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Abstract

Disrupting maladaptive memories may provide a novel form of treatment for neuropsychiatric disorders, but little
is known about the neurochemical mechanisms underlying the induction of lability, or destabilization, of a
retrieved consolidated memory. Destabilization has been theoretically linked to the violation of expectations
during memory retrieval, which, in turn, has been suggested to correlate with prediction error (PE). It is
well-established that PE correlates with dopaminergic signaling in limbic forebrain structures that are critical for
emotional learning. The basolateral amygdala is a key neural substrate for the reconsolidation of pavlovian
reward-related memories, but the involvement of dopaminergic mechanisms in inducing lability of amygdala-
dependent memories has not been investigated. Therefore, we tested the hypothesis that dopaminergic signaling
within the basolateral amygdala is required for the destabilization of appetitive pavlovian memories by investi-
gating the effects dopaminergic and protein synthesis manipulations on appetitive memory reconsolidation in
rats. Intra-amygdala administration of either the D1-selective dopamine receptor antagonist SCH23390 or the
D2-selective dopamine receptor antagonist raclopride prevented memory destabilization at retrieval, thereby
protecting the memory from the effects of an amnestic agent, the protein synthesis inhibitor anisomycin. These
data show that dopaminergic transmission within the basolateral amygdala is required for memory labilization
during appetitive memory reconsolidation.
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Memories are not fixed in the brain, but undergo experience-dependent updating and modification through
reconsolidation. This occurs when a memory is converted to a labile state, usually involving surprise
(formally, prediction error), which is in turn linked to release of dopamine. We hypothesized that neurotrans-
mission via dopamine receptors in the amygdala, a region critical for emotional memory processing, is
required for memory destabilization. The results show that blocking dopamine receptors in the amygdala
protected reward-associated memories from an amnestic treatment. Therefore, dopamine is required for
the induction of pavlovian memory lability, supporting a link between destabilization and prediction error.
Thus, dopaminergic signaling allows memories to be dynamic and flexible, providing a novel target for the
Kmodification of maladaptive memories. /

ignificance Statement

January/February 2015, 2(1) e0024-14.2015 1-14


http://orcid.org/0000-0003-4431-6536
http://orcid.org/0000-0003-0175-9417
http://orcid.org/0000-0003-0175-9417
http://dx.doi.org/10.1523/ENEURO.0024-14.2015

eMeuro

Introduction

Reconsolidation is the process by which memories be-
come destabilized at retrieval and subsequently restabi-
lize in order to persist in the brain. This process has
received much interest for its potential as a novel treat-
ment target for neuropsychiatric disorders such as drug
addiction (Milton and Everitt, 2012; Tronson and Taylor,
2013) and post-traumatic stress disorder (PTSD; Debiec
and LeDoux, 2006). Both addiction and PTSD can be
conceptualized as disorders of maladaptive emotional
memory, depending critically upon areas of the limbic
forebrain such as the basolateral amygdala (BLA; Everitt
et al., 2000; Cardinal et al., 2002), which is required for the
storage of memories associating a conditioned stimulus
(CS) with its emotional and motivational affective value
(Weiskrantz, 1956) imbued by association with an uncon-
ditioned stimulus (US). However, although the mecha-
nisms underlying the restabilization of CS—US memories
are increasingly understood (Nader et al., 2000; Bozon
et al., 2003; Lee et al.,, 2005; von Hertzen and Giese,
2005), less is known about the mechanisms responsible
for triggering memory lability, or memory destabilization
(Finnie and Nader, 2012). The mechanisms underlying
memory retrieval and destabilization are not necessarily
identical (Forcato et al., 2009; Milton et al., 2013). Even if
retrieved, without destabilization, a memory will remain
insensitive to any attempt to disrupt it by applying treat-
ments that would prevent its restabilization, such as pro-
tein synthesis inhibitors. Therefore, understanding the
specific mechanisms that underlie memory destabilization
is important from both basic science and translational
perspectives.

The induction of memory lability has been theoretically
linked to the construct of prediction error (PE) in inverte-
brates (Pedreira et al., 2004; Eisenhardt and Menzel,
2007), rats (Lee, 2009), and humans (Forcato et al., 2009;
Sevenster et al., 2013). PE correlates with activity in mid-
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brain dopaminergic neurons (Schultz et al., 1997). Al-
though dopamine has been most consistently implicated
in the coding of a reward PE (Schultz et al., 1993), with
omissions of reward being associated with reductions in
dopaminergic cell firing (Schultz et al., 1997), there is
evidence to suggest that a population of dopamine neu-
rons in the ventral tegmental area (VTA) increase their
firing in response to the presentation of aversive stimuli
(Brischoux et al., 2009) and negative prediction errors,
especially in the context of pavlovian overexpectation
(Takahashi et al., 2009).

The BLA receives its dopaminergic innervation from the
VTA (Asan, 1997; Brinley-Reed and McDonald, 1999), and
the major subtypes of dopamine receptor (the D,-like and
D,-like) are expressed within the BLA (Maltais et al,
2000). Furthermore, electrophysiological responses of
BLA neurons to VTA dopamine release are consistent with
a role in encoding prediction error, conforming to “sur-
prise” in Pearce-Kaye-Hall models of learning (Esber
et al., 2012). Inactivation of the VTA prevents the desta-
bilization of the memories underlying pavlovian-
conditioned approach (Reichelt et al., 2013), but it is
unlikely that the VTA is itself the site of memory storage.
Previous work has demonstrated the necessity of the
amygdala for the reconsolidation of pavlovian reward-
associated memories (Lee et al., 2006; Milton et al., 2008;
Sanchez et al., 2010; Théberge et al., 2010; Barak et al.,
2013; Wells et al., 2013; Arguello et al., 2014; Olshavsky
et al., 2014), with different amygdala subnuclei likely sup-
porting different pavlovian reward-associated processes
(Milton and Everitt, 2010). Reward-associated pavlovian
CSs presented in the absence of reward (as occurs during
memory reactivation) increase markers of dopamine re-
lease in the amygdala in rats (Harmer and Phillips, 1999)
and human subjects (Fotros et al., 2013). The BLA itself is
also responsive to both positive and negative prediction
errors (Roesch et al., 2010; Tye et al., 2010), leading us to
speculate that the destabilization of the memory underly-
ing conditioned reinforcement, induced by the omission
of reward during the early termination of a memory reac-
tivation session relative to expectations generated by pre-
vious training, may be dependent upon dopaminergic
signaling originating in the VTA. To date, there has been
no direct test of the hypothesis that dopaminergic signal-
ing within the BLA is required for memory destabilization.
Although it has previously been shown that antagonism at
D, dopamine receptors can disrupt the reconsolidation of
a passive avoidance memory in chicks (Sherry et al,
2005) and that systemic antagonism at D, or D; dopamine
receptors impaired the reconsolidation of memories un-
derlying cocaine-associated behavior in mice (Yan et al.,
2013; Yan et al., 2014), it is not clear where these manip-
ulations are acting in the brain to exert these effects on
the reconsolidating memory, nor the precise component
process—destabilization or restabilization—that is af-
fected by the dopaminergic transmission event. Further-
more, blocking signaling at D,/Ds; dopamine receptors
specifically in the hippocampus prevented the destabili-
zation of object recognition memory (Rossato et al.,
2014), illustrating the complex effects of dopaminergic
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manipulations on the engram, including the difference
between systemic and central dopamine receptor antag-
onism.

Therefore, based on the theoretical links between un-
signed prediction error, dopaminergic signaling, and
memory destabilization, the hypothesis tested in these
experiments was that the destabilization of the memory
that underlies the capacity of a pavlovian CS to act as a
conditioned reinforcer, known to depend upon the BLA
(Burns et al., 1999), would be prevented by antagonism at
BLA dopamine receptors. This hypothesis was tested by
measuring in separate experiments the effects of intra-
BLA infusions of the D, receptor (D,R) antagonist
SCH23390, the D,R antagonist raclopride, and the non-
subtype selective dopamine receptor antagonist
a-flupenthixol on the destabilization of an appetitive
CS—sucrose memory, assessed through a procedure that
selectively measures the conditioned reinforcing proper-
ties of pavlovian CSs. To test whether memory destabili-
zation had occurred, the capacity of the protein synthesis
inhibitor anisomycin, given immediately after memory re-
activation, to induce subsequent amnesia was assessed,
as described previously (Ben Mamou et al., 2006; Milton
et al,, 2013).

Materials and Methods

Subjects

Subjects were 77 experimentally naive male Lister-
Hooded rats (Charles River) housed in pairs in a vivarium
on a reversed light—dark cycle (lights on at 1900 hours).
Subjects weighed at least 290 g prior to surgery. Subjects
were food restricted, though not deprived, being main-
tained at at least 90% of free-feeding weight and fed after
training or testing each day. Access to water was ad
libitum except for when inside the conditioning chambers.
All procedures were conducted in accordance with the
UK Animals (Scientific Procedures) Act 1986.

Surgery

Rats were implanted with bilateral guide cannulae (16
mm, 24 gauge; Coopers Needle Works) located just dor-
sal to the BLA (Fig. 1) (Milton et al., 2008). The coordinates
for cannula implantation were AP —2.6 mm and ML =4.5
mm (relative to bregma) and DV —5.6 mm (relative to
dura). A recovery period of at least 7 d was given before
behavioral training and testing began.

Intracerebral drug administration

Infusions were carried out using a syringe pump (Harvard
Apparatus) and 5 ul Hamilton syringes, connected to
injectors (28 gauge, projecting 2 mm beyond the guide
cannulae; Plastics One) by polyethylene tubing. The rats
received two infusions; one immediately prior to the mem-
ory reactivation session, and one immediately afterwards.
All infusions were begun 30 s after the insertion of the
injectors and performed over 2 min at a rate of 0.25 pul
min~"' (total volume of 0.5 ul side”"). One minute of
waiting time was imposed from the end of the infusion to
the removal of the injectors to allow diffusion of the solu-
tion away from the infusion site. Although we did not test
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whether the infusions were restricted to the BLA, it is the
basolateral nucleus, rather than the adjacent central nu-
cleus, that has been implicated in supporting the condi-
tioned reinforcing properties of pavlovian CSs (Burns
et al., 1999).

Drugs
All rats received either the protein synthesis inhibitor ani-
somycin (ANI) or its vehicle (VEH) as their second (post-
reactivation) infusion. Anisomycin (125 ug ul™'; Sigma-
Aldrich) was dissolved in equimolar HCI and then pH-
balanced to pH 7.4 with NaOH. This dose of anisomycin
has previously been shown to disrupt memory reconsoli-
dation (Ben Mamou et al., 2006; Milton et al., 2013).
Prior to memory reactivation, rats received an infusion
of either drugs targeting the dopaminergic signaling sys-
tem or the PBS vehicle. «a-(cis)-flupenthixol (FLU; Sigma-
Aldrich) was dissolved in PBS at a concentration of 20 ug
pLI‘1, which has been shown to reduce cue-maintained
cocaine-seeking when infused into the BLA (Di Ciano and
Everitt, 2004) without nonspecific locomotor effects. The
D,-selective dopamine receptor antagonist SCH23390
(SCH; Tocris Bioscience) was dissolved in PBS at a con-
centration of 4 pug wl™' and the D,-selective receptor
antagonist raclopride (RAC; Sigma-Aldrich) was dissolved
in PBS at a concentration of 10 ug ul™". These doses of
SCH and RAC have been shown to be effective in block-
ing the consolidation of inhibitory avoidance memory
(LaLumiere et al., 2004) and cue-induced reinstatement of
drug-seeking (Alleweireldt et al., 2006; Berglind et al.,
2006).

Behavioral procedures

All behavioral procedures were conducted during the an-
imals’ dark cycle. Rats were trained in conditioning cham-
bers (Med Associates) to make a nosepoke response into
a central magazine for presentation of a 0.1 ml of a 10%
sucrose reinforcer (Tate & Lyle), which was associated
with a 10 s light CS (presented on the same side assigned
to the inactive lever during testing, counterbalanced
across rats) on a fixed ratio (FR) 1 schedule. Rats were
trained over nine sessions, with a maximum of 30 CS—su-
crose pairings per session.

The day after the completion of training, rats received
intra-BLA infusions of either the dopamine receptor an-
tagonists (FLU, SCH, or RAC) or VEH, and immediately
(within 1 — 2 min) afterwards began a 15 min memory
reactivation session. During this session, nosepokes led
to the presentation of the light CS and movement of the
dipper on an FR1 schedule, but no sucrose was delivered.
The rats were limited to a maximum of 30 CS presenta-
tions during this session, but the 15 min session normally
terminated before this limit was reached. Immediately
after the end of the memory reactivation session, the rats
received a second intra-BLA infusion of either ANI or its
VEH.

Acquisition of a new instrumental response for condi-
tioned reinforcement (ANR) testing began 24 h after the
memory reactivation session. The rats were returned to
the same conditioning chambers, but in this phase they
were presented with two novel levers (left and right of the
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raclopride (C), and a-flupenthixol

SCH23390

(D) prior to memory reactivation. Circles represent animals that received vehicle following memory reactivation, and squares the
placements for the animals that received anisomycin following reactivation. Distances are given from bregma. This figure was

)

Figure 1 Injector tips were located within the BLA for animals receiving vehicle (A

from Paxinos & Watson (2004).
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sions. Rats were returned to the chambers for seven 30
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ing aorta, followed by 4% paraformaldehyde. The brains
were removed and stored in 4% paraformaldehyde for at
least 24 h, before being transferred to a 20% sucrose
solution for cryoprotection prior to sectioning. The brains
were sectioned at 60 um, mounted on microscope slides,
and stained with Cresyl Violet. Cannulae placements (Fig.
1) were verified by light microscopy (Leica) and any sub-
jects for which the injector tips were located outside the
basolateral amygdala were excluded from all analyses.

Sample size, statistical power, and randomization

A priori sample size calculations were not conducted but
the number of subjects per group was chosen by refer-
ence to previous research. Data was collected over an
extended period of time, with eight animals being run
within a single squad. Since there was no effect of
squad on the number of nosepokes at training (TR) or
reactivation (React) (Squad+g: F(1759) = 1.15, p = 0.33,
Squadgeact: Fi7,509) = 1.54, p = 0.11) or on the number
of lever presses during the ANR test (Squad: F(;7 59 =
1.08, p = 0.39), data from different squads were pooled
for analysis. Subjects were pseudo-randomly assigned
to experimental groups, such that an individual squad
received as a first infusion only a subset of the drugs
under investigation (i.e. animals within an individual
squad received only FLU or VEH, SCH or VEH, or RAC
or VEH). All squads contained animals receiving VEH or
ANI for the second infusion. Drug assignments were
also made such that training performance was matched
across experimental groups.

Data collection and statistical analysis

Data were recorded automatically by the Conditioned
Reinforcement program (Cardinal, 2005) running within
the Whisker Control server (Cardinal, 2000). As the data
were collected by computer, blinding to experimental
group was not required.

Training and testing data were analyzed using
repeated-measures ANOVA, and reactivation data were
analyzed using a one-way ANOVA. The normality as-
sumption of ANOVA was checked with the Shapiro-Wilk
test, and if this indicated that the data were not normally
distributed then they were transformed. This was the case
for the nosepoke data from training, which was trans-
formed using the Box-Cox method with A = —0.5; i.e.
using the equation y = 1/(\/x), where x is the original data
and y the transformed value. Following this transforma-
tion, the data satisfied the assumption of normality (all W
> 0.97, all p > 0.058). The lever pressing and nosepoke
data from the ANR phase of the experiment were also not
normally distributed, so were transformed using the Box-
Cox method with A = 0.5; i.e. square-root transformed.
Following this transformation, the majority of the lever
press data satisfied the assumption of normality (o >
0.05).

If Mauchly’s test indicated that the assumption of sphe-
ricity had been violated, then the Greenhouse-Geisser
correction was applied where ¢ < 0.75, and the Huynh-
Feldt correction applied where ¢ > 0.75, as recom-
mended by Cardinal and Aitken (2006). The « level was
0.05 for all analyses, and p values are two-tailed. Where
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appropriate, subsequent ANOVAs and Sidak-corrected
pairwise comparisons were conducted to investigate spe-
cific a priori hypotheses. For ease of interpretation, we
have represented the factor names by the name of the
drug infused when reporting the statistics (e.g., Drug?2 is
shown as “ANI”) in Table 1.

Results

All experimental groups readily acquired the
CS—sucrose association during training
Briefly, animals were trained over nine sessions in condi-
tioning chambers to make an instrumental nosepoke re-
sponse into a magazine to receive presentations of 10%
liquid sucrose and a pavlovian light CS, with a maximum
of 30 CS—sucrose presentations per day. All animals
readily acquired this task, with no differences in the per-
formance of the animals prospectively assigned to differ-
ent experimental groups (Table 2) during training. Due to
a non-normal distribution, instrumental training data were
transformed prior to analysis (see Materials and Methods),
and analysis of these transformed data revealed that in-
strumental responding increased across the training ses-
sions (Session: Fig 1421y = 13.0, p < 0.001, n* = 0.16),
though with no differences in instrumental responding
between the prospective experimental groups assigned
to receive dopamine receptor antagonists or vehicle prior
to reactivation (Drug1) and anisomycin or vehicle after
reactivation (Drug2) (Session X Drugl: F(ig 401y = 1.59, p
= 0.058; Session X Drug2: Fg 4401 = 1.25, p = 0.28;
Session X Drug1 X Drug2: F < 1; Drugl1: F < 1; Drug2: F
< 1; Drug1 X Drug2: F < 1). Furthermore, as the test data
for each experiment were analyzed separately, follow-up
ANOVAs were conducted and revealed no differences in
training performance between groups assigned to receive
ANI or its VEH following memory reactivation (e.g., no
difference in the behavior of animals assigned to the
VEH/VEH condition vs the VEH/ANI condition) for any of
the experimental groups receiving a dopamine receptor
antagonist (SCH, RAC, or FLU) or VEH prior to reactiva-
tion (all p’s > 0.37). Therefore, all experimental groups
were equivalent on the basis of their training performance.
All groups also received equal numbers of CS presen-
tations during training, with all except two animals reach-
ing the limit of 30 CS—sucrose presentations in every
training session (Table 2). All animals acquired the task
rapidly, receiving the maximum number of CS presenta-
tions from the first training session onwards (Session:
Fes52 = 1.20, p = 0.297). There were no differences in
the number of CS presentations between the prospective
experimental groups (Drug1: F < 1; Drug2: F4 gy = 2.52,
p = 0.12; Drugl X Drug2: F < 1). Due to two rats
receiving fewer than 30 CS presentations in one session
of training, there were significant interactions of Session
X Drugl (Fipass20) = 1.56, p = 0.045, n? = 0.06) and
Session X Drug1 X Drug2 (Fio4 550 = 1.56, p = 0.045, °
= 0.06), but it is unlikely that these very small effects are
biologically meaningful.
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Table 1 Statistics

Analysis Effect Outcome Data structure Type of test Power (a = 0.05)
NP at TR squad Fa7s9 = 1.15 a 2 0.681
session F6.1,421) = 13.0 a 1 1
session X drug1 (8.421) = 1.99 a 1 0.935
session X drug2 Fe.1,421) = 1.25 a 1 0.499
session X drugl X drug?2 F<A a 1 0.617
drug1 F<A1 a 1 0.089
drug2 F<A1 a 1 0.052
drug1 X drug2 F<A1 a 1 0.096
CS at TR session Fess2) = 1.20 b 1 0.559
drug1 F<A b 1 0.234
drug2 Fi,69) = 2.52 b 1 0.346
drug1 X drug2 F<A1 b 1 0.234
session X drug1 Flo4550) = 1.56 b 1 0.971
session x drug1 x drug2 Floa550) = 1.56 b 1 0.971
NP at React squad Fazs9 = 1.54 b 2 0.836
drug1 F<A1 b 2 0.159
CS at React drug1 Fia7e) = 1.45 b 2 0.37
NP at React drug2 F<A1 b 3 0.077
drug1 X drug2 F<A b 3 0.146
CS at React drug?2 F<A b 3 0.086
drug1 X drug2 F<A1 b 3 0.156
LP at ANR squad Fa759 = 1.08 a 2 0.644
drug1 X drug2 F69) = 3-40 El 1 0.743
lever X drug1 X drug2 Fag.a60.0 = 3.11 a 1 0.701
drug1 Fiaeg = 1.24 a 1 0.319
lever X drug1 (14.4600) = 1-16 a 1 0.3
drug?2 F,69 = 2.67 a 1 0.364
lever X drug2 F<A1 a 1 0.052
NP at ANR drug1 F<A1 a 1 0.116
drug2 Fuaeg = 1.44 a 1 0.212
drug1 X drug?2 Faee = 1.72 a 1 0.498
session X drug1 Fue.7,386) = 1.71 a 1 0.941
LP/VEH ANI F33 = 5.33 a 1 0.61
lever X session in VEH/VEH Fiaes06 = 6.27 a 1 0.978
lever X session in VEH/ANI Fioa194 =18 a 1 0.36
NP/VEH ANI F33 = 2.05 a 1 0.285
session X ANI F<A1 a 1 0.265
LP/SCH SCH x ANI F,45 = 6.75 a 1 0.720
ANI F<A1 a 1 0.131
lever X ANI F<A1 a 1 0.078
lever X session X ANI Fo.00,359) = 1.60 a 1 0.384
lever Fa2 = 36.7 a 1 1
lever X session F2.90359 = 3.88 a 1 0.78
NP/SCH ANI Fi,12) = 1.55 a 1 0.209
session X ANI F<A1 a 1 0.124
LP/RAC RAC X ANI F.46) = 726 a 1 0.751
lever Fa 13 = 23.1 a 1 0.993
lever X ANI Fa13 = 6.04 a 1 0.623
ANI F<A1 a 1 0.081
NP/RAC ANI Fi,13 = 2.64 a 1 0.324
session X ANI F<A1 a 1 0.319
LP/FLU FLU X ANI F1.44) = 2.26 a 1 0.312
ANI Fa,41 = 7.48 a 1 0.702
NP/FLU ANI Fa11y = 1.36 a 1 0.187
session X ANI F<A1 a 1 0.231
LP/Drug1 drug1 F<A1 a 1 0.249
lever X drug1 Faa3 = 1.43 a 1 0.352
session X drug1 Faseooa = 1.11 a 1 0.72
lever X session X drug1 F<A a 1 0.5

(continued)
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Analysis Effect Outcome
LP/ANI drug1 Fa2¢) = 3.01
lever X drug1 Fa2e = 2.93
VEH/ANI lever Flag =213
FLU/ANI lever Fa,7 = 3.06
SCH/ANI lever Fuas = 29.6
RAC/ANI lever Fuae = 39.6

Data structure Type of test Power (e = 0.05)

a 1 0.639
a 1 0.557
a 1 0.251
a 1 0.327
a 1 0.989
a 1 0.999

a, Normal distribution after transformation; b, normal distribution; 1, repeated-measures ANOVA; 2, one-way ANOVA; 3, two-way ANOVA. NP, nosepoke; TR,
training session; React, memory reactivation session; LP, lever pressing; ANR, acquisition of a new response.

Behavior during the memory reactivation session
was not acutely affected by the administration of
dopamine receptor antagonists

Dopamine receptor antagonists applied to the BLA imme-
diately before the reactivation session affected neither the
retrieval of the CS—sucrose memory, nor had any gener-
alized locomotor effects (Fig. 2). None of the dopamine
receptor antagonists administered prior to memory reac-
tivation affected the number of nosepokes made (Drug1:
F < 1) or the number of CSs presented (Drug1: F 76 =
1.45, p 0.23) during the reactivation session itself.
Furthermore, there were no differences in the reactivation
experience of those animals receiving VEH or ANI imme-
diately after the memory reactivation session in terms of
the number of nosepokes made (Drug2: F < 1; Drug1 X
Drug2: F < 1) or the number of CSs presented (Drug2: F
< 1; Drugl X Drug2: F < 1), suggesting that these
prospective experimental groups were well-matched for
behavior.

Further analysis of the data indicated that for all exper-
imental groups receiving different pre-reactivation infu-
sions (VEH, SCH, RAC, or FLU), analyzed separately,
there were no differences in the performance at reactiva-
tion of animals receiving ANI or VEH following reactivation
(e.g., no differences in behavior of animals in the VEH/
VEH condition vs the VEH/ANI condition) when assessed

through the number of nosepokes made during memory
reactivation (all p’s > 0.37) or the number of CS presen-
tations (all p’s > 0.24).

Dopamine receptor antagonism prior to memory
reactivation blocked the amnestic effect of the
protein synthesis inhibitor anisomycin administered
after reactivation

To evaluate the integrity of the pavlovian CS—sucrose
association after the reactivation session, the conditioned
reinforcing property of the light CS was assessed through
its ability to support the ANR (Mackintosh, 1974). The
absence of discriminated responding between active and
inactive levers across sessions would imply that the
CS—sucrose association had been disrupted by ANI in-
fused into the BLA at reactivation. An amnestic effect of
ANI would only be seen if the CS—sucrose memory had
been destabilized during the reactivation session.

The destabilization of a previously well-consolidated
CS—sucrose memory was impaired by infusion of either
the D;- or the D,-dopamine receptor antagonist. How-
ever, infusion of the nonselective antagonist
a-flupenthixol had no effect on memory destabilization
(Fig. 3). The data were transformed prior to analysis (see
Materials and Methods) and were analyzed in a single,
omnibus ANOVA before planned comparisons were made
between animals receiving post-reactivation infusions of

Table 2 Training performance was equivalent across experimental groups Data are presented as mean =+ SEM and where

appropriate are given to 3 significant figures

5 6 7 8 9

300
29.7 £ 0.33
30 £0
300
30 £0
30 £0
300
30 £0

300
30 £0
300
300
30£0
29.4 * 0.57
300
30 £0

W W

o o

I+ 1+ 1+ 1+ 1+
OO oo
I+ 1+ 1+ 1+ 1+
[eoNeNe o)
I+ 1+ 1+ 1+ 1+
[eoNeNe o)

W w
o o
W w
o o

Session 1 2 3 4

CSs

VEH/VEH 30 =0 300 300 30=0
VEH/ANI 30 =0 300 300 300
SCH/VEH 30 =0 30+0 300 30+ 0
SCH/ANI 30 =0 30 = 30 = 30 =
RAC/VEH 30 =0 300 300 300
RAC/ANI 30 =0 30+0 300 30+0
FLUNNEH 30 =0 300 300 300
FLU/ANI 30 =0 300 300 300
Nosepokes

VEH/VEH 80.2 + 2.37 70.5 = 2.67 64.8 = 2.33 60.4 = 2.47
VEH/ANI  86.6 = 7.01 65.3 = 3.54 62.2 = 4.16 62.3 = 3.72
SCH/VEH 85.5 = 7.53 80.1 = 10.8 72.0 = 8.79 69.6 = 11.4
SCH/ANI  88.5 = 7.48 80.7 = 5.44 65.7 = 455 70.8 = 2.09
RAC/VEH 825 + 4,15 73.3 + 4.85 71.8 = 7.56 74.5 = 5.61
RAC/ANI  79.3 + 3.57 73.6 + 5,55 67.0 = 2.27 63.9 = 1.71
FLU/VEH 79.6 + 8.59 73.4 = 13.53 68.2 = 7.86 64.0 + 7.56
FLU/ANI  84.6 =+ 5.73 64.8 + 4.05 73.3 = 6.52 67.4 = 5.93

62.8 = 2.95
61.0 = 2.86
77.0 £16.0
72.8 = 6.52
60.5 = 6.04
58.7 £ 3.94
58.0 = 8.13
63.4 + 6.67

66.5 = 3.06
63.9 * 6.38
81.5 £ 16.5
73.0 = 6.96
69.6 = 3.67
57.3 = 3.41
65.6 = 5.45
64.0 = 3.49

72.8 = 5.33
72.6 = 4.36
778 £ 11.7
69.0 = 6.52
65.1 = 4.67
59.9 = 7.48
63.4 = 9.69
69.0 = 5.15

72.2 = 4.28
70.7 = 6.26
68.9 = 12.3
57.5 * 4.16
66.0 *= 6.39
73.1 £ 128
82.0 = 7.50
66.5 * 4.98

82.3 * 5.66
79.9 * 6.75
70.1 £ 9.76
85.3 = 8.09
77.8 = 7.41
81.1 £ 16.6
67.6 = 8.33
84.3 x+ 7.44

January/February 2015, 2(1) e0024-14.2015

eNeuro.sfn.org



eMeuro
50

J

N w o
o o o
1 1 1

Number of responses /
presentations
-—
o

Nosepokes CSs

OVEH @SCH ERAC mFLU
OVEH/VEH AVEH/ANI @SCH/VEH ASCH/ANI
@®RAC/VEH ARAC/ANI @FLU/VEH AFLU/ANI

Figure 2 Dopamine receptor antagonism had no acute effects on
behavior during the memory reactivation session. There were no
differences between experimental groups in the number of nose-
poke responses made or the number of CSs obtained during the
memory reactivation session. Thus, dopamine receptor antago-
nism with SCH23390 (SCH), raclopride (RAC), or a-flupenthixol
(FLU) did not acutely affect activity or memory retrieval relative to
vehicle (VEH). Data are presented as means = SEM. The bars
represent data for all animals receiving the same infusion prior to
reactivation; the circles and triangles represent data for the
prospective experimental groups, based on the second infusion
of anisomycin or vehicle following the reactivation session.
Group sizes: VEH/VEH = 26; VEH/ANI = 9; SCH/VEH = 8§;
SCH/ANI = 6; RAC/VEH = 8; RAC/ANI = 7; FLU/VEH = 5;
FLU/ANI = 8 rats per group.

VEH and ANI for each experimental condition given a
different dopamine receptor antagonist prior to reactiva-
tion.

The previously sucrose-associated CS was only capa-
ble of functioning as a conditioned reinforcer, measured
by its ability to support ANR, in some of the experimental
groups, depending upon the treatments that were re-
ceived immediately before and immediately after the
memory reactivation session (Fig. 3) (Drug1 X Drug2:
Faee = 3.40, p = 0.023, 7? = 0.13; Lever X Drugl X
Drug2: F3 69 = 3.11, p = 0.032, 72 = 0.12). Importantly,
there were no simple main effects of dopamine receptor
antagonism (Drugl: Fzeq = 1.24, p = 0.30; Lever X
Drugl: F3 65 = 1.16, p = 0.33) or protein synthesis inhi-
bition (Drug2: F; g9y = 2.67, p = 0.11; Lever X Drug2: F <
1) on the memory; rather, the capacity of the CS to act
as a conditioned reinforcer depended upon both treat-
ments, consistent with a blockade of the memory de-
stabilization process (Ben Mamou et al., 2006; Milton
et al., 2013).

As shown previously with NMDA receptor (NMDAR)
antagonism at memory reactivation (Milton et al., 2008),
the instrumental nosepoke response previously associ-
ated in training with delivery of the CS and sucrose rein-
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forcer was not impaired at test by the treatments that
disrupted the pavlovian CS—sucrose memory (Table 3).
There were no simple effects of either dopamine receptor
antagonism (Drug1: F < 1) or protein synthesis inhibition
(Drug2: F(4 g9y = 1.44, p = 0.23) on nosepoking behavior
during testing, and unlike responding for the CS, there
was no interaction between the two treatments (Drug1 X
Drug2: F369 = 1.72, p = 0.17). Although the omnibus
ANOVA indicated that pre-reactivation treatment with a
dopamine receptor antagonist altered nosepoking behav-
ior across the course of ANR testing (Session X Drug1:
Fuezase = 1.71, p = 0.039, n* = 0.069), this was a very
small effect and there were no differences between ani-
mals treated with any of the dopamine receptor antago-
nists in any of the individual test sessions when Sidak-
corrected pairwise comparisons were conducted (all p’s
> 0.072).

Protein synthesis inhibition with anisomycin
prevented the restabilization of the CS—sucrose
memory, preventing the CS from subsequently
acting as a conditioned reinforcer in groups that
received vehicle prior to reactivation

Consistent with previous data (Lee et al., 2005), inhibition
of protein synthesis with post-reactivation anisomycin in-
fusions into the BLA impaired the capacity of the previ-
ously sucrose-paired CS to act as a conditioned
reinforcer at subsequent test (Fig. 3A) (ANL: F; 35 = 5.33,
p = 0.027, n? = 0.14). Sidak-corrected pairwise compar-
isons revealed that while the VEH/VEH group showed
discriminated responding on the active (CS-producing)
lever [p < 0.001] the VEH/ANI group did not discriminate
(p = 0.18). Therefore, the pavlovian CS—sucrose memory
destabilized in both groups, and was prevented from
restabilizing and subsequently persisting in the VEH/ANI
group.

The number of nosepoke responses made during the
ANR testing sessions (Table 3) was not affected by pro-
tein synthesis inhibition immediately after memory reacti-
vation (ANI: F4 33y = 2.05, p = 0.16; Session X ANI: F <
1), indicating that although the pavlovian CS—sucrose
memory was rendered sensitive to disruption during the
memory reactivation session, the instrumental memory of
responding for sucrose was not.

D,-subtype-selective dopamine receptor antagonism
with SCH23390 prior to reactivation blocked the
amnestic effect of anisomycin administered after
reactivation

Administration of the D,-selective dopamine receptor an-
tagonist SCH prior to the memory reactivation session
prevented the destabilization of the CS—sucrose memory
(Fig. 3B). A significant interaction between SCH and ANI
indicates that SCH prevented the amnestic effect of post-
reactivation anisomycin (SCH X ANI: F(; 45y = 6.75, p =
0.013, 72 = 0.13; ANI: F < 1; Lever X ANI: F < 1; Lever X
Session X ANI: F5 g9 359y = 1.60, p = 0.21). In contrast to
VEH/ANI experimental group, all animals that received
SCH prior to memory reactivation showed discriminated
responding for conditioned reinforcement on the active
lever during subsequent testing, with increased active
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Figure 3 D,- or D,-subtype-selective dopamine receptor antagonism prevented the destabilization of CS—sucrose memory. A, The
protein synthesis inhibitor anisomycin (ANI), given immediately after CS—sucrose memory reactivation, disrupted memory recon-
solidation when it followed an intra-BLA vehicle (VEH) infusion prior to reactivation, consequently preventing the CS from acting as
a conditioned reinforcer during the test sessions. B, C, Antagonism at D, dopamine receptors with SCH23390 (SCH; B) or antagonism
at D, dopamine receptors with raclopride (RAC; C) prior to reactivation prevented the amnestic effect of ANI, allowing the CS to act
as a conditioned reinforcer during testing, consistent with a blockade of memory destabilization. D, Nonselective antagonism at
dopamine receptors with a-flupenthixol (FLU) prior to reactivation did not prevent the amnestic effect of ANI administered
post-reactivation. Data are square-root transformed and shown as mean = SEM. Group sizes are as in Figure 2, with the same

animals tested in each session.

lever pressing over sessions (Lever: F 15 = 36.7, p <
0.001, n* = 0.75; Lever X Session: F5 g 350 = 3.88,p =
0.017, 712 = 0.24). This shows that the CS—sucrose mem-
ory remained intact despite the post-reactivation admin-
istration of a drug that would otherwise have disrupted
memory restabilization. Similarly, protein synthesis inhibi-
tion following SCH treatment did not reduce the number
of nosepokes (Table 3) made during the test sessions
(ANL: Fiq 45 = 1.55, p = 0.24; Session X ANl F < 1),
indicating that the instrumental memory, like the pavlovian
memory, remained intact.

January/February 2015, 2(1) e0024-14.2015

D,-subtype-selective dopamine receptor antagonism
with raclopride prior to reactivation prevented the
amnestic effect of anisomycin administered after
reactivation

The D,-selective dopamine receptor antagonist RAC also
prevented the amnestic effect of post-reactivation aniso-
mycin, consistent with a blockade of memory destabiliza-
tion (RAC X ANL: F4 46 = 7.26, p = 0.01, 7 = 0.14) (Fig.
3C). Both groups showed discriminated responding on
the active (CS-producing) lever (Lever: F(; 15 = 23.1, p <
0.001, n? = 0.64) and interestingly, though the RAC/VEH
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Table 3 Nosepokes made during testing of the acquisition of a new instrumental response for conditioned reinforcement.

Data are presented as mean * s.e.m. and are given to 3sf.

Post-reactivation day 1 2 5 8 15 22 29

VEH/VEH 541 £579 522 560 475 =395 498398 569 =365 452 +3.99 383 =*3.05
VEH/ANI 39.3 £+6.07 429 *+6.92 403 521 449 +598 36.6*+492 389482 36.7*6.26
SCH/VEH 611 =115 43.0x430 395*+499 505+882 385358 48.8 134 37.6=*8.21
SCH/ANI 43.0 949 353512 332+490 338+*444 350=x565 323582 29.8=*6.40
RAC/VEH 33.1 498 326 =457 365554 394 +485 50.8=*463 42.0+ 504 40.5=* 4.56
RAC/ANI 3983 647 449 125 474 +936 664 +9.72 553556 563996 433 *6.75
FLU/VEH 457 + 873 402 =554 50.0+8.11 452 +827 68.0 =237 432517 542 +8.36
FLU/ANI 484 = 11.0 336 =445 400*6.75 334290 356 *492 473 111 429 =757

and RAC/ANI groups responded differently (Lever X ANI:
F,13 = 6.04, p = 0.029, 1? = 0.32), this was due to better
discrimination in the RAC/ANI group compared with the
RAC/VEH group. While the RAC/ANI group discriminated
between the active and inactive lever from the second
testing session (all p’s < 0.032 from Session 2 onwards),
the RAC/VEH group did not reliably discriminate between
the levers until Session 5 (p’s < 0.042). However, ANI did
not produce amnesia (ANI: F < 1), indicating a blockade
of memory destabilization by RAC. Furthermore, there
were no differences between the RAC/VEH and RAC/ANI
groups in the numbers of nosepokes (Table 3) made
during the test sessions (ANI: F(y 15 = 2.64, p = 0.13;
Session X ANI: F < 1), indicating that, as for D,-selective
dopamine receptor antagonism, D,R antagonism left in-
strumental responding intact and prevented the destabi-
lization of the pavlovian memory.

Protein synthesis inhibition with anisomycin
following reactivation still produced amnesia when
the nonselective dopamine receptor antagonist «-
flupenthixol was administered prior to reactivation
Administration of the mixed D,/D, dopamine receptor
antagonist FLU prior to memory reactivation, by contrast
to D;- and D,-subtype-selective dopamine receptor an-
tagonism, did not prevent the destabilization of the
CS—sucrose memory (Fig. 3D), as post-reactivation infu-
sion of anisomycin resulted in amnesia independent of the
presence of FLU (FLU X ANL: F(; 44y = 2.26, p = 0.14, n?
= 0.05; ANLI: F(; 44y = 7.48, p = 0.019, 7? = 0.41). While
the animals in the FLU/VEH group discriminated between
the active (CS-producing) and inactive lever during testing
(p = 0.018), those in the FLU/ANI group did not (o = 0.12).
Thus, pre-reactivation administration of FLU did not pre-
vent the amnestic effect of ANI. Furthermore, as for VEH-
treated animals, the number of nosepoke responses
(Table 3) made during the testing sessions was unaffected
by protein synthesis inhibition in conjunction with memory
reactivation (ANI: F(; 11y = 1.36, p = 0.27; Session X ANI:
F < 1). Thus, in contrast with D,R-selective or D,R-
selective antagonism, nonselective dopamine receptor
antagonism affected neither destabilization nor restabili-
zation of the pavlovian memory or the instrumental mem-
ory.

January/February 2015, 2(1) e0024-14.2015

Dopamine receptor antagonism prior to memory
reactivation did not affect subsequent responding
for a conditioned reinforcer itself, but altered the
normally amnestic effect of anisomycin in some
experimental groups

Dopamine receptor antagonism prior to reactivation did
not itself alter subsequent responding for conditioned
reinforcement. Comparing groups that received VEH fol-
lowing reactivation, there were no differences in subse-
quent responding for conditioned reinforcement,
regardless of which dopamine receptor antagonist had
been given prior to the memory reactivation session
(Drug1: F < 1; Lever X Drugl: Fi3 43 = 1.43, p = 0.25;
Session X Drugl: Fys6004 = 1.11, p = 0.34; Lever X
Session X Drugl: F < 1).

In contrast, dopamine receptor antagonism prior to
memory reactivation did affect the capacity of the protein
synthesis inhibitor anisomycin to induce amnesia follow-
ing reactivation. Comparing groups that received ANI fol-
lowing reactivation, there was a difference in subsequent
responding for conditioned reinforcement, depending on
which dopamine receptor antagonist had been adminis-
tered prior to reactivation. This was reflected by differ-
ences in overall lever pressing during the ANR sessions
(Drug1: Fi3 56 = 3.01, p = 0.049, n? = 0.26) and a trend
towards differences in pressing the active and inactive
levers (Lever X Drugl: Fiz.e = 2.53, p = 0.079, 7 =
0.23). Follow-up ANOVAs comparing lever pressing dur-
ing ANR for individual experimental groups revealed that
although the VEH/ANI-treated (Lever: F; 4 = 2.13, p =
0.18) and FLU/ANI-treated (Lever: Fy ) = 3.06, p = 0.12)
did not discriminate between the active and inactive le-
vers during ANR testing, the SCH/ANI-treated (Lever:
Fas =29.6, p = 0.008, 1 = 0.86) and RAC/ANI-treated
(Lever: Fi;¢ = 39.6, p = 0.001, n° = 0.87) animals
pressed the active lever, which was reinforced by presen-
tation of the previously sucrose-associated CS, more dur-
ing the test sessions.

Discussion

The data presented here demonstrate that blocking do-
paminergic signaling within the BLA either at the DR with
SCH23390 or at the D,R with raclopride prevented the
amnesia that normally follows post-reactivation protein
synthesis inhibition. Therefore, the CS—sucrose memory,
retrieved and behaviorally expressed during the memory
reactivation session, did not require protein synthesis in
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order to restabilize and subsequently persist—consistent
with the hypothesis that activity at either D;Rs or D,Rs is
required for destabilization of the CS—sucrose memory.
That the memory’s persistence was independent of pro-
tein synthesis cannot be attributed to the parameters of
the memory reactivation session, since rats having re-
ceived intra-amygdala vehicle infusions prior to reactiva-
tion were subsequently amnesic at test following post-
reactivation administration of the protein synthesis
inhibitor anisomycin. Furthermore, nonselective antago-
nism at dopamine receptors with a-flupenthixol did not
block the subsequent amnestic effect of post-reactivation
anisomycin. Although it is possible that a higher dose of
a-flupenthixol may have prevented anisomycin-induced
amnesia, the dose of a-flupenthixol used in these exper-
iments is sufficiently high to be behaviorally effective, but
not so high so as to produce locomotor side effects (Di
Ciano and Everitt, 2004). Thus, these findings may sug-
gest that memory destabilization requires a differential
state of activation of D;Rs and D,Rs in the BLA in order to
proceed.

We speculate that the requirement for dopamine in the
destabilization of the CS—sucrose memory is linked to its
role in signaling prediction error. It should be noted, how-
ever, that in addition to its hypothesized role in prediction
error, dopaminergic signaling has also been theoretically
implicated in the encoding of hedonic processes (Wise
and Rompre, 1989) and the attribution of incentive sa-
lience (Berridge and Robinson, 1998). We suggest that it
is unlikely that the data presented here can be accounted
for in terms of these other hypothesized functions of
dopamine. Firstly, it is unlikely that the administration of
dopamine receptor antagonists impaired motivation for
the sucrose reward, thereby devaluing the conditioned
reinforcer associated with it. The evidence for dopamine
in encoding hedonic processing is mixed at best (Salam-
one and Correa, 2012), and in these experiments, the
dopamine receptor antagonists were administered only
once, during a memory reactivation session in which the
primary reinforcer was unavailable, making it unlikely that
dopamine receptor antagonism could have led to deval-
uation effects. Secondly, because responding for the CS
during the memory reactivation session was unaffected
by the prior administration of the dopamine receptor an-
tagonists (Fig. 2), it is unlikely that these drugs produced
acute effects on the salience of the CS, or on the moti-
vation to work for the CS, that would only have become
apparent in the subsequent ANR testing phase beginning
24 h later. Thus, we suggest that the data presented here
are most consistent with a role for dopamine in signaling
prediction error during the destabilization of an appetitive
memory.

Although prediction error has previously been linked
theoretically to reconsolidation (Pedreira et al., 2004;
Eisenhardt and Menzel, 2007; Forcato et al., 2007; Sev-
enster et al., 2013), and it has also been suggested that
dysregulation of dopaminergic signaling underlying pre-
diction error may lead to aberrant reconsolidation in both
schizophrenia (Corlett et al., 2009) and drug addiction
(Tronson and Taylor, 2013), this is the first empirical dem-
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onstration that signaling at dopamine receptors, specifi-
cally within the BLA, prevents the destabilization of a
reconsolidating memory, as measured by a lack of effect
of post-reactivation anisomycin. Although dopaminergic
projections from the ventral tegmental area have recently
been shown to be necessary for memory destabilization
(Reichelt et al., 2013), the current study demonstrates in a
temporally and spatially more selective manner that ac-
tivity at dopamine receptors is required within the BLA,
specifically at the time when the memory would normally
destabilize at reactivation. However, the present data are
also challenging in two respects: firstly, the finding that
either D4R antagonism or D,R antagonism prevented
memory destabilization appears counterintuitive, as D;Rs
and D,Rs have generally been seen to produce opposing
effects on intracellular signaling pathways, at least in the
striatum (Stoof and Kebabian, 1981); and secondly, the
finding that nonselective dopamine receptor antagonism
did not prevent destabilization, when either of the selec-
tive receptor antagonists did, requires explanation.

The similar effect of intra-amygdala DyR and D,R an-
tagonism has been seen previously. Electrophysiological
studies of BLA neurons have shown that both DR and
D,R agonists produce an overall reduction in BLA output
(Rosenkranz and Grace, 1999), and that antagonism at
either subtype of dopamine receptor reduces the overall
excitability of BLA projection neurons (Kroner et al., 2005).
Furthermore, behaviorally, both D4R antagonists (Lamont
and Kokkinidis, 1998; Guarraci et al., 1999; Greba and
Kokkinidis, 2000) and D,R antagonists (Guarraci et al.,
2000) have anxiolytic effects, suggesting that their overall
effect on amygdala function is similar. One model to
account for these similar effects, proposed by Ehrlich and
colleagues (2009), is that despite D,Rs being expressed
on projection neurons (Pickel et al., 2006), they are also
expressed on the lateral intercalated cells; since D,Rs are
mainly expressed on local fast-spiking inhibitory interneu-
rons, both dopamine receptor subtypes are expressed on
cells that inhibit amygdala projection neurons. Stimulation
of either of these dopamine receptor subtypes leads to a
reduction in interneuron activity, and therefore disinhibi-
tion of BLA projection neurons (Bissiere et al., 2003;
Marowsky et al., 2005); thus, antagonism at D;Rs or D,Rs
would be predicted to increase interneuron activity, re-
duce the activity of the BLA projection neuron, and so
impair synaptic plasticity processes—we would argue in-
cluding memory destabilization—within the BLA. Further-
more, the effect of D;R antagonism may be twofold;
directly reducing excitation of pyramidal neurons (Kréner
et al., 2005) and indirectly increasing pyramidal cell inhi-
bition through interneurons (Ehrlich et al., 2009). The ac-
tion of dopamine on these hypothesized networks within
the amygdala is consistent with our findings, reported
here, that either D4R or D,R antagonism was sufficient to
prevent the destabilization of the reconsolidating memory.

The model proposed by Ehrlich et al. (2009) may also
provide an explanation for the lack of effect of
a-flupenthixol. In contrast to the disinhibitory effects of
D,R-selective (Kroner et al., 2005; Marowsky et al., 2005)
or D,R-selective (Bissiére et al., 2003) agonism, it has
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been demonstrated previously that simultaneous agonism
at both D;Rs and D,Rs results in an increase in sponta-
neous inhibition within the BLA inhibitory network (Lorétan
et al., 2004). In the same manner, antagonizing both
subtypes of dopamine receptor with a-flupenthixol may,
somewhat paradoxically, disinhibit the network without
interfering with destabilization.

The role of D;Rs and D,Rs in modulating amygdala
activity, and elucidation of the network dynamics, require
further study. However, the results of the experiments
reported here clearly demonstrate that dopaminergic sig-
naling is a requirement for reactivation-induced memory
destabilization. Destabilization and prediction error there-
fore have a shared dependence upon dopaminergic sig-
naling, as a retrieved memory requires prediction error in
order to destabilize (Sevenster et al., 2013), although we
did not directly test the requirement for prediction error in
destabilization in these experiments. Whether dopaminer-
gic signaling is sufficient to engage destabilization in the
absence of prediction error, and how dopaminergic
mechanisms link to already established destabilization
mechanisms such as protein degradation (Kaang et al.,
2009) and activation of the GluN2B-subtype of NMDAR
(Ben Mamou et al., 2006; Milton et al., 2013) are unre-
solved questions, although it has been suggested that
dopamine receptors can influence GIuN2B-NMDAR
phosphorylation (Yang et al., 2012). Furthermore, enhanc-
ing the destabilization process may increase the lability of
maladaptive emotional memories, thereby facilitating the
treatment of psychiatric disorders such as addiction,
where retrieved CS—drug memories can elicit drug crav-
ing and relapse.
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