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Abstract

Title: Physics-Based Statistical Learning in Thermoacoustics
Author: Francesco Garita

Thermoacoustic oscillations arise because of the interaction between acoustic waves
inside a duct or a combustion chamber, and heat release rate oscillations at the flame or heater
location. When certain conditions are met, these oscillations may grow significantly in time
and cause severe problems, particularly in gas turbines used for propulsion, i.e. in systems
characterized by high powers. Thermoacoustic oscillations are extremely sensitive to small
changes in the system geometry, parameters, and boundary conditions. For this reason, it is
challenging to build quantitatively-accurate models that are general.

In this thesis, we propose to generate physics-based qualitatively-accurate reduced-order
models, which are general, and then tune their parameters so that they become quantitatively
accurate to describe the system under investigation. To do this, we use statistical learning
techniques in combination with an experimental dataset consisting of O(106) datapoints. The
dataset is obtained from more than 210 hours of automated experiments on an electrically-
heated vertical Rijke tube. We use the ensemble Kalman filter to infer the parameters of a
conjugate heat transfer model driven by natural convection. Then we use the Markov Chain
Monte Carlo (MCMC) method to infer the parameters of a linear acoustic model that is
driven by the thermoacoustic mechanism and damped by visco-thermal dissipation and by
radiation from the ends of the tube. We perform experiments only on the fully-assembled
system, rather than on its individual components. We learn model parameters sequentially
by using posterior values and uncertainties from early experiments as prior values and
uncertainties for later experiments. With access to parameter uncertainties available with the
MCMC, we quantitatively compare the marginal likelihood of the data for four tuned heat
release rate models, thus finding the best performing model. Because it is physics-based, we
find that the best model is quantitatively accurate, with known error bounds, significantly
beyond the range of the training set. This process successfully combines physics-based
modelling with data-driven methods in order to turn a qualitatively-accurate model into a
quantitatively-accurate model, which is a significant challenge in thermoacoustics.
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Chapter 1

Introduction

In this chapter, we first provide the reader with an overview of the fundamental problems
in thermoacoustics, and then we build up the theory needed to tackle these problems. In
particular, in Sec. 1.1 we provide the motivation for our work, illustrate the state-of-the-art
techniques used in the field of thermoacoustics, and describe the system under investigation.
In Sec. 1.2 we frame the methodology used throughout this thesis using concepts of probabil-
ity theory and statistical inference, and cite several works that have been recently published
in this research area. In Secs. 1.3 and 1.4 we thoroughly describe the statistical learning
techniques used in the later chapters.

1.1 Thermoacoustics

Thermoacoustics is a research area that lies at the boundary between combustion, fluid
dynamics, and acoustics. In simple terms, thermoacoustic instabilities occur when heat
release rate unsteadiness (for example, but not necessarily, caused by a combustion process)
interacts in a constructive way with the acoustic field, amplifying noise. In aircaft and rocket
engines, thermoacoustic oscillations grow when heat release rate fluctuations at the flame
become sufficiently in phase with acoustic pressure waves inside the combustion chamber.
These oscillations can become strong enough to damage the engine through increased heat
transfer to the walls, mechanical vibration, and even structural failure [1–4]. They are
particularly concerning to aircraft engine manufacturers, who would like to convert engines
to lean premixed combustion in order to reduce NOx emissions, but are challenged by the fact
that this increases their susceptibility to thermoacoustic oscillations [3]. Engines operating
at these conditions are indeed more susceptible to combustion instabilities because of their
flames’ very high sensitivity to equivalence ratio perturbations, system geometry, boundary
conditions, and other factors, as reported by Candel [5, 6] and Juniper and Sujith [7]. This
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provides numerous research groups around the world with a strong motivation to study such
phenomena, which are still far from being completely understood.

The first scientific realization of the existence of a thermoacoustic instability dates back
to 1802, when Higgins [8] observed generation of sound upon placing a hydrogen flame
into tubes of different materials. Sound was generated at a frequency close to the natural
frequency of the singing tube and only when the system parameters were in a particular
range. A qualitative explanation of this phenomenon arrived more than seventy years later,
when Lord Rayleigh published in 1878 his famous paper [9] in which he stated that

If heat be periodically communicated to, and abstracted from, a mass of air
vibrating (for example) in a cylinder bounded by a piston, the effect produced
will depend upon the phase of the vibration at which the transfer of heat takes
place. If heat be given to the air at the moment of greatest condensation, or
taken from it at the moment of greatest rarefaction, the vibration is encouraged.
On the other hand, if heat be given at the moment of greatest rarefaction, or
abstracted at the moment of greatest condensation, the vibration is discouraged.

Rayleigh [9] was the first person to realize that sound is encouraged when providing heat to a
gas during moments of high pressure, and when taking out heat from a gas during moments
of low pressure. Indeed, the driving mechanism of a thermoacoustic instability is similar to
the mechanism that drives a piston engine [7]. In a piston engine, a gas is first compressed
by a piston and then ignited and burned. This heat release occurs at nearly constant volume
and causes an increase in temperature and pressure inside the piston. The gas then expands
and does mechanical work on the piston. Because the mechanical work done by the gas in
the expansion phase is larger than the compression work done on the gas in the compression
phase, there is a net conversion of heat into work over the thermodynamic cycle. In a
thermoacoustic system, an acoustic wave, which is analogous to the piston, periodically
compresses and expands the gas around the flame. The acoustic wave also perturbs the heat
release rate at the flame, which is analogous to the spark and ignition in a piston engine. If
this perturbation to the flame is such that more heat is released by the flame during moments
of high pressure around the flame, then there is a net conversion of heat into work which,
if not dissipated, increases the oscillation amplitude. This criterion, known as the Rayleigh
criterion, was mathematically formulated in 1954 by Putnam and Dennis [10] as∮

∆t

∫
V

p′(x, t) q̇′(x, t)dxdt > 0 (1.1)

where p′(x, t) and q̇′(x, t) represent the fluctuating parts of pressure and heat release rate per
unit volume, respectively, both at a given point in space x and instant in time t. In Eq. (1.1),
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the first integral is a cyclic integral to be evaluated over a time period of length ∆t, whereas
the second integral is a volume integral over the entire domain V . Eq. (1.1) expresses a
condition for instability to occur, i.e. that heat must be added sufficiently in phase with
the pressure. This equation was then revisited by Chu [11] to include the contributions of
viscous dissipation and acoustic radiation from the system boundaries, whose effect is to
subtract energy from the system, thus contributing to its stability. Although the qualitative
explanation of the sound generated by a flame located inside a tube dates back to 1878, the
Rayleigh criterion is still widely used nowadays to explain the physics behind thermoacoustic
instabilities [12, 13].

At the industrial scale, thermoacoustic instabilities were first noted during the devel-
opment of liquid-propellant rocket engines [14]. Aero and space engines are particularly
susceptible to thermoacoustic oscillations due to their high powers, which means that even
a very inefficient thermoacoustic mechanism can sustain large amplitude oscillations. For
example, during the development of the Saturn V Rocket F-1 engine, pressure oscillations
as large as the mean pressure of the combustion chamber were observed [15]. Typically,
manufacturers test engine components individually and use the results to model the thermoa-
coustic behaviour of the full engine [16]. Based on these models, they design the engines
to be thermoacoustically stable. Nevertheless, these models are not always accurate and
thermoacoustic oscillations sometimes recur in the later stages of engine testing [17], leading
to expensive redesign. Oefelein and Yang [2] report that a stable design of the Saturn V
Rocket F-1 engine required approximately 2000 full-scale tests to eliminate thermoacoustic
instabilities.

These observations have provided the motivation for research on how to reliably predict
these phenomena. Alternative methods to trial-and-error experimental testing rely on a wide
variety of computational methods. Direct Numerical Simulations (DNS) fully resolve the
governing equations numerically, including acoustics, chemistry and turbulence, on a compu-
tational grid representing the physical domain. The downside of this is the still prohibitive
computational cost [18], which makes DNS useless for industrial applications. Feasible
approaches used in industry based on Computational Fluid Dynamics (CFD) rely on filtering
the governing equations in time or space, thus resolving the large scales while modelling
the small ones. Although this makes the problem computationally cheaper, many problems
remain still challenging to model due to the interaction of several physical mechanisms
occurring at the same time, such as turbulence, combustion, aeroacoustics, thermoacous-
tics, etc. [19–24]. The simulations currently adopted in industry are usually based on the
Reynolds-Averaged Navier Stokes (RANS) equations [25, 26]. These are obtained by aver-
aging the governing equations in time. When doing so, a new term correponding to the time
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average of the product of the velocity fluctuations appears in the equations. This is referred
to as the Reynolds stress tensor and requires a closure relationship. RANS simulations
are cheap to solve, but require good turbulence closures in order to be accurate. A valid
alternative to RANS, but less accurate than DNS, is represented by Large Eddy Simulations
(LES). LES filter the equations in space, aiming to resolve only the large-scale turbulent
structures while modelling the subgrid-scale ones by means of an appropriate turbulence
model. This approach allows transient problems to be solved and provides a more detailed
description than RANS. In fact, LES is an excellent tool at predicting both the flow field
and the main unstable modes, even on very complex geometries [27, 28]. Nonetheless, it is
typically used only in academic contexts because its significant computational time prevents
its adoption in industry [29]. A different approach to CFD, often used in conjuction with
CFD, is represented by reduced-order models, a simplified approach that aims to capture only
the most relevant physics of the problem. An example are network models [30, 31], which
work best for non-complex geometries. The idea of a network model is to split the domain
into different elements, each of which is characterised by homogeneous properties (ρ,u, p),
and connect the different elements by means of jump conditions. The assumption that is
always made, which is often reasonable, is that the flame is acoustically compact, meaning
that the length of the flame is negligible compared to the length of the acoustic mode under
consideration. Network models are extensively used in this thesis.

All these computational methods require a closure relationship to describe how heat
release rate fluctuations interact with acoustic (i.e. pressure and velocity) fluctuations. This
closure always introduces a degree of uncertainty because these models lump complex
physics into a handful of model parameters [32]. An example of a frequently adopted
thermoacoustic model is the so-called n− τ model, first used by Summerfield [33] after a
1941 discussion with von Kármán [7]. According to this model, heat release rate fluctuations
are assumed to be proportional to velocity fluctuations through an interaction index, n, and
time-delayed with respect to them by a factor of τ . The time delay is a crucial parameter in
determining the system stability. Because it lumps several physical mechanisms, such as
atomization, vaporization, mixing and reaction in case of a liquid propellant, the time delay
is particularly prone to uncertainty [34]. Despite being quite old, the n− τ model is still
extensively used today, because it contains the most influential physics of thermoacoustic
instabilities [35–37]. For more complex systems, the relationship between acoustic velocity
and heat release rate fluctuations is usually specified as function of the forcing frequency
[38–41]. This functional relationship is called flame transfer function (FTF) and represents
an extension of the n− τ model, which is instead valid for a fixed frequency or in a small
range of frequencies. An even more general model of a flame is represented by the flame
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describing function (FDF), where the flame response is modelled as function of both the
frequency and the amplitude [38, 42–46]. Regardless of the reduced-order model used, we
do not expect thermoacoustic model parameters to be universal constants: we accept the fact
that they may vary when changing the system, but we would like to work with models whose
parameters do not vary significantly when the configuration or the operating points of the
same system change, e.g. heater position, boundary conditions, equivalence ratio.

From the above discussion, it is clear that there is no unique approach for tackling
the problem of thermoacoustic instability. Every approach, regardless of whether it is
experimental or computational, comes with advantages and disadvantages. In this thesis,
we aim to develop a framework that combines the imperfect information coming from
experiments with physics-based reduced-order models, which provide a simplified description
of the reality. This is done in order to extract as accurate information as possible from a
physical system. The strong industrial motivation, combined with the recent availability of
automated experiments [47] and hence large datasets for thermoacoustic systems, encourages
the use of concepts of probability theory and statistical inference to turn qualitatively-correct
thermoacoustic models into quantitatively-correct models that can be used for design [48,
Future Issue 2]. This framework is developed in Sec. 1.2 and the techniques used in this
thesis are thoroughly described and discussed in Secs. 1.3 and 1.4.

We conclude this section by briefly describing the thermoacoustic system we investigate
throughout this thesis: an electrically-heated Rijke tube. This system, first studied by Rijke
[49] in 1859, represents a perfect device to investigate thermoacoustic oscillations because,
in spite of its simplicity, it contains much of the relevant physics present in a real engine. A
Rijke tube consists of a cylindrical tube that contains an electric heater or a flame inside it
[49]. The vertical tube is open at both ends. A mean flow is induced by natural convection
and, on top of this mean flow, acoustic fluctuations occur. For the first acoustic mode, which
is that observed in our experiments, a tube open at both ends experiences a velocity node and
a pressure antinode at the centre, and a pressure node and a velocity antinode at both ends
[50]. When placed in the bottom half of the tube, the heat source experiences moments of
higher-than-average (lower-than-average) velocity during the compression (expansion) phase.
Consequently, in this position, the heat transfer increases due to the higher velocity during
the compression phase, and decreases due to the lower velocity during the expansion phase.
There is also a short time delay τ between the velocity perturbation and the subsequent
heat release rate fluctuation [51], introduced above when discussing the n− τ model. The
time delay is small compared to an acoustic period, meaning that moments of increased
(decreased) pressure occur during moments of increased (decreased) heat transfer. This
converts heat into work over an acoustic cycle, as first described by Rayleigh [9]. If this
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work input exceeds the work output due to dissipation and acoustic radiation, the acoustic
energy inside the tube grows. The position of the heat source inside the tube determines the
strength of the thermoacoustic driving mechanism. A rudimentary analysis concurs with the
experimental results of Saito [52] that its maximum strength occurs when the heat source is
placed at a distance of one quarter of the tube length, measured from the bottom end. When
the heat source is instead placed in the top half of the tube, moments of increased heat transfer
coincide with moments of lower pressure and moments of decreased heat transfer coincide
with moments of higher pressure. This causes the acoustic energy to always decrease. In this
thesis, we limit our analysis to the linear regime, which refers to the onset of thermoacoustic
oscillations and is characterized by exponential growth in amplitude [53]. The nonlinear
regime, characterized by pressure oscillations with saturated amplitude, requires techniques
from nonlinear dynamics theory for its investigation, and will not be dealt with in this study.

1.2 Statistical learning

Scientific research relies on observations, which typically come from either experiments or
high-fidelity simulations. By observing the behaviour of a system, scientists build models to
make predictions. Often, the role of a model is not to provide a full description of the system
under investigation, but rather to approximate the system behaviour by capturing only the
most relevant physical phenomena that are involved. This is particularly true for reduced-
order models, which typically rely on just a handful of parameters. As such, reduced-order
models are intrinsically imperfect, i.e. characterized by epistemic error in the model. On
the other hand, observations are imperfect too. Even in the case of a perfectly calibrated
experimental equipment, hence with no epistemic error, two measurements of the same
quantity taken at two different times will rarely be identical, i.e. they will differ from the
true value of that quantity. This is referred to as aleatoric error. In measurements theory,
aleatoric error is typically assumed to follow a Gaussian distribution with zero mean and
unknown variance [54]. The variance cannot be known exactly, but can be estimated by
repeating the experiment several times. The higher the number of realizations, the higher the
confidence in the estimation. In general, making estimates, building confidence intervals, and
testing hypotheses by looking at data is what frequentist statistics does. Said in other words,
frequentist statisticians try to extract in an objective way as much information contained
in a dataset as possible. When dealing with a physical system, however, we often have
some a-priori knowledge of the physical phenomena involved. This can be in the form
of a reduced-order model available to us, for example. We would often want to exploit
this a-priori knowledge, i.e. our subjective view about the system, in order to improve our
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predictions. Combining observations, always characterized by noise, with imperfect models
is what Bayesian statistics does. We refer to Bayesian statistical inference as statistical
learning.

The pillar of statistical learning is Bayes’ theorem (or rule). In order to derive this
theorem, we first need to introduce some simple statistical concepts. Given two random
variables Ψ and Φ, the probability of two events, Ψ = ψ and Φ = φ , occurring together is
defined by the joint probability density function p(ψ,φ). The conditional probability density
function p(ψ|φ) describes the probability of a certain event Ψ = ψ occurring, given the
event Φ = φ . Moreover, by definition of joint probability, we have that

p(ψ,φ) = p(ψ|φ)p(φ) = p(φ |ψ)p(ψ) (1.2)

from which it is possible to derive Bayes’ theorem (or rule)

p(ψ|φ) = p(ψ)p(φ |ψ)

p(φ)
(1.3)

For convenience, we replace φ with d and re-write Eq. (1.3) as

p(ψ|d) = p(d|ψ)p(ψ)

p(d)
(1.4)

where d represents the data and ψ represents, for a given model, the model parameters or the
model state. By model state we simply mean the quantities predicted by the model. In the
context of Bayesian inference, p(ψ|d) is the posterior distribution, i.e. the probability of
ψ given d, whereas p(d|ψ) is the likelihood function, i.e. the probability of d given ψ , and
p(ψ) the prior. The denominator of the right-hand side of Eq. (1.4) is referred to as evidence
or marginal likelihood and, for given d, represents a normalization constant that ensures that
p(ψ|d) integrates to 1 [55]:

p(d) =
∫

p(ψ,d) dψ =
∫

p(d|ψ)p(ψ) dψ (1.5)

where the integration is intended over the entire ψ-space supported by the prior p(ψ).
Eq. (1.5) effectively evaluates the likelihood function, p(d|ψ), integrating out or marginaliz-
ing out the prior (from here the name marginal likelihood). Eq. (1.5) can be computed, for
example, using a Monte Carlo integration.

Eq. (1.4) encapsulates the essence of what an inverse problem is: starting from some
observations, we want to infer the parameters of a given model that best explain those obser-
vations, and quantify their uncertainty. This is called inverse uncertainty quantification. On
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the other hand, a forward problem is the propagation of the uncertainty from the parameters
to the state. This can be done, for example, using a standard Monte Carlo method. Typically,
one wants first to solve the inverse problem so as to quantify the uncertainty in the parameters,
and then the forward problem so as to quantify the uncertainty in the state. This is because
the uncertainty in the parameters is usually not known a priori. When dealing with time
series, the inverse problem is usually referred to as data assimilation: typically, the model
marches forward in time, and the estimates of model state and parameters improve every
time new observations become available for assimilation. Kalman filters are especially useful
for this because they provide the optimal estimate of state and parameters, and corresponding
uncertainty, at a given time, given all past observations (see Sec. 1.3). Kalman smoothers
look at both past and future observations, and hence provide more robust estimates. The
downside of this is that Kalman smoothers cannot be used for on-the-fly (i.e. real-time) data
assimilation, simply because future observations are not available in real time.

Techniques from the field of inverse problems [56–58] were originally developed for
oceanography and meteorology [59, 60]. These methods have become popular in fluid
mechanics, for example in turbulent flow around aircraft [61], optimal sensor placement [62],
mean flow reconstruction [63], and unsteady separated flow aerodynamics [64]. In the field
of combustion, ensemble Kalman filters and smoothers have been used to tune the parameters
of a qualitatively-correct kinematic flame model using DNS results [65] and experimental
images [66], thus rendering them quantitatively accurate with a known error. Similarly,
Labahn et al. [67] used an ensemble Kalman filter to assimilate high-speed experimental
measurements into a Large Eddy Simulation in order to capture local extinction events in
turbulent flames. Sengupta et al. [68] trained a heteroscedastic Bayesian Neural Network
on a large amount of synthetic flame videos to infer the parameters of a G-equation model
on the fly. Other methods, which are used for forward uncertainty quantification, have also
been successfully applied to different combustion problems. For example, Guo et al. [69]
used a Gaussian process to perform high-dimensional uncertainty quantification for both
linear and nonlinear thermoacoustic instability analysis. Silva et al. [70] combined intrusive
generalized Polynomial Chaos with a state-space thermoacoustic model to account for
uncertainties in combustion noise prediction of confined flames. Avdonin et al. [71] used non-
intrusive polynomial chaos expansion for forward uncertainty quantification and sensitivity
analysis of thermoacoustic stability of two premixed flame configurations. Magri et al.
[72] used standard Monte Carlo and Active Subspace Identification methods, in conjuction
with adjoint sensitivity, to evaluate the thermoacoustic risk factor of two annular combustor
configurations. In the field of thermoacoustics, recent studies have applied simple methods to
identify the parameters of thermoacoustic models. Ghani et al. [73] used non-gradient-based
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optimization methods applied to network models of (i) a Rijke tube, (ii) a 14 kW laboratory
burner operating in the laminar regime, and (iii) a 86.5 kW laboratory burner operating in the
turbulent regime. Using a data-driven identification framework, Ghani et al. [73] successfully
retrieved a flame model from experimental limit cycle measurements at specific operating
points, but without testing the same model on the whole system. A highly detailed model of
thermoacoustic oscillations in an electrically-heated Rijke tube was developed by Matveev
[74]. Despite being painstakingly tuned to be quantitatively correct at one heater position
(Figure 5-5 of [74]), this model was only qualitatively correct at nearby heater positions
(Figures 5-6, 5-7, 5-8 of [74]). For larger devices, accurate prediction of thermoacoustic
oscillations is similarly challenging [3].

The concept underlying this thesis is that thermoacoustic models contain systematic error
and that their behaviour is so sensitive to this error that one cannot confidently construct
quantitatively-accurate models a priori based on the behaviour of their components [75].
Instead, we propose to generate qualitatively-accurate models, which are general, and then to
tune their parameters using statistical learning techniques so that they become quantitatively
accurate. This approach allows us to evaluate probabilistically the adequacy (how well the
model captures the trend in the data), the accuracy (how well the model fits the data), and
the uncertainty of the proposed models. One of the purposes of this thesis is indeed to
investigate and compare different thermoacoustic closure relationships both qualitatively and
quantitatively, so as to find as a general model as possible, for a given system. This is done
in Chapter 5. The methods used in this study lie at the interface between data science and
physical science. From a data science perspective, we are training a model based on several
hundred thousand observations, as we would if using neural networks or Gaussian process
regression. Unlike a neural network, however, the model is strongly constrained by physics.
The advantage of such a formulation, with respect to an entirely data-driven approach, is
the gain in flexibility. Indeed, a physics-based model should remain, at least in principle,
reasonably accurate when extrapolating beyond the range tested, due to the fact that it is
based on physical principles.

This thesis builds upon the PhD thesis of Hans Yu [76], who set the basis for this work.
In particular, [76] provided a robust and general theoretical framework of different Bayesian
techniques used to solve eigenproblems and time-series problems. Among other things, [76]
implemented and applied the Ensemble Kalman Filter (EnKF) to a G-equation model of a
flame, assimilating high-quality images of the flame front using both experimental and DNS
results. In the present thesis, we use the EnKF developed by [76] to investigate a different
time-series problem, introduced and thoroughly discussed in Chapter 3. From the point of
view of the techniques used, in addition to [76], the present work applies a statistical learning
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technique novel to the field of thermoacoustics: the Markov Chain Monte Carlo (MCMC)
method, described in Sec. 1.4. The MCMC is a general inverse uncertainty quantification
technique and, as such, can be used with any model and any dataset. In this study, the MCMC
is applied to the eigenproblems discussed in Chapters 4 and 5.

1.3 Ensemble Kalman filter

The Kalman filter (KF) is a sequential data assimilation method in which state and parameters
of a linear model are improved every time new data become available. The theoretical
background and the equations presented in this section are based on [57, §3]. We define G as
the linear operator that evolves the model state by one timestep. Here the scalar quantity ψ

represents the model state. We describe how model parameters are included in this analysis at
the end of this section. We aim to obtain the best possible estimate of the true state ψ t, given a
model forecast ψ f characterized by the unknown model error δ f, and given the measurement
d characterized by the unknown measurement error ε:

ψ
f = ψ

t +δ
f (1.6)

d = ψ
t + ε (1.7)

The underlying assumptions of the KF are that δ f and ε are normally distributed with zero
mean and known variances, Cf

ψψ and Cεε , respectively. Hence the prior and the likelihood
function can be expressed as

p(ψ) ∝ exp
(
−1

2
(ψ−ψ

f)(Cf
ψψ)

−1(ψ−ψ
f)

)
(prior) (1.8)

p(d|ψ) ∝ exp
(
−1

2
(ψ−d)C−1

εε (ψ−d)
)

(likelihood function) (1.9)

According to Bayes’rule (Eq. (1.4)), the posterior distribution becomes

p(ψ|d) ∝ p(d|ψ)p(ψ) ∝ exp
(
−1

2
J [ψ]

)
(1.10)

where
J [ψ] = (ψ−ψ

f)(Cf
ψψ)

−1(ψ−ψ
f)+(ψ−d)C−1

εε (ψ−d) (1.11)

Minimizing Eq. (1.11) corresponds to finding the maximum likelihood estimate of p(ψ|d).
This gives the improved analyzed estimate ψa of ψ t, and its variance Ca

ψψ , based on both d
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and ψ f

ψ
a = ψ

f +
Cf

ψψ

Cf
ψψ +Cεε

(d−ψ
f) (1.12)

Ca
ψψ =Cf

ψψ

(
1−

Cf
ψψ

Cf
ψψ +Cεε

)
(1.13)

where Eqs. (1.12) and (1.13) represent the so-called analysis step (superscript a), i.e. they
provide an improved estimate of the state based on the degree of belief in both the model
and the observation. The KF is guaranteed to be the optimal sequential data assimilation
method for linear dynamics [57, §4.1]. The term "optimal" means that our estimator of the
analyzed state is unbiased and with minimum error variance (assuming normal distributions).
Starting from an estimate of the state’s expected value and its variance (ψ f and Cf

ψψ ), we
update its expected value and variance (ψa and Ca

ψψ ) as data (d and Cεε ) become available.
Once this new state is found, we integrate forward in time using the linear operator G. The
time evolution is described by

ψ
f(tk) = Gψ

a(tk−1) (1.14)

Cf
ψψ(tk) = GCa

ψψ(tk−1)G+Cqq(tk−1) (1.15)

where Cqq is the model error variance. (The model is imperfect over one time step. We
assume that the model error is normally distributed with zero mean and variance Cqq.) Given
an appropriate initial condition, Eqs. (1.14) and (1.15) can be used to forecast the state at
each timestep, and every time new measurements become available, an analyzed estimate
can be calculated using Eqs. (1.12) and (1.13). These equations define the KF for a linear
scalar model and can be easily extended to the multidimensional case.

Despite the Kalman Filter being the best method for sequential data assimilation, its
use is restricted to a relatively small category of problems. Indeed, its main drawbacks are
the linearity assumption, which is often not valid in practical problems, and the fact that a
covariance matrix CCCa

ψψ needs to be stored. In particular, if the model state vector consists
of n variables, the covariance matrix size scales with O(n2), and, for problems with many
thousand degrees of freedom, the computational requirements associated to its storage are
too high. This motivated people to find an alternative to circumvent these two problems. A
new method, the Extended Kalman Filter (EKF), was derived to tackle the first drawback
by linearising the nonlinear model operator in the true state G(ψ t

k) about the analysed state
G(ψa

k ) using a Taylor series expansion. In other words, unlike the classic Kalman Filter,
which linearly advances forward in time the mean and the covariance matrix of a Gaussian
distribution using Eqs. (1.14) and (1.15), the Extended Kalman Filter aims to propagate
the same quantities allowing for weak nonlinearities. Nonetheless, this method is not very
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Fig. 1.1 Qualitative schematic of the ensemble Kalman filter with a nonlinear temperature
model M . Black dots represent the ensemble members. (a) Prediction step. Each ensemble
member evolves according to M , and the corresponding new distribution is non-Gaussian if
the model is nonlinear. (b) Analysis step. A Gaussian distribution representing the forecast
state is reconstructed from the evolved ensemble members, and the analyzed step is computed,
given the (Gaussian) distributions of the forecast state and the measurement.

successful because for strong nonlinearities one would need to retain many high-order terms
in the Taylor series expansion in order for the method to be accurate, making it cumbersome.
Moreover, the EKF does not solve the problem related to the need to store a covariance
matrix.

The ensemble Kalman filter (EnKF) is a convenient solution to both problems (nonlinear
models and computational cost) [57, §4.3]. Rather than evolving the mean and covariance
matrix over time, the EnKF samples from a probability distribution and marches each member
of the ensemble forward in time. By doing so, possible model nonlinearities are accounted
for in the prediction step. Before the analysis step, a Gaussian distribution is reconstructed
from the ensemble members. Then measurements are assimilated in a similar way to the
KF. A schematic of this procedure is reported in Fig. 1.1. The fact that non-Gaussian
contributions in the forecast state are not taken into account in the analysis step makes
the scheme approximate. However, as highlighted by Evensen [57, §4.3.3], the analysis
step is not a pure resampling of a Gaussian posterior distribution because the algorithm
encapsulates many of the nonlinear effects through the prediction step. The resulting solution
lies between a fully linear Gaussian update and an exact Bayesian computation. Furthermore,
the algorithm is easy to implement and parallelize, and is computationally cheap because
most of the computations reduce to matrix-vector multiplications that can be run in parallel.



1.4 Markov Chain Monte Carlo 13

For completeness, we report the main steps of the EnKF scheme for the multidimensional
case and highlight the differences with the classical KF. The error covariance matrices for
the forecast and analyzed estimate, CCCf

ψψ and CCCa
ψψ , are replaced with their ensemble version

(superscript e), (CCCe
ψψ)

f and (CCCe
ψψ)

a, computed using ensemble-average quantities, denoted
by (·)

(CCCe
ψψ)

f = (ψψψ f−ψψψ f)(ψψψ f−ψψψ f)T ≈ (ψψψ f−ψψψ t)(ψψψ f−ψψψ t)T =CCCf
ψψ (1.16)

(CCCe
ψψ)

a = (ψψψa−ψψψa)(ψψψa−ψψψa)T ≈ (ψψψa−ψψψ t)(ψψψa−ψψψ t)T =CCCa
ψψ (1.17)

It is then essential to define an ensemble of observations such that for each ensemble member

ddd j = ddd + εεε j (1.18)

with j = 1, ... ,N, where N is the ensemble size. We now define the ensemble covariance
matrix of the measurement errors as

CCCe
εε = εεεεεεT (1.19)

Thus the analysis step for each ensemble member is

ψψψ
a
j = ψψψ

f
j +KKKe(ddd j−MMMψψψ

f
j) (1.20)

(CCCe
ψψ)

a = (III−KKKeMMM)(CCCe
ψψ)

f (1.21)

KKKe = (CCCe
ψψ)

fMMMT
(

MMM(CCCe
ψψ)

fMMMT +CCCe
εε

)−1
(1.22)

where III is the identity matrix, KKKe is the Kalman gain, MMM is a matrix that maps the state vector
to the measurement vector, and MMMT is its transpose. The presence of MMM allows us to infer not
only the model state, but also the model parameters. This is achieved by simply appending
the parameters to the vector ψψψ . The forecast state estimate is obtained by marching each
member of the ensemble forward in time, thus accounting for possible model nonlinearities.
The forecast covariance matrix is computed using the deviations from the ensemble mean
(Eq. (1.16)). For linear dynamics, it can be proved that the EnKF converges to the KF for
ensemble sizes tending to infinity [57, §4.1.3].

1.4 Markov Chain Monte Carlo

A Markov chain is a discrete-time stochastic model that consists of a sequence of events such
that the probability of a certain event occurring depends uniquely on the event at the previous
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timestep. The background theory and equations presented in this section are based on [58,
§11]. When dealing with continous time, we speak of a Markov process rather than a Markov
chain. Markov Chain Monte Carlo (MCMC) is a statistical method whose goal is to obtain a
sample from a target posterior distribution, p(ψψψ|ddd). Here ψψψ represents a vector containing
the model parameters. The idea is to draw samples ψψψ from approximate distributions and
correct those draws over time such that the approximate distributions converge to the target
posterior distribution. In practice, one creates several independent chains starting from
different initial points ψψψ0 in the parameter space. Then, at each timestep t and for each
chain, a new value ψψψ t is drawn from a transition distribution, T (ψψψ t |ψψψ t−1), that depends
only on the previous draw, ψψψ t−1. Many MCMC algorithms have been developed, differing
in complexity and efficiency. In this study we use the Metropolis algorithm, whose steps can
be summarized as follows:

1. An appropriate prior distribution p(ψψψ) over the model parameters is chosen and a
sample ψψψ0(= ψψψ t−1) is drawn from it.

2. At time t, a sample ψψψ∗ is drawn from a proposal distribution, R(ψψψ∗|ψψψ t−1), which
must be symmetric, i.e. R(ψψψa|ψψψb) = R(ψψψb|ψψψa) for any ψψψa, ψψψb. (Other algorithms
relax the symmetry assumption.)

3. Based on Eq. (1.4), the acceptance ratio r is computed

r =
p(ψψψ∗|ddd)

p(ψψψ t−1|ddd)
=

p(ddd|ψψψ∗)p(ψψψ∗)
p(ddd|ψψψ t−1)p(ψψψ t−1)

(1.23)

4. From a uniform distribution with bounds [0,1), a random value ω is extracted.

5. The value ψψψ t for the next iteration is set to:

ψψψ
t =

ψψψ∗, if ω < min(r,1)

ψψψ t−1, otherwise
(1.24)

6. The new ψψψ t replaces ψψψ t−1 in (ii) for the next iteration and the steps are repeated.

A simplified schematic of how the Metropolis algorithm works is reported in Fig. 1.2. It
can be proved that the above algorithm converges to the target posterior distribution. Here we
limit our discussion to Eq. (1.24): the algorithm always accepts values of ψψψ∗ that increase
the posterior density, but only sometimes accepts downward values. The fact that it does
not always reject downward values preserves the stochastic nature of the algorithm. Thus,
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the MCMC essentially constructs a biased random walk that explores the target posterior
distribution in the parameter space. The above steps are performed for many chains starting
from different initial conditions. The starting point of each chain is typically a low-density
region of the posterior. Because each chain is independent of the others, the algorithm can be
easily parallelized. For each chain, the initial portion of accepted samples (called burn-in or
warm-up) is discarded, and only converged samples are retained. To determine the length of
the burn-in, we inspect the evolution of the posterior density, and discard a certain number
of initial samples depending on the number of iterations it takes for all the chains to leave
low-density regions and move to high-density regions of the posterior. Termination occurs
when the chains are deemed converged using metrics such as the Gelman-Rubin convergence
diagnostic [77] or, more simply, when the Markov chains are sufficiently well mixed, as
shown in Chapter 4. At the end of the process, the resulting samples can be used to visualize
the posterior distribution and, more importantly, to make predictions and propagate parameter
uncertainty through the model.

Choosing an appropriate proposal distribution R(ψψψ∗|ψψψ t−1) is key to determining the
performance of the algorithm: each jump in the parameter space must be big enough
(otherwise the random walk moves too slowly), but at the same time the number of rejected
jumps must not be too large (otherwise the random walk wastes too much time without
moving at all). When dealing with few parameters, the covariance matrix entries of the
proposal distribution can be chosen simply by trial and error. On the other hand, if the
number of parameters increases significantly, the covariance matrix should change over time
for efficiency purposes. In this case, more sophisticated samplers with adaptive schemes,
such as the No-U-Turn sampler [78], should be preferred.

The MCMC is a more powerful tool than the EnKF because it makes fewer restrictive
assumptions about the target posterior and therefore reconstructs its distribution more ac-
curately. In particular, it does not assume that the posterior distribution is Gaussian. It
can therefore explore any possible nonlinearity and multimodality present in the posterior.
The downside is a higher computational cost. The main consequence of this is that, unlike
the EnKF, the MCMC cannot cope with on-the-fly data assimilation. For on-the-fly data
assimilation, a way to fully reconstruct the posterior distribution is by using particle filters,
which work similarly to the EnKF but do not make any Gaussian assumption. For this reason,
particle filters are significantly more expensive than the EnKF, but much more efficient than
MCMC when it comes to on-the-fly data assimilation. Description of particle filters is out of
the scope of this thesis.
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Fig. 1.2 Qualitative schematic of the MCMC Metropolis algorithm. We assume a model M
made up of one parameter only, θ . The model state is Ψ = M (θ). We have one observation
available, d. (a) We choose a prior distribution in the parameter space, e.g. a uniform
distribution, and take a sample from it, θ0. (b) We assume a Gaussian proposal distribution
R with covariance matrix ΣR . We then center it around θ0 and take a sample from it, θ ∗.
We compute the acceptance ratio, r.

(
With a uniform prior, p(θ ∗) = p(θ0).

)
. If r≪ 1, the

algorithm will probably reject θ ∗. (c) If this occurs, we take a new sample θ ∗ from the
same proposal distribution. If r > 1, the algorithm definitely accepts θ ∗, and we set θ1 = θ ∗.
This value corresponds to a sample from the posterior, hence it is stored. (d) We center the
proposal distribution around θ1 and keep sampling from it, repeating the above steps until
we collect several samples from the posterior distribution.



Chapter 2

Experimental setup

This chapter provides a detailed description of the experimental setup used to obtain the data.
First, we describe the apparatus. Second, we explain how the data are acquired. Third, we
discuss how the data are processed and show the experimental results. These results are used
to train physics-based models in the next chapters.

2.1 Apparatus

In this section, we describe the experimental apparatus. A sketch of the laboratory rig
is shown in Fig. 2.1. The rig consists of a 1 m long stainless steel vertical tube with
an internal diameter of 47.4 mm and a wall thickness of 1.7 mm. An electric heater is
attached to two thin threaded metal prongs and held in place at different positions. The
heater consists of two concentric ceramic rings of the same external diameter as that of
the tube, wrapped several times by a 0.559 mm diameter Ni-Cr filament (Fig. 2.2). The
heater is powered by an Elektro-Automatik EA-PSI 5080-20 A DC programmable power
supply with maximum power 640 W, controlled through National Instruments LabVIEW.
A 4 Ω Visaton FRS 8 loudspeaker is placed near the base of the tube and is connected to a
Stage Line STA-500 Pro Power amplifier with maximum power 600 W controlled through
National Instruments LabVIEW. The experimental apparatus, as described so far, is that in
[47, 79–81]. Six G.R.A.S. 40SA probe microphones are used to record the pressure near
the inner surface of the tube at the following axial locations, measured from the bottom
end of the tube: xm/L = [0.45,0.55,0.65,0.75,0.85,0.95]. Each microphone is equipped
with a 20 mm long probe, on top of which a temperature shield is mounted. All data is
acquired through a National Instruments BNC-2110 DAQ device using LabVIEW. Eight
type-K thermocouples are installed along the centreline of the tube through small holes
at positions xt/L = [0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90] from the bottom end. An
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additional thermocouple is placed near the inlet section to record the ambient temperature.
All the thermocouples are logged with four TC-08 USB DAQ boxes. A LabView code deals
with the full automation of the system and allows us to run experiments overnight. Finally,
some sound absorbing foam is used to seal the laboratory door to minimize the external noise.
This allows us to carry out clean and accurate experiments.

2.2 Data acquisition

Experiments are conductued at the following heater positions, measured from the bottom end:
xh/L = [0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55]. When the heater is switched
off, the heater position xh/L = 0.01 is also investigated. (The latter cannot be investigated
when the heater is switched on because our numerical model is not valid when the heater is
too close to the bottom end.) When the heater is switched on, the input power is increased
every 70 minutes in steps of 10 W, from 10 W to 180 W, resulting in a 21-hour long fully-
automated run. In this range of powers, the system is thermocoustically stable at every
heater position, hence the acoustic ping provided through the loudspeaker dies out. The
corresponding decay rate and frequency depend, however, on the thermoacoustic driving
from the heater. Because voltage and current provided by the power supply fluctuate over
time, a PID controller is implemented in LabView so that the provided power is as close as
possible to the desired power. This results in fluctuations of less than 1 W, which is small
compared to the desired powers.

All the thermocouples simultaneously provide a temperature measurement every 7 sec-
onds. The loudspeaker provides sinusoidal acoustic pings at a frequency of 170 Hz, close to
the natural frequency of the tube, which depends on the speed of sound inside the tube. The
acoustic ping and the successive decay are recorded by means of the six probe microphones,
which measure the pressure in the proximity of the inner surface of the tube with a sampling
frequency of 10 kHz. This is higher than the anticipated frequencies of the thermoacoustic
oscillations, 165 to 190 Hz. The high sampling rate guarantees that no aliasing effects occur
and reduces measurement error in the growth rate and frequency.

For each heater position, the following set of experiments is carried out in sequence: (i)
100 acoustic pings with the empty tube (one ping every 3 s); (ii) 100 acoustic pings with the
heater in place but switched off and without the thermocouples (one ping every 3 s); (iii) 100
acoustic pings with both the heater switched off and the thermocouples in place (one ping
every 3 s); (iv) 10800 acoustic pings with the heater switched on and the thermocouples in
place (one ping every 7 s). The cold flow experiments are performed manually in about 15
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Fig. 2.1 Sketch of the experimental apparatus including 6 microphones, 8 thermocouples to
measure the gas temperature at the tube centerline, a thermocouple to measure the ambient
temperature, a loudspeaker, and an electric heater held in place by a pair of prongs and
connected to a pair of electric wires. Note that the loudspeaker acoustically forces the system
at a frequency, f , close to the natural frequency of the tube, fn.



20 Experimental setup

Fig. 2.2 Electric heater made up of 0.559 mm diameter Ni-Cr filaments wound between two
parallel ceramic rings.

minutes. This sequence of experiments allows us to isolate the effect of heater, thermocouples
and thermoacoustic mechanism, respectively.

Overall, the experimental campaign lasted approximately three weeks and required
several months of preparation. The campaign resulted in O(105) acoustic pings, each mea-
sured by six probe microphones, and O(106) temperature measurements. The complete
database can be found in Ref. [82]. In this database the following folders are included:
1_cold_emptyTube contains the pressure measurements of the 100 acoustic pings per-
formed for every heater position before the heater and thermocouples are placed in the
tube, 2_cold_heaterOff contains the pressure measurements of the 100 acoustic pings for
every heater position in the presence of the heater switched off and without thermocouples,
3_cold_heaterOff_withThermocouples contains the pressure measurements of the 100
acoustic pings for every heater position in presence of both the heater switched off and the
eight thermocouples, 4_hot contains the pressure measurements of the acoustic pings as
well as the temperature measurements for every heater position when the heater is switched
on and the thermocouples are present. README files are included to provide additional details
such as the ambient temperature values in the cold flow experiments, the experiment setup
and how to import files in binary format.
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2.3 Data analysis and results

Before performing any experiments, we calibrate the thermocouples to minimize systematic
measurement error. To do so, we record the temperature measured by all the thermocouples at
two known temperatures: T = 23 ◦C (ambient temperature) and T = 100 ◦C (temperature of
steam out of a kettle). We denote by Tt(23 ◦C) and Tt(100 ◦C) the corresponding temperatures
measured by the generic thermocouple. The thermocouples are found to all agree (to
within 0.1 ◦C) with the ambient temperature, i.e. we can safely assume Tt(23 ◦C) = 23 ◦C.
Furthermore, a linear calibration procedure is used for simplicity. Thus, to compute the
calibrated temperature T , starting from the measured temperature Tt, we use the following
formula

T = 23◦C+

(
100 ◦C−23◦C

Tt(100 ◦C)−Tt(23 ◦C)

)
︸ ︷︷ ︸

calibration factor

(Tt−Tt(23 ◦C)) (2.1)

where T and Tt are expressed in ◦C. It is easy to verify that T = 23 ◦C when Tt = Tt(23 ◦C),
and T = 100 ◦C when Tt = Tt(100 ◦C). (The actual calibration was performed by Mr. Max
Croci and the calibration factors were then kindly passed on to the author of this thesis.) In
Fig. 2.3 we show some snapshots of the calibrated temperature measurements during the hot
run at different heater powers. These data are used in Chapter 3 to build a reduced-order
model of the base flow driven by natural convection.

The measurements of the six probe microphones are uncalibrated and expressed in Volts.
In order to be useful for data processing, these measurements first need to be calibrated and
then need to be converted to Pascal. To obtain Vcalib (calibrated microphone measurement
expressed in Volts) starting from Vuncalib (uncalibrated microphone measurement expressed
in Volts) the following formula is used, as reported in the user manual of the microphones

Vcalib = 10−0.05 cc · Vuncalib (2.2)

where cc is the calibration coefficient. The microphone manufacturer provides a calibration
table in which the calibration coefficients depend on the frequency of the recorded signal.
The values of the calibration coefficients we use are those at the excitation frequency, f = 170
Hz, and are reported in Table 2.1 together with the serial number of each microphone. The
resulting calibrated measurement has units of Volts. Conversion to Pascal is achieved using
the microphone sensitivity provided by the manufacturer and reported in Table 2.1. On top of
this calibration, in order to reduce any remaining systematic error, each microphone is further
calibrated against a reference microphone. This relative calibration procedure is explained
in details in Sec. 4.4 when introducing the multi-microphone method. Finally, in order to
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Fig. 2.3 Measurements of the gas temperature at the tube centerline during the hot run. These
snapshots refer to 35 seconds after the heater power reported in each figure caption is input.
Different colours correspond to experiments performed on different days at different heater
positions, as reported in the legend.
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Table 2.1 Microphone specifications: serial number, calibration coefficient and sensitivity.

xm/L
Serial Calibration Sensitivity

number coefficient [V/Pa]

0.45 263704 0.030 3.05 ·10−3

0.55 263702 0.045 2.80 ·10−3

0.65 263703 -0.025 3.02 ·10−3

0.75 263707 0.015 2.85 ·10−3

0.85 263706 0.000 2.95 ·10−3

0.95 263705 -0.010 2.99 ·10−3

obtain the pressure oscillations from the calibrated pressure signal expressed in Pascal, we
simply subtract from the pressure signal its mean value.

The acoustic pings provided by the loudspeaker located at the base of the tube are
simultaneously recorded by the six microphones. Fig. 2.4a shows a typical ping and its
successive natural decay. From this ping we want to extract the following information: the
decay rate and frequency of the oscillations during the decay, and the corresponding values
of the complex pressure for each microphone. To do this, for each microphone and for
each acoustic ping the following steps are performed: (i) a Butterworth filter, centred at the
excitation frequency (170 Hz) and with size ±25 Hz, is applied in order to filter out any
undesired frequencies; (ii) a fast Fourier transform is applied only to the decaying part of
the signal, with the aim to determine the complex pressure value (peak in the frequency
spectrum) and the frequency of oscillations (frequency at which the peak occurs); (iii) a
Hilbert transform is applied to the full pressure signal in order to obtain the signal amplitude
and phase as functions of time; (iv) the logarithm function is applied to the signal amplitude;
(v) a straight line is fitted to the decaying part of the signal. The best-fit line is obtained by
weighted least squares regression using an exponentionally decaying function so that the
low-amplitude signal, characterised by a lower signal-to-noise ratio, is weighted less. This
procedure (except for step (ii)) can be visualized in Fig. 2.4b. The slope of the straight line
corresponds to the decay rate, whereas the frequency of the oscillations is obtained from
the fast Fourier transform. Both the Hilbert and the fast Fourier transforms are Matlab®

inbuilt functions. To provide a more robust estimate of the decay rate and frequency, the
values obtained from the six microphones are averaged, although no significant scatter
exists between them (see caption of Fig. 2.4 as an example). The averaged decay rate and
frequency represent the real and imaginary parts of the experimental complex frequency
sexp, respectively. At the end of this process, we therefore obtain an accurate estimate of
the average experimental complex frequency as well as the complex pressure value for
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each microphone during the decay. The magnitude of the complex pressure values gives
rise to the pressure eigenmode (an example is shown in the inset figure of Fig. 2.4a). The
complex pressure values are used within the multi-microphone method to compute the
downstream reflection coefficient, as explained in Sec. 4.4. A Matlab® script to compute
complex frequency and pressures from the experiments is reported in Appendix A.

The value of decay rates and frequencies for the empty tube case (each one averaged over
the 100 acoustic pings obtained on each day) are shown in Fig. 2.5a (red circles). When the
heater is placed inside the tube but switched off, additional drag is introduced into the system,
which results in larger decay rates (black circles in Fig. 2.5a). The decay rates become even
larger when both the heater and the thermocouples are placed inside the tube (Fig. 2.5b).
These effects are modelled separately in Chapter 4.

In Fig. 2.6 we show the entire set of experimental complex frequencies when the heater
is switched on and the thermocouples are in place. The frequency increases as the heater
power increases because the air above the heater becomes hotter and has a higher sound
speed. As the heater moves towards the bottom of the tube, the slope of Fig. 2.6b increases
because the column of hot air is longer. The physical mechanism described in the final
paragraph of Sec. 1.1 straightforwardly explains most of the observations: (i) when the
heater is in the bottom half of the tube (xh/L = [0.10,0.15,0.20,0.25,0.30,0.40,0.45]), the
growth rate becomes less negative as the heater power increases; (ii) the least stable condition
occurs when the heater is placed near xh/L = 0.25, in agreement with Saito [52]; (iii) the
most stable condition examined here occurs when the heater is in the top half of the tube
(xh/L = 0.55). Two heater positions (xh/L = [0.45,0.50]) deserve further comment because
they reveal the position of the velocity node in the experiments. We expect the velocity node
to move upstream as the heater power increases, due to the increasing difference in speeds of
sound above (hot) and below (cold) the heater. When the heater is placed in the middle of
the tube (xh/L = 0.50), it is always downstream of the velocity node so the thermoacoustic
mechanism is always stabilizing and the growth rate becomes more negative as the heater
power increases. When the heater is placed at xh/L = 0.45 the growth rate becomes less
negative at low heater powers but more negative at high heater powers. This shows that, for
this heater position, the velocity node passes through the heater (in the upstream direction)
as the heater power increases. This is a key experimental configuration because it presents a
particularly challenging test of the accuracy of the thermoacoustic models analyzed in this
thesis.
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Fig. 2.4 (a) Raw pressure oscillations recorded by the six microphones after sinusoidal
forcing at 170 Hz. The inset figure in (a) shows the corresponding pressure eigenmode. (b)
Logarithm of the amplitude of the filtered and Hilbert-transformed oscillations. The two
vertical dashed lines in (b) identify the exponential decay. Microphones at xm/L = [0.45,
0.55, 0.65, 0.75, 0.85, 0.95] provide the following decay rates: [−7.775, −7.775, −7.774,
−7.775, −7.770, −7.764] rad · s−1, respectively, and the same frequency: 168.46 Hz. This
results in the average experimental complex frequency sexp =−7.772 rad ·s−1+ i 168.46 Hz.
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Fig. 2.5 Experimental observations of decay rate (top) and frequency (bottom) of acoustic
oscillations when the heater is switched off and placed at different locations (a) without the
thermocouples being inside the tube (black circles), and (b) with the thermocouples being
inside the tube. The experimental complex frequencies in the empty tube case (red circles)
are added to (a) to show the effect of the drag due to the heater.
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Fig. 2.6 Experimental observations of decay rate (a) and frequency (b) of thermoacoustic
oscillations when the heater is switched on and the thermocouples are in place, as function
of time and heater position. The heater power increases every 70 minutes in steps of 10 W
(shown by bars at the bottom).





Chapter 3

Fluid mechanics modelling

In this chapter we describe the heat transfer model used to predict at every instant in time
the gas temperature profile inside the Rijke tube as well as the inlet bulk speed of the gas.
We also provide details regarding its numerical implementation. We then discuss how the
experiments obtained in the presence of the heater switched on are assimilated into the heat
transfer model using the ensemble Kalman filter (EnKF) in order to infer the unknown model
parameters and improve the state estimates. Finally, we show the results obtained from this
analysis and explain how these are used to build the acoustic and thermoacoustic models
presented in the next chapters.

3.1 Model

We consider a small element of tube of length δx, internal diameter D, and thickness r (see
Fig. 3.1). The following equations are derived under the assumption that r≪ D. The energy
balance in the solid reads

(ρsAsδx)cs
∂Ts

∂ t
=−∂ Q̇s

∂x
δx− Q̇o + Q̇i (3.1)

where As =
π

4 [(D+2r)2−D2] = πr(D+ r). By assuming that the diffusive heat transfer is
Q̇s =−λsAs

∂Ts
∂x , and that Q̇o and Q̇i can be modelled with convective heat transfer coefficients

ho and hi, respectively, and by further assuming constant thermal conductivity λs, Eq. (3.1)
can be re-written as

ρsAscs
∂Ts

∂ t
= λsAs

∂ 2Ts

∂x2 −hoπo(Ts−Ta)+hiπi(Tg−Ts) (3.2)
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𝐷𝑟 𝑟

Fig. 3.1 Sketch of a small element of tube of length δx, internal diameter D, thickness r, with
gas speed U(x), gas temperature Tg(x), solid temperature Ts(x), ambient temperature Ta, and
inner and outer heat flow rates Q̇i and Q̇o, respectively.

where πi = πD and πo = π(D+ 2r). By re-arranging and replacing the convective heat
transfer coefficients with the Nusselt numbers (ho = Nuo ·λa/L and hi = Nui ·λg/D), one
obtains

∂Ts

∂ t
=

λs

ρscs

∂ 2Ts

∂x2 −Nuo
λa

ρscs

πo

As L
(Ts−Ta)+Nui

λg

ρscs

πi

As D
(Tg−Ts) (3.3)

The same procedure can be applied to a control volume containing gas moving at local
speed U , thus giving

(ρgAgδx)cp,g

(
∂Tg

∂ t
+U

∂Tg

∂x

)
=−

∂ Q̇g

∂x
δx− Q̇i +

˜̇Qhδx (3.4)

where Ag = πD2/4. In Eq. (3.4), the source term ˜̇Qh represents the thermal power per unit
length provided by the electric heater. The inlet gas quantities (·)1 are assumed to be ambient
(·)a. One can now apply the ideal gas law, as well as Fourier’s law, and use mass conservation
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in its integral form
(

∂ (ρAU)
∂x = 0

)
to obtain

ρ1Agcp,g
T1

Tg

∂Tg

∂ t
+ρ1Agcp,gU1

∂Tg

∂x
= λgAg

∂ 2Tg

∂x2 −Nuiλg
πi

D
(Tg−Ts)+

˜̇Qh (3.5)

where we implicitly assumed A1 = Ag. The gas thermal conductivity is assumed to be equal
to that of air at ambient conditions, i.e. λg = λa = λ1. Radiation is not modelled.

We also solve the integral momentum equation, in which we assume that (i) the unsteady
term is negligible, i.e. the inertia forces are negligible compared to the buoyancy and drag
forces, and (ii) the total pressure losses ∆p are concentrated at the heater location, and
modelled through an inviscid pressure loss coefficient ki, such that ∆p = ki(ρhU2

h )/2. The
integral momentum equation is

ρ2U2
2 −ρ1U2

1 + ki
ρhU2

h
2

=
∫ L

0
(ρ1−ρg)gdx (3.6)

By doing so we neglect the presence of viscous losses, which would require the introduction
of a fourth model parameter and would not change the results significantly. By using mass
conservation and the ideal gas law, Eq. (3.6) can be re-arranged to

U2
1

[
ki

2

(
A1

Ah

)2 Th

T1
+

(
A1

A2

)2 T2

T1
−1
]
=
∫ L

0

(ρ1−ρg)

ρ1
gdx (3.7)

In our case A1 = A2 = Ah, but in general these areas could be different.
We non-dimensionalize Eqs. (3.3), (3.5) and (3.7) with the reference scales {L, g, T1},

which naturally give a time scale (L/g)1/2, and a velocity scale (gL)1/2. Temperatures
are measured relative to T1 and then divided by T1. For example, T becomes Θ∗ = T−T1

T1
.

Non-dimensional quantities are denoted by (·)∗ to distinguish them from the corresponding
dimensional quantities. The energy equation for the solid becomes

T1

(L/g)1/2
∂Θ∗s
∂ t∗

=
λs

ρscs

T1

L2
∂ 2Θ∗s
∂x∗2

−Nuo
λa

ρscs

πo

As L
T1Θ

∗
s +Nui

λa

ρscs

πi

As D
T1(Θ

∗
g−Θ

∗
s ) (3.8)

We define the following non-dimensional parameters

η
∗
1 =

1
L(gL)1/2

λs

ρscs
(3.9)

η
∗
2 =

πo

As(gL)1/2
λa

ρscs
(3.10)
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η
∗
3 =

πi

As(gL)1/2
L
D

λa

ρscs
(3.11)

and re-write Eq. (3.8) compactly as

∂Θ∗s
∂ t∗

= η
∗
1

∂ 2Θ∗s
∂x∗2

−Nuoη
∗
2 Θ
∗
s +Nuiη

∗
3 (Θ

∗
g−Θ

∗
s ) (3.12)

The energy equation for the gas becomes

ρaAgcp,g
T1

(L/g)1/2
1

(Θ∗g +1)
∂Θ∗g
∂ t∗

+ρaAgcp,g
T1

(L/g)1/2U∗1
∂Θ∗g
∂x∗

=

λaAg
T1

L2

∂ 2Θ∗g

∂x∗2
−Nuiλa

πi

D
T1(Θ

∗
g−Θ

∗
s )+

˜̇Qh (3.13)

We define the following non-dimensional parameters

η
∗
4 =

1
L(gL)1/2

λa

ρacp,g
(3.14)

η
∗
5 =

πi

Ag(gL)1/2
L
D

λa

ρacp,g
(3.15)

Q̇∗h =
(L/g)1/2

T1

˜̇Qh

ρaAgcp,g
(3.16)

and re-write Eq. (3.13) compactly as

1
(Θ∗g +1)

∂Θ∗g
∂ t∗

+U∗1
∂Θ∗g
∂x∗

= η
∗
4

∂ 2Θ∗g

∂x∗2
−Nuiη

∗
5 (Θ

∗
g−Θ

∗
s )+ Q̇∗h (3.17)

The integral momentum equation becomes

∫ 1

0

Θ∗g
Θ∗g +1

dx∗ =U∗1
2
[

ki

2

(
A1

Ah

)2

(Θ∗h +1)+
(

A1

A2

)2

(Θ∗2 +1)−1
]

(3.18)

In Eqs. (3.17) and (3.18) the non-dimensional inlet bulk speed, U∗1 , corresponds to the Froude
number, Fr, which represents the ratio between flow inertia and gravity. Using the integral
momentum equation to compute the inlet bulk speed, U1, is certainly a limitation of this work,
because the same quantity could be measured more precisely with a hot-wire anemometer
located at the entrance of the tube.
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The derived model is a one-dimensional model, i.e. a model in which heat propagates in
the axial direction only. Introducing a second dimension, i.e. accounting for heat transfer
also in the radial direction, would lead to significant changes in the above equations. The
most important change would be the introduction of extra terms in the energy equation for the
gas to account for heat convection and heat conduction from the gas to the wall in the radial
direction. In this work, heat propagation in the radial direction is neglected, for simplicity.

The fluid mechanics model is derived under the implicit assumption that the acoustic
effects are negligible. This assumption is valid because the flow is buoyancy driven and
hence the flow velocities are much smaller than the acoustic velocities. However, it is worth
highlighting that in a real jet engine, characterised by flow velocities of a few hundred
meters per second, this assumption would not hold true, therefore the coupling between fluid
mechanics and acoustics would need to be accounted for.

3.1.1 Summary of the non-dimensional model

The model consists of two energy equations, one for the solid and one for the gas, and the
integral momentum equation. Upon non-dimensionalization, these can be written as follows

∂Θ∗s
∂ t∗

= η
∗
1

∂ 2Θ∗s
∂x∗2

−Nuoη
∗
2 Θ
∗
s +Nuiη

∗
3 (Θ

∗
g−Θ

∗
s ) (3.19)

1
(Θ∗g +1)

∂Θ∗g
∂ t∗

+U∗1
∂Θ∗g
∂x∗

= η
∗
4

∂ 2Θ∗g

∂x∗2
−Nuiη

∗
5 (Θ

∗
g−Θ

∗
s )+ Q̇∗h (3.20)

∫ 1

0

Θ∗g
Θ∗g +1

dx∗ =U∗1
2
[

ki

2

(
A1

Ah

)2

(Θ∗h +1)+
(

A1

A2

)2

(Θ∗2 +1)−1
]

(3.21)

The implementation of this model is reported in Appendix B, along with the values of the
constants used.

3.2 Numerical implementation

In the derived model, the five coefficients η∗ and Q̇∗h are known. On the other hand, the three
model parameters, namely Nuo, Nui and ki, are unknown quantities whose value is updated
in a probabilistic fashion using the ensemble Kalman filter in the way explained in Sec. 3.3.
For now we suppose their value to be known.

The derived model consists of two coupled PDEs, namely Eqs. (3.19) and (3.20), which
can be simultaneously solved once the non-dimensional inlet bulk speed, U∗1 , is known. From
a physical point of view, this is a typical conjugate heat transfer problem, i.e. a problem
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where knowledge of the heat transfer to one phase (e.g. solid) is necessary to get information
about the heat transfer to another phase (e.g. fluid), and vice versa. The non-dimensional
inlet bulk speed can be derived using Eq. (3.21), which in turn requires knowledge of the
gas temperature profile, Θ∗g. This couples the three equations. The numerical steps to solve
these equations are: (i) define the initial temperature profiles, Θ∗g and Θ∗s ; (ii) approximate
numerically the left-hand side of Eq. (3.21) and solve for U∗1 , algebraically; (iii) using the
value of U∗1 computed at step (ii) and using a suitable numerical method, solve for Θ∗g and
Θ∗s ; (iv) iteratively repeat the above steps replacing the temperature profiles at step (i) with
the values computed at step (iii).

The two one-dimensional energy equations are discretized on a grid of 101 points using
the Finite-Difference method [83]. Because the Rijke tube used in this study has a length
L = 1 m, this corresponds to placing a numerical grid point every centimeter between inlet
and outlet. The Finite-Difference method relies on replacing exact derivatives of a certain
function with finite differences of the same function at discrete locations or, in other words,
with a linear combination of the function evaluated at different grid points. In particular,
the approximation of the n-th-order derivative of a function φ with respect to the space
coordinate x on a uniform grid with spacing h is given by

δ nφ

δxn

∣∣∣∣
i
=

1
hn

r

∑
j=l

ω jφi+ j (3.22)

where l(≤ 0) and r(≥ 0) define the stencil. The general approach to derive the stencil
moments ω j is to first expand each φi+ j about φi using Taylor series, and then derive
conditions that guarantee that the only non-zero term on the right-hand side of Eq. (3.22) is
the one that multiplies dnφ

dxn . More details are provided in [84, 85]. An intrinsic relationship
between the stencil and the order of accuracy p of the n-th-order derivative approximation
exists. This can be summarised as follows

Arbitrary stencil: p = r− l +1−n
Centred stencil, n odd: p = (2r+1)−n, ω j =−ω− j, ω0 = 0

Centred stencil, n even: p = 2(r+1)−n, ω j = ω− j, ω0 ̸= 0

Using centred stencils (r =−l) is particularly convenient because, among other things, they
always guarantee an extra order of accuracy for approximations of even-order derivatives,
compared to biased stencils that employ the same number of stencil weights [84].

In addition to accuracy, one should also take into account the stability of a particular
approximation. Indeed, for given approximations of derivatives, and for given governing
equations, there typically exists a critical timestep above which numerical instabilities occur.
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In simple cases, the critical timestep can be derived analytically using techniques such as
the Von Neumann Stability Analysis or the Modified Equation Analysis. However, because
of the presence of a source term in our governing equations, the analytical approach is not
feasible. The simplest approach to use is a trial-and-error approach, where the timestep is
iteratively chosen such that instabilities do not occur. Among all the timesteps that fulfill the
stability criterion, we want to use a sufficiently large one to run the simulations as quickly as
possible.

In the present study, fourth-order accurate centred approximations are used for both
first- and second-order spatial derivatives. Fourth-order accurate biased approximations are
used near the boundaries. The corresponding stencil moments are tabulated in [84]. For the
sake of simplicity, zero temperature gradients are used at the inlet and outlet boundaries in
both Eqs. (3.19) and (3.20). This turns out to be a reasonable assumption, provided that the
grid is fine enough, as in our case. The second-order accurate midpoint rule is used for the
integral in Eq. (3.21). To ease the implementation, differentiation matrices are used for spatial
discretization. The time integration method is the explicit fourth-order accurate Runge-Kutta,
known as RK4. This guarantees higher accuracy and allows for larger timesteps, if compared
to the common (explicit) first-order accurate Euler method.

The source term in Eq. (3.20), Q̇∗h, is modelled with a Gaussian distribution centred at the
heater location, with variance set arbitrarily to 0.0005 m2, normalized such that its integral
equals the input power. Choosing a smaller variance would require a finer grid and this would
make the equations computationally more expensive to solve. Fig. 3.2 shows the shape of
this distribution when xh/L = 0.25. When the heater approaches the bottom end (xh/L = 0),
the fluid mechanics model breaks down due to numerical instabilities that arise because the
zero temperature gradient boundary condition conflicts with a non-zero value of the heat
source spatial distribution at the same location. This is why the lowest heater position we
investigate when the heater is switched on is xh/L = 0.10.

3.3 Data Assimilation

To integrate Eqs. (3.19) to (3.21) forward in time, we need to know the three model parameters:
inner Nusselt number, Nui, outer Nusselt number, Nuo, and inviscid pressure loss coefficient
at the heater location, ki. To do so, first, we define the state vector, made up of the solid and
gas temperatures at the discrete locations. For each ensemble member, we initialize the state
vector with constant values corresponding to the ambient temperature. In the context of the
ensemble Kalman filter, an ensemble member is a numerical simulation that represents a
sample extracted from a certain probability density function. Second, we initialize the three



36 Fluid mechanics modelling

Fig. 3.2 Spatial distribution of the heater power, Q̇∗h, when the heater is located at xh/L = 0.25.
Q̇∗h is modelled with a Gaussian distribution centred at the heater location, with variance set
arbitrarily to 0.0005 m2. In this figure the distribution is normalized so that its integral equals
1.

model parameters. Although these parameters are unknown, the choice of their initial value
does not significantly affect the results. For each ensemble member, the parameter vector,
appended to the state vector, is initialized with values randomly drawn from the following
uniform distributions

p


Nui

Nuo

ki


= U


 7 · (1±0.2)

60 · (1±0.3)
9.5 · (1±0.1)


 (3.23)

Third, the above model is integrated in time. Every ensemble member evolves with a different
set of model parameters. In general, the ensemble members can evolve with both different
initial states and different initial parameters. In our case, however, the initial state is the same
for all members. Fourth, state and parameters are updated using the EnKF every time the
temperature measurements become available, i.e. every 7 seconds. The ensemble used in this
study consists of 30 members. For the update (or analysis) step, by computing sample mean
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and covariance matrix of the ensemble, a Gaussian distribution is reconstructed, even though
the real distribution is not necessarily Gaussian (this happens when the model is nonlinear,
as in our case - see Sec. 1.3). This Gaussian is then combined with the likelihood function,
which is also assumed to be Gaussian, centred around the experimental measurement and
with a standard deviation of 2 K. The combination of these two distributions results in the
optimal distribution of state and parameters. The optimal distributions then become the new
prior distributions to sample from for the model prediction step, and the process repeats.
With this process, one is able to (i) infer the evolution of the model parameters with their
uncertainties, and (ii) improve the estimate of the state, which becomes more robust by
learning from the experimental measurements.

3.4 Results

For this specific Rijke tube, it was experimentally observed by visual inspection that the
flow becomes turbulent when the heater power is greater than 50 W. Fig. 3.3 shows the
evolution of the model parameters from low powers (10 W) to high powers (180 W), with
95% confidence intervals. The inviscid pressure loss coefficient (Fig. 3.3d) seems to reach
a constant value close to 10 at powers greater than 50 W for all the heater positions. This
is because in a turbulent flow the distributed losses due to wall friction (not accounted for
in the fluid mechanics model) are usually negligible compared to the concentrated loss at
the heater location. Hence, the momentum integral equation is more and more valid as the
heater power increases. The behaviour of the inner and outer Nusselt numbers (Figs. 3.3b
and 3.3c) is much less regular than the behaviour of the pressure loss coefficient, and of
difficult physical interpretation. This happens because in our model we assimilate only gas
temperature measurements. In other words, the model does not have any information about
the solid temperature at any location, hence the problem is not well posed because there are
several combinations of (Θ∗s ,Nui,Nuo) that guarantee the same heat loss from the inside of
the tube to the outside. Thus, the results in terms of Nusselt numbers and solid temperature
profiles are not reliable. If one tries to change the thermocouple placement so as to assimilate
fewer gas temperature measurements and at least a couple of solid temperature measurements
(downstream of the heater), the agreement between gas temperature measurements and
assimilated gas temperature profiles becomes poorer because the model tries to find the
best compromise given all the measurements (not only the gas temperature measurements).
Because in this study we are ultimately interested in predicting the gas temperature profiles
in the most accurate way possible, we decided to use all the thermocouples available to
measure the gas temperature only. Given that we do not actually assimilate any solid
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Table 3.1 Temperature measurements (identified by the thermocouple locations xt/L) used
for data assimilation into the fluid mechanics model for each heater position xh/L. Empty
spaces represent data that are not used in the assimilation process.

xh/L xt/L

0.55 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.50 0.20 0.30 0.40 0.60 0.70 0.80 0.90
0.45 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.40 0.20 0.30 0.50 0.60 0.70 0.80 0.90
0.35 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.30 0.20 0.40 0.50 0.60 0.70 0.80 0.90
0.25 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.20 0.00 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.15 0.00 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.10 0.00 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

temperature measurement, it would be reasonable to use a simplified model where only one
Nusselt number is used to model the heat transfer from the inside of the tube directly to the
surrounding air. In this study, this is not done because the results of this model, reported in
Fig. 3.4, are already good. Fig. 3.4 shows different time snapshots of the gas temperature
profile inside the Rijke tube for all the heater positions and for different heater powers. Indeed,
we can see that the agreement between model predictions and experimental data is good, even
though these snapshots refer to the early stage of the transients (35 s after the heater power
reported in each figure caption is input). This agreement improves as time progresses towards
the steady state because more data are assimilated. For the three lower-most heater positions
(xh/L = [0.10,0.15,0.20]), the ambient temperature measurement is also assimilated into the
model to obtain more reliable estimates. It is important to highlight that when the heater
is placed at the same location as that of a thermocouple, the temperature measurement of
that thermocouple is discarded because it is too much affected by radiation. A summary of
the temperature measurements used for assimilation for each heater position is reported in
Table 3.1. The inlet bulk speed is instead shown in Fig. 3.5. It is worth noting that the inlet
bulk speed depends only on the gas temperature profile (see Eq. (3.21)). Thus, even if the
solid temperature profiles and the Nusselt numbers predictions are not accurate, the inlet
bulk speed computation is accurate because the ensemble-average gas temperature profiles
agree well with the gas temperature measurements (Fig. 3.4). The ensemble-average gas
temperature and inlet bulk speed predicted by the base flow model are then used as input
quantities for the acoustics model. For simplicity, we do not propagate any uncertainty from
the base flow model to the acoustic model.
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Fig. 3.3 Fluid mechanics model parameters with 95% confidence intervals as functions of
time ([h], bottom axis) or heater power ([W], blue bars).
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Fig. 3.4 Comparison of gas temperature measurements at the tube centerline (circles) and
model predictions with 95% confidence intervals (solid lines) during the hot run. These
snapshots refer to 35 seconds after the heater power reported in each figure caption is input.
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Fig. 3.5 Model predictions of inlet bulk speed with 95% confidence intervals for different
heater positions as functions of time ([h], bottom axis) or heater power ([W], blue bars).





Chapter 4

Acoustics modelling without the
thermoacoustic mechanism

This chapter is devoted to the modelling of the acoustics in the absence of any thermoacoustic
effect. Starting from the results obtained in Chapter 3, we build an acoustic model able to
make quantitatively-accurate predictions using a step-by-step procedure. First, we derive the
governing equations for the empty tube and compute the corresponding reflection coefficient.
Second, we model the behaviour of the heater and of the two rods that hold it in place
(including the electricity wires) by introducing visco-thermal losses at the heater location and
along the two rods (and wires). Third, we model the visco-thermal drag due to the presence
of the thermocouples, which are assumed to be identical. Fourth, we provide details of how
the multi-microphone method works. This method will be used in Chapter 5 to compute the
downstream reflection coefficient, which changes when the thermoacoustic mechanism is
accounted for.

4.1 Modelling the empty tube

We model the acoustics inside the tube using a network model [86, 31] made up of 40
equally-spaced elements. Adjacent elements are connected by jump conditions that specify
momentum and energy changes between two elements. A simplified sketch of a network
model containing five acoustic elements is reported in Fig. 4.1. In our analysis we use a
substantial number of elements because there is a temperature gradient inside the tube when
the heater is switched on, which affects the tube acoustics, as highlighted by Li and Morgans
[87]. Homogeneous properties are assumed inside each element. The set of governing
equations in each element are the Navier-Stokes equations, which, in the assumption of
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Fig. 4.1 Sketch of a simplified network model made up of five acoustic elements separated by
four jump conditions. The forward and backward travelling waves in each acoustic element
are denoted by fi and gi, respectively. Ru and Rd are the upstream and downstream reflection
coefficients.

negligible viscosity and heat conduction, reduce to the Euler equations. Upon neglecting
gravity and considering one dimensional flow, for an ideal polytropic gas these equations are

∂ρ

∂ t
+u

∂ρ

∂x
+ρ

∂u
∂x

= 0 (4.1)

ρ
∂u
∂ t

+ρu
∂u
∂x

+
∂ p
∂x

= 0 (4.2)

∂ p
∂ t

+u
∂ p
∂x

+ γ p
∂u
∂x

= 0 (4.3)

Integrating Eqs. (4.1) to (4.3) across the boundary between two adjacent elements located at
the generic axial coordinate x = b, and assuming no accumulation of mass, momentum and
energy, lead to the following set of jump conditions[

ρu
]b+

b− = 0 (4.4)

[
p+ρu2

]b+

b−
= 0 (4.5)

[
γ

γ−1
pu+

1
2

ρu3
]b+

b−
= 0 (4.6)

We now write each of the three primitive variables (ρ , u, p) as a sum of a mean flow quantity,
which depends neither on space (due to the homogeneity assumption) nor on time, and a
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quantity fluctuating in space and time: p(x, t) = p+ p′(x, t), etc. Assuming planar acoustic
perturbations prevents vorticity waves from propagating [88]. There is no constriction at the
downstream end of the tube so we can safely assume that entropy waves have no influence
on the thermoacoustic behaviour. The Mach number is around 10−3, therefore we assume
zero mean flow. Neglecting second-order terms allows us to derive the acoustics equations

∂ρ ′

∂ t
+ρ

∂u′

∂x
= 0 (4.7)

ρ
∂u′

∂ t
+

∂ p′

∂x
= 0 (4.8)

∂ p′

∂ t
+ γ p

∂u′

∂x
= 0 (4.9)

Relaxing the above assumptions to include indirect noise due to entropy, vorticity, and
composition fluctuations would result in more complicated equations [89, 90, 72]. Eq. (4.7)
resembles Eq. (4.9). In fact, by substituting ρ ′ = p′/c2 into Eq. (4.7) we get exactly Eq. (4.9),
provided that one recalls the ideal gas law result γ p = ρ c2. (This result stems from the
definition of the sound speed c2 ≡ ( d p

dρ
)s and from the isentropic relationship for a perfect gas

p ∝ ργ .) This means that, for each pair of adjacent elements, there are only two independent
equations to solve, Eq. (4.8) and Eq. (4.9), together with the following linearized jump
conditions

[p′]b
+

b− = 0 (4.10)

[u′]b
+

b− = 0 (4.11)

We can re-write Eqs. (4.8) and (4.9) in matrix form as ut +Aux = 0, i.e.[
u′

p′

]
t

+

[
0 1/ρ

γ p 0

][
u′

p′

]
x

=

[
0
0

]
(4.12)

This hyperbolic system of equations can be solved by making a change of variables that
allows us to decouple the two equations. To do so, we proceed by first diagonalizing matrix
A as follows

A = SΛΛΛS−1 =

[
1/(ρ c) −1/(ρ c)

1 1

][
c 0
0 −c

][
ρ c/2 1/2
−ρ c/2 1/2

]
(4.13)

We then substitute Eq. (4.13) into Eq. (4.12) and pre-multiply each term by S−1, thus
obtaining

S−1ut +ΛΛΛS−1ux = 0 (4.14)
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The two equations can now be decoupled upon using v = S−1u, so that Eq. (4.14) becomes
vt +ΛΛΛvx = 0, which is [

U

P

]
t

+

[
c 0
0 −c

][
U

P

]
x

=

[
0
0

]
(4.15)

Each of these two equations is a simple wave equation, and the components of the vector
v = [U ,P]T represent the Riemann invariants of the system, i.e. the travelling waves. The
solution to the system is given by

U (x, t) = f
(

t− x
c

)
(forward travelling wave) (4.16)

P(x, t) = g
(

t +
x
c

)
(backward travelling wave) (4.17)

The solution to the original system, Eq. (4.12), can be obtained by re-transforming the
variables according to u = S v, thus leading, for the generic acoustic element (·)i, to the
following equations

p′i(x, t) = fi

(
t− x

ci

)
+gi

(
t +

x
ci

)
(4.18)

u′i(x, t) =
1

ρ ici

[
fi

(
t− x

ci

)
−gi

(
t +

x
ci

)]
(4.19)

Taking the Laplace transform of Eqs. (4.18) and (4.19) decouples the time dependence from
the space dependence and hence further simplifies the problem: fi

(
t− x

ci

)
= Fi(s) est e−s x

ci

and gi

(
t + x

ci

)
= Gi(s) est e+s x

ci . Here s is a complex number whose real part corresponds to
the growth rate and whose imaginary part corresponds to the oscillation frequency, analo-
gously to sexp. The forward and backward travelling waves form standing waves that grow or
decay in time with growth rate and frequency equal to s.

In the empty tube case, the jump conditions model the distributed momentum and energy
losses that occur in the boundary layer. From Juniper [91], the fluctuating wall shear stress
is approximated by τwall = −(ρν/δbl)u′, where δbl = 2π[2ν/Im(s)]1/2. Consider now an
element of tube with length ∆x and total perimeter πDtot, with Dtot = D+2(Dr+Dw), where
Dr and Dw are the diameters of each rod and each wire. This diameter allows us to account for
the presence of the two rods and wires to which the heater is attached. The total fluctuating
force on the fluid element is

∆F = ∆x πDtot τwall =−∆x Dtot
ρ

23/2 [ν Im(s)]1/2u′ (4.20)
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We now define an equivalent area, and corresponding equivalent diameter, to account for a
reduced flow area in the acoustic elements that contain heater rods and wires

Aeq = A−Ar−Aw =
π

4
(D2−2D2

r −2D2
w) =

π

4
D2

eq (4.21)

(If an acoustic element does not contain heater rods and wires, then we set Dtot = Deq = D
and Aeq = A.) Integrating the momentum equation across adjacent acoustic elements gives
the pressure jump as a known linear function of the acoustic velocity u′

p′i+1(t)− p′i(t) =
∆F(t)

Aeq
=−∆x

Dtot

πD2
eq

ρ[2ν Im(s)]1/2u′i(t)≡−kvis,bl u′i(t) (4.22)

Similarly, from Juniper [91], the heat transfer from the wall into the gas is

∆q̇ =−∆x πDtot
λ

δbl
T ′ (4.23)

where δbl is assumed to be the same as for the viscous boundary layer because the Prandtl
number for air is close to 1. The gas is assumed isentropic and ideal, so T ′

T = p′
p

γ−1
γ

and
p = ρR∗gT . By combining the previous relationships, we obtain the heat transfer as a known
linear function of the acoustic pressure p′

∆q̇ =−∆x Dtot
[ν Im(s)]1/2

23/2Pr
p′ (4.24)

This can be written as a jump condition for the acoustic velocity. Integrating the energy
equation across adjacent acoustic elements gives

u′i+1(t)−u′i(t) =
γ−1

γ

1
p

4
πD2

eq
∆q̇(t) =−∆x

γ−1
γ

1
p
[ν Im(s)]1/2

23/2Pr
p′i(t)≡−kth,bl p′i(t)

(4.25)
In Eqs. (4.22) and (4.25), the parameters kvis,bl and kth,bl depend only on geometry, fluid
properties and on a rough estimate of the oscillation frequency, Im(s), available from the
experiments. Hence they are fully known. We can now combine Eqs. (4.18), (4.19), (4.22)
and (4.25) and write the jump conditions across the generic drag device located at x = xdd

Fi+1e
−s xdd

ci+1 +Gi+1e
+s xdd

ci+1 −Fi

(
1−

kvis,bl

ρ ici

)
e−s xdd

ci −Gi

(
1+

kvis,bl

ρ ici

)
e+s xdd

ci = 0 (4.26)
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Fi+1
e
−s xdd

ci+1

ρ i+1ci+1
−Gi+1

e
+s xdd

ci+1

ρ i+1ci+1
+Fi

(
kth,bl−

1
ρ ici

)
e−s xdd

ci +Gi

(
kth,bl +

1
ρ ici

)
e+s xdd

ci = 0

(4.27)
The problem is closed once the boundary conditions for the first and last acoustic elements
are specified

F1e−s xu
c1 −RuG1e+s xu

c1 = 0 (4.28)

RdFNe−s xd
cN −GNe+s xd

cN = 0 (4.29)

where Ru and Rd are the upstream and downstream reflection coefficients, respectively, and
the subscripts 1 and N represent the first and last acoustic elements, respectively. (N coincides
with the total number of acoustic elements.) The nodes of the first pressure mode are located
slightly outside the two ends, so the reflection coefficient is complex [92]. Eqs. (4.26)
to (4.29) form a system of equations in F and G that can be written in matrix form as

A(s) w = 0 (4.30)

where w is the vector of complex amplitudes [Fi,Gi]
T, with i = 1, ... ,N. Eq. (4.30) represents

a nonlinear eigenvalue problem. To solve Eq. (4.30), we seek the value of s that ensures
det(A) = 0 in order to obtain the non-trivial solutions. This problem can be solved efficiently
using Jacobi’s formula

d
ds

det(A) = tr
(

adj(A)
dA
ds

)
= det(A) tr

(
A−1 dA

ds

)
(4.31)

where det(·), tr(·) and adj(·) are the determinant, trace and adjugate of a given matrix,
respectively. In Eq. (4.31) we used the fact that if A is an invertible matrix, then adj(A) =

det(A) ·A−1. An iterative scheme can be set up by discretizing Eq. (4.31) at the generic k-th
iteration (·)k

(det(A))k+1− (det(A))k

δ s
= (det(A))k tr

((
A−1)k

(
dA
ds

)k
)

(4.32)

At each iteration we set (det(A))k+1 = 0, in a similar fashion to Newton’s method when
seeking the zero of a function. This simplifies Eq. (4.32) and allows us to find δ s. The
pseudo-code that solves the eigenvalue problem is the following
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Algorithm 4.1: Solution to the eigenvalue problem using Jacobi’s formula

1 initialize s and δ s;
2 while |δ s|> eps do
3 compute A(s) and dA

ds using the network model;
4 δ s←−1/tr

(
A−1 dA

ds

)
;

5 s← s+δ s;

6 end

For the empty tube we assume the two reflection coefficients to be identical, Ru = Rd = R.
In the empty tube case, we use Eq. (4.30) to solve for R given s, rather than for s given R. To
do so, in Eq. (4.30) we set s = sexp and find R using the same algorithm as Algorithm 4.1,
except that matrix derivatives are computed with respect to R. By averaging over the 1100
empty tube experiments available, we find an average sexp = −7.61 rad ·s−1 + i 168.10
Hz, which leads to an average R = −0.9758+ i 0.1003. This value is always used for the
upstream reflection coefficient. In the cold flow cases (Secs. 4.2 and 4.3), this value is also
used for the downstream reflection coefficient. However, in the hot flow case (Chapter 5), the
downstream reflection coefficient is computed using the multi-microphone method due to the
fact that the reflection coefficient varies when the temperature of the downstream end varies
[93, 94].

The reflection coefficient in the empty tube case may also be computed using the analytical
formulation proposed by Levine and Schwinger [92]. However, [92] base their analysis on a
semi-infinite unflanged circular pipe, which necessarily leads to small errors in the value of
R. Because the reflection coefficient is an extremely important quantity in thermoacoustics,
we choose to compute it in the way described above rather than with the fomula provided
by [92]. To prove how sensitive the complex frequency s is to small changes of R, we can
compute ds

dR for a simplified case. If we imagine an empty tube with zero visco-thermal
losses modelled with a network model made up of two elements (subscripts 1 and 2) that
meet at x = b, then Eq. (4.30) simplifies to[

−1−Rue−sτu 1+Rde−sτd

1−Rue−sτu 1−Rde−sτd

][
G1

F2

]
=

[
0
0

]
(4.33)

where τu = 2b/c1 and τd = 2(L−b)c2, and where c1 = c2 = c because there is no temperature
gradient. Setting the determinant of the above matrix to zero leads to the following expression

RuRd = es(τu+τd) (4.34)
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By defining the new time scale τtot = τu+τd =
2b
c1
+ 2(L−b)

c2
= 2L

c , and assuming Ru = Rd = R,
we obtain

R2 = esτtot (4.35)

Implicit differentiation of the above equation leads to

2RdR = τtot esτtotds = τtot R2ds (4.36)

which allows us to derive the following analytical expression for the sensitivity of s with
respect to R

ds
dR

=
2

τtotR
=

c
RL

(4.37)

Eq. (4.37) shows that for an empty tube the sensitivity of s to small changes of R is pro-
portional to the average speed of sound inside the tube divided by the tube length, a value
that in our case is larger than 340 s−1. In the presence of heater and/or thermocouples
inside the tube, an equivalent expression is more complex to derive analytically and does
not provide straightforward insight. However, it is sensible to believe that this sensitivity
remains high. This justifies the computation of R via Eq. (4.30) rather than via the analytical
fomula provided in [92].

4.2 Modelling the thermo-viscous drag from the switched-
off heater

When the heater is in place but switched off, the decay rate is always stronger (i.e. more
negative) than it is for the empty tube. The shift is greatest when the heater is near the
velocity antinode and least near the velocity node (Fig. 2.5a). Juniper [91] provide feedback
sensitivities from u′ and from p′ to the acoustic mass, momentum and energy equations for
a Rijke tube. These sensitivities are obtained with discrete adjoint of the Finite-Element
Method, and are shown in Figure 7a of [91], which, for convenience, is also reported in
Fig. 4.2 of this thesis. In Fig. 4.2, first we note that the feedback sensitivities to the mass
equation are identical to the feedback sensitivities to the energy equation. This confirms that
the mass and energy equations are linearly dependent, as already proved in Sec. 4.1. Second,
we focus on the absolute value of the feedback sensitivities (i.e.

√
(Re( f ))2 +(Im( f ))2 with

f being the feedback sensitivity). We note from Fig. 2.5a that in the presence of the heater (i)
the decay rate becomes more negative (compared to the empty tube case) when the heater is
placed at the centre of the tube (xh/L = 0.5). From Fig. 4.2 we see that the only mechanism
that can cause this is pressure into the energy equation, i.e. thermal drag. (ii) The decay rate
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is most negative when the heater is at the entrance of the tube (xh/L≈ 0). From Fig. 4.2 we
see that the only mechanism that can cause this is velocity into the momentum equation, i.e.
viscous drag. Finally, the frequency is clearly affected by the heater (Fig. 2.5a), suggesting
that we might need to include a time delay. This is indeed confirmed by the work of Lighthill
[51]. Thus, the jump conditions at the heater location are written as

p′i+1(t)− p′i(t) =−kvis,h u′i(t− τvis,h) (4.38)

u′i+1(t)−u′i(t) =−kth,h p′i(t− τth,h) (4.39)

Eqs. (4.38) and (4.39) represent the simplest acoustic model of the heater we can build. The
four heater parameters, kvis,h, kth,h, τvis,h, and τth,h are first inferred by nonlinear regression
and then with the Markov Chain Monte Carlo method. For nonlinear regression we use the
Matlab® inbuilt function lsqnonlin with the Levenberg-Marquardt algorithm. We choose
a real cost function, represented by the sum of the squares of the differences between the
predicted and the observed decay rates and frequencies. When using nonlinear regression,
the model parameters are inferred using all the experimental data available in order to obtain
as accurate results as possible. Fig. 4.3a shows the predictions of the network model and
compares them to the experimental measurements for all the heater positions. The inferred
model parameters are reported in the figure caption. The time delay of the viscous drag,
τvis,h, is negative, while the thermal time delay, τth,h, is positive, in agreement with Lighthill
[51]. The sign of the time delays simply determines whether the waves u′ and p′ are in phase
or out of phase. The pressure loss coefficient due to viscous drag at the heater location, kvis,h,
is several orders of magnitude larger than the thermal loss coefficient, kth,h. Nevertheless,
setting kth,h to zero would result in relatively large errors in Fig. 4.3a, meaning that the heat
transfer to and from the heater cannot be neglected, even when the heater is switched off.
We tried to build several other models alternative to Eqs. (4.38) and (4.39). For example, we
tested different combinations of models in which the pressure jump is proportional to p′ or
the velocity jump is proportional to u′. However, these all failed to predict the correct trend.
This is in perfect agreement with the predictions of the feedback sensitivities in Fig. 4.2.

Nonlinear regression has the advantage of being very fast. However, it does not provide
any information on the uncertainty of the parameters and of the model predictions, which
would help us quantify the robustness of our model. The computation of the parameter
uncertainty starting from state observations is a typical inverse problem, which could be
tackled, for example, with the ensemble Kalman filter, as done with the fluid mechanics
model. However, we prefer using the Markov Chain Monte Carlo method because this can
explore any possible nonlinearity and/or multimodality present in the posterior distribution,
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Fig. 4.2 Real and imaginary components of the feedback sensitivities, calculated with discrete
adjoint (DA) of the finite element method (FEM) for the Rijke tube. The wider lines show
the same sensitivities calculated when the adjoint pressure, p†, is replaced by the direction
pressure, p, i.e. as if the system were self-adjoint. There is little difference for the Rijke tube.
(This figure is taken from Juniper [91] and corresponds to Figure 7a of [91].)
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(a) Heater off without thermocouples. The in-
ferred heater parameters are: kvis,h = 27.3 kg
m−2 s−1, kth,h = 1.53 · 10−5 kg−1 m2 s, τvis,h =
−1.36 ·10−3 s, and τth,h = 8.98 ·10−4 s. All ex-
perimental data are used to infer the model pa-
rameters.
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(b) Heater off with thermocouples. The inferred
thermocouple parameters are: kvis,t = 0.257 kg
m−2 s−1, kth,t = 1.44 · 10−7 kg−1 m2 s. All ex-
perimental data are used to infer the model pa-
rameters.

Fig. 4.3 Decay rate (top) and frequency (bottom) of acoustic oscillations when the heater
is switched off and placed at different positions xh/L. Comparison of experimental obser-
vations and model predictions using nonlinear regression for two configurations: (a) no
thermocouples present inside the tube, and (b) thermocouples present inside the tube.
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thus providing more accurate results than the EnKF, which on the other hand can handle only
Gaussian distributions. Moreover, instead of using all the available experiments as above,
here we train the model using only the experiments available at xh/L = [0.20,0.25,0.30],
which represent our training set. This allows us to test a-posteriori whether the model is able
to extrapolate well to the heater positions outside of the training range. To use the MCMC,
we need to define the likelihood function of the experimental observations. We assume
a Gaussian likelihood function for convenience. The covariance matrix of the likelihood
function, σσσ2

lik, is a 2×2 matrix that allows us to compute the probability of observing the
data, given the model parameters. The entries of this matrix represent a combination of
observation error and model error, and hence are unknown. We assume the off-diagonal
elements of σσσ2

lik to be zero and we treat the diagonal elements as two unknown parameters,
σ2

DR and σ2
f , which we infer with the Markov Chain Monte Carlo method. Since we have

no accurate knowledge of these six parameters (kvis,h, kth,h, τvis,h, τth,h, σDR, σf), we use a
multivariate uniform distribution as a prior. We centre the four heater parameters around the
best-fit values obtained from nonlinear regression and use reasonable intervals for σDR and
σf (both expressed in rad · s−1):

p(ψψψ) = p





kvis,h

kth,h

τvis,h

τth,h

σDR

σf




= U





(2.7±1.5) ·101

(1.5±1) ·10−5

(−1.5±1) ·10−3

(8±6) ·10−4

(4±3) ·10−1

(3±2) ·100




(4.40)

Next, we need to define the proposal distribution, R. We use a Gaussian proposal distribution
with a diagonal covariance matrix σσσ2

R chosen by trial and error as explained in Sec. 1.4. As
an example, the covariance matrix used for this particular case is the following

σσσ
2
R =



2 ·10−3 0 0 0 0 0
0 5 ·10−15 0 0 0 0
0 0 5 ·10−11 0 0 0
0 0 0 1 ·10−11 0 0
0 0 0 0 1 ·10−4 0
0 0 0 0 0 1 ·10−4


(4.41)

where the diagonal elements of σσσ2
R from the top-left corner to the bottom-right corner

represent the variances of {kvis,h, kth,h, τvis,h, τth,h, σDR, σf}, respectively. We run 12
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different Markov chains in parallel, each of which is initialized with a set of parameters ψψψ0

randomly sampled from the prior distribution in Eq. (4.40). Each chain evolves independently.
Using ψψψ0 we solve the network model and, for each experiment k, we compute the complex
frequency predicted by the model, sss0

k . Here sss is a two-dimensional real vector containing the
real and imaginary parts of s. Using (σσσ0

lik)
2 we then evaluate the log-likelihood function L

L = log[∏
k

p(sssexp,k|sss0
k ;(σσσ0

lik)
2)] = ∑

k
log[p(sssexp,k|sss0

k ;(σσσ0
lik)

2)] (4.42)

Here we use the fact that the experiments are independent, meaning that the total like-
lihood is given by the product of the individual likelihoods. The individual likelihood
p(sssexp,k|sss0

k ;(σσσ0
lik)

2) is computed by evaluating at sssexp,k the probability density function of a
Gaussian distribution with mean sss0

k and covariance matrix (σσσ0
lik)

2, namely N
(
sss0

k ,(σσσ
0
lik)

2).
To avoid round-off errors, it is desirable to work with logarithms of probability density func-
tions whenever possible. By doing so, a multiplication of two exponential functions becomes
a sum of their exponents (see Eq. (4.42)). After computing the log-likelihood, we randomly
sample a new set of parameters ψψψ1 from the proposal distribution R ∼N (ψψψ0,σσσ2

R), check-
ing that ψψψ1 falls inside the prior distribution defined in Eq. (4.40). Otherwise we re-sample.
Using ψψψ1 we compute the new model predictions, sss1

k , and hence the new value of the log-
likelihood function, L = ∑k log[p(sssexp,k|sss1

k ;(σσσ1
lik)

2)]. Finally, we compute the acceptance
ratio r using Eq. (1.23) and decide whether the new sampled set, ψψψ1, is accepted or rejected.
A new sample ψψψ2 is then compared to ψψψ1 if ψψψ1 was accepted, or to ψψψ0 if ψψψ1 was rejected.
The algorithm runs until the accepted parameter samples converge and all the 12 chains are
well mixed. Fig. 4.4 shows the result of this process for the four heater parameters. The
burn-in regions are identified by the vertical solid lines in Fig. 4.4: samples before these lines
are discarded because the algorithm has not converged yet.

Now we would like to use the obtained posterior in the parameter space to evaluate the
uncertainty in the state space. To do so, once the samples in the burn-in region are discarded,
for each experiment in theory we could use the standard Monte Carlo method to randomly
sample from the converged posterior (parameter) distribution and obtain the predicted com-
plex frequencies s. In this way, we would propagate the uncertainty from the parameters to
the state. However, this procedure would allow us to compute the uncertainty of s only due to
uncertainty in the parameters. We are instead interested in quantifying the total uncertainty,
which is made up of three contributions: parameter uncertainty, model uncertainty, and
observation uncertainty. To compute the total uncertainty, for each experimental datapoint we
proceed as follows. We draw 500 samples from the posterior distribution obtained with the
MCMC. For each of these samples, we first compute the corresponding complex frequency
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Fig. 4.4 Evolution of the 12 Markov chains for the case in which the heater is in place but
switched off and the thermocouples are not present. Vertical black lines delimit the burn-in
region, which comprises accepted proposals that are discarded.
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s predicted by the network model, and then draw 50 samples from a Gaussian distribution
centred around s and with covariance matrix equal to σσσ2

lik. (The sizes of the samples (500
and 50) are chosen arbitrarily. Results do not significantly change when different sizes are
used, provided that these are not too small.) In this way, we are able to obtain a much wider
ensemble of predicted complex frequencies, from which classic statistics (mean and standard
deviation) can be extracted. This procedure is applied to both training and testing sets, and is
reported in Algorithm 4.2.

Algorithm 4.2: Forward uncertainty propagation to state s using standard Monte Carlo.
Line 7 is key for the computation of the total uncertainty, shown in Figs. 4.5, 5.1, 5.2,
C.1 and D.1.
1 foreach experimental datapoint do
2 initialize array zzz;
3 for i = 1 to 500 do

/* The parameters to use depend on your model */

4 (kvis,h, kth,h, τvis,h, τth,h, σDR, σf)← draw a sample from MCMC posterior;
5 s← use network model with (kvis,h, kth,h, τvis,h, τth,h);
6 σσσ2

lik← build covariance matrix of the likelihood function using (σDR, σf);
7 draw 50 samples from N (s,σσσ2

lik) and append to zzz;

8 end
/* Now compute state prediction (mean) and uncertainty (standard deviation)

for this experimental datapoint */

9 compute mean and standard deviation of zzz;

10 end

Results in Fig. 4.5a show good agreement between model predictions and experimental
observations, especially considering that the size of the training set is relatively small
(≈ 27%). This is because the model we use contains the relevant physics of the problem and
hence can extrapolate well beyond the training range. It is also important to note that, as
expected, the parameter values in Fig. 4.4 agree with the best-fit values found with nonlinear
regression and reported in the caption of Fig. 4.3a, although nonlinear regression cannot also
assimilate the uncertainty.
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(a) Heater off without thermocouples. Only the
experimental data corresponding to the heater po-
sitions highlighted in blue are used for inference.
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(b) Heater off with thermocouples. Only the ex-
perimental data corresponding to the heater posi-
tions highlighted in blue are used for inference.

Fig. 4.5 Decay rate (top) and frequency (bottom) of acoustic oscillations when the heater is
switched off and placed at different positions xh/L. Comparison of experimental observations
and model predictions using the MCMC with 95% confidence intervals for two configurations:
(a) no thermocouples present inside the tube, and (b) thermocouples present inside the tube.



60 Acoustics modelling without the thermoacoustic mechanism

4.3 Modelling the visco-thermal drag from the thermocou-
ples

We assume that all eight thermocouples are identical drag devices across which acoustic
momentum and energy losses occur through jump conditions. The total number of acoustic
elements of the network model in the presence of both the heater and the 8 thermocouples is
therefore 49. For simplicity, and because the influence of the thermocouples is small, we
assume the time delays associated with the visco-thermal drag at the thermocouples to be
negligible. Thus, the jump conditions across the thermocouples are

p′i+1(t)− p′i(t) =−kvis,t u′i(t) (4.43)

u′i+1(t)−u′i(t) =−kth,t p′i(t) (4.44)

To further simplify the problem, we assume that the ratio of viscous-to-thermal drag for the
thermocouples is the same as that for the heater: kvis,t/kth,t = kvis,h/kth,h. This means that
the visco-thermal drag of the thermocouples is described by a single independent parameter,
e.g. kvis,t. The next set of experimental results, which contain both the heater and the
thermocouples, is used to learn this independent thermocouple parameter. As in Sec. 4.2,
we first perform nonlinear regression. When doing this, we fix the heater parameters to the
ones found in Sec. 4.2 (see caption of Fig. 4.3a). At each algorithm iteration, we compute
kth,t = kvis,t/kvis,h · kth,h. Once again, we use the experiments available at all the heater
positions for inference. The result of this process is shown in Fig. 4.3b and the values of
kvis,t and kth,t are reported in the figure caption. As we can see, the additional drag due to the
presence of the thermocouples is well captured by this simple model.

Next, we use the MCMC method to infer the uncertainty first in the parameters and then
in the state. When doing so, we train our model using only the experiments available at
three heater positions: xh/L = [0.20,0.25,0.30], analogously to what was done in Sec. 4.2.
Because we now have good knowledge of the four heater parameters from Sec. 4.2, we use
a mixed prior distribution to describe the heater and thermocouple parameters, therefore
allowing the heater parameters to float. In particular, for the four heater parameters and for
the diagonal elements of the likelihood covariance matrix we use a multivariate Gaussian
distribution that approximates the posterior found in Sec. 4.2, whereas for the independent
thermocouple parameter, kvis,t, we use a uniform distribution around the best-fit value found
with nonlinear regression

p(ψ7) = p(kvis,t) = U
(
(3±3) ·10−1

)
(4.45)
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We choose again a proposal distribution R that is Gaussian with a diagonal covariance matrix
whose entries are chosen by trial and error for simplicity

σσσ
2
R =



5 ·10−4 0 0 0 0 0 0
0 9 ·10−16 0 0 0 0 0
0 0 5 ·10−12 0 0 0 0
0 0 0 4 ·10−12 0 0 0
0 0 0 0 1 ·10−4 0 0
0 0 0 0 0 1 ·10−4 0
0 0 0 0 0 0 1.1 ·10−5


(4.46)

where the diagonal elements of σσσ2
R from the top-left corner to the bottom-right corner

represent the variance of {kvis,h, kth,h, τvis,h, τth,h, σDR, σf, kvis,t}, respectively. Every time
we sample a new set of parameters ψψψ , we first compute kth,t = kvis,t · kth,h/kvis,h and then
perform the steps decribed in Sec. 4.2. The model predictions for both the training and the
testing data are shown in Fig. 4.5b. As before, the agreement is excellent on both training and
testing sets. This shows that a relatively simple model is able to predict the system behaviour
in a reliable manner, provided that sufficient data are used for training and that the model
contains the relevant physics of the problem. In Fig. 4.5b we also note that the uncertainty in
the predictions is slightly lower than in Fig. 4.5a, which is because we have less uncertainty
in the prior. Fig. 4.6 shows the two-dimensional posterior distributions for each pair of
heater and thermocouple parameters, which agree with the best-fit regression values found
in Sec. 4.2. The main advantage of using the MCMC is that we are able to visualize any
non-normality or multi-modality feature present in the posterior. Indeed, in Fig. 4.6 we see
that none of the distributions is multi-modal but that some of them are non-Gaussian. Had
we used the ensemble Kalman filter, we would not have been able to observe these features.

4.4 Multi-microphone method

The reflection coefficient at the open end of a tube depends on the temperature at the open
end [93, 94]. When the heater is switched on, air leaves the tube at 300 to 460 K, depending
on the heater power (see Fig. 3.4). Assuming a constant downstream reflection coefficient
equal to the value computed in Sec. 4.1 therefore introduces systematic errors. We account
for this variable downstream reflection coefficient using the multi-microphone method, which
exploits the information contained in the microphone signals. The multi-microphone method
(MMM) represents an extension of the classic two-microphone method (TMM) that was first
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Fig. 4.6 Two-dimensional probability distributions of the heater and thermocouple parameters
{kvis,h,kth,h,τvis,h,τth,h,kvis,t,kth,t} obtained with the heater (switched off) and the thermocou-
ples in place.
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Fig. 4.7 Sketch of an acoustically-excited tube. N different microphones are located at
x1, ... ,xN . We consider the tube to be a single acoustic element with travelling waves f and
g that reflect off the upstream and downstream boundaries characterised by the reflection
coefficients Ru and Rd, respectively.

developed by Seybert and Ross [95]. To explain how it works, we assume for the moment
that the tube is modelled by a single acoustic element, and that N different microphones
are placed at locations x1, ... ,xN (see Fig. 4.7). The pressure fluctuations recorded by each
microphone j are given by Eq. (4.18). By taking the Laplace transform of this equation we
obtain

P̂j = Fe−s
x j
c +Ge+s

x j
c (4.47)

The left-hand side of Eq. (4.47) is the complex pressure computed in the way described in
Sec. 2.3. To solve Eq. (4.47) for [F,G]T, at least two microphones are needed. If more than
two microphones are available, Eq. (4.47) represents an overdetermined linear system of
equations, for which [F,G]T can be obtained in a more robust way by using least-squares
regression. The reflection coefficient at x = L can then be computed using Eq. (4.29):

Rd =
G
F

e+s L
c

e−s L
c

(4.48)

If more than one acoustic element is present, one needs to solve the overall network model
and, in Eq. (4.48), use the values of F , G, and c of the most downstream acoustic element.
The difficulty with using Eq. (4.48) is that s needs to be known in order to compute Rd. In
order to obtain s, however, one needs to solve Eq. (4.30), which in turn requires knowledge
of Rd. This difficulty is overcome by solving for s and Rd simultaneously. The new system
of equations to solve is

A(s)w = p (4.49)



66 Acoustics modelling without the thermoacoustic mechanism

where now A(s) is no longer square because it contains the right-hand side of Eq. (4.47).
These additional rows replace the row where Rd appears, therefore Rd is no longer present
in A(s). Analogously, p is a vector that contains not only 0, but also the left-hand side of
Eq. (4.47). Eq. (4.49) is an overdetermined nonlinear system of equations that is numerically
more challenging to solve than Eq. (4.30). We solve Eq. (4.49) iteratively by finding the
value of s that minimizes the difference between the left-hand side and the right-hand side
of the same equation. For this, we use the Matlab® inbuilt function lsqnonlin with the
Levenberg-Marquardt algorithm. With the obtained value of s one can compute Rd using
Eq. (4.48), if needed. If a microphone is located at the heater position, its signal is discarded
when using the MMM.

Given the high sensitivity of s to the boundary conditions and hence to the microphone
complex pressures, P̂j, the MMM is a reliable tool only if the microphones are accurately
calibrated. In addition to the calibration procedure explained in Sec. 2.3, we further calibrate
each microphone against a reference microphone. (This is essentially a relative calibra-
tion procedure.) We choose the microphone located at xm/L = 0.45 to be our reference
microphone because it is characterised by the highest signal-to-noise ratio. (Choosing the
microphone located at xm/L = 0.55 would be equivalent, given the symmetry of the first
pressure eigenmode.) We then compute for each empty tube experiment the reference pres-
sure eigenmode using the complex pressure of the reference microphone and the empty
tube reflection coefficient (these two pieces of information uniquely identify the pressure
eigenmode). Finally, we compute the calibration coefficient for the generic microphone j
as z j = P̂ref

j /P̂j, where P̂ref
j is the complex pressure value that lies on the reference pressure

eigenmode at x = x j. Multiplying the complex pressure value of each microphone by the
corresponding calibration coefficient means, in other words, applying a correction factor
that ensures that the complex pressure lies on the reference pressure eigenmode. Once the
calibration coefficients are computed, we call the MMM routine using the calibrated complex
pressures (z jP̂j). Fig. 4.8 shows the values of the calibration coefficients for the empty tube
experiments. If the microphones were perfectly calibrated, then z j = 1. However, as can
be seen in Fig. 4.8, the calibration coefficients z j differ from 1 (z = 1 holds only for the
reference microphone because by definition the complex pressure value of the reference
microphone lies on the reference pressure eigenmode). Thus, assuming z j = 1 would lead to
less accurate predictions of the complex frequency s.

In Fig. 4.8 it is interesting to note that the clouds of points are not uniformly distributed.
Each cloud corresponds to a set of 100 experiments performed after approximately 24
hours. A possible reason of the non-uniformity is a change in the ambient conditions of the
laboratory room (temperature and humidity). Because it would be too complicated to model
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the dependence of the calibration coefficients upon the ambient conditions, we prefer using
for each microphone an average calibration coefficient that varies from day to day, so as to
aim to obtain the most accurate results possible. Thus, for each heater position, we have a
set of five calibration coefficients that correspond to the average of each cloud of points in
Fig. 4.8. These are reported in Table 4.1. Finally, it is important to notice that, when calling
the MMM routine, we discard the information coming from the microphone located at the
same position of the heater (if any) because that information would not be accurate. These
are highlighted in red in Table 4.1.



68 Acoustics modelling without the thermoacoustic mechanism

1.030 1.037 1.044

1.80

1.95

2.10

2.25

10 -2

(a) xm/L = 0.95

1.010 1.012 1.014

2.60

2.66

2.72

10 -2

(b) xm/L = 0.85

1.017 1.018 1.019 1.020

2.05

2.10

2.15

10 -2

(c) xm/L = 0.75

1.006 1.007 1.008

2.70

3.00

3.30

3.60

10 -3

(d) xm/L = 0.65

1.007 1.008

2.32

2.35

2.38

2.41

2.44
10 -2

(e) xm/L = 0.55 (f) Legend

Fig. 4.8 Relative calibration coefficients, z j, of the top 5 microphones. Reference microphone
is that at xm/L = 0.45. Different colours represent experiments performed on different days.
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Table 4.1 Relative calibration coefficients z j of each microphone j for each heater position
xh/L. [z1, z2, z3, z4, z5, z6] are the calibration coefficients of the microphones located at
xm/L = [0.45, 0.55, 0.65, 0.75, 0.85, 0.95], respectively. The reference microphone is that
at xh/L = 0.45, hence by definition z1 = 1. Information coming from the microphone located
at the same position of the heater (if any) is discarded because not accurate: the calibration
coefficients of these microphones are reported in red.

xh/L z1 z2 z3

0.55 1.0000 + i 0.0000 1.0070 + i 2.4028 ·10−2 1.0071 + i 3.3779 ·10−3

0.50 1.0000 + i 0.0000 1.0075 + i 2.4168 ·10−2 1.0081 + i 3.1272 ·10−3

0.45 1.0000 + i 0.0000 1.0076 + i 2.3958 ·10−2 1.0081 + i 3.1272 ·10−3

0.40 1.0000 + i 0.0000 1.0075 + i 2.3341 ·10−2 1.0076 + i 2.8437 ·10−3

0.35 1.0000 + i 0.0000 1.0069 + i 2.3318 ·10−2 1.0066 + i 2.9936 ·10−3

0.30 1.0000 + i 0.0000 1.0080 + i 2.3347 ·10−2 1.0069 + i 3.4513 ·10−3

0.25 1.0000 + i 0.0000 1.0081 + i 2.3365 ·10−2 1.0066 + i 3.5154 ·10−3

0.20 1.0000 + i 0.0000 1.0072 + i 2.3385 ·10−2 1.0058 + i 3.4987 ·10−3

0.15 1.0000 + i 0.0000 1.0068 + i 2.3349 ·10−2 1.0062 + i 3.0155 ·10−3

0.10 1.0000 + i 0.0000 1.0068 + i 2.3332 ·10−2 1.0067 + i 2.7606 ·10−3

z4 z5 z6

1.0192 + i 2.1405 ·10−2 1.0136 + i 2.6948 ·10−2 1.0456 + i 2.2287 ·10−2

1.0195 + i 2.1156 ·10−2 1.0125 + i 2.6749 ·10−2 1.0394 + i 2.1922 ·10−2

1.0200 + i 2.1055 ·10−2 1.0144 + i 2.6604 ·10−2 1.0461 + i 2.1602 ·10−2

1.0193 + i 2.0780 ·10−2 1.0138 + i 2.6399 ·10−2 1.0454 + i 2.1732 ·10−2

1.0182 + i 2.0960 ·10−2 1.0124 + i 2.6611 ·10−2 1.0429 + i 2.1911 ·10−2

1.0183 + i 2.1153 ·10−2 1.0102 + i 2.6205 ·10−2 1.0288 + i 1.8605 ·10−2

1.0182 + i 2.1272 ·10−2 1.0107 + i 2.6459 ·10−2 1.0322 + i 1.9436 ·10−2

1.0176 + i 2.1429 ·10−2 1.0118 + i 2.7045 ·10−2 1.0419 + i 2.2020 ·10−2

1.0178 + i 2.0947 ·10−2 1.0119 + i 2.6681 ·10−2 1.0422 + i 2.2150 ·10−2

1.0186 + i 2.0665 ·10−2 1.0133 + i 2.6419 ·10−2 1.0465 + i 2.2045 ·10−2





Chapter 5

Thermoacoustic modelling

Building up on the results obtained in Chapters 2 to 4, this chapter presents both a qualitative
and a quantitative comparison between four different physics-based reduced-order thermoa-
coustic models. We introduce some flexibility in the models when the underlying physical
principles cannot be identified. Each model is trained using a small portion of the data
and extrapolation is performed on the remaining data. We show that some frequently-used
thermoacoustic models are inadequate to fully describe the entire dataset in our possession,
and this occurs even if all the data are used for training. In the first part of this chapter we
introduce the models. Next, we use the Markov Chain Monte Carlo method to infer the
model parameters. After that, we propagate the uncertainty from the parameters to the state
for both the training and the testing data. Finally, we compute the average log-likelihood
per datapoint and use this as metric to quantitatively compare the four models and draw
conclusions on the best performing model.

5.1 Description of the models

When the heater is switched on, the right-hand side of Eq. (4.3) becomes non-zero at the
heater location

∂ p
∂ t

+u
∂ p
∂x

+ γ p
∂u
∂x

= (γ−1)δ (x−b)
q̇(x, t)

A
(5.1)

where q̇(x,t)
A is the heat release rate per unit area and δ (x− b) is the Dirac delta function

centred at x = b. The corresponding jump condition becomes[
γ

γ−1
pu+

1
2

ρu3
]b+

b−
=

q̇(b, t)
A

(5.2)
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Linearization of Eq. (5.1) translates to

∂ p′

∂ t
+ γ p

∂u′

∂x
= (γ−1)δ (x−b) q̇′(x, t) (5.3)

(The second term on the left-hand side of Eq. (5.1) vanishes due to the no mean flow
assumption: u = 0.) This means that, when Eq. (5.3) is integrated across the heater, a new
term corresponding to the heat release rate fluctuations appears in the velocity jump condition

u′i+1(t)−u′i(t) =−kth,h p′(t− τth,h)+
γ−1

γ

1
p

4
πD2 q̇′h(t) (5.4)

where we set q̇′h(t) = q̇′(xh, t) for simplicity. A closure relationship between q̇′h(t) and the
acoustic variables u′(x, t) and p′(x, t) is required, i.e. a heat release rate model needs to
be specified. In this study, we compare the performance of four different heat release rate
models.

Model 1. The first model is a classic closure relationship provided by the n− τ model
[33, 96]

q̇′h(t)
Q̇h

= n
u′h(t− τ)

U1
(5.5)

in which the heat release rate fluctuations are assumed to be proportional to the velocity
fluctuations at the heater location through the interaction index n with a time delay τ . Here n
and τ are both constant. The time delay τ determines whether the thermoacoustic mechanism
drives or damps acoustic oscillations. Thermoacoustic driving occurs when τ is such that
q̇′h(t) is sufficiently in phase with the pressure oscillations p′(x, t). The n− τ model is a
popular thermoacoustic model, used for example by Stow and Dowling [30] within a network
model of an annular combustor. Using the Markov Chain Monte Carlo method, we infer n
and τ in a probabilistic fashion.

Model 2. The second model represents an extension of model 1 and is based on Lighthill
[51], who performed a perturbation analysis on the boundary layer of a laminar flow around a
cylinder in cross-flow. We test this model because the electric heater used in our experiments
contains several thin cylindrical filaments in cross-flow, each with diameter df (see Fig. 2.2).
The model can be written as:

q̇′h(t)
Q̇h

= n
u′h(t− τ)

U1
, τ = kτ

0.2df

U1
(5.6)

In his analysis, Lighthill [51] found a time delay proportionality constant of 0.2, shown above.
In our model, we introduce a further dimensionless parameter kτ to account for possible
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inaccuracies in this constant. (i.e. Lighthill’s value of kτ would be 1.) With this model, we
infer n and kτ .

Model 3. The third model allows τ to depend on the heater location in order to account
for location-dependent flow variations over the heater. We include this effect because τ is the
parameter with most influence on the thermoacoustic behaviour, and models 1 and 2 may be
unduly restrictive: model 1 assumes that τ is fixed, while model 2 assumes that it is inversely
proportional to the natural convection velocity. Nevertheless, having allowed τ to vary, we
give it as little flexibility as possible by restricting it to be an affine function of heater location

q̇′h(t)
Q̇h

= n
u′h(t− τ)

U1
, τ = mτ

xh

L
+qτ (5.7)

We therefore infer three parameters, n, mτ , and qτ , rather than two.
Model 4. The last model we test represents a variation of model 3 and is based on King’s

law [97]. The analysis developed by [97] was used by Heckl [98] to investigate nonlinear
acoustic effects in a Rijke tube. The difference with model 3 lies in the fact that the interaction
index n is now considered to be a function of the Reynolds and Prandtl numbers

q̇′h(t)
Q̇h

=
kn

2+(0.5π PrRe1)−0.5
u′h(t− τ)

U1
, τ = mτ

xh

L
+qτ (5.8)

where Re1 = (dfU1)/ν and Pr = (µcp)/λ , with fluid properties at ambient conditions, for
simplicity. (Evaluating fluid properties at different conditions, for example at the temperature
at the heater location, would not change the conclusions of this analysis.) The theoretical
value of kn should be 1, but we allow it to vary to account for possible inaccuracies in this
constant. The parameters we aim to infer are therefore kn, mτ , and qτ . We now report the
steps needed to derive this new equivalent interaction index starting from King’s law.

King [97] considers a cylinder in cross-flow. In our case, the cylinder corresponds to one
of the many filaments the heater is made up of. Eq. 33 in King [97] reads

H = κθ0 +2
√

πκsσa U
1
2 θ0 (5.9)

where H is the heat loss of the cylinder per unit length, θ0 is the temperature of the cylinder
above that of the free stream, κ is the thermal conductivity of the fluid, s is the heat capacity
per unit mass of the fluid, σ is the density of the fluidy, a is the cylinder radius, and U is the
fluid velocity. We assume the fluid properties to be evaluated at the free-stream temperature
and the fluid velocity to be the free-stream velocity. Using the cylinder diameter df = 2a, we
can define a convective heat transfer coefficient h and the corresponding Nusselt number Nu
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as follows
h =

H
θ0 df

(5.10)

Nu =
hdf

κ
= 1+2

√
π

2
sµ

κ

σdfU
µ

= 1+2
√

π

2

√
PrRe (5.11)

where µ is the dynamic viscosity of the fluid, and Re and Pr are the Reynolds and Prandtl
numbers, respectively. Now we consider small perturbations of H, Nu and Re around their
mean values, H0, Nu0 and Re0, respectively

H = H0 +d(H) = H0 +H ′ (5.12)

Nu = Nu0 +d(Nu) = Nu0 +Nu′ (5.13)

Re = Re0 +d(Re) = Re0 +Re′ (5.14)

where Re0 is based on the free-stream velocity U , whereas Re′ is based on the perturbed
velocity u′. The relation between Nu′ and Re′ is

Nu′ =
d(Nu)
d(Re)

∣∣∣∣
Re0

Re′ =
√

π

2

√
Pr

Re0
Re′ (5.15)

Finally, the relationship between the heat release rate fluctuations and the velocity perturba-
tions is given by

H ′

H0
=

Nu′

Nu0
=

√
π/2

√
Pr/Re0

1+2
√

π/2
√

PrRe0
Re′ =

1
2+(0.5π PrRe0)−0.5

u′

U
(5.16)

By replacing U with U1, and Re0 with Re1, and by introducing kn, we obtain the interaction
index shown in Eq. (5.8).

5.2 Qualitative comparison

When the heater is switched on, we build upon the results obtained in the previous chapters.
We fix the heater and thermocouple visco-thermal parameters to their mean values obtained
in Secs. 4.2 and 4.3, and use the multi-microphone method to compute the downstream
reflection coefficient, Rd. The upstream reflection coefficient, Ru, is fixed to the value found
in Sec. 4.1. The cold flow parameters could be treated as uncertain parameters and be inferred
simultaneously with the thermoacoustic model parameters, but here we fix them to their
mean values because, if the thermoacoustic model is wrong, they would compensate for that
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error by shifting to new values to match the data. In addition, the cold flow parameters are
expected to have a lower impact on the results than the thermoacoustic model parameters, so
neglecting their uncertainty is reasonable. Here we investigate the thermoacoustic models
using the Markov Chain Monte Carlo method only. The training set contains the same heater
positions as those used for the cold runs: xh/L = [0.20,0.25,0.30]. The thermoacoustic effect
is strongest when the heater is at these positions so these are the best positions at which to
infer the parameters of the thermoacoustic model. Similarly to the cold flow case, we infer
not only the thermoacoustic model parameters but also σDR and σf, which are used in the
likelihood covariance matrix σσσ2

lik to estimate observation and model error. The posterior
distribution in the parameter space is obtained following the steps described in Sec. 4.2. The
same holds for the uncertainty quantification.

Fig. 5.1 shows the predictions of model 1 at all the heater positions, both training (shaded
purple) and testing data. We can see that model 1 performs accurately within the range of
the training data but becomes inaccurate when extrapolating beyond the training range. For
example, when xh/L = 0.10, at high powers the growth rate predictions are several standard
deviations away from the observations (see top subfigure in Fig. 5.1j). Moreover, even if
all the experimental data are used in the training set, the predictions of this model are still
poor over the entire range of the data because the thermoacoustic model is not sufficiently
flexible. This is not shown here because the results do not differ significantly from Fig. 5.1.
Model 2 gives very similar results to model 1 (see Fig. C.1 in Appendix C) because the mean
velocity in the tube is similar in all the experiments (see Fig. 3.5). This means that it is not
possible to infer a unique set of parameters (either n− τ in model 1, or n− kτ in model 2)
that provide accurate results for the whole range of analysed data. These two models can be
accurately used only when limiting them to specific configurations where the heater position
does not change significantly. In the studies available in the literature, the n− τ model has
been used successfully only because the heater position was fixed. Here instead we show
that this thermoacoustic model breaks down when used for a wide range of heater positions.

Model 3 introduces one further model parameter and we find that this gives sufficient
flexibility to provide a good fit over the entire testing range. Several other models were tested,
with tau assumed to be dependent on the heater power, the heater position, and the inlet bulk
speed. Model 3 is the simplest model that provides accurate enough results. We observed
that adding additional parameters to explicitly embed the dependence of tau upon the heater
power and the inlet bulk speed does not significantly change the results. We are unable to
provide a physical justification as to why τ should depend upon xh/L. An assumption could
be that τ depends on the heat loss from the tube, which varies with xh/L. Fig. 5.2 shows
the growth rate and frequency predictions of model 3 at every heater position, after training
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Fig. 5.1 Comparison between experimental data and predictions of model 1 with 95% confi-
dence intervals, when the training set comprises experimental data at xh/L= [0.20,0.25,0.30].
The heater power is increased every 70 minutes in steps of 10 W (shown by bars at the bot-
tom).
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on heater positions xh/L = [0.20,0.25,0.30] (shaded purple). All the results for the central
heater positions are within the 95% confidence interval and, while there is clearly some
systematic discrepancy at the extreme heater positions, there is far less than there was for
models 1 and 2. Indeed, when xh/L = 0.45, this model can even replicate the experimental
observation that the velocity node passes through the heater as the heater power increases (i.e.
the growth rate becomes less negative at low heater powers and more negative at high heater
powers). Results of model 4 are very similar to those shown in Fig. 5.2 and are reported in
Fig. D.1 in Appendix D. This means that the improvement obtained with model 4 is limited
as will be shown also in Sec. 5.3.

5.3 Quantitative comparison

As well as the qualitative comparisons shown in Sec. 5.2, the Bayesian methods used here
can provide quantitative comparisons of the four models. We evaluate the performance
of our models with the average (marginal) log-likelihood per datapoint: a less negative
log-likelihood indicates a better performance. This quantity is obtained by marginalizing the
model parameters for each datapoint and averaging the resulting likelihoods. This metric
is computed just for the testing set in order to provide more robustness to the analysis. The
correct computational procedure to do so is reported in Algorithm 5.1. It is important to
note that the definition of marginal likelihood involves sampling from the prior distribution
and then evaluating the likelihood function for each parameter sample. Given that here we
are interested only in the testing set, to compute the marginal likelihood in Algorithm 5.1
we sample from the posterior parameter distribution (rather than the prior). This is done
because we want to evaluate the best possible performance of our models, i.e. we want to
use our models once they are calibrated. This is equivalent to stating that, in the definition
of the marginal likelihood (see Eq. (1.5)), we replace the original prior distribution with the
posterior distribution from the training data and then obtain the marginal likelihood of the
testing data.

We show the results of this algorithm in Table 5.1 along with the computation of the
root mean square error (RMSE) of growth rate and frequency of each model. The RMSE
values are also computed just for the testing set. Table 5.1 shows that model 2 provides a less
negative log-likelihood of the testing data than model 1, but a similar RMSE. This means
that the average accuracy of the two models is comparable, but the physical model in which
τ depends inversely on the mean flow speed (model 2) provides a lower uncertainty, on
average, compared to the one in which τ is fixed (model 1). Hence it should be preferred. On
the other hand, model 3 provides a less negative log-likelihood of the testing data than both
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Fig. 5.2 Comparison between experimental data and predictions of model 3 with 95% confi-
dence intervals, when the training set comprises experimental data at xh/L= [0.20,0.25,0.30].
The heater power is increased every 70 minutes in steps of 10 W (shown by bars at the bot-
tom).
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models 1 and 2, so is a better description of the data. It also has a significantly lower RMSE
of the growth rate predictions. This comes at the cost of a slight increase in RMSE of the
frequency predictions, although this is easily outweighed by the improvement in the growth
rate prediction. Table 5.1 therefore quantifies the improvement that can be seen qualitatively
by comparing Fig. 5.1 with Fig. 5.2. As stated in Sec. 5.2, Model 4 is comparable to model
3, meaning that the interaction index has less influence on the prediction of the growth rate
and frequency than does the time delay. Because model 3 is simpler than model 4, it ought to
be preferred. In conclusion, this analysis shows that model 3 performs best.

Fig. 5.3 shows the two-dimensional parameter distributions of model 3 obtained with
the MCMC. The long thin ellipse in Fig. 5.3c shows that a range of pairs of mτ and qτ fit
the data reasonably well, reflecting the fact that we are fitting a line through three points at
similar values of xh/L in Eq. (5.7). Had we trained on data from a wider range of xh/L, the
uncertainty in these parameters would have been smaller and the ellipse in Fig. 5.3c would
have been more circular.

Algorithm 5.1: Computation of the average log-likelihood per datapoint
/* ************************************************************************ */

/* Note: inside the inner for-loop it is fine to work with likelihoods rather

than log-likelihoods because the inference has already been done, hence we

will not face any round-off problems because the model is already close

enough to the data at this stage */

/* ************************************************************************ */

/* Initialize array of log-likelihoods */

1 initialize array lllooogggllliiikkk;
/* Initialize array of likelihoods */

2 initialize array llliiikkk;
3 foreach experimental datapoint sexp do
4 for i = 1 to 500 do

/* Change the T.A. parameters if you are using a different model */

5 (n, mτ , qτ , σDR, σf)← sample from MCMC posterior;
6 s← use network model (kvis,h, kth,h, τvis,h, τth,h, n, mτ , qτ);
7 l← compute likelihood: p(sexp|s,σDR,σf);
8 append l to llliiikkk;
9 end

/* Compute log of mean likelihood of this experimental datapoint */

10 b← compute mean of llliiikkk and then take the logarithm;
11 append b to lllooogggllliiikkk;
12 end

/* Compute average log-likelihood per datapoint */

13 compute mean of lllooogggllliiikkk;
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Table 5.1 Average (marginal) log-likelihood per datapoint and RMSE of growth rate, Re(s),
and frequency, Im(s), for each model. All these metrics are computed just for the testing set
xh/L = [0.10,0.15,0.35,0.40,0.45,0.50,0.55]. For each row the best results are reported in
bold.

Model 1 Model 2 Model 3 Model 4

Average (marginal) log-likelihood -6.81 -6.10 -5.39 -5.51
RMSE (Re(s)) [rad · s−1] 2.65 2.52 1.53 1.62
RMSE (Im(s)) [Hz] 0.97 1.01 1.09 1.10

(a) (b)

(c)

Fig. 5.3 Two-dimensional parameter distributions of model 3 (best performing model).



Chapter 6

Conclusions

6.1 Summary

In this study, we assimilate O(106) experimental measurements into a physics-based model
of a Rijke tube in order to turn a qualitatively-accurate model into a quantitatively-accurate
model. The model has two components: (i) a 1D conjugate heat transfer model for the
natural convection based flow, into which temperature measurements are assimilated with an
ensemble Kalman filter, and (ii) a thermoacoustic network model for the acoustic oscillations,
into which microphone pressure measurements are assimilated with the Markov Chain Monte
Carlo method. The thermoacoustic experiments are designed so that parameters can be
assimilated in sequence, using posterior values from one set of experiments as prior values
for subsequent experiments. The cold flow reflection coefficients are inferred first, then
the visco-thermal damping coefficients of the cold heater, then the visco-thermal damping
coefficient of the thermocouples, and finally the heat release rate parameters, which describe
the heat release rate fluctuations as a function of acoustic velocity at the heater. For the
hot flow experiments, we use the multi-microphone method to compute the downstream
reflection coefficient as it varies with exit temperature.

We show that a simple physics-based model of the cold system, trained on a small portion
of the available experiments (≈ 27%), describes the experimental results accurately even
when extrapolating well beyond the range of the training set (Fig. 4.5). We find that the
largest systematic error comes from the heat release rate model. We therefore assimilate
the data for four different n− τ hot heater models: (i) one in which n and τ are fixed; (ii)
one in which n is fixed and τ is based on Lighthill’s work [51]; (iii) one in which n is fixed
and τ is an affine function of the heater position, xh/L; (iv) one in which n is based on
King’s law [97] and τ is an affine function of xh/L. Using the Markov Chain Monte Carlo
method, we compute the posterior distribution over the parameter space for each model. With
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this distribution, using the Monte Carlo method, we marginalize the model parameters and
compute the (marginal) log-likelihood of the testing data given each model, as well as the
model RMSE on the testing data (Table 5.1). We also plot the model predictions against the
experimental data (Figs. 5.1, C.1, 5.2 and D.1). This shows that the third model gives the best
fit to the training set (Table 5.1) and can extrapolate well beyond the range of the training
set (Fig. 5.2), despite its relatively small size (30%). This model is quantitatively accurate,
within quantified error bounds, over all but the most extreme experimental conditions.

This study shows that a physics-based qualititatively-accurate model can be trained to
be quantitatively accurate using many experimental measurements and tools from Bayesian
statistical inference. Results from this model extrapolate well in the directions in which the
physics is well-described (e.g. changing heater position in the cold experiments). Results
extrapolate less well in the directions in which the physics is less well-described (e.g.
changing heater position in the hot experiments with model 1). This study reveals that many
commonly-used models in thermoacoustics are only qualitatively accurate and need to be
adapted to particular configurations in order to become quantitatively accurate. For example,
the Levine-Schwinger acoustic reflection coefficient [92], which is derived for a sharp-edged
semi-infinite tube in a uniform temperature flow, is not accurate enough for our experiment.
Instead we had to measure the reflection coefficients precisely, and adjust the downstream
coefficient using the multi-microphone method as the exit temperature increased.

6.2 Future work

This study lies at the boundary between physics and data science: we base our analysis on
physical principles and let the data suggest a closure relationship if the identified physical
mechanisms are too restrictive. The probabilistic approach used in this study can be applied
to a wide variety of physical problems for which the main physical mechanisms are known,
allowing modellers to develop quantitatively-accurate models, evaluate their adequacy, and
quantify their uncertainty. These quantitatively-accurate models could be used for design,
e.g. with adjoint-based optimization algorithms [99], in order to design out thermoacoustic
instability. It is important to highlight, though, that the models used in this study are much
simpler than the models used in real-world applications. For example, when analysing a real
jet engine, both the fluid mechanics and the acoustic equations change significantly, because
many assumptions valid for an electrically-heated Rijke tube do not hold true in a real jet
engine. The goal of this work is to illustrate how to apply statistical learning methods to an
engineering problem of interest with the idea of starting from simple systems and gradually
investigating more realistic systems. When more elaborate physical models are required
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in order to characterize more realistic systems, the posteriors of the simpler models can
be used as priors for the more elaborate models, as performed here between the cold and
hot flow tests. This will allow sophisticated models to be built, with rigorous uncertainty
quantification, from their component parts, mirroring the component tests, combustor tests,
and full engine tests performed in the gas turbine industry.

In terms of future work strictly related to this thesis, it would be beneficial to perform
additional experiments at values of the heater position xh/L > 0.55. Indeed, only a new
experimental campaign can clarify whether the identified relationship between the time delay
and the heater position still holds true or not when the switched-on heater is located in the
top half of the tube. In addition to this, it would be ideal to test the performance of these
models at higher electric powers. The rig under investigation can reach electric powers up
to 300 W. At these powers, the system becomes unstable at certain heater positions (e.g.
xh/L = 0.25). When this occurs, one can introduce a phase-shift amplifier in the automation
in order to stabilize and unstabilize the system at will, so as to measure the growth rate during
the exponentional growth of the instabilities that precedes the limit cycle. Another source
of improvement of this work concerns the fluid mechanics model and can be achieved by
lumping the inner and outer Nusselt numbers into a unique Nusselt number, thus removing
the solid temperature from the model. A dependence of the Nusselt number upon the axial
coordinate may also be taken into account, if necessary. The improvement of the fluid
mechanics model may lead to a better interpretability of the model parameters but may not
necessarily improve the results significantly, because these are already quite accurate (see
Fig. 3.4). Finally, using the statistical learning methods developed throughout this thesis, one
can replace the electric heater with a real flame, and perform a similar analysis to that which
was done in this work. The models used in this thesis can be used as starting point to study a
flame Rijke tube. The interest in this is that a flame Rijke tube would reduce the gap with a
real rocket engine and would allow modellers to draw interesting conclusions that can be
directly applied to an even more realistic system from an industrial point of view, e.g. a lab
engine with an annular combustion chamber.
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Appendix A

Complex frequency and pressures from
experiments (Matlab script)

1 f u n c t i o n [ s_exp , p_exp ] = . . .
2 fun_DecayRate ( f_exc , Fs , mic , V, lower_ l im , u p p e r _ l i m )
3
4 % C a l i b r a t i o n c o e f f i c i e n t s : [ f r e q u e n c y , d e c i b e l s ]
5 cc1 = l o a d ( ’ c a l i b r a t i o n D a t a \ 2 6 3 7 0 5 . d a t ’ ) ; % x_m / L = 0 . 9 5
6 cc2 = l o a d ( ’ c a l i b r a t i o n D a t a \ 2 6 3 7 0 6 . d a t ’ ) ; % x_m / L = 0 . 8 5
7 cc3 = l o a d ( ’ c a l i b r a t i o n D a t a \ 2 6 3 7 0 7 . d a t ’ ) ; % x_m / L = 0 . 7 5
8 cc4 = l o a d ( ’ c a l i b r a t i o n D a t a \ 2 6 3 7 0 3 . d a t ’ ) ; % x_m / L = 0 . 6 5
9 cc5 = l o a d ( ’ c a l i b r a t i o n D a t a \ 2 6 3 7 0 2 . d a t ’ ) ; % x_m / L = 0 . 5 5

10
11 % Microphone s e n s i t i v i t i e s
12 V_to_Pa_1 = 2 . 9 9 / 1 0 0 0 ; % x_m / L = 0 . 9 5
13 V_to_Pa_2 = 2 . 9 5 / 1 0 0 0 ; % x_m / L = 0 . 8 5
14 V_to_Pa_3 = 2 . 8 5 / 1 0 0 0 ; % x_m / L = 0 . 7 5
15 V_to_Pa_4 = 3 . 0 2 / 1 0 0 0 ; % x_m / L = 0 . 6 5
16 V_to_Pa_5 = 2 . 8 0 / 1 0 0 0 ; % x_m / L = 0 . 5 5
17
18 % Apply c a l i b r a t i o n c o e f f i c i e n t s and c o n v e r t v o l t a g e
19 % f l u c t u a t i o n s i n t o p r e s s u r e f l u c t u a t i o n s
20 s w i t c h ( mic )
21 c a s e {1} % x_m / L = 0 . 9 5
22 V = V − mean (V) ;
23 V = . . .
24 V/ 1 0 ^ ( 0 . 0 5 * i n t e r p 1 ( cc1 ( : , 1 ) , cc1 ( : , 2 ) , f _ e x c ) ) ;
25 p_raw = V/ V_to_Pa_1 ;
26 c a s e {2} % x_m / L = 0 . 8 5
27 V = V − mean (V) ;
28 V = . . .
29 V/ 1 0 ^ ( 0 . 0 5 * i n t e r p 1 ( cc2 ( : , 1 ) , cc2 ( : , 2 ) , f _ e x c ) ) ;
30 p_raw = V/ V_to_Pa_2 ;
31 c a s e {3} % x_m / L = 0 . 7 5
32 V = V − mean (V) ;
33 V = . . .
34 V/ 1 0 ^ ( 0 . 0 5 * i n t e r p 1 ( cc3 ( : , 1 ) , cc3 ( : , 2 ) , f _ e x c ) ) ;
35 p_raw = V/ V_to_Pa_3 ;
36 c a s e {4} % x_m / L = 0 . 6 5
37 V = V − mean (V) ;
38 V = . . .
39 V/ 1 0 ^ ( 0 . 0 5 * i n t e r p 1 ( cc4 ( : , 1 ) , cc4 ( : , 2 ) , f _ e x c ) ) ;
40 p_raw = V/ V_to_Pa_4 ;
41 c a s e {5} % x_m / L = 0 . 5 5
42 V = V − mean (V) ;
43 V = . . .
44 V/ 1 0 ^ ( 0 . 0 5 * i n t e r p 1 ( cc5 ( : , 1 ) , cc5 ( : , 2 ) , f _ e x c ) ) ;
45 p_raw = V/ V_to_Pa_5 ;
46 end

47
48 % Apply a B u t t e r w o r t h f i l t e r t o remove t o o h igh / low
49 % f r e q u e n c i e s
50 Fc = f _ e x c ; % c e n t e r f r e q u e n c y
51 dFc = 2 5 ; % d e l t a F
52 [B ,A] = b u t t e r ( 3 , [ Fc−dFc Fc+dFc ] / ( Fs / 2 ) , ’ b a n d p a s s ’ ) ;
53 p_raw = f i l t f i l t (B , A, p_raw ) ;
54
55 % Compute F a s t F o u r i e r Trans fo rm
56 n d a t a = l e n g t h ( p_raw ) ;
57 NFFT = 2^ nextpow2 ( n d a t a ) ;
58
59 % Compute f r e q u e n c y domain . The h i g h e s t c a p t u r e d f r e q u e n c y
60 % i s Fs / 2 . Above t h i s , f r e q u e n c i e s a r e a l i a s e d
61 f = Fs / 2 * l i n s p a c e ( 0 , 1 , NFFT / 2 + 1 ) ;
62 d t = 1 / Fs ;
63
64 % Compute t h e F o u r i e r t r a n s f o r m i n t h e two−s i d e d s p e c t r u m
65 p_FFT = f f t ( p_raw , NFFT) * d t ;
66 p_FFT = p_FFT ( 1 : NFFT / 2 + 1 ) ;
67 p_FFT ( 2 : end−1) = 2*p_FFT ( 2 : end−1) ;
68 f r e q = f ( f i n d ( abs ( p_FFT ) == max ( abs ( p_FFT ) ) ) ) ;
69
70 % C a l c u l a t e H i l b e r t Trans fo rm ( Fs = 1 / d t )
71 P h i l b = h i l b e r t ( p_raw ) ;
72 Hampl = abs ( P h i l b ) ;
73 Hphase = unwrap ( a n g l e ( P h i l b ) ) ;
74 Hfreq = d i f f ( unwrap ( [ Hphase ; Hphase ( end ) ] ) ) * Fs / ( 2 * p i ) ;
75
76 % F i t a s t r a i g h t l i n e t o t h e d e c a y i n g p a r t
77 N = l e n g t h ( p_raw ) ;
78 t = [ 0 : N−1 ] . / Fs ; t = t ’ ;
79 c o e f f = p o l y f i t ( . . .
80 t ( t > l o w e r _ l i m & t < u p p e r _ l i m ) , . . .
81 l o g ( Hampl ( t > l o w e r _ l i m & t < u p p e r _ l i m ) ) ,1 . . .
82 ) ;
83
84 % Compute e x p e r i m e n t a l complex f r e q u e n c y
85 % s_exp = d e c a y _ r a t e + i * f r e q u e n c y
86 s_exp = c o e f f ( 1 ) + 1 i * f r e q ;
87
88 % Compute e x p e r i m e n t a l complex p r e s s u r e
89 p_exp = p_FFT ( abs ( p_FFT ) == max ( abs ( p_FFT ) ) ) ;
90
91 end





Appendix B

Fluid mechanics model (Matlab script)

1 f u n c t i o n [ T , U] = f u n _ c o n j _ h e a t ( D1 , D2 , T_opt , . . .
2 p a r a m e t e r s , T_amb , t i m e _ i n t e r v a l , t o t a l _ t i m e , h e a t _ p o s )
3
4 % T : Tempera tu r e v e c t o r [K] ( s o l i d and gas ) a f t e r
5 % t i m e _ i n t e r v a l s e c o n d s .
6 % U: I n l e t gas v e l o c i t y [m/ s ] a t t i m e s t e p n +1 .
7
8 % D1 : 4 th−o r d e r a c c u r a t e d i f f e r e n t i a t i o n m a t r i x o f
9 % 1 s t−o r d e r s p a t i a l d e r i v a t i v e s u s i n g FDM wi th

10 % c e n t e r e d a p p r o x i m a t i o n s everywhere , e x c e p t n e a r
11 % t h e b o u n d a r i e s .
12 % D2 : 4 th−o r d e r a c c u r a t e d i f f e r e n t i a t i o n m a t r i x o f
13 % 2nd−o r d e r s p a t i a l d e r i v a t i v e s u s i n g FDM wi th
14 % c e n t e r e d a p p r o x i m a t i o n s everywhere , e x c e p t n e a r
15 % t h e b o u n d a r i e s .
16 % T_opt : Tempera tu r e v e c t o r [K] ( s o l i d and gas ) a t
17 % i n i t i a l t ime . Th i s comes from t h e EnKF .
18 % p a r a m e t e r s : model p a r a m e t e r s ( Nu_i , Nu_o and k _ i ) .
19 % These come from t h e EnKF .
20 % T_amb : ambien t t e m p e r a t u r e [K] a f t e r
21 % t i m e _ i n t e r v a l s e c o n d s .
22 % t i m e _ i n t e r v a l : p h y s i c a l t ime [ s ] t o run t h e model f o r .
23 % t o t a l _ t i m e : p h y s i c a l t o t a l t ime [ s ] t o keep t r a c k of
24 % t h e h e a t i n p u t t o t h e sys tem so as t o
25 % r e p r o d u c e t h e e x p e r i m e n t .
26 % h e a t _ p o s : n o r m a l i z e d h e a t e r p o s i t i o n , x_h / L .
27
28 % Solve 1D Advec t ion D i f f u s i o n e q u a t i o n wi th c o n j u g a t e
29 % h e a t t r a n s f e r and u s i n g FD m a t r i c e s
30 %
31 % Heat e q u a t i o n f o r t h e s o l i d :
32 % d ( T_s ) / d t = e t a _ 1 * d2 ( T_s ) / dx ^2
33 % − e t a _ 2 * Nuo * T_s
34 % + e t a _ 3 * Nui * ( T_g − T_s )
35 %
36 % Heat e q u a t i o n f o r t h e gas :
37 % d ( T_g ) / d t = (1+ T_g ) * (
38 % − U*d ( T_g ) / dx
39 % + e t a _ 4 * d2 ( T_g ) / dx ^2
40 % − e t a _ 5 * Nui * ( T_g − T_s )
41 % + qdh
42 % )
43 %
44 % Boundary c o n d i t i o n s f o r bo th s o l i d and gas :
45 % Homogenous Neumann a t x = 0 and +1 .
46
47 % I n p u t d i m e n s i o n a l v a r i a b l e s
48 L_t = 1 . 0 ; % m t u b e l e n g t h
49 d _ t = 0 . 0 4 7 4 ; % m i n n e r d i a m e t e r o f t u b e

50 t _ t = 0 . 0 0 1 7 ; % m t h i c k n e s s o f t u b e
51 g = 9 . 8 1 ; % m/ s ^2 g r a v i t a t i o n a l a c c e l e r a t i o n
52 lam_s = 5 0 ; % W/m/K t h e r m a l c o n d u c t i v i t y o f s o l i d
53 lam_a = 0 . 0 2 6 ; % W/m/K t h e r m a l c o n d u c t i v i t y o f
54 % ambien t a i r
55 c_s = 500 ; % J / kg /K s p e c i f i c h e a t c a p a c i t y o f
56 % s o l i d
57 c_g = 1000 ; % J / kg /K s p e c i f i c h e a t c a p a c i t y o f
58 % gas
59 r h o _ s = 8000 ; % kg /m^3 d e n s i t y o f s o l i d
60 rho_a = 1 . 2 ; % kg /m^3 d e n s i t y o f ambien t gas
61 mu = 1 . 8 e−5; % kg /m/ s dynamic v i s c o s i t y o f gas
62
63 % S e t t h e h e a t r e l e a s e r a t e a s a f u n c t i o n o f t ime t o
64 % r e p r o d u c e t h e e x p e r i m e n t dynamics , i . e . a
65 % s t e p−f u n c t i o n wi th jumps e v e r y 70 min . E n t e r t o t a l
66 % h e a t r e l e a s e r a t e a s t h e e n v e l o p e i n t e g r a t e s t o 1
67 qhd = 10 + 10* f l o o r ( t o t a l _ t i m e / 6 0 / 7 0 ) ; % Wat ts
68
69 % Ass ign ambien t t e m p e r a t u r e t o T_a
70 T_a = T_amb ; % K
71
72 % De r i ve more d i m e n s i o n a l p a r a m e t e r s
73 p i _ i = p i * d _ t ; % m i n n e r p e r i m e t e r o f s o l i d
74 p i_o = p i * ( d _ t + 2* t _ t ) ; % m o u t e r p e r i m e t e r o f s o l i d
75 A_s = p i * ( t _ t * d _ t + t _ t ^2 ) ; % m^2 c r o s s−s e c t i o n o f s o l i d
76 A_g = p i * d _ t ^ 2 / 4 ; % m^2 c r o s s−s e c t i o n o f gas
77
78 % Compute d i m e n s i o n l e s s p a r a m e t e r s
79 e t a _ 1 = lam_s / r h o _ s / c_s / L_t ^ 1 . 5 / g ^ 0 . 5 ;
80 e t a _ 2 = lam_a / r h o _ s / c_s * p i_o / A_s / g ^ 0 . 5 / L_t ^ 0 . 5 ;
81 e t a _ 3 = lam_a / r h o _ s / c_s * p i _ i / A_s / g ^ 0 . 5 / L_t ^ 0 . 5 * L_t / d _ t ;
82 e t a _ 4 = lam_a / rho_a / c_g / L_t ^ 1 . 5 / g ^ 0 . 5 ;
83 e t a _ 5 = lam_a / rho_a / c_g * p i _ i / A_g / g ^ 0 . 5 / L_t ^ 0 . 5 * L_t / d _ t ;
84 qdh = L_t ^ 0 . 5 / g ^ 0 . 5 / T_a / rho_a / A_g / c_g *qhd ;
85
86 % S e t d i m e n s i o n l e s s p a r a m e t e r s
87 d i d t = 1 . 0 ; % d _ i r i s / d_ t ub e
88 Nuo_opt = p a r a m e t e r s ( 1 ) ; % Oute r N u s s e l t number
89 Nui_op t = p a r a m e t e r s ( 2 ) ; % I n n e r N u s s e l t number
90 k i _ o p t = p a r a m e t e r s ( 3 ) ; % I n v i s c i d p r e s s u r e l o s s c o e f f
91
92 % S e t l e n g t h , t ime , and t e m p e r a t u r e r e f e r e n c e s c a l e s
93 L _ r e f = L_t ;
94 t _ r e f = ( L_t / g ) ^ 0 . 5 ;
95 T _ r e f = T_a ;
96
97 % S e t number o f p o i n t s ( minus one ) i n t h e domain and
98 % compute g r i d p a r a m e t e r s
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99 x = l i n s p a c e ( 0 , + 1 ,N+1) ’ ;
100 dx = 1 /N;
101 m = dx* ones (N+1 ,1 ) ;
102
103 % Boundary c o r r e c t i o n t o c o r r e c t l y compute t h e
104 % n u m e r i c a l v a l u e s o f t h e i n t e g r a l s
105 m( 1 ) = dx / 2 ; m(N+1) = dx / 2 ;
106
107 % C r e a t e i d e n t i t y and n u l l m a t r i c e s
108 I = eye (N+1) ;
109 Z = z e r o s (N+1) ;
110
111 % S e t t i m e s t e p and number o f t i m e s t e p s t o march f o r
112 d t = 0 . 0 5 ;
113 NT = round ( t i m e _ i n t e r v a l / t _ r e f / d t ) ;
114
115 % S e t t h e h e a t r e l e a s e r a t e e n v e l o p e v ( x )
116 % and n o r m a l i z e i t so t h a t i t i n t e g r a t e s t o 1
117 x_h_over_L = h e a t _ p o s ;
118 v = exp (−1000*( x − x_h_over_L ) . ^ 2 ) ;
119 v = v / ( m’* v ) ;
120
121 % Wri t e t h e g o v e r n i n g e q u a t i o n s i n m a t r i x form :
122 % dT / d t = ( A + ( T_g +1) * B ) * T
123
124 % C r e a t e s u b m a t r i c e s o f A:
125 % A_ss c o n t a i n s t e r m s a f f e c t i n g d ( T_s ) / d t
126 % t h a t depend on T_s
127 A_ss = e t a _ 1 *D2 − e t a _ 2 * Nuo_opt * I − e t a _ 3 * Nui_op t * I ;
128 % A_gs c o n t a i n s t e r m s a f f e c t i n g d ( T_s ) / d t
129 % t h a t depend on T_g
130 A_gs = e t a _ 3 * Nui_op t * I ;
131 % Assemble t h e A m a t r i x
132 A = [ A_ss , A_gs ; Z , Z ] ;
133
134 % C r e a t e s u b m a t r i c e s o f B :
135 % B_sg c o n t a i n s t e r m s a f f e c t i n g d ( T_g ) / d t
136 % t h a t depend on T_s
137 B_sg = e t a _ 5 * Nui_op t * I ;
138 % B_gg0 c o n t a i n s t e r m s a f f e c t i n g d ( T_g ) / d t
139 % t h a t depend on T_g , b u t n o t on t h e v e l o c i t y .
140 % ( Thus , B w i l l be as sembled i n t h e loop )
141 B_gg0 = e t a _ 4 *D2 − e t a _ 5 * Nui_op t * I ;
142
143 % Assemble t h e s o u r c e te rm v e c t o r
144 S = [ z e r o s (N+1 ,1 ) ; qdh *v ] ;
145
146 % C r e a t e t h e i n i t i a l s t a t e v e c t o r i n non−d i m e n s i o n a l form
147 T = T_opt / T _ r e f − 1 ;
148

149 % De f i ne v a r i a b l e t o compute U i n t h e f i r s t t i m e s t e p
150 Told = T ;
151
152 % March f o r w a r d i n t ime f o r NT t i m e s t e p s u s i n g RK4
153 f o r nn = 1 :NT
154
155 % Work o u t U from T
156 U = s q r t ( (m’ * ( T (N+2:2*N+2) . / ( 1 + T (N+2:2*N+2) ) ) ) . / . . .
157 ( ( 1 + T ( end ) ) * d i d t .^−4 − 1 + . . .
158 k i _ o p t / 2 * ( max ( T (N+2: end ) ) +1) ) ) ;
159
160 % Update t h e B m a t r i x
161 B_gg = B_gg0 − U*D1 ;
162 % Assemble t h e B m a t r i x
163 B = [ Z , Z ; B_sg , B_gg ] ;
164
165 % March f o r w a r d i n t ime wi th RK4
166 Told = T ;
167 rhsSum = 0 ;
168 RHS = (A + d i a g ( T+1) *B) *T + d i a g ( T+1) *S ;
169 T = Told + 0 . 5 * d t *RHS;
170 rhsSum = RHS;
171 RHS = (A + d i a g ( T+1) *B) *T + d i a g ( T+1) *S ;
172 T = Told + 0 . 5 * d t *RHS;
173 rhsSum = rhsSum + 2*RHS;
174 RHS = (A + d i a g ( T+1) *B) *T + d i a g ( T+1) *S ;
175 T = Told + d t *RHS;
176 rhsSum = rhsSum + 2*RHS;
177 RHS = (A + d i a g ( T+1) *B) *T + d i a g ( T+1) *S ;
178 rhsSum = rhsSum + RHS;
179 T = Told + d t * rhsSum / 6 ;
180
181 % S e t t h e s o l i d boundary c o n d i t i o n a t x = 0
182 T ( 1 ) = T ( 1 ) − D1 ( 1 , : ) *T ( 1 :N+1) / D1 ( 1 , 1 ) ;
183 % S e t t h e s o l i d boundary c o n d i t i o n a t x = +1
184 T (N+1) = T (N+1) − D1 (N+ 1 , : ) *T ( 1 :N+1) / D1 (N+1 ,N+1) ;
185 % S e t t h e gas boundary c o n d i t i o n a t x = 0
186 T (N+2) = T (N+2) − D1 ( 1 , : ) *T (N+2:2*N+2) / D1 ( 1 , 1 ) ;
187 % S e t t h e gas boundary c o n d i t i o n a t x = +1
188 T(2*N+2) = T(2*N+2) − D1 (N+ 1 , : ) *T (N+2:2*N+2) / . . .
189 D1 (N+1 ,N+1) ;
190
191 end
192
193 % Swi tch t o d i m e n s i o n a l v a l u e s
194 T = T _ r e f *(1+T ) ;
195 U = U* s q r t ( g* L_t ) ;
196
197 end
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Fig. C.1 Comparison between experimental data and predictions of model 2 with 95% confi-
dence intervals, when the training set comprises experimental data at xh/L= [0.20,0.25,0.30].
The heater power is increased every 70 minutes in steps of 10 W (shown by bars at the bot-
tom).
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Fig. D.1 Comparison between experimental data and predictions of model 4 with 95% confi-
dence intervals, when the training set comprises experimental data at xh/L= [0.20,0.25,0.30].
The heater power is increased every 70 minutes in steps of 10 W (shown by bars at the bot-
tom).
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