,
we have multiple layers in the vertical direction, which means that atoms will, at low
temperatures, randomly condense into either the K or K′ points in each layer119. Since we
see an averaged distribution of all layers, the most probable momentum distribution will
be that in which both K and K′ are equally occupied. On the other hand, our entropy
is likely still so high that the Z2 symmetry is not globally broken. At our temperatures
we could have a proliferation of domain walls between the two chiral orders [90, 220] and
thus see a statistical mixture of both chiralities even in a single layer.

We also expect to see higher-order superfluid peaks similar to what was seen in [47].
We attribute our lack of superfluid peaks to excessive entropy generation during the Mott
insulating stage of the negative temperature ramp. We see this heating also when we
melt the Mott insulator into a positive temperature state and therefore believe that it is
purely technical and fixable.

Extracting temperature To determine the temperature of the cloud we closely follow
the approach outlined in [163] and the supplementary material of [48]. We can extract the
temperature of a distribution of bosonic atoms in momentum or energy space by fitting
a Bose-Einstein (BE) distribution,

118This effect was also observed in shaken triangular lattices [47]. There, the tunnelling element was
inverted via Floquet shaking. We expect the physics to be the same as for a negative temperature state.
119Note that the vertical layers are effectively decoupled due to the vertical lattice, so we expect each

layer to assume an individual chirality (see [90]).
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n(ε) = f(ε)g(ε), f(ε) =
1

e
ε−µ
kBT − 1

, (7.1)

where ε is the energy, µ is the chemical potential, f(ε) is the BE-distribution and g(ε) is
the density of states. In practice we can only extract the momentum distribution of the
atomic cloud. If we want to calculate f(ε), we have to divide the momentum distribution
by the density of states, which can be calculated numerically (see Fig. 7.5). If the lattice
is deep enough, we can use the tight-binding dispersion relation to express f in terms of
momentum,
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, (7.2)
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being the tight-binding band structure of the triangular lattice. For convenience, we
express kBT and µ in units of the tunnelling energy,
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Here, a is the lattice spacing and effectively determines the magnification of the distribu-
tion. We fit the atomic momentum distribution with the function

ffit(kx, ky) =
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+ ofit , (7.5)

where afit, µfit, Tfit, ofit, k
0
x, and k0

y are fit variables. We determine the BZ using the
superfluid peaks of the positive temperature superfluid and exclude data that does not
lie within it (see Fig. 7.7).
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Figure 7.7 – Top left: momentum distribution in the BZ (region enclosed by black,
hexagonal line in Fig. 7.6) for the negative temperature state. Top right: contour plot of
fit (Eq. 7.5) to top left image. Dashed, white lines intersect at (kx = k0

x, ky = k0
y) and

indicate the positions of the 1D cuts shown in the bottom images. Bottom left (right):
horizontal (vertical) cut through data (black points) and BE fit (red line). The fit is
restricted to the BZ.

With our fit we determine Tfit ≈ −3.8 t and µfit ≈ 6.9 t. From Fig. 7.7, we can see
that the BE-distribution at negative temperatures fits the measured distribution well.
The extracted chemical potential, µfit, is also larger than the largest kinetic energy in the
system, which is what we expect [163]. While the fit overlaps well with the measured data,
the exact values Tfit and µfit are somewhat ambiguous, as several different combinations
of Tfit and µfit can result in a similarly accurate fit. We are also not fitting the actual
number distribution in momentum space, but only the OD image directly. In the future,
we will accurately determine the atom number (N) and fit the momentum distribution
under the constraint that∫

BZ

f(kx, ky)dkxdky =

∫
f(E)g(E)dE = N . (7.6)

Note also that we fit the temperature of the Bloch wave directly which likely overesti-
mates the absolute value of the temperature, since, by restricting the analysis to the first
Brillouin zone, we don’t take into account atoms that lie outside it. In a more careful
experiment, we would use band-mapping to get an accurate occupation of momentum
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states in the BZ.
Finally, we do not take into account the finite width of the in-situ cloud for our

temperature fits. What we measure in absorption imaging after TOF is broader than the
underlying momentum distribution. Our fits thus likely overestimate the absolute value
of the temperature. We can take into account the finite in-situ cloud size by convolving
f(kx, ky) with a Gaussian of some width σ, which can be determined independently [163].

Figure 7.8 – Positive temperature superfluid without ramping through the Mott insula-
tor. Plots have the same meaning as Fig. 7.7.

To estimate how much the negative temperature protocol is heating the cloud, we apply
the same fit (Eq. 7.5) to the positive temperature superfluid, before and after ramp-
ing to the Mott insulator. Fig. 7.8 (Fig. 7.9) shows the momentum distribution and
estimated temperature for the positive temperature superfluid at 6ER without (after)
ramping through the Mott insulator120. To ensure comparability of all datasets, we fix
the scaling parameter, afit to the value extracted from the negative temperature fit. We
extract fit values of Tfit ≈ 0.8 t (Tfit ≈ 5.1 t) and µfit ≈ −6.5 t (µfit ≈ −9.8 t)121. This shows
that even in the positive temperature case we significantly heat the cloud when ramping
through the Mott insulator. Since, after ramping through the Mott insulator, the absolute
value of the temperatures of both the positive and negative temperature states are similar,

120‘Ramping through the Mott insulator’ means that we are effectively running the same sequence as
the negative temperature sequence, but do not go to attractive interactions or ramp up the vertical dipole
beam.
121Note that the fitted chemical potentials are smaller than −6t, the lower bound of the tight-binding

energy.
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we conclude that heating is a consequence of technical noise or a sub-optimal ramping
sequence, rather than of any fundamental limit affecting only the negative temperature
state.

Figure 7.9 – Positive temperature superfluid after ramping through the Mott insulator.
Plots have same meaning as Fig. 7.7.

7.2 Kagome lattice

We will conclude this chapter by briefly showing some results we obtained with 87Rb and
39K in the kagome lattice.

Kagome superfluid We combine the 532 nm triangular and 1064 nm honeycomb lat-
tice to create the kagome lattice. If the relative phases are chosen correctly and are
actively stabilized, the superfluid displays the distinctive momentum distribution shown
in Fig. 7.10.

The width of the superfluid peaks at finite TOF is affected by the in-situ cloud site,
which itself depends on the interaction strength. Stronger repulsive interactions cause a
larger in-situ cloud size [166]. One benefit of 39K is that the superfluid peaks can be made
to be much sharper than for 87Rb, due to the ability to reduce the scattering length.
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Figure 7.10 – Superfluid of 87Rb (left) and 39K (centre) in the kagome lattice. Right:
calculated momentum distribution of the Bloch state at Γ for a lattice with sS = sL = 15.

Varying the superlattice phase With our ability to control the relative phases be-
tween the triangular and honeycomb lattices, we can also realize other lattice potentials.
For this, we move the wedge in the transfer paths (see section 4.3.5). Note that we still
engage our active phase stabilization for lattices other than the kagome lattice, so as to
create the same superfluid every shot. Fig. 7.11 shows superfluids of different, highly
symmetric superlattices.

Very similar measurements were taken with 87Rb in Berkeley [36]. Under normal
conditions, the stabilized superlattice phases do not vary noticeably over the course of a
day. More on the stability of our relative phases can be found in Dan Reed’s thesis [140].
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Figure 7.11 – Superfluid of 39K in different superlattice potentials. The left column
indicates the position of the 1064 nm, ‘repulsive’, triangular lattice sites (red) and the
532 nm (λS), ‘attractive’, triangular lattice sites (blue). The right columns show the
corresponding Bloch state momentum distributions at Γ. The experimental images are
single shots, i.e. not averaged. Adapted from [140].
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7.2.1 Superfluid to Mott insulator transition

Finally, we will discuss the superfluid to Mott insulator transition in the kagome lattice.
Fig. 7.12 shows the momentum distribution of 87Rb in the kagome lattice for different
lattice depths.

Figure 7.12 – Top: superfluid to Mott insulator transition with 87Rb in momentum
space (25 ms TOF). The 532 nm and 1064 nm lattice depths are equal, i.e. sS = sL. The
vertical lattice depth is sV = 20. Bottom: FWHM of the central peak vs lattice depth.
The red line is a piecewise linear fit and the kink is assumed to be the transition point.

As in the triangular lattice, we see that the central peak of the momentum distribution
starts to increase linearly above a certain lattice depth. We confirm that the diffuse
distribution is a Mott insulator by ramping down the lattice from sS = sL = 16, which
recovers the BEC. Compared to the triangular lattice case, we expect the transition to
happen for lower lattice depths, since the lattice’s connectivity is lower122 [137]. Lin et
al. calculate that (U/(zt))c ≈ 4.46 [216], where z = 4 for the kagome lattice. Using the
Wannier states, we calculate that (U/(zt)) = 4.46 for sS = sL = 14.1 and sV = 20, so at
significantly higher lattice depths than we observe experimentally. We are still trying to
figure out why we have this discrepancy.

With the Mott insulator in the kagome lattice we are now one step away from creating
a negative temperature state and populating the flat band. We did in fact go through the
same protocol as with the triangular lattice, but did not find a clear population inversion.
We only found that the entire Brillouin zone was occupied, consistent with an infinite
temperature state. We already saw that the triangular lattice negative temperature state
suffers from a lot of ‘heating’ when ramping over the Mott insulator. We think that
reducing the heating for the triangular lattice will also lead to lower entropies in the
kagome negative temperature state.

122Triangular lattice sites have six nearest neighbours, while the kagome lattice sites have four.
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8 Towards quantum gas microscopy for the kagome

lattice

This chapter covers our progress towards implementing a kagome lattice quantum gas
microscope (QGM). Many of the design decisions we made stemmed from the desire to
have single-site resolved imaging. The first choice we had to make was what wavelength
to use for the kagome lattice. Current QGMs with alkali atoms almost universally use
1064 nm lattice light [50, 55–60], due to easy availability of high powers (50 W+). The
lattice spacing for a square lattice formed with 1064 nm beams is 532 nm. This is just at
the edge of what is feasible in terms of resolution R, which is commonly defined as the
distance between maximum and first minimum of the Airy disk (Rayleigh criterion),

R ≈ 0.61
λ

NA
, (8.1)

where λ is the imaging wavelength and NA is the numerical aperture of the imaging
lens/objective123. The principal transitions of alkali atoms range from 589 nm (Na D2)
to 895 nm (Cs D1). Thus, using a typical objective NA of 0.6-0.85, single-site resolved
imaging of 532 nm-sized features is just about possible124. If the lattice spacing is much
smaller than 532 nm, conventional single-site resolved imaging will not be possible. On
the other hand, if lattice spacings are much larger than 532 nm, the tunnelling rate is
suppressed, which is detrimental to conducting experiments. Ideally, the lattice spacing
is small enough to be able to achieve tunnelling rates of up to 1 kHz, but large enough to
be resolved with a 0.7-0.8 NA objective operating at the D1/D2 transitions of the atomic
species. Unfortunately, the list of suitable lattice wavelengths is very short due to power
availability; a lattice for quantum gas microscopy usually requires several watts of power
per beam.

For potassium, a tunnelling rate of 1 kHz requires a lattice spacing on the order of
500 nm [184, 185]. A triangular lattice of 1064 nm lattice beams has a lattice spacing of
709 nm (614 nm) in the interfering (retro-reflected) case. Even in the retro-reflected case,
the lattice spacing is larger than ideal. We therefore opted for a lattice wavelength of
532 nm in interfering configuration, which gives us a lattice spacing of 355 nm (good for
physics) and is available at high power (good for imaging). However, this lattice spacing
is too small to resolve with a conventional QGM.

Given a fixed lattice wavelength, there are two ways in which the ‘resolution’ can be
increased: either the lattice spacing is artificially increased, e.g. by tilting the lattice [60]
or an imaging transition with a smaller wavelength is used, such as the 4s→ 5p transition
in 39K and 40K [184].

Tilting the lattice is a simple way of increasing the lattice spacing without sacrificing
lattice depth. However, this means that the lattice beams need to be tilted out of plane
and requires a more complicated vacuum chamber design. In addition, it limits the
maximum tunnelling rate125.

123A stricter bound on resolution is given by the Sparrow limit, which defines resolution as the distance
between two identical point sources at which the intensity at the mid-point between their Airy disks is
flat [221].
124Rayleigh resolutions of 450 nm-910 nm with these parameters.
125In section 2.3, we show that the tunnelling rate scales as 1

a2 , where a is the lattice spacing.
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Imaging on the 4s→ 5p line in potassium (405 nm) would allow us to resolve features
below 400 nm. This raises a number of complications however, one of which is that
this transition is not closed for alkali atoms [222]. Therefore, a full treatment of the
imaging process requires taking into account the lifetimes, polarisabilities, and scattering
rates of all intermediate transitions. The intermediate transitions make this calculation
much more involved. In the case of the 4s→ 5p transition for K, absorption of a 1064 nm
lattice photon or another imaging photon also causes ionization, complicating the imaging
process even further.

We decided not to pursue these routes and instead found a way to increase our resolu-
tion without having to resort to the tilted lattice approach or to using a different imaging
transition. Inspired by super-resolution microscopy techniques in cold atoms [223], we
decided to use a separate imaging lattice that causes only a subset of sites to fluoresce
while other sites are dark. Instead of taking one image to resolve all atoms, we intend to
take three images, each one capturing one third of all sites. The benefit of this approach
is that for each of the three images, the spacing of imaged atoms is increased to well
above the diffraction limit for D1 & D2 light. One drawback is that our imaging times are
longer. However, imaging times should be significantly reduced in blue detuned lattices
compared to those in lattices made of 1064 nm light (see below).

To accurately reconstruct the distribution of atoms in an optical lattice, each atom
has to scatter on the order of a few thousand photons. Scattering causes heating and
will eventually cause atoms to tunnel to neighbouring sites or be lost altogether. For
this reason, it is imperative that the atoms are cooled during imaging. Raman sideband
cooling (RSC) has emerged as the method of choice for cooling fermionic alkali atoms in
optical lattices [15, 43] and we intend to implement it for our machine.

8.1 Imaging transition

Since we want to stick with the D1 (4s1/2 → 4p1/2) and D2 (4s1/2 → 4p3/2) lines for
imaging, we now have to figure out which transitions to use for imaging and RSC. We
intend to use RSC on the D2 line and imaging (repump) on the D1 line, for the following
reasons:

(1) Light shifts of the excited state During imaging, atoms will spend a significant
amount of time in the excited state of the imaging transition. Ideally, atoms in the
excited state will see the same lattice as atoms in the ground state. This ensures that
each individual atom is still trapped even when it is in the excited state of the imaging
transition. For atoms in the ground and excited states to see the same potential, the
AC Stark shifts of the two levels at the lattice wavelength need to have the same sign.
This is the case for a lattice formed of 532 nm beams, but not for a lattice formed of
1064 nm beams (see Fig. 8.1). For a 1064 nm lattice, the potential felt by 39K and 40K in
the excited state is not only inverted with respect to the ground state, but is about five
times stronger. In first-generation fermionic QGMs this presents a major problem to the
imaging process. The amount of time an individual atom spends in the excited state has
to be limited drastically to ensure that atoms remain trapped on average. This is one
of the reasons why RSC is needed for fermionic QGMs using 6Li or 40K. This approach
severely limits the scattering rate of imaging light and thus leads to long imaging times
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of ∼1 s which, in turn, limits reconstruction fidelity [49, 57, 59].

Figure 8.1 – Left (right): polarizability of 39K/40K around 532 nm (1064 nm). The red,
green dashed, blue dashed, and magenta dashed lines are the polarizabilities of 4s1/2, 4p1/2,
4p3/2 (|mJ | = 1/2), and 4p3/2 (|mJ | = 3/2), respectively. Vertical black lines indicate
wavelengths of 532.25 nm (short lattice) and 1064.5 nm (long lattice).

Fig. 8.1 shows that the 4s and 4p1/2 states are shifted in the same direction at a lattice
wavelength of 532.25 nm 126. This is about 0.22 nm detuned from the weak 4p1/2 →
8s1/2 transition, which might cause scattering in the 4p1/2 state to be unacceptably high.
However, since the lattice is blue-detuned, atoms will sit at points of zero lattice intensity
which should suppress scattering of lattice photons in the 4p1/2 state. The shift of the
4p1/2 state at 532.25 nm is significantly stronger than that of the 4p3/2 state. Atoms in
the 4p1/2 state are thus more strongly trapped at 532.25 nm, making the D1 transition
preferable for imaging.

Similar to potassium in a 532 nm lattice, the Stark shifts of the ground and excited
states of Yb at 1082 nm have the same sign, but the Stark shift in the excited state is 200
times larger [51]. Therefore, atoms in the excited state are trapped much more strongly
than in the ground state. This greatly benefits the imaging process because the imaging
transition can be driven strongly while still keeping atoms pinned to individual lattice
sites. Thus, it is possible to image without needing additional cooling, because enough
photons can be collected before any individual atom is lost from a site and imaging times
can be reduced to 100 µs [51] (instead of conventional exposure times on the order of 1 s
[56–58]). A 532.25 nm lattice for potassium might similarly help reduce imaging times
and improve reconstruction fidelities.

(2) Excited state hyperfine splitting The minimum splitting between levels in the
D2 manifold of 39K and 40K is 3.3 MHz and 24.2 MHz, much smaller than for the D1 levels
at 55.5 MHz and 155.3 MHz, respectively. To suppress off-resonant excitations it makes
more sense to use the D1 line for imaging and the D2 line for RSC. RSC is not affected
by the level splitting in the excited state since the Raman beams are far detuned from
the hyperfine manifold.

126Based on the Coherent Mephisto MOPA manual, the laser frequency is ∼281.63 THz at a crystal
temperature of 30◦C, corresponding to a vacuum wavelength of 1064.5 nm.
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(3) Separability of D1 and D2 light D1 (770 nm) and D2 (767 nm) light can be
split using a line/edge filter. This means that if the Raman transition targets either D1
or D2 and the imaging transition targets the other, it is possible to separate Raman and
imaging light during imaging. This is especially useful considering the difference in power
levels between Raman and repump beams: Raman power is on the order of a few hundred
mW, while imaging power is on the order of a few hundred µW. Therefore it is important
that stray Raman light be strongly attenuated before reaching the camera. Targeting
a separate transition for Raman and repump makes the separation process much easier.
Using a filter for Raman and repump is also done in [56, 57].

(4) Precedent Other QGMs with potassium have successfully used D1 for imaging and
D2 for RSC/EIT127 [56, 57].

Figure 8.2 – Raman sideband cooling and repump on the D2 (4s → 4p3/2) and D1
(4s → 4p1/2) line of 39K, respectively. States in parentheses are for 40K. The Raman
beams (red) transfer atoms from one ground state hyperfine level to the other while
additionally removing a motional quantum. Repump and spontaneous decay (blue) close
the cycle. The imaging system collects spontaneously emitted photons to form an image.

Fig. 8.2 shows how Raman sideband cooling can be used to cool atoms in an optical lattice
during fluorescence imaging. The Raman beams couple the two ground-state hyperfine
levels and target the red sideband of the |F = 1〉 → |F = 2〉 (|F = 9/2〉 → |F = 7/2〉)
transition in 39K (40K), corresponding to a removal of motional energy. Repump light
populates the excited state and spontaneous emission closes the imaging cycle.

127EIT: electromagnetically induced transparency. EIT is very closely related to RSC [224, 225].
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8.2 Blue vs red-detuned lattices

For 39K and 40K there are several advantages in using 532 nm to pin atoms for fluorescence
imaging. Firstly, as pointed out previously, the sign of the AC Stark shift of both the
ground and excited states is the same in a 532 nm lattice. Secondly, atoms are repelled
from regions of high intensity and sit at the zero-intensity points. This suppresses heating
due to scattering of lattice light. Finally, residual lattice curvature is minimized and a
larger number of sites can be imaged. Fig. 8.3 shows a comparison of the three effects in
39K for 532 nm and 1064 nm light.

Figure 8.3 – Schematic of the potential created by a 1064 nm (left) and 532 nm (right)
lattice in the 4s (bottom) and 4p1/2 (top) states of potassium. For 1064 nm (532 nm), the
potential minima are located at maximum (zero) intensity and the 4p1/2 state potential
is inverted (not inverted) with respect to the 4s state. Black arrows indicate the imaging
frequency shift between different sites of the lattice. For 1064 nm, this shift is substantial,
while for 532 nm the imaging frequency shift is zero.

In contrast to a red-detuned lattice, the fluorescence rate in a blue-detuned lattice is not
site-dependent. While the imaging transition should not be shifted between lattice sites
in a blue-detuned lattice, the Raman resonance will shift due to the harmonic oscillator
spacing also being affected by lattice beam curvature. This is an effect that equally
affects red and blue detuned lattices and cannot be easily compensated for. In practice
this means that the cooling efficiency will be reduced away from the centre of the lattice
(provided the Raman lasers are resonant with the lattice’s central region).

8.3 Imaging lattice

To selectively suppress fluorescence from a subset of lattice sites we will use an imaging
lattice with a wavelength close to the 4p1/2 → 3d3/2 transition. This lattice ideally
induces a large shift in the imaging transition (4s1/2 → 4p1/2) while minimally affecting
the lattice potential that atoms in the 4s1/2 state experience. We intend to use a tunable
laser between 1168 nm and 1178 nm for our imaging lattice that can emit a few watts of
power, which we can use to target both the 4p1/2 → 3d3/2 and the 4p3/2 → 3d transitions.

Imaging lattice geometry The geometry of the imaging lattice has to be compatible
with the geometry of the kagome lattice, i.e. the imaging lattice sites have to line up with
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kagome lattice sites. We opted for a simple 1D imaging lattice formed of two interfering
beams.

Figure 8.4 – Each row shows the configuration of the kagome (red) and imaging lattice
(blue) beams around the science chamber (black outline of dodecagon) (left) and the
resulting potentials (centre: kagome, right: imaging). (a) interfering kagome lattice; full
imaging requires three images. Effective lattice spacing: 614 nm. (b) interfering kagome
lattice; full imaging requires four images. Effective lattice spacing: 709 nm. (c) retro-
reflected kagome lattice; full imaging requires three images. Effective lattice spacing:
532 nm. (d) retro-reflected kagome lattice; full imaging requires four images. Effective
lattice spacing: 614 nm.
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Since we intend to use the D1 transition for imaging, the wavelength of the imaging lattice
is fixed to be close to the 4p1/2 → 3d3/2 transition. We can change the imaging lattice
spacing by adjusting the angle of incidence between the imaging lattice beams. We also
need to ensure that the imaging lattice is compatible with our science chamber. Fig. 8.4
shows different configurations of the imaging and kagome lattices.

Only the first configuration in Fig. 8.4 is compatible with our science chamber, which
is the main reason we decided to implement the kagome lattice with interfering beams.
In this configuration we need to take three images with an effective lattice spacing of
614 nm128.

This configuration is slightly unusual in that the imaged sites do not lie at the maxima
or minima of the imaging lattice but rather at the half-intensity lines. This is illustrated
in Fig. 8.5. This leads to the extra complication that the excited state atoms reside on a
strong slope instead of either a maximum or minimum. This can be resolved (if necessary)
by taking six images instead of three and selecting imaged sites via the minimum (or
maximum) of the imaging lattice.

Figure 8.5 – Schematic of the imaging lattice with imaged (blue) and unimaged (red)
sites.

Fig. 8.5 makes apparent that the imaging lattice shifts the imaging transition also on
imaged sites. The imaging light has to thus be shifted accordingly.

Using a single additional imaging lattice is one of the simpler ways to achieve super-
resolution microscopy. We came up with an even simpler scheme that does not require
an imaging lattice but achieves super-resolution with kagome lattice beams only. This is
discussed in detail in appendix B.

Imaging transition shift The shift induced by the imaging lattice between imaged
and unimaged sites depends strongly on the imaging lattice wavelength. On the one
hand, being close to the 4p → 3d resonance leads to strong shifts in the excited state
even at low powers. However, this can cause severe scattering of imaging lattice light
and therefore heating and atom loss. On the other hand, we can suppress scattering of
imaging lattice photons by using larger detunings from the 4p → 3d resonance. This
means that more power is required to get the same shift of the imaging transition. Too
much imaging lattice power will also start to affect atoms in the 4s state, which we
want to avoid. The exact parameters will thus be a compromise between imaging lattice

128Note that while the spacing between imaging lattice half-intensity lines is 532 nm, the imaged lattice
sites are at a distance of 2√

3
× 532 nm = 614 nm.
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power and wavelength. Fig. 8.6 shows the polarizability of 39K/40K between 1165 nm and
1180 nm. The 4p1/2 → 3d3/2, 4p3/2 → 3d3/2, and 4p3/2 → 3d5/2 transitions are located at
1169.34 nm, 1177.29 nm, and 1177.61 nm, respectively.

Figure 8.6 – Left (right): polarizability of potassium around 1170 nm (1178 nm). The
red, green dashed, blue dashed, and magenta dashed lines are the polarizability of 4s1/2,
4p1/2, 4p3/2(|mJ| = 1/2), and 4p3/2(|mJ| = 3/2) in 39K/40K, respectively. Vertical black
lines indicate wavelengths of 1170 nm and 1178 nm (imaging lattice).

Figure 8.7 – AC Stark shift as a function of imaging lattice power for the 39K/40K
4s → 4p1/2 transition at 1170 nm (blue) and the 4s → 4p3/2 transition at 1178 nm (red).
We assume that the imaging lattice is formed of circular beams with a beam waist of
100 µm.

The imaging lattice potential is given by

VT ,λ(x, y) = UT ,λ
2P

πw2
0

∣∣eik(cos(α)x+sin(α)y) + eik(cos(α)x−sin(α)y)
∣∣2

= UT ,λ
8P

πw2
0

cos2 (k sin(α)y) ,

(8.2)
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where λ is the wavelength of the imaging lattice, α is the angle between imaging lattice
beams, T is the target atomic level, P is the power in each beam, and w0 is the beam
waist129.

We assume that the polarizations are along the z-direction, i.e. out-of-plane. Note also
that the imaging lattice spacing is given by a = π

k sin(α)
= 1064 nm. The difference in light

shift between an imaged and unimaged site is given by ∆ = VT ,λ(0, a/2)− VT ,λ(0, 2a/3).
Fig. 8.7 shows the resulting light shift for the D1 transition at 1170 nm and the D2
transition at 1178 nm.

This shows that we can shift the imaging transition by several times the natural
linewidth with moderate powers of the imaging lattice. Considering that for small powers
the scattering rate of imaging light as a function of detuning is

Rscatt ∝
Γ

2

I

1 + 4∆2

Γ2

, (8.3)

where Γ is the natural linewidth of the D1 transition (∼6 MHz), I is the intensity of the
imaging light, and ∆ is the detuning from the imaging transition, a shift of 12 MHz would
suppress fluorescence on unimaged sites by 94% compared to imaged sites.

Total potential In the presence of the imaging lattice, the 4p1/2 lattice sites are shifted
by a few nm with respect to those in the ground state (see Fig. 8.8). This shift will cause
atoms to move and gain momentum during the imaging process. Additionally, the effective
lattice site depth is reduced in the 4p1/2 state due to the imaging lattice.

Figure 8.8 – Left: potential seen by atoms in the 4s state of 39K/40K in a 3 W, 532 nm
triangular lattice and 48 mW per beam of the 1170 nm imaging lattice (same beam pa-
rameters as in Fig. 8.7). The configuration of imaging lattice beams is as in Fig. 8.4 (a).
Right: potential seen by atoms in the 4p1/2 state at the same lattice powers. The imaging
lattice shifts the 4p1/2-state on the unimaged sites with respect to the imaged sites (white
points) by roughly 12 MHz. Note also that the minima of imaged sites in the 4p1/2 state
are translated with respect to those in the 4s state. Cyan, orange, and magenta-coloured
lines indicate 1D cuts through the potential along different directions.

Note that the imaging lattice technique will require us to change the imaging lattice phase
between exposures. We already showed that we can reliably stabilize the kagome lattice

129The beam is assumed to be circular.
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phases with piezo mirrors and can lock the phase over a large range of lattice powers (see
chapter 5). We intend to use either piezo mirrors or AOM frequency modulation for phase
control of the imaging lattice.

8.4 Single-layer selection

To obtain a reliable image of the atomic distribution, it is vital to prepare only a single
horizontal layer in the focus of the microscope objective [58, 59]. Fluorescence from
multiple layers blurs the image and makes it difficult to determine site-occupation in the
target layer. We intend to prepare a single layer via a magnetic gradient, MW radiation,
and an optical removal scheme. This technique is robust and commonly used in other
QGMs [50, 56, 57]. The first step of the single-layer selection protocol is to transfer
atoms in all layers to a different ground-state hyperfine level via a MW Landau-Zener
(LZ) sweep. A magnetic offset field and gradient are then switched on, so that only the
target layer is affected by a second LZ sweep and the target layer is selectively transferred
back to the initial hyperfine level. Finally, atoms in unwanted layers are removed with
resonant light and only atoms in the target layer remain.

MW transfer MW radiation for single-layer selection targets the ground state fine
structure manifold, 4s1/2 for 39K and 40K (see Fig. 8.9). The derivative of the MW
transition frequency (ν) with respect to the magnitude of a magnetic offset field (B), i.e.
dν
dB

= 1
h
dE
dB

is maximized for the stretched state (Black arrows in Fig. 8.9). In addition, dν
dB

is independent of B for the stretched state but varies for all other MW transitions in the
ground state fine structure manifold. Using the stretched state to target an individual
layer minimizes the magnetic field gradient required for single-layer selection and allows
us to work at an arbitrary offset field. This freedom in choosing the offset field means we
can maximize the minimum field stability required to deterministically prepare a single
layer.

Figure 8.9 – Left (right): Zeeman level splitting in the ground state mani-
fold of 39K (40K) as a function of magnetic field. For single-layer preparation,
we target the |F = 1,mF = 1〉 → |F = 2,mF = 2〉 and |F = 9/2,mF = −9/2〉 →
|F = 7/2,mF = −7/2〉 transitions for 39K and 40K, respectively. Black arrows show the
stretched state transition frequency for 0 G and 51 G.

In an ideal system, the first, layer-independent transfer to the excited state and the sub-
sequent single-layer-selective transfer to the ground state can be done with a resonant
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Rabi-pulse. However, the real system will invariably suffer from magnetic field inhomo-
geneities leading to a broadening of the resonance (see Fig. 8.10). A Rabi-pulse will thus
fail to fully transfer all atoms to the target mF state. A solution to this problem is to use
a LZ sweep in which the MW frequency is ramped over some frequency range that spans
the resonant frequencies of all atoms in the target layer.

To ensure that only atoms in the target layer are affected by step two of the single
layer selection process, the offset magnetic field, which fixes the resonant frequency of the
MW transition, needs to be very homogeneous in space and very stable in time.

Stability requirements There are two independent conditions on the offset magnetic
field. The first requirement is that the magnetic field is sufficiently homogeneous in space.
Every magnetic field displays some curvature and it is important that this curvature
is minimized. The amount of curvature permissible is fixed by the size of the target
region and the difference in magnitude of the magnetic field between adjacent layers (see
Fig. 8.10). The second requirement is that the magnetic field is stable in time. Since the
magnetic field is created by a current running through a solenoid, stability of the magnetic
field translates into current stability. A general expression for the highest permissible
fractional magnetic field instability can be written as

s =
a∂zB −∆B

B0

(8.4)

where a = 532 nm is the vertical lattice spacing, ∂zB is the gradient along the vertical
direction, ∆B is the spatial variance of the magnetic field over the target region (chosen
to have a diameter of 100 µm in the following calculations) and B0 is the magnitude of
the offset field in the centre of the target region (see Fig. 8.10). The parameter s gives us
a convenient way to express the required current stability, making the choice of a suitable
power supply straightforward.

We decided to use the Feshbach coils in anti-Helmholtz configuration to create a
strong gradient and use the gradient coil to provide the offset field130. Fig. 4.20 shows the
location of the gradient and Feshbach coils around the science chamber. We determine
the optimum offset current, i.e. the current that maximises s in Eq. 8.4, numerically.
Fig. 8.11 shows s as a function of the gradient coil current Igrad at a Feshbach coil current
of 150 A.

The gradient coil current at which s is maximized is 34 A, corresponding to an offset
field of 51 G and a field gradient of 16.3 G/cm. The Feshbach and gradient coil field
gradients are assumed to have equal sign.

The current through the Feshbach coils provides a strong gradient and does not have
to be particularly stable. However, the current in the gradient coil, which creates the
offset field, has to be stable to less than 59 ppm. Fortunately, power supplies that can
achieve this current stability are commercially available (see section 4.4) and we do not
have to implement a current stabilization scheme as in [179, 184].

130This might seem counter-intuitive given the nomenclature. The Feshbach coil can be switched from
Helmholtz to anti-Helmholtz configuration via an H-bridge (see section 4.4).
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+

Figure 8.10 – Left: curvature of B-field magnitude vs radial distance (r) for the gradient
coil at 34 A only (top), Feshbach coil in quadrupole configuration at 150 A only (centre),
and gradient coil and Feshbach coil combined (bottom). The field at r = 0 mm (on-axis)
is subtracted. Note that the offset field of the gradient coil causes the combined field of
gradient coil and Feshbach coil to have a smaller radial curvature than the Feshbach field
itself. Right: combined magnetic field of the gradient coil and Feshbach coil as a function
of radial distance for the target layer and adjacent layers. The magenta-coloured region
indicates the target region for the LZ-sweep. Fluctuations in the offset magnetic field
(B0) can cause adjacent layers to move into the region affected by the LZ-sweep, causing
imperfect single-layer preparation.

Figure 8.11 – Required current stability for single-layer selection as a function of gradient
coil current. The Feshbach coil is in anti-Helmholtz configuration with a current of 150 A
(field gradient of 91.5 G/cm).
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8.5 Microscope objective

Our microscope objective has a numerical aperture of 0.75 with a working distance of
6 mm and was made by Special Optics. We had a 4 mm diameter hole drilled through
the objective131 to allow absorption imaging light and the vertical lattice to pass through
without clipping the lenses. The objective has a diameter of 60 mm and a height of
50 mm (see Fig. 8.12). Its housing is made of Macor, which has a low thermal expansion
coefficient, low outgassing rate, is non-magnetic, and does not conduct electricity. Non-
conductivity prevents eddy currents from being induced in the objective when ramping
the Feshbach field. The objective lenses are AR coated at 767 nm-780 nm and 532 nm and
the objective performance is optimized for 532 nm and 768.5 nm. We intend to use 532 nm
light to project potentials onto the atoms on a length-scale of the lattice constant. Our
calculated minimum projected feature size is ∼350 nm.

Figure 8.12 – Left: sketch of objective. All dimensions are in millimetres. The indicated
dimensions are correct; the lenses are different from the actual objective for proprietary
reasons. The green dot indicates the objective’s focal point. Two pillars in the vacuum
chamber support the objective via its 4 mm ledge. Right: objective placed in the science
chamber.

The point spread function (PSF), depth of field (DOF) and field of view (FOV) were
numerically determined in Zemax132. To quantify our resolution we use the Sparrow limit
(defined above) and find a minimum resolution of 478 nm and a FWHM of the PSF of
489 nm. We calculate that the resolution decreases with increasing distance from the
objective axis (see Fig. 8.13). We define the FOV as twice the distance between the
objective axis and the radius at which the resolution increases to 614 nm, i.e. the effective
lattice spacing of each of the three fluorescence images. The DOF is defined similarly as
the distance between two planes either side of the objective’s focal point and perpendicular
to the objective axis which have a Sparrow limit of 614 nm. We calculate the FOV and

131Also done by Special Optics.
132Many thanks to Dr Tiffany Harte who performed the Zemax calculations and provided data for this

chapter.
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DOF to be 180 µm and 2 µm, respectively. To bring the atoms into the focus of the
objective, we will have to carefully move the lattice, since the objective is not moveable.

We tested the resolution of the objective by imaging a USAF test target133 and a
custom star test target134. Fig. 8.13 show images of the USAF test target taken with the
objective outside of vacuum.

Figure 8.13 – Left: calculated Sparrow limit (red) and PSF FWHM (blue) as a function
of distance from the objective axis. We define the FOV as the distance at which the
Sparrow limit increases to 614 nm. Top right: scanning electron microscope image of a
USAF test target [226], similar to the one we used for resolution tests. Bottom right:
image of a USAF test target with our objective using incoherent light at 767 nm. The
white bar indicates the length scale in the image. Contrast is fully lost for feature sizes
smaller then ∼350 nm.

Our star test consisted of a substrate patterned with groups of microscopic holes whose
diameters ranged from 270 nm to 650 nm. For the group with an average hole diameter
of 350 nm, we found that the average FWHM of the imaged intensity distribution is on
the order of 550 nm, which, when deconvolved with the hole size gives a PSF FHWM of
∼510 nm, which is very close to the simulated value (see [140] for more information).

In addition to the resolution tests, we measured the alignment of the objective lenses
via an interferometric probe. Our setup for interferometric alignment is adapted from
a technique used at Harvard [227]. The idea is to combine an incoherent source with
a delay line so that only reflections from two select optical surfaces can interfere with
each other. From the resulting interference pattern, we can reconstruct the relative angle
between the lenses in the objective and between the objective and the science chamber

133Newport HIGHRES-1.
134Kindly provided by the Cavendish NanoPhotonics group.



8.5 Microscope objective 161

viewports. More information about the exact implementation of our incoherent source
and interferometric alignment can be found in [228].

The performance of the objective depends sensitively on the relative angle between the
objective and the vertical lattice planes, or, equivalently, between the objective and the
bottom viewport. We therefore ensured that the alignment between the objective and the
bottom viewport was within 0.1◦ after we placed the objective in the science chamber135.
Before we baked the science chamber, we recorded all discernible interference patterns
between the bottom viewport and the objective, and between internal surfaces of the
objective. When we performed the same measurements after the bake, we found that the
interference patterns were unchanged.

135Our Zemax simulations indicate a maximum acceptable tilt angle of 0.5◦.
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9 Conclusion & outlook

Despite the vast abundance of theoretical work dedicated to elucidating quantum phases
of the kagome lattice, experimental implementations have so far been scarce. To rec-
tify this discrepancy, we have built a versatile quantum simulator to study bosonic and
fermionic quantum many-body physics in optical triangular, honeycomb, and kagome lat-
tices. While features are still being added to make our machine even more capable, we
have already shown that we can create superfluids and Mott insulators of 87Rb and 39K
in the optical triangular and kagome lattices and can create negative temperature states
in the triangular lattice. These achievements make our machine unique among current
optical lattice quantum simulators.

This thesis serves as both a technical manual detailing the theoretical foundations
(chapter 2), design (chapter 4), operation (chapter 5 & chapter 6), and current capabil-
ities (chapter 7) of the Cambridge kagome machine, and as a guide for future scientific
experiments (chapter 3) and apparatus upgrades (chapter 8).

We will briefly discuss the current goals and possible future developments in the Cam-
bridge kagome lab.

First measurements We are currently working on reducing the entropy in the negative
temperature state, which we attribute to easily fixable technical noise. Our first objective
is to reduce entropy to the point where we see negative temperature superfluid peaks in
the triangular lattice. We expect images similar to those observed in [47]. Provided our
lifetimes are long enough, we will then move on to negative temperatures in the kagome
lattice and check via band-mapping whether we can populate the third band. Atoms in the
flat band should condense at the Γ point for shallow lattices and form a trion superfluid
for deeper lattices. These signatures are readily observable in momentum space. The
BEC at Γ in the third band breaks the Z2 symmetry associated with the interchange of
vortices with anti-vortices. This should manifest itself in the momentum distribution,
provided we can measure the momentum distribution of single layers or manage to sync
the phase between different layers. We will also want to explore how phase coherence
builds up in the triangular and kagome lattices when melting the negative temperature
Mott insulator and should be able to measure the BKT transition temperature.

To prepare the K BEC in the flat band, we could make use of a Wilson line. If we want
to stabilize the K BEC, we will have to find a way to prepare a negative temperature state
in addition to traversing the Wilson line. At this point, we can measure the geometric
properties of flat bands. We should be able to measure the fraction of non-condensed
atoms in the flat band as a function of interaction strength and as a function of quantum
distance to the K BEC. Additionally, we might determine the Bogoliubov spectrum via
e.g. Bragg spectroscopy experiments [229, 230]. This would give us direct access to the
speed of sound which is predicted to depend on the flat band quantum metric and should
scale linearly with interaction strength [152]. To make use of Wilson lines, we will have
to think carefully about how to do frequency ramps (for transport in momentum space)
while keeping the relative phase of the kagome lattice locked. We think that our existing
hardware will suffice for these measurements.
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Medium term developments Once we have exhaustively characterized the negative
temperature state at unity filling, we will attempt to study the supersolid phase of the
flat band at low densities. Preparing low densities in the flat band could prove to be
tricky as our negative temperature protocol requires a n=1 Mott insulator. To prepare
lower density samples in the flat band, we could prepare a n=1 Mott insulator at positive
temperature with some initial confinement. When melting the Mott insulator again in the
negative temperature regime we can adjust the overall density via the final trap frequency.
In this way, we use the freedom to choose the magnitude of confinement to adjust the
effective volume and, consequently, the particle density. Another option would be to lower
the density by selectively removing atoms via additional light potentials such as a digital
micromirror device (DMD) or the imaging lattice. With the imaging lattice, we should
be able to remove five out of every six atoms. The resulting density is well in the regime
of the supersolid phase [84]. Our DMD will allow us to selectively remove any desired
subset of atoms in the lattice and will therefore enable us to vary the density between
experimental runs.

We can measure both CDW and superfluid order via TOF images. We will want to
measure their relative weights in the supersolid state as a function of particle density, in-
teraction strength, and temperature. We are also especially interested in the intermediate
density regime, between those discussed in [88, 152] and [84], and want to measure how
high the boson density has to be for CDW order to vanish.

For the CDW it would be particularly useful to measure local correlators. For this we
will have to implement fluorescence imaging with the high-NA objective. We are currently
missing a Raman laser for RSC and are still missing the imaging lattice laser. However,
even without the imaging lattice it might be possible to measure CDW order, since the
unit cell of the CDW is much larger than the lattice spacing. We should also be able to
resolve low-density samples in the kagome and triangular lattices.

For high-density samples we will likely need the imaging lattice. In addition, we will
install an accordion lattice [231], which has already been tested without the atoms [232].
The accordion lattice will act as an intermediate stage between dipole trap and lattice
and will boost the atom number within the single plane in the focus of the objective.

Should the imaging lattice not work as expected, we will likely replace our current
532 nm/1064 nm lattice with a guide star lattice (see appendix B). Alternatively, it
might be possible to use recently developed, machine learning-based, single image super-
resolution techniques [233, 234] to achieve single-site resolution in spite of the lattice
spacing being smaller than the diffraction limit. With the objective in place, the SHG
producing plenty of 532 nm power, and the single-layer selection hardware installed, we
are in an excellent position to upgrade to fluorescence imaging soon.

Long term experiments In the long term we will move on to 40K to study fermionic
physics in the triangular, honeycomb, and kagome lattices. The path to creating degener-
ate Fermi gases of 40K is relatively straightforward, considering that we can already create
MOTs. The next steps are achieving sympathetic cooling in the magnetic trap, optical
transport, and evaporative cooling in the science chamber. To load the flat band of the
kagome lattice we can either use negative temperatures, as in the bosonic case, or set the
Fermi level to lie in the flat band by controlling the particle density [235]. This will allow
us to prepare flat band fermionic superfluids and, potentially, to test BCS theory in flat
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bands.
Once we are able to load fermions into the flat band, we could employ Floquet shaking

to induce complex next-to-nearest neighbour tunnelling and engineer a topological flat
band [19, 117]. This would give us access to fractional Chern insulator and Laughlin
state physics [110, 111]. Laughlin states should be discernible from density correlations
which can be resolved by the microscope [236, 237].

For a balanced spin mixture at half filling and strong repulsive interactions, we expect
to create an effective spin-1/2 Heisenberg antiferromagnet (HAFM). With the microscope
we can measure in-situ spin-correlations and spin structure [20]. It would be especially
interesting to measure how the staggered magnetization evolves as temperature is reduced
in the kagome lattice. The ground state is expected to be an RVB-state or spin-liquid
lacking long-range order. While we will likely not be able to prepare the ground state due
to the prohibitively small singlet-gap [129], we might be able to make statements about the
emergence of long-range order in the kagome lattice by comparing its behaviour with that
in the triangular lattice. The triangular lattice HAFM is expected to have finite staggered
magnetization at low temperatures [238], in contrast to the kagome lattice HAFM.

Frustrated systems suffer from the sign problem [239] and so are not easily simulated on
classical computers. Our measurements could help to benchmark and improve numerical
algorithms designed for frustrated systems, similar to what has already been done for
square lattices [12]. We should also be able to prepare and probe doped systems [240],
which are likely too complex to simulate classically.

Other experiments Finally, while we have focussed most of our discussion on the
kagome lattice, we can also perform experiments with the triangular and honeycomb lat-
tices. In the near future we will map the superfluid to Mott insulator transition for the
honeycomb lattice and reconcile the measured transition point with the theoretically ex-
pected value. This measurement, along with the triangular and kagome transition points
will serve to further calibrate and benchmark our quantum simulator. We might also
decide to study the trimerized kagome lattice [138], which we can easily do by changing
the polarization of the 1064 nm lattice. If we are able to prepare fractional fillings, as we
will in any case need to do for supersolid physics, we should be able to study the fractional
Mott insulator transition on the trimerized kagome lattice [241].
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A Optics glossary and red table optics layout

PD1064

PD532

Datasheet:	EL-16-40-TC(5D)
Electrically	tunable	lens
Update:13.01.2022

Copyright	©	2022Optotune

Electrical	connection
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Figure3:Electricalflexconnectionsof	theEL-16-40-TC	basic	version	without	adapters.
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Figure A.1 – Component glossary
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Figure A.2 – Red table optics layout.
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B Guide star lattice

In this section we introduce a scheme that would allow for super-resolution microscopy
of the kagome lattice without needing an additional imaging lattice. The key idea is
to implement the kagome lattice with a long lattice wavelength close to the 4p → 3d
transitions of potassium around 1170 nm-1178 nm. During the imaging process, atoms
are pinned in the short-wavelength lattice and the long-wavelength lattice is used to shift
the imaging transition out of resonance on two out of every three sites. In this way
we can ensure that only every third site fluoresces. The full distribution is recovered
by taking three images, each with an effective lattice spacing that is well above the
resolution of our imaging system (see Fig. B.1). During exposures, to change which
sublattice is imaged, the long-wavelength lattice is moved by changing the phases of the
lattice beams. Alternatively, a sublattice can be selected by simply switching off one of
the long-wavelength lattice beams.

Figure B.1 – Super-resolution imaging of the kagome lattice. Each exposure captures
the fluorescence from one sublattice (A, B, or C sites). After three exposures, the full
atom distribution can be reconstructed.

Deciding on a lattice wavelength To narrow down which lattice wavelength is opti-
mal for this super-resolution scheme, we will impose a number of constraints.

1. The imaging transition should be on the D1 line and the Raman beam on the
D2 line. In section 8.1 we motivated why this configuration is beneficial. This
condition constrains the long-wavelength lattice to be a few nm detuned from the
4p1/2 → 3d3/2 transition in potassium (∼1169.3 nm).

2. The kagome lattice should be implemented with retro-reflected lattice beams. This
increases our lattice depth compared to the interfering case and gives us more flex-
ibility due to the extra phase degrees of freedom.

3. Atoms on imaged sites should be trapped in both the ground (4s1/2) and excited
(4p1/2) states.
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4. Atoms should sit at zero intensity in both the ground and excited states to avoid
scattering of lattice light. This constrains the wavelength of the long-wavelength
lattice to be smaller than that of the 4p1/2 → 3d3/2 transition, since the polarizability
for the 4p1/2-state is negative in this region (see Fig. B.2)136. This condition also
ensures that the potential that atoms in the 4s1/2 state experience is unaffected by
the long-wavelength lattice.

5. The shift of the imaging transition on unimaged sites should be several tens of
MHz. This constrains the long-wavelength lattice to be within 1 nm-2 nm of the
4p1/2 → 3d3/2 transition

A long-wavelength lattice at 1168 nm fulfils all these constraints and we will proceed to
calculate various properties of a retro-reflected kagome lattice with lattice wavelengths of
584 nm and 1168 nm.

Figure B.2 – Polarizabilities of the potassium 4s1/2-state (red) and 4p1/2-state (blue)
around 584 nm (left) and 1168 nm (right). At 1168 nm, the polarizability in the 4p1/2 is
−475 times the polarizability in the 4s1/2 state.

As we can see in Fig. B.2, the polarizability of the 4s1/2- and 4p1/2-states is inverted at
1168 nm. This means that the long lattice is a repulsive triangular lattice for the s-state,
which in combination with the short lattice, forms a kagome lattice. For the 4p1/2-state
however, the long lattice is an attractive triangular lattice, which is the configuration
we desire for imaging. We thus do not have to invert the potential between physics and
imaging, because the polarizations are such that we automatically get the kagome lattice
in the s-state and a site-selective lattice in the p-state. Note that the same holds true
for the interfering kagome lattice where we are not able to invert potentials via a phase
change.

Calculations The lattice and sublattice spacings of the 584 nm/1168 nm kagome lattice
are 337 nm and 674 nm, respectively. Fig. B.3 shows the calculated tunnelling rate and
band gap as a function of lattice depth and lattice beam power.

136Note that while a retro-reflected triangular lattice allows us to invert the potential, the lattice has to
be blue-detuned to create a triangular lattice potential where the lattice sites have zero intensity.
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Figure B.3 – Tunnelling rate, t, (left) and band gap, ∆, (right) as a function of lattice
depth and lattice beam power for the 584 nm/1168 nm, retro-reflected kagome lattice. We
assume lattice beam waists of 100 µm × 50 µm (horizontal × vertical) and equal lattice
depths for the short- and long lattice, i.e. sS = sL.

Since we are working with a retro-reflected lattice and the polarizability of potassium is
∼50% larger at 584 nm than at 532 nm, we only require ∼40% of 584 nm power compared
to 532 nm to achieve similar tunnelling rates.

Even for low 1168 nm powers, the imaging transition can be shifted by several MHz
on unimaged sites. For a long lattice with 55 mW per beam we calculate that the imaging
transition on unimaged sites is shifted by roughly 10Γ 137, while the imaged sites remain
unaffected. During imaging it should thus be possible to completely suppress fluorescence
on unimaged sites. This technique can be easily adapted to other atomic species (provided
the appropriate wavelengths are available) and other superlattice geometries.

An open question is whether there are lasers that can emit sufficient power at 1168 nm
to get a sufficient amount of frequency-doubled 584 nm power. Fortunately, commercial
lasers for 589 nm/1178 nm already exist138, which are commonly used as laser guide stars
on large terrestrial telescopes, and can deliver >20 W at 589 nm. It should therefore also
be possible to construct a laser that can deliver similar powers at 584 nm/1168 nm.

Raman-Selective Imaging One could also target the Raman transition instead of the
imaging transition to selectively suppress fluorescence from unimaged sites. The idea
here is to shift the sidebands of imaged and non-imaged sites with respect to each other
and ensure that the Raman lasers only target the sidebands of the imaged sites. The
shift between sideband frequency and carrier is equal to the on-site trap frequency (see
Fig. B.4). Shifting the sidebands between imaged and non-imaged sites thus requires the
ability to selectively change the trap frequency of a subset of lattice sites. In a superlattice
(and in particular, in the kagome lattice), the long-wavelength lattice can be used to shift
the trap frequencies of a subset of sites in the short-wavelength lattice. As discussed
previously, quantum gas microscopes require some process that ensures that the atoms
are fluorescing, i.e. that atoms are pumped into the imaging transition. If the red sideband
is driven exclusively, eventually atoms will end up in the motional ground state and will

137Γ ≈ 6 MHz is the natural linewidth of the imaging transition.
138Toptica SodiumStar
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become dark to the Raman transition, which in turn prevents them from being pumped
into the ground state of the repump transition. In this case fluorescence quickly ceases
and not enough photons are scattered to image the atom distribution. A common fix
to this problem is to broaden out the Raman transition or shift the Raman resonance
somewhere between the red sideband and the carrier transition. While the red sideband
is still predominantly driven, occasionally atoms will be excited via the carrier transition
and be repumped, causing fluorescence.

Figure B.4 – Raman-selective Imaging. In a commensurate superlattice such as the
kagome lattice, it is possible to change the curvature of a subset of short lattice sites
with a long lattice. As the long lattice depth is increased, the HO spacing of sites in
the targeted sublattice is increasingly shifted away from other sites (left). This can be
used to have selected sites fluoresce more strongly than sites that are not in the selected
sublattice (right). Here, S is the Rabi frequency of the Raman transition and S1/S2 is the
ratio of Rabi frequencies between imaged and unimaged sites. We assume parameters of
Γ = 10 kHz, f1 = 220 kHz, f2 = 250 kHz, η = 0.2 (Lamb-Dicke parameter) and n = 2
(motional quantum number).

For Raman-selective imaging it is paramount to avoid targeting the carrier transition, as
it is independent of the trap frequency and thus site-independent. We therefore need to
find a way to keep the Raman cycle of imaged sites going without targeting the carrier
transition. One way in which this can be done is to have two pairs of Raman beams,
one targeting the red sideband, the other the blue sideband. A weak drive on the blue
sideband (weak with respect to the red sideband drive) would ensure that targeted atoms
are continually pumped into the ground state of the repump transition. The blue sideband
is evidently trap-frequency dependent. Thus it is possible to have atoms on imaged sites
continually fluoresce while suppressing fluorescence on unimaged sites.
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C Lattice curvature

One of the main advantages of using optical lattices for quantum simulation is that the
Hamiltonian can be calculated a priori with a very high degree of accuracy. Like any real
system, however, optical lattices suffer from unwanted inhomogeneities such as lattice
curvature139. As we already saw in section 3.1.2, lattice curvature can be regarded as an
additional term in the Bose-Hubbard model,

HBH = −t
∑
〈i,j〉

â†i âj +
U

2

∑
i

n̂i(n̂i − 1) + V0

∑
i

n̂ii
2, (C.1)

where the magnitude of V0 is determined by the curvature of the lattice. To create negative
temperatures, it is vital to know the amount of lattice curvature we should expect and
what means we have to counteract it.

C.1 Square lattice

In a square lattice with lattice beams propagating along the x and y directions, the
curvature along x (y) is caused by the lattice beam propagating along y (x). We can
distinguish between lattice curvature due to an energy offset of the lattice sites and lattice
curvature caused by the inhomogeneity of the on-site, zero-point energy [40]. Both can
be approximated as being harmonic and the magnitude of the third term in the Hubbard
model is thus given by the sum of the two contributions. However, as we will derive further
on, the magnitude of the two curvatures (quantified by their harmonic trap frequency)
scale differently with lattice beam power.

Figure C.1 – Left: potential of a red-detuned square lattice. The lattice curvature along x
is caused by the lattice beam propagating along y. The dashed line is a Gaussian envelope.
The lattice curvature is exaggerated for illustrative purposes. Right: potential of a blue-
detuned square lattice. Since the potential minima are the points of zero intensity, a
blue-detuned lattice does not suffer from lattice curvature due to inhomogeneous energy
offsets of the lattice sites

Lattice curvature due to energy offsets A schematic of how the lattice site offset
energy changes when the lattice beams are Gaussian is shown in Fig. C.1. Blue-detuned
lattices do not suffer from lattice curvature caused by energy offsets. We will thus derive

139As mentioned previously, we use the term ‘lattice curvature’ exclusively to describe large-scale vari-
ations of the lattice potential, not curvature on the length-scales of individual lattice sites.
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lattice curvature only for red-detuned lattices. The potential of a red-detuned square
lattice can be written as

V (x, y) = −V0

(
cos (kx)2 e−

2y2

w2 + cos (ky)2 e−
2x2

w2

)
, (C.2)

where k is the magnitude of the lattice beam wavevector and w is the lattice beam waist.
As can be seen in Fig. C.1, the energy offset of lattice sites is given by the Gaussian
envelope of the lattice beams, i.e.

Eoff (x, y) = −V0

(
e−

2y2

w2 + e−
2x2

w2

)
. (C.3)

For small x, y, this expression can be approximated as a harmonic potential:

Eoff (x, y) ≈ −V0

(
1− 2y2

w2
+ 1− 2x2

w2

)
!

= c+
1

2
mω2

off(x2 + y2)

⇒ ωoff =
1

w

√
4V0

m
∝ V

1
2

0 .

(C.4)

Lattice curvature caused by lattice site offset energy is thus confining140 and the associated

trap frequency scales as V
1
2

0 .

Lattice curvature due to on-site energy The second contribution to lattice curva-
ture arises due to the reduction of on-site energy with decreasing lattice depth. Starting
from the optical lattice potential,

V (x, y) = −V0

(
cos2 (kx) e−

2y2

w2 + cos2 (ky) e−
2x2

w2

)
, (C.5)

the on-site trap frequencies can be found by expanding the cos2 terms,

−V0e
− 2y2

w2 cos2 (kx)
kx�1
≈ −V0e

− 2y2

w2 (1− k2x2)
!

= c+
1

2
mω2

on−site,xx
2

⇒ ωon−site,x =

√
2V0k2

m
e−

y2

w2 ,

(C.6)

and correspondingly for ωon−site,y. The total on-site energy is

Eon−site =
~
2

(ωon−site,x + ωon−site,y) =
~
2

√
2V0k2

m

(
e−

x2

w2 + e−
y2

w2

)
. (C.7)

It is apparent that the on-site HO ground-state energy drops off as the distance from the
centre is increased. This second contribution to lattice curvature thus creates an anti-
confining potential, regardless of whether the lattice is blue or red detuned. To quantify
the magnitude of curvature, we can again expand the function in Eq. C.7 into powers of
x and y and extract a harmonic trap frequency which we will call ωon−site,

140since the energy increases with distance from the centre.
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Eon−site =
~
2

√
2V0k2

m

(
e−

x2

w2 + e−
y2

w2

)
≈ ~

2

√
2V0k2

m

(
1− x2

w2
+ 1− y2

w2

)
!

= c− 1

2
mω2

on−site(x
2 + y2)

⇒ ωon−site =
1

w

(
2V0~2k2

m3

) 1
4

.

(C.8)

We can see that the trap frequency associated with the on-site energy scales as V
1
4

0 . It is
generally much smaller than confinement due to offset energy.

Having determined how different lattice curvature contributions scale with the lattice
potential depth (and thus power), we can move on to look at the triangular, honeycomb,
and kagome lattices. Before calculating the curvatures for the kagome lattice, we will
calculate them for the short-wavelength lattice (triangular) and long-wavelength lattice
(honeycomb) separately. For the entirety of this chapter, we will assume beam waists of
wh×wv = 100 µm× 50 µm, where wh and wv are the horizontal and vertical beam waists,
respectively. All results are for 39K.

C.2 Triangular lattice

The blue-detuned triangular lattice is created using three interfering 532 nm beams and
the potential is given by

Vtri(r) = VS

∣∣∣∣∣
3∑
j=1

pje
ikj ·re

−
(pj ·r)2

w2
h

∣∣∣∣∣
2

, (C.9)

where p and k are as in section 2.1 and wh is the horizontal lattice beam waist (assumed
to be equal for all three lattice beams). We then express the lattice depth in terms of
power P532, VS = 2U532P532/(πwhwv) > 0.

Figure C.2 – Left: on-site energy as a function of distance from the centre of the lattice,
for a lattice beam power of 0.5 W. The red line shows a harmonic fit used to extract an
anti-confinement frequency. Right: anti-confinement frequency as a function of 532 nm
lattice beam power. The red line is a guide to the eye which is proportional to P

1
4 .
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The offset and on-site energies are determined numerically by calculating the values and
curvatures of Eq. C.9 at the lattice sites (see Fig. C.2). We extract the on-site trap
frequency by finding the eigenvalues of the Hessian of the potential at the lattice sites
and use Eq. C.7 to calculate the on-site energies [177]. The lattice curvature behaves
exactly as expected from the blue-detuned square lattice. The offset energy is constant
since the lattice sites are located where the intensity is zero. The anti-confining potential
due to inhomogeneous on-site energies is still present however.

Fig. C.2 shows that the on-site anti-confinement is nearly perfectly harmonic over
small distances from the trap centre. For larger distances, the harmonic approximation
starts to increasingly deviate from the exact result (see Fig. C.3) due to higher-order
terms in the Gaussian lattice beam intensities.

Figure C.3 – On-site anti-confinement in the triangular lattice for a lattice beam power
of 0.5 W over a large distance. The black line shows the numerically calculated on-site
trap frequency for ∼30,000 sites in the centre of the lattice. The red line is a harmonic
fit to the on-site energies of all sites within a radius of 5 µm from the centre of the lattice.

Even for distances up to 35 µm, corresponding to several tens of thousands of sites, the
harmonic approximation is very accurate.

C.3 Honeycomb lattice

The long-wavelength honeycomb lattice is formed by three interfering red-detuned lattice
beams. The potential can be written as

Vhon(r) = VL

∣∣∣∣∣
3∑
j=1

pje
ikj ·re

−
(pj ·r)2

w2
h

∣∣∣∣∣
2

, (C.10)

where VL = 2U1064P1064/(πwhwv) < 0 and P1064 is the power of each lattice beam. The
numerical results are shown in Fig. C.4. We determine the on-site and offset energies
analogously to the triangular lattice case.

As expected from our treatment of the square lattice, the red-detuned honeycomb
lattice shows a harmonic increase of offset energy and a harmonic decrease of on-site
energy for small distances from the centre of the lattice. The magnitudes of both curvature
components (expressed in HO frequencies) also show the same scaling with power as seen
in the square lattice. As shown in Fig. C.5, the harmonic approximation is very accurate
at large distance for both on-site energies as well as the offset energies.
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Figure C.4 – Top (bottom) left: offset (on-site) energy as a function of distance in the
honeycomb lattice, for a lattice beam power of 0.5 W. The red line is a harmonic fit used
to extract ωoff (ωon−site). Top (bottom) right: ωoff (ωon−site) as a function of lattice beam

power P . The red line is a guide to the eye with a P
1
2 (P

1
4 ) dependence.

Figure C.5 – Left (right): offset (on-site) energy over large distances from the centre of
the honeycomb lattice for lattice beam powers of 0.5 W. Black lines show the numerically
calculated values of the central ∼17,000 sites. Red lines are a harmonic fit to points
within a distance of 5 µm of the centre.

C.4 Kagome lattice

Now that we have discussed the (red-detuned) honeycomb and (blue-detuned) triangular
lattices, we can move on to the combination of the two, i.e. the kagome lattice. The
potential is given by
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Vkag(r) = VS
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where k is the wavevector of the long-wavelength lattice. As seen in Fig. C.6, the kagome
lattice exhibits both types of lattice curvature.

Figure C.6 – Top (bottom) left: offset (on-site) energy as a function of distance in the
kagome lattice, for lattice beam powers of P532=0.5 W and P1064=0.22 W. The red line is
a harmonic fit and is used to extract a trap frequency, expressed as ωoff (ωon−site). Top
(bottom) right: ωoff (ωon−site) as a function of lattice beam power P532. The red line is a

guide to the eye with a P
1
2 (P

1
4 ) dependence. The lattice depths are chosen to be equal

for the 532 nm and 1064 nm beams. Therefore P1064 ≈ 0.44P532

We see the typical P
1
2 (P

1
4 ) dependence of trap frequencies caused by inhomogeneous

offset energy (on-site energy). It is apparent in Fig. C.6 that the spread of both the offset
energy and on-site energy is non-zero, whereas there is no spread in the pure triangular
and pure honeycomb case. This means that compensation cannot be done perfectly and
that the lattice will always suffer from small inhomogeneities. Fig. C.7 shows how the
on-site and offset energies evolve with distance. The offset energy has a severe spread for
large distances from the centre of the lattice.
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Figure C.7 – Left (right): offset (on-site) energies for the central ∼33,000 sites in the
optical kagome lattice (black points). The red lines are harmonic fits to sites within 5 µm
of the lattice centre.

Compensating lattice curvature We found that in the honeycomb and kagome lat-
tices, the confining potential due to offset energy is roughly an order of magnitude larger
than that due to the on-site energies. To create a negative temperature state we also need
a vertical lattice, which for our machine has a wavelength of 1064 nm. The vertical lat-
tice thus creates additional confinement. For a 30ER deep vertical lattice, the horizontal
confinement is ∼60 Hz 141. Additionally, the dipole trap creates a confinement of ∼35 Hz
at 0.5 W (see section 6.4). Thus, in our machine, confinement is generally much stronger
than anti-confinement. To create anti-confining potentials for negative temperatures, we
use the blue-detuned vertical dipole beam. We can write the total confinement as

V0 =
1

2
m
∑
i

ω2
i , (C.12)

with

ω2
tot(P ) =

∑
i

ω2
i = ω2

kag,off − ω2
kag,os + ω2

vert + ω2
dip − ω2

vd(P )

= ω2
0 − ω2

vd(P ).

(C.13)

Using

ω2
vd(P ) = αP (C.14)

we can write the cumulative confinement (expressed as a trap frequency) as

ωtot(P ) = ω0

√
1− P

P0

, (C.15)

where P0 = ω2
0/α is the power needed in the vertical dipole beam to fully compensate the

confining potentials. Fig. C.8 shows how the total trap frequency evolves as a function of
the vertical dipole beam power.

141The vertical lattice has a design waist of 100 µm.
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Figure C.8 – Total confinement as a function of vertical dipole beam power. Positive
(negative) values of ω indicate a cumulative confining (anti-confining) potential
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D Wilson lines in the kagome lattice

In this chapter we will discuss Wilson lines in the kagome lattice and how the results
compare with the honeycomb lattice. We will first cover the honeycomb lattice Wilson
lines to recover the results obtained in [175] and then move on to calculate the Wilson
lines in the kagome lattice. Wilson lines can be measured in cold-atom experiments via
fast transport in momentum space. For sufficiently fast ramps from one momentum to
another, the dynamical contribution to wave function evolution is negligible compared
to the geometric contribution [175]. Thus, Wilson lines encode information about the
geometric properties of a Bloch band.

In a lattice model in the tight-binding limit, the Wilson line can be written as an
overlap between two Bloch states [175, 242],

Wmn
q0→q1

=
〈
unq1

∣∣umq0

〉
, (D.1)

where
∣∣umq0

〉
is the Bloch state with momentum q0 in the mth band. Thus,

∣∣Wmn
q0→q1

∣∣2
is equal to one minus the squared quantum distance between the two Bloch states (see
section 3.3.1). For this chapter we will only be interested in Wilson lines that connect to
the Γ point142,

Wmn(q) := Wmn
Γ→q. (D.2)

We will only show tight-binding results. In the limit of deep optical lattices, the tight-
binding result is recovered in both the honeycomb [175] and kagome143 lattices.

D.1 Honeycomb lattice

The eigenstates of the honeycomb lattice can be written as [160]

u±q =
1√
2

(
∓1
eiΘq

)
. (D.3)

Fig. D.1 shows |W11(q)|2 for the honeycomb lattice. Since we are dealing with a two-band
model we can write

|W12|2 = 1− |W11|2 , (D.4)

i.e. whatever population is not in the ground (first) band is necessarily in the second band.

142Since we start from a BEC at Γ, we generally only care about the overlap between the BEC and
other states.
143based on unpublished numerical results.
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Figure D.1 – Left: |W11(q)|2 = |W11(qx, qy)|2 as a function of momentum. Reciprocal
unit cells are drawn in white. The path in reciprocal space along which |W11|2 is plotted
on the right is indicated with arrows. Right: |W11|2 plotted along the path indicated
on the left plot. Note that this is the same result obtained in [175] and that the same
behaviour would be obtained if the path were straight instead of triangular.

D.2 Kagome lattice

The kagome lattice has three bands instead of two, which makes the maths somewhat
more complicated. To make the calculation feasible it is important to find a convenient
expression for the eigenstates of the kagome lattice, after which calculating the Wilson
lines is straightforward using Eq. D.1. The eigenvalues and eigenvectors of the three
tight-binding kagome bands are given by
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2
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(D.5)

where N1, N2, N3 are normalization factors, t is the tunnelling rate and θq = arg (γ (q)).
The variables {ni}, γ (q) are defined as in [243]. Note that we use a different convention
for expressing the kagome Bloch states than in section 3.4. This is because we were only
concerned with the flat band eigenstates which, on their own, can be expressed in a more
compact way.

Using these expressions for the kagome lattice eigenstates, we obtain Wilson lines as
shown in Fig. D.2 and Fig. D.3 .
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Figure D.2 – Kagome Wilson lines |W1i|2 in momentum space. Images on top show
Wilson lines in 2D. Plots on the bottom show Wilson lines along straight path indicated
in the 2D plots. In the honeycomb lattice this path is equivalent to the triangle path.

Figure D.3 – Kagome Wilson lines |W1i|2 in momentum space. Images on top show
Wilson lines in 2D. Plots on the bottom show Wilson lines along triangle path indicated
in the 2D plots. Note that, in contrast to the honeycomb lattice, the evolution is different
compared to the straight path.

It is apparent that the Wilson lines in the kagome lattice obey a different symmetry than
in the honeycomb lattice. The Wilson line in the kagome lattice is 2-BZ periodic, not 3-BZ
periodic as with the honeycomb lattice. This also means that the state after traversing a
triangle path is not the same as the state after traversing a straight path of 3 BZs (see
Fig. D.2 and Fig. D.3). Note that there are now three bands involved instead of two,
meaning that the relation |W12|2 = 1−|W11|2 no longer holds. This relation is superseded
by
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∑
i

|W1i|2 = 1. (D.6)

One interesting question that arises when considering the kagome lattice Wilson lines is
if there is a path that connects the ground state to the flat band (especially while not
crossing any degeneracies). A suitable path is shown in Fig. D.4

Figure D.4 – Top: Wilson lines |W1i|2 in momentum space. The drawn path connects the
Bloch state at Γ in the lowest band to the Bloch state at K in the flat band. Transporting
atoms along this path should allow for perfect transfer of atoms from the ground state to
the flat band.

This path connects the ground state with the flat band without crossing any degenera-
cies144. It should therefore be possible to prepare a cloud in the flat band of the kagome
lattice via this carefully chosen non-adiabatic path in reciprocal space. For non-interacting
clouds this should be exact. For interacting clouds the spread in the momentum distri-
bution will lead to fidelities less than one [158].

144The degeneracies are at Γ for the second and third band & K, K′ for first and second band (Dirac
points).
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Cooling to Bose-Einstein Condensation in a Dipole Trap”, Physical Review Letters
122, 203202 (2019) (cited on page 2).
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[118] A. G. Grushin, Á. Gómez-León, and T. Neupert, “Floquet Fractional Chern Insu-
lators”, Physical Review Letters 112, 156801 (2014) (cited on page 8).

[119] U. Schneider, L. Hackermüller, S. Will, T. Best, I. Bloch, T. A. Costi, R. W.
Helmes, D. Rasch, and A. Rosch, “Metallic and Insulating Phases of Repulsively
Interacting Fermions in a 3D Optical Lattice”, Science 322, 1520–1525 (2008)
(cited on page 9).

[120] M. Boll, T. A. Hilker, G. Salomon, A. Omran, J. Nespolo, L. Pollet, I. Bloch, and
C. Gross, “Spin- and density-resolved microscopy of antiferromagnetic correlations
in Fermi-Hubbard chains”, Science 353, 1257–1260 (2016) (cited on page 9).

[121] P.-E. Melchy, “Geometric frustration: the case of triangular antiferromagnets”,
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geometry, Berry curvature, and superfluid weight”, Physical Review B 95, 024515
(2017) (cited on page 63).
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