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Summary 

In the dynamic marine environment, highly mobile predators are expected to 

select profitable foraging areas, especially when provisioning young in addition to 

meeting their own energy needs. Knowing how and where animals choose to forage is 

not only important to advance ecological theory, but also to assess and mitigate the 

impact of anthropogenic threats. In this thesis I examine the breeding-season foraging 

behaviour of several of the Procellariiformes, a wide-ranging, long-lived group of 

seabirds, many of which have experienced steep population declines since the mid-20th 

century. Advances in biologging technologies over the last four decades have made it 

possible not only to accurately track individual movements, but also to identify important 

behaviours at sea. In my first data chapter (Chapter 2), I combine data from multiple tag 

types to describe diving behaviour in three albatross species, and discuss the implications 

for both foraging ecology and bycatch susceptibility. Moving from foraging capability of 

the individual to foraging preferences at the level of genus, in Chapter 3 I analyse the 

divergent niches of a summer- and a winter- breeding species of Procellaria petrel. Here 

I compare the habitat preferences of Grey Petrels and White-chinned Petrels breeding at 

Gough Island and South Georgia, respectively. Using high-resolution remote sensing 

environmental data, I identify divergent foraging preferences in dynamic habitats. 

Finally, in Chapter 4, I compare habitat preferences and accessibility between the two 

species of Phoebetria albatrosses across six colonies. While most studies of habitat 

preference consider only a single species or site, here I investigate whether closely-

related species inhabit the same ecological niche at sympatric and allopatric colonies 

throughout their range. I show that Light-mantled Albatrosses have a consistent foraging 

niche, whereas Sooty Albatrosses select different habitats in sympatry and allopatry. I 

then discuss the impact of interspecific competition on plasticity in habitat preferences in 

general. Overall, my thesis examines diverse aspects of seabird foraging ecology from 

the individual to community level, discusses habitat preferences (and their potential 

flexibility) in relation to species' evolutionary history and as drivers of community 

structure, and considers the implications for conservation planning.   
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CHAPTER 1: Introduction 

1.1 Movement and foraging ecology 

Decisions about where, when and how to move shape all aspects of the lives of 

mobile animals, from individual survival to population and community structure (Nathan 

et al. 2008). One key driver of movement is the search for food: understanding how 

animals make foraging decisions is therefore a fundamental question in ecology 

(Sutherland et al. 2013, Hays et al. 2016). In theory, foraging is expected to be optimised 

when animals are searching in a patchy environment (Pyke 1984, Fauchald 1999). 

Optimal foraging theories are, however, based on simplifying assumptions which often 

belie the complexities of ecological systems (Nathan et al. 2022). Additionally, research 

has tended towards measuring and describing movements of organisms without 

consideration of the role of internal state or the influence of the surrounding environment 

(Holyoak et al. 2008). It is therefore critical to combine real-world measurements of 

movement with considerations of the intrinsic and extrinsic (both environmental and 

organismal) drivers of behaviour when attempting to understand animal distributions 

(Holyoak et al. 2008, Nathan et al. 2008, Kot et al. 2022).  

Various constraints, be they physiological, ontogenetic, or ecological, influence 

realised foraging distributions in natural systems (Gilchrist et al. 1998, Spaethe et al. 

2001, Shaffer et al. 2003, Green et al. 2005). A key constraint for many species is the 

requirement to return to a central place between foraging trips – this constraint affects 

many animals during the breeding season, when their energy needs are highest and their 

distributions are the most restricted within the annual cycle (Welcker et al. 2015). Adults 

are limited in how long they can be absent from the den or nest site due to the need to 

frequently feed young or to relieve a partner from guard, incubation or brooding duties 

(Orians and Pearson 1979, Kacelnik 1984, Burke and Montevecchi 2009, Jessopp et al. 

2020), and theory predicts they should travel only the minimum distance that meets 

energy requirements when foraging (Schoener 1971). Individuals are only expected to 

forage at more distant sites if prey are more accessible (either more abundant, of higher 

quality, or there is reduced competition) (Houston and McNamara 1985). Understanding 

why some animals choose to travel thousands of kilometres despite a central-place 
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constraint is, therefore, of ecological interest, given the high cost of choosing 

unprofitable patches. Beyond choice of location, theory predicts that foraging constraints 

also influence phenology, i.e. that peak energy requirements should align with peak 

resource availability (Lack 1954, Perrins 1970, Van Balen 1973). There is evidence that 

temporal mismatches between peak prey availability and high energy demand during 

reproduction lead to reduced breeding success (Perrins 1970, Regular et al. 2014), and as 

such there is strong selection for most animals to breed during the spring and summer 

when resources are plentiful (Jönsson 1997, Durant et al. 2007). Why, then, we observe 

some species breeding in winter is largely unclear, though some have suggested these 

species are taking advantage of multiple peaks of resource availability, or avoiding 

competition (Dilley et al. 2019, Taylor et al. 2019).  

 

1.2 Habitat preference and selection 

By combining animal positions with environmental data it is possible to 

categorise utilised or preferred habitats beyond simple geographic space (Guisan and 

Zimmermann 2000, Patrick et al. 2014). While traditional home-range estimates remain 

useful, particularly for management, they do not provide insight into the processes by 

which observed distributions arise (Kie et al. 2010). Increasingly high-quality remote 

sensing data have become available in recent years, such that we can identify the 

particular environmental conditions in which individual foraging trips occurred (Dierssen 

2010, Lellouche et al. 2018). We can then quantify how animals forage in heterogenous 

environments by comparing the proportion of habitat selected to what is available in the 

surrounding area (Rosenberg and McKelvey 1999, Boyce et al. 2002), with any habitat 

use that is disproportionate to availability defined as a preference (Johnson 1980). 

Models which account for availability by considering the movement capability of the 

species in question are thought to provide the most robust representation of habitat 

preferences (Aarts et al. 2008). While resource selection functions are often validated by 

how well they can predict the location of animals in new landscapes (Boyce et al. 2002), 

they are also useful in determining which environmental signals are most relevant for 

particular populations, which in turn is critical for predicting how animals may respond 

to climate change (Beyer et al. 2010).  
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Investigations of how animals use heterogenous habitat allow us to draw 

conclusions not only about foraging behaviour and energetic trade offs, but ultimately 

about fitness (Morris 2003, Beyer et al. 2010, Gaillard et al. 2010). However, there are 

gaps in our understanding of how habitat preferences link to evolutionary processes. The 

extent to which habitat preferences vary (or not) across breeding ranges remains a key 

question for ecologists: in particular, the way in which processes such as interspecific 

competition modulate realised niche is not fully understood (Svärdson 1949, Connell 

1980, Miller et al. 2009). While there has been extensive theoretical discussion on these 

questions (Davic 1985, Schmidt et al. 2000), studies in natural systems are less common.  

 

1.3 Study system and methods overview 

1.3.1 The Procellariiformes  

Procellariiform seabirds are a useful group of organisms for investigating habitat 

preferences in the marine realm. This order comprises four families: Diomedeidae 

(Albatrosses), Procellariidae (Petrels and Shearwaters), Hydrobatidae and Oceanitidae 

(Northern and Southern Storm Petrels, respectively) (Handbook of the Birds of the World 

and BirdLife International 2022). In this thesis I examine the foraging ecology of 

multiple species within the Diomedeidae and Procellariidae (Fig. 1.1). These are long 

lived, highly k-selected, colonially breeding species that exhibit strong monogamy and 

philopatry, and raise only one chick every year (or every two years in the case of great 

albatrosses Diomedea spp., the Phoebetria spp. and some Thalassarche spp.) (Brooke 

2004). They nest in densely populated colonies on oceanic islands, either on the ground 

or, in the case of most small petrels, in burrows or crevices, and take regular trips to sea 

to forage for themselves and provision their chicks (Brooke 2004). These high population 

densities lead to high intra- and interspecific competition for prey close to breeding 

colonies (Ashmole 1963, Furness and Birkhead 1984, Birt et al. 1987). It is well 

established that this competition can be ameliorated via niche segregation across multiple 

axes, including choice of foraging areas (Araya et al. 2011, Kiszka et al. 2011, Jiménez et 

al. 2017, Gulka et al. 2019, Pastore et al. 2021). 
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Figure 1.1: Select study species discussed in this thesis. Top row: Light-mantled Albatross, 

© Jamie Coleman (Chapter 2, Chapter 4). Middle left: Grey Petrel, © Bryce Robinson 

(Chapter 3). Middle right: Sooty Albatross, © Stefan Schoombie (Chapter 4). Bottom row: 

White-chinned Petrel, © Jamie Coleman (Chapter 3). All images used with permission. 
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Traditional ship-based survey techniques can provide data on distributions and 

abundances around colonies, but are subject to a range of sampling biases, including 

vessel-following behaviour, and do not usually allow the colony of origin, sex or age of 

individuals to be determined (Hyrenbach 2001). For a nuanced understanding of how 

seabirds select and partition foraging habitat, individual tracking is crucial; indeed, 

tracking has already demonstrated niche partitioning in multiple sympatric seabird 

species (Hyrenbach et al. 2002, Phillips et al. 2004, Weimerskirch et al. 2009, Navarro et 

al. 2013). Choice of foraging area is important in a dynamic ocean environment, where 

prey are spatiotemporally patchy (Russell et al. 1992, Jessopp et al. 2020). Tracking has 

shown that seabirds frequently associate with specific types of productive habitat, 

including shelf edges, upwellings, fronts and eddies (Skov et al. 2008, Wakefield et al. 

2009, Bost et al. 2009). In addition, seabirds make direct commuting flights to areas 

where they subsequently forage, indicating that they know where to find food, likely 

based on past experience (Weimerskirch 2007).  

In addition to being ecologically appropriate to investigate foraging habitat 

selection, many Procellariiformes are of conservation concern. Monitored populations of 

the Diomedeidae and Procellariidae decreased in size by 69.0% and 79.6%, respectively, 

from 1950-2010 (Paleczny et al. 2015). Further, 15 of the 22 albatross species are 

threatened with extinction (ranked as Vulnerable or higher on the IUCN Red List) (IUCN 

2022). This is due to the impact of multiple anthropogenic threats, including introduced 

species (Wanless et al. 2007), plastic pollution (Wilcox et al. 2015), competition for 

resources and bycatch in commercial fisheries (Grémillet et al. 2018, Clay et al. 2019). 

While there are marine protected areas (MPAs) surrounding some seabird colonies, 

effective conservation also requires policy interventions at much wider spatial scales 

given their extensive distributions at sea (Yorio 2009, Péron et al. 2013, Hindell et al. 

2020). In particular, knowing the depths at which procellariiform species forage is 

critical, as dive capability is inextricably linked to the likelihood of incidental mortality 

(Anderson et al. 2011). Mitigation measures such as heavier line-weighting, night setting 

and use of bird-scaring lines are effective in some fisheries, but assessing the 

effectiveness of line weighting, for example, requires data on hook sink speed relative to 

descent rates and dive depths of vulnerable seabirds, and for some species the only dive 
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data available are maximum depths published over 25 years ago (e.g. Prince et al. 1994). 

There is a paucity of high-resolution dive data obtained using time-depth recorders 

(TDRs, see biologging section below) in the Diomedeidae compared to other seabird 

orders (e.g. Shaffer et al. 2009, Matsumoto et al. 2012). Further, matching dive events to 

landings on the water and location allows us to develop a holistic understanding of at-sea 

foraging, which is lacking for many albatross species. 

 

1.3.2 Biologging devices  

There is a long history of biologging in seabird research: because many 

Procellariiformes are large-bodied and return reliably to their nest (so are easily 

recaptured), they have been extensively studied since the first animal-borne tracking 

devices were deployed (Phillips et al. 2007, Geen et al. 2019, Bernard et al. 2021). 

Indeed, the first successful avian tracking using satellite telemetry was undertaken on 

Wandering Albatrosses Diomedea exulans (Jouventin and Weimerskirch 1990). Studies 

of predator distributions were previously difficult to undertake in the southern oceans due 

to extreme seasonality, remoteness, and rough seas (Bost et al. 2009), but technological 

advances in recent decades mean that we can now remotely obtain detailed information 

about animal space-use and behaviour with relative ease (Block et al. 2011). Over the last 

four decades, various types of biologgers have provided insights into topics as diverse as 

individual consistency (analyses of repeated measures, see Phillips et al. 2017 for a 

summary), feeding (Wilson et al. 1992), stress responses (Müller et al. 2017), thermal 

physiology (Handrich et al. 1997), flight development (Yoda et al. 2004), and habitat 

preferences (see Wakefield et al. 2009 for a summary; Chapter 3, Chapter 4).  

In this thesis I combine data from multiple types of animal-borne tags. Time-

depth recorders (TDR) measure pressure, and can be used to characterise diving 

behaviour (Navarro et al. 2014, Chapter 2). Archival light-level geolocators-activity 

loggers (GLS) measure both ambient light – allowing for approximate locations to be 

calculated – and water immersion – identifying periods when the animal is dry and wet, 

and therefore in flight or resting on water (Kürten et al. 2019, Schoombie et al. 2022, 

Chapter 2, Chapter 3). Satellite tags identify the locations of animals on scales of metres 

(Global Positioning System, GPS) to kilometres (Advanced Research and Global 
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Observation Satellite, Argos) (Hazen et al. 2012, Wakefield et al. 2009, Chapter 2, 

Chapter 3, Chapter 4). 

 

1.4 Thesis outline  

The major aims of this thesis are to:  

 

I. Quantify foraging behaviour in pelagic seabird species; 

II. Identify characteristics of key foraging habitat during the breeding season, and 

understand extrinsic drivers of variation in habitat selection between species; 

III. Compare preferred foraging habitats across species, genera, communities and 

breeding sites, to understand the relative plasticity of these preferences. 

 

By understanding how, where, and in what kinds of environments pelagic predators 

forage we will better be able to mitigate their exposures to anthropogenic threats – the 

most important in this context being commercial fisheries. There are complex and 

interconnected relationships between threats, ecology, environment, and behaviour, that 

ultimately influence fitness – which is difficult to directly measure – see Figure 1.2 for an 

overview. 

 

In Chapter 2, I characterise the diving behaviour of three albatross species breeding at 

Bird Island, South Georgia. I show that Black-browed Albatrosses Thalassarche 

melanophris, Grey-headed Albatrosses T. chrysostoma and Light-mantled Albatrosses 

Phoebetria palpebrata are infrequent, shallow, diurnal divers. I combine dive behaviour 

with GPS and immersion data to characterise activity levels and discuss my findings in 

the context of bycatch susceptibility and foraging ecology. 

 

In Chapter 3, I compare the habitat preferences of two congeners: the winter-breeding 

Grey Petrel Procellaria cinerea and summer-breeding White-chinned Petrel P. 

aequinoctialis. I identify periods of active foraging and use remote sensing data to 

determine the environmental characteristics of key habitat areas for both species. Here I 

highlight the potential for extreme divergence in habitat preference within a genus, and 
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discuss the implications of this divergence for these species across their range, as well as 

for our understanding of breeding allochrony in general. 

  

In Chapter 4, I investigate the influence of interspecific competition on habitat 

preference, using data from 87 Sooty and Light-mantled Albatrosses breeding in six 

sympatric and allopatric colonies. I establish a natural experiment by examining the 

foraging behaviour of each species breeding in the presence and absence of their 

congener, and show that while Light-mantled Albatrosses have consistent habitat 

preferences throughout their range, Sooty Albatrosses vary their habitat preferences in 

sympatry and allopatry.  

 

In Chapter 5, I discuss my findings in the wider context of foraging ecology, consider 

their implications for conservation of pelagic seabirds, and explore further areas of 

research arising from this thesis. 

 

 
Figure 1.2: Schematic showing various factors that can influence organism fitness at 

different stages and locations of a foraging trip in a breeding procellariiform seabird. 

EEZ: Exclusive Economic Zone. ABNJ: Areas Beyond National Jurisdiction. 

Abbreviations for tracking devices listed in section 1.3.2. NB: Though bycatch in illegal, 

unregulated, or unreported fisheries may occur inside protected areas, most seabird 

bycatch occurs in legal fisheries. Icons used with permission: flaticon.com.



 

 21 

 

CHAPTER 2: Diving behaviour of albatrosses: 

implications for foraging ecology and bycatch 

susceptibility 
 

This chapter is published as Bentley, L. K., Kato, A., Ropert-Coudert, Y., Manica, A., & 

Phillips, R. A. (2021). Diving behaviour of albatrosses: implications for foraging ecology 

and bycatch susceptibility. Marine Biology, 168(3), 1-10. https://doi.org/10.1007/s00227-

021-03841-y 

 

Author contributions: 

I conceived the ideas, designed the methodology, analysed data, made figures, and wrote 

up the chapter with supervision from R. A. Phillips and A. Manica.  

 

R. A. Phillips oversaw animal tagging and provided the tracking data. A. Kato and Y. 

Ropert-Coudert processed the raw TDR data in IGOR pro to extract dive depths and 

durations and provided feedback on various versions of the manuscript. The pronoun 

‘we’ is used in this chapter to recognise the collaborative nature of the published work.  
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Abstract 

Diving is an ecologically important behaviour that provides air-breathing predators with 

opportunities to capture prey, but that also increases their exposure to incidental mortality 

(bycatch) in commercial fisheries. In this study, we characterised the diving behaviour of 

26 individuals of three species, the Black-browed Albatross Thalassarche melanophris, 

Grey-headed Albatross T. chrysostoma and Light-mantled Albatross Phoebetria 

palpebrata, breeding at Bird Island, South Georgia. Individuals were tracked using 

Global Location Sensor (GLS)-immersion loggers and time-depth recorders (TDRs) and, 

for two species, Global Positioning System (GPS) loggers. Although the TDRs recorded 

589 dives (defined in this paper as submersion >1 m), average dive depths and durations 

were just 1.30-1.49 m and 2.5-3.3 s, respectively, for the three species. In addition, many 

individuals (22% of Black-browed, 20% of Grey-headed, and 57% of Light-mantled 

Albatrosses; total n = 9, 10 and 7 individuals, respectively) did not dive at all. Most dives 

occurred at the distal end of foraging trips and were rare during the commuting phase. No 

dives took place in darkness, despite long periods spent on water at night. The limited 

and shallow dive activity contrasts with impressions from a previous study using 

capillary-tube depth gauges (which are less accurate than TDRs), and has implications 

for susceptibility of albatrosses to bycatch on longlines. This study provides further 

support for regulations requiring night setting and increased sink rates of baited hooks to 

help mitigate albatross bycatch. 
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2.1 Introduction  

Many seabirds, including penguins, cormorants, alcids, diving petrels and some 

shearwaters are considered specialist divers, often foraging at depths >10 m, whereas 

most other seabird species undertake only brief, shallow dives or feed largely at the 

surface (Croxall and Prince 1980, Harper 1987, Navarro et al. 2014). As various types of 

fishing gear (e.g. gillnets, trawls, pelagic and demersal longlines) are set and operate at 

different depths, diving capability is a key determinant of the likelihood of incidental 

mortality (bycatch) (Anderson et al. 2011, Žydelis et al. 2013, Crawford et al. 2017). 

Many seabird species are of high conservation concern because of negative interactions 

with fisheries (Phillips et al. 2016). As such, quantifying their diving behaviour is 

fundamental to understanding not just their ability to access prey, but also their 

susceptibility to this anthropogenic threat. 

Bycatch in commercial fisheries is a main cause of population declines in many 

albatrosses and large petrels (Phillips et al. 2016). These species mature slowly, have 

high adult survival, and low reproductive output, which means any additional adult 

mortality – e.g., as bycatch – can have major implications for demography (Thomson et 

al. 2015, Pardo et al. 2017). Research on bycatch mitigation in commercial fisheries has 

been extensive in recent years (Sullivan et al. 2018, Robertson et al. 2018, Jiménez et al. 

2018). In longline fisheries, use of bird-scaring lines (BSLs; also called streamer or tori 

lines) aims to discourage birds from targeting hooks during setting, and heavier line-

weighting regimes aim to sink baits more rapidly beyond their reach (Jiménez et al. 

2018). Baits may also be released below the surface by a machine (Robertson et al. 

2018), or devices (such as Hookpods) used to cover the sharp section of the hook until it 

reaches a particular depth (Sullivan et al. 2018, Goad et al. 2019). As pelagic and 

demersal longliners in the Southern Hemisphere set 100s of millions of hooks per year 

(Clay et al. 2019), it is critical to know at what depths these pose a threat to different 

seabirds in order to refine bycatch mitigation strategies, including minimum line-

weighting regimes and aerial extents of BSLs. Information on diurnal activity patterns, 

including diving, of seabirds can also inform policies on restricting setting times. 

In general, albatrosses appear morphologically to be poorly adapted to diving. 

Indeed while the typical relationship for most orders of seabirds is that maximum dive 
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depth scales positively with body mass, this does not apply in the Diomedeidae (Navarro 

et al. 2014). Early studies of albatrosses deployed capillary-tube depth gauges to measure 

the absolute maximum dive depth during the deployment period (Prince et al. 1994), 

whereas more recently, time-depth recorders (TDRs) have been used to record depth, 

duration and shape of all dives (Hedd et al. 1997, Huin and Prince 1997). Dive depths 

recorded by capillary depth gauges were unexpectedly high, ranging from mean ± SD 

and absolute maxima of 2.5 m ± 1.3 m and 4.5 m in Black-browed Albatrosses 

Thalassarche melanophris, to 4.7 m ± 3.4 m and 12.4 m, respectively, in Light-mantled 

Albatrosses Phoebetria palpebrata, which led the authors to speculate that the latter 

species was as proficient at diving as gannets (Sulidae) (Prince et al. 1994). Subsequent 

studies using TDRs have recorded shallower diving in other albatrosses, with mean and 

maximum dive depths of 0.6 m ± 0.2 m, and 2.5 m, respectively, in Black-footed 

Albatrosses Phoebastria nigripes, and of 1.9 m ± 1.7 m and 7.4 m in Shy Albatrosses T. 

cauta (Hedd et al. 1997, Kazama et al. 2019). A study of three Black-browed Albatrosses 

using a back-mounted camera with a pressure sensor also found that dives were 

infrequent and shallow (mean depth 1.46 m) (Sakamoto et al. 2009). Several studies have 

shown that capillary gauges overestimate depth, possibly because of high pressures 

experienced when birds hit the water at speed (Burger and Wilson 1988, Hedd et al. 

1997, Navarro et al. 2014). Nor do they record dive frequency or duration, better 

indications of foraging style and breath-hold capability. As capillary gauges only record 

the single deepest dive during each deployment, this inflates the importance of these 

outliers when drawing ecological inferences. Therefore, TDRs allow more meaningful 

ecological conclusions to be drawn.  

A detailed understanding of albatross behaviour at sea requires a combination of 

bio-logging devices. Global Positioning System (GPS) loggers, geolocators (Global 

Location Sensor or GLS loggers) and satellite transmitters allow habitat use to be 

determined, and saltwater immersion loggers allow flights and landings to be 

distinguished. Opportunistic foraging can be inferred by landings in the middle of 

directional transits, and area restricted search by higher turning rates and increased 

landings as the predator exploits a profitable patch of resources (Catry et al. 2004, 

Weimerskirch et al. 2007). Feeding attempts cannot be distinguished from resting using 
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immersion data, which is an important limitation given albatrosses spend long periods on 

the water overnight (Weimerskirch and Guionnet 2002, Catry et al. 2004, Phillips et al. 

2005, Phalan et al. 2007). Albatrosses were initially thought to be primarily nocturnal 

foragers, as Grey-headed T. chrysostoma and Light-mantled Albatrosses in particular 

feed their chicks with substantial amounts of vertically-migrating squid, and all species 

were observed feeding at sea at night (Harper 1987, Prince and Morgan 1987). More 

recent studies propose that while some sit-and-wait feeding occurs at night, this strategy 

is only used because visual detection of prey is difficult in low light conditions (Phalan et 

al. 2007, Weimerskirch et al. 2007). Further evidence supporting largely diurnal foraging 

is that the eyes of albatrosses are adapted for visual pursuit of prey in daylight (Martin 

1998). Timing of activity has important implications for conservation, as albatross 

bycatch is reduced when longlines are set at night (Bull 2007, Jiménez et al. 2020). 

Although immersion events can be interpreted in different ways, dive events are almost 

certainly indicative of feeding attempts, and their presence or absence can clarify 

foraging style.  

The main objectives of this study were to quantify and contextualise dive events 

using both immersion and location data, and to construct a more comprehensive picture 

of albatross foraging behaviour in the breeding season. We aimed to accurately 

characterise diving depth, duration and frequency in three albatross species, including 

Black-browed Albatrosses and Grey-headed Albatrosses (both frequently caught in 

longline fisheries) and Light-mantled Albatrosses (previously suggested to be the most 

proficient divers; Prince et al. 1994). We hypothesised that typical dive depths for these 

species would be much shallower than the maximum depths previously reported using 

capillary gauges. As the eyes of albatrosses are adapted for diurnal foraging (Martin 

1998), and they are generally more active in daylight than darkness (Phillips et al. 2007), 

we predicted that most dive activity would occur during the day. Results are discussed in 

the context of susceptibility to bycatch in longline fisheries, and the implications for 

refining approaches to bycatch mitigation.  
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2.2 Materials and methods 

2.2.1 Device deployments 

All devices were deployed at Bird Island, South Georgia (54° 00’ S, 38° 03’ W) 

on breeding birds during the austral summer 2009/10. Black-browed albatrosses (n = 9) 

and Grey-headed Albatrosses (n = 10) were tracked during brood-guard, and Light-

mantled Albatrosses (n = 7) during incubation, in all cases for a single foraging trip. 

Three types of GPS logger were used: i-gotU GT-120 (MobileAction Technology, 

Taiwan; 25 g), MiniGPSlog (earth & OceanTechnology, Germany; 25 g) or 

MicroGPSlog (earth & OceanTechnology, Germany; 10 g). These were usually set to 

obtain a fix every 10 or 15 minutes and attached to mantle feathers using fabric (Tesa ®) 

tape. In addition, a combined GLS-immersion logger (Mk19, British Antarctic Survey, 

Cambridge, UK; 2.5g) attached by a cable-tie to a plastic ring was deployed on one 

tarsus, and a TDR (Cefas G5, Cefas Technology Ltd, Lowestoft, UK; 2.7g or 6.5g), also 

on a plastic ring, on the other tarsus. (Details of devices used for each individual 

available in Appendix 1, Table S1.) Attachment of devices took < 10 min. Maximum 

instrument loads were < 1.5% of mean body mass, and hence well below the threshold of 

3% above which deleterious effects are more common in albatrosses (Phillips et al. 

2003). TDRs had a 0.03 m depth resolution, and on Black-browed and Grey-headed 

Albatrosses recorded depth every 1 s for the duration of the foraging trip. Those on 

Light-mantled Albatrosses recorded depth every 1 s on every third day. GLS-immersion 

loggers tested for saltwater immersion every 3 s, and recorded every change of state from 

wet to dry and vice versa that lasted 6 s or more, providing the timing of landings and 

take-offs from the water. The calculated immersion times included all time that the bird 

had its legs in the water (i.e. resting, surface feeding, and diving). The term “diving” 

hereafter refers only to events during which the tarsus of the bird submerges to > 1m 

depth.  

 

2.2.2 Dive analysis 

 Depth data were manually corrected for a drifting surface level. The dive 

threshold was set at 1 m depth (Navarro et al. 2014, Bennison et al. 2018), as this best 

reflects the accuracy of the pressure sensor (1% at 10 bar device range). This threshold 
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also reduces noise associated with surface pressure changes and wave action, and ensures 

recorded ‘dives’ reflect prey capture attempts rather than other surface behaviours. We 

acknowledge that because the TDR was mounted on the tarsus, a dive record of 1 m may 

represent a bird whose head can access prey beyond this depth, given a body length of ~ 

0.8 m. Dives were analysed using IGOR pro (Wavemetrics, version 6.3, Portland, OR, 

USA). Dive parameters (maximum depth, duration) were extracted for each dive. 

Uncertainty, particularly at shallow depths, is hard to quantify without accurate data on 

in-situ barometric pressure, but by using a 1 m threshold we were able to more 

confidently remove false dive events from analysis if they did not meet minimum criteria 

as follows: (i) start depth ≥ 0 m, (ii) depth change rate at the start of the dive < 1 m/s, (iii) 

depth change rate at the end of the dive < 2 m/s, and (iv) depth change rate just before the 

start of the dive ≤ 0 m/s, confirmed by visual inspection of all dives. We calculated mean 

depth, duration and frequency of dives for each individual. A Fisher’s exact test was used 

to compare the proportions of non-divers between species. Dives were also assigned to 

daylight (between sunset and sunrise), twilight (from civil twilight to the nearest sunset 

or sunrise), and darkness (between civil twilights) based on GPS location and time, using 

standard astronomical calculations in the R package SGAT (Sumner et al. 2009).  

 

2.2.3 GPS and immersion analysis 

GPS tracks were interpolated to 1-second intervals for behavioural matching and 

5-minute intervals for visualisation using the R package adehabitatLT (Calenge 2006), 

and the start and end of each foraging trip was estimated to ± 5 mins from GPS locations, 

confirmed by immersion data (first wet event, as albatrosses almost always bathe before 

departing on a trip; Granadeiro et al. 2018). Immersion and dive events were then 

matched by time to GPS locations interpolated at 1-second intervals for Black-browed 

and Grey-headed Albatrosses. GPS data were unavailable for Light-mantled Albatrosses 

because of battery depletion or water ingress into the devices. Total immersion time was 

calculated for each trip. Immersion events were categorised as occurring in daylight, 

twilight or darkness in the same manner as dive events (described above). Sample sizes 

varied between analyses in cases where, for the same  



2. Diving behaviour of albatrosses 

 30 

bird, one type of data was unavailable (e.g. GPS). All processing of GPS tracks, 

summarising and cleaning of data, descriptive statistics and mapping were undertaken in 

R version 3.6.2 (R Core Team 2020). Values are given as the mean ± SD unless indicated 

otherwise. 

 

2.3 Results 

2.3.1 Dive characteristics  

Average dive depths, durations, and frequencies (per day and per trip) for Black-

browed and Grey-headed Albatrosses tracked during brood-guard, and Light-mantled 

Albatrosses tracked during incubation from Bird Island (South Georgia) are shown in 

Table 1.  

 

Table 1. Summary of dive events for three albatross species tracked from Bird Island 

(South Georgia), in austral summer 2009/10. ‘Non-divers’ indicates birds for which no 

dive events were recorded by the TDRs. All values are means ± SD unless otherwise 

stated. 

 

No dives were recorded for two of the nine Black-browed, two of the 10 Grey-

headed, and four of the seven Light-mantled Albatrosses that were tracked. There was no 

statistically significant difference between these ratios (two-tailed Fisher’s exact test, P = 

0.28). The mean maximum depths of diving individuals from all three species were < 1.5 

m, and the deepest dive for any bird was 6.0, 3.4 and 2.0 m for Black-browed, Grey-

headed and Light-mantled Albatrosses, respectively. Mean dive durations ranged from 

Species 
 

Breeding 
stage 

Dive depth 
(m);  

max observed 
depth 

Dive duration 
(s); 

max duration 

Dives/trip  Dives/day    n 
dives 

n birds 
tracked 

n (%) 
non-divers 

Black-
browed 
Albatross 

Brood-
guard 

1.49 ± 0.17; 
6.0 

3.30 ± 0.6; 15 36.55 ± 
53.79 

17.83 ± 
27.15 

329 9 2 (22%) 

Grey-
headed 
Albatross 

Brood-
guard 

1.47 ± 0.34; 
3.4 

2.85 ± 0.9; 8 22.50 ± 
44.74 

9.13 ± 16.62 225 10 2 (20%) 

Light-
mantled 
Albatross 

Incubation 1.30 ± 0.32; 
2.0 

2.50 ± 0.9; 5 NA 0.44 ± 0.23 10 7 4 (57%) 
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2.5-3.3 s. Number of dives per trip, and maximum dive depths were highly variable 

between individuals (Figure 2.1).  Grey-headed Albatrosses generally dived at the most 

distal portions of foraging tracks, and travelled north of Bird Island to the Antarctic Polar 

Front, whereas with one exception, foraging and dives in Black-browed Albatrosses took 

place closer to South Georgia (Figure 2.2).  

Figure 2.1: Dive depths recorded from Black-browed Albatross (BBA) Grey-headed 

Albatross (GHA) and Light-mantled Albatross (LMA) tracked from Bird Island (South 

Georgia) during the 2009/10 breeding season. BBA and GHA tracked during brood-

guard, and LMA tracked during incubation. Jitter is used to emphasise variation in 

number of points (dives) between individuals. Note that for all species only the IDs of 

birds that dived appear on the plot. 

 

2.3.2 Immersion behaviour and diving 

Average proportion of time spent immersed was 25.5 ± 14.5% of brood-guard 

trips lasting 1.9 ± 0.7 days in Black-browed Albatrosses (n = 9) and 20.4 ± 2.6% of trips 

lasting 2.8 ± 0.4 days in Grey-headed Albatrosses (n = 8); in all cases, total time spent 

diving was < 0.5% of the trip (Figure 2.3a). Light-mantled Albatrosses (n = 7) spent an 

average of 27.2 ± 7.8% of incubation trips of 14.2 ± 5.0 days immersed; total time spent 

diving was always < 10 s (Figure 2.3b).  
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Figure 2.2: GPS tracks (grey), immersion events during the day (light blue 

points), twilight (medium blue points) and night (dark blue points) and dive events (red 

X) for Black-browed Albatrosses (left, n = 8), and Grey-headed Albatrosses (right, n = 8) 

tracked from Bird Island, South Georgia (light green), during brood-guard in austral 

summer 2009/10. NB: Continuous daylight immersion events covering large distances do 

not represent fast on-water drifting, but rather repeated switching between flight and 

landings, i.e. likely foraging. 
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Figure 2.3: Time spent diving (black), immersed (light blue) and flying (grey) for: a) 

individual Black-browed (left panel) and Grey-headed (right panel) Albatrosses tracked 

during brood-guard; and b) for individual Light-mantled Albatrosses tracked during 

incubation from Bird Island (South Georgia), in austral summer 2009/10. Note the 

square root scale on the Y axis and variation in Y axis scale between panels a and b. 

 

2.3.3 Diurnal activity patterns 

Of the total time that Black-browed Albatrosses (n = 8) spent on water, 42.7 ± 

16.9% occurred during the day, 4.1 ± 3.4% during twilight, and 53.2 ± 18.3% at night. In 

Grey-headed Albatrosses (n = 8), 25.2 ± 8.3% of immersion occurred during the day, 2.8 

± 3.2% during twilight, and 72.0 ± 10.5% at night. (Figure 2.4).   

b) 

a) 
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Figure 2.4: Total proportions of foraging trip spent immersed (dark shades) and dry 

(light shades) during daylight (yellow), twilight (grey) and darkness (blue), for individual 

Black-browed (BBA) and Grey-headed (GHA) Albatrosses tracked during brood-guard 

from Bird Island (South Georgia), in austral summer 2009/10. 

 

More than 95% of dives that could be matched to GPS locations (n = 308, Black-

browed Albatrosses; n = 219, Grey-headed Albatrosses) occurred during daylight, with 

all others (3.6% and 4.1% of dives for Black-browed Albatrosses and Grey-headed 

Albatrosses, respectively) occurring during twilight. No dives were recorded in darkness. 

 

2.4 Discussion 

Here we integrate measures of albatross activity at sea, combining geographic 

location, flights, landings, and diving behaviour during the brood guard (Black-browed, 

Grey-headed) and incubation (Light-mantled) stages of the breeding season. We provide 

detailed data on diving depths, durations, frequencies, and timing for albatrosses using 

TDRs, and show that dives are infrequent, diurnal and shallow in all species. Indeed, 

albatrosses show greatly reduced diving activity than might be inferred from the 
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maximum dive depths estimated using capillary depth gauges for these species at the 

same study site close to 30 years ago (Prince et al. 1994).  

 

2.4.1 Defining dive events 

Defining what constitutes a dive is critically important when comparing dive 

metrics among species. Reaching prey located at 0.5 - 0.7 m  depths may only require a 

surface dive for a large bird, whereas in smaller species where this distance is at least one 

– maybe two – times their body length, it will represent a wing-propelled pursuit dive 

(Harper 1987). Previous work on grey-headed albatrosses using TDRs considered a dive 

to be any record deeper than 0.1 m (Huin and Prince 1997), whereas we only considered 

dives to occur when the tarsus exceeded a threshold of 1 m (a common threshold used in 

more in recent work using the same logger type (albeit for deeper diving species), e.g. 

Navarro et al. (2014), Bennison et al. (2018)). This not only better accounts for levels of 

sensor accuracy and data noise, but we consider it to be more ecologically appropriate as 

the average body length of these birds is 0.8 m (Warham 1996). For a bird of this size to 

record a tarsus depth > 1 m, we can be more confident that we have measured a 

meaningfully different behaviour than surface foraging. Moreover, all immersions 

(whether or not they involve diving), can be recorded more efficiently and consistently 

using immersion sensors rather than relying on shallow depth values recorded by a TDR. 

The distinction between all landings and just dives is important when drawing 

conclusions about physiology and ecology. For example, Huin and Prince (1997) 

suggested that in grey-headed albatrosses, the percentage of energy gained by diving 

might be as high as 45%, whereas this seems unrealistic using a dive threshold of 1 m as 

in our study, because three (30%) of the ten birds of this species tracked dived < 5 times, 

and two (20%) did not dive at all. The most common strategy for prey acquisition was 

therefore likely to be feeding within 1 or 2 m of the surface, with occasional dives (or 

“plunges”, as in Harper 1987) both while in transit and while undertaking area-restricted 

search, and rare bouts of numerous successive surface dives, seen only in a few 

individuals (e.g. see GHA 1320811, GHA 1145462 in Figure 2.1). Further work 

combining tracking with both TDRs and stomach temperature probes is required to make 

any claims about energy gain with certainty. Had these bouts of successive dives 
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occurred in areas with known fishing activity, it may have indicated vessel interactions; 

however, this was not the case given there is a seasonal closure of fisheries in the waters 

around South Georgia and no evidence for illegal fishing in recent years (Tancell et al. 

2016). For further analyses of foraging habitat selection in these Grey-headed 

Albatrosses, see Scales et al. (2016). 

 

2.4.2 Activity patterns and diving behaviour 

Our study affirms the large amounts of time spent feeding at depths < 2 m for 

these species, because diving was very infrequent and shallow, and a high proportion of 

foraging trips was spent on the water’s surface. The absence of diving overnight 

reinforces previous work noting the importance of daylight foraging, despite the long 

periods of time  on the water at night (Catry et al. 2004, Phalan et al. 2007). The 

proportion of time spent on the water was broadly similar within and between species, 

although as in previous studies of at-sea activity patterns (Phalan et al. 2007, Mackley et 

al. 2011), there were very large differences in behaviour between individuals (Figure 

2.2). The high variability in landing and diving rates suggest possible individual 

specialisation, and perhaps that diving is undertaken only by birds with particular skills 

or preferences. Alternatively, the few individuals that dived numerous (> 100) times on a 

single trip may have simply encountered a highly productive patch of prey for which this 

technique allowed efficient exploitation, or that was driven upwards by subsurface 

predators. Further tracking of multiple foraging trips by individuals over an extended 

period might indicate if this large variation in dive behaviour is due predominantly to 

extrinsic (e.g. prey availability) or intrinsic (e.g. energy needs) factors. 

Energy requirements during brood-guard are higher than during incubation: 

parents must meet both their own and their chick’s energy requirements while foraging, 

are constrained to shorter and closer foraging trips, and Wandering Albatrosses 

Diomedea exulans are known to lose mass during this period (Weimerskirch and Lys 

2000). Nonetheless, there was no statistically significant difference in dive rates between 

species, even though the Light-mantled Albatross in incubation appeared to dive less 

frequently than Black-browed or Grey-headed Albatross in brood-guard. Based on 

immersion data, foraging bout lengths and frequencies are broadly similar between 
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incubation and brood-guard (Weimerskirch and Guionnet 2002, Phalan et al. 2007), and 

hence dive frequency and characteristics may also be comparable across breeding stages. 

Any potential effects of breeding stage on diving behaviour would need to be confirmed 

by further tracking.  

Our results confirm that all three genera of small albatrosses (Phoebetria and 

Thalassarche, this study; Phoebastria, (Kazama et al. 2019)) are infrequent, short and 

shallow divers compared with most other seabirds, reaching < 1.5 m on average. In 

contrast, many shearwaters are far more proficient, attaining mean maximum depths of 

17.8 m Puffinus yelkouan, 9.6 m P. puffinus, and 15.9 m Ardenna grisea (Shaffer et al. 

2009, Péron et al. 2013, Shoji et al. 2016), whereas the Calonectris shearwaters only dive 

to mean depths of 1-2 m (Paiva et al. 2010, Matsumoto et al. 2012, Grémillet et al. 2014). 

The Procellaria petrels are also proficient divers; Grey Petrels Procellaria cinerea and 

White-chinned Petrels Procellaria aequinoctialis reach mean and absolute maximum 

diving depths, respectively, of 3.2 ± 2.2 m and 22 m, and 2.9 ± 2.4 m, and 17 m 

(Rollinson et al. 2014, 2016).  

 

2.4.3 Diving behaviour and bycatch mitigation 

Although they are mostly shallow divers, albatrosses are clearly at high risk of 

bycatch behind longline vessels (Jiménez et al. 2014, Phillips et al. 2016). In accordance 

with our results indicating fewer landings and no diving in darkness, night setting of 

longlines is known to significantly reduce bycatch rates (Jiménez et al. 2020). In terms of 

compliance-monitoring, night setting has the advantage over BSLs and specific line-

weighting regimes as a mandatory mitigation measure, as it can be assessed remotely and 

in near real-time by inferring fishing activity from satellite detected automatic 

identification system (AIS) data on vessel movements (de Souza et al. 2016). While one 

reason night-setting may be successful is because albatrosses rarely forage nocturnally, 

our results only apply to dive behaviour during the breeding season when targeting 

natural prey. As such, they do not necessarily indicate a physiological maximum, and it is 

possible that birds feeding behind vessels might dive deeper. Further work could usefully 

involve tracking of diurnal activity patterns of albatrosses in contact with fisheries, as it 



2. Diving behaviour of albatrosses 

 38 

cannot be assumed that the patterns seen here are representative of all populations or 

times of year. 

In some regions, the smaller, deeper-diving Procellaria petrels and Ardenna 

shearwaters bring baited hooks to the surface, where they become accessible to 

albatrosses, putting the latter at risk. Jiménez et al (2012) observed that 41% of 

albatrosses killed on longlines were hooked on gear with which a medium-sized diving 

seabird had first made contact. Similar dynamics were reported in Melvin et al. (2014), 

where over half of primary attacks (bait brought to the surface by a diving Procellaria 

petrel) led to a secondary attack on the bait, usually by an albatross. Despite their poor 

diving abilities, Thalassarche albatrosses are often the most frequently-killed surface-

foraging birds at feeding assemblages, indicating the critical importance of mitigation 

designed to keep hooks beyond reach of deeper-diving birds (Petersen et al. 2009, Melvin 

et al. 2013, 2014). In feeding assemblages where White-chinned Petrels are the dominant 

species, a combination of two bird-scaring lines, weighted branch lines and night setting 

has the potential to reduce seabird bycatch to zero (Melvin et al. 2014). Further research 

into areas of spatial overlap between deeper divers, threatened albatross species, and 

commercial longline fisheries would better identify potential bycatch hotspots where 

monitoring and mitigation efforts could be focused. In addition, the use of additional 

tracking devices such as high-resolution TDRs mounted on the head, accelerometers to 

reveal very shallow dives (Cianchetti-Benedetti et al. 2017), or stomach temperature 

probes, which provide information on the timing of ingestion and size of prey (Catry et 

al. 2004), would provide insights into the prey capture rate and profitability of diving 

compared with feeding close to the surface. 
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CHAPTER 3: Divergent foraging habitat preferences 

between summer-breeding and winter-breeding 

Procellaria petrels  
 

 

This chapter is published as Bentley, L. K., Manica, A., Dilley, B. J., Ryan, P. G. & 

Phillips, R. A. (2022). Divergent foraging habitat preferences between summer-breeding 

and winter-breeding Procellaria petrels. Ibis, https://doi.org/10.1111/ibi.13152.  
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Abstract 

Foraging niche specialisation is thought to occur when different members of speciose 

communities divide resources in either time or space. Here we compared habitat 

preferences of the congeneric Grey Petrel Procellaria cinerea and White-chinned Petrel 

P. aequinoctialis, tracked in the same calendar year using GPS loggers from Gough 

Island and Bird Island (South Georgia), respectively. We identified periods of active 

foraging, and determined habitat characteristics using remote-sensing data. Although 

these highly pelagic species could potentially overlap at sea across large areas, they 

showed markedly different foraging preferences during their incubation periods, which 

are temporally offset because Grey Petrels breed during the austral winter. Grey Petrels 

foraged mostly in pelagic cold-water areas to the north-west of South Georgia, whereas 

White-chinned Petrels foraged almost exclusively in the warm, shallow waters of the 

Patagonian Shelf. Within each species, foraging habitat characteristics were highly 

consistent. Our results demonstrate the diversity of habitat preferences within genera, and 

provide further evidence that colony-specific information on habitat preference is crucial 

to identify important feeding areas for pelagic predators. 

 

  



3. Habitat preferences of Procellaria petrels 

 42 

  



3. Habitat preferences of Procellaria petrels 

 43 

3.1  Introduction 

Foraging in dynamic environments challenges predators to locate and capture 

prey that are temporally and spatially unpredictable. While optimal foraging strategies 

are complex and often variable, their key objective is to maximise prey consumption 

while minimising the effort required to travel and feed (Orians and Pearson 1979, 

Stephens et al. 2008, Waggitt et al. 2018). A wide variety of environmental and 

physiological factors may constrain foraging behaviour (Tucker et al. 1995, Gilchrist et 

al. 1998, Spaethe et al. 2001). Although we expect foraging animals to target habitats that 

yield the highest prey capture rates, this involves trade-offs between resource abundance 

and levels of inter- and intra-specific competition, which in speciose communities often 

leads to high levels of spatial and temporal segregation in habitat use (Masello et al. 

2010, Navarro et al. 2013). Understanding habitat specialisation in closely-related species 

can provide insights into how these communities are maintained (Vilchis et al. 2006, 

Granroth‐Wilding and Phillips 2019). 

Coexistence is often promoted in highly diverse communities via specialisation, 

which allows a greater number of species and individuals to partition resources 

(Schoener 1974, Phillips et al. 2017). This has been shown across diverse taxa, including 

reptiles and amphibians (Toft 1985), mammals (Aldridge and Rautenbach 1987), and 

birds (Feinsinger and Colwell 1978). Given their high diversity and abundance, coupled 

with the central-place foraging constraints imposed by breeding on land, seabirds provide 

ideal models for investigating specialisation. During breeding, they must balance 

traveling to access the best resources with the needs of incubation and chick-rearing 

(Phillips et al. 2017). The depletion of resources around their nesting islands has been 

long discussed (Ashmole 1963, Birt et al. 1987), and specialisations on particular prey, 

habitats or in other aspects of foraging behaviour have been shown to occur among 

species, populations, sexes and age classes (Bearhop et al. 2006, Thiebot et al. 2012, 

Wakefield et al. 2013, Mendez et al. 2017, Votier et al. 2017). When interspecific 

competitors are morphologically similar, specialisation is often via behavioural variation, 

such as in timing or location of foraging (Nicholls and Racey 2006). Partitioning of 

resources is a potential driver of speciation if behavioural or phenotypic changes 

ultimately lead to reproductive isolation (Bolnick et al. 2007). If selection leads to 
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differences in timing of breeding of related taxa (allochrony), speciation is possible even 

in sympatry (Friesen et al. 2007a, 2007b, Taylor and Friesen 2017).  

Extreme allochrony in Antarctic seabirds can lead to the phenomenon of winter 

breeding (Poupart et al. 2019a). The underlying ecological drivers remain unclear, 

particularly because chick provisioning is energetically expensive (Welcker et al. 2015) 

and so we expect reproduction to coincide with the most favourable foraging conditions; 

for the great majority of temperate and polar seabirds, this is during the austral summer, 

when longer days and warmer conditions enhance phytoplankton blooms, in turn 

supporting abundant primary and secondary consumers (Poupart et al. 2019a). By 

comparison, productivity in the Southern Ocean is reduced in autumn and at its minimum 

in winter (Alvain et al. 2008). As such, the shift during speciation to winter breeding is 

counter-intuitive, particularly as many summer breeders avoid the seasonal decline in 

food availability by migrating to lower latitudes.  

The Procellaria petrels are long-lived, highly k-selected species which often 

forage at sites long distances from their colonies (Bugoni et al. 2009, Rollinson et al. 

2018, Frankish et al. 2020). Two of the five species (Grey Petrels P. cinerea, and 

Westland Petrels P. westlandica) are winter breeders. Westland Petrels, Spectacled 

Petrels P. conspicillata and Black Petrels P. parkinsoni are each endemic to only one or 

two breeding islands, whereas Grey Petrels and White-chinned Petrels P. aequinoctialis 

are much more abundant, breeding in highly speciose seabird communities at several 

island groups around the Southern Ocean (Phillips et al. 2016). 

Tracking studies in the last 1–2 decades suggest that the contrasting distribution, 

abundance and phenology among Procellaria petrels may partly be explained by 

differences in foraging habitat availability and preferences. Habitat use also determines 

fisheries overlap, which has major implications for conservation; Grey and White-

chinned Petrels are listed as Near-threatened and Vulnerable, respectively, by the IUCN 

because of high bycatch rates in longline fisheries (Phillips et al. 2016). Here we 

compare habitat preferences of Grey Petrels and White-chinned Petrels from the largest 

populations in the South Atlantic: Gough Island and South Georgia, respectively. 

Spectacled Petrels also breed in the region (at Inaccessible Island), but feed in much 

warmer waters than Grey Petrels and White-chinned Petrels (Bugoni et al. 2009, Reid et 
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al. 2014). Previous tracking of White-chinned Petrels from South Georgia indicated that 

they target warm, shallow waters at the Patagonian Shelf during the non-breeding season 

and incubation, then switch to colder waters around and south of the Antarctic Polar 

Front during chick-rearing (Berrow et al. 2000, Phillips et al. 2006). Grey Petrels are 

known to target particular broad-scale oceanographic features during the non-breeding 

season (oceanic ridges with moderate current velocities and average surface temperatures 

of 7–13°C), but preferences vary among study colonies (Kerguelen, Antipodes and 

Prince Edward Islands) to such an extent that habitat models are not transferable across 

ocean basins (Torres et al. 2015). In our study, we classified behavioural states during 

trips to sea by these two species tracked in the same region, breeding stage and calendar 

year, and identified oceanographic features of key habitats. We predicted that habitat 

choice would be consistent within species, based on previous indications of high site 

fidelity in these species (Rollinson et al. 2018, Delord et al. 2019). We also predicted that 

foraging would be more likely at locations furthest from the colony. By comparing 

results from closely-related species we can better understand the extent to which habitat 

preferences are fixed or flexible, which has important implications for the capacity of 

organisms to adapt to environmental change. Further, understanding the types of foraging 

habitat targeted by winter-breeding Grey Petrels can help to explain the evolution of this 

uncommon strategy. 

 

3.2 Methods 

3.2.1 Device deployments and initial processing 

Grey Petrels are winter breeders, attending colonies from February to September, 

whereas White-chinned Petrels breed in the summer, attending colonies from September 

to May (Phillips et al. 2006, Torres et al. 2015). GPS tags (IgotU; Mobile Action 

Technology Inc., Taiwan), weighing c. 25 g including heat-shrink packaging, were 

attached by Tesa® tape to the mantle feathers of 16 White-chinned Petrels and 20 Grey 

Petrels. All White-chinned Petrels and eight Grey Petrels were also fitted with either a 

geolocator-immersion logger (Intigeo C250, Migrate Technology, Cambridge, UK; 2.6 g) 

attached to a plastic band on the tarsus, or a Time Depth Recorder (TDR, G5, Cefas 

Technology; mass 2.7 g) housed in heat-shrink with the GPS logger, respectively. Grey 
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Petrels were tagged during the incubation period in April–May 2014 (austral winter), and 

White-chinned Petrels in December 2014 to January 2015 (austral summer). Mean mass 

of the tracked Grey Petrels was 1152 g. To minimise handling time, the White-chinned 

Petrels were not weighed, but the mean mass of other birds weighed during the 

deployment period was 1307 g (n = 32 birds). GPS devices were retrieved after an 

average of 22.4 and 30.8 days, respectively, from 18 (90%) of Grey Petrels (all 20 birds 

were recaptured but two had lost the GPS logger) and from 13 (81%) of the White-

chinned Petrels, possibly because some of the other three birds were non-breeders, or the 

chick hatched so the adult was missed during burrow checks. Thirteen of the GLS 

devices on White-chinned Petrels were retrieved along with the GPS loggers, and the 

three others in the following austral summer. The maximum combined mass of the two 

devices and tape or ring attachments was < 3% of mean body mass for both species, 

which is below the threshold at which deleterious effects are more common in pelagic 

seabirds (Phillips et al. 2003), but does not guarantee there will be no impact (Geen et al. 

2019). Devices were set to record at 30-minute intervals and removed after a single 

foraging trip (most birds), or after two foraging trips (two birds only). Fourteen (Grey 

Petrel) and twelve (White-chinned petrel) devices downloaded successfully. There were 

insufficient good-quality locations for four Grey Petrels and one White-chinned Petrel. 

The retained tracks were interpolated to 30 minute intervals to ensure consistency 

between the data sets using the redisltraj function from the R package adehabitatLT 

(Calenge 2006).   

 

3.2.2 Behavioural classification  

Behavioural states were determined using expectation-maximisation binary 

clustering (EMbC), an algorithm which uses speed and turning angles to categorise 

behaviour into four states (Garriga et al. 2016). High turning angles were presumed to be 

associated with foraging behaviour regardless of speed (thus merging two of the states 

together), low turning angles at high speed with transit behaviour, and low tortuosity at 

low speed with resting (Garriga et al. 2016). This algorithm is suitable for modelling 

behavioural responses to dynamic environmental variables, and is robust for use on data 

of our temporal scale (Bennison et al. 2018). For White-chinned Petrels, the immersion 
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data were used to check whether the locations classified as foraging using EMbC 

corresponded to landings on the water (Appendix 2, Fig. S1). Locations classified as 

transit or resting were pooled as “not foraging” and compared with foraging points in 

binomial analyses (clustering for all categories is shown in Appendix 2, Fig. S2).  

 

3.2.3 Habitat modelling 

To assess habitat selection, pseudoabsences were generated by retaining track 

shape and observed step length but randomising the angle at which birds left the colony, 

removing any generated tracks that went over land. This ensured total flight distance, 

sinuosity, turning angles etc. were realistic. Fifty pseudoabsence tracks were generated 

per real track (see Appendix 2, Fig. S3), and environmental variables were extracted for 

each point of both the generated and real tracks. Environmental predictors were selected 

as follows: (1) sea-surface temperature (SST, indicating cold fronts and water mass: 

CMEMS/Copernicus Marine) measured daily, 0.083° grid; (2) chlorophyll a 

concentration (chl a, a proxy for marine productivity: CMEMS/Copernicus Marine) 

measured daily, 0.25° grid and log transformed; (3) sea-level anomaly (height above 

geoid (m), index of mesoscale oceanic activity: CMEMS/Copernicus marine) measured 

daily, 0.083° grid; and (4) eddy kinetic energy (EKE, index of mesoscale oceanic activity 

calculated from eastward and northward sea water velocities) measured daily, 0.083° grid 

and log transformed, CMEMS/Copernicus marine. Two static variables were also 

calculated for each track location/pseudoabsence: (5) bathymetry (identifying shelf and 

pelagic zones, 0.00833° grid, GEBCO) and (6) Euclidean distance from colony (as a 

proxy for the effect of accessibility). All layers were resampled to the coarsest scale 

(0.25°) using the package raster in R (Hijmans and van Etten 2012). Sea-level anomaly 

was removed from final models as it was 94% correlated with sea-surface temperature. A 

binomial (presence/pseudoabsence) generalised additive model (GAM) was used to 

assess the influence of these environmental variables on habitat selection in each species. 

Model terms were initially selected via the dredge function (Bartón 2020) using AICc 

values, and unique and total deviance explained for each model term was calculated to 

help contextualise biological significance. The influence of environmental variables (as 

above) on behaviour (foraging or not foraging, classified using EMbC) was assessed 
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using binomial GAMs with cubic spline smoothing. Model fitting and selection was 

undertaken using AICc values.  

 

3.3 Results 

3.3.1 Trip characteristics and habitat selection 

Primary foraging areas were highly consistent within species. During the winter, 

the Grey Petrels (n = 10) tracked during incubation travelled over 3000 km from Gough 

Island to forage predominantly west-northwest of South Georgia, in a region that was 

overflown with minimal foraging or resting by White-chinned Petrels in the following 

austral summer. Instead of utilising this area, the incubating White-chinned Petrels (n = 

11) travelled over 2000 km from South Georgia to forage primarily on the Patagonian 

Shelf (Fig. 3.1). Grey Petrels were tracked for a mean of 9.56 ± 3.69 days, but batteries in 

the loggers depleted before the bird returned and the tracking data were incomplete. It is 

likely that these loggers depleted quickly due to the impact of cold temperatures on the 

batteries, and potentially because the GPS devices had been used in previous studies. 

While the GPS loggers collected data on average for 67% of the duration of foraging 

trips, the vast majority of dives (682 of 775; 88%) recorded by TDRs (which ran for the 

entire trip) were within the period for which there was GPS data, suggesting that the area 

to the west-northwest of South Georgia is indeed the key foraging area for this species 

(full dive details reported in Rollinson et al. 2016; see Appendix 2, Fig. S4 showing the 

last available GPS location from each bird). White-chinned Petrels were tracked for 

13.83 ± 3.57 days, which represented their entire foraging trip.  

Comparison of presences and pseudoabsences from real and rotated tracks 

indicated that both species selected habitat in a narrower band of sea surface temperature 

than that available, with Grey Petrels mostly foraging in water ~5 °C and White-chinned 

Petrels ~10-15°C (Fig. 3.2a). Additionally, White-chinned Petrels targeted a specific 

bathymetric profile, the shallow shelf area < 500 m (Fig. 3.2b), and both species 

preferred the upper range of available chlorophyll-a values (Fig. 3.2c). 



3. Habitat preferences of Procellaria petrels 

 49 

 
Figure 3.1: Foraging (black points) and resting/transit (grey points) behaviour of 

(upper) Grey Petrels (GP) from Gough Island (April to May 2014; austral winter), and 

(lower) White-chinned Petrels (WCP) from South Georgia (December 2014 to January 

2015; austral summer) tracked during the incubation period. Behaviours were classified 

using the EMbC R package (Garriga et al. 2016). Study colonies are marked with red 

diamonds. Map generated using tools from the ggOceanMaps R package (Vihtakari 

2020). Bathymetry layer from NOAA (Amante and Eakins 2009).  
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Figure 3.2: Density plots 

showing the proportion of 

presences (dark grey) and 

pseudoabsences (pale grey) that 

occurred across environmental 

gradients (A: sea surface 

temperature, °C; B: bathymetry 

(m); C: log10 (chlorophyll a 

concentration, mg/L) in Grey 

Petrels (GP) from Gough Island 

(tracked in April–May 2014; 

austral winter), and White-

chinned Petrels (WCP) from 

South Georgia (tracked in 

December 2014–January 2015; 

austral summer). Insets show 

significant GAM smooths for 

Grey Petrels: red/solid, and 

White-chinned Petrels: 

blue/dashed (see Appendix 2, 

Table S1 and Fig. S5 for all 

smooths).  
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3.3.2 Foraging habitats 

Foraging behaviour, in comparison to transit or resting behaviour, was observed 

at sea surface temperatures of 0–18 °C, with a marked peak around 5 °C for Grey Petrels, 

and a broader peak between 10 and 15 °C for White-chinned Petrels (Fig. 3.3a), 

reflecting their greater range in latitudes on the Patagonian Shelf. Grey Petrels foraged 

across a wide depth gradient in colder, deeper waters, whereas White-chinned Petrels 

foraged almost exclusively in shallow shelf waters < 500 m (Fig. 3.3b). In both species, 

foraging behaviour was more likely to occur at maximal distances from the colony 

(~3000 km for Grey Petrels and ~2000 km for White-chinned Petrels) (Fig. 3.3c).  

 

3.4 Discussion 

Habitat preferences, and flexibility in habitat use, are fundamental to our 

understanding of ecological processes, community structure and population dynamics, 

and critical for effective conservation and management in a world where human impacts 

are pervasive. In this study, we compared the oceanographic characteristics of incubation 

foraging trips by the winter-breeding Grey Petrel and their summer-breeding congener, 

the White-chinned Petrel. We identified the habitats where feeding behaviour occurred, 

as opposed to transit or resting. We observed a clear divergence in habitat preference 

between congeners, despite the potentially large area of overlap of birds from the two 

populations. Grey Petrels tracked from Gough Island targeted a specific cold-water area 

to the northwest of South Georgia, likely related to the relatively high primary 

productivity at that time of year. In contrast, White-chinned Petrels transited that region, 

preferring to feed in the shallow (< 500 m) waters of the Patagonian Shelf, without a 

specific preference for temperature regime. Both species targeted areas of relatively high 

productivity. 
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Figure 3.3: Density plots 

showing foraging points (black) 

and non-foraging points (grey) 

that occurred across selected 

environmental gradients (A: sea 

surface temperature, °C; B: 

bathymetry (m); C: distance from 

the breeding colony (km), in 

Grey Petrels (GP) from Gough 

Island (tracked in April–May 

2014; austral winter), and 

White-chinned Petrels (WCP) 

from South Georgia (tracked in 

December 2014–January 2015; 

austral summer). Insets show 

selected GAM smooths for Grey 

Petrels: red/solid, and White-

chinned Petrels: blue/dashed 

(see Appendix 2, Table S2 and 

Fig. S6 for all smooths). No inset 

indicates that the term was not 

modelled. 
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The preference for foraging in cold, pelagic habitat by Grey Petrels from Gough 

Island was consistent among individuals, whereas evidence from fisheries bycatch in 

New Zealand shows that at least for part of the breeding season, some Grey Petrels from 

Antipodes Island travel to the north coast of New Zealand, where temperatures are likely 

much higher than the ~ 5°C peak observed in our study (Mischler and Bell 2017). The 

Antipodes population also appears to show sexual segregation in foraging areas during 

breeding (Mischler and Bell 2017), which was not evident at Gough Island (Rollinson et 

al. 2016). To our knowledge, the Grey Petrels from Gough Island represent the only 

population tracked with GPS devices during breeding. Fine-scale habitat preferences of 

Grey Petrels at Kerguelen, Antipodes, and Marion Islands differed markedly during the 

non-breeding season (Torres et al. 2015), and hence tracking at other colonies is needed 

to determine whether the same applies during the breeding season.  

Contrasting habitat preferences among colonies are also apparent in the White-

chinned Petrel. In our study, birds did not target a specific temperature profile, although 

all travelled to shallow, productive waters on the Patagonian Shelf. This contrasts with 

White-chinned Petrels from Iles Kerguelen, which foraged during the entire breeding 

season in Antarctic and sub-Antarctic waters of 1–5 °C (Péron et al. 2010); those from 

Marion Island, which tended to forage either in waters close to the colony or off the 

southern coast of South Africa (Rollinson et al. 2018); and those from Iles Crozet, which 

foraged both north and south of the colony during incubation, but targeted cold waters to 

the south while rearing chicks (Weimerskirch et al. 1999, Catard et al. 2000). White-

chinned Petrels from South Georgia also forage in cold, southerly waters, as far as the ice 

edge, but not until the chick-rearing period (Phillips et al. 2006). It could be argued that 

the consistent targeting of the Patagonian Shelf by White-chinned Petrels during the 

incubation period might be a new behaviour since the advent of industrial fishing, but it 

seems unlikely given the huge numbers of other predators – many of which do not 

scavenge behind vessels – that also use this highly productive region (Song et al. 2016). 

Our study also reaffirms that this area is critical habitat for White-chinned Petrels during 

breeding every year, as our new data indicate the use of similar foraging areas to White-

chinned Petrels tracked in incubation over a decade earlier (Phillips et al. 2006).  
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Differences among congeners in habitat use can vary from subtle to distinct, and 

can involve temporal segregation when niches are very similar. Both MacGillivray’s 

Pachyptila macgillivrayi and Broad-billed Prions Pachyptila vittata target similar 

foraging areas at the same points in their breeding cycle, but do not compete due to a 

temporal offset of breeding by around three months (Jones et al. 2020). The same 

mechanism also reduces competition between Northern Macronectes halli and Southern 

Giant Petrels M. giganteus, which lay on average around 6 weeks apart, and also show 

sexual segregation (Brown et al. 2015, Granroth‐Wilding and Phillips 2019). In contrast, 

the oceanographic characteristics of foraging areas chosen by Grey and White-chinned 

Petrels are much more distinct, and the temporal offset in timing of breeding much longer 

(approximately 3–4 months). The high consistency in foraging habitat preferences within 

Grey and White-chinned Petrels, and its strong divergence between species, as well as 

the markedly different phenology, may have originally developed during sympatric 

speciation. Further study focusing on islands where these two species breed in sympatry 

(Marion, Crozet, Kerguelen and New Zealand) would help determine the mechanisms by 

which this is maintained. The observed flexibility in habitat choice of Procellaria species 

across populations and between breeding stages suggests that temporal segregation of 

peak resource-demand (i.e. breeding allochrony) is as effective for partitioning resources 

as habitat specialisation, and also more likely to lead to reproductive isolation and 

therefore speciation.  

 The most extreme example of breeding allochrony in seabirds is winter breeding, 

which in the Procellaria occurs in both Grey and Westland Petrels. Although most 

seabirds appear to time reproduction such that the most energetically-intensive phase 

(chick-rearing) coincides with peak resource availability, there may be a benefit to 

instead aligning the non-breeding period with the productivity peak. Grey Petrels and 

Westland Petrels have unusually long chick-rearing periods, and laying is more 

protracted than in other petrels and shearwaters, which has been attributed to the scarcity 

and variability of food in the austral winter (Zotier 1990). This long breeding period 

means that the slowest parents have < 80 days for post-breeding moult and to restore 

their body condition prior to the onset of the subsequent season (Zotier 1990, Chastel 

1995). While such a short period between fledging and expected return would usually 
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result in biennial breeding, as in the Wandering Albatross Diomedea exulans, this is not 

the case for Grey Petrels. It has been argued that such a quick recovery is possible for 

winter breeders due to the abundant resources available in the summer, which they can 

exploit without the central-place restrictions experienced by breeding birds (Chastel 

1995).  

Alternatively, allochrony may develop simply because winter resource levels are 

high enough to support alternative breeding strategies. Seven reciprocally monophyletic 

clades of band-rumped storm-petrels (Hydrobates spp.) have now been revealed, which 

likely comprise cryptic species or sub-species that show strong allochrony caused (or at 

least maintained) by multiple temporal peaks in resource availability (Monteiro and 

Furness 1998, Taylor et al. 2019). It may be that despite lower overall productivity in 

winter, there is a secondary peak of food accessibility for Grey Petrels, due to a reduction 

in interspecific competition in waters around South Georgia. Grey Petrels from Gough 

Island show temporal segregation in peak demand for resources both from White-chinned 

Petrels at South Georgia, and Spectacled Petrels, which breed on nearby Inaccessible 

Island (Reid et al. 2014). Demand for resources other than food may also contribute to 

breeding allochrony; indeed, it has been suggested that winter breeding in seabirds 

emerged in response to competition for burrows (Harrison et al. 1983). Winter breeding 

at South Georgia is not possible for burrow-nesting species due to frozen ground and 

persistent snow cover; however, at lower-latitude sites such as Marion Island, there is 

strong evidence for competition (in the form of chick evictions) between Grey and 

White-chinned Petrels at the start or end of their respective breeding seasons (Dilley et al. 

2019). Winter breeding may have evolved in sympatry as a mechanism to reduce such 

competition and then carried over to islands where these species breed in allopatry. In 

addition, because zooplankton remain abundant in the area north of South Georgia well 

into winter (Atkinson et al. 2001), the absence of local breeders may more than 

compensate for the commuting costs borne by Grey Petrels coming from Gough. It has 

been suggested that winter breeding in Westland Petrel is sustained by sufficient prey 

abundance in the absence of summer-breeding competitors (Poupart et al. 2020). It may 

be that winter breeding also provides Grey Petrels with a dual advantage, allowing access 
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to sufficient prey resources in the south, while avoiding peak competition for burrows on 

their temperate breeding islands.  

 Our study highlights the importance of tracking for identifying key foraging areas 

and habitats for pelagic predators, which can be located thousands of kilometres from the 

nest. Here we report results for two congeners with distinct foraging preferences, but we 

infer that their strategies are also influenced by the highly speciose communities in which 

they breed: specialisation is therefore likely to occur at even smaller scales, and be 

further influenced by individual preferences (Navarro et al. 2013, Phillips et al. 2017). 

Such comparisons help develop a deeper understanding of the relationships between 

foraging behaviour, niche partitioning and life history.  
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CHAPTER 4: Habitat preferences of the Phoebetria 

albatrosses in sympatry and allopatry  

 

This chapter will be submitted for publication as Bentley, L. K., Phillips, R. A., 

Alderman, R., Carpenter-Kling, T., Crawford, R., Cuthbert, R., Delord, K., Dilley, B. J., 

Gales, R., Makhado, A. B., Oppel, S., Pistorius, P., Ryan, P. G., Schoombie, S., 

Weimerskich, H., & Manica, A. Habitat preferences of the Phoebetria albatrosses in 

sympatry and allopatry.  
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Weimerskich, and R. A. Phillips provided tracking data. T. Carpenter-Kling separated 

Marion Island tracking data into individual trips. The pronoun ‘I’ is used in this chapter 

as it has not yet been reviewed by all coauthors. 
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Abstract 

Competition is proposed to drive niche segregation along multiple axes in speciose 

communities. Understanding spatial partitioning of foraging areas is particularly 

important in species that are constrained to a central place.  Here, I present a natural 

experiment examining habitat preferences in sympatry and allopatry of congeneric 

Southern Ocean predators. The two Phoebetria albatrosses breed on islands located from 

~ 30-55 °S – Sooty Albatrosses (P. fusca) in the north and Light-mantled Albatrosses (P. 

palpebrata) in the south) – with sympatric overlap at locations ~ 45 °S. Using foraging 

tracks from 87 individuals during their incubation periods (from 2002-2017) I show that 

while foraging habitat preferences are consistent in Light-mantled Albatrosses, there is 

divergence of preferences in Sooty Albatrosses depending on whether they are in 

sympatry with their congener or in allopatry. Light-mantled Albatrosses demonstrated a 

cold-water preference across their range, whereas allopatric Sooty Albatrosses in the 

north preferred cold-water habitats, but those at more southern sympatric colonies 

foraged in warm-water areas. This study represents the most comprehensive work 

undertaken on this genus to date. My findings highlight how habitat preferences and 

behavioural plasticity influence species distributions under different competitive 

conditions, and also have wider implications for our understanding of niche partitioning 

within complex communities. 
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4.1 Introduction 

Interspecific competition occurs when closely-related species overlap in space 

and share the same habitats and resources (Svärdson 1949, MacArthur and Levins 1964, 

Tilman 2007). Responses to interspecific competition vary, but include agonistic or 

territorial behaviour if species remain specialised on the same resources, or niche 

differentiation if either selection or plasticity results in one or both species shifting to 

alternative resources (Kokkoris et al. 1999, Grant and Grant 2006, Stuart and Losos 

2013, Tarjuelo et al. 2017). The latter has been observed, for example, in hydrological 

niches in plants (Araya et al. 2011), feeding niches in predatory fish (Young et al. 2010), 

microhabitat use in reptiles (Pianka and Huey 1978), and sensory abilities in bats 

(Siemers and Schnitzler 2004). Segregation along multiple axes relating to habitat use, 

phenology or trophic level has also been reported in speciose communities across diverse 

taxa (Croxall and Prince 1980, Kiszka et al. 2011, Ito et al. 2021). Habitat segregation of 

mobile predators is well-studied in terrestrial and marine systems, as an adaptive 

response to interspecific competition which allows for competitors to coexist (Ziv et al. 

1993, Martin and Martin 2001, Morris 2003, Jankowski et al. 2010). 

For highly mobile species, foraging habitat selection is of critical importance, 

particularly when the environment is dynamic and prey are unpredictable at small spatial 

scales (Weimerskirch 2007). Whether we consider the drivers of habitat selection at the 

proximate level (the environmental cues used to locate prey patches) or ultimate level 

(the evolutionary costs and benefits of using a particular habitat), it is assumed that 

individuals should forage such that their expected fitness is maximised (subject to 

constraints) (Pyke 1984, Hutto 1985). It has been suggested as a general rule that 

competitors with similar ecological niches are more confined to their specific, divergent 

niches when in sympatry, but expand into the niche of their absent competitor when in 

allopatry (Hildén 1965). While often argued that niche divergence between competitors 

is evidence of competition driving coevolution (e.g. Jones and Barmuta 2000, Salewski et 

al. 2003, Cloyed 2014), demonstrating the supposed coevolutionary shaping of niches is 

difficult, particularly as there are other potential drivers (Connell 1980). When studying 

an ecological community, it is often impossible to tell whether observed traits are truly 

coevolved – i.e. that they represent reciprocal evolutionary change in traits between two 

co-occurring species (Janzen 1980) – or instead are adaptations over shorter timescales 

(Connell 1980, 1985). If habitat preferences are coevolved at a species level due to 
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historical competition, they are likely to be less variable than those that emerge within 

populations due to behavioural plasticity or density-dependent mechanisms. Regardless 

of the mechanism of segregation it is important to understand the extent to which species 

can change their foraging strategy in response to competition and a dynamic 

environment, particularly in the context of anthropogenic environmental change. 

Seabirds provide a suitable system to study effects of competition on habitat 

preference, because they breed in densely populated, speciose communities with highly 

constrained central-place foraging (Phillips et al. 2017, Antolos et al. 2017). This forced 

overlap during an energetically expensive life stage has led to segregation across multiple 

axes, both within and between species (Cooper and Klages 1995, Navarro et al. 2013, 

Campioni et al. 2016, Bolton et al. 2019, Granroth‐Wilding and Phillips 2019, Reisinger 

et al. 2020). However, almost all studies to date have focused on competition within a 

single breeding community, thus making it difficult to ascertain the drivers of observed 

niche differentiation at a broader level. A suitable study system to investigate the impact 

of competition on habitat preference exists in the Phoebetria albatrosses (Sooty Albatross 

P. fusca and Light-mantled Albatross P. palpebrata). This genus has a circumpolar 

distribution, and the two species breed both in sympatry and allopatry. Sooty albatrosses 

are distributed largely from 30-50 °S, and breed north of the Antarctic Polar Front, 

whereas Light-mantled Albatrosses breed in the subantarctic region (below 40 °S); the 

species co-occur at their respective southern/northern limit, at the Prince Edward Islands 

and Iles Crozet (~ 47 °S) (Berruti 1979, Phillips et al. 2016, Schoombie et al. 2017). 

There is extensive overlap of the ~ 7 month breeding seasons in both species, though on 

average Sooty Albatrosses lay ~ 2 weeks earlier than Light-mantled Albatrosses (Tickell 

2000). This allochrony means that there is little overlap of the ~ 3-week brood-guard 

stage, but significant overlap of the longer incubation and chick-rearing periods. 

In this study I compare the habitat preferences of the Phoebetria albatrosses at 

multiple colonies across their breeding ranges, including in sympatry and allopatry 

(Figure 4.1). My aim was to ascertain consistency in habitat preferences within species, 

and whether preferences changed in the presence of the congener. I hypothesised that if 

habitat preference coevolved in sympatry or was otherwise innate, I would observe 

consistent preferences within species across breeding sites. The alternative is that habitat 

preferences are shaped on shorter timescales by interspecific competition, in which case I 

hypothesised that colony-specific preferences would be apparent in one or both species. 
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4.2 Methods 

4.2.1 Data collection 

Light-mantled and Sooty Albatrosses were tracked during incubation at multiple 

islands from the years 2002 to 2017 (for full details, see Table 4.1).   

 

Figure 4.1: Tracks from Light-mantled Albatrosses (LMA) and Sooty Albatrosses (SA) 

during incubation from multiple colonies across their breeding range. Study colonies 

indicated by red diamonds. For deployment details, see Table 4.1. 
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4.2.2 Track processing  

Tracks were visually inspected and removed from analysis if trips were 

incomplete due to of device malfunction. Trips were counted as incomplete if they did 

not show a clear departure from and return to the colony, or if large portions of the 

middle of the trip did not register locations. Where multiple trips for the same individual 

were successfully recorded, only the first trip was selected from each bird to avoid 

pseudo-replication. Not all nests were monitored until hatching, in which case I used trip 

duration and the average hatching dates at each colony (Agreement on the Conservation 

of Albatrosses and Petrels 2010a, 2010b) to select a trip likely made during incubation. 

All tracks were filtered (trip R package (Sumner et al. 2009)) to remove points indicating 

flight speeds > 90 km/hr (Phillips et al. 2007), and interpolated to 60-minute intervals for 

consistency, as this was the coarsest temporal resolution of data collected. Characteristics 

(duration, distance travelled, and maximum displacement) were calculated from the 

interpolated tracks. For each track, 20 pseudoabsence tracks were generated by 

randomising the departure direction from the colony, while retaining step length and 

turning angle to ensure flight patterns were biologically appropriate. Various remote 

sensing and other environmental variables were extracted for each presence and 

pseudoabsence location (Table 4.2).   

 

 
Table 4.2: Environmental layers used in habitat models for Light-mantled and Sooty 
Albatrosses tracked during incubation. 

Variable (units) Data Source Temporal 
scale 

Spatial Scale 

Sea surface temperature  
(SST, °C)  

Global ocean ensemble physics 
reanalysis, CMEMS (Global 
Monitoring and Forecasting 
Centre 2021). 

Monthly 
composite 

0.25 x 0.25 degrees 

log(Chlorophyll a 
gradient) 

Calculated from Global ocean 
biogeochemistry hindcast, 
CMEMS (Global Monitoring 
and Forecasting Centre 2021) 
using R package ‘grec’ (Lau-
Medrano 2020) 

Monthly 
composite 

0.25 x 0.25 degrees 

Bathymetry (m) Global Bathymetric Chart of the 
Oceans (GEBCO Compilation 
Group 2020).  

Static 0.00833 x 0.00833 
degrees, resampled to 
0.25 x 0.25 degrees using 
the ‘terra’ package 
(Hijmans et al. 2022).  

log(eddy kinetic energy) Calculated from north and east 
current velocities, Global ocean 
ensemble physics reanalysis, 
CMEMS (Global Monitoring 
and Forecasting Centre 2021). 

Monthly 
composite 

0.25 x 0.25 degrees 
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4.2.3 Modelling  

Binomial generalised additive models using the environmental variables extracted 

at the presence and pseudoabsence locations were constructed for each species. Additive 

models are appropriate when relationships with predictors are likely to be non-linear, and 

were constructed using the R package mgcv (Wood 2011). Full models were constructed 

for each species, using all environmental variables (see Table 2) by colony type 

(sympatric or allopatric), and model selection was undertaken using AICc values. Models 

for each colony were subsequently constructed using the environmental variables 

selected for the full model. Spatial autocorrelation was accounted for in all cases using a 

Gaussian correlation structure on the latitude and longitude terms. All model formulae 

and outputs are available in in supplementary tables 1 through 6. All data manipulation 

and analyses were undertaken in R version 4.0.3 (R Core Team 2020). Means are 

provided ± SD unless indicated otherwise. 

 

4.3 Results 

4.3.1 Trip characteristics 

Trips of Light-mantled Albatrosses were on average 12.66 ± 4.62 days and 

covered on average 5723 ± 2151 km, whereas those of Sooty Albatrosses were on 

average 11.25 ± 4.58 days and covered an average 5154 ± 2132 km. The average 

maximum displacement from the colony was 1562 ± 675 km for Light-mantled 

Albatrosses and 1318 ± 495 km for Sooty Albatrosses (see Table 4.3). When pooling 

trips from all years, Light-mantled Albatrosses from South Georgia took the shortest trips 

(10.17 ± 4.57 days), and those from Marion Island the longest (12.72 ± 4.57 days). There 

much higher variation in average trip lengths among Sooty Albatross colonies, with birds 

from Gough Island foraging for 8.45 ± 4.54 days, and birds from Tristan da Cunha and 

Iles Crozet foraging for almost twice as long: 16.17 ± 2.16 and 16.5 ± 10.4 days, 

respectively. However, the longest-lasting foraging trips were not always those where 

birds reached the greatest distances from their breeding colonies. In both light-mantled 

and Sooty Albatrosses, birds from Crozet attended the most distant foraging areas, 2456 

± 161 and 2210 ± 1091 km from their respective colonies. Light-mantled albatrosses 

from Macquarie Island and Sooty Albatrosses from Marion Island accessed the most 

proximate foraging areas, at a maximum 1203 ± 267 and 1145 ± 323 km away, 
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respectively. Finally, the average distance travelled in a foraging trip was greatest for 

Marion Island Light-mantled Albatrosses and Crozet Island Sooty Albatrosses, at 6255 ± 

2205 and 6913 ± 5019 km. The shortest average distance travelled was 4810 ± 399 km 

for Light-mantled Albatrosses from Macquarie Island, and 4826 ± 2328 km for Sooty 

Albatrosses from Gough Island. 

 

 

Table 4.3: Trip characteristics of incubating Light-mantled Albatrosses (LMA) and Sooty 
Albatrosses (SA) for each year tracked. 
 

4.3.2 Habitat preferences  

Light-mantled Albatrosses, whether in sympatry or allopatry with Sooty 

Albatrosses, preferentially foraged during the incubation period in cold-water areas of 0 – 

5 °C, and avoided water temperatures > 15 °C (Fig. 4.2(a)). At Crozet, Marion and 

Macquarie Islands, Light-mantled Albatrosses mainly travelled south to forage in areas 

close to the ice edge, whereas at South Georgia they foraged at the ice edge and to as far 

north as the Antarctic Polar Front. There was a slight tendency to use areas with high 

chlorophyll a gradients (indicating frontal zones), particularly at Iles Crozet.  Preferred 

water depths were 2000-4000 m (Fig. 4.2 (c)). The best model included all environmental 

Season Breeding site  Species n Mean trip length 
(days) 

Mean distance 
travelled (km) 

Mean max 
displacement 
from colony (km) 

2015 Tristan da Cunha SA 3 16.17 ± 2.16 6339 ± 986 1682 ± 227 

2013 Gough Island SA 11 8.45 ± 4.54 4826 ± 2328 1307 ± 327 

2009 South Georgia LMA 6 7.61 ± 3.83 4828 ± 2128 1546 ± 633 

2014 South Georgia LMA 12 11.45 ± 4.50 5715 ± 2600 1259 ± 474 

2015 Marion Island LMA 4 14.48 ± 5.58 5782 ± 2308 1312 ± 704 

2015 Marion Island SA 3 11.72 ± 2.09 4402 ± 1101 1225 ± 360 

2016 Marion Island LMA 6 17.00 ± 3.99 7696 ± 2057 2135 ± 690 

2016 Marion Island SA 10 12.05 ± 2.11 5601 ± 1568 1273 ± 237 

2017 Marion Island LMA 11 13.56 ± 4.45 5640 ± 2064 1548 ± 762 

2017 Marion Island SA 8 10.10 ± 2.29 4226 ± 1296 953 ± 347 

2008 Iles Crozet LMA 4 13.84 ± 2.54 5666 ± 1938 2455 ± 161 

2008 Iles Crozet SA 3 16.50 ± 10.40 6913 ± 5018 2210 ± 1090 

2002 Macquarie Island LMA 6 12.17 ± 2.29 4809 ± 399 1202 ± 267 
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variables, though the most influential was sea surface temperature (Appendix 3, Tables 

S1 and S2). 

In contrast to Light-mantled Albatrosses, the Sooty Albatrosses did not show 

consistent preferences across sites. When in allopatry, Sooty Albatrosses foraged 

preferentially in cold (0 – 5 °C) and cool waters (10 – 15 °C), even though most available 

habitat was 15-25 °C (Fig. 2 (e)). In contrast, Sooty Albatrosses breeding in sympatry 

with Light-mantled Albatrosses foraged preferentially in waters of 15 – 20 °C and 

targeted areas with high chlorophyll a gradients. Sooty albatrosses avoided the cold-

water areas (< 5 °C) frequented by their congener, even though sites where the two 

species breed in sympatry are further south than those where only Sooty Albatrosses are 

present. Zones of high eddy kinetic energy were targeted by Sooty Albatrosses across 

their range (Fig. 4.2(f)). The best model included all environmental variables, with 

markedly different relationships displayed at sympatric and allopatric colonies (Appendix 

3, Tables S4 and S5). 

Sea-surface temperature was the most important predictor in models for both 

species, with similar shapes for all smooths at all colonies of Light-mantled Albatrosses, 

and clear differences in smooths between colonies of Sooty Albatrosses, depending on 

whether they were breeding in sympatry or allopatry (Fig. 4.3, Appendix 3, Tables S3 

and S6). 
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Figure 4.2: Density plots showing the proportion of presences and pseudoabsences 
across key environmental variables for incubating Light-mantled and Sooty Albatrosses.   
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 Figure 4.3: GAM smooths for colony-specific habitat preference models for Light-
mantled and Sooty Albatrosses tracked during the incubation period. Green and teal 
lines: allopatric LMA colonies; red and orange lines: allopatric SA colonies; blue and 
purple lines: sympatric colonies. Individual colonies indicated by line type in the legend. 
Y-axes on log-odds scale. 
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4.4 Discussion 

Despite their morphological and behavioural similarities, the foraging habitat 

preferences of the two species of Phoebetria albatross differ significantly from one 

another when breeding in sympatry. The preference of Light-mantled Albatrosses for 

cold-water areas (either cold upwelling zones or the ice edge) remain consistent 

throughout their range. In contrast, habitat preferences of Sooty Albatrosses differ 

whether they breed in sympatry with their congener or in allopatry. Even though the 

islands where they breed in sympatry are further south, the Sooty Albatrosses at those 

sites foraged preferentially in warm water areas, which was not a preferred habitat when 

breeding in allopatry in the northern portion of their range. This suggests that there is a 

competitive mechanism at work driving habitat segregation. 

Given the absence of consistent preferences in both species across their global 

distributions, the observed niche segregation between sympatric Phoebetria albatrosses is 

unlikely to be driven by coevolution under competition. Competition is often considered 

to drive coevolved niche specialisation in speciose communities, but demonstrating 

coevolutionary shaping of competitors’ niches is challenging, especially as there are 

alternative, more plausible drivers (Connell 1980). In general, ecological niche theory 

predicts that differentiation of some kind (e.g. prey specialisation, spatio-temporal 

segregation) should occur when multiple species with similar niches compete for 

resources (Tilman 2007). Specialist foraging strategies coevolved at a species level due 

to historical competition (i.e. following reciprocal divergent selection for different 

phenotypes) are likely to be less flexible than strategies that emerge within populations 

due to behavioural plasticity or density-dependent mechanisms. In an ecological 

community, it is often impossible to tell whether the observed specialisations are 

coevolved or are adaptations that were selected for over shorter timescales. In general, 

sympatric speciation – particularly on isolated islands where the population is under 

divergent ecological selection – is accepted as a plausible route to the formation of novel 

species (Jiggins 2006). Indeed, there is recent empirical evidence for this in some seabird 

species (Friesen et al. 2007b). Had Phoebetria speciation occurred in sympatry – with 

competition driving selection for resource segregation and leading to subsequent 

reproductive isolation – I would expect fixed habitat preferences within each species that 

carried over to any allopatric populations that were subsequently established. However, 

this ‘ghost of competition past’ (Connell 1980) was not observed in our study: although 
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the foraging habitat preferences of Light-mantled Albatrosses were consistent across 

sites, those of Sooty Albatrosses were not. If sympatric speciation did occur in these 

species it is therefore unlikely to have been driven by competitive segregation of foraging 

niches. Based on simulation models, the alternative mechanism – speciation in allopatry 

with subsequent reestablishment of sympatric populations – is considered to be the more 

common mode of avian speciation (Phillimore et al. 2008). If this is the case, the 

observed niche segregation in sympatry cannot be the product of coevolution, as co-

occurrence is a critical requirement for reciprocal selection to occur (Connell 1980, 1985, 

Janzen 1980).  

 Even if the habitat preferences of the Phoebetria albatrosses are not the result of 

coevolved niche differentiation, this does not preclude the possibility that competition 

influences their realised niches in sympatry. As such, there are three alternative 

mechanisms I see for the patterns observed. Firstly, ecological character displacement – 

the concept that sympatric species competing for limited resources should experience 

selection for divergent resource use (Brown and Wilson 1956) – may be occurring at a 

population level. There are few cases with truly unequivocal support for ecological 

character displacement, with one review finding only nine of 144 case studies 

convincingly ruled out alternative explanations (Stuart and Losos 2013). In our study, 

character displacement is difficult to confirm as the trait in question is behavioural rather 

than morphological, and multiple measures from the same individuals through time are 

required to confirm whether this trait is fixed or plastic.  

Secondly, habitat segregation of the sympatric populations may be demonstrating 

a socially-mediated variation of the Ideal Free Distribution (IFD), the theory assuming 

that equally competitive organisms will act to maximise their foraging efficiency by 

moving to areas with decreased densities of competitors (Fretwell 1969). It is 

theoretically possible that the observed segregation developed because individuals 

avoided areas of highest competition and is now maintained through social learning or 

preferred associations. However, multiple studies have shown that the space-use of 

seabirds and their prey rarely appears as expected under the IFD (Logerwell and 

Hargreaves 1996, Swartzman and Hunt 2000). This is most likely because seabirds rarely 

conform with the associated IFD assumptions of individuals having perfect 

environmental information and cost-free movement (Fauchald 2009). In many colonial 

seabirds, density dependent habitat segregation has been observed among colonies (e.g. 

Wakefield et al. 2013), but I did not find this. The speciose nature of seabird breeding 



4. Habitat preferences of Phoebetria albatrosses 

 73 

aggregations means both intra- and interspecific competition are high. There is evidence 

in geese that the density of multispecies assemblages can influence fitness more than the 

density of conspecifics alone (Schmutz and Laing 2002), and it is plausible that similar 

effects occur at seabird breeding islands, however this has not been formally tested. In 

our study, I observed segregation between presumably unequal competitors (i.e. between 

the two species), and use of the same foraging areas by equal competitors (i.e. consistent 

habitat preferences within species, often among colonies). There was within-species 

overlap of foraging areas in both Light-mantled and Sooty Albatrosses from Marion and 

Crozet (Fig. 1), though they were tracked in different years. Future tracking of birds from 

neighbouring colonies in the same year is needed to rule out among-colony habitat 

partitioning in the Phoebetria albatrosses.   

Thirdly, the observed differences in habitat preference among populations of 

Sooty Albatrosses may reflect behavioural plasticity. This I consider to be the most likely 

explanation. Strict resource preferences have been shown to relax in conditions of 

scarcity (Bergström et al. 2004, Snell-Rood and Papaj 2009), which is adaptive in novel 

or dynamic environments where preferred resources are unavailable. Indeed, there should 

be selection for reversible phenotypic plasticity in environments that vary within the 

lifetime of an individual, due to the high costs of mismatch between preference and 

availability of resources (Snell-Rood 2013). This is particularly relevant for long-lived 

species such as albatrosses, which can live for > 40 years (Froy et al. 2017), as they 

presumably encounter greater environmental variability than shorter-lived species. There 

is evidence that habitat preferences in other Procellariiformes are not consistent between 

breeding populations (Torres et al. 2015, Clay et al. 2016, Péron et al. 2018). This 

suggests that flexibility of habitat preferences is adaptive at a species level. Further 

evidence for plasticity in habitat preference comes from Marion Island, where Sooty 

Albatrosses tracked during incubation showed high inter-annual variability in foraging 

behaviour, and Light-mantled Albatrosses targeted specific eddy fields only in years 

when eddy kinetic energy was particularly high (Carpenter‐Kling et al. 2020). I observed 

divergent habitat preference among colonies of Sooty Albatross, which supports the 

conjecture that this trait is behaviourally plastic. The consistency of preferences among 

Light-mantled Albatross colonies does not, however, confirm that this species is 

inflexible. To truly understand the flexibility of albatross habitat preferences we require 

repeated measures on individuals (to determine if there is individual-level specialisation), 

across years (to determine the response within populations to changes in local conditions) 
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and a combination of both (to understand within-population variation of individual 

responses to changing conditions). If any colony-level habitat preferences are shown to 

be fixed, further research is then required to ascertain whether this inflexibility is genetic 

(due to past selection) or cultural (due to learning). 

Flexibility in habitat preferences can buffer the effects of anthropogenic 

environmental change, which is occurring at an unprecedented rate (Gruber et al. 2019), 

allowing for immediate individual adaptation to changing conditions rather than species 

adaptation on the scale of evolutionary time. Nevertheless, selection also acts on these 

individuals (whether they display this flexibility or not). High philopatry in seabirds 

minimises gene flow across breeding ranges, and there has been some suggestion that 

differentiation is occurring in Sooty Albatrosses, although citing unpublished data 

(Robertson 1998). If this is the case, we are more likely to see differential responses 

among colonies of this species to environmental change. Unfortunately, albatrosses are 

unsuitable for cross-fostering studies which could explore the varying influences of 

genotype and the local environment on habitat preferences. Studies of ontogenetic 

changes in habitat preferences can at least help us to understand the potential flexibility 

of preferences within individuals (Frankish et al. 2020). Importantly, even if birds are 

flexible in their habitat preferences, this may not be sufficient to compensate for poor 

environmental conditions: evidence from South Georgia shows that in years when grey-

headed albatrosses foraged mostly on krill in Antarctic waters – rather than cephalopods 

in the Antarctic Polar Frontal Zone, which is more common in years with favourable 

environmental conditions – they experienced poorer breeding success (Xavier et al. 

2013). Flexible preferences do not always manifest as a shift to a generalist niche, as  

there is also evidence that when foraging conditions deteriorate, the diets of sympatric 

species show greater divergence (Barger and Kitaysky 2012). Increased niche 

segregation in response to stress, such as greater anthropogenic pressures, can exacerbate 

impacts affecting particular aspects of the niche space.  

Foraging habitat location influences exposure to threats, and, ultimately, the 

population trend. Sooty albatross are listed as Endangered, and Light-mantled Albatross 

as Near-threatened by the IUCN (2022), and both species are listed by the Agreement on 

the Conservation of Albatrosses and Petrels (Phillips et al. 2016). Decreasing population 

trends have been observed at almost all Sooty Albatross colonies, with the exception of 

Marion Island (Delord et al. 2008, Agreement on the Conservation of Albatrosses and 

Petrels 2010a, Schoombie et al. 2016, Weimerskirch et al. 2018). This is proposed, in 
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part, to be the result of increased overlap with subtropical tuna fisheries (Delord et al. 

2008). It is also possible the extreme southerly latitudes of cold-water habitats near 

Marion and Crozet (~60°S) are generally inhospitable to a species such as the Sooty 

Albatross, which presumably evolved in the subtropics. Conversely, the Light-mantled 

Albatross population has likely increased at Iles Crozet in recent years (Delord et al. 

2008). However, the cold-water specialism of Light-mantled Albatrosses may increase 

their vulnerability to warming seas due to climate change (Inchausti et al. 2003, 

Schoombie et al. 2016). The distribution of Antarctic krill, an important prey item for this 

species (Green et al. 1998, Jaeger et al. 2010), is rapidly contracting southwards 

(Atkinson et al. 2019), and the increased costs associated with foraging even further to 

the south may reduce fitness in Light-mantled Albatrosses and contribute to future 

population declines.   

Evidence from stable isotopes indicates that the cold-water preferences observed 

in incubating Light-mantled Albatrosses persist through chick-rearing and the non-

breeding season. By measuring the isotopic ratios in chick and adult feathers, one can 

approximate the latitude of foraging during chick-rearing and moult, respectively (Jaeger 

et al. 2013).  Studies from both Crozet and Marion Islands show that Light-mantled 

Albatrosses forage further to the south than Sooty Albatrosses during chick rearing 

(Jaeger et al. 2010, Connan et al. 2014, 2018), as well as in incubation (this study). 

Interestingly, there is some indication that Sooty Albatrosses from Crozet forage in 

subantarctic waters during chick-rearing (Jaeger et al. 2010), rather than the subtropical 

waters observed during incubation. It is likely they utilise a diet of squid and penguin 

carrion taken from near Crozet Island during this period, whereas Light-mantled 

Albatrosses showed greater reliance on Antarctic krill Euphausia superba, which is not 

available outside of the Antarctic zone (Jaeger et al. 2010). However, dietary studies on 

Crozet Sooty Albatrosses also showed squid beaks from subtropical species during this 

time, so their dietary niche remains equivocal (Connan et al. 2014). The reasonably 

consistent isotope ratios found in adult Light-mantled Albatross feathers indicate an 

annual fidelity to the Southern Ocean (Connan et al. 2014). Sooty albatrosses, however, 

appear to overwinter in the subtropics, with the exception of those from Gough Island, 

which join their congener at higher latitudes (Connan et al. 2018). Given that breeding 

Sooty Albatrosses from Gough Island also target cold-water areas, this may indicate 

some consistency between breeding and non-breeding habitat preferences across the 

genus, which merits further study. Indeed, further work on foraging habitat choice in the 
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non-breeding season is important to understand the factors influencing distribution when 

these species are not constrained to a central place.  

Finally, I acknowledge that comparisons of species pairs in sympatry and 

allopatry do not account for the reality that resource competition occurs within a wider 

community (Bodey et al. 2014). The speciose nature of seabird breeding assemblages 

results in multiple layers of morphological segregation between e.g. small petrels, 

penguins and albatrosses (Abrams and Griffiths 1981), but more detailed comparative 

studies are required to identify how niche space is partitioned among sympatric (and 

morphologically more similar) Thalassarche and Phoebetria albatross species. 
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CHAPTER 5: General discussion 

5.1 Synopsis 

Understanding factors affecting species distributions is a fundamental goal in 

ecology, and one critical driver of movement is the search for food. By equipping pelagic 

predators with miniaturised tracking devices, we can reveal where and how they forage 

in the open ocean – particularly during the energetically expensive breeding period. 

Using tracking data from Antarctic seabirds, I investigated aspects of foraging ecology 

from the behaviour of individuals to the habitat preferences of populations and species. 

Not only does this work provide insights into the at-sea behaviour of pelagic seabirds, a 

group of high conservation concern, but it also considers how habitat accessibility, 

habitat preference, and interspecific competition may impact realised distributions. 

In this thesis I focus on foraging during the breeding season, when individuals are 

constrained to a central place. In Chapter 2, I show that – in contrast to maximum depths 

shown in previous studies using capillary depth gauges – diving behaviour in two genera 

of small albatrosses is mostly infrequent, shallow, and diurnal. This work supports wider 

adoption of bycatch mitigation measures including night-setting and line weighting to 

increase sink rates of baited hooks. In Chapters 3 and 4, I show that multiple populations 

of albatrosses and petrels use consistent, distant foraging areas while incubating, and that 

competition is a likely driver of distribution patterns. Building on existing evidence for 

niche segregation (on multiple axes) in response to interspecific competition, I show 

multiple examples of population-specific habitat preferences during the incubation period 

(Chapters 3, 4). Additionally, I show that while habitat preferences in some species are 

consistent across populations, in other species preferences differ depending on whether 

breeding is in sympatry with a congener (Chapter 4). This variation among populations 

indicates that species-level variability in habitat preference may be adaptive, and that 

extrinsic factors (competition) as well as intrinsic physiology and preferences are likely 

strong drivers of foraging habitat selection. In this final chapter, I discuss the 

implications of my work for foraging ecology at multiple functional levels. I then 

consider the necessary advances (some underway, some still to come) that will improve 

our knowledge of pelagic seabird species from both fundamental ecological research and 

conservation perspectives.  
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5.2 Foraging ecology: from the individual to the community 

5.2.1 Individual behavioural measures  

Knowing how seabirds capture prey can inform both our understanding of their 

foraging ecology and their likelihood of incidental mortality fisheries. The extent of 

commercial fishing in the world’s oceans means that, at least for some stage of their life 

cycle, geographic overlap between pelagic seabirds and commercial fisheries is highly 

likely (Clay et al. 2019). Beyond simple co-occurrence, species vary in their likelihood of 

being bycaught according to gear type and any bycatch mitigation measures deployed 

(extrinsic factors), their behaviour and physiology (intrinsic factors), and interactions 

between the two (Dias et al. 2019). For example, bird-scaring (tori) lines repel foragers 

until hooks have sunk beyond their dive capabilities (Løkkeborg 2011) – it is therefore 

critical to accurately determine what these capabilities are. For the small albatrosses 

(Thalassarche spp., Phoebetria spp., Phoebastria spp.) it has been shown that most dives 

are short and shallow (Chapter 2, Kazama et al. 2019). However, other intrinsic 

behaviours, such as tendency to follow fishing vessels, have been shown to vary not only 

between species, but also between colonies of the same species (Granadeiro et al. 2011, 

Torres et al. 2011). It is likely that diving behaviour also varies among colonies: Guilford 

et al. (2022) showed that for Black-browed Albatrosses from the Falkland Islands, many 

dives > 6 m were recorded, including some that appeared to be wing-propelled. Black-

browed Albatrosses have consistently been found to dive only during the day, and at 

distal portions of their foraging trips (Chapter 2, Guilford et al. 2022). This diurnal diving 

is likely to be a physiological limitation linked to visual systems, and is a likely 

explanation for the observed effectiveness of night setting in reducing albatross bycatch 

(Melvin et al. 2013). However, variations in dive depth observed between studies may be 

linked to variation in prey type and availability. It may be that Black-browed Albatrosses 

from South Georgia were not observed to dive to depths > 6 m simply because there is 

ample prey at shallower depths. The different dive depths observed between studies 

highlight the fact that when measuring foraging behaviour, we are unlikely to be 

measuring maximum capabilities, rather, we can only ever take a snapshot of individual 

behaviour. There are a great number of reasons why animals would not frequently 

demonstrate physiological maxima in regular monitoring (Shepard et al. 2009). It is 

therefore critical that ship-based observers continue to identify the way birds are caught, 

such that future mitigation strategies account for the complexities of behaviour in situ 
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that lead to mortality. In particular, understanding the impact of multi-species 

assemblages is important, because even shallow diving species are often killed due to 

secondary hooking when deeper divers such as White-chinned Petrels return baited hooks 

to the surface (Jiménez et al. 2012, Frankish et al. 2021). This reinforces the need to 

mitigate not necessarily only for the species of conservation concern, but also for the 

deepest-diving species commonly encountered.  

  

5.2.2 Colony-level habitat preferences 

In this work I found highly consistent habitat preferences within colonies of 

White-chinned Petrels, Grey Petrels, Light-mantled Albatrosses and Sooty Albatrosses 

during their incubation periods (Chapter 3, Chapter 4). Birds may use particular foraging 

areas consistently because they are linked to stable oceanographic features: for example, 

White-chinned Petrels from South Georgia use the Patagonian Shelf at multiple times of 

year, which is likely a preference learned through ontogeny via exploration and 

refinement (Chapter 3, Phillips et al. 2006, Frankish et al. 2020). Other explanations for 

this within-population consistency relate to information sharing between conspecifics – 

either at the foraging patch, or at the colony. The theory of local enhancement proposes 

that there is a social attraction between conspecifics that draws them to the same foraging 

patches (Kiester 1979). This is more likely to occur when birds are foraging close to their 

nesting colony (e.g. Black-browed Albatrosses in brood-guard, Chapter 2), rather than for 

many incubating Procellariiformes which forage thousands of kilometres from their 

colony (Chapter 3, Chapter 4), and therefore are within visual range of fewer 

conspecifics. Alternatively, the information centre hypothesis posits that colonial 

breeders can ‘inform’ others about the direction of foraging habitat via behaviours such 

as the bearing on which they return to the colony (Ward and Zahavi 1973). This theory 

has, however, been criticised for ignoring more parsimonious explanations for observed 

shared habitat use (Mock et al. 1988, Richner and Heeb 1995), but it has been 

demonstrated in some species which raft close to the colony (Weimerskirch et al. 2010). 

Importantly, not all the observed habitat preferences were linked to consistent geographic 

features, but rather to habitat types – Light-mantled Albatrosses from South Georgia, for 

example, preferentially use pelagic, productive, cold-water areas all around the island 

(Chapter 4). This implies that individuals may be using olfactory or other local 

environmental cues rather than social or learned information to identify appropriate 
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foraging habitat (Nevitt 2000, Abolaffio et al. 2018). The Procellariiformes in particular 

have highly developed olfactory systems (Cobb 1968, Nevitt 2004, Nevitt et al. 2008).  

Previous studies have found inter-colony segregation of foraging areas by 

intrinsic factors (e.g. sex) in many seabirds including Wandering Albatrosses (Nel et al. 

2002), Black-browed and Grey-headed Albatrosses (Phillips et al. 2004), and Giant 

Petrels Macronectes halli, M. giganteus (González-Solís et al. 2000)). It is, however, by 

no means ubiquitous: sexual segregation is not apparent in Shy Albatrosses T. cauta 

(Hedd et al. 2001) and Westland Petrels P. westlandica (Poupart et al. 2020). In sexually 

dimorphic species differences in factors such as competitive advantage or wing loading 

are often used to explain sexual habitat segregation (González-Solís et al. 2000, Shaffer 

et al. 2001b). Conversely, consistency in foraging area choice has been shown in male 

and female White-chinned Petrels from Marion Island (non-breeding) and South Georgia 

(breeding) (Berrow et al. 2000, Rollinson et al. 2018), or not explicitly tested for, as in 

the Phoebetria albatrosses across their breeding range (Schoombie et al. 2017). I also did 

not observe segregation of foraging areas by sex in this thesis. This was not quantified 

due to either limited sample sizes, birds of unknown sex, and (most importantly) due to 

high consistency of foraging location within populations.  

It is of particular interest that all except one of the Grey Petrels from Gough 

Island travelled to a foraging area to the north-west of South Georgia, over 3000 km from 

their nesting colony (Chapter 3). As they are winter breeders, it is unlikely that they 

experience the same levels of interspecific competition at their colony as most 

procellariiform seabirds do when breeding during the austral summer, yet they travelled 

very far from their colony to forage. Atlantic Petrels Pterodroma incerta also travel from 

Gough Island to a similar foraging area near South Georgia during their pre-laying 

exodus, which occurs at the time that Grey Petrels are incubating (Cuthbert 2004, Pastor-

Prieto et al. 2019). While these two winter-breeding species at Gough Island forage at 

great distances from the colony (Chapter 3, Pastor-Prieto et al. 2019), multiple winter 

breeders from New Zealand forage relatively close to their colonies (Waugh et al. 2018, 

Poupart et al. 2019a, 2019b, 2020). This indicates that prey are more available near 

colonies in the New Zealand region than at Gough, where the slow growth rates of chicks 

have been attributed to poor feeding conditions (Cuthbert 2004). Simultaneous tracking 

of winter-breeding species at Gough is required to better understand interspecific niche 

segregation in foraging depth, time, area and diet during this period when food 

availability is assumed to be poor. At Marion Island, habitat preferences vary among 
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years by different extents in Thalassarche and Phoebetria species (Carpenter‐Kling et al. 

2020). More multi-year tracking studies are needed to understand consistency in habitat 

preferences under different environmental conditions, given the relevance for identifying 

and protecting important habitats for species of conservation concern. 

 

5.2.3 Species-level insights 

To draw unequivocal conclusions about foraging behaviour at a species level, we 

require data from multiple breeding colonies across species ranges. Many multi-colony 

studies are from the North Atlantic, and focus on the partitioning of coastal habitats 

accessible from colonies at distances of tens or, at most, hundreds of kilometres (e.g. 

Wakefield et al. 2013, Dean et al. 2015, Corman et al. 2016, Bogdanova et al. 2017, 

Buckingham et al. 2022). In comparison, capturing all (or a large part) of the at-sea range 

of seabirds breeding in the Antarctic and subantarctic requires tracking at breeding sites 

that are thousands of kilometres apart, across multiple jurisdictions. Results in Chapter 4 

show that individuals from different breeding colonies can vary enormously in their 

foraging behaviour – Sooty Albatrosses in particular show markedly different habitat 

preferences at the northern and southern limits of their range.  

When foraging behaviour varies between colonies it indicates a trait or preference 

has been adjusted according to local conditions – either because it is under local 

selection, or due to behavioural plasticity (or both). On the other hand, physiological 

traits such as metabolic rates are likely to be reasonably fixed within species (Nagy et al. 

1999, Shaffer et al. 2001a). Similarly, morphological traits such as wing loading are 

inflexible, except on evolutionary timescales (Warham 1977). Identifying which factors 

are variable and which are fixed is important when considering the capacity of species to 

adapt to anthropogenic climate change. Changes in wind speed, for example, generate 

behavioural adjustments (i.e. a greater reliance on flapping flight, and therefore higher 

flight costs, if wind speeds drop) that impact all members of a species in the same way 

(Suryan et al. 2008). Changes in sea-surface temperature, however, are unlikely to 

generate consistent responses in all colonies, given the evidence that current habitat 

preferences encompass a broad temperature range (Chapter 3, Chapter 4). Ultimately, 

animal movements are shaped by both evolutionary and ecological processes: we will be 

able to better identify the evolutionary processes by investigating habitat preferences at 

the species level.  
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5.2.4 Considering communities 

The logical extension of the work in this thesis is to consider how habitat 

preferences are shaped by both competition and accessibility at a community level. While 

ambitious, simultaneous tracking of multiple species at the same breeding island would 

allow us to better understand how habitat is partitioned in real time between birds 

experiencing the same environmental conditions. Identifying how foraging habitat 

preferences differ among species during the breeding season would provide insights into 

the relationship between niche partitioning and community structure. For example, at 

South Georgia there are seven species with broadly overlapping habitat preferences, 

including Wandering, Black-browed, Grey-headed and Light-mantled Albatrosses, 

Northern and Southern Giant Petrels, and White-chinned Petrels. Few studies to date 

have analysed individual movement data to understand broader-scale community 

ecology, but recent conceptual work shows there is great potential for animal tracking to 

inform our understanding of communities and the processes that shape them (Costa-

Pereira et al. 2022).     

 

5.3 Advances in biologging and movement ecology 

Here I discuss three key areas – technological, analytical, and political – in which 

advances must continue, in order to ensure high quality research output and conservation 

outcomes for pelagic seabirds into the future.   

 

5.3.1 Technological  

The last decade has been called a “golden age of animal tracking”, in which 

technological advances have allowed scientists to build an increasingly detailed 

understanding of animal movement in the wild (Kays et al. 2015). Early Argos tags were 

large and expensive (>£2K), and required funding for satellite time (Bridge et al. 2011). 

Archival geolocators were the first truly miniature tags to be developed, and although the 

mean error was ~180-200km, they were (and remain) appropriate for tracking movement 

on a migratory scale and could be deployed on species as small as terns (Bridge et al. 

2013). Lightweight GPS tags weighing < 1 g are now available, enabling tracking of 

seabirds as small as European Storm-petrels Hydrobates pelagicus (25 g, Bolton 2021). 

In addition to tag miniaturisation increasing the number of species that can be tracked, 

the development of new sensors has diversified the types of movement data that can be 
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collected. Tri-axial accelerometers have now been used to identify behaviour such as 

dive type (i.e. plunge, foot propelled or wing-propelled), and can detect diving behaviour 

on a shallower scale than that of TDRs (Cianchetti-Benedetti et al. 2017, Guilford et al. 

2022). The development of lightweight, bird-borne cameras has given new insight into 

associations between seabirds and whales (Sakamoto et al. 2009), fisheries (Votier et al. 

2013), and other birds (Tremblay et al. 2014), as well as allowing researchers to identify 

prey types consumed (e.g. natural vs. fishery discards, Michel et al. 2021). New GPS tags 

equipped with a radar detector and Argos antenna have been used to relay information on 

the location of illegal fishing vessels in real time (Weimerskirch et al. 2020). As new 

devices become more innovative and affordable, our understanding of seabird foraging 

behaviour can expand to include events such as competitive interactions at foraging areas 

and individual interactions with anthropogenic threats  – this type of data can ultimately 

help elucidate the links between individual movement and fitness (and, indeed, work of 

this sort is now being published, see Carneiro et al. 2022, Ouled-Cheikh et al. 2022).  

 

5.3.2 Analytical 

The new types, and increasing volumes, of data collected by animal-borne tags 

have provided detailed insight into fields from animal navigation and cognition, to flight 

performance, to responses to anthropogenic change (Weimerskirch et al. 2016, Tucker et 

al. 2018, Toledo et al. 2020), but these data require increasing capability in data storage 

and computational analysis in order to be interpreted (Kays et al. 2015, Nathan et al. 

2022). Researchers can now access diverse high-resolution remote-sensing products (see 

Chapter 3, Chapter 4), handle big datasets on smaller and more powerful portable 

computers (often remotely using high performance computers; HPCs), and take 

advantage of the proliferation of free, open-source software packages – at least 60 in the 

R programming ecosystem alone (Joo et al. 2020). As has also been discussed for other 

frequently-tracked marine megafauna (e.g. sea turtles, Godley et al. 2008, Hays and 

Hawkes 2018), for tracking data to reach maximum utility they must be available and 

accessible to researchers and policymakers. This applies equally to procellariiform 

seabirds. Seabirds are unique in that there is a dedicated online database (hosted by 

BirdLife International) for tracking data from seabirds (initially Procellariiformes and 

later all seabird species). Globally at least 13 movement data repositories have been 

developed, with most hosting tracks from a wide variety of species (but see seaturtle.org) 
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(Campbell et al. 2016). As we look to the future, ensuring compatibility (and avoiding 

redundancy) of new packages and repositories is an important goal to effectively use 

animal tracking data. Early challenges related to standardising data types and formats, 

such as dates, times, coordinates and species names, have been well-discussed (Campbell 

et al. 2016). New proposals clearly outline how this standardisation is possible, and in 

fact necessary, as new tracking data are being generated at unprecedented rates (Sequeira 

et al. 2021, Kays et al. 2022).  

A more challenging issue is how to balance the interests of data owners, who 

have often collected tracking data at great cost, with the interests of the broader scientific 

and conservation community, to whom these data could be useful. Offering multiple 

levels of data sharing is a solution to this challenge. At minimum, registering species, 

region, numbers, and types of tags deployed with a data repository would avoid 

duplication of studies, and facilitate requests to collaborate. Publishing aggregate data 

sets (e.g. kernel density estimates (KDEs), reduced-resolution tracks, or species-wide 

summaries) provides an intermediate level of transparency, but prevents the data being 

used for other studies. Ideally, high resolution tracking data would be stored publicly 

once grant obligations have been fulfilled and data owners have addressed their primary 

research questions. This will ensure the maximum value is extracted from the datasets, 

which often can be used in innovative ways in synergy. When considering optimal 

outcomes from data sharing, it is also important to factor in the types of re-use that are 

most valuable. Researchers are more likely to use and re-process raw data, to ensure 

compatibility of multiple datasets. On the other hand, policymakers, conservationists, and 

managers are likely get more use from derived data products – for example, species-level 

maps of area use and overlap with threats (Carneiro et al. 2020). Indeed, there are now 

databases that exist for the purpose of re-using tracking data to ask ecosystem-scale 

questions, such as understanding migratory connectivity in the oceans to inform 

conservation and management policy (e.g. MiCO, see Dunn et al. 2019, Beal et al. 2021). 

The studies in this thesis were only possible due to the generous data-sharing of 

collaborators, and indeed it is likely that the mechanism through which data will be most 

effectively shared into the future is increased collaborative research (Hays and Hawkes 

2018, Bernard et al. 2021).  
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5.3.3 Political 

It has been well established that movement data can provide insights that inform 

biodiversity conservation (Burger and Shaffer 2008, Dias et al. 2017, Hays et al. 2019, 

Requena et al. 2020). Analysing seabird tracking data has been specifically highlighted 

as one way in which researchers can identify key candidate areas for Marine Protected 

Areas (MPAs), which are key conservation tools (Lovejoy 2006, Lascelles et al. 2012). 

Many studies have already used tracking and bio-logging techniques to identify species 

foraging hotspots and migratory routes, and propose Important Bird and Biodiversity 

Areas (IBAs), Ecological and Biologically Significant Areas (EBSAs), and no-take zones 

for commercial fisheries (e.g. Arcos et al. 2012, Montevecchi et al. 2012, Pichegru et al. 

2012, Perrow et al. 2015, Soanes et al. 2016, Bolton 2021). There are, however, problems 

that arise including a bias towards protected areas located directly surrounding seabird 

colonies or along national coastlines, and a lack of techniques for integrating at-sea 

survey data and individual tracking data (Lascelles et al. 2012). Moving from proposed 

protected area to formal, legal protection often takes many years – even when the area in 

question is within the exclusive economic zone (EEZ) of a single country. There is, then, 

significantly increased complexity when designing an MPA network for highly pelagic 

species such as the Procellariiformes, which spend an estimated ~40% of their life on the 

high seas (Beal et al. 2021). Although human activities including commercial fishing, 

shipping and seabed mining have rapidly increased the impacts on biodiversity in these 

areas beyond national jurisdiction (ABNJ), there has been a lag in developing appropriate 

international governance to regulate them (Wright et al. 2021). The Southern Ocean is, so 

far, the only location where regulations on resource use are caveated with an explicit aim 

to conserve biodiversity – the Convention on the Conservation of Marine Living 

Resources (CCAMLR) shows that international cooperation on the high seas is possible, 

though challenging (Ban et al. 2014). 

To ensure effective protection for procellariiform seabirds throughout their range, 

scientific evidence – including findings from tracking data –must be synthesised and 

well-publicised such that policymakers can interpret and act upon it (Dunn et al. 2019), 

and intergovernmental cooperation on a global high seas treaty must be forthcoming. 

While suggestions to streamline the complex processes involving hard and soft laws (e.g. 

the UN Convention on the Law of the Sea (UNCLOS), the Sustainable Development 

Goals (SDGs), respectively), and various management organisations for fisheries and 

shipping are outside the scope of this thesis, finalising a treaty (as was supposed to occur 
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at the Fifth Intergovernmental Conference on Marine Biodiversity of Areas Beyond 

National Jurisdiction in August 2022 (United Nations 2022)) is of critical importance to 

enable establishment of MPAs in ABNJs – this is crucial if we are to meet the goal of 

protecting 30% of the world’s oceans by 2030 (O’Leary et al. 2016, Roberts et al. 2020, 

Sala et al. 2021). A global treaty to this effect will allow tracking data to be used 

worldwide to inform development of high seas protected areas, as has successfully 

occurred in the North Atlantic, where nearly 600,000 km2 have recently been protected 

under the OSPAR Convention (Davies et al. 2021b). The designation of this MPA is a 

key example showing how seabird tracking data, when shared, collated and re-analysed, 

can inform ground-breaking conservation policy (Davies et al. 2021a, 2021b). Area-

based conservation measures such as this form a key element in successful conservation 

of Procellariiformes, but are insufficient on their own. As discussed in section 5.2.1, 

incidental mortality in fisheries is a significant threat to albatrosses and petrels (Dias et 

al. 2019), and fisheries are currently excluded from negotiations on a high seas treaty. 

Future negotiations between countries and regional fisheries management organisations 

(RFMOs) must reach a consensus to formalise and increase bycatch mitigation measures, 

increase transparency around reporting, and countries must improve national fishing 

practices to regulate vessels under their jurisdiction on the high seas (Beal et al. 2021). 

Global diplomatic collaboration is necessary to both establish protected areas and enforce 

threat-based conservation measures (e.g. bycatch mitigation) – this is key if we are to 

ensure the effective conservation of Procellariiformes into the future. 

 

5.4 Future priorities  

Though at various points in this thesis I have highlighted knowledge gaps that 

could be closed with further tracking studies, a broad-brush approach of more tags in 

more places at more times is not nuanced enough to be effective or, I would argue, 

ethical. There are certain scenarios where new tags should be deployed, such as when the 

foraging areas of a particular species are unknown, especially if the population is 

experiencing declines of unknown drivers. As I have demonstrated, habitat preferences 

are often distinct for individual colonies (Chapter 3, Chapter 4), and models are often 

poorly transferrable (Torres et al. 2015, Péron et al. 2018) – therefore there is a good 

argument for tracking populations for which data are entirely absent. Furthermore, 

identifying global research gaps and collaborating to fill them is important (Bernard et al. 
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2021). However, researchers should be clear on the fundamental ecological, 

conservation, or management case for collecting new tracking data prior to doing so, as 

there is increasing evidence that the cost of bearing a tag for individual animals is non-

trivial (Bodey et al. 2018, Geen et al. 2019).  This is particularly important when tracking 

species of high conservation concern, as there is a trade-off between the benefits of 

knowledge gained via tracking and the potentially high costs of impacting individuals in 

the breeding population.  

Ensuring maximum utility is extracted from all tracking data that has been 

collected (often via sharing, re-use, and synthesis with other datasets, as discussed in 

section 5.3.2) is, in my view, an ethical imperative. One of the challenges, however, with 

synthesising tracking data from multiple sources is that they have been collected across 

many years – this unavoidably means that individuals experienced different 

environmental conditions. Priority, therefore, should be given to ambitious projects that 

will allow us to understand habitat use (and partitioning) among species at the same place 

and time. For example, simultaneous tracking of the two winter-breeders on Gough 

Island (Grey Petrels and Westland Petrels), or across the community of sympatric 

Procellariiformes on Bird Island, South Georgia, would help to answer ecological 

questions about allochrony and community dynamics, respectively.  

Finally, priority should be given to tracking data that can be integrated at multiple 

levels (and with other data types) to ensure effective conservation outcomes. For 

example, when considering the threat of incidental mortality in fisheries: firstly, 

protected area planning is required to reduce spatial overlap with fishing vessels (Tancell 

et al. 2016); secondly, regulations such as seasonal closures and night setting can reduce 

temporal overlap with seabird foraging behaviour (Melvin et al. 2013, Zou and Wang 

2021); and thirdly, mitigation measures such as tori lines, hook encapsulation devices 

and line weights can reduce the chance a bird is hooked if the first two measures have not 

prevented co-occurrence (Goad et al. 2019, Jiménez et al. 2020). Different kinds of 

tracking data are critical in designing policies and technologies to achieve each of these 

aims, as no single intervention can eliminate bycatch mortality on its own (Fig. 5.1).  
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Figure 5.1: Integration of tracking data at different levels for a particular anthropogenic 

threat (fisheries bycatch). Icons used with permission: flaticon.com. 
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Appendix 2: Supplementary information for Chapter 3 

  

Appendix 2, Table S1. Outputs for parametric coefficients and smooth terms of best 

fitting (by AICc values) generalised additive models for habitat selection 

(presence/pseudoabsence). Bolded P values indicate statistical significance below 0.001. 

PARAMETRIC estimate se Z value Pr(>|z|) 

Intercept -6.92 0.09 -73.39 <  0.001 

 

SMOOTHS  edf χ2 P 

s(bathymetry):GP  2.99 903.46 < 0.001 

s(bathymetry):WCP  2.99 3872.40 < 0.001 

s(sea_surface_temp):GP  2.98 3269.40 < 0.001 

s(sea_surface_temp):WCP  2.98 1877.01 < 0.001 

s(EKE_log):GP  2.76 5.82 0.088 

s(EKE_log):WCP  2.98 116.01 < 0.001 

s(CHL-A_log):GP  2.15 166.47 < 0.001 

s(CHL-A_log):WCP  2.99 588.61 < 0.001 
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Appendix 2, Table S2. Outputs for parametric coefficients and smooth terms of best 

fitting (by AICc values) generalised additive models for foraging behaviour. Italicised P 

values indicate statistical significance below a threshold of 0.05, bolded P values indicate 

statistical significance below 0.0001. 

 

PARAMETRIC estimate se Z value Pr(>|z|) 

Intercept -1.56 0.04 -36.28 < 0.001 

 

SMOOTHS  edf χ2 P 

s(bathymetry):GP  2.98 83.32 < 0.001 

s(bathymetry):WCP  2.76 183.27 < 0.001 

s(sea_surface_temp):GP  1.45 21.68 < 0.001 

s(sea_surface_temp):WCP  2.73 10.88 0.027 

s(EKE_log):GP  2.95 31.87 < 0.001 

s(EKE_log):WCP  2.16 33.99 < 0.001 

s(CHL-A_log):GP  2.94 43.59 < 0.001 

s(CHL-A_log):WCP  2.78 6.28 0.108 
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Appendix 2, Figure S1. Locations of landing (from immersion loggers; blue points) of 

White-chinned Petrels (n = 11) tracked during the incubation period, overlaid with 

foraging behaviour (according to EMbC; orange points). Locations where the bird was 

flying and the EMbC classification was ‘not foraging’ are indicated as grey points. 24% 

of the total trip was classified as foraging, and 33% of on-water points were classified as 

foraging. 39% of total trip points were on water, while 52% of foraging points were on-

water.  
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Figure 

 

 

 

 

 

 

 

Appendix 2, Figure S2. Scatterplots showing clustering of points into behavioural 

categories for Grey Petrels (A) and White-chinned Petrels (B). Annotations indicate 

behavioural states. 

 

LL, orange = low speed, low turning angles. Categorised as resting/not foraging.  

LH, red  = low speed, high turning angles. Categorised as foraging. 

HL, light blue = high speed, low turning angles. Categorised as transit/not foraging. 

HH, dark blue = high speed, high turning angles. Categorised as foraging.  

  

A B 

foraging 

transit resting 
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Appendix 2, Figure S3. Pseudoabsences (grey points) and real tracks (orange points) for 

Grey Petrels (left panel) and White-chinned Petrels (right panel) tracked during the 

incubation period. 
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Appendix 2, Figure S4. Tracks from incubating Grey Petrels foraging from Gough 

Island. GPS data were available for the entire foraging trip of individual A (dark grey 

points), and for the majority of the trips of the other birds (light grey points, with the final 

GPS location marked in red). 
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Appendix 2, Figure S5. All GAM smooths for full model in table S1. 
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Appendix 2, Figure S6. All GAM smooths for full model in table S2.  
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Appendix 3: Supplementary Information for Chapter 4
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Appendix 3, Table S2. Outputs for parametric coefficients and smooth terms of best 

fitting (by AICc values) generalised additive model for habitat selection 

(presence/pseudoabsence) in Light-mantled Albatrosses, in sympatry and allopatry. 

Bolded P values indicate statistical significance below 0.001. 

PARAMETRIC estimate se Z value Pr(>|z|) 

Intercept -28.38 1.65 -17.26 <  0.001 

 

SMOOTHS  edf χ2 P 

s(SST):allopatry  2.99 644.56 < 0.001 

s(SST):sympatry  2.99 1149.96 < 0.001 

s(log(EKE)):allopatry  2.07 5.57 0.085 

s(log(EKE)):sympatry  2.33 77.35 < 0.001 

s(bathym): allopatry  2.76 131.86 < 0.001 

s(bathym):sympatry  2.91 434.95 < 0.001 

s(log(CHL-Agrad)): allopatry  2.98 196.77 < 0.001 

s(log(CHL-Agrad)): sympatry  1.00 23.86 < 0.001 
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Appendix 3, Table S3. Outputs for parametric coefficients and smooth terms of best 

fitting (by AICc values) generalised additive model for habitat selection 

(presence/pseudoabsence) in Light-mantled Albatrosses, by breeding location. Bolded P 

values indicate statistical significance below 0.001. 

 

PARAMETRIC estimate se Z value Pr(>|z|) 

Intercept -31.82 1.72 -18.52 <  0.001 

 

SMOOTHS  edf χ2 P 

s(SST):Crozet  2.99 517.44 < 0.001 

s(SST):Macquarie  2.99 469.46 < 0.001 

s(SST):Marion  2.99 953.04 < 0.001 

s(SST):SouthGeorgia  2.99 479.51 < 0.001 

s(log(EKE)):Crozet  2.60 135.40 < 0.001 

s(log(EKE)):Macquarie  2.34 38.92 < 0.001 

s(log(EKE)):Marion  2.84 23.56 < 0.001 

s(log(EKE)):SouthGeorgia  2.89 95.63 < 0.001 

s(bathym):Crozet  2.95 117.96 < 0.001 

s(bathym):Macquarie  2.85 97.14 < 0.001 

s(bathym):Marion  2.96 376.29 < 0.001 

s(bathym):SouthGeorgia  2.98 199.83 < 0.001 

s(log(CHL-Agrad)):Crozet  2.91 39.31 < 0.001 

s(log(CHL-Agrad)):Macquarie  2.98 114.77 < 0.001 

s(log(CHL-Agrad)):Marion  1.01 20.43 < 0.001 

s(log(CHL-Agrad)):SouthGeorgia  2.94 172.60 < 0.001 
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Appendix 3, Table S5. Outputs for parametric coefficients and smooth terms of best 

fitting (by AICc values) generalised additive model for habitat selection 

(presence/pseudoabsence) in Sooty Albatrosses, in sympatry and allopatry. Bolded P 

values indicate statistical significance below 0.001. 

 

PARAMETRIC estimate se Z value Pr(>|z|) 

Intercept -3.20 0.01 -206.1 <  0.001 

 

SMOOTHS  edf χ2 P 

s(SST):allopatry  2.98 2295.28 < 0.001 

s(SST):sympatry  2.99 2731.04 < 0.001 

s(log(EKE)):allopatry  1.00 38.96 0.085 

s(log(EKE)):sympatry  2.56 237.53 < 0.001 

s(bathym): allopatry  2.97 222.00 < 0.001 

s(bathym):sympatry  2.87 604.35 < 0.001 

s(log(CHL-Agrad)):allopatry  2.98 139.65 < 0.001 

s(log(CHL-Agrad)):sympatry  1.00 3.12 0.078 
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Appendix 3, Table S6. Outputs for parametric coefficients and smooth terms of best 

fitting (by AICc values) generalised additive model for habitat selection 

(presence/pseudoabsence) in Sooty Albatrosses, by breeding location. Bolded P values 

indicate statistical significance below 0.001. 

 

PARAMETRIC estimate se Z value Pr(>|z|) 

Intercept -3.14 0.02 -193.2 <  0.001 

 

SMOOTHS  edf χ2 P 

s(SST):Crozet  2.96 418.15 < 0.001 

s(SST):Gough  2.96 1448.95 < 0.001 

s(SST):Marion  2.95 2465.96 < 0.001 

s(SST):Tristan  2.95 542.98 < 0.001 

s(log(EKE)):Crozet  2.70 85.16 < 0.001 

s(log(EKE)): Gough  2.91 119.99 < 0.001 

s(log(EKE)):Marion  2.30 155.78 < 0.001 

s(log(EKE)): Tristan  2.60 19.82 0.003 

s(bathym):Crozet  2.86 446.05 < 0.001 

s(bathym): Gough  2.87 84.19 < 0.001 

s(bathym):Marion  2.99 452.32 < 0.001 

s(bathym): Tristan  2.99 521.09 < 0.001 

s(log(CHL-Agrad)):Crozet  2.81 119.35 < 0.001 

s(log(CHL-Agrad)): Gough  2.90 47.43 < 0.001 

s(log(CHL-Agrad)):Marion  2.79 38.78 < 0.001 

s(log(CHL-Agrad)): Tristan  2.93 129.87 < 0.001 

 

 


