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Abstract

Theoretical models predict that fast-flowing ice streams transmit informa-

tion about their bedrock topography most efficiently to the surface for two

distinct windows of length-scales. Previous studies have shown a good

transfer for basal undulations with wavelengths longer than 103 ice thick-

nesses. In addition, a local maximum in the theoretical transfer function

appears for intermediate wavelengths between 1 and 20 ice thicknesses. So

far, however, no experimental evidence for this important transfer at in-

termediate wavelengths has been obtained. In our work we use recently

acquired radar data for the Rutford Ice Stream and Evans Ice Stream to

provide the first experimental confirmation for this theoretical prediction,

and show that fast-flowing ice is highly transparent to bedrock irregularities

with wavelengths between 1 and 20 ice thicknesses. The amplitude of this

local maximum depends on various flow parameters such as Glen’s flow law

exponent and the slip ratio, i.e., the ratio between mean basal sliding veloc-

ity and mean deformational velocity. We find that higher values of the slip

ratio generally lead to a more efficient transfer. Our results underline the

importance of bedrock topography for ice stream dynamics, and exclude

basal slipperiness as the only determining factor for variations in the flow

regime and surface topography.

In the second part of this work, we address the role of the basal sliding

law in statistical inversion methods that use surface data (topography and

velocity) to obtain information about the basal slipperiness distribution
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and bed topography. We show that different sliding laws generally lead to

the retrieval of different but equally realistic basal conditions. Since the

correct form of the sliding law is still disputed, the use of inversion meth-

ods to obtain unambiguous information about the bed therefore remains

problematic.



Nomenclature

A rate factor

b(x, y) bedrock topography

b0 mean bedrock profile

∆b(x, y) small bedrock perturbation

c(x, y) basal slipperiness distribution

c0 mean basal slipperiness

∆c(x, y) small slipperiness perturbation

C(0) mean slip ratio

Cxx̃ covariance matrix of a priori errors

Cyŷ covariance matrix of measurement errors

g acceleration due to gravity

H mean ice thickness

(kx, ky) wavenumbers

l radar profile length

L window length in Welsh’s periodogram method

m sliding exponent

n Nye-Glen’s flow law exponent

P (i|j) conditional probability for an event i, given j

s(t, x, y) surface topography

s0 mean surface profile

∆s(t, x, y) small surface perturbation

T b basal shear stress

T = (Tsb Tsc ; Tvib Tvic) theoretical transfer functions

v



vi

T (m) =
(
T

(m)
sb T

(m)
sc ; T

(m)
vib

T
(m)
vic

)
observed transfer functions

T (sa) =
(
T

(sa)
sb T

(sa)
sc ; T

(sa)
vib

T
(sa)
vic

)
semi-analytical transfer functions

v = (vx, vy, vz) ice flow velocity vector

∆vi small velocity perturbations

vb basal sliding velocity

v
(0)
d,x mean deformation velocity at the surface

x = (b, c) true system state

x̃ = (b̃, c̃) a priori estimate of the system state

x̂ = (b̂, ĉ) a posteriori estimate of the system state

y = (s, vi) true surface properties

ŷ = (ŝ, v̂i) surface measurements

α mean surface slope

ε̇ strain rate tensor

εx̃ = (εb̃, εc̃) a priori errors

εy = (εs, εvi) measurement errors

η ice viscosity

(λx, λy) wavelengths along and transverse to the flow

λb̃ decay length scale

ρ ice density

σ stress tensor

τ deviatoric stress tensor

τ(II) effective stress

φb̃ regression coefficient
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Chapter 1

Introduction

The flow regime of the Antarctic Ice Sheet (AIS) is dominated by an extensive network

of fast-flowing ice streams and outlet glaciers. This is illustrated in Figure 1.1, which

shows modeled balance velocities obtained from surface slopes, ice thickness and mean

net surface mass balance. Ice streams with speeds up to several hundred meters per

year are clearly visible, primarily along the margins of the AIS, and with tributaries

extending deep into the interior. Calculations using balance velocities have shown that

these fast-flowing features are responsible for as much as 90% of the AIS discharge

[Bamber et al., 2000].

However, a stable flow-configuration as shown in Figure 1.1, cannot be used to

accurately estimate the total mass balance of the past, present or future AIS. Over

the last two decades, numerous studies have indicated that the stable configuration is

easily disturbed by dynamic changes in flow velocity and/or geometrical configuration

at timescales that are much shorter than the expected response time of the ice sheet. As

a result, rapid spatial and temporal changes in discharge are to be expected. During

recent years, such dynamic changes have been observed for most coastal regions of

Antarctica, with increased flow speeds [Rignot et al., 2008] and dynamic thinning

[Pritchard et al., 2009]. A prime example are the glaciers draining into the Amundsen

Sea Embayment, in particular Pine Island Glacier which is now flowing at a speed that

is almost double that needed to balance snowfall in its catchment basin [Joughin et al.,

1



CHAPTER 1. INTRODUCTION 2

2010, Thomas et al., 2011]. On the other hand, Kamb Ice Stream (Siple Coast) switched

from fast to slow flow about 150 years ago [Retzlaff and Bentley, 1993] and Whillans Ice

Stream is currently slowing down by about 5 m/yr [Joughin et al., 2005]. These changes

caused the region to switch from a negative to a positive mass balance regime [Joughin

and Tulaczyk, 2002], and the local ice sheet thickened by 0.25-0.65 m/yr between 2003

and 2007 [Pritchard et al., 2009]. Clearly, accurate predictions about the mass balance

of the AIS rely on a good understanding of the dynamical mechanisms that control the

flow of its ice streams and glaciers.

Figure 1.1: Map showing balance velocities for the Antarctic Ice Sheet, obtained
from computer model simulations. This picture is reproduced from Hamblin and
Christiansen [2003]. Fast-flowing ice steams (with typical speeds > 100 m/yr) are
clearly visible along the margins of the ice sheet, and are bounded by slower moving
ice. The region of interest for our work in chapter 4 is outlined by the black square.
It contains the Rutford and Evans Ice Streams, flowing into the Filchner-Ronne Ice
Shelf (FRIS). The lower part of the square roughly corresponds to the coverage of
Figure 1.2.

An important role in the regulation of ice stream flow is played by their basal

conditions, i.e., bedrock topography and variations in basal slipperiness.1 For example,

1We use the term “slipperiness” as a measure for the amount of sliding over a hard bed, or the
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active ice streams of the Siple Coast exhibit high flow velocities (∼ 500 m/yr) despite

low gravitational driving stresses (∼ 10−20 kPa) due to a weak subglacial till layer and

high effective basal lubrication [Tulaczyk et al., 2001]. The main constraints on their

motion come from shear resistance at the margins and the presence of localized “sticky

spots”, i.e., places where the resistance to basal sliding is significantly higher than in the

surrounding areas [Alley, 1993, Joughin et al., 2004, 2006]. The physical character of

these pinning points can be local bedrock undulations or small-scale variations in basal

slipperiness. Since basal friction has the potential to change more dynamically than

other resistive stresses (such as marginal shear), the effect of small basal perturbations

on flow characteristics is of particular importance.

The best way to obtain information about the conditions at the base of ice streams is

by direct access via boreholes [Kamb, 2001]. However, such experiments are challenging

and provide only information about a very limited section of the bed. Moreover, this

method cannot be used to address the role of the bedrock topography on ice flow

dynamics. Alternatively, remote sensing techniques such as seismic [Blankenship et al.,

1986, 1987, Anandakrishnan et al., 1998, Smith et al., 2007, Smith and Murray, 2009]

and radar [Bentley et al., 1998, Gades et al., 2000, Rippin et al., 2006, King et al.,

2009] measurements provide detailed maps of till conditions and basal topography

along flightlines or for gridded areas. A third line of attack involves the inversion of

irregularities at the surface arising from bedrock bumps or variations in slipperiness.

Control method inversion uses accurate remote sensing data about the surface velocity

field in combination with theoretical ice flow models to obtain information about the

basal shear stress distribution of ice streams [MacAyeal et al., 1995, Vieli and Payne,

2003, Joughin et al., 2004, 2006]. Statistical inversion methods have been developed to

study the simultaneous retrieval (or update) of bed topography and basal slipperiness

from surface topography and velocity measurements [Gudmundsson, 2004, Raymond

combination of sliding and till-deformation for a weak bed. In the literature one often refers to
“basal lubrication” or “basal drag”. In general, the slipperiness is a complicated (and often unknown)
function of many physical parameters such as temperature, basal water pressure, till strength, and so
on.
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and Gudmundsson, 2009, Raymond-Pralong and Gudmundsson, 2011].

All inversion methods obtain information about the bed in an indirect way, and rely

on a good theoretical understanding of how surface properties connect to conditions

at the bed. Such a connection between bed and surface properties has been a topic

of major interest to glaciologist for many decades, and is still only partially under-

stood.2 Evidence for the complexity of such a relation is provided by observations of

the surface topography of Antarctic ice streams. In Figure 1.2 we present a section

of the AIS corresponding to the lower part of the black square in Figure 1.1. Several

flow-features are clearly visible: the Rutford Ice Stream, Carlson Inlet, and Talutis Ice

Stream. The Rutford Ice Stream is fast-flowing, with an average speed of 400m/yr

[Gudmundsson and Jenkins, 2009], whereas the Carlson Inlet is a slow-moving part of

the ice sheet, and its categorization as an ice stream has recently been questioned by

King [2011]. However, what’s important for us are the apparent differences in surface

topography between these two features. For the fast-flowing Rutford Ice Stream, sur-

face undulations of many different length scales are clearly visible. These can only be

explained by varying conditions at the bed, i.e., either bedrock bumps or variations in

basal slipperiness. On the other hand, for the slow-moving Carlson Inlet, such features

are largely absent, even though radar investigations show that its bedrock topography

is very similar to the one of Rutford Ice Stream (with bumps of comparable ampli-

tudes). Similar findings about the presence or absence of surface undulations with

typical lengths scales have been presented for several other places on the Greenland

and Antarctic Ice Sheets. In particular, it was repeatedly reported that undulations

with length scales of approximately 2-5 ice thicknesses are very pronounced [Robin-

son, 1966, Zwally et al., 1979, 1983, Whillans et al., 1984, Overgaard and Gundestrup,

1985].

It is hard to believe that this observation is a coincidence. Instead, one might won-

der whether it tells us something about the general relation between surface undulations

and basal conditions, in particular about the dependence of such a relation on the ice

2A detailed account of the literature on this subject will be given in section 3.1.
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Figure 1.2: Surface topography of the Rutford Ice Stream, Carlson Inlet and
Talutis Ice Stream, Antarctica. The image is a subset of the MODIS mosaic for
Antarctica.

flow velocity. Indeed, theoretical models predict [Gudmundsson, 2003, Raymond and

Gudmundsson, 2005] that bedrock undulations with length scales between 2 and 20 ice

thicknesses (i.e., typically between 4 and 40 km) are transmitted to the surface much

more efficiently than perturbations at other wavelengths. In addition, this is only true

for ice streams that attain a substantial part (typically 95% or more) of their surface

velocity by basal sliding. These theoretical results give a first indication as to why we

only observe surface undulations in Figure 3 that have length scales on the order of a

few kilometers, and why they only appear at the surface of the fast-flowing Rutford Ice

Stream. This explanation is obviously not restricted to the part of the AIS presented

in Figure 1.2, but is expected to hold generally for any ice stream.

Although the qualitative argument above might be appealing, direct evidence is

needed to fully confirm the link between theory and observation. Because accurate and

extensive measurements of the bed topography of Antarctic ice streams have been very

limited so far, direct experimental evidence has not been obtained to date. However, in

this dissertation we are able to provide such evidence for the first time, using recently

acquired radar data for the ice streams in Figure 1.2 and Evans Ice Stream, which

is situated to the east of this region. We provide convincing experimental support
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for the theoretical models that describe the bed-to-surface transfer characteristics of

fast-flowing ice. Moreover, our study is an important validation for the use of these

theoretical results in inversion models. Such inversion models, and their sensitivity to

the specific transfer characteristics of ice, will be studied in the second part of this

report.

1.1 Goals of this work

The broad aim of our work is to contribute to the understanding of ice stream dynamics,

using both observational data and modeling techniques. Hence, this dissertation covers

two broad aspects of glaciology: a theoretical element and an experimental element.

Combining the two is often challenging, and not every reader is familiar with the

detailed aspects of theoretical glaciology. Our first challenge is therefore to provide a

comprehensive introduction to the theoretical background needed for the bulk of our

research. We subsequently present results from new investigations, which fall into 2

categories.

In the first part of our research, we focus on the empirical validation of theoretical

models that describe the transfer of information about basal undulations to the surface

of fast-flowing ice streams. We use appropriate datasets of surface and bed topography

measured along the flow of various ice streams in Antarctica. This research is carried

out in collaboration with Hilmar Gudmundsson3 at the British Antarctica Survey,

where many excellent datasets have recently become available, e.g. for the Rutford Ice

Stream and Evans Ice Stream. We primarily test the dependence of the bed-to-surface

transfer amplitude on the length scale of the basal undulations, and on several physical

parameters such as the slip ratio (i.e., the ratio between the mean basal sliding velocity

and mean forward deformational velocity). In the first place, we seek to validate

theoretical results, but a careful comparison between observed and modeled behavior

also leads to new insights into the flow dynamics of these ice streams.

3British Antarctic Survey, High Cross Madingley Road, Cambridge CB3 0ET, UK. (ghg@bas.ac.uk)
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In the second part of our research, we turn our attention to inverse modeling tech-

niques that use surface measurements to deduce information about the basal conditions

(topography and slipperiness) of ice flows. Given the difficulty of obtaining direct ex-

perimental information about the base of an ice stream, such techniques are very

valuable. However, quantitative tests of their accuracy haven been limited so far. In

our work, we question the reliability of a particular inversion method (the so-called

Bayesian statistical inversion) in the absence of a well-constrained form of the sliding

law. Through various numerical sensitivity tests on synthetic data, we aim to appre-

hend the dependence of the retrieved basal conditions on the form of the sliding law.

A better understanding of the successes and limitations of the inversion procedure pro-

vides a measure for the accuracy of the results obtained from the inversion of real data.

Again this research is carried out in collaboration with Hilmar Gudmundsson, who first

introduced the Bayesian approach as an inverse modeling technique in glaciology.

1.2 Outline

We report about our results on two separate studies that relate to the same theoretical

framework. This framework is introduced in chapters 2 and 3. Chapter 2 provides the

necessary background on ice flow mechanics, with emphasis on topics that are needed

for further developments in this text. Chapter 3 provides an introduction to the theory

of transfer functions, which describe the transient response of the surface of an ice

stream to spatial and temporal changes at its base. The actual results of our research

are presented in chapters 4 and 5. These chapters can be read independently, although

they both rely on chapters 2 and 3 for the theoretical context and the introduction of

notations and conventions. Chapters 4 and 5 each have the structure of a research pa-

per; they start with a short introduction, followed by an overview of the used methods,

presentation of the results, a discussion of the results and conclusions.

Here follows a more detailed account of the content of each chapter:
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Chapter 2: Introduction to ice flow mechanics. All models of large-scale ice

flow incorporate a convenient description of the ice rheology and of the dynamics at

the ice-bed interface. The ice rheology is commonly described by Glen’s empirical

flow law, whereas the ice-bed interaction is simulated by a basal sliding law of some

sort. Empirical constraints on both laws are still limited though, and their general

validity should not be taken for granted. Although most readers are familiar to some

extend with ice rheology and basal sliding laws, we find it appropriate to review the

basic argumentation behind their form, and to outline potential pitfalls that could limit

their applicability for ice flow modeling. Subsequently, the basic dynamical equations

of ice flow are reviewed, and special attention is given to the approximations used to

solve these equations in chapter 3.

Chapter 3: Theory of transfer functions. The flow law and sliding law are used

as input to calculate the transfer functions that describe the surface response of a

flowing ice mass to basal perturbations (bedrock undulations and variations in slipper-

iness). We discuss the analytical solutions for the transfer problem in two distinctive

frameworks: (i) a full-Stokes flow with a linear ice rheology and linear sliding law,

and (ii) the shallow-ice-stream approximation with a linear rheology and non-linear

sliding law. The former is used as a benchmark for experimental results in chapter 4.

The latter is used to investigate the dependence of inversion methods on the value of

the sliding exponent in chapter 5. The reasons why these chapters rely on a different

theoretical treatment are discussed.

Chapter 4: Observational evidence for bed-to-surface transfer. This chapter

reports on our study of an extensive set of radar measurements of the bed and surface

topography of several Antarctic ice streams. In total, 22 radar profiles along 3 separate

ice streams (Rutford Ice Stream, Evans Ice Stream and the Carlson Inlet) are stud-

ied. Our aim is to obtain experimental evidence for the theoretical predictions about

the bed-to-surface transfer characteristics described in chapter 3. First we provide a
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detailed description of the data, together with an overview of the used analysis meth-

ods. The results are subsequently presented. We emphasize the unifying aspects of

the study, i.e., the similarities and differences seen in the various radar profiles. Also

the agreements and conflicts between theory and observation are described. A detailed

explanation for each of the observed discrepancies is given, providing insight into the

potential weaknesses of the theory.

Chapter 5: Inversion of surface properties and the form of the basal sliding

law. The form of the basal sliding law has a decisive impact on the results of large-

scale ice flow modeling. Understanding the form of the ice-bed interaction remains an

important challenge in glaciology today. Therefore, in inverse modeling techniques we

rely on an ad hoc choice of the sliding law, and this choice might strongly influence

the form of the retrieved basal properties. In this chapter we first give a detailed

introduction to the Bayesian inversion method, which provides the framework for our

study. Next, the results of various numerical experiments are presented, whereby we

test the sensitivity of the retrieved basal properties on the form of the basal sliding

law. These results are supplemented by additional analytical arguments. Although

our results are preliminary, a clear picture emerges that raises questions about the

accuracy of Bayes’ inversion to obtain information about the basal slipperiness. The

implications of this discovery are discussed in detail.



Chapter 2

Introduction to ice flow dynamics

All physical models are approximations to reality, all make compromises between ac-

curacy, the scope of applicability and efficiency. Models for ice flow are no different

in this respect. Any attempt to compare these models to experimental results there-

fore requires a good understanding of their potential successes and shortcomings. In

this chapter we present a critical introduction to the different model constituents and

approximations that will be used in the theoretical study of ice flow transfer charac-

teristics in chapter 3.

2.1 Ice rheology

The key input to any flow model is a description of how the ice deforms in response to

an external stress regime. Such a description is given by a constitutive relation or flow

law. The form of this law depends on several factors.

I At the microscopic scale, ice is a hexagonal crystal. In glaciers, individual crystals

cluster in grains which have no preferred orientation. When grain sizes are small

with respect to characteristic length scales at which deformation occurs, glacier

ice can be treated as an isotropic polycrystalline material. It should be noted

that such an assumption can break down under very extreme stress regimes, for

10
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example near the base of the Greenland and Antarctic Ice Sheets. In these places,

recrystallization can occur, which forces the ice to be in an anisotropic state. In

this work we will only consider the flow law for isotropic ice, which is also the case

most commonly encountered in the literature. Work on anisotropic constitutive

relations or enhancement factors is limited, see e.g. Gagliardini et al. [2009] for

a recent review.

I A distinction should be made between regimes of primary (or transient) and

steady deformation, depending on the characteristic timescales and stresses in-

volved in the creep process. In glaciers and ice sheets, deformation takes place

under conditions that apply to steady creep, since the ice is subjected to a certain

stress regime for very long times (� hours). For a fixed stress, the steady state

can be further subdivided into two phases, depending on the cumulative strain.

For high enough values of the cumulative strain (usually at values of about 0.01),

the strain rate obtains a minimum which is called the secondary creep rate. For

very high stresses (> 106 Pa) and long enough timescales, the strain rate obtains

a steady value as a function of the total strain, called the tertiary creep rate.

During tertiary creep, recrystallization often occurs due to the high stresses, and

the polycrystalline ice is, in general, no longer isotropic.

I Other factors that influence the relation between stress and deformation of ice

include the presence of impurities such as air or water bubbles, internal cracks,

and so on. These aspects will not be considered.

For isotropic polycrystalline ice in the steady secondary or tertiary creep state, the

deformation due to external stresses can be described by a power-law. Such a law was

first suggested by Glen as an empirical fit to his laboratory experiments on uniaxial

compression [Glen, 1955], and is hence called Glen’s flow law.1 It states that the strain

rate at a given strain is proportional to the stress raised to some power n. If the strain

1Steinemann [1954, 1958a,b] presented independent results that were similar to those obtained by
Glen and therefore he also deserves credit for his work.
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rate is denoted by ε̇ ≡ ∂ε
∂t

and the stress by σ, Glen’s law has the form

ε̇ = Aσn , (2.1.1)

where A and n are parameters determined by measurements. The first parameter is

called the rate factor and is related to the effective ice viscosity, η, defined as

η ≡
(
1

A

)1/n

. (2.1.2)

The viscosity strongly depends on parameters that influence the softness (or stiffness)

of the ice, such as the temperature and the fabric of the ice. In our work, the precise

dependency of η on these quantities will be neglected, and we refer to Cuffey and

Paterson [2010] for more details. In particular, we assume that η is constant with

depth. Such an assumption is not necessary valid for Antarctic ice streams since the

ice viscosity generally evolves from lower values at their base (temperate ice) to higher

values at the surface (colder and hence stiffer ice). We will come back to this issue in

section 4.4.

The second parameter, n, in equation (2.1.1) is Glen’s flow law coefficient or creep

coefficient. The value of n depends on the creep mechanism operating, and experiments

have shown a plausible range of values between n = 2 and n = 4 with a most likely

value of n ≈ 3. Although physically less interesting, it is also worth considering the

limiting case for which n = 1. In this case, ice is described as a linear viscous (or

Newtonian) material. A linear ice rheology is only accurate for moderately low stresses

below 105Pa and slowly applied forces. On the other hand – and more importantly in

the context of this work – the use of a linear flow law in theoretical glaciology often

simplifies the calculations, and gives valuable insights in the qualitative behavior of

processes for which a non-linear flow law is more appropriate. We will see in section 3

that an analytical solution to the full-Stokes transfer problem is only known for n = 1.

Nevertheless, this simplified model exhibits the same qualitative transfer characteristics



CHAPTER 2. INTRODUCTION TO ICE FLOW DYNAMICS 13

as its non-linear counterpart.

Glen’s original flow law (equation (2.1.1)) only applies to cases where one compo-

nent of the full stress tensor dominates. For most realistic ice masses, such as the ones

encountered in our work, this condition is not satisfied and a generalization to 3 dimen-

sions is required. Both Nye [1951] and Glen [1958] have proposed such a generalization,

based on the following principles.

I Rigsby [1958] demonstrated that hydrostatic pressure does not influence the flow

law and ice can therefore be treated as an incompressible material. In terms of

the strain rates, this condition can be formulated as follows:

ε̇xx + ε̇yy + ε̇zz = 0 , with ε̇xx =
∂vx
∂x

, ε̇yy =
∂vy
∂y

, ε̇zz =
∂vz
∂z

, (2.1.3)

and vx, vy and vz are the x-, y- and z-components of the flow velocity. This

equation states that the first invariant of the strain rate tensor ε̇ vanishes, and

the relation is therefore independent on our choice of coordinate system.

The condition of incompressibility can be implemented in the flow law by assum-

ing that the strain rate tensor only depends on the deviatoric stresses. The latter

are defined as

τij = σij −
1

3
δijσkk , (2.1.4)

where the Roman indices i, j, . . . take values in the set {x, y, z}, σij are the com-

ponents of the full stress tensor, δij is the Kronecker delta, and we adopted the

convention that repeated indices are summed.

I In general, the flow law can be written as

ε̇ij = fij(τ , T ) , (2.1.5)

where fij is some function of the deviatoric stresses τ and the temperature T , such

that equation (2.1.3) is satisfied. Moreover, the constitutive function fij must
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be a tensor-valued function of its arguments, and because (2.1.5) is a physical

property of ice, its form cannot depend on the choice of a coordinate system. If

we take these restrictions into account, the general form of the flow law reduces

to

ε̇ij = −2

3
τ(II)C1 δij + C2τij + C1τikτkj , (2.1.6)

where C1 and C2 are scalar valued functions of the second and third invariants of

the deviatoric stress tensor2 and the temperature:

C1 = C1(τ(II), τ(III), T ) , and C2 = C2(τ(II), τ(III), T ) , (2.1.7)

with

τ 2(II) =
1

2
τijτij , (2.1.8)

τ(III) = det(τ ) . (2.1.9)

The second invariant τ(II) is often referred to as the effective stress.

I Nye [1951] in his treatment furthermore added the assumptions that (i) the third

invariant τ(III) has no effect on the deformation of ice and (ii) the components of

the strain rate and stress tensor are proportional. This implies that C1 = 0 and

ε̇ij = C2(τ(II), T )τij . (2.1.10)

So far, no experimental results have contradicted Nye’s assumptions, and (2.1.10)

remains valid until the contrary is proved.

If we finally require that the generalized relation (2.1.10) reduces to the simple one

(2.1.1) for the cases where only one component pair ε̇ij and τij is nonzero, then we find

2It is straightforward to show that the first invariant of the deviatoric stress tensor vanishes auto-
matically.
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the Nye-Glen isotropic flow law for ice:

ε̇ij = Aτn−1
(II) τij , (2.1.11)

with A and n the same physical constants as in (2.1.1). This generalized flow law forms

the basis for all further developments in this text.3 The parameters A and n are kept

arbitrary at the moment.

2.2 The basal sliding law

In the previous section we have presented a theoretical description for the deformation

of ice in response to external stresses. In order to describe the flow of finite ice masses

such as glaciers and ice sheets, our knowledge about the ice rheology needs to be

supplemented by boundary conditions at the upper free surface and the base, or bed,

of the glacier or ice sheet. In this section the mechanical boundary conditions at the

ice-bed interface will be discussed. Since the motion of many fast-flowing glaciers

(including the Antarctic ice streams we will study) is dominated by basal motion,

while deformation within the bulk of the ice is limited, a good understanding of the

mechanics at the bed is central to our ability to predict the behavior of these glaciers.

The basal component of glacier flow consists of two parts in general: (i) basal

sliding and (ii) deformation of the underlying sediment. The relative contributions of

both effects vary greatly depending on the thermal regime of the basal ice (cold versus

temperate) and the morphology of the bed (hard versus soft). For example, temperate

Alpine glaciers flowing over hard bedrock can attain a substantial part of their surface

speed by sliding, a mechanism that crucially depends on the effective hydrological

pressure at the bed. On the other hand, fast-flowing Antarctic ice streams are often

supported by a soft bed with a rapidly deforming layer of pressurized subglacial till.

Given the complexity of the basal motion and the sparsity of observational data, no

3An alternative description for ice rheology can be found, for example, in Goldsby and Kohlstedt
[2001].
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concise and firm theoretical framework has been developed that describes the various

mechanisms. In particular, the relation between the sliding velocity or till deformation

and the relevant physical parameters is still an open question, as is the exact form of

the sliding law.

We will not attempt to give an exhaustive overview of the current state of affairs,

but rather concentrate on the aspects that are relevant for further developments in

this text. In particular, we will motivate the use of a Weertman-type sliding law of the

form

vb = cτmb , (2.2.12)

where vb and τb are the basal velocity and basal shear stress respectively, and c and

m are positive adjustable parameters. The sliding exponent m should not be confused

with Glen’s exponent n, although they are related for certain oversimplified geometries

of the bed. The basal slipperiness c = c(x, y) is allowed to vary along the bed, and

is therefore a function of x and y – the coordinates in the direction of the flow and

transverse to the flow. In general, c(x, y) describes variations in subglacial conditions

such as the bed roughness, thermodynamic properties of the ice and bed, effective basal

water pressure, and so on. As such, the flow around “slippery” or “sticky” spots may

be analyzed. Both the sliding exponent and the slipperiness distribution are poorly

constrained by direct observations. One of the aims of our work is to obtain a better

understanding of their influence on flow dynamics, and to investigate indirect methods

that confine their value.

Let us now provide some motivation for the form of the proposed sliding law (2.2.12).

The traditional sliding problem as studied by Weertman [1957, 1964, 1979], assumes the

movement of temperate clean ice over an irregular hard bed (the so-called tombstone

bed) without bed separation. Weertman proposed two physically different processes,

the validity of which has now been confirmed by observations. The first process is

regelation, which involves the melting of ice on the up-stream side of an obstacle, and

the refreezing of that water on the down-stream side of the obstacle. The second mech-
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anism is viscous creep, whereby the ice deforms and flows around obstacles. Weertman

found that for a given driving stress τb, the components of the sliding velocity due

to regelation and creep are proportional to τb and τnb respectively, where n is Glen’s

exponent. This result is consistent with equation (2.2.12) for values of m = 1 and

m = n respectively.

Subsequently, several improvements to Weertman’s analysis have been proposed.

Nye [1969, 1970] and Kamb [1970] studied the flow of linear viscous ice over a more

realistic bed geometry consisting of superimposed sine waves. In the limit of small

roughness, i.e., for undulations with an amplitude that is small compared to the wave-

length, both authors found a linear relationship between the basal sliding velocity and

basal shear stress – in agreement with (2.2.12) for m = 1. Kamb [1970] also extended

his linear analysis to a non-linear rheology, and obtained an approximate solution for

the sliding law which is of the Weertman-type.

Lliboutry [1958, 1959, 1968], on the other hand, has challenged Weertman’s ap-

proach to sliding without bed separation, and argued that the formation of water-filled

cavities in the lee of bed obstacles is an important additional mechanism that leads to

faster sliding velocities. However, when the ice is allowed to separate from the bed, a

simple power-law relation as in (2.2.12) may cease to exist. Indeed, it has been argued

that because of cavity formation, the basal drag cannot rise above a limiting value

[Iken, 1981, Schoof, 2005, Gagliardini et al., 2007]. For high basal speeds, longitudinal

and/or lateral stresses become more important in ensuring force balance on the glacier,

leading to an overall decrease of the basal shear stress. Hence, for increasing sliding

velocities, the shear stress first increases, then reaches a maximum, and subsequently

decreases again. Since the basal velocity is not a single valued function of the shear

stress anymore, a simple relationship vb(τb) does not exist. Instead, one should think

of the sliding law as a function of the form τb(vb).

To summarize, it is clear that a Weertman-type sliding law is only valid if the basal

velocity can be described by a monotonic increasing function of the basal shear stress.

Such a relation is not necessarily valid for high values of the sliding velocity and in the
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presence of cavity formation. A multitude of sliding laws have been proposed in the

literature, and no general consensus has been reached on their form. Most probably,

a universal expression of the type τb(vb) is hard to obtain, let alone to identify the

physical quantities that enter such a relationship. More experimental work is needed

to further constrain the form of τb(vb). Given this uncertainty, progress in ice flow

modeling relies on the choice of an ad hoc sliding law, which is sufficiently general to

adequately describe diverse conditions at the ice-bed interface. At the same time, the

form of the sliding law should be sufficiently constrained in order to give the models

enough predictive power and to make analytical calculations possible.

The sliding law that is most commonly encountered in the literature on ice flow

modeling is of the Weertman-type (recall equation (2.2.12)). In 3 dimensions, such a

relation has the form

vb = c(x, y)|T b|m−1T b , (2.2.13)

where T b is the basal stress vector given by T b = σn − (nT · σn)n, with n a unit

normal vector to the bed pointing into the ice, and vb the basal sliding velocity given

by v − (nT · v)n, with v the flow velocity vector. This form of the sliding law will be

used throughout the remainder of this text.

As a final remark, we point out that our focus so far has been on classical theories

of sliding over a hard bed, whereas most of the recent work has focused on the effect

of subglacial till deformation (see e.g. [Tulaczyk et al., 2000] or Clarke [2005] for an

overview). Since our interest in chapters 4 and 5 will be mainly in fast-flowing West

Antarctic ice streams – which obtain a large fraction of their speed by till deformation –

it is important to point out that a relationship of the form (2.2.12) is also approximately

valid for soft beds, particularly soft beds where the physical properties of the subglacial

sediment are unknown. In general, the slipperiness of the bed, c(x, y), will depend on

the strength of the substrate. Weak beds (with low yield stresses τ∗ ∼ 1 − 50 kPa)

generally allow a rapid slip motion despite low basal shear stresses – a situation that

was shown to be valid for Whillans Ice Stream [Kamb, 1991, 2001] and Bindschadler
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Ice Stream [Kamb, 2001]. The value of m is often considered to be infinite, i.e., the

constitutive response of the till is plastic. This is in agreement with experimental data

[Tulaczyk et al., 2000], but should not be accepted as a general rule.

In the remainder of this and the next chapter, c(x, y) and m will be treated as

adjustable quantities. In this way we keep the sliding law sufficiently general, and avoid

the introduction of physical parameters that are difficult to measure for individual ice

streams. Moreover, part of our aim in section 5 will be to investigate how our knowledge

about c(x, y) and m can be improved using surface measurements and inverse modeling

techniques.

2.3 Basic ingredients of ice flow dynamics

Our aim is to develop a better understanding of how basal properties (topography

b(x, y) and slipperiness c(x, y)) of a glacier or ice sheet transfer through the ice and leave

their fingerprint at the surface. So far, we have discussed the mechanical properties of

ice in section 2.1 and of the ice-bed interface in section 2.2. In this section we introduce

the dynamical equations that allow us to model the time-dependent evolution of the

flow. In particular, a time-dependent solution for the surface topography and surface

velocities can be obtained. The relation between these surface quantities and the basal

properties determines the transfer functions which will be discussed in chapter 3.

Any ice flow must obey the fundamental conservation laws of classical continuum

physics for an isolated system. We state these laws in their local form, which is most

useful for our purposes.

I Conservation of mass (continuity equation):

∂tρ+ ∂i (ρvi) = 0 , (2.3.14)

where the notations ∂t =
∂
∂t

and ∂i =
∂
∂xi

are introduced with xi ∈ {x, y, z}. If
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the density of ice is taken constant, ρ = 917 kg/m3, then (2.3.14) reduces to

∂ivi = 0 . (2.3.15)

The conservation of mass is therefore equivalent to the incompressibility equation

(2.1.3). Since ρ is constant, conservation of mass implies conservation of volume.

I Conservation of linear momentum (balance of forces):

∂jσij + ρgi = ρ
dvi
dt

, (2.3.16)

where gi are the x-, y- and z-components of acceleration due to gravity. If we

assume the flow to be in static equilibrium, the acceleration terms on the right

hand side of equation (2.3.16) can be neglected, i.e., dvi
dt

≈ 0.

I Conservation of angular momentum:

σij = σji . (2.3.17)

This relation implies that there are only 6 independent local stress components:

3 normal stresses σii and 3 shear stresses σij, i < j.

The balance equations (2.3.15) and (2.3.16) provide 4 independent relations between

9 physical quantities (the 6 stress components σij and the 3 velocity components vi).

The system is underconstrained and needs to be supplemented by the flow law (2.1.11)

such that a unique solution exists. Glen’s law provides 6 independent relations between

the physical variables, and since it automatically incorporates the conservation of mass

(2.3.15), we are left with 9 independent equations which can be solved for the 3 normal

stresses, 3 shear stresses, and 3 velocities.4

4It should be noted that for any realistic glacier or ice sheet, an additional set of equations needs to
be solved that determines the thermodynamic properties of the flow. These equations correspond to
the conservation of energy and the conservation of entropy. In our work the thermodynamic equations
of state will not be considered though.
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The relevant boundary conditions are given by the sliding law – which we discussed

at length in section 2.2 – and the kinematic boundary conditions at the bed z = b(t, x, y)

and surface z = s(t, x, y):

bed: v · n = 0 at z = b(t, x, y) , (2.3.18)

surface: ∂ts+ vx∂xs+ vy∂ys− vz = 0 at z = s(t, x, y) . (2.3.19)

Since (2.3.15) and (2.3.16) both describe a steady state, the only explicit time depen-

dence of the flow is introduced via the surface boundary condition (2.3.19). Basal ele-

vation changes are assumed to be negligible, i.e., b = b(x, y), and surface accumulation

and ablation as well as basal melting and refreezing are ignored. These assumptions

are only approximately valid for some interior parts of the East Antarctic Ice Sheet and

a direct comparison between our theoretical results and observational data therefore

needs careful consideration.

In principle, the set of relations (2.1.5) and (2.3.15)-(2.3.19) can be solved assuming

sufficient knowledge about the initial conditions. In practice, though, a full solution

of this complicated set of differential equations is very hard to obtain, and one often

relies on numerical analysis. To make the analytical/numerical problem more tractable,

(physically motivated) assumptions have to be imposed on the quantities that are

involved. We now discuss several of these approximations that will be relevant later

on.

2.3.1 Linearizations

The ice flow problem can be linearized at different levels.

(i) One sometimes assumes a linear ice rheology (i.e., n = 1) and/or a linear sliding

law (i.e., m = 1). Although physically less sound, these are often the only cases

for which an exact analytical solution can be obtained.5 As we pointed out before,

5The reasons why we insist on having an analytical solution are twofold. Analytical solutions are
computationally much more efficient to use, and they provide better insight into the structure of the
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the full-Stokes transfer problem has only been solved analytically for this linear

case [Gudmundsson, 2003]. However, numerical analysis have shown that non-

linear effects do not drastically change the behavior of the solution [Raymond

and Gudmundsson, 2005]. We will come back to this in chapter 3.

(ii) The boundary conditions can be linearized. One assumes that the bed topogra-

phy, basal slipperiness, surface topography and surface speeds can be expanded

around a constant mean value, indicated by a superscript .(0):

b(x, y) = b(0) +∆b(x, y) ,

c(x, y) = c(0) +∆c(x, y) ,

s(t, x, y) = s(0) +∆s(t, x, y) ,

vi(t, x, y, z = s) = [v
(0)
i (z) + ∆b(x, y) ∂zv

(0)
i +∆vi(t, x, y, z)](z = s(0)) .

(2.3.20)

The deviations from the mean values are assumed to be “small”. For the bed

and surface topography this means that ∆b/H � 1 and ∆s/H � 1 with H the

mean ice thickness of the glacier or ice sheet (Figure 2.1). For the slipperiness

perturbation and speeds we must have ∆c/c(0) � 1 and ∆vi/vi � 1. The Ansatz

(2.3.20) can be substituted into the equations (2.1.5), (2.3.15)-(2.3.19) and after

a Taylor expansion only the terms up to first order in ∆b, ∆c, ∆s and ∆vi are

retained. The resulting equations are linear in the deviations and substantially

easier to solve.

It is common to choose the mean values b(0), c(0), s(0) and v
(0)
i as the solutions for

the undisturbed flow (i.e., the zeroth order solution) along an infinite-plane-slab

geometry. Such a configuration is shown in Figure 2.1 (red dashed lines). The

x-axis is taken along the upper surface in the direction of the flow, the y-axis

transverse to the flow, and the z-axis normal to the surface. The slab has mean

problem.
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Figure 2.1: Cartoon representation of ice flow in the perturbed plane-slab approx-
imation. The ice thickness and uniform inclination of the slab are denoted by H and
α respectively. The undisturbed bed (b(0)) and surface (s(0)) are represented by the
red dashed lines. The small disturbances are denoted by ∆b and ∆s. A convenient
coordinate system is chosen with the x-axes along s(0) and the z-axes perpendicular
to the surface.

thickness H and a mean slope α. For our choice of the coordinate system, the

zeroth-order solution takes the form (for n = 1 and m = 1)

b(0) = −H , s(0) = 0 ,

c(0) = v
(0)
b,x/σ

(0)
xz (−H) , σ(0)

xz (z) = −sin(α)ρgz ,

v(0)x (z) = −sin(α)ρg
[
A(z2 −H2)− c(0)H

]
, v(0)y = v(0)z = 0 ,

(2.3.21)

where g = 9.81m/s2 is the acceleration due to gravity. This solution is also

known as a plug flow. We find that the mean value of the basal sliperiness,

c(0), corresponds to the ratio of the mean basal sliding velocity and the driving

stress. This quantity, which is generally small (< 10) for Alpine glaciers but large
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(> 100) for fast-flowing ice streams, will play an important role in our analysis

later on.

A linear ice rheology and sliding law will be encountered in chapter 3, but non-linearities

will briefly be discussed as well. The perturbation approach up to first order in the

bed- and surface variations along a plane-slab will be used throughout the remainder

of this text.

2.3.2 Shallow-ice approximation

This approximation, which was first studied by Fowler and Larson [1978] and Hutter

[1983], assumes that the ice thickness is small with respect to the horizontal extend

of the ice sheet. If [x] ≈ [y] and [z] denote the typical horizontal and vertical length

scales, and [z] ≈ H, then

δ = [z]/[x] � 1 . (2.3.22)

In particular, this means that longitudinal derivatives of the stress and velocity are

small compared to vertical derivatives. Models that have this property are sometimes

referred to as long-wavelength models, for obvious reasons. Often the limit δ → 0 is

taken, which corresponds to a zeroth-order approximation.

2.3.3 Shallow-ice-stream approximation

This approximation is based on the assumption that the vertical shear stresses are

small compared to all other stress components, i.e.,

(σxx, σyy, σzz, τxy, τxz, τyz) = [σ](σ∗
xx, σ

∗
yy, σ

∗
zz, τ

∗
xy, δτ

∗
xz, δτ

∗
yz) , (2.3.23)

with [σ] = ρg[z] a typical scale for the normal stresses and (2.3.22) is imposed. The

shallow-ice-stream approximation is often used in current-day studies of ice stream

dynamics and its equations have been derived several times in the literature, see e.g.

MacAyeal [1989], Baral and Hutter [1999] or Schoof [2006]. In a nutshell, the conditions
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(2.3.22) and (2.3.23) are substituted in (2.1.5) and (2.3.15)-(2.3.19), and only terms of

zeroth order in δ are collected (this effectively corresponds to taking the limit δ → 0).

We have now gathered enough background material to initiate our discussion about

the transfer of basal perturbances to the surface of glaciers and ice sheets. This flow

mechanism is described by the so-called transfer functions, which will be introduced at

length in the next chapter. But before we do that, let us briefly summarize the main

lessons learned so far.

2.4 Summary

I Nye-Glen’s flow law is the most commonly used description of ice rheology in

large-scale ice-flow modeling. Its 3-dimensional form is inspired by experimental

data and based on general theoretical arguments. Often the stress perturbations

are assumed to be small enough such that the flow law can be linearized around a

mean stress field. This corresponds to the case n = 1, which will be exploited in

section 3.2. Experiments have shown that a nonlinear rheology (n ≈ 3) is more

appropriate, and extra care is needed when comparing linear models to real data.

I Despite numerous efforts to put some constraints on the form of the sliding law, no

consensus has yet emerged on the general applicability of Weertman’s law in the

context of ice-flow modeling. In particular, no agreement has emerged on realistic

values for m and values ranging from 1 to infinity are commonly encountered.

Until a better understanding of basal sliding is obtained, Weertman’s general

law will be used. In our analysis it has two adjustable parameters, the basal

slipperiness c(x, y) and the stress exponent m.

I In the remainder of this text, the bed and surface profiles as well as the basal

slipperiness will be split into a mean and a deviatoric part. All dynamic equations

are studied up to first order in the small deviations. An important concept
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is the plane-slab flow, which is the zeroth-order unperturbed solution to the

flow equations. Further assumptions about the stress field can be imposed – we

discussed the shallow-ice-stream approximation which will be used in chapter 5.



Chapter 3

Theory of transfer functions

This chapter is organized as follows: in section 3.1 we present a brief overview of the

literature on bed-to-surface transfer characteristics. This will help the reader who is

less familiar with this topic to assess the current state of research, and it allows us to

provide the relevant references for those who seek a more in-debt understanding of the

subject. Subsequently, in section 3.2 the analytical transfer functions are introduced

for two particular forms of the momentum equations. First we present the solution to

the full-Stokes problem with a linear ice rheology and linear sliding law, as obtained

by [Gudmundsson, 2003]. This solution will be used as a benchmark for experimental

data in chapter 4. In order to validate the use of this analytical result, we compare it to

numerical experiments for arbitrary values of n and m [Raymond and Gudmundsson,

2005]. Secondly, the transfer functions for the shallow-ice-stream approximation with

a linear ice rheology and arbitrary sliding exponent are reviewed [Gudmundsson, 2008].

This solution will be used in chapter 5 to investigate the sensitivity of inverse modeling

results (i.e., the retrieved basal topography and slipperiness) to the form of the sliding

law, and in particular to the value of m.

27
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3.1 Previous work on the relation between bed and

surface properties

The theoretical study of ice-flow equations subjected to varying boundary conditions

has been a long-standing topic of interest to geophysicists. One of the earliest theoreti-

cal attempts to understand the effect of bedrock undulations on the surface topography

of a flowing ice mass was made by Nye [1959]. Nye estimated the steady-state and tran-

sient transfer for a 2-dimensional flow with a simplified sliding law and for length scales

that are long compared to the ice thickness. Subsequent analysis for the steady-state

flow over a harmonic bed were done by Yosida [1964] for a Newtonian viscous medium

with no slip, and by Budd [1970, 1971] for a non-linear medium. Budd [1970] ob-

tained an approximate expression for the “damping factor” which governs the relation

between the surface and bedrock shapes (similar to the transfer function). He found

that bedrock undulations with wavelengths on the order of a few ice thicknesses are

least dampened and therefore are most prominent at the surface. As we pointed out

in the introduction (chapter 1), this is an effect that has been observed many times

on the Greenland and Antarctic Ice Sheets [Robinson, 1966, Zwally et al., 1979, 1983,

Whillans et al., 1984, Overgaard and Gundestrup, 1985].

The time-dependent changes in surface geometry due to changes in mass-balance

were first analyzed by Nye [1963a,b, 1965], Lliboutry [1971] and Landon and Raymond

[1978] for simplified 2-dimensional models. The propagation and decay of small surface

disturbances was calculated by Lick [1970], both in the short and long wavelenth limit.

Subsequently, Thompson [1979] and van de Wal and Oerlemans [1995] studied the

phase velocity of surface waves in more detail, assuming a non-linear flow law. More

recent theoretical and numerical results on glacier response to mass balance changes

can be found in Bahr et al. [1998], Pfeffer et al. [1998], Harrison et al. [2001], Pattyn

[2002], Leysinger Vieli and Gudmundsson [2004] and Lüthi [2009]. These results are less

relevant in the context of our work, since we assume that ablation and accumulation
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can be neglected or are uniform over the area of interest.

The effect of basal boundary conditions that vary spatially across or transverse to

the flow direction have obtained less attention in the literature. An interesting early

study was carried out by Raymond [1996], who found that a localized disturbance in

slip resistance affects the basal stress and speed over distances that are many times the

size of the disturbance. A nice example of such an effect are flow strips – depressions

that often extend for hundreds of kilometers along the flow of fast moving ice streams.

In Gudmundsson et al. [1998] their origin was related to local variations in either basal

slipperiness or bedrock shape.

Finally, a systematic theoretical analysis of steady-state transfer amplitudes for

basal undulations using perturbation methods (as discussed in section 2.3) was initi-

ated by Hutter [1980, 1982, 1983] and Hutter et al. [1981]. This work, which was

restricted to 2 dimensions, was later extended by Reeh [1987] to 3 dimensions for a lin-

ear rheology and sine-shaped basal undulations. Reeh [1987] found that 3-dimensional

flow effects become substantial as the ratio between the longitudinal and the trans-

verse wavelength increases. In particular, surface amplitudes are reduced significantly

as compared to the 2-dimensional case. Basal velocity perturbations were incorporated

by Balise and Raymond [1985] for a 2-dimensional flow of a linear medium, and Balise

[1987] extended this analysis to a non-linear rheology. Johannesson [1992] significantly

improved all previous analysis, and obtained the steady-state and transient response

of a 2-dimensional ice flow subjected to bedrock and basal slipperiness perturbations.

He also obtained a solution to the 3-dimensional steady-state problem.

Eventually, an analytical solution for the 3-dimensional full-Stokes transfer prob-

lem of bedrock and slipperiness perturbations with a linear ice rheology and linear

sliding law was obtained by Gudmundsson [2003]. To date, this is still the most gen-

eral analytical solution known. An exact solution for the transfer problem in the

shallow-ice-stream approximation has been obtained by Gudmundsson [2008] for a lin-

ear rheology and arbitrary sliding exponent. Numerical experiments for a nonlinear

flow and nonlinear sliding law were done by Raymond and Gudmundsson [2005].
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Today, most of the work on transfer characteristics is related to the inverse problem.

Instead of looking at the surface response of a known bedrock profile and basal slipper-

iness distribution, inverse modeling is used to obtain information about the bed from

the measurement of surface data. Indirect information about the basal shear stress dis-

tribution of ice streams from surface measurements has been obtained, for example, by

MacAyeal [1992, 1993], MacAyeal et al. [1995], Vieli and Payne [2003], Joughin et al.

[2004, 2006]. The simultaneous retrieval of basal topography and basal slipperiness

for a part of MacAyeal Ice Stream, West Antarctica, was done by Thorsteinsson et al.

[2003]. A systematic approach to the retrieval of bed properties from surface data

was developed by Gudmundsson [2004], Raymond [2007], Gudmundsson and Raymond

[2008], Raymond and Gudmundsson [2009], based on the Bayesian statistical inversion

method. This method has subsequently been applied to a flightline along Rutford Ice

Stream Raymond-Pralong and Gudmundsson [2011]. For more information about the

Bayesian inversion method we refer to chapter 5.

3.2 Transfer in the full-Stokes and shallow-ice-stream

models

The first order transient response of a glacier’s surface to small disturbances at its base

is described by the transfer functions, T , which are defined as follows:

∆s = Tsb∆b+ Tsc∆c , (3.2.1)

∆vi = Tvib ∆b+ Tvic ∆c . (3.2.2)

Each transfer function has two subindices, the first index relates to the effect and the

second to the cause. For example, Tsb describes the effect on the surface topography

(s) caused by perturbations in the bedrock topography (b), Tvic describes the effect on

the surface velocities (vi) caused by variations in basal slipperiness (c), and so on.

The relations (3.2.1) and (3.2.2) form a perturbative solution to the conservation
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equations and boundary conditions, up to first order in the small disturbances ∆b, ∆s,

∆c and ∆vi. The transfer functions depend on the following parameters: (i) the spatial

coordinates along the surface and time, (ii) the mean ice thickness and the inclination

angle of the plane-slab, (iii) the mean slipperiness, (iv) Glen’s flow law exponent and

the sliding exponent, and (v) the ice viscosity.

It is often convenient to formulate the transfer problem in Fourier space, which

makes it easier to solve the boundary and momentum equations. A forward Fourier

transform relates spatial coordinates to wavenumbers as follows:

f̂(kx) =

∫
dx f(x) e2πi(kxx) , (3.2.3)

for any integrable function f(x), and wavenumbers kx. The latter are related to wave-

lengths via λx = 2π/kx. In the following, we will only consider Fourier-transformed

functions, and the hat-notation will be omitted for convenience. In particular, the

transfer functions are

T = T (t, kx, ky, p) with p = {H,α, c(0), n,m, η} . (3.2.4)

The exact form of these functions depends on the chosen approximations scheme for the

momentum equations and boundary conditions. For example, the transfer functions in

the shallow-ice-stream approximation (i.e., δ → 0) deviate from the transfer functions

for the full-Stokes flow (i.e., up to all orders in δ) for wavelengths shorter than a few ice

thicknesses. In the remainder of this section, the transfer functions for both schemes

will be presented, and their differences will be described in more detail.

3.2.1 The full-Stokes solution

Our discussion in this paragraph is based on the results obtained by Gudmundsson

[2003] for a full-Stokes model with a linear ice rheology (n = 1) and a linear sliding

law (m = 1). The results presented here will form the basis for our comparison with
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experimental data in chapter 4. Since only the response of the surface topography to

bedrock undulations will be studied, we restrict our attention to the transfer function

Tsb. Similar expressions for the other transfer functions can be found in Gudmundsson

[2003].

Tsb(t, kx, ky, H, α, c(0), η) =
i ã/c̃

it−1
p − t−1

d

(
1− eit/tpe−t/td

)
, (3.2.5)

with the phase timescale tp and decay timescale td given by

tp = c̃/d̃ , td = c̃/b̃ , (3.2.6)

and

ã =
[
V (0)
s,x f̃ +

(
V (0)
s,x + k2C(0)2

)
cosh(k)

]
k kx ,

b̃ =
[
f̃ sinh(k)− k

]
cot(α) ,

c̃ = k3V (0)
s,x + f̃k cosh(k) , d̃ = kxV

(0)
s,x (c̃+ k) ,

f̃ = cosh(k) + kC(0)sinh(k) .

Furthermore we have used the following notations:

k =
√

k2
x + k2

y , C(0) = η c(0)/H , V (0)
s,x = 1 + C(0) . (3.2.7)

Since the typical contribution to the surface speed due to internal creep is given by

v
(0)
d,x = Hσ

(0)
xz (−H)/η, it follows from (3.2.7) and (2.3.21) that the new parameter C(0) is

equal to the ratio of the mean basal sliding velocity and the mean forward deformational

velocity:

C(0) =
v
(0)
b,x

v
(0)
d,x

. (3.2.8)

This quantity is also called the slip ratio. Remark that the viscosity η and the mean

ice thickness H only enter the transfer function indirectly via the slip ratio.
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The steady state response can be found by taking the limit t → ∞ for Tsb:

Tsb|t→∞ = ã/
(
d̃+ ib̃

)
. (3.2.9)

The transient and steady-state transfer functions are both complex functions with an

amplitude and a phase. The amplitude corresponds to the amplitude ratio between the

surface and basal topography, whereas the phase describes the shift (in Fourier space)

of the surface undulations with respect to the perturbations in the bedrock.

Figure 3.1: Steady-state transfer amplitude |Tsb| for α = 0.003 and C(0) = 100.

In Figure 3.1 we present the steady-state transfer amplitude
∣∣Tsb(kx, ky, C

(0), α)
∣∣

for C(0) = 100 and α = 0.003 (these are typical values for a fast-flowing Antarctic ice

stream). The x- and y-axis have a logarithmic scale and represent the wavelengths

λx and λy in units of ice thickness. We can distinguish between different regimes.

For short wavelengths λy < H, the transfer is close to zero for all values of λx. For

intermediate and long wavelengths λy > H, the transfer amplitude develops a non-
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trivial behavior as a function of λx: for small values of λx < H, the transfer is zero;

for long wavelengths λx > 104H the transfer converges towards 1; and for intermediate

wavelengths the transfer functions shows a local peak.

We are particularly interested in the characteristic behavior of |Tsb| for long wave-

lengths λy. This is motivated by the fact that the flow of an ice stream in chapter 4

will be treated as a 2-dimensional problem, and basal perturbations transverse to the

flow direction (i.e., in the y-direction) will be neglected. This effectively corresponds

to taking the limit ky → 0 in (3.2.9), and we can concentrate on the behavior of the

resulting function
∣∣Tsb(kx, C

(0), α)
∣∣.

Figure 3.2: 2-dimensional steady-state transfer amplitude |Tsb| for α = 0.003 and
3 values of the mean slip ratio.

Figure 3.2 shows the 2-dimensional transfer amplitude for α = 0.003 and 3 different

values of C(0). As we pointed out before, the transfer function has a local maximum for

intermediate wavelengths H < λx < 102H. However, we now see that the amplitude

of this maximum is strongly dependent on the value of C(0). For low values of the slip

ratio, i.e., C(0) < 10, the peak is almost absent, whereas it is much more prominent for

C(0) > 100. In other words, for slippery beds – such as those underneath fast-flowing

ice streams – the transfer of information about bedrock undulations to the surface
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happens very efficiently for intermediate wavelengths. This feature distinguishes ice

streams with a high slip ratio from ice flows that have a low slip ratio, such as the

surrounding ice sheet. It is exactly this important distinction that will be the subject

of our research in chapter 4, and that will allow us to test the validity of the theoretical

model.

However, recall that the solution for Tsb in (3.2.5) is only valid for n = 1 and m = 1.

Therefore the question remains whether the predicted peak in the transfer amplitude

is related to this specific choice of n and/or m, or whether it is a more general, and

therefore present for more realistic values of n and m. Since there does not exist

an analytical solution to the full-Stokes transfer problem for arbitrary n and m, an

answer to this question relies on numerical analysis of the momentum equations and

boundary conditions. In Raymond and Gudmundsson [2005] this numerical problem

was addressed, and in the next paragraph we briefly review the results.

3.2.2 Numerical results

We discuss Figures 8b and 11a in Raymond and Gudmundsson [2005], which summarize

the dependence of Tsb on Glen’s exponent n and the sliding exponent m respectively

(for convenience we repeat these figures in Figure 3.3a and 3.3b respectively). From

Figure 3.3a one can see that for values n = 3 and n = 5 the local peak in the transfer

function is still present, but its amplitude increases and the maximum shifts towards

longer wavelengths. Despite these changes, there is little qualitative difference between

the solutions for a linear ice rheology and a non-linear medium.

Figure 3.3b in Raymond and Gudmundsson [2005] shows the transfer amplitude

for n = 3 and m = 1, 3 and 20. Again there is no qualitative difference between the

different values of m, and a peak is clearly present in all cases. The dependence of Tsb

on m is weak, with only a minor decrease in the transfer amplitude for m = 20 with

respect to m = 1. It is also expected that |Tsb| exhibits a fast convergence towards a

limiting curve for increasing values of m. As a consequence, the transfer amplitude for
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a plastic bed (m → ∞) is roughly equal to the transfer amplitude for m = 20.

We conclude that for high values of the slip ratio, a peak in the transfer function

is to be expected, irrespective of the physical values of n and m. This is an important

result in the light of our work in chapter 4.

Finally, in order to prepare for the results presented in chapter 5, we conclude this

section about transfer functions with a short discussion about the form of the analytical

transfer functions in the shallow-ice-stream approximation.

Figure 3.3: (a) Steady state amplitude ratios and phase shifts for a perturbation
in basal topography for C(0) = 10. Diamonds indicate calculated values. The solid
line is the analytical solution valid for n = 1. The dashed and the dotted lines are
linear interpolations of calculated values for n = 3 and n = 5, respectively. The
mean surface slope is α = 0.05. (b) Same as in (a) but for 3 different basal sliding
exponents m = 1, 3, and 20 and n = 3. These figures are reproduced from Raymond
and Gudmundsson [2005].



CHAPTER 3. THEORY OF TRANSFER FUNCTIONS 37

3.2.3 The shallow-ice-stream solution

The results presented in this paragraph were obtained by Gudmundsson [2008].1 Recall

from section 2.3 that the shallow-ice-stream approximation assumes that the extend of

a glacier or ice stream is large compared to its mean ice thickness, and that the vertical

shear stresses can be ignored. In terms of the notations used in (2.3.22) and (2.3.23),

it means that δ → 0. In this limit, an analytical solution for the transfer functions can

be found for n = 1 and arbitrary sliding exponent m. The final expressions, which are

now functions of t, kx, ky, α, C(0) and m, are quite involved and it is not instructive

to show them here. Instead, we plot some of the steady-state results, investigate their

dependence on wavelength, m and C(0), and compare them to the full-Stokes solution.

Figure 3.4: (a) Transfer amplitude for the shallow-ice-stream approximation with
mean slope α = 0.003, mean slip ratio C(0) = 300 and 3 values of the sliding law
exponent m = 1, 3, and 20. The full-Stokes solution is plotted for comparison.
(b) Transfer amplitude for the shallow-ice-stream approximation with mean slope
α = 0.003, sliding law exponent m = 1 and three values of the mean slip ratio
C(0) = 10, 100, and 1000. Again the corresponding full-Stokes solutions are plotted.

In Figure 3.4a we present the shallow-ice-stream solution for the steady-state am-

1It should be noted that momentum equations (1) and (2) in Gudmundsson [2008] – which form
the starting point of that paper – contain an error in their third term on the left hand side. However,
Gudmundsson [unpublished ] has obtained the solutions to the correct equations, and the results do
not differ significantly from those presented in Gudmundsson [2008]. In this text, we present the
corrected solutions.
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plitude |Tsb| in the limit ky → 0 and for 3 values of the sliding exponent: m = 1, 3

and 20 (black lines). The inclination angle was chosen to be α = 0.003 and the slip

ratio C(0) = 300. For comparison, we also plot the corresponding full-Stokes solution

(dashed red line), which is only valid for m = 1. For wavelengths λx > 10H the

full-Stokes and shallow-ice-stream solutions coincide exactly. At shorter wavelengths,

the shallow-ice-stream approximation converges towards 1, and largely overestimates

the bed-to-surface transfer. For values m > 1, a small decrease in transfer occurs for

λx > 50H. This is in agreement with the numerical results for the full-Stokes problem,

presented in Figure 3.3b. In the limit m → ∞, the shallow-ice-stream transfer ampli-

tude converges towards a curve that is well approximated by the curve for m = 20.

From the correspondence between the shallow-ice-stream and full-Stokes solutions,

and the C(0)-dependence of the latter (recall Figure 3.2), we expect to find a decrease in

transfer at intermediate wavelengths for low values of the slip ratio. Indeed, Figure 3.4b

shows that for low values of the slip ratio, the transfer becomes negligible for a large

interval of intermediate wavelengths. For higher values of C(0), this local minimum

is less pronounced, and the transfer amplitude remains relatively constant for a large

part of the spectrum. The curves in Figure 3.4b are plotted for α = 0.003 and m = 1,

and the corresponding full-Stokes solutions are shown for comparison.

We conclude that the shallow-ice-stream solution is only a good approximation

to the full-Stokes solutions for wavelengths λx > 10H. In particular, it does not

reproduce the local maximum at intermediate wavelengths that was characteristic for

the full-Stokes solution. The benefit of having the shallow-ice-stream solution is its

analytical dependence on m. This property will be exploited in chapter 5. In order

to make that analysis as accurate as possible, we will be careful not to include short

wavelengths where the shallow-ice-stream approximation cannot be trusted.

3.3 Summary

We recall the following important results from this section.
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I Transfer functions relate bed topography (b) and basal slipperiness (c) to surface

topography (s) and velocity components (vi). They are functions of the longi-

tudinal and transversal wavelengths and of the parameters that determine the

undisturbed (zeroth-order) flow, sliding law and ice rheology.

I An analytical expression for Tsb was presented for the 3-dimensional linear full-

Stokes model up to first order in the basal and surface perturbations. The main

feature of this solution is the presence of a local maximum for the transfer at

wavelengths between 1 and 20 ice-thicknesses. The amplitude of this maximum

depends critically on the mean slip ratio C(0), with more efficient transfer for

slippery beds.

I Numerical solutions for a non-linear full-Stokes model have shown no critical

dependence on the values of m and n.

I The shallow-ice-stream approximation overestimates the effects of basal perturba-

tions on the surface topography for wavelengths less than 5 to 10 ice-thicknesses.

It correctly reproduces the transfer of the full-Stokes solution for longer wave-

lengths. An interesting feature of the shallow-ice-stream solution is its analytical

dependence on the sliding exponent, which makes it an important tool to analyze

the dependence of ice stream dynamics on the sliding exponent.

In the next two chapters, our research results will be presented. In chapter 4 experimen-

tal evidence is provided for the form of the theoretical transfer amplitudes presented

in this section.



Chapter 4

Observational evidence for the
bed-to-surface transfer of Antarctic
ice streams

4.1 Introduction

In the previous chapter we described the estimated response of a glacier’s surface to

bedrock irregularities using the theory of transfer functions. We saw that for high values

of the mean slip ratio, theory predicts that information about the bedrock topography

is most efficiently transmitted to the surface for two distinct windows of length-scales.

(i) For basal undulations with wavelengths longer than 103 ice thicknesses, perfect

transfer to the surface is expected. (ii) In addition, a local maximum in the theoretical

transfer function appears for wavelengths between 1 and 20 ice thicknesses, irrespective

of the values of Glen’s flow law exponent and the sliding parameter.

On the other hand, Gudmundsson [2003] has pointed out that variations in basal

slipperiness are only transmitted efficiently to the surface for long wavelengths (λx >

102H, see Figure 4.1). Therefore, we expect that small and medium-scale variations in

surface topography of fast-flowing ice streams are primarily determined by the under-

lying bedrock profile, whereas the effect of basal variations in slipperiness is limited.

This observation has been confirmed by a study of radar data along a profile of the

40
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Rutford Ice Stream [Raymond-Pralong and Gudmundsson, 2011]. Apart from a general

increase in basal slipperiness toward the grounding line, the authors found no evidence

for variations in basal slipperiness, and all short-scale variability (< 10H) in surface

topography and surface velocities could be explained by variations in basal topography

only.

Figure 4.1: Transfer amplitudes that describe the effect of bedrock geometry
(|Tsb|) and basal slipperiness (|Tsc|) on the surface topography. The surface response
to c-variations is only significant for long wavelengths λx > 102H.

The use of observational data to verify the theoretical results of Gudmundsson

[2003] and Raymond and Gudmundsson [2005] has been very limited (see e.g. Gud-

mundsson et al. [2003]), and the effects on ice flow dynamics have mainly been studied

using synthetic data. In particular, no direct experimental evidence has been obtained

for the form of the transfer amplitude |Tsb| that was presented in (3.2.5). In this section

we address the issue directly for the first time. We analyze recently acquired radar data

for the bed and surface topography of Rutford and Evans Ice Streams, Antarctica, and

estimate their bed-to-surface response. We find a clear maximum in the bed-to-surface

transfer function for wavelengths between 1 and 20 ice thicknesses, and discuss the

dependency of this feature on flow characteristics such as the slip ratio and the value

of Glen’s flow law exponent. Several interesting discrepancies between the observed
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and theoretical estimates are found, and we aim to provide a physical explanation for

these disagreements.

4.2 Data and methods

4.2.1 Data description

We used unmigrated bed and surface returns1 from an extensive radio echo sounding

survey (RES) over the southwestern margin of the Filchner-Ronne Ice Shelf and the

adjacent West Antarctic Ice Sheet (inset of Figure 4.2). In January 2007, the British

Antarctic Survey flew twenty-two RES sorties from two remote field camps (Rutford

Ice stream Camp at 78◦08’S, 83◦54’S and Ski-Blu at 74◦51’S, 71◦35’W), covering a total

distance of about 20.000 km. The radar platform consisted of a Twin-Otter equipped

with the ice-sounding radar system PASIN (Polarimetric Airborne Survey INstrument),

dual-frequency carrier-wave GPS for navigation and high frequency radar altimeter.

The RES system operated at a center frequency of 150 MHz and 12 MHz bandwidth.

More details about the radar system and data processing methods can be found in

Corr et al. [2007] and Vaughan et al. [2006], Rippin et al. [2011] respectively.

Comparisons of ice thickness recorded at flight-line crossover points for a similar

RES survey using the same equipment at Pine Island Glacier, has indicated a root-

mean-square error of ∼ 23m [Vaughan et al., 2006]. The errors from crossovers in

measurements of ice-surface elevation were considerably lower, ∼ 1m. The uncertainty

in bed-elevation measurement is therefore roughly equivalent to that in the ice thick-

ness. The greatest sources of uncertainty for the surface measurements are the false

determination of the airplane’s position and the local build-up of snowdrift, the errors

in the ice thickness result largely from off-nadir reflections and interpretation/digitizing

uncertainty. The errors in surface- and bed profile are small and will not be of any

concern for our work.

1We refer to Rippin et al. [2011] for a remark on the use of unmigrated data.
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Figure 4.2: Map showing the Rutford Ice Stream, Evans Ice Stream and Carlson
Inlet which flow into the Filchner-Ronne Ice Shelf (FRIS), West Antarctica (see
inset). The color scale and arrows indicate the InSAR-derived surface velocity field
[Joughin et al., 2006] overlaid on a subset of the MODIS mosaic for Antarctica. Only
velocities higher than 20 m/yr are shown. Black lines represent the 22 sections of
radar profiles that were analyzed in this work.

For our analysis, we selected 17 segments of flightlines along fast-flowing sections of

the Ice Sheet. They are represented by the black lines in Figure 4.2, and enumerated

R1-R5 for the Rutford Ice Stream and E1-E12 for the Evans Ice Stream. Moreover, 5

profiles selected for the slow-moving Carlson Inlet are indicated by C1-C5 in Figure 4.2.

All 22 profiles satisfy the following criteria:

(i) Each profile is approximately parallel to the ice velocity field. This allows us to
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treat the bed-to-surface transfer problem in a 2-dimensional plane (1 horizontal

and 1 vertical direction), with the ice velocity vector lying in that plane. Of

course, transverse effects can never be entirely excluded, an issue that will be

discussed at length in section 4.4.

(ii) All profiles were restricted to the grounded part of the ice sheet. Some sections

were also cut off at their upstream end to guarantee relatively constant flow con-

ditions, i.e., limited variations in surface and basal velocity. On the other hand,

profile lengths need to be sufficiently long, since we are interested in elevation

perturbations with wavelengths up to 20 times the ice thickness. For our dataset,

track lengths (l) vary from l = 72 km for E2 to l = 207 km for E10, and the mean

ice thickness has values between H = 1300m and H = 2600m.

(iii) There are no substantial gaps in the data, although some smaller gaps (< 5km)

are present for R2, C1, E2, E3 and E7. Two larger gaps of 18 km and 8 km were

included for E1 and E5 respectively, and results for these two profiles should thus

be treated with greater caution.

4.2.2 Plane-slab approximation

For each flowline, the bed and surface profiles were separated into a mean value and a

deviatoric part, as in (2.3.20). The mean values correspond to the parameters of the

zeroth-order plane-slab plug flow – recall (2.3.21). The slope and the mean ice thickness

of the inclined slab were determined via a linear interpolation of the bed (denoted by

b(0) in Figure 4.3) and the surface (denoted by s(0) in Figure 4.3). The value of α

was set equal to the slope of s(0), the mean ice thickness H is the difference between

s(0) and b(0) averaged along the profile. The fact that H is now measured vertically,

whereas previously it was measured perpendicular to the mean bed profile (see Figure

2.1) is not a major issue. The fact that α is usually on the order of 0.002−0.005 means

that both definitions of H are almost equal. The “small” deviations ∆s and ∆b were

defined as in (2.3.20), i.e., the difference between the original and the mean profile.
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The third parameter in the plug flow is the mean slipperiness (or slip ratio). Re-

call from (3.2.8) that the slip ratio is defined as the ratio of the mean basal slid-

ing velocity and the mean forward deformation due to creep. The latter is given by

v
(0)
d,x = 2

n+1

(
ρgsin(α)

η

)n

Hn+1 with H and α the values that were determined via the

method described above. Furthermore, we used n = 3 and the viscosity for ice at

−10◦C, i.e., η = 1.4× 108s1/3Pa [Cuffey and Paterson, 2010].2 The sliding velocity, on

the other hand, is given by the difference between the surface velocity and the forward

deformation:

v
(0)
b,x = v(0)s,x − v

(0)
d,x . (4.2.1)

The mean surface velocity along the profile (v
(0)
s,x) was estimated using InSAR data

[Joughin et al., 2006]. Hence, both v
(0)
b,x and v

(0)
d,x can be determined, which allows us to

estimate the mean slip ratio C(0) for each profile.

Figure 4.3: Bed (b) and surface (s) returns for flightline R4 along the Rutford
Ice Stream (see Figure 4.2). A linear interpolation of b and s determines the mean
parameters of the plug flow, i.e., the undisturbed bed (b(0)) and surface (s(0)) profiles,
the mean ice thickness (H) and the mean slope (α). Deviations are defined as the
difference between the mean and measured values (∆b = |b−b(0)| and ∆s = |s−s(0)|).

2Recall that η is expected to vary throughout the ice column, with close-to-temperate ice near the
base, and stiffer ice at the surface. A slightly different value for η can have a large impact on the
resulting forward deformation. Both issues will be discussed in section 4.4.
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4.2.3 Estimated transfer amplitudes

For each flightline we estimate the transfer amplitude between the measured bed profile

(∆b) and the surface profile (∆s) as a function of wavelength. The estimated amplitude

will be denoted by T
(m)
sb (λx) and is defined as the quotient of the Cross Power Spectral

Density of ∆b and ∆s (i.e., the Fourier transform of the cross-correlation between

the bed and surface signal), and the Power Spectral Density of ∆b (i.e., the Fourier

transform of the autocorrelation of the bed signal). The use of this definition has been

tested extensively with synthetic data. In Figure 4.4 we present the results for such a

test for a bed profile consisting of a single delta-peak with amplitude 0.1H:

∆b(x) = 0.1H δ(x− x0) , (4.2.2)

with x0 the center of a 1-dimensional grid with 213 grid points and grid scale 25 m

(these grid parameters correspond roughly to those encountered in the dataset of mea-

sured radar profiles). First, the forward surface response, ∆s, is calculated using the

2-dimensional steady-state expression for Tsb and (3.2.1) with ∆c = 0. Next, T
(m)
sb is

estimated from ∆b and ∆s using the definition in terms of power spectral densities. In

Figure 4.4 the estimated transfer |T (m)
sb | and analytical expression |Tsb| are presented.

Both curves coincide exactly, except for wavelengths λx > 30H. This is due to partic-

ular details of the analysis method that will be discussed in due course. We will point

out why this discrepancy cannot be avoided, and why it does not pose any problems

for our analysis.

The evaluation of |T (m)
sb | requires a Fourier-based analysis of the data. Therefore,

each section was re-sampled onto an equally spaced grid of 2N data points. The value of

N was chosen independently for each profile, such that the new sampling interval is close

to the mean original sampling interval (between 19.9 m and 23.8 m). The new data

points were obtained using a cubic spline interpolation method, which also fills the data

gaps discussed in item (iii) above. (It should be noted that our results do not crucially
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Figure 4.4: Estimated and theoretical transfer amplitudes for a synthetic bed
consisting of a single delta-peak.

depend on this interpolation method, and a piecewise linear interpolation could be

used instead, although this was found to introduce extra noise at high frequencies.)

The calculation of transfer amplitudes (or equivalently, power spectra) from real

data can be surprisingly difficult, and results are often sensitive to various assumptions

made in the analysis method. A common issue is the leakage of power between ad-

jacent frequency bands, which results in a large variance for the spectral coefficients.

In order to minimize this systematic error, we used Welch’s averaged periodogram

method [Welch, 1967]. Each elevation profile was divided into K overlapping segments

of fixed length L = 45 km. For each segment, a Hamming window was applied, and

the resulting power spectra for all segments were averaged. The value of L was fixed

for all profiles, whereas K was allowed to vary depending on the length of each profile,

i.e., K ∼ l/L. Our choice L = 45 km guaranteed that K ≥ 2 for all profiles, given an

overlap of 50% between different segments. Since the variance of the power spectral

coefficients scales with 11/9K, longer profiles (and hence larger values of K) generally

lead to more reliable results. A smaller value for L would further reduce these er-

rors, but valuable information about wavelengths on the order of 45 km would be lost.
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This delicate balance between resolution and variance is one of the main drawbacks

of Welch’s method, and it highlights the importance of having long flightlines. Since

lengths in our dataset are in the range 72 km < l < 207 km, a trade-off was made in

choosing L = 45 km, and the transfer amplitudes should only be taken seriously for

λx < 45 km. Depending on the value of H, this limit of validity lies between 17H and

34H, and only 3 profiles (R1, R2 and E2) have a ratio L/H smaller than 20. This is

acceptable since we are only interested in the behavior of T
(m)
sb (λx) for H < λx < 20H.

4.3 Results

We have obtained the transfer amplitudes for all 22 profiles along the Evans and Rutford

ice streams and the Carlson Inlet. Our aim is to answer the following research questions.

I Do we observe enhanced transfer for intermediate wavelengths and high values

of the slip ratio?

I If so, how does the peak amplitude depend on the slip ratio?

I Can we explain any possible discrepancies between theoretical predictions and

observation?

In order to answer the first question, we restrict our attention to three examples

(C5, R2 and E8) which have a wavelength-dependence that is broadly representative

for the other profiles in the sample. The estimated transfer amplitudes for C5, R2 and

E8 are shown in Figure 4.5a. Similar curves have been obtained for all flightlines, but

it is not instructive to individually present them here. We will provide other examples

later, when they are beneficial for the discussion. The estimated plane-slab parameters

for C5, R2 and E8 are summarized in Table 4.1 (bold text). We also list the values for

all other profiles for completeness and later reference.
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Table 4.1: Physical properties of all profiles in Figure 4.2: length (l), mean ice

thickness (H), mean surface slope (α), mean surface velocity (v
(0)
s,x), mean forward

deformational velocity (v
(0)
d,x) and mean slip ratio (C(0)). Selected profiles which are

discussed in more detail in the text are indicated in bold.

profile l H α v
(0)
s,x v

(0)
d,x C(0)

(km) (m) (rad) (m/yr) (m/yr)

C1 81.0 1781 0.0062 12.1 9.6 0.3

C2 80.8 1742 0.0057 12.6 7.0 0.8

C3 90.9 1611 0.0056 10.8 4.6 1.3

C4 100.0 1686 0.0056 27.0 5.6 3.8

C5 88.1 2081 0.0054 16.1 11.6 0.4

R1 145.3 2553 0.0033 309.5 6.0 50.3

R2 146.3 2351 0.0035 330.3 5.4 60.1

R3 116.9 2149 0.0041 313.3 5.8 53.4

R4 172.3 2151 0.0036 284.0 4.0 70.5

R5 96.3 2073 0.0029 280.6 1.8 155.4

E1 90.9 2091 0.0061 121.3 17.5 5.9

E2 71.5 2272 0.0060 266.6 23.5 10.3

E3 147.0 2631 0.0041 198.6 13.4 13.8

E4 103.7 2174 0.0058 176.5 17.9 8.9

E5 98.8 2233 0.0045 129.3 9.3 12.8

E6 84.2 2294 0.0028 148.1 2.4 60.6

E7 117.0 2114 0.0019 160.7 0.6 279.9

E8 150.1 1933 0.0017 243.2 0.3 854.1

E9 131.0 1696 0.0017 311.4 0.2 2003.6

E10 206.8 1455 0.0025 320.6 0.3 1206.3

E11 183.0 1399 0.0024 336.8 0.2 1650.4

E12 160.0 1316 0.0025 258.7 0.2 1406.7
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Figure 4.5: (a) Estimated transfer amplitudes for C5, R2 and E8. (b) Analytical
solution for Tsb for n = 1, m = 1, and 3 different combinations of α and C(0),
corresponding to the observed values for C5, R2 and E8 (see Table 4.1).

Since we are interested in comparing our results with theoretical predictions, we present

in Figure 4.5b the analytical solutions (3.2.5) corresponding to the values α and C(0)

for each of the three profiles C5, R2 and E8.

The first profile, C5, runs along a steeper but slow-flowing section of the ice sheet,

which results in a small slip ratio (C(0) = 0.4). For both the theoretical and observed

estimates, we find small (< 0.1) and relatively constant values of Tsb(λx). R2 and E8,

on the other hand, have mean slip ratios that are several times higher (C(0) = 60.1

and C(0) = 854.1 respectively), which is reflected in much higher surface speeds. As

expected, the observed transfer amplitudes for R2 and E8 show a distinctive peak at

intermediate wavelengths. This qualitative agreement between theory and observation

for low and high values of C(0) is generally true: none of the profiles with C(0) < 5

(i.e., C1-C5 – see Table 4.1), shows a noticeable increase of transfer at intermediate

wavelengths, whereas all profiles with C(0) > 50 (i.e., R1-R5 and E6-E12), have a

distinctive maximum at wavelengths between H and 20H.3 This answers our first

question on page 48: the analyzed radar profiles provide strong evidence for the efficient

3For 5 < C(0) < 50 the tendency is less uniform, with apparent peaks for E4 and E5, and relatively
flat curves for E1-E3. However, in the remainder of this work we will be less interested in profiles
with a moderate slip ratio.
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transfer of medium-scale bedrock undulations to the surface of fast-flowing Antarctic

ice streams.

Next, we study the relationship between the peak amplitude and the mean slip

ratio. From theoretical considerations (recall section 3.2 and Figure 3.2) we expect to

find an increasing peak height with increasing values of C(0). Such a relationship is

indeed confirmed by the 3 examples in Figure 4.5a: the profile with the highest slip

ratio (E8) has the highest peak. Again, this observation is valid for the entire sample

of flightlines. Figure 4.6b shows a scatter plot of slip ratios versus peak amplitudes for

all profiles. Despite a substantial amount of scatter, the plot indicates an increasing

trend (∼ +300%). This behavior is underlined and better visualized in Figure 4.6a,

which shows a box plot for the same data points. The dataset was segmented into

4 equally-sampled groups, corresponding to the ranges C(0) ∈ ]0.2, 2], C(0) ∈ ]2, 20],

C(0) ∈ ]20, 200] and C(0) ∈ ]200, 2000]. For each group the median, 25th and 75th

percentiles and the extreme data points are shown.

We have now obtained a satisfying answer to the first two research questions stated

at the beginning of this section. Next, we address the differences between theoretical

and observed transfer estimates. A careful comparison between Figures 4.5a and 4.5b

reveals several quantitative as well as qualitative discrepancies which will be outlined

here. A detailed discussion about their physical (or methodical) origin will be given in

section 4.4.

First, it should be noted that, unlike for theoretical estimates, the observed am-

plitudes do not have one continuous peak, but consist of several local maxima. In

the case of R2 and E8, we distinguish two such maxima of comparable height. In our

analysis for Figure 4.6, the actual peak value was taken to be the value of the highest

maximum. For R2 this results in a maximal value of 0.23, whereas the peak amplitude

for E8 is 0.32. A separation into two or more peaks, not necessarily of equal height, is

also apparent for most other profiles (R3 being an exception) and some profiles have

a strong oscillatory behavior with up to 6 prominent peaks (in particular E6, E7 and

E9). This is further illustrated in Figure 4.7 which shows the estimated amplitudes for
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Figure 4.6: Box plot (a) and scatter plot (b) for the estimated peak height
as a function of the mean slip ratio for all 22 profiles shown in Figure 4.2. The
categories for the box plot correspond to the ranges C(0) ∈ ]0.2, 2], C(0) ∈ ]2, 20],
C(0) ∈ ]20, 200] and C(0) ∈ ]200, 2000] respectively. The profiles highlighted by an
ellipse are discussed in more detail in the text (see Figure 4.5a and Table 4.1). The
dashed line corresponds to the theoretical prediction, and converges towards 1 for
values of the mean slip ratio C(0) > 103.

R3 and E9.

Another discrepancy between observed and theoretical estimates of the transfer is

related to the absolute value of the peak height. Peak amplitudes for R2 and E8 are

about 60% lower than expected from theoretical estimates. This observation is gener-

ally true for all other profiles with high slip ratios: for R1-R5 and E6-E12 the transfer is

significantly dampened, with peak amplitudes at least 60% and up to 70% lower than

theoretical estimates. This dampening is also clear from Figure 4.6b, which shows

observed peak heights as a function of the slip ratio, and the dashed line represents

the theoretical prediction. For C(0) > 20, observed peak amplitudes lie consistently

below the theoretical curve. In section 4.4 several reasons for this discrepancy will be

presented, including 3-dimensional effects and a temperature-dependent viscosity. On
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Figure 4.7: Estimated transfer amplitudes for R3 and E9. R3 has one single peak,
whereas E9 shows a strong oscillatory behavior.

the other hand, for small values of the slip ratio (C(0) < 20), and in particular for all

profiles along the Carlson Inlet, a substantial fraction of the observed transfer is due

to measurement noise. This leads to observed amplitudes that are larger than theo-

retical predictions (see Figure 4.6b). Since C1-C5 are also among the shortest profiles,

systematic errors in their analysis are also larger than for most other profiles.

Finally, we note that for most profiles the weight of the peak is slightly shifted

towards higher (e.g. for R2) or lower (e.g. for E8) wavelengths as compared to the

analytical solution. Moreover, the theoretical transfer function for E8 has a shape that

is markedly broader than the shape of its corresponding observed curve. Again this

feature holds more generally, with lower-than-expected transfer at high wavelengths

for the profiles E7-E12.

Summary. The results of our analysis can be summarized as follows. Despite the

separation into multiple peaks and a reduced transfer at intermediate and long wave-

lengths, a good qualitative agreement between observed and theoretical transfer char-
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acteristics is found. Our results are novel in the sense that no direct evidence for the

accuracy of these theoretical predictions has been obtained in the literature before.

In particular, the efficient transfer of medium-scale basal undulations to the surface

of fast-flowing Antarctic ice streams has not been investigated systematically. Our

results are based upon an extensive set of radar measurements with a broad sampling

of possible slip ratios, which strengthens the conclusions. Despite these successes, we

also found some noticeable differences between theory and observation. A tentative

explanation for these phenomena will be provided in the next section.

4.4 Discussion

Despite a good qualitative agreement between estimated transfer amplitudes and their

analytical expressions, a closer analysis of Figures 4.5a and 4.6 has revealed quantitative

differences that require further discussion. These differences can be summarized as

follows.

1. Most noticeably, the transfer amplitudes have several local peaks instead of one

overall maximum.

2. Maxima in the amplitude are shifted towards shorter or longer wavelengths, and

the width of the peak is smaller in several cases.

3. The transfer is significantly dampened, giving rise to peak amplitudes that are

at least 60% lower than expected from theoretical estimates. (Recall that this

observation does not apply to the flightlines C1-C5 and E1-E5, which have the

lowest slip ratios).

A tentative explanation for each of these observations will be given.
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4.4.1 Multiple peaks

The presence of multiple peaks in the observed transfer amplitudes was clearly il-

lustrated in Figures 4.5 and 4.7. It is not immediately obvious how this recurring

phenomenon can be explained within the current theoretical framework. Certainly,

there is no combination of parameter values (α and C(0)) that reproduces such be-

havior. However, one should recall that Tsb(λx) describes the amplitude ratio between

surface undulations (∆s) and bedrock undulations (∆b) for all wavelengths. On the

other hand, it is likely that certain wavelengths (or intervals of wavelengths) are damp-

ened or totally absent from physical bedrock profiles. Therefore, the overlying ice-flow,

and the surface topography in particular, contains little or no information about these

wavelengths. This “lack of information” produces gaps in the estimated transfer, and

causes the observed splitting into multiple peaks. This explanation will be justified

and supported by means of synthetic data, and illustrated for the measured bedrock

profile E12.

We construct a synthetic bed on a 1-dimensional grid with 212 points and a grid

spacing of 500 m. This allows us to study wavelengths between 103 m and 2.048× 106 m.

We choose an ice-thickness H = 1000 m such that studied wavelengths are between H

and ∼ 103H – the interval for which peak transfer is expected. The uniform inclination

is α = 0.004 and the slip ratio C(0) = 100. Next we perform two transfer tests for two

different bedrock configurations. The first bedrock profile contains information about

all wavelengths, and hence we expect to find a transfer amplitude that perfectly re-

sembles the theoretical curve.4 In the second case, we deliberately remove information

about certain wavelength intervals from the bedrock profile, and study the effect on

the retrieved transfer amplitude.

(i) The first synthetic bed consists of several delta-peaks evenly distributed along

the profile and each peak has an amplitude of 0.1H. We note that delta-peaks

4This test is very similar to the one described at the end of section 4.2, where we discussed the
validity of the power spectral density method as a way to estimate Tsb(λx) from real data.
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contain all wavelengths in their spectral profile, and their power spectral density

is uniform. For this specific bed we calculate the steady-state surface topography,

using the theoretical expression for Tsb(λx, α, C
(0)) and the relation (3.2.1) with

∆c = 0. Next, the resulting surface profile is used together with the bed profile

to estimate the transfer function via the method outlined in section 4.2. The

result is presented in Figure 4.8a. As expected, the estimated curve coincides

with the theoretical transfer amplitude (except for long wavelengths, which is an

effect that has been discussed at length in section 4.2 – recall Figure 4.4).

Figure 4.8: (a) Red curve: theoretical transfer amplitude, and black curve: es-
timated transfer amplitude for a synthetic bed described in item (i) in the text.
(b) Red curve: theoretical transfer amplitude, and black curve: estimated transfer
amplitude for a synthetic bed with gaps in the power spectrum, as described in item
(ii) in the text. Two separated peaks are distinctly visible.

(ii) In the next step, we set part of the power spectral density of the bedrock profile

in (i) to zero. More precisely, all information about wavelengths in the interval

I = [3.73H , 4.56H] is removed. The surface topography is again constructed

following the methods described in item (i) above, and the transfer amplitude is

estimated. The results are presented in Figure 4.8b (black line). This time, a

clear separation into two peaks is visible, with a local minimum around λx = 4H,

corresponding to the center of the interval I. The same analysis can be repeated

for different intervals I, or a combination of several non-overlapping intervals. In
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the latter case, the separation into more than two peaks can be simulated, as has

for example been observed for the profile E9 in Figure 4.7.

Our results suggest that the presence of multiple peaks in the transfer amplitude can

be explained by the properties of the power spectral density of the bedrock profile only.

So far, we have approved this hypothesis using synthetic data. Next, we devise a test

that demonstrates how it can be successfully applied to the experimental data in our

analysis.

We start from the measured bedrock profile along any of the flightlines and calculate

the expected surface topography using the theoretical transfer amplitude Tsb(λx, α, C
(0)),

the values α and C(0) from Table 4.1 and the definition (3.2.1). From the calculated

surface and the measured bed, the transfer can be estimated and will henceforth be

denoted by T
(sa)
sb .5 This result should be compared to the familiar transfer between

the measured surface and measured bed (denoted by T
(m)
sb as usual). Since T

(sa)
sb and

T
(m)
sb are derived from the same bedrock profile, we expect to see the same oscillatory

behavior with corresponding peaks in both profiles. The results of this analysis for the

E12-profile are presented in Figure 4.9. Although there is no perfect correspondence,

there is a clear resemblance in peak positions between |T sa)
sb | (black curve) and |T (m)

sb |

(blue curve). Very similar results are found for all other profiles R1-R5 and E1-E11, and

we conclude that the non-uniform distribution of the bedrock power spectral density

is a likely cause for the separation of |T (m)
sb | into multiple peaks.

4.4.2 Peak shifting

In section 4.3 we pointed out that for some profiles, the peak positions of the estimated

transfer appear to be shifted towards shorter or longer wavelengths as compared to the

analytical solution. Such behavior can be demonstrated more clearly when comparing

|T (m)
sb | to the semi-analytical estimate |T (sa)

sb |. A distinct example is the profile R3,

which is shown in Figure 4.10. The weight of |T (m)
sb | is clearly shifted towards longer

5“sa” stands for semi-analytical, since the surface profile originates from an analytical calculation,
using the measured bedrock profile and estimated values for α and C(0).
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Figure 4.9: Three different forms of the transfer amplitude for E12: (i) the
theoretical result |Tsb| with values α and C(0) taken from Table 4.1, (ii) the estimated

amplitude |T (m)
sb |, and (iii) the semi-analytical amplitude |T (sa)

sb | which has been
defined in the text.

wavelengths as compared to the theoretical and semi-analytical estimates for the plane-

slab parameters C(0) = 53.4 and α = 0.0041 (see Table 4.1). Such a shift can have two

causes.

(i) The most obvious explanation is an underestimation of the calculated mean slip

ratio, C(0) = 53.4. Indeed, if we artificially increase C(0) to any value between

C(0) = 150 and C(0) = 250, then |T (m)
sb | and |T (sa)

sb | coincide much better (see

Figure 4.10 for the case C(0) = 200). An underestimation of C(0) for R3 could

also have been expected from Figure 4.6b, which shows that R3 has a much higher

peak value than other profiles with C(0) ∼ 50 (such as R1, R2, E6).

(ii) The second factor that might affect the peak positions is the ice rheology. The

analytical solution we have used so far is only valid for a linear flow law. However,

we have seen in section 3 (and Figure 3.3a) that higher values of Glen’s exponent

generally lead to a shift of the transfer peak to longer wavelengths. Based on our
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Figure 4.10: Estimated transfer for R3 (blue curve), together with the theoretical
and semi-analytical results for two values of the slip ratio: C(0) = 53.4 and C(0) =
200. The first value corresponds to the original estimate given in Table 4.1, the

second value was chosen to obtain a better fit between |T (m)
sb | and |T (sa)

sb |.

analysis it is not possible to discern between this and the previous effect, though,

especially because we have little control over the precise value of C(0). Hence

we are unable to make a firm statement about the value of n, relying on peak

positions alone.

Along the same lines, we point out that a shift of peak positions to shorter wavelengths

might be related to an overestimation of C(0); a prime candidate being E10.

4.4.3 Transfer dampening

The last qualitative difference between the observed transfer amplitudes and the cor-

responding theoretical predictions is a very persistent one. All examples discussed so

far (see Figures 4.5, 4.9 and 4.10) show that, for profiles with a slip ratio C(0) > 10,

the observed transfer amplitudes are generally lower than theory predicts. This damp-
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ened response of the ice-flow to bedrock undulations has several (indistinguishable)

causes. We first investigate the reasons why the theoretical result might overestimate

the transfer.

1. 3-dimensional effects. The first and most significant reason is related to the 3-

dimensional character of ice flow. Recall that all analyzed radar profiles were measured

along the flow of the ice stream. We therefore assumed that, to good approximation, all

transverse effects of the ice flow could be neglected. This assumption was implemented

in the theoretical transfer amplitude by taking the limit ky → 0 of the full 3-dimensional

solution (3.2.9). However, transverse effects can never be entirely excluded, and one

cannot assume that bedrock undulations in the transverse direction have only infinite

wavelengths (i.e., ky = 0). The effect of a non-zero ratio between longitudinal and

transverse wavelengths has been investigated by Reeh [1987], for example, and he

found that 3-dimensional surface amplitudes are reduced significantly as compared to

the 2-dimensional case. Using synthetic data, we reproduce the results of Reeh [1987]

and show that the presence of wavenumbers ky > 0 leads to dampening of the transfer

along the flow.

We study two different situations.

(i) First, a 3-dimensional synthetic bed is constructed on a square 212×212-dimensional

grid with a grid spacing of 300m in the x- and y-direction. We chooseH = 1000m

and α = 0.004. The bed consists of a checkerboard pattern of delta-peaks, as

illustrated in Figure 4.11a. Clearly, all wavelengths λx and λy within the in-

terval [0.6H , 1228.H] are represented. For this bed the 3-dimensional surface

response is estimated, using the full 3-dimensional solution of the transfer func-

tion (see (3.2.9)). Next, a transect of the 3-dimensional bed and surface profiles is

taken along the red line in Figure 4.11a – this effectively corresponds to selecting

a flightline along a real 3-dimensional ice stream. The transfer characteristics

along this flightline are obtained using the familiar techniques. The result is pre-

sented in Figure 4.11b (red curves) for 2 values of the slip ratio (C(0) = 100 –
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solid line, and C(0) = 1000 – dashed line).

(ii) Secondly, we pick the bedrock profile along the same flightline, and calculate

its surface response in the limit ky → 0. This corresponds to a situation where

the bed does not undulate in the direction transverse to the flow. The resulting

transfer is described by the familiar 2-dimensional amplitude Tsb(kx, α, C
(0)), i.e.,

the function we have used so far to compare observational results with. The

results are represented by the black curves in Figure 4.11b.

Figure 4.11: (a) A 2-dimensional synthetic bed consisting of 8 delta peaks (black
dots) distributed over the grid in a checkerboard-like pattern. The red line cor-
responds to a flightline that is studied in more detail (see text). (b) Estimated
transfer amplitudes along the red line in (a) taking into account transverse effects
(red curves) and discarding transverse effects (black curves).

If we compare red (3d) and black (2d) lines in Figure 4.11b, we find that the 3-

dimensional transfer is dampened by a factor of about 60% with respect to the 2-

dimensional plane approximation. Comparable values for the dampening-factor have

indeed been obtained from real measurements, see e.g. Figures 4.5 and 4.9. We con-

clude that, in principle, transversal effects are able to account for the total reduction

in transfer efficiency. However, it is certainly not the only mechanism that plays a role.

2. Non-isothermal ice. Another possible explanation for the reduced transfer lies in

the non-isothermal properties of the ice. Recall that theoretical results in section 3 are
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based on a constant ice viscosity. Gudmundsson [unpublished ] has studied the transfer

under the assumption that the viscosity varies exponentially with depth beneath the

surface:

η(z) = ηse
µz , (4.4.3)

with ηs the viscosity at the surface, and µ a factor that scales the vertical variation of η.

He found that a gradual increase of the viscosity towards the surface leads to a reduced

transfer. The amount of reduction depends on µ, a parameter that can vary along an

ice stream and between different ice streams. The reason for the reduced transfer is

the presence of stiffer, more viscous ice near the surface, which has a dampening effect.

We have partially taken this effect into account by setting η equal to its recommended

base value at −10◦ C. As such, the ice stream is not treated as a temperate feature

(∼ 0◦C) with a value of η that is generally too low, nor is it treated as a cold feature

(∼ −20◦C) with a value of η that is too high and only valid for the uppermost layers.

Therefore, we expect that only minor corrections to the theoretical transfer amplitude

are needed to incorporate the effects of a temperature-dependent viscosity.

3. Non-uniform power spectral density. Another reason why observed peak

amplitudes are generally lower than theoretical results indicate, is related to the non-

uniform distribution of the basal power spectral density. We already explained how

the absence or suppression of wavelengths clarifies the presence of multiple peaks in

the transfer function. In addition, gaps or minima in the spectral density also lead

to a decrease of |T (m)
sb | at wavelengths were these peaks occur. This can be seen from

Figure 4.8b.

4. Errors in the data analysis. So far we have analyzed the question why the

theoretical transfer function systematically overestimates the surface response. Here

we turn that question around, and present an argument why the observed transfer

might actually underestimate the surface response. Such an effect can only be caused

by errors in the measurement or analysis method. Indeed, it is important to point out
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that the observed values of |T (m)
sb | depend on the choice of the window length, L, in

Welsh’s periodogram method. Smaller values of L generally lead to a lower resolution

of the transfer curve, which means that multiple peaks merge and peak values generally

become lower. Ideally, one would choose L to be the length (l) of each flightline, but

for reasons explained in §4.2.3, this has not been done. Since we chose a constant

value L = 45 km for the analysis of all flightlines, and L < l, a systematic error was

introduced that possibly led to the underestimation of the observed transfer. However,

it is hard to quantify such an underestimation, because higher values of L increase the

variance of the transfer, and the results become less reliable.

4.5 Conclusions

We have analyzed a comprehensive set of radar profiles along fast and slow flowing

sections of the West Antarctic Ice Sheet, and determined the response of surface el-

evations to variations in the bed topography. Our analysis shows that an accurate

estimate of the transfer amplitude for wavelengths up to 20H requires sufficiently long

radar profiles of at least ∼ 70km. Since such data has only recently become available,

our study provides the first empirical test for theoretical results on transfer amplitudes.

We find that for sufficiently large values of the slip ratio, i.e., for fast-flowing ice

streams, the ice is highly transparent to bedrock undulations with wavelengths between

1 and 20 times the ice thickness. The efficiency of the transfer at these wavelengths

increases at a rate of ∼ 300% with increasing values of the slip ratio. These ob-

servations are in good qualitative agreement with the theoretical results obtained by

Gudmundsson [2003] and Raymond and Gudmundsson [2005]. It confirms the impor-

tant qualitative difference between the flow characteristics of ice streams, for which

most (95% and often more) of the velocity is due to basal sliding, and Alpine-type

glaciers, which attain a considerable fraction of their surface speed by internal creep.

Several differences between theory and observation have been observed and clarified.

(i) The separation of the transfer peak into several local maxima has its origin in a non-
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uniform power spectral density of the bedrock profile. (ii) The wavelengths for which

peak transfer occurs are a good indicator for the value of the mean slip ratio. We

found that a straightforward calculation of C(0) using estimated surface velocities, ice

thickness and surface slope is often incorrect, and leads to values of the slip ratio that

are either too small or too large. (iii) The measured transfer amplitudes for fast-flowing

ice are dampened by a factor of 60% or more as compared to theoretical predictions.

The main reason for this discrepancy is the 3-dimensional character of an ice stream,

whereas theoretical results discard all transverse effects to the flow. Other factors that

might have a (minor) impact on the transfer amplitude are the ice viscosity, the ice

rheology, and systematic errors in the data analysis.

Despite the uncertainty about the value of the mean slip ratio and parameters such

as the flow law exponent, it is still reassuring that data points in Figure 4.6b cluster in

groups of profiles along neighboring sections of the ice sheet. Since these sections can be

expected to have similar physical conditions, it affirms the consistency of our methods

and results. In general, our analysis is an important validation for the use of current

theoretical models in ongoing efforts to study ice stream dynamics, and for their use

in inverse methods to obtain information about basal perturbations (topography and

slipperiness) from surface measurements. Such inversion methods will be discussed at

length in the next chapter.



Chapter 5

Bayesian inversion and the form of
the basal sliding law

5.1 Introduction

The form of the basal sliding law has an important effect on the results of modeling work

for large ice masses [Joughin et al., 2010]. For example, our current understanding of

fast-flowing ice streams attributes most of their surface speed to basal sliding, whereas

internal creep deformation is negligible. Any accurate prediction about the transient

behavior of these ice streams therefore relies on a good understanding of the dynamics

at the ice-bed interface.

Over the past decades, numerous attempts have been undertaken to put constraints

on the form of the sliding law. For example, borehole experiments have suggested a

viscous plastic behavior of sub-glacial till layers [Kamb, 2001], whereas modeling efforts

have shown that modulations of ice stream flow in response to ocean tides can only be

explained by a non-linear viscous sliding law [Gudmundsson, 2011]. Despite these and

numerous other results, important uncertainties still remain. To date, no consensus has

been reached on the general applicability of Weertman’s sliding law (recall (2.2.12)) in

the context of large-scale ice-flow modeling work or on realistic values for the sliding

exponent, m. Commonly encountered values in flow modeling range fromm = 1 (linear

65
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viscous) to m = ∞ (plastic).

This fundamental uncertainty about the form of the sliding law is also problematic

for inverse modeling techniques, which use surface measurements to infer knowledge

about the bed topography and basal slipperiness distribution. Since these methods

strongly rely on a theoretical description of how perturbations at the bed propagate

to the surface, any inaccuracy in the forward model might lead to wrong estimates

about the basal conditions. This lack of robustness of inversion methods with respect

to changes in the sliding law is worrying, and undermines their reliability.

In this study we investigate the role of the sliding law in a particular class of inver-

sion methods, the so-called Bayesian statistical inversion methods. Although Bayesian

inversion has been used rather successfully to infer information about the bed topog-

raphy for a flighline along the Rutford Ice Stream, Antarctica [Raymond-Pralong and

Gudmundsson, 2011], it’s application to determine the basal slipperiness needs greater

care. The retrieved values of the slipperiness distribution can strongly depend on the

chosen value of the sliding exponent m. The value of m enters the computations at

two different points: (i) in the calculation of the a priori knowledge about c(x, y)

from ice thickness, surface slopes and surface velocities, and (ii) in the actual inversion

procedure itself.

In this work we use synthetic data to show that different values of m lead to

the retrieval of different but equally realistic basal conditions, no matter how accurate

surface measurements are. This result questions the usefulness of the Bayesian inversion

method to estimate the basal slipperiness distribution of ice streams without better

constraints on the value of m and good (independent) a priori knowledge about the

bed.

5.2 Inversion method: the Bayesian approach

Inversion methods provide an estimate for the bed topography and basal slipperiness

along a 1-dimensional profile or across a 2-dimensional plane, using the following input:
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I Surface measurement values. In order to facilitate our discussion, we introduce a

compact notation for the measurement vector (or rather its Fourier transform):

ŷ = (ŝ, v̂x, v̂y, v̂z)
H , where H denotes the Hermitian transpose. In general, the

measurement values can be split into true values (y) and errors (εy):

ŷ = y + εy . (5.2.1)

This splitting is artificial because only ŷ is known to us. However, if all error

sources for the measurement and data analysis are identified, then the size of εy

can be estimated. For example, errors in the surface elevation data presented in

chapter 4 are on the order of εs ∼ ±1m. For an accurate inversion, measurement

errors εy have to be as small as possible.

I A priori knowledge about the bed. In some cases one has (limited) knowledge

about the basal topography or basal slipperiness from independent prior mea-

surements, theoretical consideration (e.g., ∆b � H) or reasonable expectations

(e.g., c > 0). Then the Bayesian inversion approach can be interpreted as a

method to update prior knowledge about the bed, consistent with new surface

data.

For later convenience we introduce the vector notation x = (b, c)H for the true

system state. The a priori estimate is denoted with a tilde, x̃ = (b̃, c̃)H .

I A theoretical forward model. The relation between basal variables and surface

measurements is written as

ŷ = F (x, p) + εy , (5.2.2)

where F is the forward model and p are the model parameters as in (3.2.4). We

assume that the forward model is perfect, such that the true state y is equal to

F (x, p).
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Recall from section 3 that, to first order in the small perturbations, the relation

between bed and surface variations is described by the transfer functions. If we

split the true surface and bed into a mean and deviatoric part, y = y0+∆y and

x = x0 +∆x, then (3.2.1) and (3.2.2) can be written as

∆y = T∆x , with T =

 Tsb Tsc

Tvib Tvic

 , (5.2.3)

where T is a 4q×2r-dimensional matrix with q the number of datapoints for each

variable at the surface, and r the number of locations at which b and c have to

be estimated. Using (5.2.3), the relation (5.2.2) can be rewritten as

∆ŷ ≡ ŷ − y0 = T∆x+ εy . (5.2.4)

The result of the inversion method is an a posteriori system state or retrieval (∆x̂)

which is a function of the measurement values, prior knowledge about the bed, and the

forward model:

∆x̂ = ∆x̂(∆ŷ, x̃, T ) . (5.2.5)

The conditions that determine the function ∆x̂ are different for different inversion

methods.

5.2.1 A posteriori estimates for the bed topography and basal

slipperiness

We will introduce the most general expression for ∆x̂ in 3 steps. First, we look at

a retrieval problem with no a priori knowledge or measurement errors. In the second

step, uncorrelated measurement errors will be included. Finally, we also add the a

priori information about the bed.
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1. Least-squares inversion without errors. The easiest inversion method as-

sumes the absence of prior knowledge about the bed (i.e., x̃ = 0) and uses the well

known least-squares approach to solve equation (5.2.4) for ∆x. The solution is set

equal to the retrieval ∆x̂. For simplicity we first assume that the measurement errors

can be neglected (i.e., εy = 0) and (5.2.4) reduces to ∆y = T∆x. For a matrix T of

full column rank, it is easy to see that a solution to this equation is given by

∆x̂ = ∆x = (THT )−1TH∆y . (5.2.6)

If T has a non-trivial null-space (i.e., a set of non-trivial system states that have

no effect on the surface: T∆x = 0), then THT is not necessarily invertible and no

unique solution ∆x̂ exists for a given ∆y. Well-known elements of the null-space are

longitudinal ridges and stripes. These features are not transfered to the surface, and

it is impossible to detect them from surface measurements. Similarly, we discussed in

section 3 how the bed-to-surface transfer of all basal perturbations with wavelengths

λ < 2H is highly suppressed. Therefore, these small-scale features do not appear at the

surface and cannot be retrieved using the proposed inversion method. Also the more

general inversion methods that will be discussed next suffer from these limitations.

2. Least-squares inversion with measurement errors. If we include small mea-

surement errors, the retrieval takes the more complicated form [Menke, 1989]

∆x̂ = (THC−1
yŷ T )

−1THC−1
yŷ ∆ŷ , (5.2.7)

with Cyŷ the covariance matrix that describes the measurement errors:

Cyŷ =


< εsε

H
s > 0 0 0

0 < εvxε
H
vx > 0 0

0 0 < εvyε
H
vy > 0

0 0 0 < εvzε
H
vz >

 . (5.2.8)
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We assume that these errors are normally distributed and uncorrelated. The solution

(5.2.7) minimizes the error-weighted difference between the measured values ∆ŷ and

true values ∆y = T∆x in a least-squares sense, i.e.,

∂

∂∆x

[
C−1

yŷ (∆ŷ − T∆x)H (∆ŷ − T∆x)
]∣∣∣∣

∆x̂

= 0 . (5.2.9)

The expression for ∆x̂ in (5.2.7) was used by Thorsteinsson et al. [2003] in one of the

first attempts to obtain simultaneous information about bedrock topography and basal

slipperiness from surface measurements. The authors studied the surface topography

and variations in the surface velocity field of a part of Ice Stream E, Antarctica, and

found evidence for a topographic through with low slipperiness at its base.

3. Bayesian inversion. In a third step, we extend (5.2.7) to include the possibil-

ity of a priori knowledge about the basal conditions. This is done using the so-called

Bayesian inversion approach. The methodology described below is used frequently in

atmospheric sciences and was first implemented for the study of ice flows by Gud-

mundsson and Raymond [2008] and Raymond and Gudmundsson [2009]. We rely on

both papers for our discussion.

The Bayesian method differs from the previously discussed least-squares method

because of its inherent statistical nature. The a posteriori estimate should now be

thought of as a probability distribution of possible system states, and each state has a

certain probability to be realized:

P (x|(ŷ, x̃)) = P (ŷ|x)P (x|x̃)
P (ŷ)

. (5.2.10)

The left hand site is the a posteriori distribution and associates a probability to each

system state x, given the observed data ŷ and the a priori knowledge x̃. The equality

in (5.2.10) is obtained using Bayes’ rule. The right hand side of (5.2.10) contains the

likelihood function, P (ŷ|x), which is a measure for the probability of observing the data

ŷ given a system state x. The denominator P (ŷ) in (5.2.10) is a formal normalizing
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factor and is often not needed.

In the following, we assume that the probability density functions for the likelihood

is given by a Gaussian distribution:

P (ŷ|x) = exp

[
−1

2
(x− ŷ)T C−1

yŷ (x− ŷ)

]
. (5.2.11)

Gaussian statistics are usually a good approximation for measurement errors, and

they are algebraically convenient. Less realistic, but again convenient, is to assume a

Gaussian distribution for the a priori estimate:

P (x|x̃) = exp

[
−1

2
(x− x̃)T C−1

xx̃ (x− x̃)

]
, (5.2.12)

where Cxx̃ is the covariance matrix describing the error in the prior estimates of the

bed topography and basal slipperiness:

Cxx̃ =

 < (b− b̃)(b− b̃)H > 0

0 < (c− c̃)(c− c̃)H >

 . (5.2.13)

A reasonable model for the prior basal topography (and slipperiness) is a stationary

first-order auto-regressive process [Rodgers, 2000]. For a 1-dimensional grid, such a

process assumes that the prior estimate of the basal topography at location i is related

to that at location i− 1 through

b̃i = φb̃b̃i−1 + εb̃ , (5.2.14)

where the regression coefficient φb̃ is a constant between zero and unity and εb̃ is a

Gaussian random variable, uncorrelated with b̃i and with constant variance σ2
εb̃
. For

this process it is an easy exercise to show that the entries of the covariance matrix are

given by

< (b− b̃)(b− b̃)H >ij= σ2
b̃
e−|i−j|/λb̃ , (5.2.15)
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where the decay length scale λb̃ (measured in units of the grid scale) is related to φb̃

via

λb̃ = −1/lnφb̃ (5.2.16)

and the variance is

σ2
b̃
= σ2

εb̃
/
(
1− φ2

b̃

)
. (5.2.17)

The parameter σb̃ will be referred to as the error in the prior basal topography, and is

defined in terms of the mean ice thickness H. The effect of the decay length scale on

the retrieval is only important on spatial scales where the surface data does not lead to

a significant improvement of the prior knowledge [Gudmundsson and Raymond, 2008].

For computational reasons it is sometimes convenient to take the limit λb̃ → 0, such

that the covariance matrix becomes diagonal.

For a 2-dimensional grid, a generalization of the auto-regressive process leads to a

similar expression for the covariance matrix. However, the computational complexity

of the inversion, and the limited computational resources available, force us to restrict

our analysis to the case of a diagonal covariance matrix, i.e.,

< (b− b̃)(b− b̃)H >ij,kl= σ2
b̃
δikδjl . (5.2.18)

The likelihood distribution (5.2.11) and a priori distribution (5.2.12) can be substi-

tuted into the probability distribution for the a posteriori estimate, (5.2.10). The latter

is then a well-defined function of the unknown system state x, the measurement results

ŷ, the a priori estimate x̃ and the corresponding errors. The value x for which this

function reaches its maximum is called the maximum a posteriori estimate (IMAP) of

the system state. The IMAP will be denoted by x̂, and standard arguments [Rodgers,

2000] show that it is given by

x̂ =
(
THC−1

yŷ T + C−1
xx̃

)−1 (
THC−1

yŷ ŷ + C−1
xx̃ x̃

)
. (5.2.19)

This is the generalization of (5.2.7) which incorporates our knowledge about the a
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priori system state. It forms the basis for the remainder of our analysis in this chapter.

In particular, we will investigate how the retrieval depends on the form of the basal

sliding law.

5.2.2 Dependence on the sliding exponent: the forward model

The expression (5.2.19) has been used by Raymond-Pralong and Gudmundsson [2011]

to obtain simultaneous information about the bed topography and basal slipperiness

of a flightline along the Rutford Ice Stream, Antarctica. The authors used a two-

dimensional plane strain forward model with a non-linear ice rheology (n = 3) and

linear sliding law (m = 1). Since no analytical solution exists for the transfer functions

in this case, their analysis is done with a numerical finite-element program.

We will not apply the described inversion method to obtain information about real-

istic bedrock properties along specific profiles, though. Instead, we are rather interested

in the general properties and structure of the inversion procedure. In particular, we will

study the dependence of the retrieval x̂ on the form of the basal sliding law and more

precisely on the value of the sliding exponent, m. The latter is indirectly incorporated

in x̂ via the transfer functions T .

In general, the dependence of T on m is very complicated and a closed analytical

expression for T (m) only exists under strong assumptions about the forward model.1

However, in order to facilitate our study, and to minimize the computational complexity

of the problem, it is appropriate to have such an analytical expression. In particular,

due to our interest in the dependence of x̂ on m, we require that this analytical solution

is known for all values of the sliding exponent, i.e., T = T (m).

These requirements are fulfilled by the shallow-ice-stream approximation with a

linear ice rheology : analytical transfer functions for this approximation have been ob-

tained by Gudmundsson [2008] (recall section 3), and the sliding exponent is a free

parameter in the solution. The transfer functions for the shallow-ice-stream approx-

1For example, recall from chapter 3 that in the full-Stokes model, an analytical expression for T (m)
only exists for m = 1.
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imation will be used in the remainder of this chapter. The possible consequences of

working with this approximation will be briefly discussed in section 5.4.

5.2.3 Research question in a schematic form

With all this information in mind, we are now able to precisely state the research

question that will be answered in the remainder of our study. In schematic form:

∀ x, x̃, m1 6= m2 : T (m1) x̂
(
T (m1)x, x̃, T (m1)

)
= T (m2) x̂

(
T (m1)x, x̃, T (m2)

)
?

(5.2.20)

This question can be interpreted as follows. Assume that x describes the true basal

conditions and m1 is the true sliding exponent. Then y = T (m1)x is the true surface,

assuming a perfect forward model. The retrieval of y using m1 as the sliding coefficient

and a priori knowledge x̃ is given by x̂1, where we introduced the notation

x̂1 = x̂
(
T (m1)x, x̃, T (m1)

)
, (5.2.21)

It is expected that x̂1 ≈ x, and the left hand side of the equality in (5.2.20) is therefore

given by T (m1)x̂1 ≈ T (m1)x = y.

Now assume that m2 is our current best estimate of the sliding parameter, and

m2 6= m1. In any retrieval of physical data we will use the value m2 (because m1 is

unknown to us), and the result is given by x̂2, with

x̂2 = x̂
(
T (m1)x, x̃, T (m2)

)
. (5.2.22)

Obviously, x̂2 will in general be different from the true system state x̂1. However, if

the equality in (5.2.20) is satisfied, we have no means to detect this difference, exactly

because the forward of x̂2 using m2 also reproduces the true surface y:

y ≈ T (m1)x̂1

(5.2.20)
= T (m2)x̂2 . (5.2.23)
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Such a result would be problematic for the success of the retrieval method, since our

knowledge about the sliding exponent m is indeed very limited. If the equality in

(5.2.20) turns out to be valid for at least certain subsets of x and x̃, then there is

currently no hope to obtain accurate information about basal properties from the

inversion of surface data.

5.2.4 Synthetic data

In order to test (5.2.20), we will make use of synthetic data. We study a perturbed

parallel-slab flow with mean ice thickness H = 1000m, mean slope α = 0.003 and

mean slip ratio C(0) = 300. The 1-dimensional synthetic flows are constructed on a

grid with 29 data points and a grid spacing of 2H. This allows us to study wavelengths

between λx = 4H and λx = 1.024×103H. Note that for this range of intermediate and

long wavelengths, the transfer in the shallow-ice-stream approximation corresponds

almost perfectly to the full-Stokes transfer (see Figure 3.4a). The 2-dimensional flows

are studied on a grid with 29 × 29 grid points and a grid spacing of 2H.

5.3 Results

A definite answer to the question in (5.2.20) requires testing for an infinite set of

parameters (m1, m2, x, x̃), which is obviously not possible. Therefore, we first try

to get some insight into the solution of the problem by restricting our attention to a

limited number of realistic combinations of parameter values. The results for some

of these tests are presented in §5.3.1 for a 1-dimensional flow, and in §5.3.2 for a 2-

dimensional flow. In §5.3.3 we turn to an analytical argumentation, which allows us to

make more general statements, irrespective of the particular values for (m1, m2, x, x̃).
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5.3.1 Flowline inversion

We start from a synthetic Gaussian bedrock topography and Gaussian basal slipperi-

ness distribution, represented by the green curves in Figures 5.1a and 5.1b respectively.

We apply the forward model on these basal perturbations, using the value m1 = 3 for

the sliding exponent. The resulting surface topography (s) and velocity fields (vx, vz)

are shown in Figure 5.2.

Figure 5.1: (a) True and retrieved bedrock topography for m1 = 3. (b) True and
retrieved basal slipperiness distribution for m1 = 3. (c) True and retrieved bedrock
topography for m2 = 10. (d) True and retrieved basal slipperiness distribution for
m2 = 10.

These are the true surface properties. In the second step, we calculate the retrieval

x̂ from s, vx and vz, imposing the following assumptions:

I The surface errors are small, i.e., σs = 10−8H, σvx = 10−8v
(0)
s and σvy = 10−8v

(0)
s ,

with v
(0)
s the mean horizontal surface velocity (recall (2.3.21)).

I We have limited a priori knowledge about the basal perturbations. We set b̃ = 0

and c̃ = 0, and assume large errors for both the bed topography and basal
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Figure 5.2: Surface perturbations corresponding to the bed topography and basal
slipperiness distribution shown in Figures 5.1a and 5.1b and for a sliding exponent
m = 3.

slipperiness: σb̃ = H and σc̃ = 1. The decay lengths scales have little influence

on the result and are set equal to the arbitrary values λb̃ = λc̃ = 50H.

Under these assumptions, the retrieval x̂ is calculated for two different values of the

sliding parameter. First, the calculation is done for m = m1 = 3. The results are

presented in Figures 5.1a and 5.1b (blue curves). As expected, the true basal per-

turbations are retrieved up to great accuracy. We have shown that our methods are

consistent, and that x̂1 ≈ x, as we anticipated below equation (5.2.22).

Next, we compute the retrieval for a different (ad hoc) value of the sliding exponent:

m = m2 = 10. The results are presented in Figures 5.1c and 5.1d. This time we have

retrieved the correct bedrock topography, but the basal slipperiness distribution differs

considerably from its true value. This means that x̂1 6= x̂2.

Finally, we apply the forward model to both x̂1 and x̂2 and find that

T (m1)x̂1 = T (m2)x̂2 , (5.3.24)

at least within the limits of the (tiny) measurement errors at the surface.

The same experiment can be repeated for different values m1 and m2 and different

basal perturbations; the results are always similar to the ones above. Essential to this

result, however, is the assumption that we have limited prior knowledge about the bed
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topography and basal slipperiness. This translates into large errors εb̃ and εc̃. If we

assume good a priori knowledge about the bed, (5.3.24) still holds. On the other hand,

if we also assume good a priori knowledge about c (which is very unlikely in reality),

then the retrieval method form2 forces x̂2 to be as close as possible to x̂1, which results

in surface perturbations that are not equal to their true values anymore. Hence for

c̃ ≈ c and εc̃ small, the equality in (5.3.24) breaks down. We stress again that detailed

knowledge about c along real ice stream profiles is very unlikely in the near future, and

more independent measurements such as borehole experiments need to be done.

5.3.2 2-dimensional inversion

The same analysis can be done for a 2-dimensional flow over a Gaussian bedrock bump

and Gaussian basal slipperiness distribution. The true values for b and c are shown in

Figure 5.3. The forward model with m = m1 = 3 leads to the surface perturbations

shown in Figure 5.4.

Figure 5.3: True Gaussian bedrock topography and Gaussian basal slipperiness
distribution.

Now we follow the same procedure as described for the 1-dimensional inversion in

the previous section. We assume limited a priori knowledge about the basal slipperiness

distribution (c̃ = 0 and εc̃ = 1), but numerical considerations force us to assume almost
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Figure 5.4: True surface perturbations (s, vx, vy and vz) corresponding to the bed
topography and basal slipperiness distribution shown in Figure 5.3 and for a sliding
exponent m = 3.

perfect knowledge about the bed (b̃ = b and εb̃ = 10−8H). Poor knowledge about

the bed topography leads to an unwanted oscillatory behavior of the retrieval, with

wavelengths at the order of the grid scale and amplitudes that are on the order of the

ice thickness.

The retrieval x̂ is first calculated for m = m1 = 3, and next for m = m2 = 10.

We plot in Figure 5.5 the results for x̂2 − x̂1; the residues for the bed topography are

shown in Figure 5.5a, the residues for the basal slipperiness in Figure 5.5b. We see

that b̂1 and b̂2 coincide withing the error limits (εb̃ = 10−8H). However, ĉ1 and ĉ2 differ

significantly, with the retrieval for m2 = 10 having slipperiness values that are up to

2.5 times higher than the true values ĉ1. So clearly x̂1 6= x̂2. However, also in the



CHAPTER 5. INVERSION AND THE FORM OF THE SLIDING LAW 80

2-dimensional case we find that

T (m1)x̂1 ≈ T (m2)x̂2 . (5.3.25)

Figure 5.5: (a) Residues between the retrieved bedrock topography form1 = 3 and
m2 = 10. The difference lies within the allowed a priori error margins. (b) Residues
between the retrieved basal slipperiness distribution for m1 = 3 and m2 = 10; ĉ2 is
up to 2.5 times higher than ĉ1.

5.3.3 Analytical arguments

So far, we have presented results from numerical experiments for particular choices of

m1, m2, the true basal conditions, the a priori knowledge and the error bounds. We

found evidence for the validity of the equality sign in (5.2.20) from both 1-dimensional

and 2-dimensional inversion experiments. However, it would be nice if we could argue

about the validity of (5.2.20) on more general grounds. To a certain extend, this can

be done by relying on analytical arguments.

For convenience, let us first repeat the general expression for the retrieval, x̂, ob-

tained in (5.3.27):

x̂ =
(
THC−1

yŷ T + C−1
xx̃

)−1 (
THC−1

yŷ ŷ + C−1
xx̃ x̃

)
. (5.3.26)
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It was shown by Rodgers [2000] that x̂ can be rewritten in the following equivalent

form:

x̂ = x̃+ Cxx̃T
H
(
TCxx̃T

H + Cyŷ

)−1
(ŷ − T x̃) . (5.3.27)

The retrieval is nothing but an update of the a priori knowledge with the error-weighted

difference between the measurement and the forward of the a priori.

The alternative expression (5.3.27) can be used to obtain more insight into the

equality (5.2.20). Indeed, the left hand side and right hand side of (5.2.20) can now be

rewritten as

T (m1)x̂1 = (5.3.28)

T (m1)x̃+ T (m1)Cxx̃T
H(m1)

[
T (m1)Cxx̃T

H(m1) + Cyŷ

]−1
[T (m1)x− T (m1)x̃] ,

T (m2)x̂2 = (5.3.29)

T (m2)x̃+ T (m2)Cxx̃T
H(m2)

[
T (m2)Cxx̃T

H(m2) + Cyŷ

]−1
[T (m1)x− T (m2)x̃] .

If we define the new matrix

I(m) = T (m)Cxx̃T
H(m)

[
T (m)Cxx̃T

H(m) + Cyŷ

]−1
, (5.3.30)

then the question in (5.2.20) can be reformulated as

∀x, x̃, m1 6= m2 :

T (m1)x̃+ I(m1) [T (m1)x− T (m1)x̃] = T (m2)x̃+ I(m2) [T (m1)x− T (m2)x̃] ?

(5.3.31)

It is immediately clear that the answer to this question is affirmative (i.e., the equality

sign is valid) if and only if

∀m : I(m) = . (5.3.32)

Although the detailed form of I(m) is rather complicated, it has the following easy
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structure:

I(m) = J(m) [J(m) + Cyŷ]
−1 , (5.3.33)

=
[

+ CyŷJ
−1(m)

]−1
, with J(m) = T (m)Cxx̃T

H(m) ,

assuming that the inverse of J(m) exists.2 If we can show that the entries of CyŷJ
−1(m)

are on the order of ε � 1, then I(m) can be expanded as

I(m) = +O(ε) . (5.3.34)

This means that I(m) is “to a good approximation” given by the unity matrix. By

“good approximation” we understand that the parameter ε should be on the order of

the surface measurement errors, such that T (m1)x̂1 and T (m2)x̂2 only differ up to

terms that are on the order of the measurement errors.

An answer to the question whether the entries of CyŷJ
−1(m) are small is not easily

given, and depends on the form of the transfer functions, the value of m and the

covariance matrices Cyŷ and Cxx̃. We have performed numerical calculations and could

show that ||CyŷJ
−1(m)|| ∼ O(ε) with ε < εy for all values of m, as long as the errors

in the surface measurements are small compared to the errors in the a priori estimate.

This assumption is true for most real profiles. When measurement and a priori errors

are comparable, ||CyŷJ
−1(m)|| is not necessarily small and (5.3.34) breaks down. This

has indeed been observed from numerical calculations, and was mentioned at the end

of §5.3.1: for small εy and εx̃ ∼ εy, different retrievals do not give rise to the same

surface response and can therefore be distinguished.

2This might not always be true, for example if the forward model (described by the transfer
functions T ) has a null-space. This interesting possibility will not be considered here.
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5.4 Discussion

Both from numerical experiments and analytical arguments it is clear that for a large

class of realistic surface profiles and associated errors, the retrieved bedrock topography

and basal slipperiness distribution depend on the particular form of the sliding law. We

have no means to distinguish between these retrievals, unless very accurate knowledge

about the basal conditions is already available. However, various side remarks about

our results are in order.

I So far, we have assumed perfect knowledge about the surface topography and

surface velocities of an ice stream in a steady state regime. If, however, the ice

stream is in a transient state, measurements at different times give rise to different

surface conditions. For both surface states the best retrieval can be calculated,

using the transient transfer functions. If we assume that the bed conditions have

not changed between the two measurement times, then consistency requires that

both retrievals are exactly the same. In general, we expect that this requirement

is not satisfied for arbitrary values of the sliding exponent. Therefore, for ice flows

in a transient state, multiple measurements might provide a way to constrain the

value of m.

I All numerical experiments were done using the transfer functions in the shallow-

ice-stream approximation, mainly for 2 reasons: (i) numerical simplicity, and (ii)

their analytical dependence on the sliding exponent m. However, the shallow-ice-

stream approximation is only a valid approximation of the full-Stokes solution for

wavelengths λx > 10H. Moreover, it is only valid for a linear ice rheology. Could

these assumptions influence our results? First, we point out that in our numerical

analysis, we have chosen synthetic data which contains only wavelengths λx >

4H for which the shallow-ice-stream solution is a very good approximation to

the full-Stokes solution. Moreover, we do not expect our results to change if

shorter wavelengths are included, because different wavelengths do not mix in
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the calculation of the retrieval, at least not if the error covariance matrices are

diagonal. Also the ice rheology is not expected to play a major role in our study,

since we have seen in §3.2.2 that for values n = 3 or n = 5, the transfer functions

only undergo minor changes, whereas their qualitative behavior remains the same.

I Our final remark relates to the error covariance matrices. For 2-dimensional

flows we have assumed diagonal covariance matrices, because it strongly re-

duces numerical computation times. Non-diagonal covariance matrices are not

expected to substantially influence our results. A good indication is given by

the 1-dimensional case, for which we studied both diagonal and non-diagonal

covariance matrices. The results are identical for both cases.

5.5 Conclusions

Using numerical experiments and analytical arguments, we have shown that Bayes’

inversion method for different sliding exponents generally leads to different a posteriori

estimates for the bed topography and basal slipperiness distribution (for any given

dataset of surface measurements). All retrieved basal configurations are physically

feasible, in that they are smooth solutions that reproduce the correct surface response.

Therefore, it is not possible to distinguish between different basal conditions, no matter

how accurate the measurements of the surface properties. This result is independent

on the form of the true basal conditions, and applies to the entire range of sliding

exponents from m = 1 to m = ∞.

Our study shows that without further constraints on the form of the sliding law,

or sufficient independent a priori knowledge about the bed, it is very unlikely that

Bayes’ inversion method can be used to obtain an unambiguous estimate for the basal

conditions beneath active ice streams.
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