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ABSTRACT

Automatic language assessment and learning systems are required to
support the global growth in English language learning. They need
to be able to provide reliable and meaningful feedback to help learn-
ers develop their skills. This paper considers the question of detect-
ing “grammatical” errors in non-native spoken English as a first step
to providing feedback on a learner’s use of the language. A state-
of-the-art deep learning based grammatical error detection (GED)
system designed for written texts is investigated on free speaking
tasks across the full range of proficiency grades with a mix of first
languages (L1s). This presents a number of challenges. Free speech
contains disfluencies that disrupt the spoken language flow but are
not grammatical errors. The lower the level of the learner the more
these both will occur which makes the underlying task of automatic
transcription harder. The baseline written GED system is seen to
perform less well on manually transcribed spoken language. When
the GED model is fine-tuned to free speech data from the target do-
main the spoken system is able to match the written performance.
Given the current state-of-the-art in ASR, however, and the ability
to detect disfluencies grammatical error feedback from automated
transcriptions remains a challenge.

Index Terms— Spoken language assessment, CALL, grammat-
ical error detection

1. INTRODUCTION

Automatic systems that enable assessment and feedback of learners
of a language are becoming increasingly popular. One important
aspect of these systems is to provide reliable, meaningful feedback
to learners on errors they are making. This feedback can then be
used independently, or under the supervision of a teacher, by the
learner to improve their proficiency. A growing number of appli-
cations are available to non-native learners to improve their English
speaking skills by providing feedback on aspects such as pronun-
ciation and fluency. It would be beneficial for a computer assisted
language learning (CALL) system to provide the learner with feed-
back on their use of English, one aspect of which is their choice
of grammar. This is a challenging problem. Even for non-learner
speech there is still open debate on defining what is correct spoken
grammar: we do not generally speak in sentences; we hesitate; re-
peat ourselves; we do not enunciate clearly; and use more than our
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words, such as intonation and gesture, to communicate our message.
These effects are accentuated in learner speech.

Currently automatic systems to provide feedback on spoken
learner grammar are focused on very constrained scenarios and/or
the approaches are not suitable for conversational and spontaneous
speech e.g. [, 2 3]. For written texts, however, there have been
significant developments in recent years in the ability to detect (and
correct) the full range of grammatical errors partly due to the devel-
opment of deep learning based approaches [4]. Applications such
as Grammarly and Write & Improveﬂ help the learner over a broad
range of writing styles. An interesting question is whether these
systems can work on spoken utterances. This paper presents initial
investigations into applying a state-of-the-art grammatical error de-
tection (GED) system [5 6] to non-native English learner speech
from a range of L1s. The system is applied to free speaking tasks,
where a learner is engaged in a conversation or talks for up to a
minute in response to a prompt.

In free speaking scenarios the learner’s spoken language is un-
known in advance so the spoken GED system must rely on automatic
speech recognition (ASR) to provide a transcription of the learner’s
speech. The non-grammatical and disfluent learner speech leads to
a mismatch with the language model. Combined with an acoustic
mismatch due to e.g. pronunciation errors, this leads to poorer ASR
performance than for native speakers [7]. This increases the chal-
lenge of producing reliable grammatical feedback since reporting on
an ASR error will be confusing to the learner. It is therefore impor-
tant that false positive errors arising from ASR errors are minimised.
To assess the effect of relying on ASR output the GED system is
investigated on both manual and ASR transcriptions.

The deep-learning-based, sequence-labeller GED system is pre-
sented in Section [2| The corpora used for training and test and the
experimental setup are described in Sections [3] and ] respectively.
Experimental results are given in Section[5] followed by conclusions
in Section

2. GED SYSTEM

The grammatical error detection (GED) system chosen for this work
is a state-of-the-art bidirectional recurrrent neural network based
frameworkﬂ proposed for detecting all kinds of grammatical errors
in learner writing [6} [5]. It treats GED as a sequence labelling task
with each token in the input sequence assigned a label, indicating
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if it is correct or incorrect in this context. Given a sequence of
tokens wi.n = {wi,...,wn} the system predicts a probability
distribution over the possible labels for each token. For example,

Internet was something amazing for me
i c c c c ¢ ¢
P(i) 098 0.04 0.03
P(c) 0.02 096 097

0.03  0.050.02 0.01
0.97 0.950.98 0.99

Every token in the input sequence is mapped to a vector repre-
sentation, yielding x1.5 = {x1,...,xn}. This word embedding
is optimised during training. To help the model handle uncommon
words, for each token, w;, every character is mapped to a character
embedding and combined into a character-based token representa-
tion, m;, using a bidirectional LSTM [6]. The token and charac-
ter vector representations are concatenated together to form a single
vector representation, X1.x = {X1,...,%n}, where X = [x; m]].

A bidirectional LSTM [8] composes X into context-specific rep-
resentations of each token,

E)i = ]'_.S'I'IVI()N(Z'7 E}(ifl)); %1 = LSTM(;{Z', (H(i+1)) (1)
by = (0] W) @
g . .
where h; and KI are the ¢th hidden state of the forward and back-
ward LSTM, respectively, and h; is the concatenation of both hidden
states. The concatenated representation is passed to a feed-forward
hidden layer with a tanh the non-linear activation function. Finally
a softmax layer is used to predict the probability of each token being
grammatically correct or incorrect (the 2-dimensional vector y;):

P(yi|lwi,...,wn) = softmax(W, tanh(W4h,)) 3)

The model is optimised by minimising cross-entropy between the
predicted label distributions and the annotated labels. This is equiv-
alent to minimising the negative log probability of the correct labels.

3. CORPORA

The main focus of this work is to build a GED system for free speak-
ing non-native learner English, across the full range of CEFR pro-
ficiency levels [9]] from beginner (A1) to proficient (C2). A test set
derived from BULATS [10] Business English assessment speaking
tests has been manually annotated for this purpose. To provide a
comparison of spoken GED with this proprietary BULATS test set,
the publicly available NICT Japanese Learner English (JLE) Cor-
pus [11] is also used, which is derived from spoken English oral
proficiency test interviews. There is no audio available for the NICT-
JLE corpus so only experiments on manual transcriptions of the spo-
ken learner data are possible. As can be seen from Table[T} neither
of the spoken corpora are very large and training GED models on
them alone yields poorly performing systems. To train the base-
line system the written Cambridge Learner Corpus (CLC) [12] is
adopted following the written GED work in [5}6]. The grammati-
cal error annotation scheme for BULATS [[13]] was derived from the
CLC scheme [12]]. NICT-JLE uses its own scheme [11].

BULATS: The spoken BULATS Business English assessment
test [10] consists of read speech and free speaking components, with
the candidate responding to prompts. Only responses to the main
free speaking parts of the test from 226 candidates were used for
this work. In BULATS sections C and D each utterance is up to
60 seconds of spontaneous speech, on topics such as describing the
sales shown in a graph. Section E is made up of 5x 20 second re-
sponses to sub-questions related to an overall topic e.g. questions

Corpus Spoken/ #Wds #Uniq Audio
Written Wds
BULATS | Spoken  61.9K 3.4K Yes
NICT-JLE | Spoken 1353K  5.6K No
CLC Written  14.1IM  79.1K No

Table 1. Corpora used in experiments. CLC train and development
set from FCE, IELTS, BULATS, CPE and CAE.

relating to organising a conference. The test set consists of a to-
tal of 1438 responses from these 3 sections. Speakers are approx-
imately evenly distributed across CEFR grades A1-C (C1 and C2
are merged) and first language (L1s) of which there are 6: Arabic,
Dutch, French, Polish, Thai, Vietnamese. Two sets of manual tran-
scription, grammatical error markup and meta-data annotations are
being produced [13]]. For this paper all annotations were taken from
a single transcriber as the second set were incomplete. On a sub-
set of 230 recordings: the mean inter-annotator transcription word
agreement is 0.863, the mean error agreement (i.e. if the words
align, is there an error?) is 0.865 and the mean error type agreement
(i.e. where both annotators agree there is an error, do they agree
on its type) is 0.744. ASR transcriptions were produced using the
graphemic stacked hybrid DNN+LSTM-HMM joint decoding sys-
tem, System 2 in [7|] which was trained on 330 hours of non-native
learner speech data from 8.5K BULATS candidates.

NICT-JLE: The NICT Japanese Learner English (JLE) Corpus
(v4.1) [L1] consists of manual transcriptions from a spoken English
oral proficiency test, ACTFL-ALC SST (Standard Speaking Test).
The test consists of a candidate being interviewed by a native or
proficient speaker of English. 167 of the interviews have been anno-
tated with grammatical errors and disfluencies. For this paper only
the candidate side is considered. The candidates’ SST scores corre-
spond to grades A1-B2 on the CEFR scale [9]. All are Japanese L1
speakers.

CLC: The Cambridge Learner Corpus (CLC) [12] is a corpus
of written text responses by non-native English learners to examina-
tions from Cambridge Assessment. It has been manually annotated
with grammatical errors and consists of various exams correspond-
ing to different proficiency levels of candidates. The publicly avail-
able CLC FCE-public Dataset [14] consists of 1,244 exam scripts
written by candidates sitting the Cambridge ESOL First Certificate
in English (FCE) examination in 2000 and 2001. The same FCE-
public test and dev sets defined in [14] were used for evaluation and
tuning, respectively. For training, the FCE-public training set was
augmented with further FCE test data and written tests from IELTS,
BULATS, CPE and CAE [3], giving around 27.5K candidates.

4. EXPERIMENTAL SETUP

Spoken utterances have a number of different attributes to written
text: disfluencies affect the flow of the spoken words; there is no
punctuation so there can be no grammatical punctuation errors but
also there is no segmentation to mark sentence and phrase bound-
aries; and there can be no spelling mistakes. In addition, ASR output
is typically in a single case so capitalisation cues which might help
identify grammatical errors are unavailable. Each of these requires
some modifications to the standard written text GED setup.

By definition, a disfluency cannot carry a grammatical error so
the system should ignore or mark it as correct. Hesitations and par-
tial words are simple to identify from the ASR output so are straight-
forward to remove from the speech transcription. Discourse markers,



false starts and restarts are harder to automatically detect and spoken
meta-data extraction remains an open research topic e.g. [15,[16}17].
Initial experiments showed that removing words marked with these
3 types of disfluency from the GED input manual speech sequence
improved the GED performance with an increase of 13 in F 5 from
36.7 to 49.7 for the NICT-JLE test and of 3 for BULATS. The lower
gain for BULATS may be due to some possible disfluencies not be-
ing removed as for this data a rich set of tags were used which in-
cluded tags such as “unnecessary”. Identification and removal of ap-
propriate disfluencies from these additional tags should help in the
future. Disfluency removal was carried out for all the experiments in
the next section.

Since there are no spelling mistakes or punctuation in speech
these were removed from the CLC data. The CLC texts were then
converted to lower case and all punctuation removed to mimic ASR
output. In the public FCE database words following a missing item
are labelled with the corresponding GE tag [14]. Any such tags
falling on final sentence punctuation were moved to the preceding
word. BULATS responses are up to 1 minute in length with a maxi-
mum of 180 words observed. To handle overly long segments, since
there is no punctuation the BULATS data was manually segmented
into annotator defined “’speech units” [13]. The same segmentations
were applied to both the manual and ASR transcriptions. Unlike BU-
LATS, the NICT-JLE utterances are conversational turns so tend not
to be too long, with a maximum length of 62 words, and no further
segmentation was applied.

The vector representation of each word in the sequence labeler
was initialised using Google’s 3 million word 300-dimensional
word2vec word embedding [’} For fine-tuning of the GED model, the
NICT-JLE and BULATS data sets were split into 10 distinct speaker
subsets. A 10-fold cross-validation experiment was run where 8
sets were used for fine-tuning, one for GED model development
data, and one for evaluation. Instead of averaging the 10 results, the
results were scored as a single output by combining all 10 evaluation
blocks together, each of which has been held-out.

5. EXPERIMENTAL RESULTS

When an automatic system provides feedback to a learner it is very
important that the system has, as far as possible, correctly identified
an error. Giving feedback on an error that the system has made will
confuse the learner. This means that high precision is required in
the GED. Fy 5 gives double the weighting to precision over recall
but does not fully capture the performance at the precision point of
interest so precision-recall curves are also presented here.

5.1. Manual annotations

Table E] gives the Fo 5 scores for the baseline manually annotated
tasks using the GED system trained on the CLC corpora. The FCE
written test has higher precision and recall scores than the spoken
systems. Note, the FCE Fy 5 score is lower than in other papers due
to the removal of the spelling and punctuation errors which make
up 23% of the standard FCE test and are somewhat easier to detect
than other grammatical errors. Similarly the NICT-JLE scores are a
lot lower than in [2] as [2]] only considered unnecessary determiners
and on a subset of the data. Figure[I]shows that even at the highest
precision/lowest recall region, the precision of the GED on BULATS
is ~0.2 worse than the written test.

3https://code.google.com/archive/p/word2vec/

Test P R F0_5

Written FCE 699 339 576
NICT-JLE 60.6 289 49.7
+ fine-tune | 66.5 359 56.8
BULATS 524 27.0 44.1
+ fine-tune | 66.7 33.8 55.8

Spoken

Table 2. Precision (P), Recall (R) and Fy 5 scores with a CLC trained
GED system and fine-tuned to the test set.
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Fig. 1. Precision-recall curves for CLC and BULATS with a CLC
trained GED system, and fine-tuned to the BULATS data.

To provide feedback the recall of high precision items needs to
be increased. The lack of annotated spoken learner corpora poses
a challenge for training the GED system so the CLC-trained GED
model was fine-tuned to the target domain. JLE and BULATS per-
form similarly under fine-tuning. As can be seen in Table 2] and
Figure[l] fine-tuning gives a large performance boost, especially in
the high precision region of interest. The Fo 5 scores increase by 6
to 56.8 for JLE, and by 11 to 55.8 for BULATS.

It is interesting to note the larger gain for fine-tuning the BU-
LATS data compared to the NICT-JLE data. Some of these addi-
tional gains may be due to the system learning attributes of the single
annotator used for the BULATS data. Additional analysis is planned,
comparing with other annotators on this data. Applying the fine-
tuned JLE models to the BULATS data was found to degrade Fo.5
by 4. This may be due to the different nature of the conversational
speech in NICT-JLE compared to the prompt responses in BULATS
and/or the different L1 and grade coverage.

A small scale analysis of the false negatives predicted for the
BULATS data at the highest precision point indicates that the true
precision is higher than the scores suggest. Annotation is difficult
due to the nature of the data and disagreement between annotators
as to what constitutes a grammatical error. About 40% of the errors
could be potentially classed as true positives where a GE was made
but not annotated e.g. no missing determiner marked for “. .. I think
you need taxi”. From the perspective of providing helpful feedback
to the learner, of most interest were about 27% of errors which were
words that were in the region of an error, that is, the grammatical
error was marked on a word next to, and part of a linguistic chunk
with, a word with an error tag. For example

. to continue to inform with customer when we have ...
tag ¢ c c c i c c ¢ ¢
pred ¢ c c c c i c ¢ ¢

For feedback purposes it may well be sufficient to highlight the re-
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gion where the error tag was predicted, in which case these small
mis-alignments will be beneficial in providing information.

5.2. ASR annotations

The results presented above are based on manual transcription of the
test data. In practice the transcriptions will be produced by an auto-
matic speech recognition (ASR) system. As seen in Table[3] learners
at lower proficiency levels say a lot less than higher grade learn-
ers. In spite of this lower word count, the grammatical error rate
(GER) increases with decreasing grade. Grammatical errors cause
mismatches with the ASR language model so more GEs would be
expected to increase the recognition word error rate (WER) and this
is reflected in the WERs presented in Table[3] The less proficient the
speaker, the higher the WEREI These recognition errors introduce
additional challenges into the spoken GED task. From a feedback
perspective it is important that feedback is given on actual grammat-
ical errors rather than a false error detected on an ASR error.

Al A2 BI B2 C | Tot
#Words | 4342 8951 13803 16817 17691 | 123208
%GER | 198 176 168 162 121 | 156
%WER | 409 318 247 240 210 | 256

Table 3. ASR word error rate (WER) and grammatical error rate
(GER) scored against manual transcriptions.

To assess the effect of grammatical errors and disfluencies on
ASR output the manual and automatic BULATS transcriptions were
aligned using a modified Damerau-Levenshtein algorithm (restricted
edit distance version) from the ERRANT toolkit’| [18} [19]]. To im-
prove the alignment, token transportation was disabled and the costs
for a word error changed to be 3 for insertion or deletion and 4 +
A for a substitution. A character-level Levenshtein distance was
used to calculate A with range [0 : 1]. Following the transcription
alignment, the associated GE and disfluency tags were ported to the
aligned ASR word. If the ASR word was an error, i.e. it did not
match the manually transcribed word, then the GE was changed to
correct. This approach was chosen to reflect the need to not give
feedback on ASR errors. When ASR is used there may be words
missed (deleted) in the recognised output. If a GE occurs on this
word then it will not be possible to detect it, for example the incor-
rect determiner form (FD) here:

Manual | the job we can offer is {FD a} engineering job
ASR the job we can offer is [[ del ]] engineering job
| Num. %WER
Overall 73189  24.8%
”Fluent” 50847  19.1%
Grammatical Error | 10348  29.3%
Disfluency 5118 36.4%

Table 4. WER breakdown by error type excluding ASR insertions.

Table[]shows that where speech contains a grammatical error or
disfluency the WER increases. This is due to the language model be-
ing poorly matched in these cases even though it is partially trained
on transcriptions from the BULATS training corpus [20]. This will
increase the mismatch with the GED model which is reflected in
the GED performance shown in Figure 2]and Table[5] The baseline

4Two crowd-sourcer inter-annotator error rate is ~25%.
Shttps://github.com/chrisjbryant/errant

CLC trained GED system performance is much lower than for the
manual transcriptions with 26.6 Fy 5, compared to 44.1 for the latter.
As for the manual transcriptions, fine-tuning the GED model yields
better precision, particularly at the high precision area of interest.
Using the ASR transcriptions for fine-tuning (Finetune-ASR) gave
slightly better GED performance than taking the model fine-tuned
on the manual transcriptions (Finetune-Man) with Fy 5 of 37.3 and
35.1, respectively. By matching the fine-tuning training and test data
transcriptions some of the errors in the latter are mitigated.
GED Model \ P R Fo.5
CLC 28.1 220 26.6
+ fine-tune Man | 37.0 292 35.1
+ fine-tune ASR | 46.7 20.7 373

Table 5. Precision (P), Recall (R) and Fy 5 scores for ASR transcrip-
tions with a CLC trained GED system and fine-tuned to BULATS
manual (Man) and ASR transcriptions.

1.0
— CLC
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—-- Finetune-Man
0.8 4

Precision

0.0

T T T T
0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 2. Precision-recall curves on BULATS ASR transcriptions.

6. CONCLUSIONS

The performance of grammar error detection (GED) systems for
non-native English learner writing has reached a good level across
GE types on a broad range of writing tasks and proficiency levels.
In contrast most spoken GED systems have focused on limited tasks
and/or GEs. This paper, therefore, considered if a state-of-the-art
bidirectional LSTM based written GED system could be applied to
non-native English open free speaking tasks (interviews (NICT-JLE)
and prompted talking on topics (BULATS)) across all learner pro-
ficiency levels. The baseline written GED system was applied to
manual transcriptions of the spontaneous spoken responses for both
tasks. The spoken GED performance level was lower than for writ-
ing. By fine-tuning to the task transcriptions, however, this domain
mismatch was overcome and equivalent performance observed. In
contrast, applying the system to automatic transcriptions of the BU-
LATS data proved challenging. ASR errors were shown to increase
when there are grammatical errors and disfluencies, leading to false
positives which degraded GED performance, even after fine-tuning.
Future work will look at boosting the quantity of speech training
data by incorporating learner errors into native speech corpora and
improving meta-data detection to assist with removing disfluencies.
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